WorldWideScience

Sample records for model passive acoustic

  1. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  2. Model-based passive acoustic tracking of sperm whale foraging behavior in the Gulf of Alaska

    Science.gov (United States)

    Tiemann, Christopher; Thode, Aaron; Straley, Jan; Folkert, Kendall; O'Connell, Victoria

    2005-09-01

    In 2004, the Southeast Alaska Sperm Whale Avoidance Project (SEASWAP) introduced the use of passive acoustics to help monitor the behavior of sperm whales depredating longline fishing operations. Acoustic data from autonomous recorders mounted on longlines provide the opportunity to demonstrate a tracking algorithm based on acoustic propagation modeling while providing insight into whales' foraging behavior. With knowledge of azimuthally dependent bathymetry, a 3D track of whale motion can be obtained using data from just one hydrophone by exploiting multipath arrival information from recorded sperm whale clicks. The evolution of multipath arrival patterns is matched to range-, depth-, and azimuth-dependent modeled arrival patterns to generate an estimate of whale motion. This technique does not require acoustic ray identification (i.e., direct path, surface reflected, etc.) while still utilizing individual ray arrival information, and it can also account for all waveguide propagation physics such as interaction with range-dependent bathymetry and ray refraction.

  3. Passive Acoustic Vessel Localization

    Science.gov (United States)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  4. Using passive acoustics to model blue whale habitat off the Western Antarctic Peninsula

    Science.gov (United States)

    Širović, Ana; Hildebrand, John A.

    2011-07-01

    Habitat preferences of calling blue whales were investigated using data from two multidisciplinary oceanographic cruises conducted off the Western Antarctic Peninsula (WAP) during the austral falls of 2001 and 2002. Data were collected on depth, temperature, salinity, chlorophyll a (Chl- a) concentration, krill biomass, zooplankton abundance, and blue whale call presence. In 2001, the study area was sea ice free, high Chl- a concentrations occurred over a small area, krill biomass and zooplankton abundance were high, and few blue whale calls were detected. In 2002 the sea ice covered the southern part of the survey area, Chl- a was high over a large area, krill and zooplankton were low, and there were more blue whale calls. Logistic regression analysis revealed blue whale calls were positively correlated with depth and SST, and negatively correlated with the mean zooplankton abundance from 101 to 300 m and the mean krill biomass in the top 100 m. The negative correlation between blue whale calls and zooplankton could occur if feeding animals do not produce calls. Our survey area did not cover the full range of blue whale habitat off the WAP, as blue whales probably follow the melting and freezing ice edge through this region. Passive acoustics can provide insight to mesoscale habitat use by blue whales in the Southern Ocean where visual sightings are rare, but the ability to localize on the calling animals would greatly improve the ability to model at a finer scale.

  5. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  6. Tracking marine mammals using passive acoustics

    Science.gov (United States)

    Nosal, Eva-Marie

    2007-12-01

    It is difficult to study the behavior and physiology of marine mammals or to understand and mitigate human impact on them because much of their lives are spent underwater. Since sound propagates for long distances in the ocean and since many cetaceans are vocal, passive acoustics is a valuable tool for studying and monitoring their behavior. After a brief introduction to and review of passive acoustic tracking methods, this dissertation develops and applies two new methods. Both methods use widely-spaced (tens of kilometers) bottom-mounted hydrophone arrays, as well as propagation models that account for depth-dependent sound speed profiles. The first passive acoustic tracking method relies on arrival times of direct and surface-reflected paths. It is used to track a sperm whale using 5 at the Atlantic Undersea Test and Evaluation Center (AUTEC) and gives position estimates that are accurate to within 10 meters. With such accuracy, the whale's pitch and yaw are estimated by assuming that its main axis (which points from the tail to the rostrum) is parallel to its velocity. Roll is found by fitting the details of the pulses within each sperm whale click to the so-called bent horn model of sperm whale sound production. Finally, given the position and orientation of the whale, its beam pattern is reconstructed and found to be highly directional with an intense forward directed component. Pair-wise spectrogram (PWS) processing is the second passive acoustic tracking method developed in this dissertation. Although it is computationally more intensive, PWS has several advantages over arrival-time tracking methods, especially in shallow water environments, for long duration calls, and for multiple-animal datasets, as is the case for humpback whales on Hawaiian breeding grounds. Results of simulations with realistic noise conditions and environmental mismatch are given and compared to other passive localization techniques. When applied to the AUTEC sperm whale dataset, PWS

  7. Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section.

    Science.gov (United States)

    Bilbao, Stefan; Harrison, Reginald

    2016-07-01

    Numerical modeling of wave propagation in acoustic tubes is a subject of longstanding interest, particularly for enclosures of varying cross section, and especially when viscothermal losses due to boundary layer effects are taken into consideration. Though steady-state, or frequency domain methods, are a common avenue of approach, recursive time domain methods are an alternative, allowing for the generation of wideband responses, and offer a point of departure for more general modeling of nonlinear wave propagation. The design of time-domain methods is complicated by numerical stability considerations, and to this end, a passive representation is a useful design principle leading to simple stable and explicit numerical schemes, particularly in the case of viscothermal loss modeling. Such schemes and the accompanying energy and stability analysis are presented here. Numerical examples are presented for a variety of duct profiles, illustrating strict energy dissipation, and for comparison of computed input impedances against frequency-domain results.

  8. Passive Acoustic Radar for Detecting Supersonic Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; XIAO Hui

    2005-01-01

    A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.

  9. Localization of acoustic sensors from passive Green's function estimation.

    Science.gov (United States)

    Nowakowski, Thibault; Daudet, Laurent; de Rosny, Julien

    2015-11-01

    A number of methods have recently been developed for passive localization of acoustic sensors, based on the assumption that the acoustic field is diffuse. This article presents the more general case of equipartition fields, which takes into account reflections off boundaries and/or scatterers. After a thorough discussion on the fundamental differences between the diffuse and equipartition models, it is shown that the method is more robust when dealing with wideband noise sources. Finally, experimental results show, for two types of boundary conditions, that this approach is especially relevant when acoustic sensors are close to boundaries.

  10. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.

    2011-09-30

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  11. Passive Acoustic Studies of North Atlantic Right Whales

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Passive acoustic monitoring buoys have been deployed in shallow waters between North Carolina and Northern Florida since 2003. These units are bottom mounted...

  12. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  13. Passive acoustic inversion to estimate bedload size distribution in rivers

    Science.gov (United States)

    Petrut, Teodor; Geay, Thomas; Belleudy, Philippe; Gervaise, Cédric

    2016-04-01

    The knowledge of sediment transport rate in rivers is related to issues like changes in channel forms, inundation risks and river's ecological functions. The passive acoustic method introduced here measures the bedload processes by recording the noise generated by the inter-particle collisions. In this research, an acoustic inversion is proposed to estimate the size distribution of mobile particles. The theoretical framework of Hertz's impact between two solids rigid is used to model the sediment-generated noise. This model combined with the acoustical power spectrum density gives the information on the particle sizes. The sensitivity of the method is performed and finally the experimental validation is done through a series of tests in the laboratory as well in a natural stream. The limitations of the proposed inversion method are drawn assuming the wave propagation effects in the channel. It is stated that propagation effects limit the applicability of the method to large rivers, like fluvial channels, in the detriment of mountain torrents.

  14. Passive Mode Carbon Nanotube Underwater Acoustic Transducer

    Science.gov (United States)

    2016-09-20

    effect device. The device has two conductive electrodes attached to opposite edges of a vibrating plate thru the elastic silicon rubber . The thin... temperature periodically changes at the frequency of the incoming sound wave. The center of the free electron cloud of the Peltier-Seeback material...pressure disturbance results in temperature gradient changes of the medium at the same frequency ω as the incoming acoustic sound wave. Further, the

  15. Passive acoustic detection of deep-diving beaked whales

    DEFF Research Database (Denmark)

    Zimmer, W.M.X.; Harwood, J.; Tyack, P.L.

    2008-01-01

    Beaked whales can remain submerged for an hour or more and are difficult to sight when they come to the surface to breathe. Passive acoustic detection (PAD) not only complements traditional visual-based methods for detecting these species but also can be more effective because beaked whales produce...... clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range...... at which beaked whale clicks can be detected involves their high frequencies, which attenuate rapidly, resulting in limited ranges of detection, especially in adverse environmental conditions. Given current knowledge of source parameters and in good conditions, for example, with a wind speed of 2  m...

  16. Active-passive gradient shielding for MRI acoustic noise reduction.

    Science.gov (United States)

    Edelstein, William A; Kidane, Tesfaye K; Taracila, Victor; Baig, Tanvir N; Eagan, Timothy P; Cheng, Yu-Chung N; Brown, Robert W; Mallick, John A

    2005-05-01

    An important source of MRI acoustic noise-magnet cryostat warm-bore vibrations caused by eddy-current-induced forces-can be mitigated by a passive metal shield mounted on the outside of a vibration-isolated, vacuum-enclosed shielded gradient set. Finite-element (FE) calculations for a z-gradient indicate that a 2-mm-thick Cu layer wrapped on the gradient assembly can decrease mechanical power deposition in the warm bore and reduce warm-bore acoustic noise production by about 25 dB. Eliminating the conducting warm bore and other magnet parts as significant acoustic noise sources could lead to the development of truly quiet, fully functioning MRI systems with noise levels below 70 dB.

  17. Density can be misleading for low-density species: benefits of passive acoustic monitoring.

    Science.gov (United States)

    Rogers, Tracey L; Ciaglia, Michaela B; Klinck, Holger; Southwell, Colin

    2013-01-01

    Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being 'critical' habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly.

  18. Density can be misleading for low-density species: benefits of passive acoustic monitoring.

    Directory of Open Access Journals (Sweden)

    Tracey L Rogers

    Full Text Available Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being 'critical' habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly.

  19. Beaked whale (Mesoplodon densirostris) passive acoustic detection in increasing ambient noise.

    Science.gov (United States)

    Ward, Jessica; Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy; Johnson, Mark; Tyack, Peter; Thomas, Len; Marques, Tiago

    2011-02-01

    Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array.

  20. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  1. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive orthogonal frequency coded (OFC) surface acoustic wave (SAW) based hydrogen sensors for NASA application...

  2. Passive Downhole Pressure Sensor Based on Surface Acoustic Wave Technology.

    Science.gov (United States)

    Quintero, Sully M M; Figueiredo, Sávio W O; Takahashi, Victor L; Llerena, Roberth A W; Braga, Arthur M B

    2017-07-15

    A passive surface acoustic wave (SAW) pressure sensor was developed for real-time pressure monitoring in downhole application. The passive pressure sensor consists of a SAW resonator, which is attached to a circular metal diaphragm used as a pressure transducer. While the membrane deflects as a function of pressure applied, the frequency response changes due to the variation of the SAW propagation parameters. The sensitivity and linearity of the SAW pressure sensor were measured to be 8.3 kHz/bar and 0.999, respectively. The experimental results were validated with a hybrid analytical-numerical analysis. The good results combined with the robust design and packaging for harsh environment demonstrated it to be a promising sensor for industrial applications.

  3. Passive Autonomous Acoustic Monitoring of Marine Mammals: System Development Using Seaglider (Trademark)

    Science.gov (United States)

    2015-01-30

    DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Passive Autonomous Acoustic Monitoring of Marine Mammals...System Development Using Seaglider Final Report 30 January 2015 Neil M. Bogue Applied Physics Laboratory University of Washington Box ...award as part of the Office of Naval Research’s (ONR) Passive Autonomous Acoustic Monitoring (PAAM) program. The initial long-term goals of the PAAM

  4. Passive ranging based on acoustic field interference structure using double arrays (elements)

    Institute of Scientific and Technical Information of China (English)

    YU Yun; HUI Junying

    2012-01-01

    Two kinds of passive ranging algorithms are proposed combined with waveguide invariant theory based on the important characteristic of the ocean waveguide that the inter- ference structure is stable and can be observed in the low-frequency acoustic field, in order to explore the passive ranging method suitable for the towed line array sonar. The double arrays (elements) model is adopted, so the LOFARgram and bearing-time records of the each array (element) can be obtained. Then the frequency-time records can be extracted by processing the LOFARgram via Radon transform, so the passive ranging can be achieved combined the corresponding ranging algorithms. And the feasibility of the algorithms has been verified by simulation researches and positioning accuracy analysis.

  5. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  6. Studies of depredating sperm whales (Physeter macrocephalus) off Sitka, AK, using videocameras, tags, and long-range passive acoustic tracking

    Science.gov (United States)

    Mathias, Delphine

    This dissertation uses videocameras, tags and acoustic recorders to investigate the diving and acoustic behavior of sperm whales in the Gulf of Alaska during natural and depredation foraging conditions. First, underwater videocamera footage of a sperm whale attacking a fisherman's longline at 100 m depth was used to examine its acoustic behavior at close range and to estimate its size both acoustically and visually. Second, bioacoustic tagging data demonstrated that the same individuals displayed different acoustic behaviors during natural and depredation foraging states. Two broad categories of depredation, "shallow" and "deep," were also identified. These results suggest that passive acoustic monitoring at close ranges may yield useful metrics for quantifying depredation activity. Third, the behavioral reactions of depredating sperm whales to a variety of acoustic playbacks generated at relatively low source levels were investigated using bioacoustic tags. Finally, bioacoustic and satellite tag data were used to develop passive acoustic techniques for tracking sperm whales with a short-aperture two-element vertical array. When numeric sound propagation models were exploited, localization ranges up to 35 km were obtained. The tracking methods were also used to estimate the source levels of sperm whale "clicks" and "creaks", predict the maximum detection range of the signals as a function of sea state, and measure the drift of several whales away from a visual decoy.

  7. Spacecraft Internal Acoustic Environment Modeling

    Science.gov (United States)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  8. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid...

  9. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid level...

  10. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  11. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  12. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas).

    Science.gov (United States)

    Lammers, Marc O; Castellote, Manuel; Small, Robert J; Atkinson, Shannon; Jenniges, Justin; Rosinski, Anne; Oswald, Julie N; Garner, Chris

    2013-09-01

    The endangered beluga whale (Delphinapterus leucas) population in Cook Inlet, AK faces threats from a variety of anthropogenic factors, including coastal development, oil and gas exploration, vessel traffic, and military activities. To address existing gaps in understanding about the occurrence of belugas in Cook Inlet, a project was developed to use passive acoustic monitoring to document the year-round distribution of belugas, as well as killer whales (Orcinus orca), which prey on belugas. Beginning in June 2009, ten moorings were deployed throughout the Inlet and refurbished every two to eight months. Despite challenging conditions consisting of strong tidal currents carrying debris and seasonal ice cover, 83% of mooring deployments were successfully recovered. Noise from water flow, vessel traffic, and/or industrial activities was present at several sites, potentially masking some signals. However, belugas were successfully detected at multiple locations. Detections were relatively common in the upper inlet and less common or absent at middle and lower inlet locations. Killer whale signals were also recorded. Some seasonal variability in the occurrence of both belugas and killer whales was evident.

  13. Cetacean Density Estimation from Novel Acoustic Datasets by Acoustic Propagation Modeling

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Cetacean Density Estimation from Novel Acoustic Datasets...OBJECTIVES The objectives of this research are to apply existing methods for cetacean density estimation from passive acoustic recordings made by single...sensors, to novel data sets and cetacean species, as well as refine the existing techniques in order to develop a more generalized model that can be

  14. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region & West Coast Naval Training Range Demonstration of Glider-based Passive Acoustic Monitoring

    Science.gov (United States)

    2012-09-30

    distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION...indicate sunset to sunrise , with vertical grid lines marking midnight local time. Figure 2 above shows data obtained from a HARP passive acoustic

  15. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    Science.gov (United States)

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features.

  16. Development of a passive and remote magnetic microsensor with thin-film giant magnetoimpedance element and surface acoustic wave transponder

    KAUST Repository

    Al Rowais, Hommood

    2011-01-01

    This paper presents the development of a wireless magnetic field sensor consisting of a three-layer thin-film giant magnetoimpedance sensor and a surface acoustic wave device on one substrate. The goal of this integration is a passive and remotely interrogated sensor that can be easily mass fabricated using standard microfabrication tools. The design parameters, fabrication process, and a model of the integrated sensor are presented together with experimental results of the sensor. © 2011 American Institute of Physics.

  17. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    Science.gov (United States)

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  18. Density estimation of Yangtze finless porpoises using passive acoustic sensors and automated click train detection.

    Science.gov (United States)

    Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki

    2010-09-01

    A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.

  19. Passive acoustic detection of a rebreather using a random array

    NARCIS (Netherlands)

    Fillinger, L.; Hunter, A.J.; Zampolli, M.; Clarijs, M.C.

    2013-01-01

    Divers, including closed circuit (rebreather) divers constitute a potential threat to waterside infrastructures. Active diver detection sonars are available commercially but present some shortcomings, particularly in highly reverberant environments. This has led to research on passive sonar for dive

  20. Passive acoustic detection of a rebreather using a random array

    NARCIS (Netherlands)

    Fillinger, L.; Hunter, A.J.; Zampolli, M.; Clarijs, M.C.

    2013-01-01

    Divers, including closed circuit (rebreather) divers constitute a potential threat to waterside infrastructures. Active diver detection sonars are available commercially but present some shortcomings, particularly in highly reverberant environments. This has led to research on passive sonar for dive

  1. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array

    Science.gov (United States)

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.

    2016-01-01

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging. PMID:27739472

  2. Blue and Fin Whale Habitat Modeling from Long-Term Year-Round Passive Acoustic Data from the Southern California Bight

    Science.gov (United States)

    2014-09-30

    developing models that look at the seasonal impacts on the distribution of blue and fin whales . By the end of the project, we will have developed separate...the development of habitat models. • Completed building single-site models for calling blue and fin whales . • Started building models for...blue whale call detections, with highest levels in the basin just to the west of San Clemente Island. Overall, the developed GAMs were better at

  3. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    Science.gov (United States)

    2015-09-30

    Classification, and Localization of Marine Mammals Jonathan Klay NOAA Pacific Marine Environmental Laboratory (PMEL) 2115 SE OSU Dr. Newport, OR...classify marine mammal vocalizations and ultimately, in some cases, provide data for estimating the population density of the species present. In...types of marine mammal sounds. OBJECTIVES We are developing advanced real-time passive acoustic marine mammal detection, classification, and

  4. Passive acoustic measurements of snapping shrimp from a reef monitoring feasibility test in Aruba

    NARCIS (Netherlands)

    Huntera, A.; Fillingera, L.; Clarijs, M.

    2014-01-01

    In December 2013, TNO made underwater measurements in Aruba to assess the feasibility of reef health monitoring using passive acoustics; this work was conducted in collaboration with Aruba Ports Authority, Aruba Marine Park, and Aruba Reef Care Foundation. Ambient noise recordings were made at vario

  5. Improving the Navys Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    Science.gov (United States)

    2015-09-30

    Monitoring of Marine Mammal Populations Gerald L. D’Spain Marine Physical Laboratory Scripps Institution of Oceanography 291 Rosecrans Street... mammal populations. A major focus in this project is on further enhancing the ability to estimate environmentally-calibrated calling density (calls per... mammal species using passive acoustic monitoring, with application to obtaining density estimates of transiting humpback whale populations in the

  6. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    Science.gov (United States)

    2014-09-30

    in Zimmer (Eq 4.32): () = ()−2() where W(t) is an amplitude weighting function; a hanning window corresponding to the duration...Hildebrand (2004). Waveguide propagation allows range estimates for North Pacific right whales in the Bering Sea. Can. Acoust. 32:146‐ 154. Zimmer W

  7. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    Science.gov (United States)

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  8. Using passive acoustic telemetry to infer mortality events in adult herbivorous coral reef fishes

    Science.gov (United States)

    Khan, J. A.; Welsh, J. Q.; Bellwood, D. R.

    2016-06-01

    Mortality is considered to be an important factor shaping the structure of coral reef fish communities, but data on the rate and nature of mortality of adult coral reef fishes are sparse. Mortality on coral reefs is intrinsically linked with predation, with most evidence suggesting that predation is highest during crepuscular periods. We tested this hypothesis using passive acoustic telemetry data to determine the time of day of potential mortality events (PMEs) of adult herbivorous reef fishes. A total of 94 fishes were tagged with acoustic transmitters, of which 43 exhibited a PME. Furthermore, we identified five categories of PMEs based on the nature of change in acoustic signal detections from tagged fishes. The majority of PMEs were characterised by an abrupt stop in detections, possibly as a result of a large, mobile predator. Overall, mortality rates were estimated to be approximately 59 % per year using passive acoustic telemetry. The time of day of PMEs suggests that predation was highest during the day and crepuscular periods and lowest at night, offering only partial support for the crepuscular predation hypothesis. Visually oriented, diurnal and crepuscular predators appear to be more important than their nocturnal counterparts in terms of predation on adult reef fishes. By timing PMEs, passive acoustic telemetry may offer an important new tool for investigating the nature of predation on coral reefs.

  9. Passive acoustic tracking of singing humpback whales (Megaptera novaeangliae) on a northwest Atlantic feeding ground.

    Science.gov (United States)

    Stanistreet, Joy E; Risch, Denise; Van Parijs, Sofie M

    2013-01-01

    Passive acoustic tracking provides an unobtrusive method of studying the movement of sound-producing animals in the marine environment where traditional tracking methods may be costly or infeasible. We used passive acoustic tracking to characterize the fine-scale movements of singing humpback whales (Megaptera novaeangliae) on a northwest Atlantic feeding ground. Male humpback whales produce complex songs, a phenomenon that is well documented in tropical regions during the winter breeding season, but also occurs at higher latitudes during other times of year. Acoustic recordings were made throughout 2009 using an array of autonomous recording units deployed in the Stellwagen Bank National Marine Sanctuary. Song was recorded during spring and fall, and individual singing whales were localized and tracked throughout the array using a correlation sum estimation method on the time-synchronized recordings. Tracks were constructed for forty-three song sessions, revealing a high level of variation in movement patterns in both the spring and fall seasons, ranging from slow meandering to faster directional movement. Tracks were 30 min to 8 h in duration, and singers traveled distances ranging from 0.9 to 20.1 km. Mean swimming speed was 2.06 km/h (SD 0.95). Patterns and rates of movement indicated that most singers were actively swimming. In one case, two singers were tracked simultaneously, revealing a potential acoustic interaction. Our results provide a first description of the movements of singers on a northwest Atlantic feeding ground, and demonstrate the utility of passive acoustic tracking for studying the fine-scale movements of cetaceans within the behavioral context of their calls. These methods have further applications for conservation and management purposes, particularly by enhancing our ability to estimate cetacean densities using passive acoustic monitoring.

  10. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring.

    Science.gov (United States)

    Stimpert, Alison K; Au, Whitlow W L; Parks, Susan E; Hurst, Thomas; Wiley, David N

    2011-01-01

    Humpback whales (Megaptera novaeangliae) are one of several baleen whale species in the Northwest Atlantic that coexist with vessel traffic and anthropogenic noise. Passive acoustic monitoring strategies can be used in conservation management, but the first step toward understanding the acoustic behavior of a species is a good description of its acoustic repertoire. Digital acoustic tags (DTAGs) were placed on humpback whales in the Stellwagen Bank National Marine Sanctuary to record and describe the non-song sounds being produced in conjunction with foraging activities. Peak frequencies of sounds were generally less than 1 kHz, but ranged as high as 6 kHz, and sounds were generally less than 1 s in duration. Cluster analysis distilled the dataset into eight groups of sounds with similar acoustic properties. The two most stereotyped and distinctive types ("wops" and "grunts") were also identified aurally as candidates for use in passive acoustic monitoring. This identification of two of the most common sound types will be useful for moving forward conservation efforts on this Northwest Atlantic feeding ground.

  11. Passive Autonomous Acoustic Monitoring of Marine Mammals with Seagliders

    Science.gov (United States)

    2012-09-30

    odontocetes recorded in the Southern California Bight: bottlenose dolphins ( Tursiops truncatus ), short- and long-beaked common dolphins (Delphinus delphis...Bell, Julie Rivers ) about deploying this acoustically-equipped Seaglider for marine mammal monitoring at sites of interest to the Navy, particularly...Haykin, S. 2002. Adaptive Filter Theory. Prentice-Hall, Upper Saddle River . Hu, Y. and Loizou, P. 2002. A subspace approach for enhancing speech

  12. Beaked Whale Group Deep Dive Behavior from Passive Acoustic Monitoring

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Beaked Whale Group Deep Dive Behavior from Passive...Research Organisation P.O. Box AB-20714 Marsh Harbour Abaco, Bahamas phone: (242) 366-4155 fax: (242) 366-4155 email: dclaridge...N000141512649 LONG-TERM GOALS While a significant body of knowledge regarding individual beaked whale behavior at depth has been established in the

  13. Beaked Whale Group Deep Dive Behavior from Passive Acoustic Monitoring

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Beaked Whale Group Deep Dive Behavior from Passive...described explicitly, beaked whales are one of the cetacean taxa more sensitive to use of Navy sonar (Moretti et al., 2014; Tyack et al., 2011). Despite...their vulnerability, Blainville’s beaked whale , Mesoplodon densirostris (Md), are routinely detected year-round on the AUTEC range, coincident with

  14. Passive acoustic monitoring of bed load discharge in a large gravel bed river

    Science.gov (United States)

    Geay, T.; Belleudy, P.; Gervaise, C.; Habersack, H.; Aigner, J.; Kreisler, A.; Seitz, H.; Laronne, J. B.

    2017-02-01

    Surrogate technologies to monitor bed load discharge have been developed to supplement and ultimately take over traditional direct methods. Our research deals with passive acoustic monitoring of bed load flux using a hydrophone continuously deployed near a river bed. This passive acoustic technology senses any acoustic waves propagated in the river environment and particularly the sound due to interparticle collisions emitted during bed load movement. A data set has been acquired in the large Alpine gravel-bedded Drau River. Analysis of the short-term frequency response of acoustic signals allows us to determine the origin of recorded noises and to consider their frequency variations. Results are compared with ancillary field data of water depth and bed load transport inferred from the signals of a geophone array. Hydrophone and geophone signals are well correlated. Thanks to the large network of deployed geophones, analysis of the spatial resolution of hydrophone measurements shows that the sensor is sensitive to bed load motion not only locally but over distances of 5-10 m (10-20% of river width). Our results are promising in terms of the potential use of hydrophones for monitoring bed load transport in large gravel bed rivers: acoustic signals represent a large river bed area, rather than being local; hydrophones can be installed in large floods; they can be deployed at a low cost and provide continuous monitoring at high temporal resolution.

  15. AFSC/NMML: Passive acoustic sonobuoy recordings from Bering, Chukchi, and Beaufort Seas in Alaska, 2007-2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) has conducted passive acoustic monitoring in the Bering, Chukchi, and Western Beaufort Seas to determine spatio-temporal...

  16. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption.

    Science.gov (United States)

    Jose, Jithin; Willemink, Rene G H; Resink, Steffen; Piras, Daniele; van Hespen, J C G; Slump, Cornelis H; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-01-31

    We present a 'hybrid' imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of small cross-section placed in the path of the light illuminating the sample. This absorber, which we call a passive element acts as a source of ultrasound. The interaction of ultrasound with the sample can be measured in transmission, using the same ultrasound detector used for photoacoustics. Such measurements are made at various angles around the sample in a CT approach. Images of the ultrasound propagation parameters, attenuation and speed of sound, can be reconstructed by inversion of a measurement model. We validate the method on specially designed phantoms and biological specimens. The obtained images are quantitative in terms of the shape, size, location, and acoustic properties of the examined heterogeneities.

  17. Acoustic emission localization in plates with dispersion and reverberations using sparse PZT sensors in passive mode

    Science.gov (United States)

    Perelli, Alessandro; De Marchi, Luca; Marzani, Alessandro; Speciale, Nicolò

    2012-02-01

    A strategy for the localization of acoustic emissions (AE) in plates with dispersion and reverberation is proposed. The procedure exploits signals received in passive mode by sparse conventional piezoelectric transducers and a three-step processing framework. The first step consists in a signal dispersion compensation procedure, which is achieved by means of the warped frequency transform. The second step concerns the estimation of the differences in arrival time (TDOA) of the acoustic emission at the sensors. Complexities related to reflections and plate resonances are overcome via a wavelet decomposition of cross-correlating signals where the mother function is designed by a synthetic warped cross-signal. The magnitude of the wavelet coefficients in the warped distance-frequency domain, in fact, precisely reveals the TDOA of an acoustic emission at two sensors. Finally, in the last step the TDOA data are exploited to locate the acoustic emission source through hyperbolic positioning. The proposed procedure is tested with a passive network of three/four piezo-sensors located symmetrically and asymmetrically with respect to the plate edges. The experimentally estimated AE locations are close to those theoretically predicted by the Cramèr-Rao lower bound.

  18. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    Science.gov (United States)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  19. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  20. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    Science.gov (United States)

    2016-05-02

    in addition to animal position. 2) Use improve maximization schemes in model -based tracking. 3) Use received sound pressure levels in addition to...differences in received sound pressure levels in the same way that that time-differences of arrival are used in model -based time of arrival localization...Sound pressure level predictions are made using a sound propagation model , which in turn uses information about the environment including sound speed

  1. Use of Anal Acoustic Reflectometry in the Evaluation of Men With Passive Fecal Leakage.

    Science.gov (United States)

    Hornung, Benjamin R; Telford, Karen J; Carlson, Gordon L; Mitchell, Peter J; Klarskov, Niels; Kiff, Edward S

    2017-05-01

    Men with passive fecal leakage represent a distinct clinical entity in which the pathophysiology remains unclear. Standard anorectal investigations fail to demonstrate consistent abnormalities in this group. Anal acoustic reflectometry is a new test of anal sphincter function with greater sensitivity and discriminatory ability than conventional anal manometry. The aim of this study was to determine whether men with fecal leakage have an abnormality in anal sphincter function that is detectable by anal acoustic reflectometry. This was an age-matched study of continent and incontinent men. The study was conducted at a university teaching hospital. Male patients with isolated symptoms of fecal leakage were recruited. Anal acoustic reflectometry, followed by conventional anal manometry, was performed. Results were then compared with those from an age-matched group of men with no symptoms of anal incontinence or anorectal pathology. Variables measured with anal acoustic reflectometry and anal manometry in the incontinent and continent men were compared. Thirty subjects were recruited, of whom 15 were men with fecal leakage and 15 were continent men. There was a significantly higher incidence of previous anorectal surgery in the men with leakage. The anal acoustic reflectometry variables of opening and closing pressure were significantly lower in leakers compared with continent subjects (p = 0.003 and p = 0.001). Hysteresis was significantly greater in the male leaker group (p = 0.026). No difference was seen in anal manometry. With a larger sample size, the effect of previous anorectal surgery and the presence of an anal sphincter defect could be clarified. Anal acoustic reflectometry is a sensitive test of anal sphincter function and, unlike anal manometry, can discriminate male leakers from continent subjects. An identifiable abnormality has been detected using anal acoustic reflectometry, which may further our understanding of the pathogenesis in this group.

  2. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    Science.gov (United States)

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  3. Effective beam pattern of the Blainville's beaked whale (Mesoplodon densirostris) and implications for passive acoustic monitoring.

    Science.gov (United States)

    Shaffer, Jessica Ward; Moretti, David; Jarvis, Susan; Tyack, Peter; Johnson, Mark

    2013-03-01

    The presence of beaked whales in mass-strandings coincident with navy maneuvers has prompted the development of methods to detect these cryptic animals. Blainville's beaked whales, Mesoplodon densirostris, produce distinctive echolocation clicks during long foraging dives making passive acoustic detection a possibility. However, performance of passive acoustic monitoring depends upon the source level, beam pattern, and clicking behavior of the whales. In this study, clicks recorded from Digital acoustic Tags (DTags) attached to four M. densirostris were linked to simultaneous recordings from an 82-hydrophone bottom-mounted array to derive the source level and beam pattern of the clicks, as steps towards estimating their detectability. The mean estimated on-axis apparent source level for the four whales was 201 dBrms97. The mean 3 dB beamwidth and directivity index, estimated from sequences of clicks directed towards the far-field hydrophones, were 13° and 23 dB, respectively. While searching for prey, Blainville's beaked whales scan their heads horizontally at a mean rate of 3.6°/s over an angular range of some +/-10°. Thus, while the DI indicates a narrow beam, the area of ensonification over a complete foraging dive is large given the combined effects of body and head movements associated with foraging.

  4. Passive Acoustic Thermometry Using Low-Frequency Deep Water Noise

    Science.gov (United States)

    2015-09-30

    to assess global warming trends (1) and calibrate climate change models (2,3). However, contrary to ocean surface temperatures, deep ocean...ocean surface in the Polar Regions (e.g. due to loud iceberg cracking events with levels up to 245 dB re 1 μPa at 1 m) can efficiently couple directly...compare Fig 1C to 1D). An additional factor driving this difference in the peak-to-variance ratios is that the concentration of icebergs –which

  5. Wise teachers train better DNN acoustic models

    National Research Council Canada - National Science Library

    Ryan Price; Ken-ichi Iso; Koichi Shinoda

    2016-01-01

    .... Neural network acoustic models that can utilize speaker-adaptive features, have deep and wide layers, or more computationally expensive architectures, for example, often obtain best recognition...

  6. Monitoring near-shore shingle transport under waves using a passive acoustic technique.

    Science.gov (United States)

    Mason, T; Priestley, D; Reeve, D E

    2007-08-01

    Passive acoustic techniques have been used to measure shingle (gravel) sediment transport in very shallow water, near the wave breaking zone on a beach. The experiments were conducted at 1:1 scale in the Large Wave Flume, Grosse Wellen Kanal (GWK) at Hannover, Germany. The frequency spectrum induced by shingle mobilized under breaking waves can be distinguished from other ambient noise, and is found to be independent of water depth and wave conditions. The inverse relationship between centroid frequency and representative grain size is shown to remain valid in shallow water wave conditions. Individual phases of onshore and offshore transport can be identified. Analysis of the acoustic frequency spectrum provides insight into the mechanics of phase-resolved shingle transport.

  7. Passive acoustic monitoring of toothed whales with implications for mitigation, management and biology

    DEFF Research Database (Denmark)

    Kyhn, Line Anker

    Toothed whales are vocal animals and their social life as well as successful orientation and feeding depends on emission and reception of sound. Such sounds may e.g. be clicks used for echolocation or whistles used for communication and they can be monitored in time and space by means of passive...... rate from acoustic tags being fitted to wild harbour porpoises. From the visual sighting we also estimated density within 100 m radius of each datalogger. The detection functions were successful in estimating densities of around the same level as we found for the visual observations, and more...... descriptions. A species' sounds must be well defined according to specific sound source parameters to be able to build precise filters for the acoustic dataloggers to sort the correct signals from noise. Such definitions require that the variation at the level of species is known and therefore that each focal...

  8. Estimating cetacean population density using fixed passive acoustic sensors: an example with Blainville's beaked whales.

    Science.gov (United States)

    Marques, Tiago A; Thomas, Len; Ward, Jessica; DiMarzio, Nancy; Tyack, Peter L

    2009-04-01

    Methods are developed for estimating the size/density of cetacean populations using data from a set of fixed passive acoustic sensors. The methods convert the number of detected acoustic cues into animal density by accounting for (i) the probability of detecting cues, (ii) the rate at which animals produce cues, and (iii) the proportion of false positive detections. Additional information is often required for estimation of these quantities, for example, from an acoustic tag applied to a sample of animals. Methods are illustrated with a case study: estimation of Blainville's beaked whale density over a 6 day period in spring 2005, using an 82 hydrophone wide-baseline array located in the Tongue of the Ocean, Bahamas. To estimate the required quantities, additional data are used from digital acoustic tags, attached to five whales over 21 deep dives, where cues recorded on some of the dives are associated with those received on the fixed hydrophones. Estimated density was 25.3 or 22.5 animals/1000 km(2), depending on assumptions about false positive detections, with 95% confidence intervals 17.3-36.9 and 15.4-32.9. These methods are potentially applicable to a wide variety of marine and terrestrial species that are hard to survey using conventional visual methods.

  9. Effect of passive acoustic sampling methodology on detecting bats after declines from white nose syndrome

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    Concomitant with the emergence and spread of white-nose syndrome (WNS) and precipitous decline of many bat species in North America, natural resource managers need modified and/or new techniques for bat inventory and monitoring that provide robust occupancy estimates. We used Anabat acoustic detectors to determine the most efficient passive acoustic sampling design for optimizing detection probabilities of multiple bat species in a WNS-impacted environment in New York, USA. Our sampling protocol included: six acoustic stations deployed for the entire duration of monitoring as well as a 4 x 4 grid and five transects of 5-10 acoustic units that were deployed for 6-8 night sample durations surveyed during the summers of 2011-2012. We used Program PRESENCE to determine detection probability and site occupancy estimates. Overall, the grid produced the highest detection probabilities for most species because it contained the most detectors and intercepted the greatest spatial area. However, big brown bats (Eptesicus fuscus) and species not impacted by WNS were detected easily regardless of sampling array. Endangered Indiana (Myotis sodalis) and little brown (Myotis lucifugus) and tri-colored bats (Perimyotis subflavus) showed declines in detection probabilities over our study, potentially indicative of continued WNS-associated declines. Identification of species presence through efficient methodologies is vital for future conservation efforts as bat populations decline further due to WNS and other factors.   

  10. Passive pavement-mounted acoustical linguistic drive alert system and method

    Science.gov (United States)

    Kisner, Roger A.; Anderson, Richard L.; Carnal, Charles L.; Hylton, James O.; Stevens, Samuel S.

    2001-01-01

    Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

  11. Spacecraft Internal Acoustic Environment Modeling

    Science.gov (United States)

    Chu, SShao-sheng R.; Allen, Christopher S.

    2009-01-01

    Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. In FY09, the physical mockup developed in FY08, with interior geometric shape similar to Orion CM (Crew Module) IML (Interior Mode Line), was used to validate SEA (Statistical Energy Analysis) acoustic model development with realistic ventilation fan sources. The sound power levels of these sources were unknown a priori, as opposed to previous studies that RSS (Reference Sound Source) with known sound power level was used. The modeling results were evaluated based on comparisons to measurements of sound pressure levels over a wide frequency range, including the frequency range where SEA gives good results. Sound intensity measurement was performed over a rectangular-shaped grid system enclosing the ventilation fan source. Sound intensities were measured at the top, front, back, right, and left surfaces of the and system. Sound intensity at the bottom surface was not measured, but sound blocking material was placed tinder the bottom surface to reflect most of the incident sound energy back to the remaining measured surfaces. Integrating measured sound intensities over measured surfaces renders estimated sound power of the source. The reverberation time T6o of the mockup interior had been modified to match reverberation levels of ISS US Lab interior for speech frequency bands, i.e., 0.5k, 1k, 2k, 4 kHz, by attaching appropriately sized Thinsulate sound absorption material to the interior wall of the mockup. Sound absorption of Thinsulate was modeled in three methods: Sabine equation with measured mockup interior reverberation time T60, layup model based on past impedance tube testing, and layup model plus air absorption correction. The evaluation/validation was

  12. Passive acoustic records of two vigorous bubble-plume methane seeps on the Oregon continental margin

    Science.gov (United States)

    Dziak, R. P.; Matsumoto, H.; Merle, S. G.; Embley, R. W.; Baumberger, T.; Hammond, S. R.

    2016-12-01

    We present preliminary analysis of the acoustic records of two bubble-plume methane seeps recorded by an autonomous hydrophone deployed during the E/V Nautilus expedition (NA072) in June 2016. The goal of the NA072 expedition was to use the Simrad 302 as a survey tool to map bubble plumes at a regional scale along the Oregon and northern California margins, followed by in situ investigation of bubble-plume sites using the ROV Hercules. The exploration carried out during NA072 resulted in the discovery of hundreds of new individual methane seep sites in water depths ranging from 125 to 1725 m depth. A Greenridge Acousonde 3B™ hydrophone was deployed via ROV within two vigorous bubble-plume sites. Despite persistent ship and ROV propeller noise, the acoustic signature of the bubble-plume can be seen in the hydrophone record as a broadband (0.5 - 4.5 kHz) series of short duration ( 0.2-0.5 msec) pulses that occur in clusters of dozens of pulses lasting 2-3 secs. Previous studies of the passive acoustics of seep bubble-plumes indicate sound is generated during bubble formation, where detachment of the gas bubble from the end of a tube or conduit causes the bubble to oscillate, producing sound. The peak frequency f (the zeroth oscillatory mode) and the bubble equivalent spherical radius r for a given pressure P are: f = (2πr)-1 [(3γP/ρ)]1/2 where γ is the ratio of gas specific heat at constant pressure to constant volume and ρ is the water density (Leifer and Tang, 2006). Thus the frequency of a bubble's oscillation is proportional to the bubble's volume, and therefore it may be possible to use our acoustic data to obtain an estimate of the volume of methane being released at these seafloor plume sites.

  13. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...

  14. Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring netsworks

    NARCIS (Netherlands)

    Risch, D.; Castellote, M.; Clark, C.W.; Lucke, K.; Verdaat, J.P.

    2014-01-01

    Background - Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of

  15. Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring netsworks

    NARCIS (Netherlands)

    Risch, D.; Castellote, M.; Clark, C.W.; Lucke, K.; Verdaat, J.P.

    2014-01-01

    Background - Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of th

  16. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.

    Science.gov (United States)

    Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P

    2012-05-01

    Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.

  17. Acoustic modelling of Sepedi affricates for ASR

    CSIR Research Space (South Africa)

    Modipa, T

    2010-10-01

    Full Text Available Automatic speech recognition (ASR) systems are increasingly being developed for under-resourced languages, especially for use in multilingual spoken dialogue systems. We investigate different approaches to the acoustic modelling of Sepedi affricates...

  18. Clinical Studies of Real-Time Monitoring of Lithotripter Performance Using Passive Acoustic Sensors

    Science.gov (United States)

    Leighton, T. G.; Fedele, F.; Coleman, A. J.; McCarthy, C.; Ryves, S.; Hurrell, A. M.; De Stefano, A.; White, P. R.

    2008-09-01

    This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated

  19. Real-time passive acoustic detection of marine mammals from a variety of autonomous platforms

    Science.gov (United States)

    Baumgartner, M.; Van Parijs, S. M.; Hotchkin, C. F.; Gurnee, J.; Stafford, K.; Winsor, P.; Davies, K. T. A.; Taggart, C. T.

    2016-02-01

    Over the past two decades, passive acoustic monitoring has proven to be an effective means of estimating the occurrence of marine mammals. The vast majority of applications involve archival recordings from bottom-mounted instruments or towed hydrophones from moving ships; however, there is growing interest in assessing marine mammal occurrence from autonomous platforms, particularly in real time. The Woods Hole Oceanographic Institution has developed the capability to detect, classify, and remotely report in near real time the calls of marine mammals via passive acoustics from a variety of autonomous platforms, including Slocum gliders, wave gliders, and moored buoys. The mobile Slocum glider can simultaneously measure marine mammal occurrence and oceanographic conditions throughout the water column, making it well suited for studying both marine mammal distribution and habitat. Wave gliders and moored buoys provide complementary observations over much larger spatial scales and longer temporal scales, respectively. The near real-time reporting capability of these platforms enables follow-up visual observations, on-water research, or responsive management action. We have recently begun to use this technology to regularly monitor baleen whales off the coast of New England, USA and Nova Scotia, Canada, as well as baleen whales, beluga whales, and bearded seals in the Chukchi Sea off the northwest coast of Alaska, USA. Our long-range goal is to monitor occurrence over wide spatial and temporal extents as part of the regional and global ocean observatory initiatives to improve marine mammal conservation and management and to study changes in marine mammal distribution over multi-annual time scales in response to climate change.

  20. Advanced Concepts for Underwater Acoustic Channel Modeling

    Science.gov (United States)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  1. A GPS-free passive acoustic localization scheme for underwater wireless sensor networks

    KAUST Repository

    Mirza, Mohammed

    2011-10-01

    Seaweb is an acoustic communication technology that enables communication between sensor nodes. Seaweb interconnects the underwater nodes through digital signal processing (DSP)-based modem by using acoustic links between the neighbouring sensors. In this paper, we design and investigate a global positioning system (GPS)-free passive localization protocol using seaweb technology. This protocol uses the range data and planar trigonometry to estimate the positions of the discovered nodes. We take into consideration the small displacement of sensor nodes due to watch circles and placement of sensor nodes on non-uniform underwater surface, for precise localization. Once the nodes are localized, we divide the whole network .eld into circular levels that minimizes the traf.c complexity and thereby increases the lifetime of the sensor network .eld. We then form the mesh network inside each of the circular levels that increases the reliability. The algorithm is designed in such a way that it overcomes the ambiguous nodes errata and re.ected paths and makes the algorithm more robust. The synthetic network geometries are so designed which can evaluate the algorithm in the presence of perfect or imperfect ranges or in case of incomplete data. A comparative study is made with the existing algorithms which proves our newly proposed algorithm to be more effective. © 2011 IEEE.

  2. Passive aquatic listener (PAL): An adoptive underwater acoustic recording system for the marine environment

    Science.gov (United States)

    Anagnostou, Marios N.; Nystuen, Jeffrey A.; Anagnostou, Emmanouil N.; Papadopoulos, Anastasios; Lykousis, Vassilios

    2011-01-01

    The ambient sound field in the ocean is a combination of natural and manmade sounds. Consequently, the interpretation of the ambient sound field can be used to quantify these processes. In the frequency range from 1 to 50 kHz, the general character of ocean ambient sound is a slowly changing background that is closely associated with local wind speed, interspersed with shorter time scale events such as rain storms, ships and animal calls. At lower frequencies the underwater ambient sound budget includes geologically generated sound activities including underwater volcanic eruptions, seismic and seepage faults that generate bubbles, etc. that can also potentially be classified and quantified. Acoustic data are collected on hydrophones. Hydrophones are simple, robust sensors that can be deployed on most ocean instrumentation systems including surface or sub-surface moorings, bottom mounted systems, drifters, ARGO floats or autonomous underwater platforms. A dedicated oceanic underwater recorder called a passive acoustic listener (PAL) has been developed. A principal issue is to accurately distinguish different sound sources so that they can be quantified as part of a sound budget, and then quantified if appropriate. Based on ongoing data collected from the Poseidon II network the retrieval potential of multi-parameters from underwater sound, including meteorological (i.e., precipitation and winds) and in general geophysical, anthropogenetic (i.e., ships, submarines, etc.) and biological (whales, etc.) sources is presented.

  3. A real-time method for autonomous passive acoustic detection-classification of humpback whales.

    Science.gov (United States)

    Abbot, Ted A; Premus, Vincent E; Abbot, Philip A

    2010-05-01

    This paper describes a method for real-time, autonomous, joint detection-classification of humpback whale vocalizations. The approach adapts the spectrogram correlation method used by Mellinger and Clark [J. Acoust. Soc. Am. 107, 3518-3529 (2000)] for bowhead whale endnote detection to the humpback whale problem. The objective is the implementation of a system to determine the presence or absence of humpback whales with passive acoustic methods and to perform this classification with low false alarm rate in real time. Multiple correlation kernels are used due to the diversity of humpback song. The approach also takes advantage of the fact that humpbacks tend to vocalize repeatedly for extended periods of time, and identification is declared only when multiple song units are detected within a fixed time interval. Humpback whale vocalizations from Alaska, Hawaii, and Stellwagen Bank were used to train the algorithm. It was then tested on independent data obtained off Kaena Point, Hawaii in February and March of 2009. Results show that the algorithm successfully classified humpback whales autonomously in real time, with a measured probability of correct classification in excess of 74% and a measured probability of false alarm below 1%.

  4. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  5. Performance comparisons between passive-phase conjugation and decision-feedback equalizer for underwater acoustic communications

    Science.gov (United States)

    Yang, T. C.

    2004-05-01

    Passive-phase conjugation (PPC) uses passive time reversal to remove intersymbol interferences (ISI) for acoustic communications in a multipath environment. It is based on the theory of signal propagation in a waveguide, which says that the Green function (or the impulse response function) convolved with its time-reversed conjugate, summed over a large aperture vertical array of receivers is a delta function in space and time. A decision feedback equalizer (DFE) uses a nonlinear filter to remove ISI based on the minimum mean square errors (MSE) between the estimated and the true (or decision) symbols. These two approaches are motivated by different principles. In this paper, we analyze both using a common framework, illustrating the commonality and differences, pro and con between the two methods, and compare their performances in realistic ocean environments. The performance measures are MSE, output signal-to-noise ratio and bit error rate (BER) as a function of the number of receivers. For a small number of receivers, DFE outperforms PPC in all measures. As the number of receivers increases the BER for both processors approaches zero, but at a different rate. The results are supported by both simulated and real data. [Work supported by ONR.

  6. A wireless demodulation system for passive surface acoustic wave torque sensor

    Science.gov (United States)

    Ji, Xiaojun; Fan, Yanping; Qi, Hongli; Chen, Jing; Han, Tao; Cai, Ping

    2014-12-01

    Surface acoustic wave (SAW) resonators are utilized as torque sensors for their passive and wireless features. However, the response of a SAW torque sensor is difficult to detect because of the transient response duration and interruption of channel noise, which limit the application of SAW torque sensors. The sensitive mechanism and response function of a passive wireless SAW torque sensor are analyzed in this study. A novel demodulation system involving both hardware and software is developed for the SAW torque sensor. A clipping amplifier is utilized in the hardware to widen the dynamic response range and increase the length of the valid signal. Correlation extension and centroid algorithms are designed to lengthen the received signal and improve the estimation accuracy of the center frequency of the response signal, respectively. Meanwhile, a fast binary search algorithm is proposed to accelerate the scanning cycle according to the developed response function. Finally, the SAW torque sensor demodulation system is set up and SAW resonators with high sensitivity are fabricated on a quartz substrate. The presented demodulation system is tested, and a standard deviation of 0.28 kHz is achieved. This value is much smaller than that of classic and modern spectrum estimation methods. The sensitivity of resonance frequency shift versus torque on the shaft of the assembled senor is 2.03 kHz/Nm; the coefficient of determination is 0.999, and the linearity is 0.87%. Experimental results verify the validity and feasibility of the proposed SAW torque sensor demodulation system.

  7. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  8. Acoustic Propagation Modeling Using MATLAB

    Science.gov (United States)

    1993-09-01

    Acoustic propagation, transient waves, transfer function, linear systems theory 16. PRICE CODE 17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 1...method of diffraction prediction. This report describes an ap- proach based on linear systems theory and the Fourier transform. The goal was to achieve a...differed by the use of linear systems theory . Linear systems theory revealed the importance of the total impulse response and its equivalence to the

  9. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    Science.gov (United States)

    Yack, Tina M.

    California Bight (SCB). The preliminary measurement of the visually validated Baird's beaked whale echolocation signals recorded from the ship-based towed array were used as a basis for identifying Baird's signals in the seafloor-mounted autonomous recorder data. The passive acoustic detection algorithms for beaked whales developed using data from Chapters 2 and 3 were field tested during a three year period to test the reliability of acoustic beaked whale monitoring techniques and to use these methods to describe beaked whale habitat in the SCB. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the SCB and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study (SOCAL-BRS). The final step in this research was to utilize the passive acoustic detection techniques developed herin to predictively model beaked whale habitat use and preferences in the CCE. This chapter uses a multifaceted approach to model beaked whale encounter rates in the CCE. Beaked whale acoustic encounters are utilized to inform Generalized Additive Models (GAMs) of encounter rate for beaked whales in the CCE and compare these to visual based models. Acoustic and visual based models were independently developed for a small beaked whale group and Baird's beaked whales. Two models were evaluated for visual and acoustic encounters, one that also included Beaufort sea state as a predictor variable in addition to those listed and one that did not include Beaufort sea state. (Abstract shortened by UMI.)

  10. Variation in harbour seal (Phoca vitulina L.) roar calls among recoding sites relevant for passive acoustic monitoring

    DEFF Research Database (Denmark)

    Sabinsky, Puk; Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    Male harbor seals gather around breeding sites for competitive mating displays. Here, they produce underwater vocalizations possibly to attract females and/or scare off other males. These calls offer prospects for passive acoustic monitoring. Acoustic monitoring requires a good understanding...... of natural variation in calling behavior both temporally and among geographically separate sites. Such variation in call structure and calling patterns were studied in harbor seal vocalizations recorded at three locations in Danish and Swedish waters. There was a strong seasonality in the calls from end...

  11. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances.

    Science.gov (United States)

    Kang, M S; Joly, N Y; Russell, P St J

    2013-02-15

    We report the experimental demonstration of a passively mode-locked Er-doped fiber ring laser operating at the 337th harmonic (1.80 GHz) of the cavity. The laser makes use of highly efficient Raman-like optoacoustic interactions between the guided light and gigahertz acoustic resonances trapped in the micron-sized solid glass core of a photonic crystal fiber. At sufficient pump power levels the laser output locks to a repetition rate corresponding to the acoustic frequency. A stable optical pulse train with a side-mode suppression ratio higher than 45 dB was obtained at low pump powers (~60 mW).

  12. Vibro-acoustic model of an active aircraft cabin window

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2017-06-01

    This paper presents modeling and design of an active structural acoustic control (ASAC) system for controlling the low frequency sound field transmitted through an aircraft cabin window. The system uses stacked piezoelectric elements arranged in a manner to generate out-of-plane actuation point forces acting on the window panel boundaries. A theoretical vibro-acoustic model for an active quadruple-panel system is developed to characterize the dynamic behavior of the system and achieve a good understanding of the active control performance and the physical phenomena of the sound transmission loss (STL) characteristics. The quadruple-panel system represents the passenger window design used in some classes of modern aircraft with an exterior double pane of Plexiglas, an interior dust cover pane and a glazed dimmable pane, all separated by thin air cavities. The STL characteristics of identical pane window configurations with different piezoelectric actuator sets are analyzed. A parametric study describes the influence of important active parameters, such as the input voltage, number and location of the actuator elements, on the STL is investigated. In addition, a mathematical model for obtaining the optimal input voltage is developed to improve the acoustic attenuation capability of the control system. In general, the achieved results indicate that the proposed ASAC design offers a considerable improvement in the passive sound loss performance of cabin window design without significant effects, such as weight increase, on the original design. Also, the results show that the acoustic control of the active model with piezoelectric actuators bonded to the dust cover pane generates high structural vibrations in the radiating panel (dust cover) and an increase in sound power radiation. High active acoustic attenuation can be achieved by designing the ASAC system to apply active control forces on the inner Plexiglas panel or dimmable panel by installing the actuators on the

  13. eshless Method for Acoustic and Elastic Modeling

    Institute of Scientific and Technical Information of China (English)

    JiaXiaofeng; HuTianyue; WangRunqiu

    2005-01-01

    Wave equation method is one of the fundamental techniques for seismic modeling and imaging. In this paper the element-free-method (EFM) was used to solve acoustic and elastic equations.The key point of this method is no need of elements, which makes nodes free from the elemental restraint. Besides, the moving-least-squares (MLS) criterion in EFM leads to a high accuracy and smooth derivatives. The theories of EFM for both acoustic and elastic wave equations as well as absorbing boundary conditions were discussed respectively. Furthermore, some pre-stack models were used to show the good performance of EFM in seismic modeling.

  14. Real-time monitoring of controllable cavitation erosion in a vessel phantom with passive acoustic mapping.

    Science.gov (United States)

    Lu, Shukuan; Shi, Aiwei; Jing, Bowen; Du, Xuan; Wan, Mingxi

    2017-11-01

    Cavitation erosion in blood vessel plays an important role in ultrasound thrombolysis, drug delivery, and other clinical applications. The controllable superficial vessel erosion based on ultrasonic standing wave (USW) has been used to effectively prevent vessel ruptures and haemorrhages, and optical method is used to observe the experiments. But optical method can only work in transparent media. Compared with standard B-mode imaging, passive acoustic mapping (PAM) can monitor erosion in real time and has better sensitivity of cavitation detection. However, the conventionally used PAM has limitations in imaging resolution and artifacts. In this study, a unique PAM method that combined the robust Capon beamformer (RCB) with the sign coherence factor (SCF) was proposed to monitor the superficial vessel erosion in real time. The performance of the proposed method was validated by simulations. In vitro experiments showed that the lateral (axial) resolution of the proposed PAM was 2.31±0.51 (3.19±0.38) times higher than time exposure acoustics (TEA)-based PAM and 1.73±0.38 (1.76±0.48) times higher than RCB-based PAM, and the cavitation-to-artifact ratio (CAR) of the proposed PAM could be improved by 22.5±3.2dB and 7.1±1.2dB compared with TEA and RCB-based PAM. These results showed that the proposed PAM can precisely monitor the superficial vessel erosion and the erosion shift after USW modulation. This work may have the potential of developing a useful tool for precise spatial control and real-time monitoring of the superficial vessel erosion. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    Science.gov (United States)

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities

  16. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico.

    Science.gov (United States)

    Hildebrand, John A; Baumann-Pickering, Simone; Frasier, Kaitlin E; Trickey, Jennifer S; Merkens, Karlina P; Wiggins, Sean M; McDonald, Mark A; Garrison, Lance P; Harris, Danielle; Marques, Tiago A; Thomas, Len

    2015-11-12

    Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010-2013). Beaked whale species detected include: Gervais' (Mesoplodon europaeus), Cuvier's (Ziphius cavirostris), Blainville's (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf - BWG). For Gervais' and Cuvier's beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais' beaked whales were present throughout the monitoring period, but Cuvier's beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais' and Cuvier's beaked whales had a high density throughout the monitoring period.

  17. Online Damage Detection on Metal and Composite Space Structures by Active and Passive Acoustic Methods

    Science.gov (United States)

    Scheerer, M.; Cardone, T.; Rapisarda, A.; Ottaviano, S.; Ftancesconi, D.

    2012-07-01

    In the frame of ESA funded programme Future Launcher Preparatory Programme Period 1 “Preparatory Activities on M&S”, Aerospace & Advanced Composites and Thales Alenia Space-Italia, have conceived and tested a structural health monitoring approach based on integrated Acoustic Emission - Active Ultrasound Damage Identification. The monitoring methods implemented in the study are both passive and active methods and the purpose is to cover large areas with a sufficient damage size detection capability. Two representative space sub-structures have been built and tested: a composite overwrapped pressure vessel (COPV) and a curved, stiffened Al-Li panel. In each structure, typical critical damages have been introduced: delaminations caused by impacts in the COPV and a crack in the stiffener of the Al-Li panel which was grown during a fatigue test campaign. The location and severity of both types of damages have been successfully assessed online using two commercially available systems: one 6 channel AE system from Vallen and one 64 channel AU system from Acellent.

  18. Utilizing computer models for optimizing classroom acoustics

    Science.gov (United States)

    Hinckley, Jennifer M.; Rosenberg, Carl J.

    2002-05-01

    The acoustical conditions in a classroom play an integral role in establishing an ideal learning environment. Speech intelligibility is dependent on many factors, including speech loudness, room finishes, and background noise levels. The goal of this investigation was to use computer modeling techniques to study the effect of acoustical conditions on speech intelligibility in a classroom. This study focused on a simulated classroom which was generated using the CATT-acoustic computer modeling program. The computer was utilized as an analytical tool in an effort to optimize speech intelligibility in a typical classroom environment. The factors that were focused on were reverberation time, location of absorptive materials, and background noise levels. Speech intelligibility was measured with the Rapid Speech Transmission Index (RASTI) method.

  19. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  20. Computational acoustic modeling of cetacean vocalizations

    Science.gov (United States)

    Gurevich, Michael Dixon

    A framework for computational acoustic modeling of hypothetical vocal production mechanisms in cetaceans is presented. As a specific example, a model of a proposed source in the larynx of odontocetes is developed. Whales and dolphins generate a broad range of vocal sounds, but the exact mechanisms they use are not conclusively understood. In the fifty years since it has become widely accepted that whales can and do make sound, how they do so has remained particularly confounding. Cetaceans' highly divergent respiratory anatomy, along with the difficulty of internal observation during vocalization have contributed to this uncertainty. A variety of acoustical, morphological, ethological and physiological evidence has led to conflicting and often disputed theories of the locations and mechanisms of cetaceans' sound sources. Computational acoustic modeling has been used to create real-time parametric models of musical instruments and the human voice. These techniques can be applied to cetacean vocalizations to help better understand the nature and function of these sounds. Extensive studies of odontocete laryngeal morphology have revealed vocal folds that are consistently similar to a known but poorly understood acoustic source, the ribbon reed. A parametric computational model of the ribbon reed is developed, based on simplified geometrical, mechanical and fluid models drawn from the human voice literature. The physical parameters of the ribbon reed model are then adapted to those of the odontocete larynx. With reasonable estimates of real physical parameters, both the ribbon reed and odontocete larynx models produce sounds that are perceptually similar to their real-world counterparts, and both respond realistically under varying control conditions. Comparisons of acoustic features of the real-world and synthetic systems show a number of consistencies. While this does not on its own prove that either model is conclusively an accurate description of the source, it

  1. Acoustical model of a Shoddy fibre absorber

    Science.gov (United States)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  2. Using an autonomous passive acoustic observational system to monitor the environmental impact of the Gulf of Mexico oil spill on deep-diving marine mammals

    Science.gov (United States)

    Sidorovskaia, N.; Ackleh, A.; Ma, B.; Tiemann, C.; Ioup, J. W.; Ioup, G. E.

    2012-12-01

    The Littoral Acoustic Demonstration Center (LADC) is a consortium of scientists from four universities and the U.S. Navy, which performs acoustic measurements and analysis in littoral waters. For the present work, six passive autonomous broadband acoustic sensors were deployed by LADC in the vicinity of the Deep Water Horizon oil spill site in the Northern Gulf of Mexico in fall 2010. The objective of the project is to assess long-term impact of the spill on the deep-diving residential population of marine mammals, particularly, sperm and beaked whales. Collected data were processed to detect, extract, and count acoustic signals produced by different types of marine mammals. As a next step, a statistical model which uses acoustic inputs was developed to estimate residential populations of different types of marine mammals at different distances from the spill site. The estimates were compared to population estimates from years prior to the spill, using pre-spill collected data in the area by LADC from 2001, 2002, and 2007. The results indicate different responses from sperm and beaked whales in the first months following the spill. A recently published article by our research group (Ackleh et al., J. Acoust. Soc. Am. 131, 2306-2314) provides a comparison of 2007 and 2010 estimates showing a decrease in acoustic activity and abundance of sperm whales at the 9-mile distant site, whereas acoustic activity and abundance at the 25-mile distant site has clearly increased. This may indicate that some sperm whales have relocated farther away from the spill subject to food source availability. The beaked whale population appears to return to 2007 numbers after the spill even at the closest 9-mile distant site. Several acoustically observed changes in the animals' habitat associated with the spill, such as anthropogenic noise level, prey presence, etc., can be connected with the observed population trends. Preliminary results for interpreting observed population trends will

  3. Aero-acoustic modeling using large eddy simulation

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar...

  4. Advanced Applications for Underwater Acoustic Modeling

    Directory of Open Access Journals (Sweden)

    Paul C. Etter

    2012-01-01

    Full Text Available Changes in the ocean soundscape have been driven by anthropogenic activity (e.g., naval-sonar systems, seismic-exploration activity, maritime shipping and windfarm development and by natural factors (e.g., climate change and ocean acidification. New regulatory initiatives have placed additional restrictions on uses of sound in the ocean: mitigation of marine-mammal endangerment is now an integral consideration in acoustic-system design and operation. Modeling tools traditionally used in underwater acoustics have undergone a necessary transformation to respond to the rapidly changing requirements imposed by this new soundscape. Advanced modeling techniques now include forward and inverse applications, integrated-modeling approaches, nonintrusive measurements, and novel processing methods. A 32-year baseline inventory of modeling techniques has been updated to reflect these new developments including the basic mathematics and references to the key literature. Charts have been provided to guide soundscape practitioners to the most efficient modeling techniques for any given application.

  5. Integrated Model for the Acoustics of Sediments

    Science.gov (United States)

    2013-09-30

    ocean sediments. HFEVA is based on the model found in the APL-UW handbook number 9407 [12]. Progress was achieved through the representation of the frame...This is the "swiss cheese " approximation, in which the frame bulk and shear moduli are essentially that of the solid material but diluted by the pores...High-Frequency Ocean Environmental Acoustic Models Handbook ," Applied Physics Laboratory, University of Washington, U.S. APL-UW 9407, (1994). 13. N. P

  6. Integrated Model for the Acoustics of Sediments

    Science.gov (United States)

    2014-09-30

    the solid material. This model has been associated with seismic wave propagation in essentially dry soil. A second loss mechanism in fluid-saturated...multiple scattering (MS). [The left panel shows wave attenuations as functions of frequency with measured and modeled data points. The right panels...acoustic interaction with the ocean floor including penetration, reflection and scattering in support of MCM and ASW needs. OBJECTIVES The

  7. Monitoring the Ocean Acoustic Environment: A Model-Based Detection Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Sullivan, E.J.

    2000-03-13

    A model-based approach is applied in the development of a processor designed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an adaptive, model-based processor embedded in a sequential likelihood detection scheme. The trade-off between state-based and innovations-based monitor designs is discussed, conceptually. The underlying theory for the innovations-based design is briefly developed and applied to a simulated data set.

  8. Firing Organization and Salvo of Passive Acoustic Homing Torpedoes%被动声自导鱼雷齐射及射击组织

    Institute of Scientific and Technical Information of China (English)

    李勐

    2015-01-01

    在分析潜艇鱼雷武器齐射目的、要求和被动声自导鱼雷互导机理的基础上, 提出了通过射击控制避免出现前雷处于后雷自导探测范围内的被动声自导鱼雷齐射方案, 并据此建立了射击参数的解算模型和齐射组织方法.仿真结果表明, 该方案不仅有效避免了被动声自导鱼雷齐射的互导问题, 而且为实施者提供了十分方便的操作性能, 有效解决了被动声自导鱼雷齐射这一难题.%Based on the analyses of the purposes and demands of torpedoes salvo and the mechanism of mutual guidance of a passive acoustic torpedo, this paper proposes a program to avoid the front-torpedo from being in the detecting range of the back one by firing control, then establishes a model to calculate firing parameters and presents a salvo organiza-tion method. Simulation results indicate that the program can avoid the mutual guidance effectively, and is very conven-ient for operating, which facilitates the salvo of passive acoustic homing torpedoes.

  9. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    Science.gov (United States)

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  10. Probability Distribution Function of Passive Scalars in Shell Models

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-Ping; ZHANG Xiao-Qiang; LIU Yu-Rong; WANG Guang-Rui; HE Da-Ren; CHEN Shi-Gang; ZHU Lu-Jin

    2008-01-01

    A shell-model version of passive scalar problem is introduced, which is inspired by the model of K. Ohkitani and M. Yakhot [K. Ohkitani and M. Yakhot, Phys. Rev. Lett. 60 (1988) 983; K. Ohkitani and M. Yakhot, Prog. Theor. Phys. 81 (1988) 329]. As in the original problem, the prescribed random velocity field is Gaussian and 5 correlated in time. Deterministic differential equations are regarded as nonlinear Langevin equation. Then, the Fokker-Planck equations of PDF for passive scalars axe obtained and solved numerically. In energy input range (n < 5, n is the shell number.), the probability distribution function (PDF) of passive scalars is near the Gaussian distribution. In inertial range (5 < n < 16) and dissipation range (n ≥ 17), the probability distribution function (PDF) of passive scalars has obvious intermittence. And the scaling power of passive scalar is anomalous. The results of numerical simulations are compared with experimental measurements.

  11. Preliminary design of an advanced programmable digital filter network for large passive acoustic ASW systems. [Parallel processor

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, T.; Widdoes, Jr., L. C.; Wood, L.

    1976-09-30

    The design of an extremely high performance programmable digital filter of novel architecture, the LLL Programmable Digital Filter, is described. The digital filter is a high-performance multiprocessor having general purpose applicability and high programmability; it is extremely cost effective either in a uniprocessor or a multiprocessor configuration. The architecture and instruction set of the individual processor was optimized with regard to the multiple processor configuration. The optimal structure of a parallel processing system was determined for addressing the specific Navy application centering on the advanced digital filtering of passive acoustic ASW data of the type obtained from the SOSUS net. 148 figures. (RWR)

  12. ACOUSTIC EMISSION MODEL WITH THERMOACTIVATIVE DESTRUCTION OF COMPOSITE MATERIAL SURFACE

    Directory of Open Access Journals (Sweden)

    Sergii Filonenko

    2016-03-01

    Full Text Available Modeling of acoustic emission energy during the composite material machining for termoactivativemodel of acoustic radiation is simulated. The regularities of resultant signals energy parameters change dependingon composite materials machining speed are determined. Obtained regularities with their statistical characteristicsare described. Sensitivity of acoustic emission energy parameters to the change of composite material machiningspeed is shown.

  13. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  14. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    OpenAIRE

    Qiu Wang; Hong-Ning Dai; Xuran Li; Hao Wang; Hong Xiao

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones ...

  15. Active Versus Passive: Receiver Model Transforms for Diffusive Molecular Communication

    CERN Document Server

    Noel, Adam; Makrakis, Dimitrios; Hafid, Abdelhakim

    2016-01-01

    This paper presents an analytical comparison of the active and passive receiver models in diffusive molecular communication. In the active model, molecules are absorbed when they collide with the receiver surface. In the passive model, the receiver is a virtual boundary that does not affect molecule behavior. Two approaches are presented to derive transforms between the active and passive receiver signals. As an example, we unify the two models for an unbounded diffusion-only molecular communication system with a spherical receiver. As time increases in the three-dimensional system, the transform functions have constant scaling factors, such that the receiver models are effectively equivalent. Methods are presented to enable the transformation of stochastic simulations, which are used to verify the transforms and demonstrate that transforming the simulation of a passive receiver can be more efficient and more accurate than the direct simulation of an absorbing receiver.

  16. North Pacific Acoustic Laboratory: Analysis of Shadow Zone Arrivals and Acoustic Propagation in Numerical Ocean Models

    Science.gov (United States)

    2009-02-01

    numerical ocean models. Another look at the 1960 Perth to Bermuda antipodal acoustic propagation test In preparing a review talk on long-range acoustic...with the acoustic propagation over antipodal distances, based on a test in 1960 (American Geophysical Union 1960; Shockley et al. 1982, Munk et al...off Perth, Australia was detected at the antipode near Bermuda. A closer look at the propagation paths, however, found that if the horizontal

  17. Acoustic modeling for emotion recognition

    CERN Document Server

    Anne, Koteswara Rao; Vankayalapati, Hima Deepthi

    2015-01-01

     This book presents state of art research in speech emotion recognition. Readers are first presented with basic research and applications – gradually more advance information is provided, giving readers comprehensive guidance for classify emotions through speech. Simulated databases are used and results extensively compared, with the features and the algorithms implemented using MATLAB. Various emotion recognition models like Linear Discriminant Analysis (LDA), Regularized Discriminant Analysis (RDA), Support Vector Machines (SVM) and K-Nearest neighbor (KNN) and are explored in detail using prosody and spectral features, and feature fusion techniques.

  18. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  19. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    Science.gov (United States)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  20. Passive acoustic detection of closed-circuit underwater breathing apparatus in an operational port environment

    NARCIS (Netherlands)

    Fillinger, L.; Hunter, A.J.; Zampolli, M.; Clarijs, M.C.

    2012-01-01

    Divers constitute a potential threat to waterside infrastructures. Active diver detection sonars are available commercially but present some shortcomings, particularly in highly reverberant environments. This has led to research on passive sonar for diver detection. Passive detection of open-circuit

  1. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  2. Short notes on electromagnetic acoustic transducers (EMATs design and modeling

    Directory of Open Access Journals (Sweden)

    Hocine Menana

    2017-03-01

    Full Text Available This paper gives short notes on the electromagnetic acoustic transducers (EMATs design and modeling. The principle of the electromagnetic-acoustic transduction as well as the various EMATs structures are described, highlighting the important characteristics of each structure. Analytical models are given in global quantities in order to quantify the electromagnetic-acoustic transduction efficiency. The numerical modeling of such structures is also addressed.

  3. Cetacean Density Estimation from Novel Acoustic Datasets by Acoustic Propagation Modeling

    Science.gov (United States)

    2012-09-30

    by Acoustic Propagation Modeling Martin Siderius and Elizabeth Thorp Küsel Portland State University Electrical and Computer Engineering...example with Blainville’s beaked whales,” J. Acoust. Soc. Am. 125, 1982-1994. McMurtry G. M., Herrero-Bervera, E., Cremer , M. D., Smith, J. R., Resig, J

  4. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA

    Science.gov (United States)

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.

    2012-12-01

    Methane is a prominent greenhouse gas that escapes naturally from thermogenic reservoirs as seepage from marine and lacustrine biogenic sources as bubble ebullition. Geologic methane emissions are critically important contributors to the global methane budget however, few quantitative flux measurements are available for shallow waters. This gap in knowledge is critical as in these settings gas can easily transit as bubbles through the water column and directly influence global atmospheric budgets. Video and active acoustic (sonar) measurements of bubble flux have spatial limitations requiring predictable bubble emission location. Passive acoustics are less affected by these limitations, in addition, they can provide data in water too shallow for effective sonar bubble observations. Lab tests were undertaken to quantify the acoustic signature of bubbles formed in non-cohesive sediments. specifically focusing on mechanisms that complicate interpretation of acoustic data. Lab tests then were compared to field data to provide measurement calibration/validation. The principles behind the acoustic analysis method are based on the Minnaert equation, which relates a bubble radius and acoustic frequency. Bubble size and the resultant acoustic frequency from known flows and capillary tube diameters are well documented; however changing sediment pathways adds to the complexity of bubble formation and the resultant bubble acoustic signal. These complex signals were investigated in a lab tank with a thick, cohesive fine-grained sediment bed, through which bubbles produced by a syringe pump migrated to the sediment-water interface. Then, the resultant bubbles were diverted into clear water and measured from high speed, high definition video, while the acoustic signature of bubble formation was recorded concurrently by a hydrophone. Bubble formation is influenced by currents, which shifts the acoustical signal towards a higher frequency with a more complex pattern than the

  5. Compact Acoustic Models for Embedded Speech Recognition

    Directory of Open Access Journals (Sweden)

    Lévy Christophe

    2009-01-01

    Full Text Available Speech recognition applications are known to require a significant amount of resources. However, embedded speech recognition only authorizes few KB of memory, few MIPS, and small amount of training data. In order to fit the resource constraints of embedded applications, an approach based on a semicontinuous HMM system using state-independent acoustic modelling is proposed. A transformation is computed and applied to the global model in order to obtain each HMM state-dependent probability density functions, authorizing to store only the transformation parameters. This approach is evaluated on two tasks: digit and voice-command recognition. A fast adaptation technique of acoustic models is also proposed. In order to significantly reduce computational costs, the adaptation is performed only on the global model (using related speaker recognition adaptation techniques with no need for state-dependent data. The whole approach results in a relative gain of more than 20% compared to a basic HMM-based system fitting the constraints.

  6. The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology

    Science.gov (United States)

    2015-09-30

    the recorder firmware to provide a more stable sample rate. 7. Changes to the recorder firmware to keep recording segment start times on a rigid and...acoustic recorders on the market today are suitable for marine mammal detection and classification purposes only, but do not offer a localization capability...the basis for Advanced microMARS. http://desertstar.com/product/micromars/ • The TLP series acoustic pingers, developed as part of the RangeNav

  7. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Marco Brunoldi

    Full Text Available Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus has been implemented and installed in the Portofino Marine Protected Area (MPA, Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on. The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon, deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation.

  8. Hybrid passive-active modal networks for structural acoustic control (Conference Presentation)

    Science.gov (United States)

    Cunefare, Kenneth A.; Lossouarn, Boris; Collet, Manuel

    2017-04-01

    Distributions of piezoelectric patches bonded to structures provide a means to alter or control, through active or passive means, the dynamic response of the host structure. Numerous active control schemes for such composite structures have been explored. Alternatively, for certain structures, a passive electrical network may be implemented which presents an electrical analog of the modal response of the structure, effectively providing a multi-modal, distributed passive tuned mass modal damper capability. Numerous tuned-mass damper design concepts ("tunings") may be applied to such a passive network. Further, the distributed network analog, when coupled with active control concepts, permits a hybrid distributed passive-active modal control capability. This paper explores this hybrid distributed network control concept applied to a clamped rectangular plate. A unit-cell discrete representation of the plate leads to an electrical analog comprised of passive inductors, transformers and resistors. Addition of synthetic (or controlled) impedances at a limited set of points within the network permits dynamic adjustment of the frequency response of the system.

  9. Model-based processing for underwater acoustic arrays

    CERN Document Server

    Sullivan, Edmund J

    2015-01-01

    This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Third...

  10. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  11. Accurate finite element modeling of acoustic waves

    Science.gov (United States)

    Idesman, A.; Pham, D.

    2014-07-01

    In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.

  12. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  13. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  14. Coupled vibro-acoustic model updating using frequency response functions

    Science.gov (United States)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  15. An In-Air Passive Acoustic Surveillance System for Urban Threats Detection and Classification

    NARCIS (Netherlands)

    Donisi, D.; Bonamente, M.; Capitanelli, A.; Radziulis, J.; Dąbrowski, R.; Hołubowicz, W.; Simon, G.; Perlepes, L.; Mylonas, G.; Chatzigiannakis, I.; Benders, F.P.A.; Beerens, S.P.

    2013-01-01

    Recent military operations in urban environments are changing the requirements imposed on sensing technologies. The final goal remains threat mapping within the area of operation, but the environmental constraints and the intrinsic nature of urban threats are radically novel. AUDIS (Acoustic Urban

  16. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  17. Passive acoustic monitoring using a towed hydrophone array results in identification of a previously unknown beaked whale habitat.

    Science.gov (United States)

    Yack, Tina M; Barlow, Jay; Calambokidis, John; Southall, Brandon; Coates, Shannon

    2013-09-01

    Beaked whales are diverse and species rich taxa. They spend the vast majority of their time submerged, regularly diving to depths of hundreds to thousands of meters, typically occur in small groups, and behave inconspicuously at the surface. These factors make them extremely difficult to detect using standard visual survey methods. However, recent advancements in acoustic detection capabilities have made passive acoustic monitoring (PAM) a viable alternative. Beaked whales can be discriminated from other odontocetes by the unique characteristics of their echolocation clicks. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the Southern California Bight (SCB) and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study. The three year field effort has resulted in (1) the successful classification and tracking of Cuvier's (Ziphius cavirostris), Baird's (Berardius bairdii), and unidentified Mesoplodon beaked whale species and (2) the identification of areas of previously unknown beaked whale habitat use. Identification of habitat use areas will contribute to a better understanding of the complex relationship between beaked whale distribution, occurrence, and preferred habitat characteristics on a relatively small spatial scale. These findings will also provide information that can be used to promote more effective management and conservation of beaked whales in the SCB, a heavily used Naval operation and training region.

  18. Passive Acoustic Source Localization at a Low Sampling Rate Based on a Five-Element Cross Microphone Array

    Directory of Open Access Journals (Sweden)

    Yue Kan

    2015-06-01

    Full Text Available Accurate acoustic source localization at a low sampling rate (less than 10 kHz is still a challenging problem for small portable systems, especially for a multitasking micro-embedded system. A modification of the generalized cross-correlation (GCC method with the up-sampling (US theory is proposed and defined as the US-GCC method, which can improve the accuracy of the time delay of arrival (TDOA and source location at a low sampling rate. In this work, through the US operation, an input signal with a certain sampling rate can be converted into another signal with a higher frequency. Furthermore, the optimal interpolation factor for the US operation is derived according to localization computation time and the standard deviation (SD of target location estimations. On the one hand, simulation results show that absolute errors of the source locations based on the US-GCC method with an interpolation factor of 15 are approximately from 1/15- to 1/12-times those based on the GCC method, when the initial same sampling rates of both methods are 8 kHz. On the other hand, a simple and small portable passive acoustic source localization platform composed of a five-element cross microphone array has been designed and set up in this paper. The experiments on the established platform, which accurately locates a three-dimensional (3D near-field target at a low sampling rate demonstrate that the proposed method is workable.

  19. Differences in foraging activity of deep sea diving odontocetes in the Ligurian Sea as determined by passive acoustic recorders

    Science.gov (United States)

    Giorli, Giacomo; Au, Whitlow W. L.; Neuheimer, Anna

    2016-01-01

    Characterizing the trophic roles of deep-diving odontocete species and how they vary in space and time is challenged by our ability to observe foraging behavior. Though sampling methods are limited, foraging activity of deep-diving odontocetes can be monitored by recording their biosonar emissions. Daily occurrence of echolocation clicks was monitored acoustically for five months (July-December 2011) in the Ligurian Sea (Mediterranean Sea) using five passive acoustic recorders. Detected odontocetes included Cuvier's beaked whales (Zipuhius cavirostris), sperm whales (Physeter macrocephalus), Risso's dolphins (Grampus griseus), and long-finned pilot whales (Globicephala melas). The results indicated that the foraging strategies varied significantly over time, with sperm whales switching to nocturnal foraging in late September whereas Risso's dolphins and pilot whales foraged mainly at night throughout the sampling period. In the study area, winter nights are about five hours longer than summer nights and an analysis showed that pilot whales and Risso's dolphins adjusted their foraging activity with the length of the night, foraging longer during the longer winter nights. This is the first study to show that marine mammals exhibit diurnal foraging patterns closely correlated to sunrise and sunset.

  20. Passive Target Tracking Based on Current Statistical Model

    Institute of Scientific and Technical Information of China (English)

    DENG Xiao-long; XIE Jian-ying; YANG Yu-pu

    2005-01-01

    Bearing-only passive tracking is regarded as a nonlinear hard tracking problem. There are still no completely good solutions to this problem until now. Based on current statistical model, the novel solution to this problem utilizing particle filter (PF) and the unscented Kalman filter (UKF) is proposed. The new solution adopts data fusion from two observers to increase the observability of passive tracking. It applies the residual resampling step to reduce the degeneracy of PF and it introduces the Markov Chain Monte Carlo methods (MCMC) to reduce the effect of the "sample impoverish". Based on current statistical model, the EKF, the UKF and particle filter with various proposal distributions are compared in the passive tracking experiments with two observers. The simulation results demonstrate the good performance of the proposed new filtering methods with the novel techniques.

  1. Using Passive and Active Acoustics to Examine Relationships of Cetacean and Prey Densities

    Science.gov (United States)

    2015-09-30

    Relationships of Cetacean and Prey Densities Simone Baumann-Pickering Scripps Institution of Oceanography University of California, San Diego 9500 Gilman...Ecological Research mooring sites, CCE-LTER) over several years and intermittently on an acoustic- optical -profiling float over several days with a...Drs. David Checkley, Julian Koslow, Uwe Send, and Dan Rudnick at Scripps Institution of Oceanography , UC San Diego, and Dr. David Demer at NOAA

  2. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part I: Modeling

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    An ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be applied to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings by using both passive and active control. The proposed method is based on mounting severaladditional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimization process. This paper, Part I, concerns derivation of a mathematical model of the plate with attached elements in the function of their shape and placement. The model is validated by means of simulations and laboratory experiments, and compared with models known from the literature. This paper is followed by a companion paper, Part II, where the optimization process is described. It includes arrangement of passive elements as well as actuators and sensors to improve controllability and observability measures, if active control is concerned.

  3. Assessing the coastal occurrence of endangered killer whales using autonomous passive acoustic recorders.

    Science.gov (United States)

    Hanson, M Bradley; Emmons, Candice K; Ward, Eric J; Nystuen, Jeffrey A; Lammers, Marc O

    2013-11-01

    Using moored autonomous acoustic recorders to detect and record the vocalizations of social odonotocetes to determine their occurrence patterns is a non-invasive tool in the study of these species in remote locations. Acoustic recorders were deployed in seven locations on the continental shelf of the U.S. west coast from Cape Flattery, WA to Pt. Reyes, CA to detect and record endangered southern resident killer whales between January and June of 2006-2011. Detection rates of these whales were greater in 2009 and 2011 than in 2006-2008, were most common in the month of March, and occurred with the greatest frequency off the Columbia River and Westport, which was likely related to the presence of their most commonly consumed prey, Chinook salmon. The observed patterns of annual and monthly killer whale occurrence may be related to run strength and run timing, respectively, for spring Chinook returning to the Columbia River, the largest run in this region at this time of year. Acoustic recorders provided a unique, long-term, dataset that will be important to inform future consideration of Critical Habitat designation for this U.S. Endangered Species Act listed species.

  4. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    Science.gov (United States)

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  5. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones.

  6. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qiu Wang

    2016-05-01

    Full Text Available The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed and different hydrophones (isotropic hydrophones and array hydrophones in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones.

  7. Models for acoustical properties of green roof materials

    OpenAIRE

    2011-01-01

    To predict the acoustical effects of green roof structures it is necessary to be able to model the acoustical properties of their materials including gravel. For time domain calculations it is convenient to use the phenomenological model due to Zwikker and Kosten. However this phenomenological model is related to a low frequency/high flow resistivity approximation of more ‘exact’ identical pore models. The results of fitting predictions to short range level difference data and to impedance da...

  8. Enhanced stiffness modeling of manipulators with passive joints

    CERN Document Server

    Pashkevich, Anatoly; Chablat, Damien

    2011-01-01

    The paper presents a methodology to enhance the stiffness analysis of serial and parallel manipulators with passive joints. It directly takes into account the loading influence on the manipulator configuration and, consequently, on its Jacobians and Hessians. The main contributions of this paper are the introduction of a non-linear stiffness model for the manipulators with passive joints, a relevant numerical technique for its linearization and computing of the Cartesian stiffness matrix which allows rank-deficiency. Within the developed technique, the manipulator elements are presented as pseudo-rigid bodies separated by multidimensional virtual springs and perfect passive joints. Simulation examples are presented that deal with parallel manipulators of the Ortholide family and demonstrate the ability of the developed methodology to describe non-linear behavior of the manipulator structure such as a sudden change of the elastic instability properties (buckling).

  9. Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring networks.

    Science.gov (United States)

    Risch, Denise; Castellote, Manuel; Clark, Christopher W; Davis, Genevieve E; Dugan, Peter J; Hodge, Lynne Ew; Kumar, Anurag; Lucke, Klaus; Mellinger, David K; Nieukirk, Sharon L; Popescu, Cristian Marian; Ramp, Christian; Read, Andrew J; Rice, Aaron N; Silva, Monica A; Siebert, Ursula; Stafford, Kathleen M; Verdaat, Hans; Van Parijs, Sofie M

    2014-01-01

    Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales (Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude winter breeding grounds. While the distribution and abundance of the species has been studied across their summer range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train occurrence, infer information about migration routes and timing, and to identify possible winter habitats. Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during summer in any of the datasets. This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean during winter months. The absence of pulse train detections during summer suggests either that minke whales switch their vocal behaviour at this time of year, are absent from available

  10. Predicting room acoustical behavior with the ODEON computer model

    DEFF Research Database (Denmark)

    Naylor, Graham; Rindel, Jens Holger

    1992-01-01

    for discrepancies are discussed. These discrepancies indicate areas in which the computational model has to be improved, and highlight some shortcomings of current room acoustical survey methods. The effects of various calculation parameters (e.g., number of rays, early reflection order) are also briefly considered.......The computational bases of the ODEON model for room acoustics are described in a companion paper. The model is implemented for general use of a PC. In this paper, various technical features of the program relevant to the acoustical design process are presented. These include interactive...

  11. Renewable energy for passive house heating - Part II. Model

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Candida Oancea Institute of Solar Energy, Faculty of Mechanical Engineering, Polytechnic University of Bucharest, Bucharest (Romania); Sicre, B. [Computational Physics, Technical University of Chemnitz, Institute of Physics, Chemnitz (Germany)

    2003-07-01

    The evaluation of renewable energy used to increase the environmental friendliness of passive houses (PH) is the topic of this paper. A time-dependent model of passive house thermal behavior is developed. The heat transfer through the high thermal inertia elements is analyzed by using a one-dimensional time-dependent conduction heat-transfer equation that is solved numerically by using a standard Netlib solver (PDECHEB). Appropriate models for the conduction through the low thermal inertia elements are used, as well as a simple approach of the solar radiation transmission through the windows. The model takes into account in a detailed fashion the internal heat sources. Also, the operation of ventilation/heating system is described and common-practice control strategies are implemented. Three renewable energy sources are considered. First, there is the passive solar heating due to the large window on the facade oriented south. Second, the active solar collector system provides thermal energy for space heating or domestic hot water preparation. Third, a ground heat exchanger (GHE) increases the fresh air temperature during the cold season. The model was applied to the Pirmasens Passive House (Rhineland Palatinate, Germany). The passive solar heating system provides most part of the heating energy during November, December, February and March while in January the ground heat exchanger is the most important renewable energy source. January and February require use of additional conventional energy sources. A clever use of the active solar heating system could avoid consuming classical fuels during November, December and March. The ground heat exchanger is a reliable renewable source of energy. It provides heat during all the day and its (rather small) heat flux is increasing when the weather becomes colder. The air temperature at heater exit is normally lower than 46 {sup o}C. This is a good reason for the use of renewable energy to replace the classical fuel or the

  12. Renewable energy for passive house heating. Part 2. Model

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Polytechnic Univ., Bucharest (Romania). Faculty of Mechanical Engineering; Sicre, B. [Technical Univ., Chemnitz (Germany). Computational Physics

    2003-12-01

    The evaluation of renewable energy used to increase the environmental friendliness of passive houses (PH) is the topic of this paper. A time-dependent model of passive house thermal behavior is developed. The heat-transfer through the high thermal inertia elements is analyzed by using a 1D time-dependent conduction heat-transfer equation that is solved numerically by using a standard Netlib solver (PDECHEB). Appropriate models for the conduction through the low thermal inertia elements are used, as well as a simple approach of the solar radiation transmission through the windows. The model takes into account in a detailed fashion the internal heat sources. Also, the operation of ventilation/heating system is described and common practice control strategies are implemented. Three renewable energy sources are considered. First, there is the passive solar heating due to the large window on the facade oriented south. Second, the active solar collectors system provides thermal energy for space heating or hot domestic water preparation. Third, a ground heat exchanger (GHE) increases the fresh air temperature during the cold season. The model was applied to the Pirmasens Passive House (Rhineland Palatinate, Germany). The passive solar heating system provides most part of the heating energy during November, December, February and March while in January the ground heat exchanger is the most important renewable energy source. January and February require use of additional conventional energy sources. A clever use of the active solar heating system could avoid consuming classical fuels during November, December and March. The ground heat exchanger is a reliable renewable source of energy. It provides heat during all the day and its (rather small) heat flux is increasing when the weather becomes colder. The air temperature at heater exit is normally lower than 46 {sup o}C. This is a good reason for the use of renewable energy to replace the classical fuel or the wood to be

  13. Model simplification and optimization of a passive wind turbine generator

    OpenAIRE

    Sareni, Bruno; Abdelli, Abdenour; Roboam, Xavier; Tran, Duc-Hoan

    2009-01-01

    International audience; In this paper, the design of a "low cost full passive structure" of wind turbine system without active electronic part (power and control) is investigated. The efficiency of such device can be obtained only if the design parameters are mutually adapted through an optimization design approach. For this purpose, sizing and simulating models are developed to characterize the behavior and the efficiency of the wind turbine system. A model simplification approach is present...

  14. Embedded Acoustic Black Holes for semi-passive broadband vibration attenuation in thin-walled structures

    Science.gov (United States)

    Zhao, Liuxian; Semperlotti, Fabio

    2017-02-01

    We explore the use of structure-embedded Acoustic Black Holes (ABH) to design thin-walled structural components exhibiting broadband vibration attenuation characteristics. The ABH is a geometric taper with a power-law profile fully integrated into the structural component and able to induce a smooth and progressive decrease of both the velocity and the wavelength of flexural waves. Previous studies have shown these characteristics to be critical to enable highly efficient vibration attenuation systems. The performance of ABH thin-walled structures is numerically and experimentally evaluated under both transient and steady state excitation conditions. Both numerical and experimental results suggest that the proposed approach enables highly efficient and broadband vibration attenuation performance.

  15. Passive acoustic monitoring of toothed whales with implications for mitigation, management and biology

    DEFF Research Database (Denmark)

    Kyhn, Line Anker

    acoustic monitoring (PAM). PAM is particularly suited to study small inconspicuous for these species. Among the small odontocetes, four produce the same special echolocation click type, the narrow band high frequency (NBHF) click that has evolved through convergent evolution. Clicks of the individual NBHF...... pertaining to possible habitat specializations of each species as is seen for Microchiropteran bats and this was the focus of chapter IV & VI. It appeared that costal cluttered habitats may be limiting for NBHF species since they produce lower source levels when recorded in cluttered habitats and clutter...... is in accordance with new molecular phylogenies. In chapter I use the information I have gathered on spectral source properties as well as on source levels and directionality and use this information to challenge the theories for the evolution of the NBHF click type. I conclude that the NBHF signals likely evolved...

  16. Design of passive directional acoustic devices using Topology Optimization - from method to experimental validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Fernandez Grande, Efren

    2016-01-01

    The paper presents a topology optimization based method for designing acoustic focusing devices, capable of tailoring the sound emission pattern of one or several sources, across a chosen frequency band. The method is demonstrated numerically considering devices optimized for directional sound...... emission in two dimensions and is experimentally validated using three dimensional prints of the optimized designs. The emitted fields exhibit a level difference of at least 15 dB on axis relative to the off-axis directions, over frequency bands of approximately an octave. It is demonstrated to be possible...... to outperform the latter in terms of directivity and maximum side-lobe level over nearly an octave band. A set of frequencies are considered simultaneously in the design formulation and performance robustness toward uniform spatial production errors in the designed devices is assured by including perturbations...

  17. Monitoring the habitat use of common Bottlenose Dolphins (Tursiops truncatus using passive acoustics in a Mediterranean marine protected area

    Directory of Open Access Journals (Sweden)

    G. LA MANNA

    2014-07-01

    Full Text Available The Mediterranean Tursiops truncatus subpopulation has been classified as Vulnerable on the IUCN Red List because of its decline. This species in coastal areas is exposed to a wide variety of threats: directed kills, bycatch, reduced prey availability caused by environmental degradation and overfishing, habitat degradation including disturbances from boat traffic and noise. Despite the increase in boat traffic in the Mediterranean Sea, the effect on T. truncatus’ habitat use has been studied in little detail and few data have been published. This study represents the first attempt to characterise spatial and temporal habitat use by T. truncatus and its relation to boat traffic in the Isole Pelagie Marine Protected Area (Italy on the basis of an originally developed passive acoustic monitoring system (PAM. The devices were deployed in 2 areas in the southern waters of Lampedusa, during 2 separate years (2006 and 2009, each time for 3 months (from July to September and in 6 time slots (3 diurnal and 3 nocturnal. Acoustic analysis showed that T. truncatus used the Southern coastal area of Lampedusa independently of the year, primarily during the early summer, a period coinciding with the peak of calving season. Dolphin occurrences appeared independent of boat traffic, with the exception of the smallest temporal scale (time slots: dolphin occurrences were more prevalent during the night when the level of boat traffic was lower. This study provides evidence on T. truncatus habitat use in the Mediterranean Sea and reveals that boat traffic could be one of the factors influencing it, thus stressing the need for further detailed investigation regarding this topic.

  18. Modeling the pharmacodynamics of passive membrane permeability

    Science.gov (United States)

    Swift, Robert V.; Amaro, Rommie E.

    2011-11-01

    Small molecule permeability through cellular membranes is critical to a better understanding of pharmacodynamics and the drug discovery endeavor. Such permeability may be estimated as a function of the free energy change of barrier crossing by invoking the barrier domain model, which posits that permeation is limited by passage through a single "barrier domain" and assumes diffusivity differences among compounds of similar structure are negligible. Inspired by the work of Rezai and co-workers (JACS 128:14073-14080, 2006), we estimate this free energy change as the difference in implicit solvation free energies in chloroform and water, but extend their model to include solute conformational affects. Using a set of eleven structurally diverse FDA approved compounds and a set of thirteen congeneric molecules, we show that the solvation free energies are dominated by the global minima, which allows solute conformational distributions to be effectively neglected. For the set of tested compounds, the best correlation with experiment is obtained when the implicit chloroform global minimum is used to evaluate the solvation free energy difference.

  19. Study on Acoustic Modeling in a Mandarin Continuous Speech Recognition

    Institute of Scientific and Technical Information of China (English)

    PENG Di; LIU Gang; GUO Jun

    2007-01-01

    The design of acoustic models is of vital importance to build a reliable connection between acoustic waveform and linguistic messages in terms of individual speech units. According to the characteristic of Chinese phonemes,the base acoustic phoneme units set is decided and refined and a decision tree based state tying approach is explored.Since one of the advantages of top-down tying method is flexibility in maintaining a balance between model accuracy and complexity, relevant adjustments are conducted, such as the stopping criterion of decision tree node splitting, during which optimal thresholds are captured. Better results are achieved in improving acoustic modeling accuracy as well as minimizing the scale of the model to a trainable extent.

  20. Acoustic resonances in HID lamps: model and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, John [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Baumann, Bernd; Wolff, Marcus [Hamburg University of Applied Sciences, Institute for Physical Sensors, Berliner Tor 21, 20099 Hamburg (Germany); Bhosle, Sounil [Universite Paul Sabatier, Toulouse (France); Valdivia Barrientos, Ricardo, E-mail: john.hirsch@philips.co [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2010-06-16

    A finite element model including plasma simulation is used to calculate the amplitude of acoustic resonances in HID lamps in a 2D axisymmetric geometry. Simulation results are presented for different operation parameters and are compared with experimental data.

  1. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    Science.gov (United States)

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  2. Acoustics short-term passive monitoring using sonobuoys in the Bering, Chukchi, and Western Beaufort Seas conducted by Alaska Fisheries Scientific Center, National Marine Mammal Laboratory from 2007-08-01 to 2015-09-28 (NCEI Accession 0138863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) has conducted passive acoustic monitoring in the Bering, Chukchi, and Western Beaufort Seas to determine spatio-temporal...

  3. Odontocete Studies Off the Pacific Missile Range Facility in February 2013: Satellite-Tagging, Photo-Identification, and Passive Acoustic Monitoring for Species Verification

    Science.gov (United States)

    2013-12-16

    Megaptera novaeangliae ), calls of which were prevalent during February 2013. M3R System Passive acoustic data pass through the range’s operational signal...densirostris, Mn = Megaptera novaeangliae . 2 One tag did not transmit, thus data available from seven pilot whale tags deployed off Kaua‘i. Table 2...for GIS analyses, Alexandra Vanderzee for help with matching of rough- toothed dolphins, and Amy Van Cise, Morgan Richie, Julie Rivers and Sean Hanser

  4. Passive ventricular mechanics modelling using MRI of structure and function.

    Science.gov (United States)

    Wang, V Y; Lam, H I; Ennis, D B; Young, A A; Nash, M P

    2008-01-01

    Patients suffering from dilated cardiomyopathy or myocardial infarction can develop left ventricular (LV) diastolic impairment. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions and this remodeling process can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element model was developed to incorporate physiological and mechanical information derived from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo LV cavity pressure recording and ex vivo diffusion tensor MRI (DTMRI) of a canine heart. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion (the primary eigenvector) in each voxel of a DTMRI directly correlates with the myocardial fibre orientation. This model was customized to the geometry of the canine LV during diastasis by fitting the segmented epicardial and endocardial surface data from tagged MRI using nonlinear finite element fitting techniques. Myofibre orientations, extracted from DTMRI of the same heart, were incorporated into this geometric model using a free form deformation methodology. Pressure recordings, temporally synchronized to the tissue tagging MRI data, were used to simulate the LV deformation during diastole. Simulation of the diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. This integrated physiological model will allow more insight into the regional passive diastolic mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions.

  5. Dissolution-passivation model for zirconium alloys in fluorinated media

    Energy Technology Data Exchange (ETDEWEB)

    Prono, J. [Zircotube, Paimboeuf (France); Caprani, A. [Univ. of Paris VII (France); Jaszay, T.; Frayret, J.P. [Ecole Nat. Sup. de Mecanique, Nantes (France)

    1992-12-31

    Considering the shape of the steady state current-potential curve, we proposed a dissolution-passivation model composed of five determining steps and we calculated the associated elementary rates. Two different compounds of tetravalent zirconium are involved in the formation of the surface film. The influence of temperature on the elementary rates allows us to consider the chemical dissolution as the slowest steps and to involve fluoride in the formation of the film in the vicinity of the corrosion potential.

  6. Extensions in adaptive model tracking with mitigated passivity conditions

    Institute of Scientific and Technical Information of China (English)

    Itzhak BARKANA

    2013-01-01

    Feasibility of nonlinear and adaptive control methodologies in multivariable linear timeinvariant systems with state space realization {A,B,C} has apparently been limited by the standard strict passivity (or positive realness) conditions that imply that the product CB must be positive definite symmetric.More recently the symmetry condition has been mitigated,requiring instead that the not necessarily symmetric matrix CB be diagonalizable and with positive real eigenvalues.However,although the mitigated conditions are useful in proving pure stabilizability with Adaptive Controllers,the Model Tracking question has remained open and counterexamples seem to demonstrate total divergence of standard model reference adaptive controllers when the regular passivity conditions are not fully satisfied.Therefore,this paper further extends the previous results,showing that the new passivity conditions do guarantee stability with adaptive model tracking.Examples show how the new conditions solve the case of flexible structures with unknown parameters when perfect collocation is not possible.Also,the so-called counterexamples become simple,well-behaved,examples.

  7. Acoustic Logging Modeling by Refined Biot's Equations

    Science.gov (United States)

    Plyushchenkov, Boris D.; Turchaninov, Victor I.

    An explicit uniform completely conservative finite difference scheme for the refined Biot's equations is proposed. This system is modified according to the modern theory of dynamic permeability and tortuosity in a fluid-saturated elastic porous media. The approximate local boundary transparency conditions are constructed. The acoustic logging device is simulated by the choice of appropriate boundary conditions on its external surface. This scheme and these conditions are satisfactory for exploring borehole acoustic problems in permeable formations in a real axial-symmetrical situation. The developed approach can be adapted for a nonsymmetric case also.

  8. Reduction of Protein Networks Models by Passivity Preserving Projection

    Institute of Scientific and Technical Information of China (English)

    Luca Mesin; Flavio Canavero; Lamberto Rondoni

    2013-01-01

    Reduction of complex protein networks models is of great importance.The accuracy of a passivity preserving algorithm (PRIMA) for model order reduction (MOR) is here tested on protein networks,introducing innovative variations of the standard PRIMA method to fit the problem at hand.The reduction method does not require to solve the complete system,resulting in a promising tool for studying very large-scale models for which the full solution cannot be computed.The mathematical structure of the considered kinetic equations is preserved.Keeping constant the reduction factor,the approximation error is lower for larger systems.

  9. Finite element models applied in active structural acoustic control

    NARCIS (Netherlands)

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  10. Modeling the Acoustic Channel for Simulation Studies

    Science.gov (United States)

    2012-09-30

    assess the performance of networking schemes or to derive general methods able to improve the reliability of underwater acoustic communications. Finally...approach, are reported in [TWC2012]. DISSEMINATION ACTIVITIES The results obtained in the conducted reseach have been disseminated to the research

  11. A local geopotential model for implementation of underwater passive navigation

    Institute of Scientific and Technical Information of China (English)

    Zhigang Wang; Shaofeng Bian

    2008-01-01

    A main aspect of underwater passive navigation is how to identify the vehicle location on an existing gravity map.and several match-ing algorithms as ICCP and SITAN are the most prevalent methods that many scholars are using.In this paper,a novel algorithm that is different from matching algorithms for passive navigation is developed.The algorithm implements underwater passive navigation by directly estimating the inertial errors through Kalman falter algorithm,and the key part of this implementation is a Fourier series.based local geopotential model.Firstly,the pfinople of local geopotential model based on Fourier series is introduced in this paper,thus the discrete gravity anomalies data can be expressed analytically with respect to geographic coordinares to establish the observation equation required in the application of Kalman filter.Whereafter,the indicated gravity anomalies can be gotten by substituting the inertial posi-tions to existing gravity anomalies map.Finally,the classical extended Kalman filter is introduced with the differences between measured gravity and indicated gravity used as observations to optimally estimate the errors of the inertial navigation system(INS).This naviga-tion algorithm is tested on simulated data with encouraging results.Although this algorithm is developed for underwater navigation using gravity data,it iS equally applicable to other domains,for example vehicle navigation on magnetic or terrain data.

  12. Modeling ground vehicle acoustic signatures for analysis and synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, G. [Sandia National Labs., Albuquerque, NM (United States); Stanfield, R. [US Army CECOM, Night Vision and Electronic Sensors Directorate, Fort Belvoir, VA (United States)

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  13. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.

    Science.gov (United States)

    Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G

    2015-02-17

    Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness.

  14. Model reduction for optimization of structural-acoustic coupling problems

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas;

    2016-01-01

    , which becomes highly time consuming since many iterations may be required. The use of model reduction techniques to speed up the computations is studied in this work. The Component Mode Synthesis (CMS) method and the Multi-Model Reduction (MMR) method are adapted for problems with structure......Fully coupled structural-acoustic models of complex systems, such as those used in the hearing aid field, may have several hundreds of thousands of nodes. When there is a strong structure-acoustic interaction, performing optimization on one part requires the complete model to be taken into account...

  15. Thermal network model of a passive solar house

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, J.A.; Clinton, J.R.

    1980-01-01

    A 35-node thermal network simulation model used at UCSD for modelling houses containing several passive or hybrid features is described. To avoid biases associated with use of a room node, radiative and convective heat exchanges between components are modelled separately. Run costs are under $1 for a 7-month heating season. The house modelled is a wood frame building with slab floor. Windows on all building faces can be modelled. The Trombe wall can be vented to the interior or to an under-floor rockbed. The rockbed model provides for controlled smearing of thermoclines during both flow and no-flow conditions. Controls include shading and night insulation, venting, thermostat setbacks, off-peak backup, and various rockbed controls.

  16. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials

    Directory of Open Access Journals (Sweden)

    Weihua Chen

    2016-01-01

    Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.

  17. A room acoustical computer model for industrial environments - the model and its verification

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Foged, Hans Torben

    1998-01-01

    This paper presents an extension to the traditional room acoustic modelling methods allowing computer modelling of huge machinery in industrial spaces. The program in question is Odeon 3.0 Industrial and Odeon 3.0 Combined which allows the modelling of point sources, surface sources and line...... sources. Combining these three source types it is possible to model huge machinery in an easy and visually clear way. Traditionally room acoustic simulations have been aimed at auditorium acoustics. The aim of the simulations has been to model the room acoustic measuring setup consisting...

  18. Modeling Large sound sources in a room acoustical calculation program

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    1999-01-01

    A room acoustical model capable of modelling point, line and surface sources is presented. Line and surface sources are modelled using a special ray-tracing algorithm detecting the radiation pattern of the surfaces in the room. Point sources are modelled using a hybrid calculation method combining...... this ray-tracing method with Image source modelling. With these three source types, it is possible to model large and complex sound sources in workrooms....

  19. Modeling Large sound sources in a room acoustical calculation program

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    1999-01-01

    A room acoustical model capable of modelling point, line and surface sources is presented. Line and surface sources are modelled using a special ray-tracing algorithm detecting the radiation pattern of the surfaces in the room. Point sources are modelled using a hybrid calculation method combining...... this ray-tracing method with Image source modelling. With these three source types, it is possible to model large and complex sound sources in workrooms....

  20. Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control

    Science.gov (United States)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-01-01

    This paper investigates the acoustic properties of a duct resonator tuned by an electro-active membrane. The resonator takes the form of a side-branch cavity which is attached to a rigid duct and covered by a pre-stretched Dielectric Elastomer (DE) in the neck area. A three-dimensional, analytical model based on the sub-structuring approach is developed to characterize the complex structure-acoustic coupling between the DE membrane and its surrounding acoustic media. We show that such resonator provides sound attenuation in the medium frequency range mainly by means of sound reflection, as a result of the membrane vibration. The prediction accuracy of the proposed model is validated against experimental test. The pre-stretched DE membrane with fixed edges responds to applied voltage change with a varying inner stress and, by the same token, its natural frequency and vibrational response can be tuned to suit particular frequencies of interest. The peaks in the transmission loss (TL) curves can be shifted towards lower frequencies when the voltage applied to the DE membrane is increased. Through simulations on the effect of increasing the voltage level, the TL shifting mechanism and its possible tuning range are analyzed. This paves the way for applying such resonator device for adaptive-passive noise control.

  1. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  2. Airflow resistivity of models of fibrous acoustic materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    for the resistivity are given, which are valid for the cylinder (fiber) concentrations found in acoustic materials. A one-dimensional model consisting of parallel plates with random spacing between the plates is first discussed. Then a two-dimensional model consisting of parallel cylinders randomly spaced is treated...

  3. Advanced Performance Modeling with Combined Passive and Active Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dovrolis, Constantine [Georgia Inst. of Technology, Atlanta, GA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  4. Shell model of optimal passive-scalar mixing

    Science.gov (United States)

    Miles, Christopher; Doering, Charles

    2015-11-01

    Optimal mixing is significant to process engineering within industries such as food, chemical, pharmaceutical, and petrochemical. An important question in this field is ``How should one stir to create a homogeneous mixture while being energetically efficient?'' To answer this question, we consider an initially unmixed scalar field representing some concentration within a fluid on a periodic domain. This passive-scalar field is advected by the velocity field, our control variable, constrained by a physical quantity such as energy or enstrophy. We consider two objectives: local-in-time (LIT) optimization (what will maximize the mixing rate now?) and global-in-time (GIT) optimization (what will maximize mixing at the end time?). Throughout this work we use the H-1 mix-norm to measure mixing. To gain a better understanding, we provide a simplified mixing model by using a shell model of passive-scalar advection. LIT optimization in this shell model gives perfect mixing in finite time for the energy-constrained case and exponential decay to the perfect-mixed state for the enstrophy-constrained case. Although we only enforce that the time-average energy (or enstrophy) equals a chosen value in GIT optimization, interestingly, the optimal control keeps this value constant over time.

  5. A hybrid finite element-transfer matrix model for vibroacoustic systems with flat and homogeneous acoustic treatments.

    Science.gov (United States)

    Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck

    2015-02-01

    Practical vibroacoustic systems involve passive acoustic treatments consisting of highly dissipative media such as poroelastic materials. The numerical modeling of such systems at low to mid frequencies typically relies on substructuring methodologies based on finite element models. Namely, the master subsystems (i.e., structural and acoustic domains) are described by a finite set of uncoupled modes, whereas condensation procedures are typically preferred for the acoustic treatments. However, although accurate, such methodology is computationally expensive when real life applications are considered. A potential reduction of the computational burden could be obtained by approximating the effect of the acoustic treatment on the master subsystems without introducing physical degrees of freedom. To do that, the treatment has to be assumed homogeneous, flat, and of infinite lateral extent. Under these hypotheses, simple analytical tools like the transfer matrix method can be employed. In this paper, a hybrid finite element-transfer matrix methodology is proposed. The impact of the limiting assumptions inherent within the analytical framework are assessed for the case of plate-cavity systems involving flat and homogeneous acoustic treatments. The results prove that the hybrid model can capture the qualitative behavior of the vibroacoustic system while reducing the computational effort.

  6. Modelling Large sound sources in a room acoustical calculation program

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    1999-01-01

    A room acoustical model capable of modelling point, line and surface sources is presented. Line and surfacesources are modelled using a special ray-tracing algorithm detecting the radiation pattern of the surfaces in the room.Point sources are modelled using a hybrid calculation method combining...... this ray-tracing method with Image sourcemodelling. With these three source types, it is possible to model large and complex sound sources in workrooms....

  7. Modelling Large sound sources in a room acoustical calculation program

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    1999-01-01

    A room acoustical model capable of modelling point, line and surface sources is presented. Line and surfacesources are modelled using a special ray-tracing algorithm detecting the radiation pattern of the surfaces in the room.Point sources are modelled using a hybrid calculation method combining...... this ray-tracing method with Image sourcemodelling. With these three source types, it is possible to model large and complex sound sources in workrooms....

  8. Aero-acoustic noise of wind turbines. Noise prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    Semi-empirical and CAA (Computational AeroAcoustics) noise prediction techniques are the subject of this expert meeting. The meeting presents and discusses models and methods. The meeting may provide answers to the following questions: What Noise sources are the most important? How are the sources best modeled? What needs to be done to do better predictions? Does it boil down to correct prediction of the unsteady aerodynamics around the rotor? Or is the difficult part to convert the aerodynamics into acoustics? (LN)

  9. Numerical modelling of nonlinear full-wave acoustic propagation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  10. Scattering as a key to improved room acoustic computer modelling

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Christensen, Claus Lynge

    1996-01-01

    It has been known for a long time that surface scattering plays a very important role in room acoustics. With room acoustic computer models like ODEON it is possible to study the influence of scattering coefficients, which can be assigned to the surfaces of the room. In the latest version...... of the program an additional effect has been modelled, namely the attenuation of sound due to diffraction, which is particularly pronounced for small surfaces, low frequencies and long reflecting paths. The present paper describes a parameter study of how to optimize the choice of the number of rays...... room acoustic parameters. Results from two different halls have shown that a relative low number of rays are sufficient for reliable and stable calculation results. The optimum value of the transition order is two or three. The inclusion of diffraction effect leads to clearly improved results....

  11. On a Markovian approach for modeling passive solar devices

    Energy Technology Data Exchange (ETDEWEB)

    Bottazzi, F.; Liebling, T.M. (Chaire de Recherche Operationelle, Ecole Polytechnique Federale de Lausanne (Switzerland)); Scartezzini, J.L.; Nygaard-Ferguson, M. (Lab. d' Energie Solaire et de Physique du Batiment, Ecole Polytechnique Federale de Lausanne (Switzerland))

    1991-01-01

    Stochastic models for the analysis of the energy and thermal comfort performances of passive solar devices have been increasingly studied for over a decade. A new approach to thermal building modeling, based on Markov chains, is proposed here to combine both the accuracy of traditional dynamic simulation with the practical advantages of simplified methods. A main difficulty of the Markovian approach is the discretization of the system variables. Efficient procedures have been developed to carry out this discretization and several numerical experiments have been performed to analyze the possibilities and limitations of the Markovian model. Despite its restrictive assumptions, it will be shown that accurate results are indeed obtained by this method. However, due to discretization, computer memory reqirements are more than inversely proportional to accuracy. (orig.).

  12. Modelling and monitoring of passive control structures in human movement

    Science.gov (United States)

    Hemami, Hooshang; Hemami, Mahmoud

    2014-09-01

    Passive tissues, ligaments and cartilage are vital to human movement. Their contribution to stability, joint function and joint integrity is essential. The articulation of their functions and quantitative assessment of what they do in a healthy or injured state are important in athletics, orthopaedics, medicine and health. In this paper, the role of cartilage and ligaments in stability of natural contacts, connections and joints is articulated by including them in two very simple skeletal systems: one- and three-link rigid body systems. Based on the Newton-Euler equations, a state space presentation of the dynamics is discussed that allows inclusion of ligament and cartilage structures in the model, and allows for Lyapunov stability studies for the original and reduced systems. The connection constraints may be holonomic and non-holonomic depending on the structure of the passive elements. The development is pertinent to the eventual design of a computational framework for the study of human movement that involves computer models of all the relevant skeletal, neural and physiological elements of the central nervous system (CNS). Such a structure also permits testing of different hypotheses about the functional neuroanatomy of the CNS, and the study of the effects and dynamics of disease, deterioration, aging and injuries. The formulation here is applied to one- and three-link systems. Digital computer simulations of a two rigid body system are presented to demonstrate the feasibility and effectiveness of the approach and the methods.

  13. Design, characterization and modeling of biobased acoustic foams

    Science.gov (United States)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube

  14. New bifurcations in the simplest passive walking model

    Science.gov (United States)

    Li, Qingdu; Tang, Song; Yang, Xiao-Song

    2013-12-01

    This paper uncovers several new stable periodic gaits in the simplest passive walking bipedal model proposed in the literature. It is demonstrated that the model has period-3 to period-7 gaits beside the period-1 gaits found by Garcia et al. By simulations, this paper shows that each of these new gaits leads to chaos via period-doubling bifurcation and loses its stability by cyclic-fold bifurcation. This interesting phenomenon suggests a series of new bifurcation scenarios that have not been observed before. To confirm the new gaits and their bifurcations, this paper presents computer assisted proofs on the existence and stability of each periodic gait and its period-doubling gaits with the interval Newton method. To verify that the routes indeed lead to chaos, computer-assisted proofs are also given by means of topological horseshoes theory.

  15. Acoustic Gravity Wave Chemistry Model for the RAYTRACE Code.

    Science.gov (United States)

    2014-09-26

    AU)-AI56 850 ACOlUSTIC GRAVITY WAVE CHEMISTRY MODEL FOR THE IAYTRACE I/~ CODE(U) MISSION RESEARCH CORP SANTA BARBIARA CA T E OLD Of MAN 84 MC-N-SlS...DNA-TN-S4-127 ONAOOI-BO-C-0022 UNLSSIFIlED F/O 20/14 NL 1-0 2-8 1111 po 312.2 1--I 11111* i •. AD-A 156 850 DNA-TR-84-127 ACOUSTIC GRAVITY WAVE...Hicih Frequency Radio Propaoation Acoustic Gravity Waves 20. ABSTRACT (Continue en reveree mide if tteceeemr and Identify by block number) This

  16. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei

    2012-11-04

    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  17. Vibro-acoustics of porous materials - waveguide modeling approach

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey V.

    2016-01-01

    The porous material is considered as a compound multi-layered waveguide (i.e. a fluid layer surrounded with elastic layers) with traction free boundary conditions. The attenuation of the vibro-acoustic waves in such a material is assessed. This approach is compared with a conventional Biot's model...... in porous materials....

  18. A theoretical approach to room acoustic simulations based on a radiative transfer model

    DEFF Research Database (Denmark)

    Ruiz-Navarro, Juan-Miguel; Jacobsen, Finn; Escolano, José

    2010-01-01

    A theoretical approach to room acoustic simulations based on a radiative transfer model is developed by adapting the classical radiative transfer theory from optics to acoustics. The proposed acoustic radiative transfer model expands classical geometrical room acoustic modeling algorithms...... by incorporating a propagation medium that absorbs and scatters radiation, handling both diffuse and non-diffuse reflections on boundaries and objects in the room. The main scope of this model is to provide a proper foundation for a wide number of room acoustic simulation models, in order to establish and unify...... their principles. It is shown that this room acoustic modeling technique establishes the basis of two recently proposed algorithms, the acoustic diffusion equation and the room acoustic rendering equation. Both methods are derived in detail using an analytical approximation and a simplified integral equation...

  19. Electromagnetic Modeling of the Passive Stabilization Loop at EAST

    Institute of Scientific and Technical Information of China (English)

    戢翔; 宋云涛; 武松涛; 王志滨; 沈光; 刘旭峰; 曹磊; 周自波; 彭学兵; 王成昊

    2012-01-01

    A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disrup- tion, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.

  20. Electromagnetic Modeling of the Passive Stabilization Loop at EAST

    Science.gov (United States)

    Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao

    2012-09-01

    A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.

  1. Acoustic FMRI noise: linear time-invariant system model.

    Science.gov (United States)

    Rizzo Sierra, Carlos V; Versluis, Maarten J; Hoogduin, Johannes M; Duifhuis, Hendrikus Diek

    2008-09-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic noise is a useful step to its reduction. To study acoustic noise, the MR scanner is modeled as a linear electroacoustical system generating sound pressure signals proportional to the time derivative of the input gradient currents. The transfer function of one MR scanner is determined for two different input specifications: 1) by using the gradient waveform calculated by the scanner software and 2) by using a recording of the gradient current. Up to 4 kHz, the first method is shown as reliable as the second one, and its use is encouraged when direct measurements of gradient currents are not possible. Additionally, the linear order and average damping properties of the gradient coil system are determined by impulse response analysis. Since fMRI is often based on echo planar imaging (EPI) sequences, a useful validation of the transfer function prediction ability can be obtained by calculating the acoustic output for the EPI sequence. We found a predicted sound pressure level (SPL) for the EPI sequence of 104 dB SPL compared to a measured value of 102 dB SPL. As yet, the predicted EPI pressure waveform shows similarity as well as some differences with the directly measured EPI pressure waveform.

  2. Modeling huge sound sources in a room acoustical calculation program

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    1999-01-01

    A room acoustical model capable of modeling point sources, line sources, and surface sources is presented. Line and surface sources are modeled using a special ray-tracing algorithm detecting the radiation pattern of the surfaces of the room. Point sources are modeled using a hybrid calculation...... method combining this ray-tracing method with image source modeling. With these three source types it is possible to model huge and complex sound sources in industrial environments. Compared to a calculation with only point sources, the use of extended sound sources is shown to improve the agreement...

  3. Simple model of photo acoustic system for greenhouse effect

    CERN Document Server

    Fukuhara, Akiko; Ogawa, Naohisa

    2010-01-01

    The simple theoretical basis for photo acoustic (PA) system for studying infrared absorption properties of greenhouse gases is constructed. The amplitude of sound observed in PA depends on the modulation frequency of light pulse. Its dependence can be explained by our simple model. According to this model, sound signal has higher harmonics. The theory and experiment are compared in third and fifth harmonics by spectrum analysis. The theory has the analogy with electric circuits. This analogy helps students for understanding the PA system.

  4. Standard guide for use of modeling for passive gamma measurements

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the use of models with passive gamma-ray measurement systems. Mathematical models based on physical principles can be used to assist in calibration of gamma-ray measurement systems and in analysis of measurement data. Some nondestructive assay (NDA) measurement programs involve the assay of a wide variety of item geometries and matrix combinations for which the development of physical standards are not practical. In these situations, modeling may provide a cost-effective means of meeting user’s data quality objectives. 1.2 A scientific knowledge of radiation sources and detectors, calibration procedures, geometry and error analysis is needed for users of this standard. This guide assumes that the user has, at a minimum, a basic understanding of these principles and good NDA practices (see Guide C1592), as defined for an NDA professional in Guide C1490. The user of this standard must have at least a basic understanding of the software used for modeling. Instructions or further train...

  5. A Mechanistic Model of a Passive Autocatalytic Hydrogen Recombiner

    Directory of Open Access Journals (Sweden)

    Rożeń Antoni

    2015-03-01

    Full Text Available : A passive autocatalytic hydrogen recombiner (PAR is a self-starting device, without operator action or external power input, installed in nuclear power plants to remove hydrogen from the containment building of a nuclear reactor. A new mechanistic model of PAR has been presented and validated by experimental data and results of Computational Fluid Dynamics (CFD simulations. The model allows to quickly and accurately predict gas temperature and composition, catalyst temperature and hydrogen recombination rate. It is assumed in the model that an exothermic recombination reaction of hydrogen and oxygen proceeds at the catalyst surface only, while processes of heat and mass transport occur by assisted natural and forced convection in non-isothermal and laminar gas flow conditions in vertical channels between catalyst plates. The model accounts for heat radiation from a hot catalyst surface and has no adjustable parameters. It can be combined with an equation of chimney draft and become a useful engineering tool for selection and optimisation of catalytic recombiner geometry.

  6. Auralization fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality

    CERN Document Server

    Vorlander, Michael

    2007-01-01

    "Auralization" is the technique of creation and reproduction of sound on the basis of computer data. With this tool is it possible to predict the character of sound signals which are generated at the source and modified by reinforcement, propagation and transmission in systems such as rooms, buildings, vehicles or other technical devices. This book is organized as a comprehensive collection of the basics of sound and vibration, acoustic modelling, simulation, signal processing and audio reproduction. Implementations of the auralization technique are described using examples drawn from various fields in acoustic’s research and engineering, architecture, sound design and virtual reality.

  7. MUFASSA, a multipurpose framework to develop GUI’s for underwater acoustic modelling

    NARCIS (Netherlands)

    Riet, M.W.G. van; Pol, J. van de; Zwan, T. van der

    2013-01-01

    Underwater acoustic modeling is used in many fields of research and development, which has resulted in a wide variety of acoustic models and applications, such as sensor performance prediction, sensor performance optimizations and acoustic impact on marine life. Many of the applications share a simi

  8. Phoneme Class Based Adaptation for Mismatch Acoustic Modeling of Distant Noisy Speech (Preprint)

    Science.gov (United States)

    2012-03-01

    microphone acoustic model and distant data MFCCs. First by investigating the close talk microphone acoustic model, the English phonemes were divided...Acoustic- Phonetic Continuous Speech Corpus” Linguistic Data Consortium, Philadelphia, 1993. [5] Smith, L. I., “A Tutorial on Principal Components

  9. Acoustic Model Adaptation for Indonesian Language Utterance Training System

    Directory of Open Access Journals (Sweden)

    Linda Indrayanti

    2010-01-01

    Full Text Available Problem statement: In order to build an utterance training system for Indonesian language, a speech recognition system designed for Indonesian is necessary. However, the system hardly works well due to the pronunciation variants of non-native utterances may lead to substitution/deletion error. This research investigated the pronunciation variant and proposes acoustic model adaptation to improve performance of the system. Approach: The proposed acoustic model adaptation worked in three steps: to analyze pronunciation variant with knowledge-based and data-derived methods; to align knowledge-based and data-derived results in order to list frequently mispronounced phones with their variants; to perform a state-clustering procedure with the list obtained from the second step. Further, three Speaker Adaptation (SA techniques were used in combination with the acoustic model adaptation and they are compared each other. In order to evaluate and tune the adaptation techniques, perceptual-based evaluation by three human raters is performed to obtain the "true"recognition results. Results: The proposed method achieved an average gain in Hit + Rejection (the percentage of correctly accepted and correctly rejected utterances by the system as the human raters do of 2.9 points and 2 points for native and non-native subjects, respectively, when compared with the system without adaptation. Average gains of 12.7 and 6.2 points for native and non-native students in Hit + Rejection were obtained by combining SA to the acoustic model adaptation. Conclusion/Recommendations: Performance evaluation of the adapted system demonstrated that the proposed acoustic model adaptation can improve Hit even though there is a slight increase of False Alarm (FA, the percentage of incorrectly accepted utterances by the system of which the human raters reject. The performance of the proposed acoustic model adaptation depends strongly on the effectiveness of state-clustering procedure

  10. Acoustic and non-acoustic factors in modeling listener-specific performance of sagittal-plane sound localization

    Directory of Open Access Journals (Sweden)

    Piotr eMajdak

    2014-04-01

    Full Text Available The ability of sound-source localization in sagittal planes (along the top-down and front-back dimension varies considerably across listeners. The directional acoustic spectral features, described by head-related transfer functions (HRTFs, also vary considerably across listeners, a consequence of the listener-specific shape of the ears. It is not clear whether the differences in localization ability result from differences in the encoding of directional information provided by the HRTFs, i.e., acoustic factors, or from differences in auditory processing of those cues (e.g., spectral-shape sensitivity, i.e., non-acoustic factors.We addressed this issue by analyzing the listener-specific localization ability in terms of localization performance. Directional responses to spatially distributed broadband stimuli from 18 listeners were used. A model of sagittal-plane localization was fit individually for each listener by considering the actual localization performance, the listener-specific HRTFs representing the acoustic factor, and an uncertainty parameter representing the non-acoustic factors. The model was configured to simulate the condition of complete calibration of the listener to the tested HRTFs. Listener-specifically calibrated model predictions yielded correlations of, on average, 0.93 with the actual localization performance. Then, the model parameters representing the acoustic and non-acoustic factors were systematically permuted across the listener group.While the permutation of HRTFs affected the localization performance, the permutation of listener-specific uncertainty had a substantially larger impact. Our findings suggest that across-listener variability in sagittal-plane localization ability is only marginally determined by the acoustic factor, i.e., the quality of directional cues found in typical human HRTFs. Rather, the non-acoustic factor, supposed to represent the listeners' efficiency in processing directional cues, appears

  11. Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results

    Science.gov (United States)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.

  12. Integrating acoustic analysis in the architectural design process using parametric modelling

    DEFF Research Database (Denmark)

    Peters, Brady

    2011-01-01

    This paper discusses how parametric modeling techniques can be used to provide architectural designers with a better understanding of the acoustic performance of their designs and provide acoustic engineers with models that can be analyzed using computational acoustic analysis software. Architects...... provide a method by which architects and engineers can work together more efficiently and communicate better. This research is illustrated through the design of an architectural project, a new school in Copenhagen, Denmark by JJW Architects, where parametric modeling techniques have been used in different......, acoustic performance can inform the geometry and material logic of the design. In this way, the architectural design and the acoustic analysis model become linked....

  13. Automatic computational models of acoustical category features: Talking versus singing

    Science.gov (United States)

    Gerhard, David

    2003-10-01

    The automatic discrimination between acoustical categories has been an increasingly interesting problem in the fields of computer listening, multimedia databases, and music information retrieval. A system is presented which automatically generates classification models, given a set of destination classes and a set of a priori labeled acoustic events. Computational models are created using comparative probability density estimations. For the specific example presented, the destination classes are talking and singing. Individual feature models are evaluated using two measures: The Kologorov-Smirnov distance measures feature separation, and accuracy is measured using absolute and relative metrics. The system automatically segments the event set into a user-defined number (n) of development subsets, and runs a development cycle for each set, generating n separate systems, each of which is evaluated using the above metrics to improve overall system accuracy and to reduce inherent data skew from any one development subset. Multiple features for the same acoustical categories are then compared for underlying feature overlap using cross-correlation. Advantages of automated computational models include improved system development and testing, shortened development cycle, and automation of common system evaluation tasks. Numerical results are presented relating to the talking/singing classification problem.

  14. Modeling of a Surface Acoustic Wave Strain Sensor

    Science.gov (United States)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  15. Creating the finite element models of car seats with passive head restraints to meet the requirements of passive safety

    Directory of Open Access Journals (Sweden)

    D. Yu. Solopov

    2014-01-01

    Full Text Available A problem solution to create the car chairs using modern software complexes (CAE based on the finite elements is capable to increase an efficiency of designing process significantly. Designing process is complicated by the fact that at present there are no available techniques focused on this sort of tasks.This article shows the features to create the final element models (FEM of the car chairs having three levels of complexity. It assesses a passive safety, which is ensured by the developed chair models with passive head restraints according to requirements of UNECE No 25 Regulations, and an accuracy of calculation results compared with those of full-scale experiments.This work is part of the developed technique, which allows effective development of the car chair designs both with passive, and with active head restraints, meeting the requirements of passive safety.By results of calculations and experiments it was established that at assessment by an UNECE No 25 technique the "rough" FEM (the 1st and 2nd levels can be considered as rational (in terms of effort to its creation and task solution and by the errors of results, and it is expedient to use them for preliminary and multiple calculations. Detailed models (the 3rd level provide the greatest accuracy (for accelerations the relative error makes 10%, for movements it is 11%, while in comparison with calculations, the relative error for a model of head restraint only decreases by 5% for accelerations and for 9% for movements.The materials presented in the article are used both in research activities and in training students at the Chair of Wheel Vehicles of the Scientific and Educational Complex "Special Mechanical Engineering" of Bauman Moscow State Technical University.

  16. GOATS 2008: Autonomous, Adaptive Multistatic Acoustic Sensing

    Science.gov (United States)

    2010-09-30

    the concept of a network of AUVs as an array of Virtual Sensors, based on fully integrated sensing, modeling and control , reducing the inter- platform...acoustic modeling , platform dynamics and network communication and control . In regard to the environmental acoustic modeling , MIT continues to...adaptive, bi- and multi-static, passive and active sonar configurations for concurrent detection, classification and localization of subsea and bottom

  17. Virtual Acoustics

    Science.gov (United States)

    Lokki, Tapio; Savioja, Lauri

    The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.

  18. Efficient and stable model reduction scheme for the numerical simulation of broadband acoustic metamaterials

    DEFF Research Database (Denmark)

    Hyun, Jaeyub; Kook, Junghwan; Wang, Semyung

    2015-01-01

    and basis vectors for use according to the target system. The proposed model reduction scheme is applied to the numerical simulation of the simple mass-damping-spring system and the acoustic metamaterial systems (i.e., acoustic lens and acoustic cloaking device) for the first time. Through these numerical...

  19. Numerical Acoustic Models Including Viscous and Thermal losses: Review of Existing and New Methods

    DEFF Research Database (Denmark)

    Andersen, Peter Risby; Cutanda Henriquez, Vicente; Aage, Niels

    2017-01-01

    This work presents an updated overview of numerical methods including acoustic viscous and thermal losses. Numerical modelling of viscothermal losses has gradually become more important due to the general trend of making acoustic devices smaller. Not including viscothermal acoustic losses in such...

  20. The Box Model and the Acoustic Sounder, a Case Study

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Lundtang Petersen, Erik

    1979-01-01

    Concentrations of SO2 in a large city during a subsidence situation are predicted as a function of time by means of a simple box model and the predictions are compared to actual SO2 concentration measurements. The agreement between model results and measurements is found to be excellent. The model...... uses the height of the mixing layer as measured by means of an acoustic sounder. It is demonstrated that this height is a dominant factor in determining the variation of the SO2 concentration...

  1. Effect of swim cap model on passive drag.

    Science.gov (United States)

    Gatta, Giorgio; Zamparo, Paola; Cortesi, Matteo

    2013-10-01

    Hydrodynamics plays an important role in swimming because even small decreases in a swimmer's drag can lead to performance improvements. During the gliding phases of a race, the head of a swimmer is an important point of impact with the fluid, and the swim cap, even if it covers only a small portion of the swimmer's body, can have an influence on drag. The purpose of this study was to investigate the effects on passive drag (Dp) of wearing 3 different types of swim caps (LSC: a lycra cap; CSC: a silicone cap; HSC: a silicone helmet cap without seams). Sixteen swimmers were tested at 3 velocities (1.5, 1.7, 1.9 m·s), and the Dp measurements were repeated at each condition 5 times. A statistical analysis revealed significant differences in drag (p swim cap is the most rigid, the most adherent to the swimmer's head, and does not allow the formation of wrinkles compared with the other 2 investigated swim caps. Therefore, the following conclusions can be made: (a) swimmers should take care when selecting their swim cap if they want to improve the fluid dynamics at the "leading edge" of their body and (b) because Dp is affected by the swim cap model, care should be taken when comparing data from different studies, especially at faster investigated speeds.

  2. Prevention of Pressure Oscillations in Modeling a Cavitating Acoustic Fluid

    Directory of Open Access Journals (Sweden)

    B. Klenow

    2010-01-01

    Full Text Available Cavitation effects play an important role in the UNDEX loading of a structure. For far-field UNDEX, the structural loading is affected by the formation of local and bulk cavitation regions, and the pressure pulses resulting from the closure of the cavitation regions. A common approach to numerically modeling cavitation in far-field underwater explosions is Cavitating Acoustic Finite Elements (CAFE and more recently Cavitating Acoustic Spectral Elements (CASE. Treatment of cavitation in this manner causes spurious pressure oscillations which must be treated by a numerical damping scheme. The focus of this paper is to investigate the severity of these oscillations on the structural response and a possible improvement to CAFE, based on the original Boris and Book Flux-Corrected Transport algorithm on structured meshes [6], to limit oscillations without the energy loss associated with the current damping schemes.

  3. Modeling of Acoustic Emission Signal Propagation in Waveguides

    Directory of Open Access Journals (Sweden)

    Andreea-Manuela Zelenyak

    2015-05-01

    Full Text Available Acoustic emission (AE testing is a widely used nondestructive testing (NDT method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.

  4. Modeling Acoustically Driven Microbubbles by Macroscopic Discrete-Mechanical Analogues

    Directory of Open Access Journals (Sweden)

    Víctor Sánchez-Morcillo

    2013-06-01

    Full Text Available The dynamics of continuous systems that exhibit circular or spherical symmetry like drops, bubbles or some macromolecules, under the influence of some external excitation, develop surface patters that are hard to predict in most practical situations. In the particular case of acoustically driven microbubbles (ultrasound contrast agent, the study of the behavior of the bubble shell requires complex modeling even for describe the most simple oscillation patterns. Furthermore, due to the smallness of the spatio-temporal scale of the problem, an experimental approach requires expensive hardware setup. Despite the complexity of the particular physical problem, the basic dynamical features of some continuous physical systems can be captured by simple models of coupled oscillators. In this work we consider an analogy between a shelled-gas bubble cavitating under the action of an acoustic field and a discrete mechanical system. Thus, we present a theoretical and experimental study of the spatial instabilities of a circular ring of coupled pendulums parametrically driven by a vertical harmonic force. The system is capable of wave propagation and exhibit nonlinearities and dispersion, so manifest rich dynamics: normal oscillation modes (breathing, dipole, quadrupole... and localized patterns of different types (breathers and kinks witch are predicted by finite-differences numerical solutions and observed experimentally. On the basis of this analogy, the oscillation patterns and localized modes observed experimentally in acoustically driven bubbles are interpreted and discussed.

  5. Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics

    Science.gov (United States)

    2010-09-30

    environments, Acta Acustica united with Acustica , 95, no. 6, p. 963–974 (2009b) [published, refereed] O. A. Godin, Emergence of deterministic Green’s...Godin, Emergence of acoustic Green’s functions from time averages of ambient noise, Acta Acustica united with Acustica (2010) [in press, refereed

  6. Modeling structural acoustic properties of loudspeaker cabinets

    DEFF Research Database (Denmark)

    Luan, Yu

    that the stiffeners are parallel to the edges of the plate, but simple considerations make it possible to relax this requirement. Whereas the improved smearing technique is well established for stiffened flat panels, there is no similar established technique for doubly curved stiffened shells. In an additional study......In this dissertation, a theoretical/numerical methodology is presented for coarse and fast predictions of cabinet vibrations. The study is focused on vibrations of rib-stiffened panels by improving a smearing technique and employing it into finite element modeling. The computationally efficient...... smearing technique for a cross-stiffened flat thin rectangular plate has been known for many years, but so far the accuracy of predicted natural frequencies has been inadequate. To improve predictions, all stiffeners including the ones neglected in the ordinary smearing technique are taken into account...

  7. Passive Remote Sensing of Oceanic Whitecaps: Updated Geophysical Model Function

    Science.gov (United States)

    Anguelova, M. D.; Bettenhausen, M. H.; Johnston, W.; Gaiser, P. W.

    2016-12-01

    Many air-sea interaction processes are quantified in terms of whitecap fraction W because oceanic whitecaps are the most visible and direct way of observing breaking of wind waves in the open ocean. Enhanced by breaking waves, surface fluxes of momentum, heat, and mass are critical for ocean-atmosphere coupling and thus affect the accuracy of models used to forecast weather, predict storm intensification, and study climate change. Whitecap fraction has been traditionally measured from photographs or video images collected from towers, ships, and aircrafts. Satellite-based passive remote sensing of whitecap fraction is a recent development that allows long term, consistent observations of whitecapping on a global scale. The method relies on changes of ocean surface emissivity at microwave frequencies (e.g., 6 to 37 GHz) due to presence of sea foam on a rough sea surface. These changes at the ocean surface are observed from the satellite as brightness temperature TB. A year-long W database built with this algorithm has proven useful in analyzing and quantifying the variability of W, as well as estimating fluxes of CO2 and sea spray production. The algorithm to obtain W from satellite observations of TB was developed at the Naval Research Laboratory within the framework of WindSat mission. The W(TB) algorithm estimates W by minimizing the differences between measured and modeled TB data. A geophysical model function (GMF) calculates TB at the top of the atmosphere as contributions from the atmosphere and the ocean surface. The ocean surface emissivity combines the emissivity of rough sea surface and the emissivity of areas covered with foam. Wind speed and direction, sea surface temperature, water vapor, and cloud liquid water are inputs to the atmospheric, roughness and foam models comprising the GMF. The W(TB) algorithm has been recently updated to use new sources and products for the input variables. We present new version of the W(TB) algorithm that uses updated

  8. A model for acoustic absorbent materials derived from coconut fiber

    Directory of Open Access Journals (Sweden)

    Ramis, J.

    2014-03-01

    Full Text Available In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of air-flow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials.En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido.

  9. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  10. Long-term, passive exposure to non-traumatic acoustic noise induces neural adaptation in the adult rat medial geniculate body and auditory cortex.

    Science.gov (United States)

    Lau, Condon; Zhang, Jevin W; McPherson, Bradley; Pienkowski, Martin; Wu, Ed X

    2015-02-15

    Exposure to loud sounds can lead to permanent hearing loss, i.e., the elevation of hearing thresholds. Exposure at more moderate sound pressure levels (SPLs) (non-traumatic and within occupational limits) may not elevate thresholds, but could in the long-term be detrimental to speech intelligibility by altering its spectrotemporal representation in the central auditory system. In support of this, electrophysiological and behavioral changes following long-term, passive (no conditioned learning) exposure at moderate SPLs have recently been observed in adult animals. To assess the potential effects of moderately loud noise on the entire auditory brain, we employed functional magnetic resonance imaging (fMRI) to study noise-exposed adult rats. We find that passive, pulsed broadband noise exposure for two months at 65 dB SPL leads to a decrease of the sound-evoked blood oxygenation level-dependent fMRI signal in the thalamic medial geniculate body (MGB) and in the auditory cortex (AC). This points to the thalamo-cortex as the site of the neural adaptation to the moderately noisy environment. The signal reduction is statistically significant during 10 Hz pulsed acoustic stimulation (MGB: pnoise exposure has a greater effect on the processing of higher pulse rate sounds. This study has enhanced our understanding of functional changes following exposure by mapping changes across the entire auditory brain. These findings have important implications for speech processing, which depends on accurate processing of sounds with a wide spectrum of pulse rates.

  11. Quantification of Acoustic Cavitation Produced by a Clinical Extracorporeal Shock Wave Therapy System Using a Passive Cylindrical Detector

    Science.gov (United States)

    Choi, M. J.; Cho, S. C.; Kang, G. S.; Paeng, D. G.; Lee, K. I.; Hodnett, M.; Zeqiri, B.; Coleman, A. J.

    Acoustic cavitation is regarded to play an important role in extracorporeal shock wave therapy (ESWT). However it is not yet well characterized the cavitation in ESWT due to difficulty in its measurement. This study tests NPL cavitation sensor to discuss its potential to quantify cavitation activities produced by a clinical shock wave field. In the present experiment, the sensor was located at the focus of an electromagentic shock wave generator (HnT Medical System, Korea). Measurements were repeated 15 times as varying setting numbers. It was observed that the acoustic signals recorded by the sensor contain characteristic features of broadband spikes representing cavitation. Spectral band magnitude (SBM), used as a cavitation measure, rose with the setting number. There was a threshold above which SBM soared up and had its uncertainty greately increased. The results prove the potential of the sensor in characterizing the cavitation produced by shock wave fields.

  12. Thermal-hydraulic modeling needs for passive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  13. Vibro-Acoustic Model of a Disk Drive

    Science.gov (United States)

    Lee, Ming-Ran; Singh, Rajendra

    A new mathematical model of the vibro-acoustic characteristics of a computer hard-disk drive is presented in this paper. In particular, a mobility transfer function is defined that links sound radiated by a stationary or rotating disk to electromagnetic torque pulsations and structural dynamics. A simplified disk-drive system consisting of a brushless d.c. motor driving a single disk-spindle assembly, which is mounted on a flexible casing, is considered as the example case. Parametric studies illustrate the roles of bearing stiffness and disk geometry on the vibration and radiated sound.

  14. A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods.

    Science.gov (United States)

    Huang, Ya-Shan; Chen, Yung-Yu; Wu, Tsung-Tsong

    2010-03-05

    Using a passive wireless sensor to detect hydrogen can reach the goals of reducing cost and increasing the lifetime since the sensor can work without batteries. In this paper, a passive wireless hydrogen SAW sensor operating at room temperature has been achieved by combining a SAW tag and a resistive hydrogen sensor. The SAW tag is fabricated on a 128 degrees YX-LiNbO(3) substrate and its central frequency is 433 MHz. The resistive hydrogen sensor with the Pt-coated ZnO nanorods as the sensing film has the advantages of high stability, good repeatability and simple fabrication. The ZnO nanorods are synthesized by using the aqueous solution method and the Pt coating is employed as a catalyst for the hydrogen detection. The property of the resistive hydrogen sensor is examined before combining with the SAW tag. Results show that the resistance changes caused by the variations of relative humidity and temperature are negligible. Finally, the hydrogen SAW sensor is configured and measured wirelessly for various hydrogen concentrations at room temperature. The difference of the relative return loss caused by the hydrogen concentration variation is obvious and recognizable. All responses show that the proposed hydrogen sensor not only has good repeatability and high sensitivity but is capable of passive wireless detection.

  15. A Hybrid Acoustic and Pronunciation Model Adaptation Approach for Non-native Speech Recognition

    Science.gov (United States)

    Oh, Yoo Rhee; Kim, Hong Kook

    In this paper, we propose a hybrid model adaptation approach in which pronunciation and acoustic models are adapted by incorporating the pronunciation and acoustic variabilities of non-native speech in order to improve the performance of non-native automatic speech recognition (ASR). Specifically, the proposed hybrid model adaptation can be performed at either the state-tying or triphone-modeling level, depending at which acoustic model adaptation is performed. In both methods, we first analyze the pronunciation variant rules of non-native speakers and then classify each rule as either a pronunciation variant or an acoustic variant. The state-tying level hybrid method then adapts pronunciation models and acoustic models by accommodating the pronunciation variants in the pronunciation dictionary and by clustering the states of triphone acoustic models using the acoustic variants, respectively. On the other hand, the triphone-modeling level hybrid method initially adapts pronunciation models in the same way as in the state-tying level hybrid method; however, for the acoustic model adaptation, the triphone acoustic models are then re-estimated based on the adapted pronunciation models and the states of the re-estimated triphone acoustic models are clustered using the acoustic variants. From the Korean-spoken English speech recognition experiments, it is shown that ASR systems employing the state-tying and triphone-modeling level adaptation methods can relatively reduce the average word error rates (WERs) by 17.1% and 22.1% for non-native speech, respectively, when compared to a baseline ASR system.

  16. GOATS 2011 Adaptive and Collaborative Exploitation of 3-Dimensional Environmental Acoustics in Distributed Undersea Networks

    Science.gov (United States)

    2013-09-30

    concept of a network of AUVs as an array of Virtual Sensors, based on fully integrated sensing, modeling and control , reducing the inter- platform...integrating high-fidelity acoustic modeling , platform dynamics and network communication and control . In regard to the environmental acoustic modeling ...static, passive and active sonar configurations for concurrent detection, classification and localization of subsea and bottom objects

  17. Acoustic Modeling for Aqua Ventus I off Monhegan Island, ME

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Jonathan M.; Hanna, Luke A.; DeChello, Nicole L.; Copping, Andrea E.

    2013-10-31

    The DeepCwind consortium, led by the University of Maine, was awarded funding under the US Department of Energy’s Offshore Wind Advanced Technology Demonstration Program to develop two floating offshore wind turbines in the Gulf of Maine equipped with Goldwind 6 MW direct drive turbines, as the Aqua Ventus I project. The Goldwind turbines have a hub height of 100 m. The turbines will be deployed in Maine State waters, approximately 2.9 miles off Monhegan Island; Monhegan Island is located roughly 10 miles off the coast of Maine. In order to site and permit the offshore turbines, the acoustic output must be evaluated to ensure that the sound will not disturb residents on Monhegan Island, nor input sufficient sound levels into the nearby ocean to disturb marine mammals. This initial assessment of the acoustic output focuses on the sound of the turbines in air by modeling the assumed sound source level, applying a sound propagation model, and taking into account the distance from shore.

  18. Modeling, validation and time-dependent simulation of the first large passive building in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel [Candida Oancea Institute and Department of Applied Thermodynamics, Polytechnic University of Bucharest, Spl. Independentei 313, Bucharest 060042 (Romania); Laaser, Nadine; Tsatsaronis, George [Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany); Crutescu, Ruxandra [Passivhaus Institut SRL, sos. Alexandriei nr. 292, 077025 Bragadiru, Ilfov (Romania); Crutescu, Marin [AMVIC SRL, sos. Alexandriei nr. 292, 077025 Bragadiru, Ilfov (Romania); Dobrovicescu, Alexandru [Department of Applied Thermodynamics, Polytechnic University of Bucharest, Spl. Independentei 313, Bucharest 060042 (Romania)

    2011-01-15

    A passive house is a cost-efficient building that can manage throughout the heating period, due to its specific construction design, with more than ten times less heat energy than the same building designed to standards presently applicable across Europe. This paper describes the thermal performance during the cold season of the AMVIC passive office building, located in Bragadiru, a small Romanian town 10 km south of Bucharest. A detailed description of the building structure and the HVAC equipment is made. A time-dependent model (PHTT - Passive House Thermal Transients) is developed and used. Models validation is performed by comparing the outputs with results by the Passive House Planning Package (PHPP) developed by Passive House Institute of Darmstadt. Two renewable energy sources are used during the cold season within the building. First, passive solar heating is provided by the large window on the facade oriented south. Second, a ground heat exchanger (GHE) increases the fresh air temperature. Results show that the GHE is the most useful and reliable renewable energy source from November to March, providing heat during the day and the heat flux increases when the weather is colder. The passive solar heating system provides a large part of the heating energy during the cold season. Classical building heating is necessary mainly during December-February. (author)

  19. Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling.

    Science.gov (United States)

    García, Xavier; Medina, Ernesto

    2007-06-01

    The effect of cementation processes on the acoustical properties of sands is studied via molecular dynamics simulation methods. We propose numerical methods where the initial uncemented sand is built by simulating the settling process of sediments. Uncemented samples of different porosity are considered by emulating natural mechanical compaction of sediments due to overburden. Cementation is considered through a particle-based model that captures the underlying physics behind the process. In our simulations, we consider samples with different degrees of compaction and cementing materials with distinct elastic properties. The microstructure of cemented sands is taken into account while adding cement at specific locations within the pores, such as grain-to-grain contacts. Results show that the acoustical properties of cemented sands are strongly dependent on the amount of cement, its stiffness relative to the hosting medium, and its location within the pores. Simulation results are in good correspondence with available experimental data and compare favorably with some theoretical predictions for the sound velocity within a range of cement saturation, porosity, and confining pressure.

  20. A fractional calculus model of anomalous dispersion of acoustic waves.

    Science.gov (United States)

    Wharmby, Andrew W

    2016-09-01

    An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.

  1. Modelling, stability and biomechanical implications of three DOF passive bipedal gait

    Directory of Open Access Journals (Sweden)

    Máximo Alejandro Roa Garzón

    2010-04-01

    Full Text Available Passive dynamic walkers can achieve a steady gait down an inclined plane simply by the influence of gravity. This article presents the modelling of a 3 DOF passive bipedal walker, searching for a relationship between gait characteristics, the robot’s physical properties and the slope of the plane. The proposed adimensional dynamical model’s equations are also given, implementing and modelling the dynamics is described and the main results are presented. Limits on robotic parameters leading to establishing stable limit cycles are also analysed as perio-dic doubling bifurcations appear to be natural in passive gait. Interesting results arose when comparing natural passive walking with human bipedal locomotion.

  2. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  3. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  4. Basin Acoustic Seamount Scattering Experiment (BASSEX) Data Analysis and Modeling

    Science.gov (United States)

    2016-06-07

    Kauai source at various ranges and bearings. OBJECTIVES The primary objective of this work is to measure aspects of acoustic propagation that...range-dependent environments. The primary goal is to understand the physics of the acoustic propagation in complex environments. Three specific...During the test acoustic transmissions from sources used in the SPICEX and LOAPEX experiments (PI: Dr. Peter Worcester, SIO and Dr. Jim Mercer, APL-UW

  5. Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides

    Science.gov (United States)

    2016-06-01

    developed the general expressions required for computing the acoustic particle velocity field within the 4 framework of normal mode and parabolic...grid, centered at the acoustic center of the point source was removed, and an absorbent boundary placed on the terminating faces of the resulting mesh...Segmented Geometry with Source Region and Absorbing Boundary Highlighted in Blue 16 In the case of the acoustically rigid bottom, only the

  6. Acoustics long-term passive monitoring using moored autonomous recorders in the Bering, Chukchi, and Western Beaufort Seas conducted by Alaska Fisheries Scientific Center, National Marine Mammal Laboratory from 2007-08-15 to 2015-04-30 (NCEI Accession 0143303)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) has deployed long-term passive acoustic recorders in various locations in Alaskan waters and in the High Arctic to...

  7. Acoustical topology optimization for Zwicker's loudness model - Application to noise barriers

    DEFF Research Database (Denmark)

    Kook, Junghwan; Koo, Kunmo; Hyun, Jaeyub

    2012-01-01

    Traditionally, the objective of design optimization of an acoustic system is to reduce physical acoustic properties, i.e., sound pressure and power. However, since these parameters are not sufficient to present the relation of physical sound stimulus with human perceptual judgment, physical...... acoustic properties may not represent adequate parameters for optimizing acoustic devices. In this paper, we first present a design method for acoustical topology optimization by considering human's subjective conception of sound. To consider human hearing characteristics. Zwicker's loudness is calculated...... according to DIN45631 (ISO 532B). The main objective of this work is to minimize the main specific loudness of a target critical band rate by optimizing the distribution of the reflecting material in a design domain. The Helmholtz equation is used to model acoustic wave propagation and, it is solved using...

  8. Innovative High Temperature Acoustic Liner Development and Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The massive acoustic loads produced by launch vehicles can detrimentally affect the proper functioning of vehicle components, payloads, and launch support...

  9. Analytical model of an acoustic diode comprising a superlattice and a nonlinear medium

    Institute of Scientific and Technical Information of China (English)

    Gu Zhong-Ming; Liang Bin; Cheng Jian-Chun

    2013-01-01

    We give an analytical analysis to the acoustic propagation in an acoustic diode (AD) model formed by coupling a superlattice (SL) with a nonlinear medium.Analytical solutions of the acoustic transmission are obtained by studying the propagations in the SL and the nonlinear medium separately with the conventional transfer-matrix method and a perturbation technique.Compared with the previous numerical method,the proposed approach contributes a better physical insight into the intrinsic mechanism of acoustic rectification and helps us to predict the performance of an AD within the effective rectifying bands in a simple way.This is potentially significant for the practical design and fabrication of AD devices.

  10. Online-monitoring of MO-surge arresters with passive surface acoustic wave radio sensors; Online-Temperaturmessung an MO-Ueberspannungsableitern mit funkabfragbaren Oberflaechenwellensensoren

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichsen, V. [Siemens AG, Berlin (Germany). Bereich Energieuebertragung und -verteilung; Scholl, G. [Siemens AG, Muenchen (Germany). Fachzentrum Oberflaechenwellentechnik und Funksensorik

    1998-08-24

    Today no practicable and economical solutions are available for an overall online-monitoring of high-voltage metal oxide surge arresters, which should comprise a surge counter function, an energy monitor and the monitoring of electrical aging if required. A permanent measurement of the arrester temperature on high potential, which basically could provide all these functions, has not yet been realized due to the related technical problems. However, newly developed high-frequency temperature measuring systems based on wireless passive surface acoustic wave temperature sensors are now offering this possibility for the first time. They are actually being field-tested in a 420-kV-arrester and have shown a good performance so far. (orig.) [Deutsch] Zu einem geschlossenen Online-Monitoringkonzept von Hochspannungs-Metalloxid-Ableitern, das eine Ansprechzaehlerfunktion, einen Energiemonitor and gegebenenfalls eine Ueberwachung elektrischer Kennlinienalterung enthalten sollte, fehlen bis heute geeignete, wirtschaftlich vertretbare Loesungen. Eine dauernde Messung der Ableitertemperatur auf Hochspannungspotential, mit der an sich alle genannten Funktionen einfach realisiert werden koennten, scheiterte bisher an der technischen Umsetzbarkeit. Neuentwickelte funkabfragbare Oberflaechenwellen-Temperatursensoren eroeffenen nun erstmalig diese Moeglichkeit. Eingebaut in einem 420-kV-Ableiter, befinden sie sich zur Zeit in einem Feldversuch in praktischer Erprobung und erfuellen dort alle in sie gesetzten Erwartungen. (orig.)

  11. Multiobjective muffler shape optimization with hybrid acoustics modeling.

    Science.gov (United States)

    Airaksinen, Tuomas; Heikkola, Erkki

    2011-09-01

    This paper considers the combined use of a hybrid numerical method for the modeling of acoustic mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method provides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions. It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a finite element solution in the non-uniform component. Finite element method provides flexible modeling of complicated geometries, varying material parameters, and boundary conditions, while the wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler. This task is formulated as a multiobjective optimization problem with the objectives depending on the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjective optimization problem. Genetic algorithms can be easily combined with different simulation methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical experiments demonstrate the accuracy and feasibility of the model-based optimization method in muffler design.

  12. Analytic model for passively-heated solar houses - 1. theory

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.M.; Zarmi, Y.

    1981-01-01

    A simple analytic method for the prediction of the long-term thermal performance of passively-heated solar houses is presented. The treatment includes a new coarse method for ''energy bookkeeping'' and the use of a distribution function which represents the frequency of occurrence of different values of the solar load ratio. As specific examples, the cases of direct gain and water wall houses are treated in detail. Relative to the parameterization of computer simulation results, this method offers the user a design tool that can be used to predict, in closed form, the thermal effect on the house of different building and climatic parameters and is not restricted to a ''reference'' building. 13 refs.

  13. PVDF-based acoustic sensors prototype for the study of the thermoacoustic model

    Energy Technology Data Exchange (ETDEWEB)

    Drinck, Fabian; Laihem, Karim; Schumann, Manuel; Wiebusch, Christopher [RWTH Aachen University, Physikzentrum, Aachen (Germany)

    2011-07-01

    To measure the ultra-hight energy neutrino flux, studies on a larger IceCube neutrino observatory at the south pole have been intensively investigated in the last years. These studies have introduced a hybrid detection concept including radio and acoustic detection in addition to existing optical detection. The South Pole Acoustic Test Setup (SPATS) was built and deployed to evaluate the acoustic properties of the South Pole ice for the purpose of assessing the feasibility of an acoustic neutrino detection array. The Aachen Acoustic Laboratory (AAL) is supporting these efforts and providing infrastructures for the calibration of PZT-based acoustic sensors used in SPATS, study of a laser-based thermoacoustic model under laboratory conditions and investigating new piezoelectric materials for use in a next generation of acoustic sensors. In this talk we present the R and D status and first results of an acoustic sensor prototype based on PVDF material (Polyvinylidene Fluoride). With a flat frequency response and sensitivity the PVDF response to a thermoacoustic signal has shown the expected bipolar signal free of any superimposed resonances. The analysis of such a clean bipolar signal allow a deeper insight into understanding the thermoacoustic model and leading to a further development of optimized acoustic sensors for deployment at the South Pole.

  14. A validated model of passive skeletal muscle to predict force and intramuscular pressure.

    Science.gov (United States)

    Wheatley, Benjamin B; Odegard, Gregory M; Kaufman, Kenton R; Haut Donahue, Tammy L

    2016-12-31

    The passive properties of skeletal muscle are often overlooked in muscle studies, yet they play a key role in tissue function in vivo. Studies analyzing and modeling muscle passive properties, while not uncommon, have never investigated the role of fluid content within the tissue. Additionally, intramuscular pressure (IMP) has been shown to correlate with muscle force in vivo and could be used to predict muscle force in the clinic. In this study, a novel model of skeletal muscle was developed and validated to predict both muscle stress and IMP under passive conditions for the New Zealand White Rabbit tibialis anterior. This model is the first to include fluid content within the tissue and uses whole muscle geometry. A nonlinear optimization scheme was highly effective at fitting model stress output to experimental stress data (normalized mean square error or NMSE fit value of 0.993) and validation showed very good agreement to experimental data (NMSE fit values of 0.955 and 0.860 for IMP and stress, respectively). While future work to include muscle activation would broaden the physiological application of this model, the passive implementation could be used to guide surgeries where passive muscle is stretched.

  15. Acoustic fMRI noise : Linear time-invariant system model

    NARCIS (Netherlands)

    Sierra, Carlos V. Rizzo; Versluis, Maarten J.; Hoogduin, Johannes M.; Duifhuis, Hendrikus (Diek)

    2008-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic noi

  16. Modelling the excitation of acoustic modes in Alpha Cen A

    CERN Document Server

    Samadi, R; Goupil, M J; Dupret, M -A; Kupka, F

    2008-01-01

    We infer from different seismic observations the energy supplied per unit of time by turbulent convection to the acoustic modes of Alpha Cen A (HD 128620), a star which is similar but not identical to the Sun. The inferred rates of energy supplied to the modes (i.e. mode excitation rates) are found to be significantly larger than in the Sun. They are compared with those computed with an excitation model that includes two sources of driving, the Reynolds stress contribution and the advection of entropy fluctuations. The model also uses a closure model, the Closure Model with Plumes (CMP hereafter), that takes the asymmetry between the up- and down-flows (i.e. the granules and plumes, respectively) into account. Different prescriptions for the eddy-time correlation function are also confronted to observational data. Calculations based on a Gaussian eddy-time correlation underestimate excitation rates compared with the values derived from observations for Alpha Cen A. On the other hand, calculations based on a L...

  17. Sediment Acoustics: Wideband Model, Reflection Loss and Ambient Noise Inversion

    Science.gov (United States)

    2011-09-01

    grain contact in water- saturated sand," J. Acoust. Soc. Am., vol. 124, pp. EL296-301, (2008). N. P. Chotiros, and M. J. Isakson. "Shear and...34Frame bulk modulus of porous granular marine sediments," J. Acoust. Soc. Am. 120, 699-710, (2006). B. J. Kraft and C. P. de Moustier, "Detailed

  18. Full acoustic and thermal characterization of HIFU field in the presence of a ribcage model

    Science.gov (United States)

    Cao, Rui; Le, Nhan; Nabi, Ghulam; Huang, Zhihong

    2017-03-01

    In the treatment of abdominal organs using high intensity focused ultrasound (HIFU), the patient's ribs are in the pathway of the HIFU beams which could result in acoustic distortion, occasional skin burns and insufficient energy delivered to the target organs. To provide full characterization of HIFU field with the influence of ribcage, the ribcage phantom reconstructed from a patient's CT images was created by tissue mimicking materials and its effect on acoustic field was characterized. The effect of the ribcage on acoustic field has been provided in acoustic pressure distribution, acoustic power and focal temperature. Measurement result shows focus splitting with one main focus and two secondary intensity maxima. With the presence of ribcage phantom, the acoustic pressure was reduced by 48.3% and another two peak values were observed near the main focus, reduced by 65.0% and 71.7% respectively. The acoustic power was decreased by 47.5% to 52.5%. With these characterization results, the form of the focus, the acoustic power, acoustic pressure and temperature rise are provided before the transcostal HIFU treatment, which are significant to determine the energy delivery dose. In conclusion, this ribcage model and characterization technique will be useful for the further study in the abdominal HIFU treatment.

  19. Modeling of WalkMECH: a fully-passive energy-efficient transfemoral prosthesis prototype

    NARCIS (Netherlands)

    Ünal, Ramazan; Klijnstra, F.; Burkink, B.; Behrens, Sebastiaan Maria; Hekman, Edsko E.G.; Stramigioli, Stefano; Koopman, Hubertus F.J.M.; Carloni, Raffaella

    In this paper we present the port-based model of WalkMECH, a fully-passive transfemoral prosthesis prototype that has been designed and realized for normal walking. The model has been implemented in a simulation environment so to analyze the performance of the prosthetic leg in walking experiments

  20. Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, A.M.; Boxx, I.; Stoehr, M.; Meier, W. [Institute for Combustion Technology, German Aerospace Centre (DLR), 70569 Stuttgart (Germany); Carter, C.D. [Air Force Research Laboratory, Wright-Patterson AFB, OH (United States)

    2010-12-15

    A detailed analysis of the flow-flame interactions associated with acoustically coupled heat-release rate fluctuations was performed for a 10 kW, CH{sub 4}/air, swirl stabilized flame in a gas turbine model combustor exhibiting self-excited thermo-acoustic oscillations at 308 Hz. High-speed stereoscopic particle image velocimetry, OH planar laser induced fluorescence, and OH* chemiluminescence measurements were performed at a sustained repetition rate of 5 kHz, which was sufficient to resolve the relevant combustor dynamics. Using spatio-temporal proper orthogonal decomposition, it was found that the flow-field contained several simultaneous periodic motions: the reactant flux into the combustion chamber periodically oscillated at the thermo-acoustic frequency (308 Hz), a helical precessing vortex core (PVC) circumscribed the burner nozzle at 515 Hz, and the PVC underwent axial contraction and extension at the thermo-acoustic frequency. The global heat release rate fluctuated at the thermo-acoustic frequency, while the heat release centroid circumscribed the combustor at the difference between the thermo-acoustic and PVC frequencies. Hence, the three-dimensional location of the heat release fluctuations depended on the interaction of the PVC with the flame surface. This motivated the compilation of doubly phase resolved statistics based on the phase of both the acoustic and PVC cycles, which showed highly repeatable periodic flow-flame configurations. These include flames stabilized between the inflow and inner recirculation zone, large-scale flame wrap-up by the PVC, radial deflection of the inflow by the PVC, and combustion in the outer recirculation zones. Large oscillations in the flame surface area were observed at the thermo-accoustic frequency that significantly affected the total heat-release oscillations. By filtering the instantaneous reaction layers at different scales, the importance of the various flow-flame interactions affecting the flame area was

  1. Numerical and analytical modelling of battery thermal management using passive cooling systems

    OpenAIRE

    Greco, Angelo

    2016-01-01

    This thesis presents the battery thermal management systems (BTMS) modelling of Li-ions batteries and investigates the design and modelling of different passive cooling management solutions from single battery to module level. A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on varia...

  2. Steady-state existence of passive vector fields under the Kraichnan model.

    Science.gov (United States)

    Arponen, Heikki

    2010-03-01

    The steady-state existence problem for Kraichnan advected passive vector models is considered for isotropic and anisotropic initial values in arbitrary dimension. The models include the magnetohydrodynamic (MHD) equations, linear pressure model, and linearized Navier-Stokes (LNS) equations. In addition to reproducing the previously known results for the MHD model, we obtain the values of the Kraichnan model roughness parameter xi for which the LNS steady state exists.

  3. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis in the Pearl River Estuary, China.

    Directory of Open Access Journals (Sweden)

    Zhi-Tao Wang

    Full Text Available A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world's largest known population of Indo-Pacific humpback dolphins (Sousa chinensis. Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts.

  4. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis) in the Pearl River Estuary, China.

    Science.gov (United States)

    Wang, Zhi-Tao; Nachtigall, Paul E; Akamatsu, Tomonari; Wang, Ke-Xiong; Wu, Yu-Ping; Liu, Jian-Chang; Duan, Guo-Qin; Cao, Han-Jiang; Wang, Ding

    2015-01-01

    A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world's largest known population of Indo-Pacific humpback dolphins (Sousa chinensis). Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts.

  5. Modeling the excitation of acoustic modes in α Centauri A

    Science.gov (United States)

    Samadi, R.; Belkacem, K.; Goupil, M. J.; Dupret, M.-A.; Kupka, F.

    2008-10-01

    From different seismic observations we infer the energy supplied per unit of time by turbulent convection to the acoustic modes of α Centauri A (HD 128620), a star that is similar but not identical to the Sun. The inferred rates of energy supplied to the modes (i.e. mode excitation rates) are found to be significantly higher than in the Sun. They are compared with those computed with an excitation model that includes two sources of driving, the Reynolds stress contribution and the advection of entropy fluctuations. The model also uses a closure model, the Closure Model with Plumes (CMP hereafter), that takes the asymmetry between the up- and down-flows (i.e. the granules and plumes, respectively) into account. Different prescriptions for the eddy-time correlation function are also compared to observational data. Calculations based on a Gaussian eddy-time correlation underestimate excitation rates compared with the values derived from observations for α Centauri A. On the other hand, calculations based on a Lorentzian eddy-time correlation lie within the observational error bars. This confirms results in the solar case. Compared to the helioseismic data, those obtained for α Centauri A constitute an additional support for our model of excitation. We show that mode masses must be computed taking turbulent pressure into account. Finally, we emphasize the need for more accurate seismic measurements in order to distinguish between the CMP closure model and the quasi-normal approximation in the case of α Centauri A, as well as to confirm or not the need to include the excitation by the entropy fluctuations.

  6. Passive Wireless SAW Humidity Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the preliminary development of passive wireless surface acoustic wave (SAW) based humidity sensors for NASA application to distributed...

  7. Acoustic model of micro-pressure wave emission from a high-speed train tunnel

    Science.gov (United States)

    Miyachi, T.

    2017-03-01

    The micro-pressure wave (MPW) radiated from a tunnel portal can, if audible, cause serious problems around tunnel portals in high-speed railways. This has created a need to develop an acoustic model that considers the topography around a radiation portal in order to predict MPWs more accurately and allow for higher speed railways in the future. An acoustic model of MPWs based on linear acoustic theory is developed in this study. First, the directivity of sound sources and the acoustical effect of topography are investigated using a train launcher facility around a portal on infinitely flat ground and with an infinite vertical baffle plate. The validity of linear acoustic theory is then discussed through a comparison of numerical results obtained using the finite difference method (FDM) and experimental results. Finally, an acoustic model is derived that considers sound sources up to the second order and Green's function to represent the directivity and effect of topography, respectively. The results predicted by this acoustic model are shown to be in good agreement with both numerical and experimental results.

  8. Acoustic reconstruction of the velocity field in a furnace using a characteristic flow model.

    Science.gov (United States)

    Li, Yanqin; Zhou, Huaichun; Chen, Shiying; Zhang, Yindi; Wei, Xinli; Zhao, Jinhui

    2012-06-01

    An acoustic method can provide a noninvasive, efficient and full-field reconstruction of aerodynamic fields in a furnace. A simple yet reasonable model is devised for reconstruction of a velocity field in a cross section of a tangential furnace from acoustic measurements based on typical physical characteristics of the field. The solenoidal component of the velocity field is modeled by a curved surface, derived by rotating a curve of Gaussian distribution, determined by six characteristic parameters, while the nonrotational component is governed by a priori knowledge. Thus the inverse problem is translated into determination of the characteristic parameters using a set of acoustic projection data. First numerical experiments were undertaken to simulate the acoustic measurement, so as to preliminarily validate the effectiveness of the model. Based on this, physical experiments under different operating conditions were performed in a pilot-scale setup to provide a further test. Hot-wire anemometry and strip floating were applied to compare with acoustic measurements. The acoustic measurements provided satisfactory consistency with both of these approaches. Nevertheless, for a field with a relatively large magnitude of air velocities, the acoustic measurement can give more reliable reconstructions. Extension of the model to measurements of hot tangential furnaces is also discussed.

  9. Diel patterns and temporal trends in spawning activities of Robust Redhorse and River Redhorse in Georgia, assessed using passive acoustic monitoring

    Science.gov (United States)

    Straight, Carrie A.; Jackson, C. Rhett; Freeman, Byron J.; Freeman, Mary C.

    2015-01-01

    The conservation of imperiled species depends upon understanding threats to the species at each stage of its life history. In the case of many imperiled migratory fishes, understanding how timing and environmental influences affect reproductive behavior could provide managers with information critical for species conservation. We used passive acoustic recorders to document spawning activities for two large-bodied catostomids (Robust Redhorse Moxostoma robustum in the Savannah and Broad rivers, Georgia, and River Redhorse M. carinatum in the Coosawattee River, Georgia) in relation to time of day, water temperature, discharge variation, moonlight, and weather. Robust Redhorse spawning activities in the Savannah and Broad rivers were more frequent at night or in the early morning (0100–0400 hours and 0800–1000 hours, respectively) and less frequent near midday (1300 hours). Spawning attempts in the Savannah and Broad rivers increased over a 3–4-d period and then declined. River Redhorse spawning activities in the Coosawattee River peaked on the first day of recording and declined over four subsequent days; diel patterns were less discernible, although moon illumination was positively associated with spawning rates, which was also observed for Robust Redhorses in the Savannah River. Spawning activity in the Savannah and Broad rivers was negatively associated with water temperature, and spawning activity increased in association with cloud cover in the Savannah River. A large variation in discharge was only measured in the flow-regulated Savannah River and was not associated with spawning attempts. To our knowledge, this is the first study to show diel and multiday patterns in spawning activities for anyMoxostoma species. These patterns and relationships between the environment and spawning activities could provide important information for the management of these species downstream of hydropower facilities.

  10. Reduced-Order Models for Acoustic Response Prediction

    Science.gov (United States)

    2011-07-01

    oscillate about the buckled position under acoustic loading or snap-through dynamically if the acoustic loading is high enough. The response of curved... Duffing equation with a cubic hardening spring and viscous damping. An approximation to the frequency backbone curve for the Duffing equation is... oscillation , is the nonlinear natural frequency of oscillation , A is the displacement amplitude, and  is the cubic stiffness coefficient. Points on

  11. Treatment of early and late reflections in a hybrid computer model for room acoustics

    DEFF Research Database (Denmark)

    Naylor, Graham

    1992-01-01

    The ODEON computer model for acoustics in large rooms is intended for use both in design (by predicting room acoustical indices quickly and easily) and in research (by forming the basis of an auralization system and allowing study of various room acoustical phenomena). These conflicting demands...... preclude the use of both ``pure'' image source and ``pure'' particle tracing methods. A hybrid model has been developed, in which rays discover potential image sources up to a specified order. Thereafter, the same ray tracing process is used in a different way to rapidly generate a dense reverberant decay...

  12. Dislocation unpinning model of acoustic emission from alkali halide crystals

    Indian Academy of Sciences (India)

    B P Chandra; Anubha S Gour; Vivek K Chandra; Yuvraj Patil

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant $_{\\text{s}}$ for surface annihilation of dislocations and the pinning time $_{\\text{p}}$ of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  13. Acoustic Vocal Tract Model of One-year-old Children

    Directory of Open Access Journals (Sweden)

    M. Vojnović

    2014-11-01

    Full Text Available The physical shape of vocal tract and its formant (resonant frequencies are directly related. The study of this functional connectivity is essential in speech therapy practice with children. Most of the perceived children’s speech anomalies can be explained on a physical level: malfunctioning movement of articulation organs. The current problem is that there is no enough data on the anatomical shape of children’s vocal tract to create its acoustic model. Classical techniques for vocal tract shape imaging (X-ray, magnetic resonance, etc. are not appropriate for children. One possibility is to start from the shape of the adult vocal tract and correct it based on anatomical, morphological and articulatory differences between children and adults. This paper presents a method for vocal tract shape estimation of the child aged one year. The initial shapes of the vocal tract refer to the Russian vowels spoken by an adult male. All the relevant anatomical and articulation parameters, that influence the formant frequencies, are analyzed. Finally, the hypothetical configurations of the children’s vocal tract, for the five vowels, are presented.

  14. AIRCRAFT MOTION PARAMETER ESTIMATION VIA MULTIPATH TIME-DELAY USING A SINGLE GROUND-BASED PASSIVE ACOUSTIC SENSOR

    Institute of Scientific and Technical Information of China (English)

    Dai Hongyan; Zou Hongxing

    2007-01-01

    The time-frequency analysis of the signal acquired by a single ground-based microphone shows a two-dimensional interference pattern in the time-frequency plane,which is caused by the time delay of the received signal emitted from a low flying aircraft via the direct path and the ground-reflected path.A model is developed for estimating the motion parameters of an aircraft flying along a straight line at a constant height and with a constant speed.Monte Carlo simulation results and experimental results are presented to validate the model,and an error analysis of the model is presented to verify the effectiveness of the estimation scheme advocated.

  15. Underwater Acoustic Networks: Channel Models and Network Coding based Lower Bound to Transmission Power for Multicast

    CERN Document Server

    Lucani, Daniel E; Stojanovic, Milica

    2008-01-01

    The goal of this paper is two-fold. First, to establish a tractable model for the underwater acoustic channel useful for network optimization in terms of convexity. Second, to propose a network coding based lower bound for transmission power in underwater acoustic networks, and compare this bound to the performance of several network layer schemes. The underwater acoustic channel is characterized by a path loss that depends strongly on transmission distance and signal frequency. The exact relationship among power, transmission band, distance and capacity for the Gaussian noise scenario is a complicated one. We provide a closed-form approximate model for 1) transmission power and 2) optimal frequency band to use, as functions of distance and capacity. The model is obtained through numerical evaluation of analytical results that take into account physical models of acoustic propagation loss and ambient noise. Network coding is applied to determine a lower bound to transmission power for a multicast scenario, fo...

  16. Modeling and analysis of power extraction circuits for passive UHF RFID applications

    Institute of Scientific and Technical Information of China (English)

    Fan Bo; Dai Yujie; Zhang Xiaoxing; LV Yingjie

    2009-01-01

    Modeling and analysis of far field power extraction circuits for passive UHF RF identification (RFID) applications are presented. A mathematical model is derived to predict the complex nonlinear performance of UHF voltage multiplier using Schottky diodes. To reduce the complexity of the proposed model, a simple linear ap-proximation for Schottky diode is introduced. Measurement results show considerable agreement with the values calculated by the proposed model. With the derived model, optimization on stage number for voltage multiplier to achieve maximum power conversion efficiency is discussed. Furthermore, according to the Bode-Fano criterion and the proposed model, a limitation on maximum power up range for passive UHF RFID power extraction circuits is also studied.

  17. Shell model for time-correlated random advection of passive scalars

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Muratore-Ginanneschi, P.

    1999-01-01

    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...

  18. Applications of passive remote surface acoustic wave sensors in high-voltage systems; Einsatz von passiven funkabfragbaren Oberflaechenwellensensoren in der elektrischen Energietechnik

    Energy Technology Data Exchange (ETDEWEB)

    Teminova, R.

    2007-06-29

    Passive remote Surface Acoustic Wave (SAW) sensors have been applied e.g. as temperature, pressure or torque sensors. Their important advantages over standard methods are their passive operating principle, which allows operation without any power supply, as well as the wireless high-frequency signal transmission over distances up to about 10..15 m even through (non metallic) housings. These properties of SAW sensors particularly qualify them for applications in high voltage operational equipment. First experience was gained in a long time field test of surge arrester monitoring based on SAW temperature sensors in a German high-voltage substation. Now, this system has been further developed at Darmstadt University of Technology for other applications, the first of them being an overhead line (OHL) conductor temperature measurement, the second one a temperature monitoring system for of high-voltage disconnectors. After designing and building the sensors, extensive laboratory tests were carried out applying high-voltage, high-current and thermal stress in order to approve the suitability for the intended application. All these tests confirmed the assumption that SAW sensors, due to their passive working principle, are not affected at all by any kind of electrical, magnetic or thermal stress that may occur during service. The complete temperature sensor consists of three parts: a sensor chip, an antenna which receives and transmits the signal from and to the radar unit and a body for installation and for protection against environmental impact. One must find a good compromise between optimizing of thermal, dielectric and high-frequency characteristics and at the same time taking into consideration a simple installation. These requirements on the SAW sensors turned out to be difficult to coordinate. To achieve a high measuring precision is especially difficult. First, a new sensor for OHL application was developed. The OHL conductor temperature sensor had been optimized

  19. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  20. Pulse Localization and Fourier Analysis in the Mathematical Model of Acoustic Transient Field

    Directory of Open Access Journals (Sweden)

    Lukas Koudela

    2016-01-01

    Full Text Available The numerical model of a semi-cylindrical acoustic diffuser in planar transient acoustic field is discussed. The finite element method was used for the solution of the model. From the computed waveforms the straight and the reflected pulses were automatically extracted using cross-correlation. The harmonic decomposition was performed on the obtained pulses and the results were plotted in the polar pattern.

  1. Acoustic Transfer Functions Derived from Finite Element Modeling for Thermoacoustic Stability Predictions of Gas Turbine Engines

    OpenAIRE

    Black, Paul Randall

    2007-01-01

    Acoustic Transfer Functions Derived from Finite Element Modeling for Thermoacoustic Stability Predictions of Gas Turbine Engines Design and prediction of thermoacoustic instabilities is a major challenge in aerospace propulsion and the operation of power generating gas turbine engines. This is a complex problem in which multiple physical systems couple together. Traditionally, thermoacoustic models can be reduced to dominant physics which depend only on flame dynamics and acoustics. Th...

  2. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

    Science.gov (United States)

    2015-09-30

    is to measure and model very high frequency underwater sound generated by processes at the sea surface, relevant to the high-frequency underwater...realizations generated from wave gauge data synchronized with the acoustic measurements. The curves are not generally smooth because of the limited...on Coherent Acoustic Propagation and Modeling Grant B. Deane Marine Physical Laboratory, Scripps Institution of Oceanography UCSD La Jolla, CA

  3. Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night-Vision Goggles

    Science.gov (United States)

    2013-11-01

    Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night - Vision Goggles by Jeremy Gaston, Tim Mermagen, and...SUBTITLE Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night - Vision Goggles 5a. CONTRACT NUMBER 5b. GRANT NUMBER...13. SUPPLEMENTARY NOTES 14. ABSTRACT This study evaluates two different night - vision goggles (NVGs) to determine if the devices meet level II

  4. A dynamic spar numerical model for passive shape change

    Science.gov (United States)

    Calogero, J. P.; Frecker, M. I.; Hasnain, Z.; Hubbard, J. E., Jr.

    2016-10-01

    A three-dimensional constraint-driven dynamic rigid-link numerical model of a flapping wing structure with compliant joints (CJs) called the dynamic spar numerical model is introduced and implemented. CJs are modeled as spherical joints with distributed mass and spring-dampers with coupled nonlinear spring and damping coefficients, which models compliant mechanisms spatially distributed in the structure while greatly reducing computation time compared to a finite element model. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, an experiment to verify a rigid-link assumption and determine a flapping angle function, and finally several example runs. Modeling the CJs as coupled bi-linear springs shows the wing is able to flex more during upstroke than downstroke. Coupling the spring stiffnesses allows an angular deformation about one axis to induce an angular deformation about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars shows that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allows the wing to deform with larger magnitude in all directions. This model lays a framework for a tool which can be used to understand flapping wing flight.

  5. Chaos control in passive walking dynamics of a compass-gait model

    Science.gov (United States)

    Gritli, Hassène; Khraief, Nahla; Belghith, Safya

    2013-08-01

    The compass-gait walker is a two-degree-of-freedom biped that can walk passively and steadily down an incline without any actuation. The mathematical model of the walking dynamics is represented by an impulsive hybrid nonlinear model. It is capable of displaying cyclic motions and chaos. In this paper, we propose a new approach to controlling chaos cropped up from the passive dynamic walking of the compass-gait model. The proposed technique is to linearize the nonlinear model around a desired passive hybrid limit cycle. Then, we show that the nonlinear model is transformed to an impulsive hybrid linear model with a controlled jump. Basing on the linearized model, we derive an analytical expression of a constrained controlled Poincaré map. We present a method for the numerical simulation of this constrained map where bifurcation diagrams are plotted. Relying on these diagrams, we show that the linear model is fairly close to the nonlinear one. Using the linearized controlled Poincaré map, we design a state feedback controller in order to stabilize the fixed point of the Poincaré map. We show that this controller is very efficient for the control of chaos for the original nonlinear model.

  6. Structural acoustics model of the violin radiativity profile.

    Science.gov (United States)

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages.

  7. Analytic model of acoustic streaming in thermoacoustic waveguides with slowly varying cross-section

    Institute of Scientific and Technical Information of China (English)

    FAN Yuxian; LIU Ke; YANG Jun

    2012-01-01

    An analytic model of acoustic streaming generated in two-dimensional thermoa- coustic waveguides with slowly varying cross-section was developed for more general applica- tions. The analytical solutions of acoustic streaming characteristics in the closed straight tube and the annular tube are given based on the model. The solution for the closed straight tube can be applied to the case with any transverse scale. The solution for the annular tube is obtained under the assumption that the width of the varying cross-section part is much larger than the viscous and thermal penetration depths. The effects of cross-section variation, time-averaged temperature distribution and components of sound field are reflected in the analytic solutions. The magnitude and distribution of acoustic streaming velocity vary with the characteristic scale of the waveguides. The analytic model of acoustic streaming can be applied in research under thermoacoustic and other physical backgrounds.

  8. Convolution Models with Shift-invariant kernel based on Matlab-GPU platform for Fast Acoustic Imaging

    OpenAIRE

    Chu, Ning; Gac, Nicolas; Picheral, José; Mohammad-Djafari, Ali

    2014-01-01

    International audience; Acoustic imaging is an advanced technique for acoustic source localization and power reconstruc-tion from limited noisy measurements at microphone sensors. This technique not only involves in a forward model of acoustic propagation from sources to sensors, but also its numerical solution of an ill-posed inverse problem. Nowadays, the Bayesian inference methods in inverse methods have been widely investigated for robust acoustic imaging, but most of Bayesian methods are...

  9. Theoretical Model of Acoustic Wave Propagation in Shallow Water

    Directory of Open Access Journals (Sweden)

    Kozaczka Eugeniusz

    2017-06-01

    Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.

  10. Models in injury biomechanics for improved passive vehicle safety

    NARCIS (Netherlands)

    Wismans, J.S.H.M.

    1996-01-01

    Thorough knowledge of the characteristics of the human body and its behaviour under extreme loading conditions is essential in order to prevent the serious consequences of road and other accidents. In order to study the human body response five type of models for the human body can be distinguished:

  11. Models in injury biomechanics for improved passive vehicle safety

    NARCIS (Netherlands)

    Wismans, J.S.H.M.

    1996-01-01

    Thorough knowledge of the characteristics of the human body and its behaviour under extreme loading conditions is essential in order to prevent the serious consequences of road and other accidents. In order to study the human body response five type of models for the human body can be distinguished:

  12. Passivity Preserving Model Order Reduction For the SMIB

    NARCIS (Netherlands)

    Ionescu, Tudor C.; Scherpen, Jacquelien M. A.

    2008-01-01

    We apply (linear) positive real balancing to the model of a single machine connected to an infinite bus. For that we compute the available storage and the required supply using Taylor approximation and define axis positive real singular value functions. Furthermore, we apply linear positive real bal

  13. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine.

    Science.gov (United States)

    Abouhossein, Alireza; Weisse, Bernhard; Ferguson, Stephen J

    2011-06-01

    The human spinal segment is an inherently complex structure, a combination of flexible and semi-rigid articulating elements stabilised by seven principal ligaments. An understanding of how mechanical loading is shared among these passive elements of the segment is required to estimate tissue failure stresses. A 3D rigid body model of the complete lumbar spine has been developed to facilitate the prediction of load sharing across the passive elements. In contrast to previous multibody models, this model includes a non-linear, six degrees of freedom intervertebral disc, facet bony articulations and all spinal ligaments. Predictions of segmental kinematics and facet joint forces, in response to pure moment loading (flexion-extension), were compared to published in vitro data. On inclusion of detailed representation of the disc and facets, the multibody model fully captures the non-linear flexibility response of the spinal segment, i.e. coupled motions and a mobile instantaneous centre of rotation. Predicted facet joint forces corresponded well with reported values. For the loading case considered, the model predicted that the ligaments are the main stabilising elements within the physiological motion range; however, the disc resists a greater proportion of the applied load as the spine is fully flexed. In extension, the facets and capsular ligaments provide the principal resistance. Overall patterns of load distribution to the spinal ligaments are in agreement with previous predictions; however, the current model highlights the important role of the intraspinous ligament in flexion and the potentially high risk of failure. Several important refinements to the multibody modelling of the passive elements of the spine have been described, and such an enhanced passive model can be easily integrated into a full musculoskeletal model for the prediction of spinal loading for a variety of daily activities.

  14. Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints

    Science.gov (United States)

    Huang, Yan; Wang, Qi-Ning; Gao, Yue; Xie, Guang-Ming

    2012-10-01

    Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.

  15. Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints

    Institute of Scientific and Technical Information of China (English)

    Yan Huang; Qi-Ning Wang; Yue Gao; Guang-Ming Xie

    2012-01-01

    Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait.This paper presents a passive dynamic walking model with segmented feet,which makes the bipedal walking gait more close to natural human-like gait.The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints,to achieve stable walking on a slope driven by gravity.The push-off phase includes foot rotations around the toe joint and around the toe tip,which shows a great resemblance to human normal walking.This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.

  16. Modeling Steady Acoustic Fields Bounded in Cavities with Geometrical Imperfections

    Science.gov (United States)

    Albo, P. A. Giuliano; Gavioso, R. M.; Benedetto, G.

    2010-07-01

    A mathematical method is derived within the framework of classical Lagrangian field theory, which is suitable for the determination of the eigenstates of acoustic resonators of nearly spherical shape. The method is based on the expansion of the Helmholtz differential operator and the boundary condition in a power series of a small geometrical perturbation parameter {ɛ} . The method extends to orders higher than {ɛ^2} the calculation of the perturbed acoustic eigenvalues, which was previously limited by the use of variational formalism and the methods of Morse and Ingard. A specific example is worked out for radial modes of a prolate spheroid, with the frequency perturbation calculated to order {ɛ^3} . A possible strategy to tackle the problem of calculating the acoustic eigenvalues for cavities presenting non-smooth geometrical imperfections is also described.

  17. Anomalous scaling in a non-Gaussian random shell model for passive scalars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we have introduced a shell-model of Kraichnan's passive scalar problem. Different from the original problem, the prescribed random velocity field is non-Gaussian and δ correlated in time, and its introduction is inspired by She and Lév(e)que (Phys. Rev. Lett. 72,336 (1994)). For comparison, we also give the passive scalar advected by the Gaussian random velocity field. The anomalous scaling exponents H(p) of passive scalar advected by these two kinds of random velocities above are determined for structure function with values of p up to 15 by Monte Carlo simulations of the random shell model, with Gear methods used to solve the stochastic differential equations. We find that the H(p) advected by the non-Gaussian random velocity is not more anomalous than that advected by the Gaussian random velocity. Whether the advecting velocity is non-Gaussian or Gaussian, similar scaling exponents of passive scalar are obtained with the same molecular diffusivity.

  18. A modeling investigation of vowel-to-vowel movement planning in acoustic and muscle spaces

    Science.gov (United States)

    Zandipour, Majid

    The primary objective of this research was to explore the coordinate space in which speech movements are planned. A two dimensional biomechanical model of the vocal tract (tongue, lips, jaw, and pharynx) was constructed based on anatomical and physiological data from a subject. The model transforms neural command signals into the actions of muscles. The tongue was modeled by a 221-node finite element mesh. Each of the eight tongue muscles defined within the mesh was controlled by a virtual muscle model. The other vocal-tract components were modeled as simple 2nd-order systems. The model's geometry was adapted to a speaker, using MRI scans of the speaker's vocal tract. The vocal tract model, combined with an adaptive controller that consisted of a forward model (mapping 12-dimensional motor commands to a 64-dimensional acoustic spectrum) and an inverse model (mapping acoustic trajectories to motor command trajectories), was used to simulate and explore the implications of two planning hypotheses: planning in motor space vs. acoustic space. The acoustic, kinematic, and muscle activation (EMG) patterns of vowel-to-vowel sequences generated by the model were compared to data from the speaker whose acoustic, kinematic and EMG were also recorded. The simulation results showed that: (a) modulations of the motor commands effectively accounted for the effects of speaking rate on EMG, kinematic, and acoustic outputs; (b) the movement and acoustic trajectories were influenced by vocal tract biomechanics; and (c) both planning schemes produced similar articulatory movement, EMG, muscle length, force, and acoustic trajectories, which were also comparable to the subject's data under normal speaking conditions. In addition, the effects of a bite-block on measured EMG, kinematics and formants were simulated by the model. Acoustic planning produced successful simulations but motor planning did not. The simulation results suggest that with somatosensory feedback but no auditory

  19. Modelling of Particles Aglomeration in the Acoustic Field

    Directory of Open Access Journals (Sweden)

    Irina Grinbergienė

    2017-01-01

    Full Text Available The article includes particles agglomeration principles analysis. Forces describes with the equations operating particle of its moving in the vibes. It presents equations of particle movement speed and trajectory estimation. It have performed agglomerations simulation of two identical (5 m and 5 m and different (5 m and 10 m diameters particles in the acoustic field using the discrete element method (DEM. The results showed that the two equal diameter particle agglomeration gravity affects at 8 kHz acoustic signal frequency.

  20. Modeling impermeable membranes as acoustic filters for biomedical applications.

    Science.gov (United States)

    Goenaga, Miguel A; Juan, Eduardo J

    2006-01-01

    The main purpose of this research project was to explore a mathematical expression that could be used by medical device designers to appropriately select impermeable membranes to isolate acoustic transducers from water, dust, earwax or other foreign material. The sound transmission properties of various types of impermeable membranes were analytically evaluated and compared to experimental measurements. Computer simulations were also performed to estimate the effects of three key membrane parameters: thickness (h), density (p) and sound speed (c), on the membrane's overall acoustic response. Results indicated that membrane thickness and density affect sound transmission the most. Membrane sound speed had minimal effect on sound transmission.

  1. Model-based acoustic remote sensing of seafloor characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    De, Ch.; Chakraborty, B.

    characterization using time- dependent acoustic backscatter: Study of Arabian Sea,” in Proc. IEEE Oceans, Kobe, Japan, 2008, pp. 1–4. 3876 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 10, OCTOBER 2011 [6] C. De and B. Chakraborty, “Acoustic... characterization of seafloor sediment employing a hybrid method of neural network architecture and fuzzy algorithm,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 743–747, Oct. 2009. [7] C. De and B. Chakraborty, “Preference of echo features...

  2. Neuronal integrative analysis of the "Dumbbell" model for passive neurons.

    Science.gov (United States)

    Krzyzanski, Wojciech; Bell, Jonathan; Poznanski, Roman R

    2002-12-01

    We analyze the so called "Dumbbell" model of Jackson (J. Neurophysiol. 69 (1993) pp. 464) for a single neuron consisting of a patch-clamped cell body attached to dendritic cable of finite length terminating in an oblique derivative ("natural termination") boundary condition representing a dendritic swelling or a natural ending sealed by a continuous surface of the cell membrane. The model is solved analytically via the Green's function method. Large and small time asymptotic behavior of the membrane potential is developed when there is a somatic voltage-clamp imposed. We discuss the difference in the voltage distribution if a sealed-end (Neumann) termination is used instead of the natural termination boundary condition. If the access resistance is large the differences between the potentials corresponding to the two boundary conditions are small at the soma, but can vary significantly near the dendritic termination. This discrepancy is amplified at the soma if there is a synaptic stimulus introduced between the soma and dendritic tip.

  3. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development

    Science.gov (United States)

    Putnam, G. C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  4. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.

    Science.gov (United States)

    Hodgson, John A; Chi, Sheng-Wei; Yang, Judy P; Chen, Jiun-Shyan; Edgerton, Victor R; Sinha, Shantanu

    2012-05-01

    The pattern of deformation of different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. The maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in the optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo

  5. A joint fatigue - creep deterioration model for masonry with acoustic emission based damage assessment

    OpenAIRE

    Tomor, Adrienn K.; Verstrynge, Els

    2013-01-01

    The paper investigates the long-term fatigue and creep deterioration processes in historical brick masonry. Based on two independent laboratory test series, the relationship between stress level and life expectancy was considered for fatigue and creep loading in the form of SN type models. The process of deterioration was investigated with the help of acoustic emission technique to identify stages and characteristics of the damage accumulation process. Based on the test data and acoustic emis...

  6. Energy flow in passive and active 3D cochlear model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli; Steele, Charles [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Puria, Sunil [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  7. Fish Acoustics: Physics-Based Modeling and Measurement

    Science.gov (United States)

    2011-01-01

    physical scattering mechanisms. To demonstrate this point, the target strength of a canonical gas-filled sphere is computed using a standard...high-frequency sound scattering by swimbladdered fish,” Journal of the Acoustical Society of America, Vol. 78, pp. 688-700 (1985). 9. Gauss , R. C

  8. One-dimensional acoustic modeling of thermoacoustic instabilities

    NARCIS (Netherlands)

    Kampen, van Jaap F.; Huls, Rob A.; Kok, Jim B.W.; Meer, van der Theo H.; Nilsson, A.; Boden, H.

    2003-01-01

    In this paper the acoustic stability of a premixed turbulent natural gas flame confined in a combustor is investigated. Specifically when the flame is operated in a lean premixed mode, the thermoacoustic system is known to exhibit instabilities. These arise from a feedback mechanism between the osci

  9. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and

  10. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and t

  11. Gluten ataxia: passive transfer in a mouse model.

    Science.gov (United States)

    Boscolo, Sabrina; Sarich, Alessandra; Lorenzon, Andrea; Passoni, Monica; Rui, Veronica; Stebel, Marco; Sblattero, Daniele; Marzari, Roberto; Hadjivassiliou, Marios; Tongiorgi, Enrico

    2007-06-01

    Gluten sensitivity is an autoimmune disease that usually causes intestinal atrophy resulting in a malabsorption syndrome known as celiac disease. However, gluten sensitivity may involve several organs and is often associated with extraintestinal manifestations. Typically, patients with celiac disease have circulating anti-tissue transglutaminase and anti-gliadin antibodies. When patients with gluten sensitivity are affected by other autoimmune diseases, other autoantibodies may arise like anti-epidermal transglutaminase in dermatitis herpetiformis, anti-thyroid peroxidase antibodies in thyroiditis, and anti-islet cells antibodies in type 1 diabetes. The most common neurological manifestation of gluten sensitivity is ataxia, the so-called gluten ataxia (GA). In patients with GA we have demonstrated that anti-gliadin and anti-tissue transglutaminase antibodies cross-react with neurons but that additional anti-neural antibodies are present. The aim of the present article is to review the knowledge on animal models of gluten sensitivity, as well as reviewing the role of anti-neural antibodies in GA.

  12. A model for an acoustically driven microbubble inside a rigid tube

    KAUST Repository

    Qamar, Adnan

    2014-09-10

    A theoretical framework to model the dynamics of acoustically driven microbubble inside a rigid tube is presented. The proposed model is not a variant of the conventional Rayleigh-Plesset category of models. It is derived from the reduced Navier-Stokes equation and is coupled with the evolving flow field solution inside the tube by a similarity transformation approach. The results are computed, and compared with experiments available in literature, for the initial bubble radius of Ro=1.5μm and 2μm for the tube diameter of D=12μm and 200μm with the acoustic parameters as utilized in the experiments. Results compare quite well with the existing experimental data. When compared to our earlier basic model, better agreement on a larger tube diameter is obtained with the proposed coupled model. The model also predicts, accurately, bubble fragmentation in terms of acoustic and geometric parameters.

  13. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-10-07

    Res., 114, C07021. Evers, L. G. & Snellen , M., 2015. Passive probing of the sound fixing and ranging channel with hydro-acoustic observations from...ridge earthquakes, J. Acoust. Soc. Am., 137, 2124–2136. Evers, L. G., Green, D. N., Young, N. W., & Snellen , M., 2013. Remote hydroacoustic sensing...Heaney, K. D., Assink, J. D., Smets, P. S. M., & Snellen , M., 2014. Evanescent wave coupling in a geophysical system: Airborne acoustic signals from

  14. Target identification and navigation performance modeling of a passive millimeter wave imager.

    Science.gov (United States)

    Jacobs, Eddie L; Furxhi, Orges

    2010-07-01

    Human task performance using a passive interferometric millimeter wave imaging sensor is modeled using a task performance modeling approach developed by the U.S. Army Night Vision and Electronic Sensors Directorate. The techniques used are illustrated for an imaging system composed of an interferometric antenna array, optical upconversion, and image formation using a shortwave infrared focal plane array. Two tasks, target identification and pilotage, are modeled. The effects of sparse antenna arrays on task performance are considered. Applications of this model include system trade studies for concealed weapon identification, navigation in fog, and brownout conditions.

  15. STUDY ON NEW PASSIVE SCALAR FLUX MODEL WITH DIFFUSIVITY OF COMPLEX NUMBER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The turbulent passive scalar fluxes were studied by separately considering the contributions of small-eddy motions and large-eddy ones.Explicit algebraic approximation was achieved for both small-eddy and large-eddy scalar fluxes.Especially, the large-eddy scalar flux was modelled with complex diffusivity.The singular difficulties in usual algebraic scalar models, do not occur any more in this model.In addition, this new model provides a new way to reasonably describe the negative transport phenomena appearing in asymmetric turbulent flows.

  16. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    Directory of Open Access Journals (Sweden)

    Javier Macias-Guarasa

    2012-10-01

    Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.

  17. Acoustic radiation field of the truncated parametric source generated by a piston radiator model and experiment

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaoliang; ZHU Zhemin; DU Gonghuan; TANG Haiqing; LI Shui; MIAO Rongxing

    2001-01-01

    A theoretical model is presented to describe the parametric acoustic field generated by a piston radiator. In the model, the high-frequency primary wave interaction region that is truncated by a low-pass acoustic filter can be viewed as a cylindrical source within the Rayleigh distance of the piston. When the radius of the piston is much smaller than the length of the parametric region, this model is reduced to the Berketey's End-Fire Line Array model. Comparison between numerical calculations and experimental measurement show that the generated parametric sound field (especially near the axis) agrees well with the experiment results.

  18. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  19. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    Science.gov (United States)

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  20. Comparison of models of fast saturable absorption in passively modelocked lasers.

    Science.gov (United States)

    Wang, Shaokang; Marks, Brian S; Menyuk, Curtis R

    2016-09-01

    Fast saturable absorbers (FSAs) play a critical role in stabilizing many passively modelocked lasers. The most commonly used averaged model to study these lasers is the Haus modelocking equation (HME) that includes a third-order nonlinear FSA. However, it predicts a narrow region of stability that is inconsistent with experiments. To better replicate the laser physics, averaged laser models that include FSAs with higher-than-third-order nonlinearities have been introduced. Here, we compare three common FSA models to each other and to the HME using the recently-developed boundary tracking algorithms. The three FSA models are the cubic-quintic model, the sinusoidal model, and the algebraic model. We find that all three models predict the existence of a stable high-energy solution that is not present in the HME and have a much larger stable operating region. We also find that all three models predict qualitatively similar stability diagrams. We conclude that averaged laser models that include FSAs with higher-than-third-order nonlinearity should be used when studying the stability of passively modelocked lasers.

  1. Application and comparison of band gap narrowing models for passivated phosphorus doped silicon surfaces

    Science.gov (United States)

    Kimmerle, Achim; Greulich, Johannes; Haug, Halvard; Wolf, Andreas

    2016-01-01

    In this work, the recently proposed band-gap narrowing model by Yan and Cuevas [J. Appl. Phys. 114, 044508 (2013)] is evaluated by simulations of the recombination pre-factor J0 of highly phosphorus doped, passivated crystalline silicon surfaces, which are particularly relevant for solar cell applications. The results were fitted to experimental J0 data measured on a large range of samples exhibiting different dopant profiles and passivation coatings, both for planar and textured surfaces. For each sample, the surface recombination velocity parameter Sp was extracted by fitting the simulation results to the experimental data. We show that the Yan and Cuevas' model developed for Fermi-Dirac statistics leads to a smooth and monotonically increasing curve for Sp as a function of the surface dopant concentration Nsurf, for both investigated passivation layers. We provide a parameterization for this relation and compare the findings with those obtained with the widely used model by Schenk [J. Appl. Phys. 84, 3684 (1998)]. On the other hand, we show that the apparent band gap narrowing of Yan and Cuevas developed for use with Boltzmann statistics cannot be used to describe the experimental data, requiring unphysical negative Sp values for high Nsurf.

  2. Measurements and empirical model of the acoustic properties of reticulated vitreous carbon

    Science.gov (United States)

    Muehleisen, Ralph T.; Beamer, C. Walter; Tinianov, Brandon D.

    2005-02-01

    Reticulated vitreous carbon (RVC) is a highly porous, rigid, open cell carbon foam structure with a high melting point, good chemical inertness, and low bulk thermal conductivity. For the proper design of acoustic devices such as acoustic absorbers and thermoacoustic stacks and regenerators utilizing RVC, the acoustic properties of RVC must be known. From knowledge of the complex characteristic impedance and wave number most other acoustic properties can be computed. In this investigation, the four-microphone transfer matrix measurement method is used to measure the complex characteristic impedance and wave number for 60 to 300 pore-per-inch RVC foams with flow resistivities from 1759 to 10 782 Pa s m-2 in the frequency range of 330 Hz-2 kHz. The data are found to be poorly predicted by the fibrous material empirical model developed by Delany and Bazley, the open cell plastic foam empirical model developed by Qunli, or the Johnson-Allard microstructural model. A new empirical power law model is developed and is shown to provide good predictions of the acoustic properties over the frequency range of measurement. Uncertainty estimates for the constants of the model are also computed. .

  3. Applications of passive remote surface acoustic wave sensors in high-voltage systems; Einsatz von passiven funkabfragbaren Oberflaechenwellensensoren in der elektrischen Energietechnik

    Energy Technology Data Exchange (ETDEWEB)

    Teminova, R.

    2007-06-29

    Passive remote Surface Acoustic Wave (SAW) sensors have been applied e.g. as temperature, pressure or torque sensors. Their important advantages over standard methods are their passive operating principle, which allows operation without any power supply, as well as the wireless high-frequency signal transmission over distances up to about 10..15 m even through (non metallic) housings. These properties of SAW sensors particularly qualify them for applications in high voltage operational equipment. First experience was gained in a long time field test of surge arrester monitoring based on SAW temperature sensors in a German high-voltage substation. Now, this system has been further developed at Darmstadt University of Technology for other applications, the first of them being an overhead line (OHL) conductor temperature measurement, the second one a temperature monitoring system for of high-voltage disconnectors. After designing and building the sensors, extensive laboratory tests were carried out applying high-voltage, high-current and thermal stress in order to approve the suitability for the intended application. All these tests confirmed the assumption that SAW sensors, due to their passive working principle, are not affected at all by any kind of electrical, magnetic or thermal stress that may occur during service. The complete temperature sensor consists of three parts: a sensor chip, an antenna which receives and transmits the signal from and to the radar unit and a body for installation and for protection against environmental impact. One must find a good compromise between optimizing of thermal, dielectric and high-frequency characteristics and at the same time taking into consideration a simple installation. These requirements on the SAW sensors turned out to be difficult to coordinate. To achieve a high measuring precision is especially difficult. First, a new sensor for OHL application was developed. The OHL conductor temperature sensor had been optimized

  4. Flow-Structure-Acoustic Interaction Computational Modeling of Voice Production inside an Entire Airway

    Science.gov (United States)

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2015-11-01

    Human voice quality is directly determined by the interplay of dynamic behavior of glottal flow, vibratory characteristics of VFs and acoustic characteristics of upper airway. These multiphysics constituents are tightly coupled together and precisely coordinate to produce understandable sound. Despite many years' research effort, the direct relationships among the detailed flow features, VF vibration and aeroacoustics still remains elusive. This study utilizes a first-principle based, flow-structure-acoustics interaction computational modeling approach to study the process of voice production inside an entire human airway. In the current approach, a sharp interface immersed boundary method based incompressible flow solver is utilized to model the glottal flow; A finite element based solid mechanics solver is utilized to model the vocal vibration; A high-order immersed boundary method based acoustics solver is utilized to directly compute sound. These three solvers are fully coupled to mimic the complex flow-structure-acoustic interaction during voice production. The geometry of airway is reconstructed based on the in-vivo MRI measurement reported by Story et al. (1995) and a three-layer continuum based vocal fold model is taken from Titze and Talkin (1979). Results from these simulations will be presented and further analyzed to get new insight into the complex flow-structure-acoustic interaction during voice production. This study is expected to improve the understanding of fundamental physical mechanism of voice production and to help to build direct cause-effect relationship between biomechanics and voice sound.

  5. Passivity-based model predictive control for mobile vehicle motion planning

    CERN Document Server

    Tahirovic, Adnan

    2013-01-01

    Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and  • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimi...

  6. Influence of Velocity Shell Correlations on Anomalous Scaling Exponents of Passive Scalars in Shell Models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Qiang; WANG Guang-Rui; CHEN Shi-Gang

    2008-01-01

    We propose a new approach to the old-standing problem of the anomaly of the scaling exponents of passive scalars of turbulence.Different to the original problem,the distribution function of the prescribed random velocity field is multi-dimensional normal and delta-correlated in time.Here,our random velocity field is spatially correlative.For comparison,we also give the result obtained by the Gaussian random velocity field without spatial correlation.The anomalous scaling exponents H (p) of passive scalar advected by two kinds of random velocity above are determined for structure function up to p= 15 by numerical simulations of the random shell model with Runge-Kutta methods to solve the stochastic differential equations.We observed that the H (p)'s obtained by the multi-dimensional normal distribution random velocity are more anomalous than those obtained by the independent Gaussian random velocity.

  7. Measurement models for passive dosemeters in view of uncertainty evaluation using the Monte Carlo method.

    Science.gov (United States)

    van Dijk, J W E

    2014-12-01

    Two measurement models for passive dosemeters such as thermoluminescent dosemeter, optically stimulated luminescence, radio-photoluminescence, photographic film or track etch are discussed. The first model considers the dose evaluation with the reading equipment as a single measurement, the one-stage model. The second model considers the build-up of a latent signal or latent image in the detector during exposure and the evaluation using a reader system as two separate measurements, the two-stage model. It is discussed that the two-stage model better reflects the cause and effect relations and the course of events in the daily practice of a routine dosimetry service. The one-stage model will be non-linear in crucial input quantities which can give rise to erroneous behavior of the uncertainty evaluation based on the law of propagation of uncertainty. Input quantities that show an asymmetric probability distributions propagate through the one-stage model in a physically not relevant way.

  8. Modeling Coastal Erosion, Passive Inundation, and Dynamic Wave Inundation under Higher Sea Level in Hawaii

    Science.gov (United States)

    Anderson, T. R.

    2015-12-01

    Hawaii State legislators recently formed the Interagency Committee on Climate Adaptation to investigate community vulnerability to sea level rise. We developed modeling to provide the committee with assessments of exposure to coastal erosion, wave inundation, and passive flooding based on the IPCC RCP 8.5 model of sea level rise over the 21st Century. We model the exposure to coastal erosion using a hybrid equilibrium profile model (Anderson et al., 2015) that combines historical rates of shoreline change with a Bruun-type model of beach profile translation. Results are mapped in a GIS showing the 80th percentile probability of potential erosion at years 2030, 2050, 2075, and 2100. Wave inundation is modeled using XBeach. We use a 3 m significant wave height to represent a seasonal high swell event. A separate simulation was run for each heightened sea level (corresponding to the years previously mentioned); which accounts for changes in wave dynamics due to the change in water level over the reef platform. We use a bare earth topo/bathy LiDAR DEM derived from data collected during the 2013 JBLTX survey of the Hawaiian Islands. XBeach modeling is done along one-dimensional profiles spaced 20 m apart. From this, we develop a gridded product of water depth and velocity for use in a vulnerability analysis. Passive inundation due to sea level rise, the so-called "bath tub" method, provide estimates of storm drain flooding and groundwater inundation. Our analysis of these three impacts of sea level rise, combined - coastal erosion, wave inundation, and passive flooding - are used with other available data in the FEMA Hazus software to estimate exposure and loss of upland assets.

  9. A Multi-Model Reduction Technique for Optimization of Coupled Structural-Acoustic Problems

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas;

    2016-01-01

    Finite Element models of structural-acoustic coupled systems can become very large for complex structures with multiple connected parts. Optimization of the performance of the structure based on harmonic analysis of the system requires solving the coupled problem iteratively and for several...... frequencies, which can become highly time consuming. Several modal-based model reduction techniques for structure-acoustic interaction problems have been developed in the literature. The unsymmetric nature of the pressure-displacement formulation of the problem poses the question of how the reduction modal...... base should be formed, given that the modal vectors are not orthogonal due to the asymmetry of the system matrices. In this paper, a multi-model reduction (MMR) technique for structure-acoustic interaction problems is developed. In MMR, the reduction base is formed with the modal vectors of a family...

  10. Analysis of enhanced modal damping ratio in porous materials using an acoustic-structure interaction model

    Directory of Open Access Journals (Sweden)

    Junghwan Kook

    2014-12-01

    Full Text Available The aim of this paper is to investigate the enhancement of the damping ratio of a structure with embedded microbeam resonators in air-filled internal cavities. In this context, we discuss theoretical aspects in the framework of the effective modal damping ratio (MDR and derive an approximate relation expressing how an increased damping due to the acoustic medium surrounding the microbeam affect the MDR of the macrobeam. We further analyze the effect of including dissipation of the acoustic medium by using finite element (FE analysis with acoustic-structure interaction (ASI using a simple phenomenological acoustic loss model. An eigenvalue analysis is carried out to demonstrate the improvement of the damping characteristic of the macrobeam with the resonating microbeam in the lossy air and the results are compared to a forced vibration analysis for a macrobeam with one or multiple embedded microbeams. Finally we demonstrate the effect of randomness in terms of position and size of microbeams and discuss the difference between the phenomenological acoustic loss model and a full thermoacoustic model.

  11. Measurement and Modeling of the Acoustic Response in a High Pressure Combustor

    NARCIS (Netherlands)

    Kapucu, M.; Kapucu, Mehmet; Alemela, P.R.; Kok, Jacobus B.W.; Pozarlik, Artur Krzysztof

    2011-01-01

    In this paper, a one dimensional acoustic network model is presented which can be used as a design tool to predict the limit cycle pressure oscillations in a gas turbine combustor. Analytically represented models are combined with measured flame transfer functions and well defined boundary condition

  12. Sparse Linear Parametric Modeling of Room Acoustics with Orthonormal Basis Functions

    DEFF Research Database (Denmark)

    Vairetti, G.; von Waterschoot, T.; Moonen, M.;

    2014-01-01

    Orthonormal Basis Function (OBF) models provide a stable and well-conditioned representation of a linear system. When used for the modeling of room acoustics, useful information about the true dynamics of the system can be introduced by a proper selection of a set of poles, which however appear non...

  13. A state-space model for estimating detailed movements and home range from acoustic receiver data

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Weng, Kevin

    2013-01-01

    We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....

  14. Optical and Acoustical Frequencies in a Nonlinear Helicoidal Model of DNA Molecules

    Institute of Scientific and Technical Information of China (English)

    ZDRAVKOVI(C) S.; SATARI(C) M.V.

    2005-01-01

    @@ We compare optical and acoustical frequencies in the Peyrard-Bishop-Dauxois model, i.e.an extended Peyrard-Bishop model, of DNA molecules.We discuss how ratio of those frequencies depends on a value of the harmonic constant of the helicoidal spring K.Also, we suggest that the most favourable mode could be a resonance mode.

  15. Constitutive modeling of the passive inflation-extension behavior of the swine colon.

    Science.gov (United States)

    Patel, Bhavesh; Chen, Huan; Ahuja, Aashish; Krieger, Joshua F; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S

    2017-08-31

    In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R(2)=0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A structurally based viscoelastic model for passive myocardium in finite deformation

    Science.gov (United States)

    Shen, Jing Jin

    2016-09-01

    This paper discusses the finite-deformation viscoelastic modeling for passive myocardium tissue. The formulations established can also be applied to model other fiber-reinforced soft tissue. Based on the morphological structure of the myocardium, a specific free-energy function is constructed to reflect its orthotropicity. After deriving the stress-strain relationships in the simple shear deformation, a genetic algorithm is used to optimally estimate the material parameters of the myocardial constitutive equation. The results show that the proposed myocardial model can well fit the shear experimental data. To validate the viscoelastic model, it is used to predict the creep and the dynamic responses of a cylindrical model of the left ventricle. Upon comparing the results calculated by the proven myocardial elastic model with those by the viscoelastic model, the merits of the latter are discussed.

  17. Development and Application of a Three-dimensional Seismo-acoustic Coupled-mode Model

    Science.gov (United States)

    2014-09-30

    model with stepwise coupled-modes [Ballard (2014)] was applied to calculate propagation in set of submarine canyons . The model is formulated in a...calculate acoustic propagation in a set of canyon environments, (2) evaluation of the effects of environmental uncertainty on source range estimates...3D coupled-mode model to the canyon environment The 3D coupled-mode model was applied to model propagation in two canyon environments. First, a

  18. Hip actuations can be used to control bifurcations and chaos in a passive dynamic walking model.

    Science.gov (United States)

    Kurz, Max J; Stergiou, Nicholas

    2007-04-01

    We explored how hip joint actuation can be used to control locomotive bifurcations and chaos in a passive dynamic walking model that negotiated a slightly sloped surface (gammapassive dynamic walking model was capable of producing a chaotic locomotive pattern when the ramp angle was 0.01839 rad

  19. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    OpenAIRE

    2012-01-01

    We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column...

  20. Modeling the Effect of Vegetation on Passive Microwave Remote Sensing of Soil Moisture

    Science.gov (United States)

    Liu, Y. P.; Inguva, R.; Crosson, W. L.; Coleman, T. L.; Laymon, C.; Fahsi, A.

    1998-01-01

    The effect of vegetation on passive microwave remote sensing of soil moisture is studied. The radiative transfer modeling work of Njoku and Kong is applied to a stratified medium of which the upper layer is treated as a layer of vegetation. An effective dielectric constant for this vegetation layer is computed using estimates of the dielectric constant of individual components of the vegetation layer. The horizontally-polarized brightness temperature is then computed as a function of the incidence angle. Model predictions are used to compare with the data obtained in the Huntsville '96, remote sensing of soil moisture experiment, and with predictions obtained using a correction procedure of Jackson and Schmugge.

  1. Differential Passive Circuit Modelling with Pentapole Impedance Matrices Application to an Integrated Audio Switching Amplifier for Portable Devices

    OpenAIRE

    Mrad, Roberto; Morel, Florent; Pillonnet, Gael; Vollaire, Christian; Labrousse, Denis

    2011-01-01

    International audience; In this paper a novel method to model the passive parts of differential output system is presented. This approach, based on impedance matrices, models conducted EMI and takes into account component non-idealities. It is not only able to deal with common mode but also differential mode and with conversion between the two modes. This method is experimentally applied to the passive output part of an audio differential switching amplifier dedicated to mobile phone applicat...

  2. Practical modeling of acoustic losses in air due to heat conduction and viscosity

    DEFF Research Database (Denmark)

    Christensen, René; Juhl, Peter Møller; Cutanda Henríquez, Vicente

    2008-01-01

    Accurate acoustics models of small devices with cavities and narrow slits and ducts should include the socalled boundary layer attenuation caused by thermal conduction and viscosity. The purpose of this paper is to present and compare different methods for including these loss mechanisms in analy......Accurate acoustics models of small devices with cavities and narrow slits and ducts should include the socalled boundary layer attenuation caused by thermal conduction and viscosity. The purpose of this paper is to present and compare different methods for including these loss mechanisms...

  3. The Applicability of Acoustic Wave Propagation Models to Silica Sols and Gels.

    Science.gov (United States)

    Holmes; Challis

    1999-08-01

    Acoustic attenuation and phase velocity in the frequency range 2-50 MHz have been measured in a series of silica sols and gels with particle sizes in the range 12-30 nm, and concentrations in the range 5-40% (w/w). Results have been compared with both scattering and hydrodynamic models of acoustic propagation in colloids. Differences between measured and simulated results indicate that present models are inadequate for very small particle sizes and small particle separations (<50 nm), where very high number concentrations of scatterers are present. Copyright 1999 Academic Press.

  4. 基于被动时反镜技术的FRFT_CSS 水声通信系统实验研究%Research on FRFT_CSS Underwater Acoustic Communication Based on Passive Time Reserve Mirror

    Institute of Scientific and Technical Information of China (English)

    陈冰冰; 胡晓毅; 陈华宾; 王德清; 许芳

    2012-01-01

    基于分数阶傅里叶变换(fractional Fourier transform,FRFT)的线性调频扩频技术(chirp spread spectrum,CSS)因其具有良好的抗干扰和抗噪声能力而被用于水声通信.在构建的FRFT_CSS系统中,采用被动时间反转镜技术(passive time reserve mirror,PTRM),以抵抗水声信道严重的多径效应.在保证系统可靠性的同时,提高了码元速率.水池实验表明:基于PTRM的FRFT_CSS系统的性能得到显著提升.%Chirp spread spectrum system based on fractional Fourier transform (FRFT) which has inherent interference rejection capability, has applied into underwater communication . In this paper, we present a FRFT_CSS system based on passive time reserve mirror (PTRM) mehtod to reject the serious mutipath effect caused by the acoustic channals. The system could achieve a good performance and high data rate . The pool results show that using passive time reserve mirror method could improve the system performance significantly.

  5. Evaluation of the polyurethane foam (PUF) disk passive air sampler: Computational modeling and experimental measurements

    Science.gov (United States)

    May, Andrew A.; Ashman, Paul; Huang, Jiaoyan; Dhaniyala, Suresh; Holsen, Thomas M.

    2011-08-01

    Computational fluid dynamics (CFD) simulations coupled with wind tunnel-experiments were used to determine the sampling rate (SR) of the widely used polyurethane foam (PUF) disk passive sampler. In the wind-tunnel experiments, water evaporation rates from a water saturated PUF disk installed in the sampler housing were determined by measuring weight loss over time. In addition, a modified passive sampler designed to collect elemental mercury (Hg 0) with gold-coated filters was used. Experiments were carried out at different wind speeds and various sampler angles. The SRs obtained from wind-tunnel experiments were compared to those obtained from the field by scaling the values by the ratios of air diffusivities. Three-dimensional (3D) CFD simulations were also used to generate SRs for both polychlorinated biphenyls (PCBs) and Hg 0. Overall, the modeled and measured SRs agree well and are consistent with the values obtained from field studies. As previously observed, the SRs increased linearly with increasing wind speed. In addition, it was determined that the SR was strongly dependent on the angle of the ambient wind. The SRs increased when the base was tilted up pointing into the wind and when the base was tilted down (i.e., such that the top of the sampler was facing the wind) the SR decreased initially and then increased. The results suggest that there may be significant uncertainty in concentrations obtained from passive sampler measurements without knowledge of wind speed and wind angle relative to the sampler.

  6. Ethnic differences in thermoregulatory responses during resting, passive and active heating: application of Werner's adaptation model.

    Science.gov (United States)

    Lee, Joo-Young; Wakabayashi, Hitoshi; Wijayanto, Titis; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2011-12-01

    For the coherent understanding of heat acclimatization in tropical natives, we compared ethnic differences between tropical and temperate natives during resting, passive and active heating conditions. Experimental protocols included: (1) a resting condition (an air temperature of 28°C with 50% RH), (2) a passive heating condition (28°C with 50% RH; leg immersion in a hot tub at a water temperature of 42°C), and (3) an active heating condition (32°C with 70% RH; a bicycle exercise). Morphologically and physically matched tropical natives (ten Malaysian males, MY) and temperate natives (ten Japanese males, JP) participated in all three trials. The results saw that: tropical natives had a higher resting rectal temperature and lower hand and foot temperatures at rest, smaller rise of rectal temperature and greater temperature rise in bodily extremities, and a lower sensation of thirst during passive and active heating than the matched temperate natives. It is suggested that tropical natives' homeostasis during heating is effectively controlled with the improved stability in internal body temperature and the increased capability of vascular circulation in extremities, with a lower thirst sensation. The enhanced stability of internal body temperature and the extended thermoregulatory capability of vascular circulation in the extremities of tropical natives can be interpreted as an interactive change to accomplish a thermal dynamic equilibrium in hot environments. These heat adaptive traits were explained by Wilder's law of initial value and Werner's process and controller adaptation model.

  7. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    Science.gov (United States)

    ten Eikelder, M. F. P.; Daude, F.; Koren, B.; Tijsseling, A. S.

    2017-02-01

    In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.

  8. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    Energy Technology Data Exchange (ETDEWEB)

    Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2017-02-15

    In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.

  9. Long-range Acoustic Interactions in Insect Swarms: An Adaptive Gravity Model

    CERN Document Server

    Gorbonos, Dan; Puckett, James G; Ni, Rui; Ouellette, Nicholas T; Gov, Nir S

    2015-01-01

    The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. Here, we consider mating swarms of midges, which interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges' acoustic sensing, we show that our "adaptive gravity" model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. The adaptive interactions that we present here open a new class of equations of motion, which may appear in other biological contexts.

  10. Frequency-Preserved Acoustic Diode Model with High Forward-Power-Transmission Rate

    Science.gov (United States)

    Liu, Chang; Du, Zongliang; Sun, Zhi; Gao, Huajian; Guo, Xu

    2015-06-01

    The acoustic diode (AD) can provide brighter and clearer ultrasound images by eliminating acoustic disturbances caused by sound waves traveling in two directions at the same time and interfering with each other. Such an AD could give designers new flexibility in making ultrasonic sources like those used in medical imaging or nondestructive testing. However, current AD designs, based on nonlinear effects, only partially fill this role by converting sound to a new frequency and blocking any backward flow of the original frequency. In this work, an AD model that preserves the frequencies of acoustic waves and has a relatively high forward-power-transmission rate is proposed. Theoretical analysis indicates that the proposed AD has forward, reverse, and breakdown characteristics very similar to electrical diodes. The significant rectifying effect of the proposed AD is verified numerically through a one-dimensional example. Possible schemes for experimental realization of this model as well as more complex and efficient AD designs are also discussed.

  11. A modeling investigation of articulatory variability and acoustic stability during American English /are/ production

    Science.gov (United States)

    Nieto-Castanon, Alfonso; Guenther, Frank H.; Perkell, Joseph S.; Curtin, Hugh D.

    2005-05-01

    This paper investigates the functional relationship between articulatory variability and stability of acoustic cues during American English /are/ production. The analysis of articulatory movement data on seven subjects shows that the extent of intrasubject articulatory variability along any given articulatory direction is strongly and inversely related to a measure of acoustic stability (the extent of acoustic variation that displacing the articulators in this direction would produce). The presence and direction of this relationship is consistent with a speech motor control mechanism that uses a third formant frequency (F3) target; i.e., the final articulatory variability is lower for those articulatory directions most relevant to determining the F3 value. In contrast, no consistent relationship across speakers and phonetic contexts was found between hypothesized vocal-tract target variables and articulatory variability. Furthermore, simulations of two speakers' productions using the DIVA model of speech production, in conjunction with a novel speaker-specific vocal-tract model derived from magnetic resonance imaging data, mimic the observed range of articulatory gestures for each subject, while exhibiting the same articulatory/acoustic relations as those observed experimentally. Overall these results provide evidence for a common control scheme that utilizes an acoustic, rather than articulatory, target specification for American English /are/. .

  12. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  13. Acoustic response modeling of energetics systems in confined spaces

    Science.gov (United States)

    González, David R.; Hixon, Ray; Liou, William W.; Sanford, Matthew

    2007-04-01

    In recent times, warfighting has been taking place not in far-removed areas but within urban environments. As a consequence, the modern warfighter must adapt. Currently, an effort is underway to develop shoulder-mounted rocket launcher rounds suitable with reduced acoustic signatures for use in such environments. Of prime importance is to ensure that these acoustic levels, generated by propellant burning, reflections from enclosures, etc., are at tolerable levels without requiring excessive hearing protection. Presented below is a proof-of-concept approach aimed at developing a computational tool to aid in the design process. Unsteady, perfectly-expanded-jet simulations at two different Mach numbers and one at an elevated temperature ratio were conducted using an existing computational aeroacoustics code. From the solutions, sound pressure levels and frequency spectra were then obtained. The results were compared to sound pressure levels collected from a live-fire test of the weapon. Lastly, an outline of work that is to continue and be completed in the near future will be presented.

  14. An Acoustic Demonstration Model for CW and Pulsed Spectrosocopy Experiments

    Science.gov (United States)

    Starck, Torben; Mäder, Heinrich; Trueman, Trevor; Jäger, Wolfgang

    2009-06-01

    High school and undergraduate students have often difficulties if new concepts are introduced in their physics or chemistry lectures. Lecture demonstrations and references to more familiar analogues can be of great help to the students in such situations. We have developed an experimental setup to demonstrate the principles of cw absorption and pulsed excitation - emission spectroscopies, using acoustical analogues. Our radiation source is a speaker and the detector is a microphone, both controlled by a computer sound card. The acoustical setup is housed in a plexiglas box, which serves as a resonator. It turns out that beer glasses are suitable samples; this also helps to keep the students interested! The instrument is controlled by a LabView program. In a cw experiment, the sound frequency is swept through a certain frequency range and the microphone response is recorded simultaneously as function of frequency. A background signal without sample is recorded, and background subtraction yields the beer glass spectrum. In a pulsed experiment, a short sound pulse is generated and the microphone is used to record the resulting emission signal of the beer glass. A Fourier transformation of the time domain signal gives then the spectrum. We will discuss the experimental setup and show videos of the experiments.

  15. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  16. A novel model of IgE-mediated passive pulmonary anaphylaxis in rats.

    Science.gov (United States)

    Wex, Eva; Thaler, Eva; Blum, Sylvia; Lamb, David

    2014-01-01

    Mast cells are central effector cells in allergic asthma and are augmented in the airways of asthma patients. Attenuating mast cell degranulation and with it the early asthmatic response is an important intervention point to inhibit bronchoconstriction, plasma exudation and tissue oedema formation. To validate the efficacy of novel pharmacological interventions, appropriate and practicable in vivo models reflecting mast cell-dependent mechanisms in the lung, are missing. Thus, we developed a novel model of passive pulmonary anaphylaxis in rats. Rats were passively sensitized by concurrent intratracheal and intradermal (ear) application of an anti-DNP IgE antibody. Intravenous application of the antigen, DNP-BSA in combination with Evans blue dye, led to mast cell degranulation in both tissues. Quantification of mast cell degranulation in the lung was determined by (1) mediator release into bronchoalveolar lavage, (2) extravasation of Evans blue dye into tracheal and bronchial lung tissue and (3) invasive measurement of antigen-induced bronchoconstriction. Quantification of mast cell degranulation in the ear was determined by extravasation of Evans blue dye into ear tissue. We pharmacologically validated our model using the SYK inhibitor Fostamatinib, the H1-receptor antagonist Desloratadine, the mast cell stabilizer disodium cromoglycate (DSCG) and the β2-adrenergic receptor agonist Formoterol. Fostamatinib was equally efficacious in lung and ear. Desloratadine effectively inhibited bronchoconstriction and ear vascular leakage, but was less effective against pulmonary vascular leakage, perhaps reflecting the differing roles for histamine receptor sub-types. DSCG attenuated both vascular leakage in the lung and bronchoconstriction, but with a very short duration of action. As an inhaled approach, Formoterol was more effective in the lung than in the ear. This model of passive pulmonary anaphylaxis provides a tissue relevant readout of early mast cell activity and

  17. A novel model of IgE-mediated passive pulmonary anaphylaxis in rats.

    Directory of Open Access Journals (Sweden)

    Eva Wex

    Full Text Available Mast cells are central effector cells in allergic asthma and are augmented in the airways of asthma patients. Attenuating mast cell degranulation and with it the early asthmatic response is an important intervention point to inhibit bronchoconstriction, plasma exudation and tissue oedema formation. To validate the efficacy of novel pharmacological interventions, appropriate and practicable in vivo models reflecting mast cell-dependent mechanisms in the lung, are missing. Thus, we developed a novel model of passive pulmonary anaphylaxis in rats. Rats were passively sensitized by concurrent intratracheal and intradermal (ear application of an anti-DNP IgE antibody. Intravenous application of the antigen, DNP-BSA in combination with Evans blue dye, led to mast cell degranulation in both tissues. Quantification of mast cell degranulation in the lung was determined by (1 mediator release into bronchoalveolar lavage, (2 extravasation of Evans blue dye into tracheal and bronchial lung tissue and (3 invasive measurement of antigen-induced bronchoconstriction. Quantification of mast cell degranulation in the ear was determined by extravasation of Evans blue dye into ear tissue. We pharmacologically validated our model using the SYK inhibitor Fostamatinib, the H1-receptor antagonist Desloratadine, the mast cell stabilizer disodium cromoglycate (DSCG and the β2-adrenergic receptor agonist Formoterol. Fostamatinib was equally efficacious in lung and ear. Desloratadine effectively inhibited bronchoconstriction and ear vascular leakage, but was less effective against pulmonary vascular leakage, perhaps reflecting the differing roles for histamine receptor sub-types. DSCG attenuated both vascular leakage in the lung and bronchoconstriction, but with a very short duration of action. As an inhaled approach, Formoterol was more effective in the lung than in the ear. This model of passive pulmonary anaphylaxis provides a tissue relevant readout of early mast cell

  18. Modelling of Acoustic Signatures of New Modern Multitask Submarine Concept with Reinforced Plastic Parts

    NARCIS (Netherlands)

    Schippers, P.

    2009-01-01

    Since the late eighties the sonar performance model ALMOST for active and passive sonar has been under development at TNO. Modelling of active detection performance was first started for a point target, with a single Target Strength value dependent on parameters like aspect angle and frequency, base

  19. Modelling of Acoustic Signatures of New Modern Multitask Submarine Concept with Reinforced Plastic Parts

    NARCIS (Netherlands)

    Schippers, P.

    2009-01-01

    Since the late eighties the sonar performance model ALMOST for active and passive sonar has been under development at TNO. Modelling of active detection performance was first started for a point target, with a single Target Strength value dependent on parameters like aspect angle and frequency,

  20. A novel numerical model for passively mode-locked solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, A.; Aussenegg, F.; Lippitsch, M.; Roschger, E.

    1983-04-01

    Numerical computer models could be of high value in testing ideas for improving passive mode locking. Most of the known models for solid-state lasers lack realistic quantitative results, however. A new model is presented, using a rate-equation approach which has been refined to include interference effects by using field amplitudes and phases instead of energies. Also, the saturable absorber is treated by rate equations. With this model, a rather complete description of the pulse evolution is possible. The influence of various parameters on the mode-locking quality is calculated. The model is also capable of reliably describing processes based mainly on interference effects, like the action of external subresonators.

  1. Methodology for the Incorporation of Passive Component Aging Modeling into the RAVEN/ RELAP-7 Environment

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua; Alfonsi, Andrea; Askin Guler; Tunc Aldemir

    2014-11-01

    Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper represents an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation

  2. Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications

    Directory of Open Access Journals (Sweden)

    Umberto Iemma

    2016-05-01

    Full Text Available The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire

  3. A State-Space Modeling Approach for Active Structural Acoustic Control

    Directory of Open Access Journals (Sweden)

    Leopoldo P.R. de Oliveira

    2009-01-01

    Full Text Available The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle's cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.

  4. APPROACH TO SYNTHESIS OF PASSIVE INFRARED DETECTORS BASED ON QUASI-POINT MODEL OF QUALIFIED INTRUDER

    Directory of Open Access Journals (Sweden)

    I. V. Bilizhenko

    2017-01-01

    Full Text Available Subject of Research. The paper deals with synthesis of passive infra red (PIR detectors with enhanced detection capability of qualified intruder who uses different types of detection countermeasures: the choice of specific movement direction and disguise in infrared band. Methods. We propose an approach based on quasi-point model of qualified intruder. It includes: separation of model priority parameters, formation of partial detection patterns adapted to those parameters and multi channel signal processing. Main Results. Quasi-pointmodel of qualified intruder consisting of different fragments was suggested. Power density difference was used for model parameters estimation. Criteria were formulated for detection pattern parameters choice on the basis of model parameters. Pyroelectric sensor with nine sensitive elements was applied for increasing the signal information content. Multi-channel processing with multiple partial detection patterns was proposed optimized for detection of intruder's specific movement direction. Practical Relevance. Developed functional device diagram can be realized both by hardware and software and is applicable as one of detection channels for dual technology passive infrared and microwave detectors.

  5. Morphotectonic evolution of passive margins undergoing active surface processes: large-scale experiments using numerical models.

    Science.gov (United States)

    Beucher, Romain; Huismans, Ritske S.

    2016-04-01

    Extension of the continental lithosphere can lead to the formation of a wide range of rifted margins styles with contrasting tectonic and geomorphological characteristics. It is now understood that many of these characteristics depend on the manner extension is distributed depending on (among others factors) rheology, structural inheritance, thermal structure and surface processes. The relative importance and the possible interactions of these controlling factors is still largely unknown. Here we investigate the feedbacks between tectonics and the transfers of material at the surface resulting from erosion, transport, and sedimentation. We use large-scale (1200 x 600 km) and high-resolution (~1km) numerical experiments coupling a 2D upper-mantle-scale thermo-mechanical model with a plan-form 2D surface processes model (SPM). We test the sensitivity of the coupled models to varying crust-lithosphere rheology and erosional efficiency ranging from no-erosion to very efficient erosion. We discuss how fast, when and how the topography of the continents evolves and how it can be compared to actual passive margins escarpment morphologies. We show that although tectonics is the main factor controlling the rift geometry, transfers of masses at the surface affect the timing of faulting and the initiation of sea-floor spreading. We discuss how such models may help to understand the evolution of high-elevated passive margins around the world.

  6. Investigation of acoustic scale effects and boundary effects for the similitude model of underwater complex shell-structure

    Institute of Scientific and Technical Information of China (English)

    WANG San-de; YANG De-sen; LIU Ning

    2007-01-01

    In this paper, the acoustic scale effects and boundary effects for the similitude model of underwater complex shell-structure are investigated. The similitude conditions and relations between the similitude model and its prototype were studied in the references This paper investigates the acoustic scale effects for the similitude model, which are influenced by loss factor, shear and rotatory inertia. At the same time, the boundary effects which are influenced by surface sound reflection are investigated in the experiment of similitude model. The results show that the acoustic scale effects may be controlled with model designing, the boundary effects can be controlled with experimental designing between the similitude model and its prototype.

  7. Langasite surface acoustic wave gas sensors: modeling and verification

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  8. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  9. Numerical modeling and passive thermal control of external lighting systems for Space Station Freedom

    Science.gov (United States)

    Buck, Gregory A.; Li, Weiming; Tong, Timothy W.

    1993-01-01

    Consideration is given to three generic families of luminaries with lamp power ranging from 11 to 150 watts. A concept of an equivalent radiation node boundary temperature was used to impose worst hot and cold environments, and transient finite difference models were developed to study the effects of geometry and optical properties of thermal control coatings. Minimum and maximum transient temperatures were computed at the critical location during 90 minute orbit and were compared with allowable limits. Results show that with the proper choice of optical properties, the luminaries can be passively controlled to within acceptable limits.

  10. Adaptation of acoustic model experiments of STM via smartphones and tablets

    Science.gov (United States)

    Thees, Michael; Hochberg, Katrin; Kuhn, Jochen; Aeschlimann, Martin

    2017-10-01

    The importance of Scanning Tunneling Microscopy (STM) in today's research and industry leads to the question of how to include such a key technology in physics education. Manfred Euler has developed an acoustic model experiment to illustrate the fundamental measuring principles based on an analogy between quantum mechanics and acoustics. Based on earlier work we applied mobile devices such as smartphones and tablets instead of using a computer to record and display the experimental data and thus converted Euler's experimental setup into a low-cost experiment that is easy to build and handle by students themselves.

  11. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    Science.gov (United States)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a 'Gutin' propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  12. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    Science.gov (United States)

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  13. A dynamic model of a passively cooled small modular reactor for controller design purposes

    Energy Technology Data Exchange (ETDEWEB)

    Arda, Samet E., E-mail: s.e.arda@asu.edu; Holbert, Keith E., E-mail: holbert@asu.edu

    2015-08-15

    Highlights: • A mathematical dynamic model is developed for a passively cooled small modular reactor. • Reactor response associated single-phase natural circulation is analyzed. • A moving boundary model for a helical-coil steam generator is analyzed. • Dynamic responses of the overall model to representative perturbations are evaluated. • This compact model can be utilized for control system design. - Abstract: An analytical dynamic model for a passively cooled small modular reactor (SMR) is developed using a state-variable lumped parameter approach. Reactor power is represented by the generation time formulation of the point kinetics equations with a single combined neutron precursor group. The heat transfer process in the core is described via an overall heat transfer coefficient by defining two coolant lumps paired to a single fuel lump. In addition, a thermal–hydraulics model for single-phase natural circulation is incorporated. For the helical-coil steam generator, a moving-boundary model including subcooled, two-phase, and superheated regions is utilized. Finally, the hot leg riser and downcomer regions are expressed by first-order lags. The performance of the overall system described by ordinary differential equations (ODEs) is evaluated by the Simulink dynamic environment and directly using a MATLAB ODE solver recommended for stiff systems. Simulation results based on NuScale SMR design data show that the initial steady-state values for 100% power are within range of the design data and the model can predict the system dynamics due to typical perturbations, e.g., control rod movement and change in feedwater mass flow rate and temperature. The model developed in this work can be utilized as a foundation for designing and testing a suitable control algorithm for reactor thermal power.

  14. THE APPLICATION OF ACOUSTIC LOGGING METHOD IN THE MODEL AND PARAMETERS IDENTIFICATION OF ROCK MASS

    Institute of Scientific and Technical Information of China (English)

    于师建

    1999-01-01

    This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and complex rock beds are divided into a set of different bed groups and the equivalent mechanical model is to be built. Based on the modern control theory, according to the input data (convergence or settlement of the roof) and the output data (surface movement and deformation) of the system, the static parameters of equivalent rock beds can be derived from back calculation using the optimum method. Then the regression relationship between the dynamic and static parameters can be built. So the prediction of rock and ground movements for other areas in the same district can be done, when using this relationship with the acoustic logging data and density logging data in situ.

  15. Acoustical Measurement and Biot Model for Coral Reef Detection and Quantification

    Directory of Open Access Journals (Sweden)

    Henry M. Manik

    2016-01-01

    Full Text Available Coral reefs are coastal resources and very useful for marine ecosystems. Nowadays, the existence of coral reefs is seriously threatened due to the activities of blast fishing, coral mining, marine sedimentation, pollution, and global climate change. To determine the existence of coral reefs, it is necessary to study them comprehensively. One method to study a coral reef by using a propagation of sound waves is proposed. In this research, the measurement of reflection coefficient, transmission coefficient, acoustic backscattering, hardness, and roughness of coral reefs has been conducted using acoustic instruments and numerical modeling using Biot theory. The results showed that the quantification of the acoustic backscatter can classify the type of coral reef.

  16. Numerical modeling of undersea acoustics using a partition of unity method with plane waves enrichment

    Science.gov (United States)

    Hospital-Bravo, Raúl; Sarrate, Josep; Díez, Pedro

    2016-05-01

    A new 2D numerical model to predict the underwater acoustic propagation is obtained by exploring the potential of the Partition of Unity Method (PUM) enriched with plane waves. The aim of the work is to obtain sound pressure level distributions when multiple operational noise sources are present, in order to assess the acoustic impact over the marine fauna. The model takes advantage of the suitability of the PUM for solving the Helmholtz equation, especially for the practical case of large domains and medium frequencies. The seawater acoustic absorption and the acoustic reflectance of the sea surface and sea bottom are explicitly considered, and perfectly matched layers (PML) are placed at the lateral artificial boundaries to avoid spurious reflexions. The model includes semi-analytical integration rules which are adapted to highly oscillatory integrands with the aim of reducing the computational cost of the integration step. In addition, we develop a novel strategy to mitigate the ill-conditioning of the elemental and global system matrices. Specifically, we compute a low-rank approximation of the local space of solutions, which in turn reduces the number of degrees of freedom, the CPU time and the memory footprint. Numerical examples are presented to illustrate the capabilities of the model and to assess its accuracy.

  17. Elastic Changes of Capsule in a Rat Knee Contracture Model Assessed by Scanning Acoustic Microscopy

    Science.gov (United States)

    Hagiwara, Y.; Chimoto, E.; Ando, A.; Saijo, Y.; Itoi, E.

    Sound speed of a capsule in a rat knee contracture model was measured by scanning acoustic microscopy. There was no statistical significant difference in the anterior capsule compared with the control group. However, the sound speed of the posterior capsule was significantly greater compared with the control group after prolonged immobilization.

  18. Validation of an approximate model for the thermal behavior in acoustically driven bubbles

    NARCIS (Netherlands)

    Stricker, L.; Stricker, Laura; Prosperetti, Andrea; Lohse, Detlef

    2011-01-01

    The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles. Therefore, modeling of chemical reaction rates in bubbles requires an accurate evaluation of the temperature field and the heat exchange with the liquid. The aim of the

  19. Load influence on gear noise. [mathematical model for determining acoustic pressure level as function of load

    Science.gov (United States)

    Merticaru, V.

    1974-01-01

    An original mathematical model is proposed to derive equations for calculation of gear noise. These equations permit the acoustic pressure level to be determined as a function of load. Application of this method to three parallel gears is reported. The logical calculation scheme is given, as well as the results obtained.

  20. Accounting for false-positive acoustic detections of bats using occupancy models

    Science.gov (United States)

    Clement, Matthew J.; Rodhouse, Thomas J.; Ormsbee, Patricia C.; Szewczak, Joseph M.; Nichols, James D.

    2014-01-01

    1. Acoustic surveys have become a common survey method for bats and other vocal taxa. Previous work shows that bat echolocation may be misidentified, but common analytic methods, such as occupancy models, assume that misidentifications do not occur. Unless rare, such misidentifications could lead to incorrect inferences with significant management implications.

  1. High sensitivity of p-modes near the acoustic cutoff frequency to solar model parameters

    Science.gov (United States)

    Guenther, D. B.

    1991-01-01

    The p-mode frequencies of low l have been calculated for solar models with initial helium mass fraction varying from Y = 0.2753-0.2875. The differences in frequency of the p-modes in the frequency range, 2500-4500 microHz, do not exceed 1-5 microHz among the models. But in the vicinity of the acoustic cutoff frequency, near 5000 microHz the p-mode frequency differences are enhanced by a factor of 4. The enhanced sensitivity of p-modes near the acoustic cutoff frequency was further tested by calculating and comparing p-mode frequencies of low l for two solar models one incorporating the Eddington T-tau relation and the other the Krishna Swamy T-tau relation. Again, it is found that p-modes with frequencies near the acoustic cutoff frequency show a significant increase in sensitivity to the different T-tau relations, compared to lower frequency p-modes. It is noted that frequencies above the acoustic cutoff frequency are complex, hence, cannot be modeled by the adiabatic pulsation code (assumes real eigenfrequencies) used in these calculations.

  2. Towards a Comprehensive Model of Jet Noise Using an Acoustic Analogy and Steady RANS Solutions

    Science.gov (United States)

    Miller, Steven A. E.

    2013-01-01

    An acoustic analogy is developed to predict the noise from jet flows. It contains two source models that independently predict the noise from turbulence and shock wave shear layer interactions. The acoustic analogy is based on the Euler equations and separates the sources from propagation. Propagation effects are taken into account by calculating the vector Green's function of the linearized Euler equations. The sources are modeled following the work of Tam and Auriault, Morris and Boluriaan, and Morris and Miller. A statistical model of the two-point cross-correlation of the velocity fluctuations is used to describe the turbulence. The acoustic analogy attempts to take into account the correct scaling of the sources for a wide range of nozzle pressure and temperature ratios. It does not make assumptions regarding fine- or large-scale turbulent noise sources, self- or shear-noise, or convective amplification. The acoustic analogy is partially informed by three-dimensional steady Reynolds-Averaged Navier-Stokes solutions that include the nozzle geometry. The predictions are compared with experiments of jets operating subsonically through supersonically and at unheated and heated temperatures. Predictions generally capture the scaling of both mixing noise and BBSAN for the conditions examined, but some discrepancies remain that are due to the accuracy of the steady RANS turbulence model closure, the equivalent sources, and the use of a simplified vector Green's function solver of the linearized Euler equations.

  3. Computer programs for forward and inverse modeling of acoustic and electromagnetic data

    Science.gov (United States)

    Ellefsen, Karl J.

    2011-01-01

    A suite of computer programs was developed by U.S. Geological Survey personnel for forward and inverse modeling of acoustic and electromagnetic data. This report describes the computer resources that are needed to execute the programs, the installation of the programs, the program designs, some tests of their accuracy, and some suggested improvements.

  4. Improving Robustness of Deep Neural Network Acoustic Models via Speech Separation and Joint Adaptive Training

    Science.gov (United States)

    Narayanan, Arun; Wang, DeLiang

    2015-01-01

    Although deep neural network (DNN) acoustic models are known to be inherently noise robust, especially with matched training and testing data, the use of speech separation as a frontend and for deriving alternative feature representations has been shown to improve performance in challenging environments. We first present a supervised speech separation system that significantly improves automatic speech recognition (ASR) performance in realistic noise conditions. The system performs separation via ratio time-frequency masking; the ideal ratio mask (IRM) is estimated using DNNs. We then propose a framework that unifies separation and acoustic modeling via joint adaptive training. Since the modules for acoustic modeling and speech separation are implemented using DNNs, unification is done by introducing additional hidden layers with fixed weights and appropriate network architecture. On the CHiME-2 medium-large vocabulary ASR task, and with log mel spectral features as input to the acoustic model, an independently trained ratio masking frontend improves word error rates by 10.9% (relative) compared to the noisy baseline. In comparison, the jointly trained system improves performance by 14.4%. We also experiment with alternative feature representations to augment the standard log mel features, like the noise and speech estimates obtained from the separation module, and the standard feature set used for IRM estimation. Our best system obtains a word error rate of 15.4% (absolute), an improvement of 4.6 percentage points over the next best result on this corpus. PMID:26973851

  5. Unsupervised acoustic model training: comparing South African English and isiZulu

    CSIR Research Space (South Africa)

    Kleynhans, N

    2015-11-01

    Full Text Available Large amounts of untranscribed audio data are generated every day. These audio resources can be used to develop robust acoustic models that can be used in a variety of speech-based systems. Manually transcribing this data is resource intensive...

  6. Real-time structural integrity monitoring using a passive quadrature demodulated, localised Michelson optical fibre interferometer capable of simultaneous strain and acoustic emission sensing

    Science.gov (United States)

    Tapanes, Edward

    1991-12-01

    A Michelson Fiber optic sensor (MFOS) is described for in-situ strain and vibration monitoring as well as acoustic emission detection in composite material structures. The phase sensitive fiber optic sensor is localized, all-fiber, and intrinsic. The MFOS was successfully embedded in Kevlar/epoxy and graphite/epoxy thermosets as well as graphite/PEEK thermoplastic in order to perform local strain and vibration measurements at the lamina level. A technique allowing acoustic emission detection in parallel with strain and vibration monitoring is illustrated.

  7. Combined Acoustic and Pronunciation Modelling for Non-Native Speech Recognition

    CERN Document Server

    Bouselmi, Ghazi; Illina, Irina

    2007-01-01

    In this paper, we present several adaptation methods for non-native speech recognition. We have tested pronunciation modelling, MLLR and MAP non-native pronunciation adaptation and HMM models retraining on the HIWIRE foreign accented English speech database. The ``phonetic confusion'' scheme we have developed consists in associating to each spoken phone several sequences of confused phones. In our experiments, we have used different combinations of acoustic models representing the canonical and the foreign pronunciations: spoken and native models, models adapted to the non-native accent with MAP and MLLR. The joint use of pronunciation modelling and acoustic adaptation led to further improvements in recognition accuracy. The best combination of the above mentioned techniques resulted in a relative word error reduction ranging from 46% to 71%.

  8. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano

    Science.gov (United States)

    Falaize, Antoine; Hélie, Thomas

    2017-03-01

    This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.

  9. Student Modelling in an Intelligent Tutoring System for the Passive Voice of English Language

    Directory of Open Access Journals (Sweden)

    Dimitris Maras

    2000-01-01

    Full Text Available This paper describes an intelligent multimedia tutoring system for the passive voice of the English grammar. The system may be used to present theoretical issues about the passive voice and to provide exercises that the student may solve. The main focus of the tutor is on the student's error diagnosis process, which is performed by the student modelling component. When the student types the solution to an exercise, the system examines the correctness of the answer. If the student's answer has been erroneous it attempts to diagnose the underlying misconception of the mistake. In order to provide individualised help, the system holds a profile for every student, the long term student model. The student’s progress and his/her usual mistakes are recorded to this long term student model. This kind of information is used for the individualised error diagnosis of the student in subsequent sessions. In addition, the information stored about the student can also be used for the resolution of an arising ambiguity, as to what the underlying cause of a student error has been.

  10. Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic 'liquid diode'.

    Science.gov (United States)

    Comanns, Philipp; Buchberger, Gerda; Buchsbaum, Andreas; Baumgartner, Richard; Kogler, Alexander; Bauer, Siegfried; Baumgartner, Werner

    2015-08-01

    Moisture-harvesting lizards such as the Texas horned lizard (Iguanidae: Phrynosoma cornutum) live in arid regions. Special skin adaptations enable them to access water sources such as moist sand and dew: their skin is capable of collecting and transporting water directionally by means of a capillary system between the scales. This fluid transport is passive, i.e. requires no external energy, and directs water preferentially towards the lizard's snout. We show that this phenomenon is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, we used these principles to develop a technical prototype design. Building upon the Young-Laplace equation, we derived a theoretical model for the local behaviour of the liquid in such capillaries. We present a global model for the penetration velocity validated by experimental data. Artificial surfaces designed in accordance with this model prevent liquid flow in one direction while sustaining it in the other. Such passive directional liquid transport could lead to process improvements and reduction of resources in many technical applications.

  11. A speech processing study using an acoustic model of a multiple-channel cochlear implant

    Science.gov (United States)

    Xu, Ying

    1998-10-01

    A cochlear implant is an electronic device designed to provide sound information for adults and children who have bilateral profound hearing loss. The task of representing speech signals as electrical stimuli is central to the design and performance of cochlear implants. Studies have shown that the current speech- processing strategies provide significant benefits to cochlear implant users. However, the evaluation and development of speech-processing strategies have been complicated by hardware limitations and large variability in user performance. To alleviate these problems, an acoustic model of a cochlear implant with the SPEAK strategy is implemented in this study, in which a set of acoustic stimuli whose psychophysical characteristics are as close as possible to those produced by a cochlear implant are presented on normal-hearing subjects. To test the effectiveness and feasibility of this acoustic model, a psychophysical experiment was conducted to match the performance of a normal-hearing listener using model- processed signals to that of a cochlear implant user. Good agreement was found between an implanted patient and an age-matched normal-hearing subject in a dynamic signal discrimination experiment, indicating that this acoustic model is a reasonably good approximation of a cochlear implant with the SPEAK strategy. The acoustic model was then used to examine the potential of the SPEAK strategy in terms of its temporal and frequency encoding of speech. It was hypothesized that better temporal and frequency encoding of speech can be accomplished by higher stimulation rates and a larger number of activated channels. Vowel and consonant recognition tests were conducted on normal-hearing subjects using speech tokens processed by the acoustic model, with different combinations of stimulation rate and number of activated channels. The results showed that vowel recognition was best at 600 pps and 8 activated channels, but further increases in stimulation rate and

  12. A passive movement method for parameter estimation of a musculo-skeletal arm model incorporating a modified hill muscle model.

    Science.gov (United States)

    Yu, Tung Fai; Wilson, Adrian J

    2014-05-01

    In this paper we present an experimental method of parameterising the passive mechanical characteristics of the bicep and tricep muscles in vivo, by fitting the dynamics of a two muscle arm model incorporating anatomically meaningful and structurally identifiable modified Hill muscle models to measured elbow movements. Measurements of the passive flexion and extension of the elbow joint were obtained using 3D motion capture, from which the elbow angle trajectories were determined and used to obtain the spring constants and damping coefficients in the model through parameter estimation. Four healthy subjects were used in the experiments. Anatomical lengths and moment of inertia values of the subjects were determined by direct measurement and calculation. There was good reproducibility in the measured arm movement between trials, and similar joint angle trajectory characteristics were seen between subjects. Each subject had their own set of fitted parameter values determined and the results showed good agreement between measured and simulated data. The average fitted muscle parallel spring constant across all subjects was 143 N/m and the average fitted muscle parallel damping constant was 1.73 Ns/m. The passive movement method was proven to be successful, and can be applied to other joints in the human body, where muscles with similar actions are grouped together. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Passive Wireless Temperature Sensors with Enhanced Sensitivity and Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) temperature sensors with enhanced sensitivity and detection range for NASA application...

  14. Perfectly matched layer for an elastic parabolic equation model in ocean acoustics

    Science.gov (United States)

    Xu, Chuanxiu; Zhang, Haigang; Piao, Shengchun; Yang, Shi'e.; Sun, Sipeng; Tang, Jun

    2017-02-01

    The perfectly matched layer (PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation (PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide (Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer (ABL) both in acoustic and seismo-acoustic sound propagation modeling.

  15. Odontocete Studies on the Pacific Missile Range Facility in July/August 2013: Satellite-Tagging, Photo-Identification, and Passive Acoustic Monitoring

    Science.gov (United States)

    2014-05-02

    beaked whale vocalizations when questions arise. It has also proven useful for collecting time and frequency images and broadband cuts of selected...Applied Acoustics 67:1091-1105. Moretti, D.J, T. Marques , L. Thomas, N. DiMarzio, A. Dilley, R. Morrissey, E. McCarthy, J. Ward, and S. Jarvis. 2010

  16. Modelling and closed loop control of near-field acoustically levitated objects

    CERN Document Server

    Ilssar, Dotan; Flashner, Henryk

    2016-01-01

    The present paper introduces a novel approach for modelling the governing, slow dynamics of near-field acoustically levitated objects. This model is sufficiently simple and concise to enable designing a closed-loop controller, capable of accurate vertical positioning of a carried object. The near-field acoustic levitation phenomenon exploits the compressibility, the nonlinearity and the viscosity of the gas trapped between a rapidly oscillating surface and a freely suspended planar object, to elevate its time averaged pressure above the ambient pressure. By these means, the vertical position of loads weighing up to several kilograms can be varied between dozens and hundreds of micrometers. The simplified model developed in this paper is a second order ordinary differential equation where the height-dependent stiffness and damping terms of the gas layer are derived explicitly. This simplified model replaces a traditional model consisting of the equation of motion of the levitated object, coupled to a nonlinear...

  17. Passive Immunotherapy Protects against Enteric Invasion and Lethal Sepsis in a Murine Model of Gastrointestinal Anthrax.

    Science.gov (United States)

    Huang, Bruce; Xie, Tao; Rotstein, David; Fang, Hui; Frucht, David M

    2015-09-29

    The principal portal for anthrax infection in natural animal outbreaks is the digestive tract. Enteric exposure to anthrax, which is difficult to detect or prevent in a timely manner, could be exploited as an act of terror through contamination of human or animal food. Our group has developed a novel animal model of gastrointestinal (GI) anthrax for evaluation of disease pathogenesis and experimental therapeutics, utilizing vegetative Bacillus anthracis (Sterne strain) administered to A/J mice (a complement-deficient strain) by oral gavage. We hypothesized that a humanized recombinant monoclonal antibody (mAb) * that neutralizes the protective antigen (PA) component of B. anthracis lethal toxin (LT) and edema toxin (ET) could be an effective treatment. Although the efficacy of this anti-anthrax PA mAb has been shown in animal models of inhalational anthrax, its activity in GI infection had not yet been ascertained. We hereby demonstrate that passive immunotherapy with anti-anthrax PA mAb, administered at the same time as gastrointestinal exposure to B. anthracis, prevents lethal sepsis in nearly all cases (>90%), while a delay of up to forty-eight hours in treatment still greatly reduces mortality following exposure (65%). Moreover, passive immunotherapy protects against enteric invasion, associated mucosal injury and subsequent dissemination by gastrointestinal B. anthracis, indicating that it acts to prevent the initial stages of infection. * Expired raxibacumab being cycled off the Strategic National Stockpile; biological activity confirmed by in vitro assay.

  18. From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    Directory of Open Access Journals (Sweden)

    Karin John

    2016-08-01

    Full Text Available Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid- liquid, solid-gas or liquid-gas. The formation of biofilms starts with the attachment of individual bac- teria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which de- scribes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading of biofilms. It explicitly includes the wetting properties of the biofilm on the agar substrate via a dis- joining pressure and can therefore give insight into the interplay between passive surface forces and bioactive growth processes.

  19. A partial hearing animal model for chronic electro-acoustic stimulation

    Science.gov (United States)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual

  20. Sea Turtle Acoustic Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic tags were attached to sea turtles captured in various fishing gear and the animals are either actively or passively tracked

  1. Modeling of acoustic and gravity waves propagation through the atmosphere with spectral element method

    Science.gov (United States)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2014-12-01

    Low-frequency events such as tsunamis generate acoustic and gravity waves which quickly propagate in the atmosphere. Since the atmospheric density decreases exponentially as the altitude increases and from the conservation of the kinetic energy, those waves see their amplitude raise (to the order of 105 at 200km of altitude), allowing their detection in the upper atmosphere. Various tools have been developed through years to model this propagation, such as normal modes modeling or to a greater extent time-reversal techniques, but none offer a low-frequency multi-dimensional atmospheric wave modelling.A modeling tool is worthy interest since there are many different phenomena, from quakes to atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool.Starting from the SPECFEM program that already propagate waves in solid, porous or fluid media using a spectral element method, this work offers a tool with the ability to model acoustic and gravity waves propagation in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source.Atmospheric attenuation is required in a proper modeling framework since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals. The bottom forcing feature has been implemented due to its ability to easily model the coupling with the Earth's or ocean's surface (that vibrates when a surface wave go through it) but also huge atmospheric events.

  2. Numerical modeling of acoustic and gravity waves propagation in the atmosphere using a spectral element method

    Science.gov (United States)

    Martin, Roland; Brissaud, Quentin; Garcia, Raphael; Komatitsch, Dimitri

    2015-04-01

    During low-frequency events such as tsunamis, acoustic and gravity waves are generated and quickly propagate in the atmosphere. Due to the exponential decrease of the atmospheric density with the altitude, the conservation of the kinetic energy imposes that the amplitude of those waves increases (to the order of 105 at 200km of altitude), which allows their detection in the upper atmosphere. This propagation bas been modelled for years with different tools, such as normal modes modeling or to a greater extent time-reversal techniques, but a low-frequency multi-dimensional atmospheric wave modelling is still crucially needed. A modeling tool is worth of interest since there are many different sources, as earthquakes or atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool. By adding some developments to the SPECFEM package that already models wave propagation in solid, porous or fluid media using a spectral element method, we show here that acoustic and gravity waves propagation can now be modelled in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source. The bottom forcing feature has been implemented to easily model the coupling with the Earth's or ocean's vibrating surfaces but also huge atmospheric events. Atmospheric attenuation is also introduced since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals.

  3. The Modeling and Simulation of Underwater Acoustic Energy Exposure Due to Near Surface Explosions on Marine Mammals

    Science.gov (United States)

    2016-06-13

    predict and assess the impacts of simultaneous or intermittent underwater acoustic events on marine animals . It is a generic exposure model , one that can...Avoidance Model Figure-4. Linear A voidance Model Mammal Paths DOSIMETER RECORD A dosimeter is assigned to each simulated animal and records information... model for the sources. Acoustic exposure information is then stored in the dosimeter assigned to each simulated animal over the course of the entire

  4. Modeling hemodynamic responses in auditory cortex at 1.5 T using variable duration imaging acoustic noise.

    Science.gov (United States)

    Hu, Shuowen; Olulade, Olumide; Castillo, Javier Gonzalez; Santos, Joseph; Kim, Sungeun; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2010-02-15

    A confound for functional magnetic resonance imaging (fMRI), especially for auditory studies, is the presence of imaging acoustic noise generated mainly as a byproduct of rapid gradient switching during volume acquisition and, to a lesser extent, the radiofrequency transmit. This work utilized a novel pulse sequence to present actual imaging acoustic noise for characterization of the induced hemodynamic responses and assessment of linearity in the primary auditory cortex with respect to noise duration. Results show that responses to brief duration (46 ms) imaging acoustic noise is highly nonlinear while responses to longer duration (>1 s) imaging acoustic noise becomes approximately linear, with the right primary auditory cortex exhibiting a higher degree of nonlinearity than the left for the investigated noise durations. This study also assessed the spatial extent of activation induced by imaging acoustic noise, showing that the use of modeled responses (specific to imaging acoustic noise) as the reference waveform revealed additional activations in the auditory cortex not observed with a canonical gamma variate reference waveform, suggesting an improvement in detection sensitivity for imaging acoustic noise-induced activity. Longer duration (1.5 s) imaging acoustic noise was observed to induce activity that expanded outwards from Heschl's gyrus to cover the superior temporal gyrus as well as parts of the middle temporal gyrus and insula, potentially affecting higher level acoustic processing.

  5. Study of acoustic bubble cluster dynamics using a lattice Boltzmann model

    Institute of Scientific and Technical Information of China (English)

    Mahdi Daemi; Mohammad Taeibi-Rahni; Hamidreza Massah

    2015-01-01

    Search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor. A long list of complex phenomena underlies physics of this problem. In the past decades, the lattice Boltzmann (LB) method has emerged as a promising tool to address such complexities. In this regard, we have applied a 121-velocity multiphase lattice Boltzmann model (LBM) to an asymmetric cluster of bubbles in an acoustic field. A problem as a benchmark is studied to check the consistency and applicability of the model. The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics, and the screening effect on an acoustic multi-bubble medium. It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.

  6. Three-dimensional point-cloud room model in room acoustics simulations

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte

    2013-01-01

    and rotated around the vertical axis while for the second one the device is moved within the room. Benefits of both approaches were analyzed. The device's depth sensor provides a set of points in a three-dimensional coordinate system which represents scanned surfaces of the room interior. These data are used...... to build a 3D point-cloud model of the room. Several models are created to meet requirements of different room acoustics simulation algorithms: plane fitting and uniform voxel grid for geometric methods and triangulation mesh for the numerical methods. Advantages of the proposed method over the traditional...... acquisition and its representation with a 3D point-cloud model, as well as utilization of such a model for the room acoustics simulations. A room is scanned with a commercially available input device (Kinect for Xbox360) in two different ways; the first one involves the device placed in the middle of the room...

  7. Three-dimensional point-cloud room model for room acoustics simulations

    DEFF Research Database (Denmark)

    Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte

    2013-01-01

    and rotated around the vertical axis while for the second one the device is moved within the room. Benefits of both approaches were analyzed. The device's depth sensor provides a set of points in a three-dimensional coordinate system which represents scanned surfaces of the room interior. These data are used...... to build a 3D point-cloud model of the room. Several models are created to meet requirements of different room acoustics simulation algorithms: plane fitting and uniform voxel grid for geometric methods and triangulation mesh for the numerical methods. Advantages of the proposed method over the traditional...... acquisition and its representation with a 3D point-cloud model, as well as utilization of such a model for the room acoustics simulations. A room is scanned with a commercially available input device (Kinect for Xbox360) in two different ways; the first one involves the device placed in the middle of the room...

  8. Calculation of radiation acoustical fields from phased arrays with nonparaxial multi-Gaussian beam model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xinyu; GANG Tie; ZHANG Bixing

    2009-01-01

    A nonparaxial multi-Gaussian beam model based on the rectangular aperture is proposed in order to overcome the hmitation of paraxial Gaussian beam model which losing accuracy in off-axis beam fields. With the method, acoustical field generated by an ultra-sonic linear phased array transducer is calculated and compared with the corresponding field obtained by Rayleigh-Sommerfeld integral, paraxial multi-Gaussian beam model, and Fraunhof-fer approximation method. Simulation examples show that nonparaxial multi-Gaussian beam model is not limited by the paraxial approximation condition and can predict efficiently and accurately the acoustical field radiated by a linear phased array transducer over a wide range of steering angles.

  9. What can we learn from lithosphere-scale models of passive margins?

    Science.gov (United States)

    Scheck-Wenderoth, Magdalena; Maystrenko, Yuriy; Hirsch, Katja K.

    2010-05-01

    To understand the present day structure and the mechanisms of subsidence at passive margins we assess first-order heterogeneities in the sediments, crust and upper mantle. Thus, we explore how far a good knowledge of the sedimentary and upper crustal configuration can provide constraints for the deeper parts of the system and how far the preserved record of deposits holds the key to unravel margin history. The present-day geometry and distribution of physical properties within the upper and middle crust is integrated into data-based, 3D structural models, which, in turn, provide the base for the analysis of the deep crust and the lithospheric mantle. Different configurations of the deep lithosphere can be tested against two independent observables: gravity and temperature, using isostatic, 3D gravity and 3D thermal modelling. Results from the 55 mio year old Norwegian passive volcanic margin indicate that there, the oceanic lithospheric mantle is less dense than the continental lithospheric mantle (Maystrenko and Scheck-Wenderoth, 2009), that this is mainly due to thermal effects (Scheck-Wenderoth and Maystrenko, 2008) and that the transition between continental and oceanic lithosphere thickness is sharp (Maystrenko and Scheck-Wenderoth, 2009). Furthermore, the thickness of the young oceanic lithosphere in the North Atlantic is smaller than predicted by plate cooling models but consistent with seismologically derived estimates. We also find that the oceanic lithosphere-asthenosphere boundary strongly influences the shallow thermal field of the margin and that surface heat flow increases from the continent to the ocean. In contrast, at the South Atlantic margin offshore South Africa, a thicker and older (~130 mio years) oceanic lithosphere is present. Based on previous studies of the crustal configuration (Hirsch et al., 2009), first lithosphere configurations have been tested. There the transition between continent and ocean appears equilibrated and surface heat

  10. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells.

    Science.gov (United States)

    Rapp, M; Segev, I; Yarom, Y

    1994-01-01

    1. Purkinje cells (PCs) from guinea-pig cerebellar slices were physiologically characterized using intracellular techniques. Extracellular caesium ions were used to linearize the membrane properties of PCs near the resting potential. Under these conditions the average input resistance, RN, was 29 M omega, the average system time constant, tau 0, was 82 ms and the average cable length, LN, was 0.59. 2. Three PCs were fully reconstructed following physiological measurements and staining with horseradish peroxidase. Assuming that each spine has an area of 1 micron 2 and that the spine density over the spiny dendrites is ten spines per micrometre length, the total membrane area of each PC is approximately 150,000 microns 2, of which approximately 100,000 microns 2 is in the spines. 3. Detailed passive cable and compartmental models were built for each of the three reconstructed PCs. Computational methods were devised to incorporate globally the huge number of spines into these models. In all three cells the models predict that the specific membrane resistivity, Rm, of the soma is much lower than the dendritic Rm (approximately 500 and approximately 100,000 omega cm2 respectively). The specific membrane capacitance, Cm, is estimated to be 1.5-2 muF cm-2 and the specific cytoplasm resistivity, Ri, is 250 omega cm. 4. The average cable length of the dendrites according to the model is 0.13 lambda, suggesting that under caesium conditions PCs are electrically very compact. Brief somatic spikes, however, are expected to attenuate 30-fold when spreading passively into the dendritic terminals. A simulated 200 Hz train of fast, 90 mV somatic spikes produced a smooth 12 mV steady depolarization at the dendritic terminals. 5. A transient synaptic conductance increase, with a 1 nS peak at 0.5 ms and a driving force of 60 mV, is expected to produce approximately 20 mV peak depolarization at the spine head membrane. This EPSP then attenuates between 200- and 900-fold into the soma

  11. A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion.

    Science.gov (United States)

    Kia, Mohammad; Schafer, Kevin; Lipman, Joseph; Cross, Michael; Mayman, David; Pearle, Andrew; Wickiewicz, Thomas; Imhauser, Carl

    2016-05-01

    A multibody model of the knee was developed and the predicted ligament forces and kinematics during passive flexion corroborated subject-specific measurements obtained from a human cadaveric knee that was tested using a robotic manipulator. The model incorporated a novel strategy to estimate the slack length of ligament fibers based on experimentally measured ligament forces at full extension and included multifiber representations for the cruciates. The model captured experimentally measured ligament forces (≤ 5.7 N root mean square (RMS) difference), coupled internal rotation (≤ 1.6 deg RMS difference), and coupled anterior translation (≤ 0.4 mm RMS difference) through 130 deg of passive flexion. This integrated framework of model and experiment improves our understanding of how passive structures, such as ligaments and articular geometries, interact to generate knee kinematics and ligament forces.

  12. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    Science.gov (United States)

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level.

  13. Radiative Transfer Modeling of Passive Circumstellar Disks: Application to HR4796A

    CERN Document Server

    Currie, T; Henning, T; Furlan, E; Herter, T; Henning, Th.

    2003-01-01

    We present a radiative transfer model which computes the spectral energy distribution of a passive, irradiated, circumstellar disk, assuming the grains are in radiative equilibrium. Dependence on radial density profile, grain temperature estimation, and optical depth profiles on the output SED are discussed. The bist fit model for HR4796A has a minimum and maximum spherical grain size of 2.2 and 1000 \\mu$m respectively, a size distribution slightly steeper than the "classical" -3.5 MRN power law, grains composed of silicates, trolite, ice, and organics and a peak radial density of 1.0 x 10^-17 g cm^-2 at 70 AU, yielding a disk mass of roughly 2 M_{oplus}$.

  14. EM Simulation Accuracy Enhancement for Broadband Modeling of On-Wafer Passive Components

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Jiang, Chenhui; Hadziabdic, Dzenan;

    2007-01-01

    This paper describes methods for accuracy enhancement in broadband modeling of on-wafer passive components using electromagnetic (EM) simulation. It is shown that standard excitation schemes for integrated component simulation leads to poor correlation with on-wafer measurements beyond the lower...... GHz frequency range. We show that this is due to parasitic effects and higher-order modes caused by the excitation schemes. We propose a simple equivalent circuit for the parasitic effects in the well-known ground ring excitation scheme. An extended L-2L calibration method is shown to improve...... significantly the accuracy of the on-wafer component modeling, when applied to parasitic effect removal associated with the excitation schemes....

  15. Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior.

    Science.gov (United States)

    Shim, Jongmin; Grosberg, Anna; Nawroth, Janna C; Parker, Kevin Kit; Bertoldi, Katia

    2012-03-15

    Recent progress in tissue engineering has made it possible to build contractile bio-hybrid materials that undergo conformational changes by growing a layer of cardiac muscle on elastic polymeric membranes. Further development of such muscular thin films for building actuators and powering devices requires exploring several design parameters, which include the alignment of the cardiac myocytes and the thickness/Young's modulus of elastomeric film. To more efficiently explore these design parameters, we propose a 3-D phenomenological constitutive model, which accounts for both the passive deformation including pre-stretch and the active behavior of the cardiomyocytes. The proposed 3-D constitutive model is implemented within a finite element framework, and can be used to improve the current design of bio-hybrid thin films and help developing bio-hybrid constructs capable of complex conformational changes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Anomalous Scaling in the Anisotropic Sectors of the Kriachnan Model of Passive Scalar Advection

    CERN Document Server

    Lvov, A I; Procaccia, I; L'vov, Itai Arad Victor S.; Podivilov, Evgenii; Procaccia, Itamar

    1999-01-01

    Kraichnan's model of passive scalar advection is studied as a case model for understanding the anomalous scaling in the anisotropic sectors. We show here that the solutions of the Kraichnan equation for the $n$ order correlations foliate into sectors that are classified by the irreducible representations of the SO(d) group. We find a discrete spectrum of universal anomalous exponents in every sector. Generically the correlations and structure functions appear as sums over all the contributions, with non-universal amplitudes which are determined by the anisotropic boundary conditions. The isotropic sector is always characterized by the smallest exponent, and therefore for sufficiently small scales local isotropy is always restored. The calculation of the anomalous exponents is done in two complementary ways. In the first they are obtained from the analysis of correlations of gradient fields. The corresponding theory involves the control of logarithmic divergences which translate into anomalous scaling with the...

  17. From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    CERN Document Server

    Trinschek, Sarah; Thiele, Uwe

    2016-01-01

    Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid-liquid, solid-gas or liquid-gas). The formation of biofilms starts with the attachment of individual bacteria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which describes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading o...

  18. Role of passive deformation on propulsion through a lumped torsional flexibility model

    Science.gov (United States)

    Arora, Nipun; Gupta, Amit

    2016-11-01

    Scientists and biologists have been affianced in a deeper examination of insect flight to develop an improved understanding of the role of flexibility on aerodynamic performance. Here, we mimic a flapping wing through a fluid-structure interaction framework based upon a lumped torsional flexibility model. The developed fluid and structural solvers together determine the aerodynamic forces and wing deformation, respectively. An analytical solution to the simplified single-spring structural dynamics equation is established to substantiate simulations. It is revealed that the dynamics of structural deformation is governed by the balance between inertia, stiffness and aerodynamics, where the former two oscillate at the plunging frequency and the latter oscillates at twice the plunging frequency. We demonstrate that an induced phase difference between plunging and passive pitching is responsible for a higher thrust coefficient. This phase difference is also shown to be dependent on aerodynamics to inertia and natural to plunging frequency ratios. For inertia dominated flows, pitching and plunging always remain in phase. As the aerodynamics dominates, a large phase difference is induced which is accountable for a large passive deformation and higher thrust. Authors acknowledge the financial support received from the Aeronautics Research and Development Board (ARDB) under SIGMA Project No. 1705 and thank the IIT Delhi HPC facility for computational resources.

  19. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    Science.gov (United States)

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments.

  20. Acoustic Image Models for Obstacle Avoidance with Forward-Looking Sonar

    Science.gov (United States)

    Masek, T.; Kölsch, M.

    Long-range forward-looking sonars (FLS) have recently been deployed in autonomous unmanned vehicles (AUV). We present models for various features in acoustic images, with the goal of using this sensor for altitude maintenance, obstacle detection and obstacle avoidance. First, we model the backscatter and FLS noise as pixel-based, spatially-varying intensity distributions. Experiments show that these models predict noise with an accuracy of over 98%. Next, the presence of acoustic noise from two other sources including a modem is reliably detected with a template-based filter and a threshold learned from training data. Lastly, the ocean floor location and orientation is estimated with a gradient-descent method using a site-independent template, yielding sufficiently accurate results in 95% of the frames. Temporal information is expected to further improve the performance.

  1. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    If a simulation tool is to be used for the optimization of absorbent ceilings, it is important that the simulation tool includes a good description of the surface. This study therefore aims at developing a model which can describe surfaces by their impedance values and not just by their statistical...... absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections...... and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection...

  2. Automatic intelligibility assessment of speakers after laryngeal cancer by means of acoustic modeling.

    Science.gov (United States)

    Bocklet, Tobias; Riedhammer, Korbinian; Nöth, Elmar; Eysholdt, Ulrich; Haderlein, Tino

    2012-05-01

    One aspect of voice and speech evaluation after laryngeal cancer is acoustic analysis. Perceptual evaluation by expert raters is a standard in the clinical environment for global criteria such as overall quality or intelligibility. So far, automatic approaches evaluate acoustic properties of pathologic voices based on voiced/unvoiced distinction and fundamental frequency analysis of sustained vowels. Because of the high amount of noisy components and the increasing aperiodicity of highly pathologic voices, a fully automatic analysis of fundamental frequency is difficult. We introduce a purely data-driven system for the acoustic analysis of pathologic voices based on recordings of a standard text. Short-time segments of the speech signal are analyzed in the spectral domain, and speaker models based on this information are built. These speaker models act as a clustered representation of the acoustic properties of a person's voice and are thus characteristic for speakers with different kinds and degrees of pathologic conditions. The system is evaluated on two different data sets with speakers reading standardized texts. One data set contains 77 speakers after laryngeal cancer treated with partial removal of the larynx. The other data set contains 54 totally laryngectomized patients, equipped with a Provox shunt valve. Each speaker was rated by five expert listeners regarding three different criteria: strain, voice quality, and speech intelligibility. We show correlations for each data set with r and ρ≥0.8 between the automatic system and the mean value of the five raters. The interrater correlation of one rater to the mean value of the remaining raters is in the same range. We thus assume that for selected evaluation criteria, the system can serve as a validated objective support for acoustic voice and speech analysis. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  3. Acoustic streaming effects in megasonic cleaning of EUV photomasks: a continuum model

    Science.gov (United States)

    Kapila, Vivek; Deymier, Pierre A.; Shende, Hrishikesh; Pandit, Viraj; Raghavan, Srini; Eschbach, Florence O.

    2005-11-01

    Removal of nano-scale contaminant particles from the photomasks is of critical importance to the implementation of EUV lithography for 32nm node. Megasonic cleaning has traditionally been used for photomask cleaning and extensions to sub 50nm particulates removal is being considered as a pattern damage free cleaning approach. Several mechanisms for removal are believed to be active in megasonic cleaning systems, e.g., cavitation, and acoustic streaming (Eckart, Schlichting, and microstreaming). It is often difficult to separate the effects of these individual mechanisms on contamination removal in a conventional experimental setup. Therefore, a theoretical approach is undertaken in this work with a focus on determining the contribution of acoustic streaming in cleaning process. A continuum model is used to describe the interaction between megasonic waves and a substrate (fused silica) immersed in a fluid (water). The model accounts for the viscous nature of the fluid. We calculate the acoustic vibrational modes of the system. These in turn are used to determine the acoustic streaming forces that lead to Schlichting streaming in a narrow acoustic boundary layer at the substrate/fluid interface. These forces are subsequently used to estimate the streaming velocities that may in turn apply a pressure and drag force on the contaminant particles adhering to the substrate. These effects are calculated as a function of angle of incidence, frequency and intensity of the megasonic wave. The relevance of this study is then discussed in the context of the cleaning efficiency and pattern damage in competing megasonic cleaning technologies, such as immersion, and nozzle-based systems.

  4. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling

    Science.gov (United States)

    Sáňka, Ondřej; Melymuk, Lisa; Čupr, Pavel; Dvorská, Alice; Klánová, Jana

    2014-10-01

    This study introduces a new combined air concentration measurement and modeling approach that we propose can be useful in medium and long term air quality assessment. A dispersion study was carried out for four high molecular weight polycyclic aromatic hydrocarbons (PAHs) in an urban area with industrial, traffic and domestic heating sources. A geographic information system (GIS) was used both for processing of input data as well as visualization of the modeling results. The outcomes of the dispersion model were compared to the results of passive air sampling (PAS). Despite discrepancies between measured and modeled concentrations, an approach combining the two techniques is promising for future air quality assessment. Differences between measured and modeled concentrations, in particular when measured values exceed the modeled concentrations, are indicative of undocumented, sporadic pollutant sources. Thus, these differences can also be useful for assessing and refining emission inventories.

  5. Nonlinear Dynamic Modeling and Simulation of a Passively Cooled Small Modular Reactor

    Science.gov (United States)

    Arda, Samet Egemen

    A nonlinear dynamic model for a passively cooled small modular reactor (SMR) is developed. The nuclear steam supply system (NSSS) model includes representations for reactor core, steam generator, pressurizer, hot leg riser and downcomer. The reactor core is modeled with the combination of: (1) neutronics, using point kinetics equations for reactor power and a single combined neutron group, and (2) thermal-hydraulics, describing the heat transfer from fuel to coolant by an overall heat transfer resistance and single-phase natural circulation. For the helical-coil once-through steam generator, a single tube depiction with time-varying boundaries and three regions, i.e., subcooled, boiling, and superheated, is adopted. The pressurizer model is developed based upon the conservation of fluid mass, volume, and energy. Hot leg riser and downcomer are treated as first-order lags. The NSSS model is incorporated with a turbine model which permits observing the power with given steam flow, pressure, and enthalpy as input. The overall nonlinear system is implemented in the Simulink dynamic environment. Simulations for typical perturbations, e.g., control rod withdrawal and increase in steam demand, are run. A detailed analysis of the results show that the steady-state values for full power are in good agreement with design data and the model is capable of predicting the dynamics of the SMR. Finally, steady-state control programs for reactor power and pressurizer pressure are also implemented and their effect on the important system variables are discussed.

  6. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.

    Science.gov (United States)

    Buogo, Silvano; Cannelli, Giovanni B

    2002-06-01

    The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse.

  7. Issues in acoustic modeling of speech for automatic speech recognition

    OpenAIRE

    Gong, Yifan; Haton, Jean-Paul; Mari, Jean-François

    1994-01-01

    Projet RFIA; Stochastic modeling is a flexible method for handling the large variability in speech for recognition applications. In contrast to dynamic time warping where heuristic training methods for estimating word templates are used, stochastic modeling allows a probabilistic and automatic training for estimating models. This paper deals with the improvement of stochastic techniques, especially for a better representation of time varying phenomena.

  8. Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes

    Science.gov (United States)

    2014-09-30

    hydrostatic model, the internal tide raytrace model, and the KdV-type nonhydrostatic wave evolution model. (upper left) A time snapshot of upslope...Jackson [11] showing, in satellite synthetic aperture radar (SAR) data, internal waves traveling northward, which is to the right of Hudson Canyon

  9. A model for the transfer of passive immunity against Newcastle disease and avian influenza in specific pathogen free chickens.

    Science.gov (United States)

    Lardinois, Amélyne; van den Berg, Thierry; Lambrecht, Bénédicte; Steensels, Mieke

    2014-01-01

    Chicks possess maternally derived antibody (MDA) against pathogens and vaccines previously encountered by the dams. This passive immunity is important in early life, when the immune system is immature and unable to fight off infection. On the other hand, MDA can also affect the development of the immune system and interfere with vaccination against avian diseases such as Newcastle disease (ND) and avian influenza (AI). The effect of MDA is generally investigated by studying the progeny of vaccinated dams, which is time-consuming, poorly flexible and expensive. Moreover, the antibody titres obtained are not homogeneous. In this study, a model was developed to offer a faster, more reproducible and cheaper way to study passive immunity in specific pathogen free chickens by injection of a polyclonal serum into the egg yolk at embryonic day 14, combined with an intraperitoneal injection at day 1. A satisfactory model, with consistent, homogeneous antibody titres, as well as persistence close to natural passive immunity, could be obtained for ND virus. On the other hand, the application of this optimized protocol in an H5 AI context induced only a low artificial passive immunity compared with that described in the literature for the progeny of AI vaccinated dams. This artificial model should facilitate future studies regarding the effect of passive immunity on vaccine efficacy at a young age and its effect on immune system development.

  10. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.

    Science.gov (United States)

    Lee, Kang Il; Hughes, E R; Humphrey, V F; Leighton, T G; Choi, Min Joo

    2007-01-01

    The Biot and the modified Biot-Attenborough (MBA) models have been found useful to understand ultrasonic wave propagation in cancellous bone. However, neither of the models, as previously applied to cancellous bone, allows for the angular dependence of acoustic properties with direction. The present study aims to account for the acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent input parameters, as defined for a highly oriented structure, into the Biot and the MBA models. The anisotropy of the angle-dependent Biot model is attributed to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment. The angle-dependent MBA model employs a simple empirical way of using the parametric fit for the fast and the slow wave speeds. The angle-dependent models were used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone. The predictions were compared with those of the Schoenberg model for anisotropy in cancellous bone and in vitro experimental measurements from the literature. The angle-dependent models successfully predicted the angular dependence of phase velocity of the fast wave with direction. The root-mean-square errors of the measured versus predicted fast wave velocities were 79.2 m s(-1) (angle-dependent Biot model) and 36.1 m s(-1) (angle-dependent MBA model). They also predicted the fact that the slow wave is nearly independent of propagation angle for angles about 50 degrees , but consistently underestimated the slow wave velocity with the root-mean-square errors of 187.2 m s(-1) (angle-dependent Biot model) and 240.8 m s(-1) (angle-dependent MBA model). The study indicates that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous bone.

  11. Projecting Ammonia Dry Deposition Using Passive Samplers and a Bi-Directional Exchange Model

    Science.gov (United States)

    Robarge, W. P.; Walker, J. T.; Austin, R. E.

    2011-12-01

    Animal agriculture within the United States is known to be a source of ammonia (NH3) emissions. Dry deposition of NH3 to terrestrial ecosystems immediately surrounding large local sources of NH3 emissions (e.g. animal feeding operations) is difficult to measure, and is best estimated via models. Presented here are results for a semi-empirical modeling approach for estimating air-surface exchange fluxes of NH3 downwind of a large poultry facility (~ 3.5 million layers) using a bi-directional air-surface exchange model. The modeling domain is the western section of the Pocosin Lakes National Wildlife Refuge in Tyrrell, Washington, and Hyde Counties of eastern North Carolina in the South Atlantic Coastal Plain physiographic region. Vegetation within the modeling domain is primarily pocosin wetlands, characterized by acid (pH 3.6) peat soils and a thick canopy of shrub vegetation (leatherwood (Cyrilla racemiflora), inkberry (Ilex glabra), wax myrtle (Morella cerifera)). Land surrounding the refuge is primarily used for crop production: ~ 28%, 24%, and 45% agricultural in Tyrell, Hyde, and Washington counties, respectively. Ammonia air-surface exchange (flux) was calculated using a two-layer canopy compensation point model developed by Nemitz et al. (2001. Quart. J. Roy. Met. Soc. 127, 815 - 833.) as implemented by Walker et al. (2008. Atmos. Environ., 42, 3407 - 3418.), in which the competing processes of emission and deposition within the foliage-soil system were taken into account by relating the net canopy-scale NH3 flux to the net emission potential of the canopy (i.e., foliage and soil). Ammonia air concentrations were measured using ALPHA passive samplers (Center for Ecology and Hydrology, Edinburgh) along transects to the north and northeast of the poultry facility at distances of 800, 2000 and 3200 m, respectively. Samplers were deployed in duplicate at each location at a height of 5.8 m from July 2008 to July 2010 weekly during warm months and bi-weekly curing

  12. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters

    Science.gov (United States)

    Alexander, Polly; Duncan, Alec; Bose, Neil; Williams, Guy

    2016-09-01

    Autonomous underwater vehicles are improving and expanding in situ observations of sea ice for the validation of satellite remote sensing and climate models. Missions under sea ice, particularly over large distances (up to 100 km) away from the immediate vicinity of a ship or base, require accurate acoustic communication for monitoring, emergency response and some navigation systems. We investigate the propagation of acoustic signals in the Antarctic seasonal ice zone using the BELLHOP model, examining the influence of ocean and sea ice properties. We processed available observations from around Antarctica to generate input variables such as sound speed, surface reflection coefficient (R) and roughness parameters. The results show that changes in the sound speed profile make the most significant difference to the propagation of the direct path signal. The inclusion of the surface reflected signals from a flat ice surface was found to greatly decrease the transmission loss with range. When ice roughness was added, the transmission loss increased with roughness, in a manner similar to the direct path transmission loss results. The conclusions of this work are that: (1) the accuracy of acoustic modelling in this environment is greatly increased by using realistic sound speed data; (2) a risk averse ranging model would use only the direct path signal transmission; and (3) in a flat ice scenario, much greater ranges can be achieved if the surface reflected transmission paths are included. As autonomous missions under sea ice increase in scale and complexity, it will be increasingly important for operational procedures to include effective modelling of acoustic propagation with representative environmental data.

  13. Disgas, a new model for passive gas dispersion. Early applications for the warm gases emitted by Solfatara (Campi Flegrei, Italy)

    OpenAIRE

    D. Granieri; COSTA, A.; Macedonio, G.; Chiodini, G.(INFN Sezione di Lecce, Lecce, Italy); Bisson, M.; Avino, R.; Caliro, S

    2011-01-01

    A model to describe the cloud dispersion of gas denser than air is presented here. The dispersion of heavy gas is basically governed by the gravity but, when the density contrast (gas vs air) is not important the dispersion is controlled by the wind and atmospheric turbulence (so-called “passive dispersion”). DisGas is a model for dense gases which are dispersed under passive conditions, based on the full solution of the advection-diffusion equations for the gas concentration (Sankaranarayana...

  14. The Vibro-Acoustic Modelling of Slab Track with Embedded Rails

    Science.gov (United States)

    VAN LIER, S.

    2000-03-01

    The application of concrete slab track in railways has certain advantages compared with conventional ballasted track, but conventional slab track structures generally produce more noise than ballasted track. For this reason a “silent slab track” has been developed in the Dutch ICES “Stiller Treinverkeer” project (silent railway traffic) by optimizing the track. In the design, the rails are embedded in a cork-filled elastomeric material. The paper discusses the vibro-acoustic modelling of this track using the simulation package “TWINS”, combined with finite element techniques. The model evaluates the one-third octave band sound power spectrum radiated by train wheels and track, and provides for a tool to optimize the track design. Three track types are compared using the vibro-acoustic model: an existing slab track with embedded UIC54 rails, a newly designed, acoustically optimized slab track with a less stiff rail embedded in a stiffer elastomere, and, as a reference, a ballasted track. The models of the existing tracks have been validated with measurements. Calculations indicate that the optimized slab track will emit between 4 and 6 dB(A) less noise than the ballasted track. The existing slab track produces between 1·5 and 3 dB(A) more noise than the ballasted track; this is caused by resonances in the elastomeric moulding material in the frequency range determining the dB(A)-level.

  15. Experimental Evaluation of Acoustic Engine Liner Models Developed with COMSOL Multiphysics

    Science.gov (United States)

    Schiller, Noah H.; Jones, Michael G.; Bertolucci, Brandon

    2017-01-01

    Accurate modeling tools are needed to design new engine liners capable of reducing aircraft noise. The purpose of this study is to determine if a commercially-available finite element package, COMSOL Multiphysics, can be used to accurately model a range of different acoustic engine liner designs, and in the process, collect and document a benchmark dataset that can be used in both current and future code evaluation activities. To achieve these goals, a variety of liner samples, ranging from conventional perforate-over-honeycomb to extended-reaction designs, were installed in one wall of the grazing flow impedance tube at the NASA Langley Research Center. The liners were exposed to high sound pressure levels and grazing flow, and the effect of the liner on the sound field in the flow duct was measured. These measurements were then compared with predictions. While this report only includes comparisons for a subset of the configurations, the full database of all measurements and predictions is available in electronic format upon request. The results demonstrate that both conventional perforate-over-honeycomb and extended-reaction liners can be accurately modeled using COMSOL. Therefore, this modeling tool can be used with confidence to supplement the current suite of acoustic propagation codes, and ultimately develop new acoustic engine liners designed to reduce aircraft noise.

  16. The PAC-MAN model: Benchmark case for linear acoustics in computational physics

    Science.gov (United States)

    Ziegelwanger, Harald; Reiter, Paul

    2017-10-01

    Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.

  17. Modeling of oropharyngeal articulatory adaptation to compensate for the acoustic effects of nasalization.

    Science.gov (United States)

    Rong, Panying; Kuehn, David P; Shosted, Ryan K

    2016-09-01

    Hypernasality is one of the most detrimental speech disturbances that lead to declines of speech intelligibility. Velopharyngeal inadequacy, which is associated with anatomic defects such as cleft palate or neuromuscular disorders that affect velopharygneal function, is the primary cause of hypernasality. A simulation study by Rong and Kuehn [J. Speech Lang. Hear. Res. 55(5), 1438-1448 (2012)] demonstrated that properly adjusted oropharyngeal articulation can reduce nasality for vowels synthesized with an articulatory model [Mermelstein, J. Acoust. Soc. Am. 53(4), 1070-1082 (1973)]. In this study, a speaker-adaptive articulatory model was developed to simulate speaker-customized oropharyngeal articulatory adaptation to compensate for the acoustic effects of nasalization on /a/, /i/, and /u/. The results demonstrated that (1) the oropharyngeal articulatory adaptation effectively counteracted the effects of nasalization on the second lowest formant frequency (F2) and partially compensated for the effects of nasalization on vowel space (e.g., shifting and constriction of vowel space) and (2) the articulatory adaptation strategies generated by the speaker-adaptive model might be more efficacious for counteracting the acoustic effects of nasalization compared to the adaptation strategies generated by the standard articulatory model in Rong and Kuehn. The findings of this study indicated the potential of using oropharyngeal articulatory adaptation as a means to correct maladaptive articulatory behaviors and to reduce nasality.

  18. Modeling of active magnetic regenerators and experimental investigation of passive regenerators with oscillating flow

    DEFF Research Database (Denmark)

    Lei, Tian

    variation is evaluated. A concept of mixing FOPT and SOPT materials is also investigated. Furthermore, the entropy production rates due to insufficient heat transfer, viscous dissipation and axial conduction, as well as the total entropy production rate, are calculated and compared for analyzing different......This thesis presents numerical modeling of active magnetic regenerator (AMR) and passive regenerator tests with oscillating flow. The work serves to investigate and improve the understanding of emerging concepts and technologies in the area of magnetic refrigeration. The discretization scheme......, showing that all of them are equally important. Based on measured magnetocaloric properties of La(Fe,Mn,Si)13Hy and Gd, a thorough investigation on how to layer typical FOPT or SOPT materials is implemented. For those regenerators, the sensitivity to the working temperature and the Curie temperature...

  19. Determination of an acoustic reflection coefficient at the inlet of a model gas turbine combustor for power generation

    Science.gov (United States)

    Song, W. J.; Cha, D. J.

    2017-01-01

    A phenomenon that potentially influences the reliability of power generation systems is the presence of thermo-acoustic oscillations in the combustion chamber of a land- based gas turbine. To develop specific measures that prevent the instability, it is essential to predict and/or evaluate the underlying physics of the thermo-acoustics, which requires the acoustic boundary condition at the exit of the burner, that is, at the inlet of the combustor. Here we report a procedure for calculating acoustic reflection coefficients at the burner exit by utilizing two microphone method (TMM) for dynamic pressure signals. The procedure has been verified by comparing its results with reported ones and further successfully employed to determine the acoustic boundary condition of the burner of a partially-premixed model gas turbine combustor.

  20. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  1. Review and analysis of the DNW/Model 360 rotor acoustic data base

    Science.gov (United States)

    Zinner, R. A.; Boxwell, D. A.; Spencer, R. H.

    1989-01-01

    A comprehensive model rotor aeroacoustic data base was collected in a large anechoic wind tunnel in 1986. Twenty-six microphones were positioned around the azimuth to collect acoustic data for approximately 150 different test conditions. A dynamically scaled, blade-pressure-instrumented model of the forward rotor of the BH360 helicopter simultaneously provided blade pressures for correlation with the acoustic data. High-speed impulsive noise, blade-vortex interaction noise, low-frequency noise, and broadband noise were all captured in this extensive data base. Trends are presentes for each noise source, with important parametric variations. The purpose of this paper is to introduce this data base and illustrate its potential for predictive code validation.

  2. Validation of a numerical model of acoustic ceiling combined with TABS

    DEFF Research Database (Denmark)

    Rage, Nils; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2016-01-01

    to understand to which extent a layer of hanging sound absorbers will impede the heating and cooling performance of the system, and how this translates on the thermal comfort for the occupants. In order to address these issues, this study focuses on validation of a new TRNSYS component (Type Ecophon Acoustic...... Elements) developed to simulate partially covered suspended ceilings such as hanging sound absorbers. The tool is validated by numerically modelling a set of similar experiments carried out in full-scale by a previous study. For this, a total of 12 scenarios from two case studies have been modelled......Thermally-Active Building Systems (TABS) have proven to be an energy-efficient and economical cooling and heating solution for commercial buildings. However, acoustic comfort is often jeopardized in such buildings, due to the thermal requirements of the system. More knowledge is required...

  3. An eighth-scale speech source for subjective assessments in acoustic models

    Science.gov (United States)

    Orlowski, R. J.

    1981-08-01

    The design of a source is described which is suitable for making speech recordings in eighth-scale acoustic models of auditoria. An attempt was made to match the directionality of the source with the directionality of the human voice using data reported in the literature. A narrow aperture was required for the design which was provided by mounting an inverted conical horn over the diaphragm of a high frequency loudspeaker. Resonance problems were encountered with the use of a horn and a description is given of the electronic techniques adopted to minimize the effect of these resonances. Subjective and objective assessments on the completed speech source have proved satisfactory. It has been used in a modelling exercise concerned with the acoustic design of a theatre with a thrust-type stage.

  4. Reconstruction of human swing leg motion with passive biarticular muscle models.

    Science.gov (United States)

    Ahmad Sharbafi, Maziar; Mohammadi Nejad Rashty, Aida; Rode, Christian; Seyfarth, Andre

    2017-04-01

    Template models, which are utilized to demonstrate general aspects in human locomotion, mostly investigate stance leg operation. The goal of this paper is presenting a new conceptual walking model benefiting from swing leg dynamics. Considering a double pendulum equipped with combinations of biarticular springs for the swing leg beside spring-mass (SLIP) model for the stance leg, a novel SLIP-based model, is proposed to explain human-like leg behavior in walking. The action of biarticular muscles in swing leg motion helps represent human walking features, like leg retraction, ground reaction force and generating symmetric walking patterns, in simulations. In order to stabilize the motion by the proposed passive structure, swing leg biarticular muscle parameters such as lever arm ratios, stiffnesses and rest lengths need to be properly adjusted. Comparison of simulation results with human experiments shows the ability of the proposed model in replicating kinematic and kinetic behavior of both stance and swing legs as well as biarticular thigh muscle force of the swing leg. This substantiates the important functional role of biarticular muscles in leg swing. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Modeling and Control Of Surface Acoustic Wave Motors

    NARCIS (Netherlands)

    Feenstra, P.J.

    2005-01-01

    This thesis introduces Rayleigh waves and describes the generation of Rayleigh waves. Furthermore, the principle of operation of a SAW motor is analyzed. The analysis is based on a contact model, which describes the behavior between slider and stator. Due to the contact model, the microscopic and

  6. Light Entrapping, Modeling & Effect of Passivation on Amorphous Silicon Based PV Cell

    OpenAIRE

    Md Mostafizur Rahman; Md. Moidul Islam; Mission Kumar Debnath; Saifullah, S.M.; Samera Hossein; Nusrat Jahan Bristy

    2016-01-01

    This research paper present efforts to enhance the performance of amorphous silicon p-i-n type solar cell using sidewall passivation. For sidewall passivation, MEMS insulation material Al2O3 was used. The main objective of this paper is to observe the effect of sidewall passivation in amorphous silicon solar cell and increase the conversion efficiency of the solar cell. Passivation of Al2O3 is found effective to subdue reverse leakage. It increases the electric potential generated in the desi...

  7. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Science.gov (United States)

    Jeon, Soohong; Kim, Daehwan; Hong, Chinsuk; Jeong, Weuibong

    2014-12-01

    This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  8. Acoustic performance of industrial mufflers with CAE modeling and simulation

    Directory of Open Access Journals (Sweden)

    Jeon Soohong

    2014-12-01

    Full Text Available This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  9. Progress in animation of an EMA-controlled tongue model for acoustic-visual speech synthesis

    CERN Document Server

    Steiner, Ingmar

    2012-01-01

    We present a technique for the animation of a 3D kinematic tongue model, one component of the talking head of an acoustic-visual (AV) speech synthesizer. The skeletal animation approach is adapted to make use of a deformable rig controlled by tongue motion capture data obtained with electromagnetic articulography (EMA), while the tongue surface is extracted from volumetric magnetic resonance imaging (MRI) data. Initial results are shown and future work outlined.

  10. Effective Parameter Dimension via Bayesian Model Selection in the Inverse Acoustic Scattering Problem

    Directory of Open Access Journals (Sweden)

    Abel Palafox

    2014-01-01

    Full Text Available We address a prototype inverse scattering problem in the interface of applied mathematics, statistics, and scientific computing. We pose the acoustic inverse scattering problem in a Bayesian inference perspective and simulate from the posterior distribution using MCMC. The PDE forward map is implemented using high performance computing methods. We implement a standard Bayesian model selection method to estimate an effective number of Fourier coefficients that may be retrieved from noisy data within a standard formulation.

  11. Regular algorithm for the automatic refinement of the spectral characteristics of acoustic finite element models

    Science.gov (United States)

    Suvorov, A. S.; Sokov, E. M.; V'yushkina, I. A.

    2016-09-01

    A new method is presented for the automatic refinement of finite element models of complex mechanical-acoustic systems using the results of experimental studies. The method is based on control of the spectral characteristics via selection of the optimal distribution of adjustments to the stiffness of a finite element mesh. The results of testing the method are given to show the possibility of its use to significantly increase the simulation accuracy of vibration characteristics of bodies with arbitrary spatial configuration.

  12. Toward a model for lexical access based on acoustic landmarks and distinctive features

    Science.gov (United States)

    Stevens, Kenneth N.

    2002-04-01

    This article describes a model in which the acoustic speech signal is processed to yield a discrete representation of the speech stream in terms of a sequence of segments, each of which is described by a set (or bundle) of binary distinctive features. These distinctive features specify the phonemic contrasts that are used in the language, such that a change in the value of a feature can potentially generate a new word. This model is a part of a more general model that derives a word sequence from this feature representation, the words being represented in a lexicon by sequences of feature bundles. The processing of the signal proceeds in three steps: (1) Detection of peaks, valleys, and discontinuities in particular frequency ranges of the signal leads to identification of acoustic landmarks. The type of landmark provides evidence for a subset of distinctive features called articulator-free features (e.g., [vowel], [consonant], [continuant]). (2) Acoustic parameters are derived from the signal near the landmarks to provide evidence for the actions of particular articulators, and acoustic cues are extracted by sampling selected attributes of these parameters in these regions. The selection of cues that are extracted depends on the type of landmark and on the environment in which it occurs. (3) The cues obtained in step (2) are combined, taking context into account, to provide estimates of ``articulator-bound'' features associated with each landmark (e.g., [lips], [high], [nasal]). These articulator-bound features, combined with the articulator-free features in (1), constitute the sequence of feature bundles that forms the output of the model. Examples of cues that are used, and justification for this selection, are given, as well as examples of the process of inferring the underlying features for a segment when there is variability in the signal due to enhancement gestures (recruited by a speaker to make a contrast more salient) or due to overlap of gestures from

  13. Computational spectrotemporal auditory model with applications to acoustical information processing

    Science.gov (United States)

    Chi, Tai-Shih

    A computational spectrotemporal auditory model based on neurophysiological findings in early auditory and cortical stages is described. The model provides a unified multiresolution representation of the spectral and temporal features of sound likely critical in the perception of timbre. Several types of complex stimuli are used to demonstrate the spectrotemporal information preserved by the model. Shown by these examples, this two stage model reflects the apparent progressive loss of temporal dynamics along the auditory pathway from the rapid phase-locking (several kHz in auditory nerve), to moderate rates of synchrony (several hundred Hz in midbrain), to much lower rates of modulations in the cortex (around 30 Hz). To complete this model, several projection-based reconstruction algorithms are implemented to resynthesize the sound from the representations with reduced dynamics. One particular application of this model is to assess speech intelligibility. The spectro-temporal Modulation Transfer Functions (MTF) of this model is investigated and shown to be consistent with the salient trends in the human MTFs (derived from human detection thresholds) which exhibit a lowpass function with respect to both spectral and temporal dimensions, with 50% bandwidths of about 16 Hz and 2 cycles/octave. Therefore, the model is used to demonstrate the potential relevance of these MTFs to the assessment of speech intelligibility in noise and reverberant conditions. Another useful feature is the phase singularity emerged in the scale space generated by this multiscale auditory model. The singularity is shown to have certain robust properties and carry the crucial information about the spectral profile. Such claim is justified by perceptually tolerable resynthesized sounds from the nonconvex singularity set. In addition, the singularity set is demonstrated to encode the pitch and formants at different scales. These properties make the singularity set very suitable for traditional

  14. MODELING OF INTERACTION OF THE PASSENGER TRAIN VEHICLES, EQUIPPED BY PASSIVE SAFETY, AT ACCIDENTAL COLLISION WITH OBSTACLE

    Directory of Open Access Journals (Sweden)

    N. Ye. Naumenko

    2015-07-01

    Full Text Available Purpose. The development of high-speed railway traffic requires the updating of requirements for the design of passenger rolling stock and revision of safety standards on emergency situation of trains with an obstacle. To the construction crews of the new generation demands by equipping them with passive crash systems, ensuring the safety of passengers and personnel in an emergency situation. In order to refine test scenarios train collision with an obstacle and evaluation indicators of energy absorption of the collision of the passive protection devices which are used in computer modeling. The first step in the research of dynamic processes in the train when excessive shock effects, is to assess the maximum values of the compressive forces generated in intercar compound trains, locomotive and cars which are equipped with passive safety systems.Methodology. Based on the concept of passive protection of passenger rolling stock for track with width of 1520 mm on emergency situation the conceptual passive safety system for passenger trains with locomotive traction are formed from the crews of the new generation was proposed. The passive safety system is recommended to be equipped both the locomotive and cars. For a preliminary assessment of compliance for the passive safety system of a passenger train on emergency situation, as a rule, the simplified discrete-mass model is used, in which the train is considered as one-dimensional chain of rigid bodies connected by nonlinear deformable elements. Findings. The algorithm for computing efforts in the inter-connections of the train locomotive traction of the permanent formation is developed, taking into account the specifics of work of coupling devices, devices, energy absorption and elastic-plastic properties of the body structure of crews at emergency situation. Originality. The proposed algorithm allows taking into account the peculiarities of train locomotives of the new generation and the work of

  15. Three-dimensional modeling of the transducer shape in acoustic resolution optoacoustic microscopy

    Science.gov (United States)

    Deán-Ben, X. Luís.; Estrada, Hector; Kneipp, Moritz; Turner, Jake; Razansky, Daniel

    2014-03-01

    Acoustic resolution optoacoustic microscopy is a powerful modality allowing imaging morphology and function at depths up to a few centimeters in biological tissues. This optoacoustic configuration is based on a spherically-focused ultrasonic transducer raster scanned on an accessible side of the sample to be imaged. Volumetric images can then be formed by stacking up the recorded time-resolved signals at the measured locations. However, the focusing capacity of a spherically-focused transducer depends on its aperture and the acoustic spectrum of the collected signals, which may lead to image artifacts if a simplistic reconstruction approach is employed. In this work, we make use of a model-based reconstruction procedure developed in three dimensions in order to account for the shape of spherically focused transducers in acoustic resolution optoacoustic microscopy set-ups. By discretizing the transducer shape to a set of sub-sensors, the resulting model incorporates the frequency-dependent transducer sensitivity for acquisition of broadband optoacoustic signals. Inversion of the full model incorporating the effects of the transducer shape is then performed iteratively. The obtained results indicate good performance of the method for absorbers of different size emitting optoacoustic waves with different frequency spectra.

  16. Acoustic Model of the Remnant Bubble Cloud from Underwater Explosion

    Science.gov (United States)

    2012-11-01

    oceanography, Sydney, Academic Press. Underwater Explosion Research 1950, Office of Naval Re- search, Washington, D.C., Vol. 2. Wilcox, DC 1994, Turbulence Modeling for CFD, DCW Industries, Inc., La Canada CA.

  17. Acoustic Model Training Using Pseudo-Speaker Features Generated by MLLR Transformations for Robust Speaker-Independent Speech Recognition

    OpenAIRE

    Arata Itoh; Sunao Hara; Norihide Kitaoka; Kazuya Takeda

    2012-01-01

    A novel speech feature generation-based acoustic model training method for robust speaker-independent speech recognition is proposed. For decades, speaker adaptation methods have been widely used. All of these adaptation methods need adaptation data. However, our proposed method aims to create speaker-independent acoustic models that cover not only known but also unknown speakers. We achieve this by adopting inverse maximum likelihood linear regression (MLLR) transformation-based feature gene...

  18. The role of phase dynamics in a stochastic model of a passively advected scalar

    CERN Document Server

    Moradi, Sara

    2016-01-01

    Collective synchronous motion of the phases is introduced in a model for the stochastic passive advection-diffusion of a scalar with external forcing. The model for the phase coupling dynamics follows the well known Kuramoto model paradigm of limit-cycle oscillators. The natural frequencies in the Kuramoto model are assumed to obey a given scale dependence through a dispersion relation of the drift-wave form $-\\beta\\frac{k}{1+k^2}$, where $\\beta$ is a constant representing the typical strength of the gradient. The present aim is to study the importance of collective phase dynamics on the characteristic time evolution of the fluctuation energy and the formation of coherent structures. Our results show that the assumption of a fully stochastic phase state of turbulence is more relevant for high values of $\\beta$, where we find that the energy spectrum follows a $k^{-7/2}$ scaling. Whereas for lower $\\beta$ there is a significant difference between a-synchronised and synchronised phase states, and one could expe...

  19. Optimization of damping in the passive automotive suspension system with using two quarter-car models

    Science.gov (United States)

    Lozia, Z.; Zdanowicz, P.

    2016-09-01

    The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.

  20. Analysis of shallow-water experimental acoustic data including a comparison with a broad-band normal-mode-propagation model

    NARCIS (Netherlands)

    Simons, D.G.; McHugh, R.; Snellen, M.; McCormick, N.H.; Lawson, E.A.

    2001-01-01

    Channel temporal variability, resulting from fluctuations in oceanographic parameters, is an important issue for reliable communications in shallow-water-long-range acoustic propagation. As part of an acoustic model validation exercise, audio-band acoustic data and oceanographic data were collected

  1. Electro-thermo-mechanical model for bulk acoustic wave resonators.

    Science.gov (United States)

    Rocas, Eduard; Collado, Carlos; Mateu, Jordi; Orloff, Nathan D; Aigner, Robert; Booth, James C

    2013-11-01

    We present the electro-thermo-mechanical constitutive relations, expanded up to the third order, for a BAW resonator. The relations obtained are implemented into a circuit model, which is validated with extensive linear and nonlinear measurements. The mathematical analysis, along with the modeling, allows us to identify the dominant terms, which are the material temperature derivatives and two intrinsic nonlinear terms, and explain, for the first time, all observable effects in a BAW resonator by use of a unified physical description. Moreover, the terms that are responsible for the second-harmonic generation and the frequency shift with dc voltage are shown to be the same.

  2. A new model for nonlinear acoustic waves in a non-uniform lattice of Helmholtz resonators

    CERN Document Server

    Mercier, Jean-François

    2016-01-01

    Propagation of high amplitude acoustic pulses is studied in a 1D waveguide, connected to a lattice of Helmholtz resonators. An homogenized model has been proposed by Sugimoto (J. Fluid. Mech., 244 (1992)), taking into account both the nonlinear wave propagation and various mechanisms of dissipation. This model is extended to take into account two important features: resonators of different strengths and back-scattering effects. The new model is derived and is proved to satisfy an energy balance principle. A numerical method is developed and a better agreement between numerical and experimental results is obtained.

  3. Segment-Based Acoustic Models for Continuous Speech Recognition

    Science.gov (United States)

    1993-04-05

    or the chi - squared -like measure used in [1] for Gaussian distributions. However, such similarity measures tend to be more useful for agglomerative...Context Modeling To implement this approach we use a simple - bakery ’" al- gorithm to assign tasks: as each machine becomes free, it We have

  4. Acoustic Predictions in Industrial Spaces Using a Diffusion Model

    Directory of Open Access Journals (Sweden)

    Alexis Billon

    2012-01-01

    Full Text Available Industrial spaces are known to be very noisy working environment. This noise exposure can be uncomfortable, tiring, or even harmful, at worst. Industrial spaces have several characteristics: they are often huge flat volumes fitted with many obstacles and sound sources. Moreover, they are usually surrounded by rooms where low noise levels are required. The existing prediction tools can seldom model all these phenomena accurately. In this paper, a prediction model based on a diffusion equation is presented. The successive developments carried out to deal with the various propagating phenomena met in industrial spaces are shown. For each phenomenon, numerical or experimental examples are given to highlight the validity of this model. It is also shown that its computation load is very little in comparison to ray-tracing-based methods. In addition, this model can be used as a reliable and flexible tool to study the physics of the coupling between rooms. Finally, an application to a virtual factory is presented.

  5. Finite element modelling for the investigation of edge effect in acoustic micro imaging of microelectronic packages

    Science.gov (United States)

    Shen Lee, Chean; Zhang, Guang-Ming; Harvey, David M.; Ma, Hong-Wei; Braden, Derek R.

    2016-02-01

    In acoustic micro imaging of microelectronic packages, edge effect is often presented as artifacts of C-scan images, which may potentially obscure the detection of defects such as cracks and voids in the solder joints. The cause of edge effect is debatable. In this paper, a 2D finite element model is developed on the basis of acoustic micro imaging of a flip-chip package using a 230 MHz focused transducer to investigate acoustic propagation inside the package in attempt to elucidate the fundamental mechanism that causes the edge effect. A virtual transducer is designed in the finite element model to reduce the coupling fluid domain, and its performance is characterised against the physical transducer specification. The numerical results showed that the under bump metallization (UBM) structure inside the package has a significant impact on the edge effect. Simulated wavefields also showed that the edge effect is mainly attributed to the horizontal scatter, which is observed in the interface of silicon die-to-the outer radius of solder bump. The horizontal scatter occurs even for a flip-chip package without the UBM structure.

  6. Long-range acoustic interactions in insect swarms: an adaptive gravity model

    Science.gov (United States)

    Gorbonos, Dan; Ianconescu, Reuven; Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.; Gov, Nir S.

    2016-07-01

    The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. Here, we consider mating swarms of midges, which are thought to interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges’ acoustic sensing, we show that our ‘adaptive gravity’ model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. Additionally, the adaptive interactions that we present here open a new class of equations of motion, which may appear in other biological contexts.

  7. Unmasking the acoustic effects of vowel-to-vowel coarticulation: A statistical modeling approach

    Science.gov (United States)

    Cole, Jennifer; Linebaugh, Gary; Munson, Cheyenne; McMurray, Bob

    2010-01-01

    Coarticulation is a source of acoustic variability for vowels, but how large is this effect relative to other sources of variance? We investigate acoustic effects of anticipatory V-to-V coarticulation relative to variation due to the following C and individual speaker. We examine F1 and F2 from V1 in 48 V1-C#V2 contexts produced by 10 speakers of American English. ANOVA reveals significant effects of both V2 and C on F1 and F2 measures of V1. The influence of V2 and C on acoustic variability relative to that of speaker and target vowel identity is evaluated using hierarchical linear regression. Speaker and target vowel account for roughly 80% of the total variance in F1 and F2, but when this variance is partialed out C and V2 account for another 18% (F1) and 63% (F2) of the remaining target vowel variability. Multinomial logistic regression (MLR) models are constructed to test the power of target vowel F1 and F2 for predicting C and V2 of the upcoming context. Prediction accuracy is 58% for C-Place, 76% for C-Voicing and 54% for V2, but only when variance due to other sources is factored out. MLR is discussed as a model of the parsing mechanism in speech perception. PMID:21173864

  8. Modeling and estimating acoustic transfer functions of external ears with or without headphones.

    Science.gov (United States)

    Deng, Huiqun; Yang, Jun

    2015-08-01

    The acoustic transfer functions of external ears with or without headphones affect the features of perceived sounds and vary considerably with listeners and headphones. A method for estimating the frequency responses of external-ear transfer functions from the sound at the entrance of a blocked ear canal (or from the input of a headphone) to the sound at the eardrum for different listeners and headphones is developed based on an acoustic signal model of external ears. The model allows for applying realistic data about individual external ears and headphones and is advantageous over current standard ear simulators with fixed structures limited to simulating average ear canals and eardrum impedances below 10 kHz. Given different eardrum impedances, ear canal shapes, lengths, and headphones, the frequency responses of external-ear transfer functions are estimated and presented. In addition, a method of determining the Norton equivalent volume velocity or Thevenien equivalent sound pressure sources of a headphone from sound pressure signals in an acoustic tube is presented. These methods are validated via direct measurements and expected to have applications in headphone sound reproduction, headphone and hearing aid design, and audiometric and psychoacoustic measurements to produce desired sounds at the eardrums of different listeners.

  9. Perceptual-center modeling is affected by including acoustic rate-of-change modulations.

    Science.gov (United States)

    Harsin, C A

    1997-02-01

    This study investigated the acoustic correlates of perceptual centers (p-centers) in CV and VC syllables and developed an acoustic p-center model. In Part 1, listeners located syllables' p-centers by a method-of-adjustment procedure. The CV syllables contained the consonants /s/,/r/,/n/,/t/,/d/,/k/, and /g/; the VCs, the consonants /s/,/r/, and /n/. The vowel in all syllables was /a/. The results of this experiment replicated and extended previous findings regarding the effects of phonetic variation on p-centers. In Part 2, a digital signal processing procedure was used to acoustically model p-center perception. Each stimulus was passed through a six-band digital filter, and the outputs were processed to derive low-frequency modulation components. These components were weighted according to a perceived modulation magnitude function and recombined to create six psychoacoustic envelopes containing modulation energies from 3 to 47 Hz. In this analysis, p-centers were found to be highly correlated with the time-weighted function of the rate-of-change in the psychoacoustic envelopes, multiplied by the psychoacoustic envelope magnitude increment. The results were interpreted as suggesting (1) the probable role of low-frequency energy modulations in p-center perception, and (2) the presence of perceptual processes that integrate multiple articulatory events into a single syllabic event.

  10. A theoretical model for the study of active and passive smoking in military women: an at-risk population.

    Science.gov (United States)

    Martinelli, A M

    1999-07-01

    This paper presents a model designed for the study of active and passive smoking in military women with children. Some constructs have been adapted from a transtheoretical model of behavior change. Transtheoretical model constructs of relevance to this model include (1) stages of behavior change, (2) decisional balance, and (3) self-efficacy. Other model constructs include (1) personal and situational factors, (2) a mother's self-efficacy to reduce the child's smoke exposure, (3) a mother's expectation for the child's smoke exposure, (4) smoke avoidance, (5) nicotine dependence, and (6) social support for quitting smoking. The occurrence of health problems associated with smoking is the outcome variable. The results of a study under way at present may support the use of this model and may make data available to substantiate the need for behavior-specific interventions designed to prevent and reduce active and passive smoking among military personnel.

  11. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-03-01

    Full Text Available We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 140 million years. The model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, but is more sensitive to reasonable changes in POC than it is to reasonable changes in temperature. This behavior could lead to higher inventories of hydrate during hothouse climate conditions, rather than lower as generally assumed, due to the enrichment of the sediments in organic carbon. The hydrate inventory in the model is extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum in the model. The geochemistry of the sediment column is altered by the addition of vertical high-permeability chimneys intended to mimic the effects of heterogeneity in the real sediment column due to faults and chimneys, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water DIC concentrations are consistent with chemical weathering at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from POC of 50%, which is somewhat lower than redox balance with the H/C of organic matter in the model. Other phenomena which we simulated had only small impact on the hydrate inventory, including thermogenic methane, dissolved organic carbon, and sediment transport characteristics.

  12. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.

    Science.gov (United States)

    Gültekin, Osman; Sommer, Gerhard; Holzapfel, Gerhard A

    2016-11-01

    This study deals with the viscoelastic constitutive modeling and the respective computational analysis of the human passive myocardium. We start by recapitulating the locally orthotropic inner structure of the human myocardial tissue and model the mechanical response through invariants and structure tensors associated with three orthonormal basis vectors. In accordance with recent experimental findings the ventricular myocardial tissue is assumed to be incompressible, thick-walled, orthotropic and viscoelastic. In particular, one spring element coupled with Maxwell elements in parallel endows the model with viscoelastic features such that four dashpots describe the viscous response due to matrix, fiber, sheet and fiber-sheet fragments. In order to alleviate the numerical obstacles, the strictly incompressible model is altered by decomposing the free-energy function into volumetric-isochoric elastic and isochoric-viscoelastic parts along with the multiplicative split of the deformation gradient which enables the three-field mixed finite element method. The crucial aspect of the viscoelastic formulation is linked to the rate equations of the viscous overstresses resulting from a 3-D analogy of a generalized 1-D Maxwell model. We provide algorithmic updates for second Piola-Kirchhoff stress and elasticity tensors. In the sequel, we address some numerical aspects of the constitutive model by applying it to elastic, cyclic and relaxation test data obtained from biaxial extension and triaxial shear tests whereby we assess the fitting capacity of the model. With the tissue parameters identified, we conduct (elastic and viscoelastic) finite element simulations for an ellipsoidal geometry retrieved from a human specimen.

  13. Modeling of the Transport Phenomena in Passive Direct Methanol Fuel Cells Using a Two-Phase Anisotropic Model

    Directory of Open Access Journals (Sweden)

    Zheng Miao

    2014-04-01

    Full Text Available The transport phenomena in a passive direct methanol fuel cell (DMFC were numerically simulated by the proposed two-dimensional two-phase nonisothermal mass transport model. The anisotropic transport characteristic and deformation of the gas diffusion layer (GDL were considered in this model. The natural convection boundary conditions were adopted for the transport of methanol, oxygen, and heat at the GDL outer surface. The effect of methanol concentration in the reservoir on cell performance was examined. The distribution of multiphysical fields in the membrane electrode assembly (MEA, especially in the catalyst layers (CLs, was obtained and analyzed. The results indicated that transport resistance for the methanol mainly existed in the MEA while that for oxygen and heat was primarily due to natural convection at the GDL outer surface. Because of the relatively high methanol concentration, the local reaction rate in CLs was mainly determined by the overpotential. Methanol concentration between 3 M and 4 M was recommended for passive liquid feed DMFC in order to achieve a balance between the cell performance and the methanol crossover.

  14. Painlevé's paradox and dynamic jamming in simple models of passive dynamic walking

    Science.gov (United States)

    Or, Yizhar

    2014-02-01

    Painlevé's paradox occurs in the rigid-body dynamics of mechanical systems with frictional contacts at configurations where the instantaneous solution is either indeterminate or inconsistent. Dynamic jamming is a scenario where the solution starts with consistent slippage and then converges in finite time to a configuration of inconsistency, while the contact force grows unbounded. The goal of this paper is to demonstrate that these two phenomena are also relevant to the field of robotic walking, and can occur in two classical theoretical models of passive dynamic walking — the rimless wheel and the compass biped. These models typically assume sticking contact and ignore the possibility of foot slippage, an assumption which requires sufficiently large ground friction. Nevertheless, even for large friction, a perturbation that involves foot slippage can be kinematically enforced due to external forces, vibrations, or loose gravel on the surface. In this work, the rimless wheel and compass biped models are revisited, and it is shown that the periodic solutions under sticking contact can suffer from both Painlevé's paradox and dynamic jamming when given a perturbation of foot slippage. Thus, avoidance of these phenomena and analysis of orbital stability with respect to perturbations that include slippage are of crucial importance for robotic legged locomotion.

  15. Application of theoretical models to active and passive remote sensing of saline ice

    Science.gov (United States)

    Han, H. C.; Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Kwok, R.

    1992-01-01

    The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is employed to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. We also calculate the thermal emissions based on the reciprocity and energy conservation principles. The effects of the random roughness at the air-ice, and ice-water interfaces are accounted for by adding the surface scattering to the volume scattering return incoherently. The above theoretical model, which has been successfully applied to analyze the radar backscatter data of the first-year sea ice near Point Barrow, AK, is used to interpret the measurements performed in the CRRELEX program.

  16. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.

    Science.gov (United States)

    Van Loocke, M; Lyons, C G; Simms, C K

    2008-01-01

    The compressive properties of skeletal muscle are important in impact biomechanics, rehabilitation engineering and surgical simulation. However, the mechanical behaviour of muscle tissue in compression remains poorly characterised. In this paper, the time-dependent properties of passive skeletal muscle were investigated using a combined experimental and theoretical approach. Uniaxial ramp and hold compression tests were performed in vitro on fresh porcine skeletal muscle at various rates and orientations of the tissue fibres. Results show that above a very small compression rate, the viscoelastic component plays a significant role in muscle mechanical properties; it represents approximately 50% of the total stress reached at a compression rate of 0.5% s(-1). A stiffening effect with compression rate is observed especially in directions closer to the muscle fibres. Skeletal muscle viscoelastic behaviour is thus dependent on compression rate and fibre orientation. A model is proposed to represent the observed experimental behaviour, which is based on the quasi-linear viscoelasticity framework. A previously developed strain-dependent Young's Moduli formulation was extended with Prony series to account for the tissue viscoelastic properties. Parameters of the model were obtained by fitting to stress-relaxation data obtained in the muscle fibre, cross-fibre and 45 degrees directions. The model then successfully predicted stress-relaxation behaviour at 60 degrees from the fibre direction (errors muscle behaviour at rates of 0.05% s(-1) and 5% s(-1) (errors <25%).

  17. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    Science.gov (United States)

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-08-05

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme.

  18. Three-dimensional model of hydro acoustic channel for research MIMO systems

    Science.gov (United States)

    Fedosov, V. P.; Lomakina, A. V.; Legin, A. A.; Voronin, V. V.

    2017-05-01

    Currently, wireless hydroacoustic modems are actively being developed, which are used to provide efficient data transmission in the hydroacoustic channel. Such kind of developments are relevant for today, as they are used in various fields of science and fields of activity. An example is the connection with underwater vehicles for scientific, research, search and rescue purposes. Development of this kind of communication systems (modems) is a difficult task, as signal propagation is affected by various factors. As a result, the transfer characteristic changes with time, thereby imposing restrictions on the acoustic communication channel. In this regard, the researchers began the task of further study sonar environment and get a detailed mathematical description of the underwater channel. For this, a huge number of field tests were conducted, aimed at studying the underwater acoustic environment. However, the results of the research are always limited by the conditions in which the test took place. Therefore, it is not always possible to apply these results to the required conditions. All of the above features do not allow you to create some kind of a commonly accepted model for the acoustic channel, as studies based on experiments, collected in localized environments without generalizations. This paper presents, the three-dimensional model of the sonar channel for MIMO systems in the coastal zone, based on the acoustic signal propagation characteristics in the presence of multiple paths, the influence of the Doppler effect (as a result of mobile and / or base station traffic), in terms of signal attenuation, receiver characteristics influence and Transmitting antenna, etc.

  19. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model.

    Science.gov (United States)

    Mancini, John G; Neisius, Andreas; Smith, Nathan; Sankin, Georgy; Astroza, Gaston M; Lipkin, Michael E; Simmons, W Neal; Preminger, Glenn M; Zhong, Pei

    2013-09-01

    The acoustic lens of the Modularis electromagnetic shock wave lithotripter (Siemens, Malvern, Pennsylvania) was modified to produce a pressure waveform and focal zone more closely resembling that of the original HM3 device (Dornier Medtech, Wessling, Germany). We assessed the newly designed acoustic lens in vivo in an animal model. Stone fragmentation and tissue injury produced by the original and modified lenses of the Modularis lithotripter were evaluated in a swine model under equivalent acoustic pulse energy (about 45 mJ) at 1 Hz pulse repetition frequency. Stone fragmentation was determined by the weight percent of stone fragments less than 2 mm. To assess tissue injury, shock wave treated kidneys were perfused, dehydrated, cast in paraffin wax and sectioned. Digital images were captured every 120 μm and processed to determine functional renal volume damage. After 500 shocks, the mean ± SD stone fragmentation efficiency produced by the original and modified lenses was 48% ± 12% and 52% ± 17%, respectively (p = 0.60). However, after 2,000 shocks, the modified lens showed significantly improved stone fragmentation compared to the original lens (mean 86% ± 10% vs 72% ± 12%, p = 0.02). Tissue injury caused by the original and modified lenses was minimal at a mean of 0.57% ± 0.44% and 0.25% ± 0.25%, respectively (p = 0.27). With lens modification the Modularis lithotripter demonstrates significantly improved stone fragmentation with minimal tissue injury at a clinically relevant acoustic pulse energy. This new lens design could potentially be retrofitted to existing lithotripters, improving the effectiveness of electromagnetic lithotripters. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes

    Science.gov (United States)

    2015-09-30

    with data from ocean field studies such as the Shallow- Water 2006 experiment (SW06) east of New Jersey sponsored by ONR [1]. Achieving Goal #2 is...precipitation and evaporation creating or destroying water of certain density classes, and because of similar density class intermittency caused by subtidal...algorithm that handles a non-flat water surface was developed by Lin and is being interfaced to the surface wave modeling activities of Task 4. Ocean

  1. A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow

    Science.gov (United States)

    Yang, Dong; Morgans, Aimee S.

    2016-12-01

    The acoustic response of a circular hole with mean flow passing through it is highly relevant to Helmholtz resonators, fuel injectors, perforated plates, screens, liners and many other engineering applications. A widely used analytical model [M.S. Howe. "Onthe theory of unsteady high Reynolds number flow through a circular aperture", Proc. of the Royal Soc. A. 366, 1725 (1979), 205-223] which assumes an infinitesimally short hole was recently shown to be insufficient for predicting the impedance of holes with a finite length. In the present work, an analytical model based on Green's function method is developed to take the hole length into consideration for "short" holes. The importance of capturing the modified vortex noise accurately is shown. The vortices shed at the hole inlet edge are convected to the hole outlet and further downstream to form a vortex sheet. This couples with the acoustic waves and this coupling has the potential to generate as well as absorb acoustic energy in the low frequency region. The impedance predicted by this model shows the importance of capturing the path of the shed vortex. When the vortex path is captured accurately, the impedance predictions agree well with previous experimental and CFD results, for example predicting the potential for generation of acoustic energy at higher frequencies. For "long" holes, a simplified model which combines Howe's model with plane acoustic waves within the hole is developed. It is shown that the most important effect in this case is the acoustic non-compactness of the hole.

  2. Acoustical Environment of Three Stations at Rileys Hump

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Passive acoustic recorders were deployed to record acoustic signals over the time span of two years, and the data analyzed for the existence of known spawning sounds...

  3. Light Entrapping, Modeling & Effect of Passivation on Amorphous Silicon Based PV Cell

    Directory of Open Access Journals (Sweden)

    Md. Mostafizur Rahman

    2016-07-01

    Full Text Available This research paper present efforts to enhance the performance of amorphous silicon p-i-n type solar cell using sidewall passivation. For sidewall passivation, MEMS insulation material Al2O3 was used. The main objective of this paper is to observe the effect of sidewall passivation in amorphous silicon solar cell and increase the conversion efficiency of the solar cell. Passivation of Al2O3 is found effective to subdue reverse leakage. It increases the electric potential generated in the designed solar cell. It also increases the current density generated in the solar cell by suppressing the leakage. Enhancement in J-V curve was observed after adding sidewall passivation. The short circuit current density (Jsc increased from 14.7 mA/cm2 to 18.5 mA/cm2, open circuit voltage (Voc improved from 0.87 V to 0.89 V, and the fill factor also slightly increased. Due to the sidewall of passivation of Al2O3, conversion efficiency of amorphous silicon solar cell increased by 29.07%. At the end, this research was a success to improve the efficiency of the amorphous silicon solar cell by adding sidewall passivation.

  4. Modelling of a passive autocatalytic hydrogen recombiner – a parametric study

    Directory of Open Access Journals (Sweden)

    Rożeń Antoni

    2015-03-01

    Full Text Available Operation of a passive autocatalytic hydrogen recombiner (PAR has been investigated by means of computational fluid dynamics methods (CFD. The recombiner is a self-active and self-adaptive device used to remove hydrogen from safety containments of light water nuclear reactors (LWR by means of a highly exothermic reaction with oxygen at the surface of a platinum or palladium catalyst. Different turbulence models (k-ω, k-ɛ, intermittency, RSM were applied in numerical simulations of: gas flow, heat and mass transport and chemical surface reactions occurring in PAR. Turbulence was found to improve mixing and mass transfer and increase hydrogen recombination rate for high gas flow rates. At low gas flow rates, simulation results converged to those obtained for the limiting case of laminar flow. The large eddy simulation technique (LES was used to select the best RANS (Reynolds average stress model. Comparison of simulation results obtained for two- and three-dimensional computational grids showed that heat and mass transfer occurring in PAR were virtually two-dimensional processes. The effect of hydrogen thermal diffusion was also discussed in the context of possible hydrogen ignition inside the recombiner.

  5. Bayesian modeling of perceived surface slant from actively-generated and passively-observed optic flow.

    Directory of Open Access Journals (Sweden)

    Corrado Caudek

    Full Text Available We measured perceived depth from the optic flow (a when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an "inverse optics" model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the bayesian theory. The "inverse optics" bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a "prior" for flatness, the slant estimates become systematically biased as the measurement errors increase. The bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b extra-retinal signals may be mainly used for a better measurement of retinal information.

  6. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-08-01

    Full Text Available We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column due to faults, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water dissolved inorganic carbon (DIC concentrations are consistent with chemical weathering (CaCO3 formation from igneous rocks at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from particulate organic carbon (POC of 50%, which is somewhat lower than redox balance with the H / C of organic matter in the model. The hydrate inventory in the model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, quite sensitive to reasonable changes in POC, and extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum. Other phenomena which we simulated had only a small impact on the hydrate inventory, including thermogenic methane production and production/decomposition of dissolved organic carbon.

  7. Acoustically Induced Streaming Flows near a Model Cod Otolith and their Potential Implications for Fish Hearing

    Energy Technology Data Exchange (ETDEWEB)

    Kotas, Charlotte W [ORNL; Rogers, Peter [Georgia Institute of Technology; Yoda, Minami [Georgia Institute of Technology

    2011-01-01

    The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear s sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8 24 Hz, corresponding to an actual frequency range of 280 830 Hz. Phaselocked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species.

  8. Finite Difference Numerical Modeling of Gravito-Acoustic Wave Propagation in a Windy and Attenuating Atmosphere

    Science.gov (United States)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2015-12-01

    The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).

  9. Time reversal invariance for a one-dimensional model of contact acoustic nonlinearity

    Science.gov (United States)

    Blanloeuil, Philippe; Francis Rose, L. R.; Veidt, Martin; Wang, Chun H.

    2017-04-01

    The interaction of a one-dimensional (1D) wave packet with a contact interface characterized by a unilateral contact law is investigated analytically and through a finite difference model. It is shown that this interaction leads to the generation of higher harmonic, sub-harmonic and zero-frequency components in the reflected wave, resulting in a pulse distortion that is attributable to contact acoustic nonlinearity. However, the results also show that the re-emission of a time reversed version of this distorted first reflection results in a healing of the distortions and a perfect recovery of the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. A step-by-step analysis of the contact interaction provides insights into both the distortion arising from the first interaction and the subsequent healing during the second interaction. These findings suggest that time reversal invariance should also apply more generally for scatterers exhibiting non-dissipative contact acoustic nonlinearity.

  10. Reliability analysis on passive residual heat removal of AP1000 based on Grey model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Shi; Zhou, Tao; Shahzad, Muhammad Ali; Li, Yu [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Jiang, Guangming [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Laboratory

    2017-06-15

    It is common to base the design of passive systems on the natural laws of physics, such as gravity, heat conduction, inertia. For AP1000, a generation-III reactor, such systems have an inherent safety associated with them due to the simplicity of their structures. However, there is a fairly large amount of uncertainty in the operating conditions of these passive safety systems. In some cases, a small deviation in the design or operating conditions can affect the function of the system. The reliability of the passive residual heat removal is analysed.

  11. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    Directory of Open Access Journals (Sweden)

    Takashi eTateno

    2013-11-01

    Full Text Available To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number.

  12. Preliminary Work for Modeling the Propellers of an Aircraft as a Noise Source in an Acoustic Boundary Element Analysis

    Science.gov (United States)

    Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.

    1998-01-01

    An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.

  13. Finite-difference numerical modelling of gravito-acoustic wave propagation in a windy and attenuating atmosphere

    OpenAIRE

    2016-01-01

    in press; International audience; Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to pro...

  14. Analytical modeling and experimental evaluation of a passively morphing ornithopter wing

    Science.gov (United States)

    Wissa, Aimy A.

    Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in both civil and military sectors. Amongst all categories of UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work was to improve the steady level flight wing performance of an ornithopter by implementing the Continuous Vortex Gait (CVG) using a novel passive compliant spine. The CVG is a set of bio-inspired kinematics that natural flyers use to produce lift and thrust during steady level flight. A significant contribution of this work was the recognition that the CVG is an avian gait that could be achieved using a passive morphing mechanism. In contrast to rigid-link mechanisms and active approaches, reported by other researchers in the open literature, passive morphing mechanisms require no additional energy expenditure, while introducing minimal weight addition and complexity. During the execution of the CVG, the avian wing wrist is the primary joint responsible for the wing shape changes. Thus a compliant mechanism, called a compliant spine, was fabricated, and integrated in the ornithopter's wing leading edge spar where an avian wrist would normally exist, namely at 37% of the wing half span. Each compliant spine was designed to be flexible in bending during the wing upstroke and stiff in bending during the wing downstroke. Inserting a variable stiffness compliant mechanism in the leading edge (LE) spar of the ornithopter could affect its structural stability. An analytical model was developed to determine the structural stability of the ornithopter LE spar. The model was validated using experimental measurements. The LE spar equations of motion were then reformulated into Mathieu's equation and the LE spar was proven to be structurally stable with a

  15. System code improvements for modelling passive safety systems and their validation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Cron, Daniel von der; Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    GRS has been developing the system code ATHLET over many years. Because ATHLET, among other codes, is widely used in nuclear licensing and supervisory procedures, it has to represent the current state of science and technology. New reactor concepts such as Generation III+ and IV reactors and SMR are using passive safety systems intensively. The simulation of passive safety systems with the GRS system code ATHLET is still a big challenge, because of non-defined operation points and self-setting operation conditions. Additionally, the driving forces of passive safety systems are smaller and uncertainties of parameters have a larger impact than for active systems. This paper addresses the code validation and qualification work of ATHLET on the example of slightly inclined horizontal heat exchangers, which are e. g. used as emergency condensers (e. g. in the KERENA and the CAREM) or as heat exchanger in the passive auxiliary feed water systems (PAFS) of the APR+.

  16. Software Architecture for Modeling and Simulation of Underwater Acoustic Information Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Xi-min; CAI Zhi-ming

    2009-01-01

    The simulation of underwater acoustic information flow is an important way to research sonar performance and its engagement effectiveness in the ocean environment. This paper analyzes the significance of modeling an open and sophisticated simulation software architecture by object-oriented method, and introduces the modeling processes and expression method of simulation architecture. According to the requirements of simulation system and the underwater acoustic information flow, the logical architecture of simulation software system is modeled by the object-oriented method. A use-case view captured the system requirements. The logical view shows the logical architecture of software system. The simulation software is decomposed into the loose coupling constituent parts by layering and partitioning the packages for maintainability. The design patterns enabled the simulation software to have good expansibility and reusability. The simulation system involving multi-targets and multi-sonar is developed based on the architecture model. Practices show that the model meets the needs for simulating an open and sophisticated system.

  17. Ultrasonic characterization of three animal mammary tumors from three-dimensional acoustic tissue models

    Science.gov (United States)

    Mamou, Jonathan M.

    This dissertation investigated how three-dimensional (3D) tissue models can be used to improve ultrasonic tissue characterization (UTC) techniques. Anatomic sites in tissue responsible for ultrasonic scattering are unknown, which limits the potential applications of ultrasound for tumor diagnosis. Accurate 3D models of tumor tissues may help identify the scattering sites. Three mammary tumors were investigated: a rat fibroadenoma, a mouse carcinoma, and a mouse sarcoma. A 3D acoustic tissue model, termed 3D impedance map (3DZM), was carefully constructed from consecutive histologic sections for each tumor. Spectral estimates (scatterer size and acoustic concentration) were obtained from the 3DZMs and compared to the same estimates obtained with ultrasound. Scatterer size estimates for three tumors were found to be similar (within 10%). The 3DZMs were also used to extract tissue-specific scattering models. The scattering models were found to allow clear distinction between the three tumors. This distinction demonstrated that UTC techniques may be helpful for noninvasive clinical tumor diagnosis.

  18. Lung cancer and passive smoking: predicted effects from a mathematical model for cigarette smoking and lung cancer.

    OpenAIRE

    Darby, S C; Pike, M. C.

    1988-01-01

    Epidemiological studies of active smokers have shown that the duration of smoking has a much greater effect on lung cancer risk than the amount smoked. This observation suggests that passive smoking might be much more harmful than would be predicted from measures of the level of exposure alone, as it is often of very long duration frequently beginning in early childhood. In this paper we have investigated this using a multistage model with five stages. The model is shown to provide an excelle...

  19. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...

  20. Helical turbulent Prandtl number in the A model of passive vector advection

    Science.gov (United States)

    Hnatič, M.; Zalom, P.

    2016-11-01

    Using the field theoretic renormalization group technique in the two-loop approximation, turbulent Prandtl numbers are obtained in the general A model of passive vector advected by fully developed turbulent velocity field with violation of spatial parity introduced via the continuous parameter ρ ranging from ρ =0 (no violation of spatial parity) to |ρ |=1 (maximum violation of spatial parity). Values of A represent a continuously adjustable parameter which governs the interaction structure of the model. In nonhelical environments, we demonstrate that A is restricted to the interval -1.723 ≤A ≤2.800 (rounded to 3 decimal places) in the two-loop order of the field theoretic model. However, when ρ >0.749 (rounded to 3 decimal places), the restrictions may be removed, which means that presence of helicity exerts a stabilizing effect onto the possible stationary regimes of the system. Furthermore, three physically important cases A ∈{-1 ,0 ,1 } are shown to lie deep within the allowed interval of A for all values of ρ . For the model of the linearized Navier-Stokes equations (A =-1 ) up to date unknown helical values of the turbulent Prandtl number have been shown to equal 1 regardless of parity violation. Furthermore, we have shown that interaction parameter A exerts strong influence on advection-diffusion processes in turbulent environments with broken spatial parity. By varying A continuously, we explain high stability of the kinematic MHD model (A =1 ) against helical effects as a result of its proximity to the A =0.912 (rounded to 3 decimal places) case where helical effects are completely suppressed. Contrary, for the physically important A =0 model, we show that it lies deep within the interval of models where helical effects cause the turbulent Prandtl number to decrease with |ρ | . We thus identify internal structure of interactions given by the parameter A , and not the vector character of the admixture itself being the dominant factor influencing