WorldWideScience

Sample records for model organisms including

  1. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    Science.gov (United States)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  2. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  3. Model for safety reports including descriptive examples

    International Nuclear Information System (INIS)

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  4. Self-Organizing Map Models of Language Acquisition

    Directory of Open Access Journals (Sweden)

    Ping eLi

    2013-11-01

    Full Text Available Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic PDP architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development.

  5. Model of Organic Solar Cell Photocurrent Including the Effect of Charge Accumulation at Interfaces and Non-Uniform Carrier Generation

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Cester, Andrea; Rizzo, Antonio

    2017-01-01

    We developed an improved model to fit the photocurrent density versus voltage in organic solar cells. The model has been validated by fitting data from P3HT:PCBM solar cells. Our model quantitatively accounts for the band bending near the electrodes caused by charge accumulation in the active layer...

  6. An Instructional Development Model for Global Organizations: The GOaL Model.

    Science.gov (United States)

    Hara, Noriko; Schwen, Thomas M.

    1999-01-01

    Presents an instructional development model, GOaL (Global Organization Localization), for use by global organizations. Topics include gaps in language, culture, and needs; decentralized processes; collaborative efforts; predetermined content; multiple perspectives; needs negotiation; learning within context; just-in-time training; and bilingual…

  7. The Time Is Right to Focus on Model Organism Metabolomes

    Directory of Open Access Journals (Sweden)

    Arthur S. Edison

    2016-02-01

    Full Text Available Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  8. Modelling organic particles in the atmosphere

    International Nuclear Information System (INIS)

    Couvidat, Florian

    2012-01-01

    Organic aerosol formation in the atmosphere is investigated via the development of a new model named H 2 O (Hydrophilic/Hydrophobic Organics). First, a parameterization is developed to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the effect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This parameterization is then implemented in H 2 O along with some other developments and the results of the model are compared to organic carbon measurements over Europe. Model performance is greatly improved by taking into account emissions of primary semi-volatile compounds, which can form secondary organic aerosols after oxidation or can condense when temperature decreases. If those emissions are not taken into account, a significant underestimation of organic aerosol concentrations occurs in winter. The formation of organic aerosols over an urban area was also studied by simulating organic aerosols concentration over the Paris area during the summer campaign of Megapoli (July 2009). H 2 O gives satisfactory results over the Paris area, although a peak of organic aerosol concentrations from traffic, which does not appear in the measurements, appears in the model simulation during rush hours. It could be due to an underestimation of the volatility of organic aerosols. It is also possible that primary and secondary organic compounds do not mix well together and that primary semi volatile compounds do not condense on an organic aerosol that is mostly secondary and highly oxidized. Finally, the impact of aqueous-phase chemistry was studied. The mechanism for the formation of secondary organic aerosol includes in-cloud oxidation of glyoxal, methylglyoxal, methacrolein and methylvinylketone, formation of methyltetrols in the aqueous phase of particles and cloud droplets, and the in-cloud aging of organic aerosols. The impact of wet deposition is also studied to better estimate the

  9. Self-organizing map models of language acquisition

    Science.gov (United States)

    Li, Ping; Zhao, Xiaowei

    2013-01-01

    Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories. PMID:24312061

  10. Electrochemical model of the polyaniline based organic memristive device

    International Nuclear Information System (INIS)

    Demin, V. A.; Erokhin, V. V.; Kashkarov, P. K.; Kovalchuk, M. V.

    2014-01-01

    The electrochemical organic memristive device with polyaniline active layer is a stand-alone device designed and realized for reproduction of some synapse properties in the innovative electronic circuits, including the neuromorphic networks capable for learning. In this work, a new theoretical model of the polyaniline memristive is presented. The developed model of organic memristive functioning was based on the detailed consideration of possible electrochemical processes occuring in the active zone of this device. Results of the calculation have demonstrated not only the qualitative explanation of the characteristics observed in the experiment but also the quantitative similarities of the resultant current values. It is shown how the memristive could behave at zero potential difference relative to the reference electrode. This improved model can establish a basis for the design and prediction of properties of more complicated circuits and systems (including stochastic ones) based on the organic memristive devices

  11. Saccharomyces cerevisiae as a model organism: a comparative study.

    Directory of Open Access Journals (Sweden)

    Hiren Karathia

    Full Text Available BACKGROUND: Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. CONCLUSIONS/SIGNIFICANCE: The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.

  12. Tree-Structured Digital Organisms Model

    Science.gov (United States)

    Suzuki, Teruhiko; Nobesawa, Shiho; Tahara, Ikuo

    Tierra and Avida are well-known models of digital organisms. They describe a life process as a sequence of computation codes. A linear sequence model may not be the only way to describe a digital organism, though it is very simple for a computer-based model. Thus we propose a new digital organism model based on a tree structure, which is rather similar to the generic programming. With our model, a life process is a combination of various functions, as if life in the real world is. This implies that our model can easily describe the hierarchical structure of life, and it can simulate evolutionary computation through mutual interaction of functions. We verified our model by simulations that our model can be regarded as a digital organism model according to its definitions. Our model even succeeded in creating species such as viruses and parasites.

  13. A self-organized criticality model for plasma transport

    International Nuclear Information System (INIS)

    Carreras, B.A.; Newman, D.; Lynch, V.E.

    1996-01-01

    Many models of natural phenomena manifest the basic hypothesis of self-organized criticality (SOC). The SOC concept brings together the self-similarity on space and time scales that is common to many of these phenomena. The application of the SOC modelling concept to the plasma dynamics near marginal stability opens new possibilities of understanding issues such as Bohm scaling, profile consistency, broad band fluctuation spectra with universal characteristics and fast time scales. A model realization of self-organized criticality for plasma transport in a magnetic confinement device is presented. The model is based on subcritical resistive pressure-gradient-driven turbulence. Three-dimensional nonlinear calculations based on this model show the existence of transport under subcritical conditions. This model that includes fluctuation dynamics leads to results very similar to the running sandpile paradigm

  14. Safety Cultural Competency Modeling in Nuclear Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.

  15. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  16. A Framework for Formal Modeling and Analysis of Organizations

    NARCIS (Netherlands)

    Jonker, C.M.; Sharpanskykh, O.; Treur, J.; P., Yolum

    2007-01-01

    A new, formal, role-based, framework for modeling and analyzing both real world and artificial organizations is introduced. It exploits static and dynamic properties of the organizational model and includes the (frequently ignored) environment. The transition is described from a generic framework of

  17. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  18. Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes

    Science.gov (United States)

    Driscoll, Charles T.; Lehtinen, Michael D.; Sullivan, Timothy J.

    1994-02-01

    Data from the large and diverse Adirondack Lake Survey were used to calibrate four simple organic acid analog models in an effort to quantify the influence of naturally occurring organic acids on lake water pH and acid-neutralizing capacity (ANC). The organic acid analog models were calibrated to observations of pH, dissolved organic carbon (DOC), and organic anion (An-) concentrations from a reduced data set representing 1128 individual lake samples, expressed as 41 observations of mean pH, in intervals of 0.1 pH units from pH 3.9 to 7.0. Of the four organic analog approaches examined, including the Oliver et al. (1983) model, as well as monoprotic, diprotic, and triprotic representations, the triprotic analog model yielded the best fit (r2 = 0.92) to the observed data. Moreover, the triprotic model was qualitatively consistent with observed patterns of change in organic solute charge density as a function of pH. A low calibrated value for the first H+ dissociation constant (pKal = 2.62) and the observation that organic anion concentrations were significant even at very low pH (acidic functional groups. Inclusion of organic acidity in model calculations resulted in good agreement between measured and predicted values of lake water pH and ANC. Assessments to project the response of surface waters to future changes in atmospheric deposition, through the use of acidification models, will need to include representations of organic acids in model structure to make accurate predictions of pH and ANC.

  19. 75 FR 28298 - Avaya Inc., Worldwide Services Group, Global Support Services (GSS) Organization, Including On...

    Science.gov (United States)

    2010-05-20

    ...., Worldwide Services Group, Global Support Services (GSS) Organization, Including On-Site Leased Workers From..., Highlands Ranch, CO; Including Employees in Support of Avaya Inc., Worldwide Services Group, Global Support... workers of Avaya Inc., Worldwide Services Group, Global Support Services (GSS) Organization, including on...

  20. Project-matrix models of marketing organization

    Directory of Open Access Journals (Sweden)

    Gutić Dragutin

    2009-01-01

    Full Text Available Unlike theory and practice of corporation organization, in marketing organization numerous forms and contents at its disposal are not reached until this day. It can be well estimated that marketing organization today in most of our companies and in almost all its parts, noticeably gets behind corporation organization. Marketing managers have always been occupied by basic, narrow marketing activities as: sales growth, market analysis, market growth and market share, marketing research, introduction of new products, modification of products, promotion, distribution etc. They rarely found it necessary to focus a bit more to different aspects of marketing management, for example: marketing planning and marketing control, marketing organization and leading. This paper deals with aspects of project - matrix marketing organization management. Two-dimensional and more-dimensional models are presented. Among two-dimensional, these models are analyzed: Market management/products management model; Products management/management of product lifecycle phases on market model; Customers management/marketing functions management model; Demand management/marketing functions management model; Market positions management/marketing functions management model. .

  1. Drivers of soil organic matter vulnerability to climate change, Part II: RothC modelling of carbon dynamics including radiocarbon data

    Science.gov (United States)

    Studer, Mirjam S.; Abiven, Samuel; González Domínguez, Beatriz R.; Hagedorn, Frank; Reisser, Moritz; Walthert, Lorenz; Zimmermann, Stephan; Niklaus, Pascal A.

    2016-04-01

    It is still largely unknown what drives the vulnerability of soil organic carbon (SOC) stocks to climate change, i.e. the likelihood of a soil to loose its SOC along with the change in environmental conditions. Our objective is to assess the SOC vulnerability of Swiss forest soils and identify its potential drivers: climate (temperature, soil moisture), soil (clay content, pH) and landscape (slope, aspect) properties. Fifty-four sites were selected for balanced spatial and driver magnitudes distribution. We measured the SOC characteristics (content and radiocarbon) and studied the C decomposition by laboratory soil incubations (details in Part I, abstract by B. González Domínguez). In order to assess the current SOC pool distribution and its radiocarbon signatures, we extended the Rothamsted Carbon (RothC) model with radiocarbon (14C) isotope modelling (RothCiso). The RothC model distinguishes four active SOC pools, decomposable and resistant plant material, microbial biomass and humified organic matter, and an inert SOC pool (Jenkinson 1990). The active pools are decomposed and mineralized to CO2 by first order kinetics. The RothCiso assigns all pools a 14C signature, based on the atmospheric 14C concentrations of the past century (plant C inputs) and their turnover. Currently we constrain the model with 14C signatures measured on the 54 fresh and their corresponding archived bulk soil samples, taken 12-24 years before. We were able to reproduce the measured radiocarbon concentrations of the SOC with the RothCiso and first results indicate, that the assumption of an inert SOC pool, that is radiocarbon dead, is not appropriate. In a second step we will compare the SOC mean residence time assessed by the two methodological approaches - incubation (C efflux based) and modelling (C stock based) - and relate it to the environmental drivers mentioned above. With the combination of the two methodological approaches and 14C analysis we hope to gain more insights into

  2. Microfluidic Organ-on-a-Chip Models of Human IntestineSummary

    Directory of Open Access Journals (Sweden)

    Amir Bein

    Full Text Available Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine. Keywords: Organs-on-Chips, Gut-on-a-Chip, Intestine-on-a-Chip, Microfluidic

  3. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Science.gov (United States)

    Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung

    2018-04-01

    We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  4. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Directory of Open Access Journals (Sweden)

    Nayoung Park

    2018-04-01

    Full Text Available We demonstrate thermally assisted hopping (TAH as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  5. 3D Bioprinting of Tissue/Organ Models.

    Science.gov (United States)

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Model for safety reports including descriptive examples; Mall foer saekerhetsrapporter med beskrivande exempel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository.

  7. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  8. Magnetoresistance in organic semiconductors: Including pair correlations in the kinetic equations for hopping transport

    Science.gov (United States)

    Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.

    2018-03-01

    We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.

  9. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  10. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  11. Modeling self-organization of novel organic materials

    Science.gov (United States)

    Sayar, Mehmet

    In this thesis, the structural organization of oligomeric multi-block molecules is analyzed by computational analysis of coarse-grained models. These molecules form nanostructures with different dimensionalities, and the nanostructured nature of these materials leads to novel structural properties at different length scales. Previously, a number of oligomeric triblock rodcoil molecules have been shown to self-organize into mushroom shaped noncentrosymmetric nanostructures. Interestingly, thin films of these molecules contain polar domains and a finite macroscopic polarization. However, the fully polarized state is not the equilibrium state. In the first chapter, by solving a model with dipolar and Ising-like short range interactions, we show that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a ≈ 6 nm), leading to a reduction in the repulsive dipolar interactions that oppose polar order within layers. This enables the formation of a striped pattern with polar domains of alternating directions. The energies of the possible structures at zero temperature are computed exactly and results of Monte Carlo simulations are provided at non-zero temperatures. In the second chapter, the macroscopic polarization of such nanostructured films is analyzed in the presence of a short range surface interaction. The surface interaction leads to a periodic domain structure where the balance between the up and down domains is broken, and therefore films of finite thickness have a net macroscopic polarization. The polarization per unit volume is a function of film thickness and strength of the surface interaction. Finally, in chapter three, self-organization of organic molecules into a network of one dimensional objects is analyzed. Multi-block organic dendron rodcoil molecules were found to self-organize into supramolecular nanoribbons (threads) and

  12. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Jørgensen, Niklas Rye

    2012-01-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the method used to improve osseointegration. Nanoscale modification of titanium implants affects surface properties, such as hydrophilicity, biochemical bonding capacity...... and roughness. This influences cell behaviour on the surface such as adhesion, proliferation and differentiation of cells as well as the mineralization of the extracellular matrix at the implant surfaces. The aim of the present systematic review was to describe organic molecules used for surface nanocoating...... nanocoatings. The included in vivo studies, showed improvement of bone interface reactions measured as increased Bone-to-Implant Contact length and Bone Mineral Density adjacent to the polysaccharide coated surfaces. Based on existing literature, surface modification with polysaccharide and glycosaminoglycans...

  13. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    Science.gov (United States)

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Waste Reduction Model (WARM) Resources for Small Businesses and Organizations

    Science.gov (United States)

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by small businesses and organizations. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  15. Regional Persistent Organic Pollutants' Environmental Impact Assessment and Control Model

    Directory of Open Access Journals (Sweden)

    Jurgis Staniskis

    2008-10-01

    Full Text Available The sources of formation, environmental distribution and fate of persistent organic pollutants (POPs are increasingly seen as topics to be addressed and solved at the global scale. Therefore, there are already two international agreements concerning persistent organic pollutants: the Protocol of 1998 to the 1979 Convention on the Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (Aarhus Protocol; and the Stockholm Convention on Persistent Organic Pollutants. For the assessment of environmental pollution of POPs, for the risk assessment, for the evaluation of new pollutants as potential candidates to be included in the POPs list of the Stokholmo or/and Aarhus Protocol, a set of different models are developed or under development. Multimedia models help describe and understand environmental processes leading to global contamination through POPs and actual risk to the environment and human health. However, there is a lack of the tools based on a systematic and integrated approach to POPs management difficulties in the region.

  16. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  17. An Incremental Model for Cloud Adoption: Based on a Study of Regional Organizations

    Directory of Open Access Journals (Sweden)

    Emre Erturk

    2017-11-01

    Full Text Available Many organizations that use cloud computing services intend to increase this commitment. A survey was distributed to organizations in Hawke’s Bay, New Zealand to understand their adoption of cloud solutions, in comparison with global trends and practices. The survey also included questions on the benefits and challenges, and which delivery model(s they have adopted and are planning to adopt. One aim is to contribute to the cloud computing literature and build on the existing adoption models. This study also highlights additional aspects applicable to various organizations (small, medium, large and regional. Finally, recommendations are provided for related future research projects.

  18. [Biomechanical modeling of pelvic organ mobility: towards personalized medicine].

    Science.gov (United States)

    Cosson, Michel; Rubod, Chrystèle; Vallet, Alexandra; Witz, Jean-François; Brieu, Mathias

    2011-11-01

    Female pelvic mobility is crucial for urinary, bowel and sexual function and for vaginal delivery. This mobility is ensured by a complex organ suspension system composed of ligaments, fascia and muscles. Impaired pelvic mobility affects one in three women of all ages and can be incapacitating. Surgical management has a high failure rate, largely owing to poor knowledge of the organ support system, including the barely discernible ligamentous system. We propose a 3D digital model of the pelvic cavity based on MRI images and quantitative tools, designed to locate the pelvic ligaments. We thus obtain a coherent anatomical and functional model which can be used to analyze pelvic pathophysiology. This work represents a first step towards creating a tool for localizing and characterizing the source of pelvic imbalance. We examine possible future applications of this model, in terms of personalized therapy and prevention.

  19. Mutant mice: experimental organisms as materialised models in biomedicine.

    Science.gov (United States)

    Huber, Lara; Keuck, Lara K

    2013-09-01

    Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models-acknowledging their status as living beings and as epistemological tools-necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer's disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Investigating ecological speciation in non-model organisms

    DEFF Research Database (Denmark)

    Foote, Andrew David

    2012-01-01

    Background: Studies of ecological speciation tend to focus on a few model biological systems. In contrast, few studies on non-model organisms have been able to infer ecological speciation as the underlying mechanism of evolutionary divergence. Questions: What are the pitfalls in studying ecological...... speciation in non-model organisms that lead to this bias? What alternative approaches might redress the balance? Organism: Genetically differentiated types of the killer whale (Orcinus orca) exhibiting differences in prey preference, habitat use, morphology, and behaviour. Methods: Review of the literature...... on killer whale evolutionary ecology in search of any difficulty in demonstrating causal links between variation in phenotype, ecology, and reproductive isolation in this non-model organism. Results: At present, we do not have enough evidence to conclude that adaptive phenotype traits linked to ecological...

  1. Perfluorooctanesulfonate and related fluorochemicals in several organisms including humans from Italy

    Energy Technology Data Exchange (ETDEWEB)

    Corsolini, S. [Siena Univ. (Italy); Kannan, K. [New York State Univ., Albany, NY (United States)

    2004-09-15

    Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant, extremely resistant to environmental degradation and is ubiquitous in the environment. Traditional monitoring studies for persistent chemicals failed to identify this contaminant for a long time because of its unique physicochemical properties and its tendency to bind to proteins instead of accumulating in fatty tissues. PFOS is known to be toxic in laboratory animals (rats, mice, monkeys) at levels close to the range already found in organisms and people. PFOS has been commercially produced by an electrochemical fluorination process for over 40 years. Perfluorooctane sulfonylfluoride (POSF; C{sub 8}F{sub 17}SO{sub 2}F) is used as a building block for further reactions that produce several other sulfonated fluorinated compounds, including perfluorooctane sulfonate (C{sub 8}F{sub 17}SO{sub 3}{sup -}) and other precursor molecules such as n-ethyl or n-methyl perfluorooctanesulfonamidoethanol. POSF-based fluorochemicals have been used in a wide variety of industrial and consumer products, including protective coatings for carpets and apparel, paper coatings, insecticide formulations, and surfactants. These compounds repel water and oil, reduce surface tension, catalyze oligomerization and polymerization, and maintain their properties under extreme conditions. Depending upon the specific functional derivatization or the degree of polymerization, POSF-based chemicals may degrade or metabolize to PFOS, which is known to be the final metabolite of POSF-based fluorochemicals. PFOS is stable, chemically inert, and non-reactive and has the potential to bioaccumulate. It has been found in polar bears from the Arctic, albatross and other fish-eating water birds in the mid-Pacific, and aquatic organisms11 and people world-wide. PFOS and other perfluorinated chemicals such as perfluorooctanesulfonamide (PFOSA), perfluorohexanesulfonate (PFHxS), and perfluorooctanoate (PFOA) have been detected in human blood. In

  2. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  3. A taxonomy of nursing care organization models in hospitals.

    Science.gov (United States)

    Dubois, Carl-Ardy; D'Amour, Danielle; Tchouaket, Eric; Rivard, Michèle; Clarke, Sean; Blais, Régis

    2012-08-28

    Over the last decades, converging forces in hospital care, including cost-containment policies, rising healthcare demands and nursing shortages, have driven the search for new operational models of nursing care delivery that maximize the use of available nursing resources while ensuring safe, high-quality care. Little is known, however, about the distinctive features of these emergent nursing care models. This article contributes to filling this gap by presenting a theoretically and empirically grounded taxonomy of nursing care organization models in the context of acute care units in Quebec and comparing their distinctive features. This study was based on a survey of 22 medical units in 11 acute care facilities in Quebec. Data collection methods included questionnaire, interviews, focus groups and administrative data census. The analytical procedures consisted of first generating unit profiles based on qualitative and quantitative data collected at the unit level, then applying hierarchical cluster analysis to the units' profile data. The study identified four models of nursing care organization: two professional models that draw mainly on registered nurses as professionals to deliver nursing services and reflect stronger support to nurses' professional practice, and two functional models that draw more significantly on licensed practical nurses (LPNs) and assistive staff (orderlies) to deliver nursing services and are characterized by registered nurses' perceptions that the practice environment is less supportive of their professional work. This study showed that medical units in acute care hospitals exhibit diverse staff mixes, patterns of skill use, work environment design, and support for innovation. The four models reflect not only distinct approaches to dealing with the numerous constraints in the nursing care environment, but also different degrees of approximations to an "ideal" nursing professional practice model described by some leaders in the

  4. On the electronic structure of Barrelene-based rigid organic donor-acceptor systems. An INDO model study including solvent effects

    International Nuclear Information System (INIS)

    Fox, T.; Kotzian, M.; Roesch, N.

    1992-01-01

    The authors present an INDO/S Molecular-orbital investigation of organic molecules containing a barrelene moiety that provides a rigid link between an aromatic donor and a maleic ester acceptor group. Molecules of this type have recently been synthesized and characterized spectroscopically. The authors discuss the ground state and various excited states both in vacuo and in solution. Solvent effects are incorporated by use of an electrostatic cavity model which is not restricted to a spherical cavity, but allows for a cavity shape that is adapted to the solute molecule. The calculations indicate low-lying charge-transfer (CT) excitations in the region of the first aromatic transitions, even in the gas phase

  5. Composition of diesel exhaust with particular reference to particle bound organics including formation of artifacts.

    Science.gov (United States)

    Lies, K H; Hartung, A; Postulka, A; Gring, H; Schulze, J

    1986-01-01

    For particulate emissions, standards were established by the US EPA in February 1980. Regulations limiting particulates from new light duty diesel vehicles are valid by model year 1982. The corresponding standards on a pure mass basis do not take into account any chemical character of the diesel particulate matter. Our investigation of the material composition shows that diesel particulates consist mainly of soot (up to 80% by weight) and adsorptively bound organics including polycyclic aromatic hydrocarbons (PAH). The qualitative and quantitative nature of hydrocarbon compounds associated with the particulates is dependent not only on the combustion parameters of the engine but also to an important degree on the sampling conditions when the particulates are collected (dilution ratio, temperature, filter material, sampling time etc.). Various methods for the analyses of PAH and their oxy- and nitro-derivatives are described including sampling, extraction, fractionation and chemical analysis. Quantitative comparison of PAH, nitro-PAH and oxy-PAH from different engines are given. For assessing mutagenicity of particulate matter, short-term biological tests are widely used. These biological tests often need a great amount of particulate matter requiring prolonged filter sampling times. Since it is well known that facile PAH oxidation can take place under the conditions used for sampling and analysis, the question rises if these PAH-derivates found in particle extracts partly or totally are produced during sampling (artifacts). Various results concerning nitro- and oxy-PAH are presented characterizing artifact formation as a minor problem under the conditions of the Federal Test Procedure. But results show that under other sampling conditions, e.g. electrostatic precipitation, higher NO2-concentrations and longer sampling times, artifact formation can become a bigger problem. The more stringent particulate standard of 0.2 g/mi for model years 1986 and 1987 respectively

  6. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model.

    Science.gov (United States)

    Takagi, Ryoji; Ishimaru, Junko; Sugawara, Ayaka; Toyoshima, Koh-Ei; Ishida, Kentaro; Ogawa, Miho; Sakakibara, Kei; Asakawa, Kyosuke; Kashiwakura, Akitoshi; Oshima, Masamitsu; Minamide, Ryohei; Sato, Akio; Yoshitake, Toshihiro; Takeda, Akira; Egusa, Hiroshi; Tsuji, Takashi

    2016-04-01

    The integumentary organ system is a complex system that plays important roles in waterproofing, cushioning, protecting deeper tissues, excreting waste, and thermoregulation. We developed a novel in vivo transplantation model designated as a clustering-dependent embryoid body transplantation method and generated a bioengineered three-dimensional (3D) integumentary organ system, including appendage organs such as hair follicles and sebaceous glands, from induced pluripotent stem cells. This bioengineered 3D integumentary organ system was fully functional following transplantation into nude mice and could be properly connected to surrounding host tissues, such as the epidermis, arrector pili muscles, and nerve fibers, without tumorigenesis. The bioengineered hair follicles in the 3D integumentary organ system also showed proper hair eruption and hair cycles, including the rearrangement of follicular stem cells and their niches. Potential applications of the 3D integumentary organ system include an in vitro assay system, an animal model alternative, and a bioengineered organ replacement therapy.

  7. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  8. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  9. Modeling the current and future role of particulate organic nitrates in the southeastern United States

    Science.gov (United States)

    Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate ...

  10. [Incorporation of an organic MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using independent data sources]. [MAGIC Model

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.

    1992-09-01

    A project was initiated in March, 1992 to (1) incorporate a rigorous organic acid representation, based on empirical data and geochemical considerations, into the MAGIC model of acidification response, and (2) test the revised model using three sets of independent data. After six months of performance, the project is on schedule and the majority of the tasks outlined for Year 1 have been successfully completed. Major accomplishments to data include development of the organic acid modeling approach, using data from the Adirondack Lakes Survey Corporation (ALSC), and coupling the organic acid model with MAGIC for chemical hindcast comparisons. The incorporation of an organic acid representation into MAGIC can account for much of the discrepancy earlier observed between MAGIC hindcasts and paleolimnological reconstructions of preindustrial pH and alkalinity for 33 statistically-selected Adirondack lakes. Additional work is on-going for model calibration and testing with data from two whole-catchment artificial acidification projects. Results obtained thus far are being prepared as manuscripts for submission to the peer-reviewed scientific literature.

  11. Prediction of thermophysical and transport properties of ternary organic non-electrolyte systems including water by polynomials

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan D.

    2013-01-01

    Full Text Available The description and prediction of the thermophysical and transport properties of ternary organic non-electrolyte systems including water by the polynomial equations are reviewed. Empirical equations of Radojković et al. (also known as Redlich-Kister, Kohler, Jacob-Fitzner, Colinet, Tsao-Smith, Toop, Scatchard et al. and Rastogi et al. are compared with experimental data of available papers appeared in well know international journals (Fluid Phase Equilibria, Journal of Chemical and Engineering Data, Journal of Chemical Thermodynamics, Journal of Solution Chemistry, Journal of the Serbian Chemical Society, The Canadian Journal of Chemical Engineering, Journal of Molecular Liquids, Thermochimica Acta, etc.. The applicability of empirical models to estimate excess molar volumes, VE, excess viscosities, ηE, excess free energies of activation of a viscous flow,

  12. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  13. Presenting a comprehensive market oriented model and evaluating its impact on organization performance

    Directory of Open Access Journals (Sweden)

    Mohammad Taqi Amini

    2013-08-01

    Full Text Available Like other innovative strategies, companies have paid more attention to market oriented strategies in recent years. This has been focused by organizations for improved effectiveness and the organization performance accelerated a lot in business competition. In responding to this fact, organizations are trying to formulate many of the issues familiar to large organizations, which have involved with market oriented strategy planning. This paper reviews key elements in market-oriented strategy planning with regard to competitiveness and performance in large organizations and outlines a comprehensive model for strategy planning in profit organizations. These elements include environment, top management, organization structure and market oriented strategy. Professional question of this study has a particularly important role in formulating relations of this model. These elements are well positioned to evaluate the impact of market-oriented strategy planning on organizations and their expected impacts on organization performance. A well-organized questionnaire to help organizations with their planning is proposed in this survey. Based on the proposed questionnaire, data obtained from Tehran food industry experts and analyzed by using SEM method. Results accepted eight hypotheses and rejected one.

  14. Dynamic experiments with high bisphenol-A concentrations modelled with an ASM model extended to include a separate XOC degrading microorganism

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Press-Kristensen, Kåre; Vanrolleghem, P.A.

    2009-01-01

    The perspective of this work is to develop a model, which can be used to better understand and optimize wastewater treatment plants that are able to remove xenobiotic organic compounds (XOCs) in combination with removal of traditional pollutants. Results from dynamic experiments conducted...... with the endocrine disrupting XOC bisphenol-A (BPA) in an activated sludge process with real wastewater were used to hypothesize an ASM-based process model including aerobic growth of a specific BPA-degrading microorganism and sorption of BPA to sludge. A parameter estimation method was developed, which...... simultaneously utilizes steady-state background concentrations and dynamic step response data, as well as conceptual simplifications of the plant configuration. Validation results show that biodegradation of BPA is sensitive to operational conditions before and during the experiment and that the proposed model...

  15. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC)

    International Nuclear Information System (INIS)

    Sullivan, T.J.; Eilers, J.M.; Cosby, B.J.; Driscoll, C.T.; Hemond, H.F.; Charles, D.F.; Norton, S.A.

    1993-01-01

    A project for the US Department of Energy, entitled ''Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources'' was initiated by E ampersand S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed

  16. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Eilers, J.M. (E and S Environmental Chemistry, Inc., Corvallis, OR (United States)); Cosby, B.J. (Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences); Driscoll, C.T. (Syracuse Univ., NY (United States). Dept. of Civil Engineering); Hemond, H.F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering); Charles, D.F.

    1993-03-05

    A project for the US Department of Energy, entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources'' was initiated by E S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

  17. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2005-01-01

    Full Text Available In this work, existing and modified activity coefficient models are examined in order to assess their capabilities to describe the properties of aqueous solution droplets relevant in the atmosphere. Five different water-organic-electrolyte activity coefficient models were first selected from the literature. Only one of these models included organics and electrolytes which are common in atmospheric aerosol particles. In the other models, organic species were solvents such as alcohols, and important atmospheric ions like NH4+ could be missing. The predictions of these models were compared to experimental activity and solubility data in aqueous single electrolyte solutions with 31 different electrolytes. Based on the deviations from experimental data and on the capabilities of the models, four predictive models were selected for fitting of new parameters for binary and ternary solutions of common atmospheric electrolytes and organics. New electrolytes (H+, NH4+, Na+, Cl-, NO3- and SO42- and organics (dicarboxylic and some hydroxy acids were added and some modifications were made to the models if it was found useful. All new and most of the existing parameters were fitted to experimental single electrolyte data as well as data for aqueous organics and aqueous organic-electrolyte solutions. Unfortunately, there are very few data available for organic activities in binary solutions and for organic and electrolyte activities in aqueous organic-electrolyte solutions. This reduces model capabilities in predicting solubilities. After the parameters were fitted, deviations from measurement data were calculated for all fitted models, and for different data types. These deviations and the calculated property values were compared with those from other non-electrolyte and organic-electrolyte models found in the literature. Finally, hygroscopic growth factors were calculated for four 100 nm organic-electrolyte particles and these predictions were compared to

  18. A taxonomy of nursing care organization models in hospitals

    Science.gov (United States)

    2012-01-01

    Background Over the last decades, converging forces in hospital care, including cost-containment policies, rising healthcare demands and nursing shortages, have driven the search for new operational models of nursing care delivery that maximize the use of available nursing resources while ensuring safe, high-quality care. Little is known, however, about the distinctive features of these emergent nursing care models. This article contributes to filling this gap by presenting a theoretically and empirically grounded taxonomy of nursing care organization models in the context of acute care units in Quebec and comparing their distinctive features. Methods This study was based on a survey of 22 medical units in 11 acute care facilities in Quebec. Data collection methods included questionnaire, interviews, focus groups and administrative data census. The analytical procedures consisted of first generating unit profiles based on qualitative and quantitative data collected at the unit level, then applying hierarchical cluster analysis to the units’ profile data. Results The study identified four models of nursing care organization: two professional models that draw mainly on registered nurses as professionals to deliver nursing services and reflect stronger support to nurses’ professional practice, and two functional models that draw more significantly on licensed practical nurses (LPNs) and assistive staff (orderlies) to deliver nursing services and are characterized by registered nurses’ perceptions that the practice environment is less supportive of their professional work. Conclusions This study showed that medical units in acute care hospitals exhibit diverse staff mixes, patterns of skill use, work environment design, and support for innovation. The four models reflect not only distinct approaches to dealing with the numerous constraints in the nursing care environment, but also different degrees of approximations to an “ideal” nursing professional practice

  19. Organic production in a dynamic CGE model

    DEFF Research Database (Denmark)

    Jacobsen, Lars Bo

    2004-01-01

    for conventional production into land for organic production, a period of two years must pass before the land being transformed can be used for organic production. During that time, the land is counted as land of the organic industry, but it can only produce the conventional product. To handle this rule, we make......Concerns about the impact of modern agriculture on the environment have in recent years led to an interest in supporting the development of organic farming. In addition to environmental benefits, the aim is to encourage the provision of other “multifunctional” properties of organic farming...... such as rural amenities and rural development that are spillover benefit additional to the supply of food. In this paper we further develop an existing dynamic general equilibrium model of the Danish economy to specifically incorporate organic farming. In the model and input-output data each primary...

  20. Organization-based Model-driven Development of High-assurance Multiagent Systems

    Science.gov (United States)

    2009-02-27

    State University. aT3 was developed in Java and built on top of the Eclipse6 platform and the Eclipse Process Framework7 ( EPF ). The goal of aT3 is to...organization. Role http://macr.cis.ksu.edu/ http://www.eclipse.org/ http://www.eclipse.org/ epf / 57 Models are static models that may include goals...and customizing processes for multi-agent system development. APE is an Eclipse-based8 plug-in which uses EPF to facilitate the management of tailored

  1. Virtual Organizations: Trends and Models

    Science.gov (United States)

    Nami, Mohammad Reza; Malekpour, Abbaas

    The Use of ICT in business has changed views about traditional business. With VO, organizations with out physical, geographical, or structural constraint can collaborate with together in order to fulfill customer requests in a networked environment. This idea improves resource utilization, reduces development process and costs, and saves time. Virtual Organization (VO) is always a form of partnership and managing partners and handling partnerships are crucial. Virtual organizations are defined as a temporary collection of enterprises that cooperate and share resources, knowledge, and competencies to better respond to business opportunities. This paper presents an overview of virtual organizations and main issues in collaboration such as security and management. It also presents a number of different model approaches according to their purpose and applications.

  2. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    Science.gov (United States)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  3. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  4. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peifu; Hu, Yun Hang

    2016-01-01

    Graphical abstract: It was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model for C2H2 adsorption on metal-organic frameworks (MOFs), including MOF-5, ZIF-8, HKUST-1, and MIL-53. - Highlights: • Dubinin-Astakhov equation is demonstrated to be a general model for C_2H_2 adsorption on metal-organic frameworks (MOFs). • Surface areas obtained with Dubinin-Astakhov equation from C_2H_2 adsorption on MOFs are consistent with BET surface areas from N_2 adsorption. • C_2H_2 on MOF-5, ZIF-8, and MIL-53 is a physical adsorption, whereas its adsorption on HKUST-1 is due to a chemical bonding. - Abstract: Acetylene (C_2H_2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C_2H_2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C_2H_2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C_2H_2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C_2H_2 adsorption on those MOFs.

  5. Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2009-09-01

    Full Text Available The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA and secondary OA (SOA – observed in Mexico City during the MILAGRO field project (March 2006. Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes, biogenic (i.e. monoterpenes and isoprene, and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA

  6. Silkworm: A Promising Model Organism in Life Science.

    Science.gov (United States)

    Meng, Xu; Zhu, Feifei; Chen, Keping

    2017-09-01

    As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  7. Radiation sensitivity of organisms of different organization level: an approach including DNA strand breakage

    International Nuclear Information System (INIS)

    Kampf, G.

    1983-01-01

    The mean numbers of DNA double-strand breaks (DSB) suggested to be necessary to lead to the loss of reproductive capacity are compared with bacteriophages, bacteria, and cells of the Chinese hamster after the influence of several radiation qualities. The results suggest that the critical target for the inactivating action of radiations may not be the entire DNA of all organisms but a structure unit of it designed as membrane-attached super structure unit. With organisms having only one of these structures (bacteria) the inactivation probability of one DSB will be near unity, with their multiplication in higher cells it will become lower. This means, eukaryotic cells are able to tolerate more DSB before being inactivated than organisms of a lower organization level, and consequently are more ''lesion resistant''. This behavior represents an evolutionary stabilization of higher cells towards the lethal action of severe DNA lesions such as DSB. (author)

  8. Sordaria macrospora, a model organism to study fungal cellular development.

    Science.gov (United States)

    Engh, Ines; Nowrousian, Minou; Kück, Ulrich

    2010-12-01

    During the development of multicellular eukaryotes, the processes of cellular growth and organogenesis are tightly coordinated. Since the 1940s, filamentous fungi have served as genetic model organisms to decipher basic mechanisms underlying eukaryotic cell differentiation. Here, we focus on Sordaria macrospora, a homothallic ascomycete and important model organism for developmental biology. During its sexual life cycle, S. macrospora forms three-dimensional fruiting bodies, a complex process involving the formation of different cell types. S. macrospora can be used for genetic, biochemical and cellular experimental approaches since diverse tools, including fluorescence microscopy, a marker recycling system and gene libraries, are available. Moreover, the genome of S. macrospora has been sequenced and allows functional genomics analyses. Over the past years, our group has generated and analysed a number of developmental mutants which has greatly enhanced our fundamental understanding about fungal morphogenesis. In addition, our recent research activities have established a link between developmental proteins and conserved signalling cascades, ultimately leading to a regulatory network controlling differentiation processes in a eukaryotic model organism. This review summarizes the results of our recent findings, thus advancing current knowledge of the general principles and paradigms underpinning eukaryotic cell differentiation and development. Copyright © 2010 Elsevier GmbH. All rights reserved.

  9. Putting "Organizations" into an Organization Theory Course: A Hybrid CAO Model for Teaching Organization Theory

    Science.gov (United States)

    Hannah, David R.; Venkatachary, Ranga

    2010-01-01

    In this article, the authors present a retrospective analysis of an instructor's multiyear redesign of a course on organization theory into what is called a hybrid Classroom-as-Organization model. It is suggested that this new course design served to apprentice students to function in quasi-real organizational structures. The authors further argue…

  10. Healing models for organizations: description, measurement, and outcomes.

    Science.gov (United States)

    Malloch, K

    2000-01-01

    Healthcare leaders are continually searching for ways to improve their ability to provide optimal healthcare services, be financially viable, and retain quality caregivers, often feeling like such goals are impossible to achieve in today's intensely competitive environment. Many healthcare leaders intuitively recognize the need for more humanistic models and the probable connection with positive patient outcomes and financial success but are hesitant to make significant changes in their organizations because of the lack of model descriptions or documented recognition of the clinical and financial advantages of humanistic models. This article describes a study that was developed in response to the increasing work in humanistic or healing environment models and the need for validation of the advantages of such models. The healthy organization model, a framework for healthcare organizations that incorporates humanistic healing values within the traditional structure, is presented as a result of the study. This model addresses the importance of optimal clinical services, financial performance, and staff satisfaction. The five research-based organizational components that form the framework are described, and key indicators of organizational effectiveness over a five-year period are presented. The resulting empirical data are strongly supportive of the healing model and reflect positive outcomes for the organization.

  11. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  12. Financing of the site search by a public corporation (organization model)

    International Nuclear Information System (INIS)

    Selmer, P.

    2005-01-01

    The paper is focussed on the development of a concept concerning the final deposit of radioactive waste in Germany in connection with the search of an appropriate site for the repository. The main features of the so called organization model are described, the financing of the site search under constitutional law and the principles of tax law is discussed in this context. Other topics are the legitimacy of a final disposal organization in the form of a public corporation with compulsory membership including unconstitutional contributions, and aspects of basic rights and constitutional legality

  13. Modelling organs, tissues, cells and devices using Matlab and Comsol multiphysics

    CERN Document Server

    Dokos, Socrates

    2017-01-01

    This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

  14. Organization model and formalized description of nuclear enterprise information system

    International Nuclear Information System (INIS)

    Yuan Feng; Song Yafeng; Li Xudong

    2012-01-01

    Organization model is one of the most important models of Nuclear Enterprise Information System (NEIS). Scientific and reasonable organization model is the prerequisite that NEIS has robustness and extendibility, and is also the foundation of the integration of heterogeneous system. Firstly, the paper describes the conceptual model of the NEIS on ontology chart, which provides a consistent semantic framework of organization. Then it discusses the relations between the concepts in detail. Finally, it gives the formalized description of the organization model of NEIS based on six-tuple array. (authors)

  15. The System Dynamics Model for Development of Organic Agriculture

    Science.gov (United States)

    Rozman, Črtomir; Škraba, Andrej; Kljajić, Miroljub; Pažek, Karmen; Bavec, Martina; Bavec, Franci

    2008-10-01

    Organic agriculture is the highest environmentally valuable agricultural system, and has strategic importance at national level that goes beyond the interests of agricultural sector. In this paper we address development of organic farming simulation model based on a system dynamics methodology (SD). The system incorporates relevant variables, which affect the development of the organic farming. The group decision support system (GDSS) was used in order to identify most relevant variables for construction of causal loop diagram and further model development. The model seeks answers to strategic questions related to the level of organically utilized area, levels of production and crop selection in a long term dynamic context and will be used for simulation of different policy scenarios for organic farming and their impact on economic and environmental parameters of organic production at an aggregate level.

  16. A two component model for thermal emission from organic grains in Comet Halley

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1988-01-01

    Observations of Comet Halley in the near infrared reveal a triple-peaked emission feature near 3.4 micrometer, characteristic of C-H stretching in hydrocarbons. A variety of plausible cometary materials exhibit these features, including the organic residue of irradiated candidate cometary ices (such as the residue of irradiated methane ice clathrate, and polycyclic aromatic hydrocarbons. Indeed, any molecule containing -CH3 and -CH2 alkanes will emit at 3.4 micrometer under suitable conditions. Therefore tentative identifications must rest on additional evidence, including a plausible account of the origins of the organic material, a plausible model for the infrared emission of this material, and a demonstration that this conjunction of material and model not only matches the 3 to 4 micrometer spectrum, but also does not yield additional emission features where none is observed. In the case of the residue of irradiated low occupancy methane ice clathrate, it is argued that the lab synthesis of the organic residue well simulates the radiation processing experienced by Comet Halley.

  17. A mixing-model approach to quantifying sources of organic matter to salt marsh sediments

    Science.gov (United States)

    Bowles, K. M.; Meile, C. D.

    2010-12-01

    Salt marshes are highly productive ecosystems, where autochthonous production controls an intricate exchange of carbon and energy among organisms. The major sources of organic carbon to these systems include 1) autochthonous production by vascular plant matter, 2) import of allochthonous plant material, and 3) phytoplankton biomass. Quantifying the relative contribution of organic matter sources to a salt marsh is important for understanding the fate and transformation of organic carbon in these systems, which also impacts the timing and magnitude of carbon export to the coastal ocean. A common approach to quantify organic matter source contributions to mixtures is the use of linear mixing models. To estimate the relative contributions of endmember materials to total organic matter in the sediment, the problem is formulated as a constrained linear least-square problem. However, the type of data that is utilized in such mixing models, the uncertainties in endmember compositions and the temporal dynamics of non-conservative entitites can have varying affects on the results. Making use of a comprehensive data set that encompasses several endmember characteristics - including a yearlong degradation experiment - we study the impact of these factors on estimates of the origin of sedimentary organic carbon in a saltmarsh located in the SE United States. We first evaluate the sensitivity of linear mixing models to the type of data employed by analyzing a series of mixing models that utilize various combinations of parameters (i.e. endmember characteristics such as δ13COC, C/N ratios or lignin content). Next, we assess the importance of using more than the minimum number of parameters required to estimate endmember contributions to the total organic matter pool. Then, we quantify the impact of data uncertainty on the outcome of the analysis using Monte Carlo simulations and accounting for the uncertainty in endmember characteristics. Finally, as biogeochemical processes

  18. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peifu; Hu, Yun Hang, E-mail: yunhangh@mtu.edu

    2016-07-30

    Graphical abstract: It was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model for C2H2 adsorption on metal-organic frameworks (MOFs), including MOF-5, ZIF-8, HKUST-1, and MIL-53. - Highlights: • Dubinin-Astakhov equation is demonstrated to be a general model for C{sub 2}H{sub 2} adsorption on metal-organic frameworks (MOFs). • Surface areas obtained with Dubinin-Astakhov equation from C{sub 2}H{sub 2} adsorption on MOFs are consistent with BET surface areas from N{sub 2} adsorption. • C{sub 2}H{sub 2} on MOF-5, ZIF-8, and MIL-53 is a physical adsorption, whereas its adsorption on HKUST-1 is due to a chemical bonding. - Abstract: Acetylene (C{sub 2}H{sub 2}) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C{sub 2}H{sub 2} adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C{sub 2}H{sub 2} adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C{sub 2}H{sub 2} adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C{sub 2}H{sub 2} adsorption on those MOFs.

  19. A Topographically and anatomically unified phantom model for organ dose determination in radiation hygiene

    International Nuclear Information System (INIS)

    Servomaa, A.; Rannikko, S.; Ermakov, I.; Masarskyi, L.; Saltukova, L.

    1989-08-01

    The effective dose equivalent is used as a risk-related factor for assessing radiation impact on patients. In order to assess the effective dose equivalent, data on organ doses in several organs are needed. For calculation of the collective effective dose equivalent, data on the sex and size distribution of the exposed population are also needed. A realistic phantom model based on the Alderson-Rando anatomical phantom has been developed for these purposes. The phantom model includes 22 organs and takes into account the deflections due to sex, height, weight and other anatomical features. Coordinates of the outer contours of inner organs are given in different slabs of the phantom. The images of cross sections of different slabs realistically depict the distribution of the organs in the phantom. Statistics about height and weight distribution as a function of the age of the Finnish population are also given. (orig.)

  20. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available implementations of the DLM are however not very versatile in terms of geometries that can be modeled. The ZONA6 code offers a versatile surface panel body model including a separated wake model, but uses a pressure panel method for lifting surfaces. This paper...

  1. Model of organ dose combination

    International Nuclear Information System (INIS)

    Valley, J.-F.; Lerch, P.

    1977-01-01

    The ICRP recommendations are based on the limitation of the dose to each organ. In the application and for a unique source the critical organ concept allows to limit the calculation and represents the irradiation status of an individuum. When several sources of radiation are involved the derivation of the dose contribution of each source to each organ is necessary. In order to represent the irradiation status a new parameter is to be defined. Propositions have been made by some authors, in particular by Jacobi introducing at this level biological parameters like the incidence rate of detriment and its severity. The new concept is certainly richer than a simple dose notion. However, in the actual situation of knowledge about radiation effects an intermediate parameter, using only physical concepts and the maximum permissible doses to the organs, seems more appropriate. The model, which is a generalization of the critical organ concept and shall be extended in the future to take the biological effects into account, will be presented [fr

  2. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    , such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques...

  3. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  4. using stereochemistry models in teaching organic compounds

    African Journals Online (AJOL)

    Preferred Customer

    The purpose of the study was to find out the effect of stereochemistry models on students' ... consistent with the names given to organic compounds. Some of ... Considering class level, what is the performance of the students in naming organic.

  5. A Performance Enhanced Interactive Learning Workshop Model as a Supplement for Organic Chemistry Instruction

    Science.gov (United States)

    Phillips, Karen E. S.; Grose-Fifer, Jilliam

    2011-01-01

    In this study, the authors describe a Performance Enhanced Interactive Learning (PEIL) workshop model as a supplement for organic chemistry instruction. This workshop model differs from many others in that it includes public presentations by students and other whole-class-discussion components that have not been thoroughly investigated in the…

  6. Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives

    DEFF Research Database (Denmark)

    Thiessen, K.M.; Andersson, Kasper Grann; Batandjieva, B.

    2009-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes...... the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included...... radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a "no action" situation (with no remedial measures...

  7. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))

    2007-06-15

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  8. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    International Nuclear Information System (INIS)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin

    2007-06-01

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  9. A model to incorporate organ deformation in the evaluation of dose/volume relationship

    International Nuclear Information System (INIS)

    Yan, D.; Jaffray, D.; Wong, J.; Brabbins, D.; Martinez, A. A.

    1997-01-01

    Purpose: Measurements of internal organ motion have demonstrated that daily organ deformation exists during the course of radiation treatment. However, a model to evaluate the resultant dose delivered to a daily deformed organ remains a difficult challenge. Current methods which model such organ deformation as rigid body motion in the dose calculation for treatment planning evaluation are incorrect and misleading. In this study, a new model for treatment planning evaluation is introduced which incorporates patient specific information of daily organ deformation and setup variation. The model was also used to retrospectively analyze the actual treatment data measured using daily CT scans for 5 patients with prostate treatment. Methods and Materials: The model assumes that for each patient, the organ of interest can be measured during the first few treatment days. First, the volume of each organ is delineated from each of the daily measurements and cumulated in a 3D bit-map. A tissue occupancy distribution is then constructed with the 50% isodensity representing the mean, or effective, organ volume. During the course of treatment, each voxel in the effective organ volume is assumed to move inside a local 3D neighborhood with a specific distribution function. The neighborhood and the distribution function are deduced from the positions and shapes of the organ in the first few measurements using the biomechanics model of viscoelastic body. For each voxel, the local distribution function is then convolved with the spatial dose distribution. The latter includes also the variation in dose due to daily setup error. As a result, the cumulative dose to the voxel incorporates the effects of daily setup variation and organ deformation. A ''variation adjusted'' dose volume histogram, aDVH, for the effective organ volume can then be constructed for the purpose of treatment evaluation and optimization. Up to 20 daily CT scans and daily portal images for 5 patients with prostate

  10. Overcoming the organization-practice barrier in sports injury prevention: A nonhierarchical organizational model.

    Science.gov (United States)

    Dahlström, Ö; Jacobsson, J; Timpka, T

    2015-08-01

    The organization of sports at the national level has seldom been included in scientific discussions of sports injury prevention. The aim of this study was to develop a model for organization of sports that supports prevention of overuse injuries. The quality function deployment technique was applied in seminars over a two-season period to develop a national organizational structure for athletics in Sweden that facilitates prevention of overuse injuries. Three central features of the resulting model for organization of sports at the national level are (a) diminishment of the organizational hierarchy: participatory safety policy design is introduced through annual meetings where actors from different sectors of the sporting community discuss training, injury prevention, and sports safety policy; (b) introduction of a safety surveillance system: a ubiquitous system for routine collection of injury and illness data; and (c) an open forum for discussion of safety issues: maintenance of a safety forum for participants from different sectors of the sport. A nonhierarchical model for organization of sports at the national level - facilitated by modern information technology - adapted for the prevention of overuse injuries has been developed. Further research is warranted to evaluate the new organizational model in prospective effectiveness studies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. OBJECT ORIENTED MODELLING, A MODELLING METHOD OF AN ECONOMIC ORGANIZATION ACTIVITY

    Directory of Open Access Journals (Sweden)

    TĂNĂSESCU ANA

    2014-05-01

    Full Text Available Now, most economic organizations use different information systems types in order to facilitate their activity. There are different methodologies, methods and techniques that can be used to design information systems. In this paper, I propose to present the advantages of using the object oriented modelling at the information system design of an economic organization. Thus, I have modelled the activity of a photo studio, using Visual Paradigm for UML as a modelling tool. For this purpose, I have identified the use cases for the analyzed system and I have presented the use case diagram. I have, also, realized the system static and dynamic modelling, through the most known UML diagrams.

  12. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  13. Emergent organization in a model market

    Science.gov (United States)

    Yadav, Avinash Chand; Manchanda, Kaustubh; Ramaswamy, Ramakrishna

    2017-09-01

    We study the collective behaviour of interacting agents in a simple model of market economics that was originally introduced by Nørrelykke and Bak. A general theoretical framework for interacting traders on an arbitrary network is presented, with the interaction consisting of buying (namely consumption) and selling (namely production) of commodities. Extremal dynamics is introduced by having the agent with least profit in the market readjust prices, causing the market to self-organize. In addition to examining this model market on regular lattices in two-dimensions, we also study the cases of random complex networks both with and without community structures. Fluctuations in an activity signal exhibit properties that are characteristic of avalanches observed in models of self-organized criticality, and these can be described by power-law distributions when the system is in the critical state.

  14. Estimation of πd-Interactions in Organic Conductors Including Magnetic Anions

    Science.gov (United States)

    Mori, Takehiko; Katsuhara, Mao

    2002-03-01

    Magnetic interactions in organic conductors including magnetic anions, such as λ-(BETS)2FeCl4 and κ-(BETS)2FeX4 [X = Cl and Br], are estimated from intermolecular overlap integrals; the overlaps between anions afford Jdd, and those between anions and donors give Jπ d. From this, the most stable spin alignments are decided, and such quantities as the Néel and Weiss temperatures, as well as the magnitude of spin polarization on the π-molecules are evaluated on the basis of the mean-field theory of πd-systems. The calculation is extended to several other πd-conductors, which are classified depending on the relative magnitudes of the direct dd- and indirect πd-interactions.

  15. Environmental modelling of use of treated organic waste on agricultural land

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Christensen, Thomas Højlund; Schmidt, S.

    2006-01-01

    Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact......, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers...... the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts...

  16. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  17. An empirically based model for knowledge management in health care organizations.

    Science.gov (United States)

    Sibbald, Shannon L; Wathen, C Nadine; Kothari, Anita

    2016-01-01

    Knowledge management (KM) encompasses strategies, processes, and practices that allow an organization to capture, share, store, access, and use knowledge. Ideal KM combines different sources of knowledge to support innovation and improve performance. Despite the importance of KM in health care organizations (HCOs), there has been very little empirical research to describe KM in this context. This study explores KM in HCOs, focusing on the status of current intraorganizational KM. The intention is to provide insight for future studies and model development for effective KM implementation in HCOs. A qualitative methods approach was used to create an empirically based model of KM in HCOs. Methods included (a) qualitative interviews (n = 24) with senior leadership to identify types of knowledge important in these roles plus current information-seeking behaviors/needs and (b) in-depth case study with leaders in new executive positions (n = 2). The data were collected from 10 HCOs. Our empirically based model for KM was assessed for face and content validity. The findings highlight the paucity of formal KM in our sample HCOs. Organizational culture, leadership, and resources are instrumental in supporting KM processes. An executive's knowledge needs are extensive, but knowledge assets are often limited or difficult to acquire as much of the available information is not in a usable format. We propose an empirically based model for KM to highlight the importance of context (internal and external), and knowledge seeking, synthesis, sharing, and organization. Participants who reviewed the model supported its basic components and processes, and potential for incorporating KM into organizational processes. Our results articulate ways to improve KM, increase organizational learning, and support evidence-informed decision-making. This research has implications for how to better integrate evidence and knowledge into organizations while considering context and the role of

  18. Authentication in Virtual Organizations: A Reputation Based PKI Interconnection Model

    Science.gov (United States)

    Wazan, Ahmad Samer; Laborde, Romain; Barrere, Francois; Benzekri, Abdelmalek

    Authentication mechanism constitutes a central part of the virtual organization work. The PKI technology is used to provide the authentication in each organization involved in the virtual organization. Different trust models are proposed to interconnect the different PKIs in order to propagate the trust between them. While the existing trust models contain many drawbacks, we propose a new trust model based on the reputation of PKIs.

  19. Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States.

    Science.gov (United States)

    Pye, Havala O T; Luecken, Deborah J; Xu, Lu; Boyd, Christopher M; Ng, Nga L; Baker, Kirk R; Ayres, Benjamin R; Bash, Jesse O; Baumann, Karsten; Carter, William P L; Edgerton, Eric; Fry, Juliane L; Hutzell, William T; Schwede, Donna B; Shepson, Paul B

    2015-12-15

    Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.

  20. Exploring the patterns and evolution of self-organized urban street networks through modeling

    Science.gov (United States)

    Rui, Yikang; Ban, Yifang; Wang, Jiechen; Haas, Jan

    2013-03-01

    As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.

  1. Modelling the fate of oxidisable organic contaminants in groundwater

    DEFF Research Database (Denmark)

    Barry, D.A.; Prommer, H.; Miller, C.T.

    2002-01-01

    modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples......Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment...... are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface. (C) 2002 Elsevier Science...

  2. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    ). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use......Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...

  3. A model-independent view of the mature organization

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, M.; Langston, D.

    1996-12-31

    Over the last 10 years, industry has been dealing with the issues of process and organizational maturity. This focus on process is driven by the success that manufacturing organizations have had implementing the management principles of W. Edwards Deming and Joseph M. Juran. The organizational-maturity focus is driven by organizations striving to be ISO 9000 compliant or to achieve a specific level on one of the maturity models. Unfortunately, each of the models takes a specific view into what is a very broad arena. That is to say, each model addresses only a specific subset of the characteristics of maturity. This paper attempts to extend beyond these specific views to answer the general question, What is a mature organization and its relationship to Quantitative management and statistical process control?

  4. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  5. Labour Quality Model for Organic Farming Food Chains

    OpenAIRE

    Gassner, B.; Freyer, B.; Leitner, H.

    2008-01-01

    The debate on labour quality in science is controversial as well as in the organic agriculture community. Therefore, we reviewed literature on different labour quality models and definitions, and had key informant interviews on labour quality issues with stakeholders in a regional oriented organic agriculture bread food chain. We developed a labour quality model with nine quality categories and discussed linkages to labour satisfaction, ethical values and IFOAM principles.

  6. Towards Increased Relevance: Context-Adapted Models of the Learning Organization

    Science.gov (United States)

    Örtenblad, Anders

    2015-01-01

    Purpose: The purposes of this paper are to take a closer look at the relevance of the idea of the learning organization for organizations in different generalized organizational contexts; to open up for the existence of multiple, context-adapted models of the learning organization; and to suggest a number of such models.…

  7. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  8. Challenges in modelling dissolved organic matter dynamics in agricultural soil using DAISY

    DEFF Research Database (Denmark)

    Gjettermann, Birgitte; Styczen, Merete; Hansen, Hans Christian Bruun

    2008-01-01

    pedotransfer functions taking into account the soil content of organic matter, Al and Fe oxides. The turnover of several organic matter pools including one DOM pool are described by first-order kinetics. The DOM module was tested at field scale for three soil treatments applied after cultivating grass....... In the subsoil, the observed concentrations of DOC were steadier and the best simulations were obtained using a high k. The model shows that DOC and DON concentrations are levelled out in the subsoils due to soil buffering. The steady concentration levels were based on the Ceq for each horizon and the kinetic...

  9. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model

    OpenAIRE

    Takagi, Ryoji; Ishimaru, Junko; Sugawara, Ayaka; Toyoshima, Koh-ei; Ishida, Kentaro; Ogawa, Miho; Sakakibara, Kei; Asakawa, Kyosuke; Kashiwakura, Akitoshi; Oshima, Masamitsu; Minamide, Ryohei; Sato, Akio; Yoshitake, Toshihiro; Takeda, Akira; Egusa, Hiroshi

    2016-01-01

    The integumentary organ system is a complex system that plays important roles in waterproofing, cushioning, protecting deeper tissues, excreting waste, and thermoregulation. We developed a novel in vivo transplantation model designated as a clustering-dependent embryoid body transplantation method and generated a bioengineered three-dimensional (3D) integumentary organ system, including appendage organs such as hair follicles and sebaceous glands, from induced pluripotent stem cells. This bio...

  10. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  11. ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms

    Directory of Open Access Journals (Sweden)

    Voytas Daniel F

    2011-01-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms. Description ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s. Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence. Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the

  12. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  13. EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions

    Directory of Open Access Journals (Sweden)

    S. Compernolle

    2011-09-01

    Full Text Available We present EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects, a method to predict (subcooled liquid pure compound vapour pressure p0 of organic molecules that requires only molecular structure as input. The method is applicable to zero-, mono- and polyfunctional molecules. A simple formula to describe log10p0(T is employed, that takes into account both a wide temperature dependence and the non-additivity of functional groups. In order to match the recent data on functionalised diacids an empirical modification to the method was introduced. Contributions due to carbon skeleton, functional groups, and intramolecular interaction between groups are included. Molecules typically originating from oxidation of biogenic molecules are within the scope of this method: aldehydes, ketones, alcohols, ethers, esters, nitrates, acids, peroxides, hydroperoxides, peroxy acyl nitrates and peracids. Therefore the method is especially suited to describe compounds forming secondary organic aerosol (SOA.

  14. Alkaline earth metabolism: a model useful in calculating organ burdens, excretion rates and committed effective dose equivalent conversion factors

    International Nuclear Information System (INIS)

    Johnson, J.R.; Myers, R.C.

    1981-01-01

    Two mathematical models of alkaline earth metabolism in man have been developed from the postulates given in ICRP Publication 20. Both models have recycling between the organs and blood included explicitly, and the first one retains the power function used by the ICRP for diminution in mineral bone from being available for resorption by blood. In the second model, this diminution is represented by secondary compartments in mineral bone. Both models give good agreement with the retention functions developed in ICRP Publication 20. The second one has been incorporated into a larger model which includes the lung and G.I. tract. This overall model has been used to calculate organ burdens excretion rates, and committed effective dose equivalent factors for the more important radioisotopes of the alkaline earth elements for inhalation and ingestion exposures. (author)

  15. BALANCED SCORECARDS EVALUATION MODEL THAT INCLUDES ELEMENTS OF ENVIRONMENTAL MANAGEMENT SYSTEM USING AHP MODEL

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2010-03-01

    Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.

  16. Challenges of including nitrogen effects on decomposition in earth system models

    Science.gov (United States)

    Hobbie, S. E.

    2011-12-01

    Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Nevertheless, resolving such uncertainties is critical for mechanistic inclusion of such processes in earth system models, towards predicting the ecosystem consequences of increased anthropogenic reactive N. Towards that end, we have conducted a series of experiments examining nitrogen effects on litter decomposition. We found that both substrate N and externally supplied N (regardless of form) accelerated the initial decomposition rate. Faster initial decomposition rates were linked to the higher activity of carbohydrate-degrading enzymes associated with externally supplied N and the greater relative abundances of Gram negative and Gram positive bacteria associated with green leaves and externally supplied organic N (assessed using phospholipid fatty acid analysis, PLFA). By contrast, later in decomposition, externally supplied N slowed decomposition, increasing the fraction of slowly decomposing litter and reducing lignin-degrading enzyme activity and relative abundances of Gram negative and Gram positive bacteria. Our results suggest that elevated atmospheric N deposition may have contrasting effects on the dynamics of different soil carbon pools, decreasing mean residence times of active fractions comprising very fresh litter, while increasing those of more slowly decomposing fractions including more processed litter. Incorporating these contrasting effects of N on decomposition processes into models is complicated by lingering uncertainties about how these effects generalize across ecosystems and substrates.

  17. Double-gate junctionless transistor model including short-channel effects

    International Nuclear Information System (INIS)

    Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A

    2015-01-01

    This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)

  18. The Zebrafish Model Organism Database (ZFIN)

    Data.gov (United States)

    U.S. Department of Health & Human Services — ZFIN serves as the zebrafish model organism database. It aims to: a) be the community database resource for the laboratory use of zebrafish, b) develop and support...

  19. A student leadership model for promoting educational programs in organ donation and transplantation.

    Science.gov (United States)

    Reville, P; Zhao, C; Perez, T; Nowacki, A S; Phillips, D; Bowen, G; Starling, N; Pflaum, B; Strickland, R; Fung, J; Askar, M

    2013-05-01

    The global organ shortage is the strongest factor for the increase in transplant wait time and deaths on waitlists. Here we describe a model for involving high school students in education research around organ donation and transplantation and capitalize on the strength of a pre-existing educational program offered by the local organ procurement organization (OPO). While training in education research at Cleveland Clinic, a high school student embarked on a collaborative project with the local OPO. The project involved evaluating three educational programs, selecting the most appropriate program for administration at her school, coordinating with the student's school administration and teachers, administering an assessment tool for the effectiveness of the program, and analyzing the results. The local OPO program that was selected for implementation consisted of a video presentation entitled "Share your life, share your decision" prepared by the United States Health Resources and Services Administration (HRSA), lectures by invited speakers and an educational assessment (pre- and post-education). The assessment survey included 3 multiple choice and 7 true/false questions. Compared to the over 2500 programs administered in the last 5 years by the local OPO, this program had a higher volume of participation (n = 353 compared to an average of 150 students/day). Students correctly classified transplantation status of more organ and tissues post-education (P education (P ≤ .002 for all). This experience included for the first time a formal assessment of the program which will be utilized to address targeted areas for specific improvements. This student collaborative model of involving students in organ donation and transplantation related education research has the potential to promote and maximize the effectiveness of educational programs targeting their peers. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The initiative on Model Organism Proteomes (iMOP) Session

    DEFF Research Database (Denmark)

    Schrimpf, Sabine P; Mering, Christian von; Bendixen, Emøke

    2012-01-01

    iMOP – the Initiative on Model Organism Proteomes – was accepted as a new HUPO initiative at the Ninth HUPO meeting in Sydney in 2010. A goal of iMOP is to integrate research groups working on a great diversity of species into a model organism community. At the Tenth HUPO meeting in Geneva...

  1. Modelling a linear PM motor including magnetic saturation

    NARCIS (Netherlands)

    Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.

    2002-01-01

    The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important

  2. IT Business Value Model for Information Intensive Organizations

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Gastaud Maçada

    2012-01-01

    Full Text Available Many studies have highlighted the capacity Information Technology (IT has for generating value for organizations. Investments in IT made by organizations have increased each year. Therefore, the purpose of the present study is to analyze the IT Business Value for Information Intensive Organizations (IIO - e.g. banks, insurance companies and securities brokers. The research method consisted of a survey that used and combined the models from Weill and Broadbent (1998 and Gregor, Martin, Fernandez, Stern and Vitale (2006. Data was gathered using an adapted instrument containing 5 dimensions (Strategic, Informational, Transactional, Transformational and Infra-structure with 27 items. The instrument was refined by employing statistical techniques such as Exploratory and Confirmatory Factorial Analysis through Structural Equations (first and second order Model Measurement. The final model is composed of four factors related to IT Business Value: Strategic, Informational, Transactional and Transformational, arranged in 15 items. The dimension Infra-structure was excluded during the model refinement process because it was discovered during interviews that managers were unable to perceive it as a distinct dimension of IT Business Value.

  3. Charge carrier relaxation model in disordered organic semiconductors

    International Nuclear Information System (INIS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Ming

    2013-01-01

    The relaxation phenomena of charge carrier in disordered organic semiconductors have been demonstrated and investigated theoretically. An analytical model describing the charge carrier relaxation is proposed based on the pure hopping transport theory. The relation between the material disorder, electric field and temperature and the relaxation phenomena has been discussed in detail, respectively. The calculated results reveal that the increase of electric field and temperature can promote the relaxation effect in disordered organic semiconductors, while the increase of material disorder will weaken the relaxation. The proposed model can explain well the stretched-exponential law by adopting the appropriate parameters. The calculation shows a good agreement with the experimental data for organic semiconductors

  4. Drosophila melanogaster as a model organism to study nanotoxicity.

    Science.gov (United States)

    Ong, Cynthia; Yung, Lin-Yue Lanry; Cai, Yu; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2015-05-01

    Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.

  5. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds

    DEFF Research Database (Denmark)

    Trapp, Stefan

    2000-01-01

    A study on uptake of neutral and dissociating organic compounds from soil solution into roots, and their subsequent translocation, was undertaken using model simulations. The model approach combines the processes of lipophilic sorption, electrochemical interactions, ion trap, advection in xylem...... and dilution by growth. It needs as input data, apart fromplant properties, log KOW, pKa and the valency number of the compound, and pH and chemical concentration in the soil solution. Equilibrium and dynamic (steady-state) models were tested against measured data from several authors, including non...

  6. Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives

    International Nuclear Information System (INIS)

    Thiessen, K.M.; Andersson, K.G.; Batandjieva, B.; Cheng, J.-J.; Hwang, W.T.; Kaiser, J.C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.

    2009-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a 'no action' situation (with no remedial measures) and for selected countermeasures. The exercise provided an opportunity for comparison of three modelling approaches, as well as a comparison of the predicted effectiveness of various countermeasures in terms of their short-term and long-term effects on predicted doses to humans.

  7. Measurement of infrared refractive indices of organic and organophosphorous compounds for optical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome C.; Taubman, Matthew S.; Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.

    2017-05-03

    The complex optical refractive index contains the optical constants, n($\\tilde{u}$)and k($\\tilde{u}$), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.

  8. Predicting Mineral N Release during Decomposition of Organic Wastes in Soil by Use of the SOILNNO Model

    International Nuclear Information System (INIS)

    Sogn, T.A.; Haugen, L.E.

    2011-01-01

    In order to predict the mineral N release associated with the use of organic waste as fertilizer in agricultural plant production, the adequacy of the SOILN N O model has been evaluated. The original thought was that the model calibrated to data from simple incubation experiments could predict the mineral N release from organic waste products used as N fertilizer on agricultural land. First, the model was calibrated to mineral N data achieved in a laboratory experiment where different organic wastes were added to soil and incubated at 15 degree C for 8 weeks. Secondly, the calibrated model was tested by use of NO 3 -leaching data from soil columns with barley growing in 4 different soil types, added organic waste and exposed to natural climatic conditions during three growing seasons. The SOILN N O model reproduced relatively well the NO 3 -leaching from some of the soils included in the outdoor experiment, but failed to reproduce others. Use of the calibrated model often induced underestimation of the observed NO 3 -leaching. To achieve a satisfactory simulation of the NO 3 -leaching, recalibration of the model had to be carried out. Thus, SOILN N O calibrated to data from simple incubation experiments in the laboratory could not directly be used as a tool to predict the N-leaching following organic waste application in more natural agronomic plant production systems. The results emphasised the need for site- and system-specific data for model calibration before using a model for predictive purposes related to fertilizer N value of organic wastes applied to agricultural land.

  9. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics

    Science.gov (United States)

    Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.

    2012-12-01

    Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.

  10. Lotka-Volterra competition models for sessile organisms.

    Science.gov (United States)

    Spencer, Matthew; Tanner, Jason E

    2008-04-01

    Markov models are widely used to describe the dynamics of communities of sessile organisms, because they are easily fitted to field data and provide a rich set of analytical tools. In typical ecological applications, at any point in time, each point in space is in one of a finite set of states (e.g., species, empty space). The models aim to describe the probabilities of transitions between states. In most Markov models for communities, these transition probabilities are assumed to be independent of state abundances. This assumption is often suspected to be false and is rarely justified explicitly. Here, we start with simple assumptions about the interactions among sessile organisms and derive a model in which transition probabilities depend on the abundance of destination states. This model is formulated in continuous time and is equivalent to a Lotka-Volterra competition model. We fit this model and a variety of alternatives in which transition probabilities do not depend on state abundances to a long-term coral reef data set. The Lotka-Volterra model describes the data much better than all models we consider other than a saturated model (a model with a separate parameter for each transition at each time interval, which by definition fits the data perfectly). Our approach provides a basis for further development of stochastic models of sessile communities, and many of the methods we use are relevant to other types of community. We discuss possible extensions to spatially explicit models.

  11. AMMI model in the analysis of genotype by environment interaction of conventionally and organically grown onion

    Directory of Open Access Journals (Sweden)

    Brdar-Jokanović Milka

    2016-01-01

    Full Text Available This study was aimed to assess the stability of direct yield components (bulb weight and number plot-1 and other yield contributing characteristics (bulb diameter, height and index, neck diameter and length, plant height, emergence and vegetation period in five commercial onion cultivars grown in conventional and organic environments, by employing additive main effect and multiplicative interaction (AMMI statistical model in data analysis. The two-year field trial organized in complete randomized blocks included the plots maintained in four regimes: mineral fertilization (conventional, without fertilization, fertilization with farmyard manure and with bacterial fertilizer (organic. Each treatment by year combination was considered as an environment. Analysis of variance of AMMI model calculated for the investigated traits showed that all sources of variation (genotypes, environments, genotype by environment interaction were highly significant. The largest proportions of the total sum of squares were encompassed by environments, except for emergence and bulb index with the pronounced effect of genotypes (67.26 and 52.54%, respectively and neck length with the genotype by environment interaction amounting 44.59%. Generally, the effects of the interactions were in the common range. The AMMI model with two axes was concluded as the best model for the investigated traits. Onions grown in conventional system outperformed the organic ones. However, good performance of the genotypes was accompanied with low stability across the environments and vice versa. Therefore breeding programs intended to develop cultivars adapted to alternative production systems should rely on the experiments set in the corresponding environments that include various combinations of genotypes and agro-technical procedures based on the principles of organic agriculture. [Projekat Ministarstva nauke Republike Srbije, br. TR 31059

  12. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  13. (Tropical) soil organic matter modelling: problems and prospects

    NARCIS (Netherlands)

    Keulen, van H.

    2001-01-01

    Soil organic matter plays an important role in many physical, chemical and biological processes. However, the quantitative relations between the mineral and organic components of the soil and the relations with the vegetation are poorly understood. In such situations, the use of models is an

  14. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  15. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  16. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, S.; Xu, J.; Shields, E.; Froborg, F.; Calaprice, F.; Alexander, T.; Aprahamian, A.; Back, H. O.; Casarella, C.; Fang, X.; Gupta, Y. K.; Lamere, E.; Liu, Q.; Lyons, S.; Smith, M.; Tan, W.

    2017-08-01

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of $^{10}$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $^{10}$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $\\chi^2$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.

  17. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    International Nuclear Information System (INIS)

    Westerdale, S.; Xu, J.; Shields, E.; Froborg, F.; Calaprice, F.; Alexander, T.; Back, H.O.; Aprahamian, A.; Casarella, C.; Fang, X.; Gupta, Y.K.; Lamere, E.; Liu, Q.; Lyons, S.; Smith, M.; Tan, W.

    2017-01-01

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10 B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10 B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE / dx best describes the measurements, with χ 2 /NDF=1.6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.

  18. Development of a statistical shape model of multi-organ and its performance evaluation

    International Nuclear Information System (INIS)

    Nakada, Misaki; Shimizu, Akinobu; Kobatake, Hidefumi; Nawano, Shigeru

    2010-01-01

    Existing statistical shape modeling methods for an organ can not take into account the correlation between neighboring organs. This study focuses on a level set distribution model and proposes two modeling methods for multiple organs that can take into account the correlation between neighboring organs. The first method combines level set functions of multiple organs into a vector. Subsequently it analyses the distribution of the vectors of a training dataset by a principal component analysis and builds a multiple statistical shape model. Second method constructs a statistical shape model for each organ independently and assembles component scores of different organs in a training dataset so as to generate a vector. It analyses the distribution of the vectors of to build a statistical shape model of multiple organs. This paper shows results of applying the proposed methods trained by 15 abdominal CT volumes to unknown 8 CT volumes. (author)

  19. Study of a diffusion flamelet model, with preferential diffusion effects included

    NARCIS (Netherlands)

    Delhaye, S.; Somers, L.M.T.; Bongers, H.; Oijen, van J.A.; Goey, de L.P.H.; Dias, V.

    2005-01-01

    The non-premixed flamelet model of Peters [1] (model1), which does not include preferential diffusion effects is investigated. Two similar models are presented, but without the assumption of unity Lewis numbers. One of these models was derived by Peters & Pitsch [2] (model2), while the other one was

  20. The conceptual model of organization social responsibility

    OpenAIRE

    LUO, Lan; WEI, Jingfu

    2014-01-01

    With the developing of the research of CSR, people more and more deeply noticethat the corporate should take responsibility. Whether other organizations besides corporatesshould not take responsibilities beyond their field? This paper puts forward theconcept of organization social responsibility on the basis of the concept of corporate socialresponsibility and other theories. And the conceptual models are built based on theconception, introducing the OSR from three angles: the types of organi...

  1. Resilient organizations: matrix model and service line management.

    Science.gov (United States)

    Westphal, Judith A

    2005-09-01

    Resilient organizations modify structures to meet the demands of the marketplace. The author describes a structure that enables multihospital organizations to innovate and rapidly adapt to changes. Service line management within a matrix model is an evolving organizational structure for complex systems in which nurses are pivotal members.

  2. Scalability of Sustainable Business Models in Hybrid Organizations

    Directory of Open Access Journals (Sweden)

    Adam Jabłoński

    2016-02-01

    Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed

  3. Self-organization of hot plasmas the canonical profile transport model

    CERN Document Server

    Dnestrovskij, Yu N

    2015-01-01

    In this monograph the author presents the Canonical Profile Transport Model or CPTM as a rather general mathematical framework to simulate plasma discharges.The description of hot plasmas in a magnetic fusion device is a very challenging task and many plasma properties still lack a physical explanation. One important property is plasma self-organization.It is very well known from experiments that the radial profile of the plasma pressure and temperature remains rather unaffected by changes of the deposited power or plasma density. The attractiveness of the CPTM is that it includes the effect o

  4. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  5. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  6. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  7. Exclusive queueing model including the choice of service windows

    Science.gov (United States)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  8. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research.

    Science.gov (United States)

    Staats, Stefanie; Lüersen, Kai; Wagner, Anika E; Rimbach, Gerald

    2018-04-18

    Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.

  9. Xanthusbase: adapting wikipedia principles to a model organism database

    OpenAIRE

    Arshinoff, Bradley I.; Suen, Garret; Just, Eric M.; Merchant, Sohel M.; Kibbe, Warren A.; Chisholm, Rex L.; Welch, Roy D.

    2006-01-01

    xanthusBase () is the official model organism database (MOD) for the social bacterium Myxococcus xanthus. In many respects, M.xanthus represents the pioneer model organism (MO) for studying the genetic, biochemical, and mechanistic basis of prokaryotic multicellularity, a topic that has garnered considerable attention due to the significance of biofilms in both basic and applied microbiology research. To facilitate its utility, the design of xanthusBase incorporates open-source software, leve...

  10. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC). Summary of research conducted during year 1

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Eilers, J.M. [E and S Environmental Chemistry, Inc., Corvallis, OR (United States); Cosby, B.J. [Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences; Driscoll, C.T. [Syracuse Univ., NY (United States). Dept. of Civil Engineering; Hemond, H.F. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering; Charles, D.F. [Academy of Natural Sciences of Philadelphia, PA (United States). Patrick Center for Environmental Research; Norton, S.A. [Maine Univ., Orono, ME (United States). Dept. of Geological Sciences

    1993-03-05

    A project for the US Department of Energy, entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources`` was initiated by E&S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

  11. Flexible organic solar cells including efficiency enhancing grating structures

    International Nuclear Information System (INIS)

    De Oliveira Hansen, Roana Melina; Liu Yinghui; Madsen, Morten; Rubahn, Horst-Günter

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications. (paper)

  12. Democracy versus dictatorship in self-organized models of financial markets

    Science.gov (United States)

    D'Hulst, R.; Rodgers, G. J.

    2000-06-01

    Models to mimic the transmission of information in financial markets are introduced. As an attempt to generate the demand process, we distinguish between dictatorship associations, where groups of agents rely on one of them to make decision, and democratic associations, where each agent takes part in the group decision. In the dictatorship model, agents segregate into two distinct populations, while the democratic model is driven towards a critical state where groups of agents of all sizes exist. Hence, both models display a level of organization, but only the democratic model is self-organized. We show that the dictatorship model generates less-volatile markets than the democratic model.

  13. Table of 3D organ model IDs and organ names (PART-OF Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us BodyParts3D Table of 3D organ model IDs and organ names (PART-OF Tree) Data detail Data name Table of 3D org...an model IDs and organ names (PART-OF Tree) DOI 10.18908/lsdba.nbdc00837-002 Description of ...data contents List of downloadable 3D organ models in a tab-delimited text file format, describing the correspondence between 3D org...an model IDs and organ names available in PART-OF Tree. D...atabase Site Policy | Contact Us Table of 3D organ model IDs and organ names (PART-OF Tree) - BodyParts3D | LSDB Archive ...

  14. Modelling three-dimensional cochlear micromechanics within the guinea pig organ of Corti

    Science.gov (United States)

    Ni, Guangjian; Elliott, Stephen J.

    2018-05-01

    The active amplification process in the mammalian cochlea depends on a complex interaction between cells within the organ of Corti. A three-dimensional (3D) model was developed using the finite element method based on anatomy for the apical end in the guinea pig cochlea, which is comprised of 3D discrete hair cells, 3D continuous membranes and fluid. The basilar membrane, tectorial membrane and the reticular lamina are modelled with orthotropic materials. The Y-shape structures formed by the outer hair cell (OHC), the Deiters' cell and Deiters' cell phalangeal process are also included to account for the structural longitudinal coupling. The motion within the organ of Corti was first simulated in response to a pressure difference loading on the basilar membrane, in order to calculate the passive vibration pattern. Then, the outer hair cells somatic electromotility was implemented by applying a voltage across the OHC walls to investigate its contribution to membranes motion.

  15. Modeling cooperating micro-organisms in antibiotic environment.

    Science.gov (United States)

    Book, Gilad; Ingham, Colin; Ariel, Gil

    2017-01-01

    Recent experiments with the bacteria Paenibacillus vortex reveal a remarkable strategy enabling it to cope with antibiotics by cooperating with a different bacterium-Escherichia coli. While P. vortex is a highly effective swarmer, it is sensitive to the antibiotic ampicillin. On the other hand, E. coli can degrade ampicillin but is non-motile when grown on high agar percentages. The two bacterial species form a shared colony in which E. coli is transported by P. vortex and E. coli detoxifies the ampicillin. The paper presents a simplified model, consisting of coupled reaction-diffusion equations, describing the development of ring patterns in the shared colony. Our results demonstrate some of the possible cooperative movement strategies bacteria utilize in order to survive harsh conditions. In addition, we explore the behavior of mixed colonies under new conditions such as antibiotic gradients, synchronization between colonies and possible dynamics of a 3-species system including P. vortex, E. coli and a carbon producing algae that provides nutrients under illuminated, nutrient poor conditions. The derived model was able to simulate an asymmetric relationship between two or three micro-organisms where cooperation is required for survival. Computationally, in order to avoid numerical artifacts due to symmetries within the discretizing grid, the model was solved using a second order Vectorizable Random Lattices method, which is developed as a finite volume scheme on a random grid.

  16. Modeling cooperating micro-organisms in antibiotic environment.

    Directory of Open Access Journals (Sweden)

    Gilad Book

    Full Text Available Recent experiments with the bacteria Paenibacillus vortex reveal a remarkable strategy enabling it to cope with antibiotics by cooperating with a different bacterium-Escherichia coli. While P. vortex is a highly effective swarmer, it is sensitive to the antibiotic ampicillin. On the other hand, E. coli can degrade ampicillin but is non-motile when grown on high agar percentages. The two bacterial species form a shared colony in which E. coli is transported by P. vortex and E. coli detoxifies the ampicillin. The paper presents a simplified model, consisting of coupled reaction-diffusion equations, describing the development of ring patterns in the shared colony. Our results demonstrate some of the possible cooperative movement strategies bacteria utilize in order to survive harsh conditions. In addition, we explore the behavior of mixed colonies under new conditions such as antibiotic gradients, synchronization between colonies and possible dynamics of a 3-species system including P. vortex, E. coli and a carbon producing algae that provides nutrients under illuminated, nutrient poor conditions. The derived model was able to simulate an asymmetric relationship between two or three micro-organisms where cooperation is required for survival. Computationally, in order to avoid numerical artifacts due to symmetries within the discretizing grid, the model was solved using a second order Vectorizable Random Lattices method, which is developed as a finite volume scheme on a random grid.

  17. Stage-structured matrix models for organisms with non-geometric development times

    Science.gov (United States)

    Andrew Birt; Richard M. Feldman; David M. Cairns; Robert N. Coulson; Maria Tchakerian; Weimin Xi; James M. Guldin

    2009-01-01

    Matrix models have been used to model population growth of organisms for many decades. They are popular because of both their conceptual simplicity and their computational efficiency. For some types of organisms they are relatively accurate in predicting population growth; however, for others the matrix approach does not adequately model...

  18. Predicting long-term organic carbon dynamics in organically amended soils using the CQESTR model

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, Cesar; Polo, Alfredo [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Ciencias Agrarias; Gollany, Hero T. [Columbia Plateau Conservation Research Center, Pendleton, OR (United States). USDA-ARS; Baldoni, Guido; Ciavatta, Claudio [Bologna Univ. (Italy). Dept. of Agroenvironmental Sciences and Technologies

    2012-04-15

    Purpose: The CQESTR model is a process-based C model recently developed to simulate soil organic matter (SOM) dynamics and uses readily available or easily measurable input parameters. The current version of CQESTR (v. 2.0) has been validated successfully with a number of datasets from agricultural sites in North America but still needs to be tested in other geographic areas and soil types under diverse organic management systems. Materials and methods: We evaluated the predictive performance of CQESTR to simulate long-term (34 years) soil organic C (SOC) changes in a SOM-depleted European soil either unamended or amended with solid manure, liquid manure, or crop residue. Results and discussion: Measured SOC levels declined over the study period in the unamended soil, remained constant in the soil amended with crop residues, and tended to increase in the soils amended with manure, especially with solid manure. Linear regression analysis of measured SOC contents and CQESTR predictions resulted in a correlation coefficient of 0.626 (P < 0.001) and a slope and an intercept not significantly different from 1 and 0, respectively (95% confidence level). The mean squared deviation and root mean square error were relatively small. Simulated values fell within the 95% confidence interval of the measured SOC, and predicted errors were mainly associated with data scattering. Conclusions: The CQESTR model was shown to predict, with a reasonable degree of accuracy, the organic C dynamics in the soils examined. The CQESTR performance, however, could be improved by adding an additional parameter to differentiate between pre-decomposed organic amendments with varying degrees of stability. (orig.)

  19. Predicting The Exit Time Of Employees In An Organization Using Statistical Model

    Directory of Open Access Journals (Sweden)

    Ahmed Al Kuwaiti

    2015-08-01

    Full Text Available Employees are considered as an asset to any organization and each organization provide a better and flexible working environment to retain its best and resourceful workforce. As such continuous efforts are being taken to avoid or extend the exitwithdrawal of employees from the organization. Human resource managers are facing a challenge to predict the exit time of employees and there is no precise model existing at present in the literature. This study has been conducted to predict the probability of exit of an employee in an organization using appropriate statistical model. Accordingly authors designed a model using Additive Weibull distribution to predict the expected exit time of employee in an organization. In addition a Shock model approach is also executed to check how well the Additive Weibull distribution suits in an organization. The analytical results showed that when the inter-arrival time increases the expected time for the employees to exit also increases. This study concluded that Additive Weibull distribution can be considered as an alternative in the place of Shock model approach to predict the exit time of employee in an organization.

  20. Modelling of 137Cs concentration change in organisms of the Japanese coastal food chains

    International Nuclear Information System (INIS)

    Tateda, Y.; Nakahara, M.; Nakamura, R.

    1999-01-01

    In order to predict 137 CS concentrations in marine organisms of Japanese coastal food chains, a basic compartment model being composed of nuclide transfer both from seawater and food chain was investigated. Food chain structure of typical Japanese coastal water is established to include detritus, food chain, benthic food chain and planktonic food chain

  1. Relevance of the ICRP biokinetic model for dietary organically bound tritium

    International Nuclear Information System (INIS)

    Trivedi, A.

    1999-10-01

    Ingested dietary tritium can participate in metabolic processes, and become synthesized into organically bound tritium in the tissues and organs. The distribution and retention of the organically bound tritium throughout the body are much different than tritium in the body water. The International Commission on Radiological Protection (ICRP) Publication 56 (1989) has a biokinetic model to calculate dose from the ingestion of organically bound dietary tritium. The model predicts that the dose from the ingestion of organically bound dietary tritium is about 2.3 times higher than from the ingestion of the same activity of tritiated water. Under steady-state conditions, the calculated dose rate (using the first principle approach) from the ingestion of dietary organically bound tritium can be twice that from the ingestion of tritiated water. For an adult, the upper-bound dose estimate for the ingestion of dietary organically bound tritium is estimated to be close to 2.3 times higher than that of tritiated water. Therefore, given the uncertainty in the dose calculation with respect to the actual relevant dose, the ICRP biokinetic model for organically bound tritium is sufficient for dosimetry for adults. (author)

  2. Similarity-based search of model organism, disease and drug effect phenotypes

    KAUST Repository

    Hoehndorf, Robert

    2015-02-19

    Background: Semantic similarity measures over phenotype ontologies have been demonstrated to provide a powerful approach for the analysis of model organism phenotypes, the discovery of animal models of human disease, novel pathways, gene functions, druggable therapeutic targets, and determination of pathogenicity. Results: We have developed PhenomeNET 2, a system that enables similarity-based searches over a large repository of phenotypes in real-time. It can be used to identify strains of model organisms that are phenotypically similar to human patients, diseases that are phenotypically similar to model organism phenotypes, or drug effect profiles that are similar to the phenotypes observed in a patient or model organism. PhenomeNET 2 is available at http://aber-owl.net/phenomenet. Conclusions: Phenotype-similarity searches can provide a powerful tool for the discovery and investigation of molecular mechanisms underlying an observed phenotypic manifestation. PhenomeNET 2 facilitates user-defined similarity searches and allows researchers to analyze their data within a large repository of human, mouse and rat phenotypes.

  3. Flexible barrier film, method of forming same, and organic electronic device including same

    Science.gov (United States)

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  4. A continuum self organized critically model of turbulent heat transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tangri, V; Das, A; Kaw, P; Singh, R [Institute for Plasma Research, Gandhinagar (India)

    2003-09-01

    Based on the now well known and experimentally observed critical gradient length (R/L{sub Te} = RT/{nabla}T) in tokamaks, we present a continuum one dimensional model for explaining self organized heat transport in tokamaks. Key parameters of this model include a novel hysteresis parameter which ensures that the switch of heat transport coefficient {chi} upwards and downwards takes place at two different values of R/L{sub Te}. Extensive numerical simulations of this model reproduce many features of present day tokamaks such as submarginal temperature profiles, intermittent transport events, 1/f scaling of the frequency spectra, propagating fronts, etc. This model utilises a minimal set of phenomenological parameters, which may be determined from experiments and/or simulations. Analytical and physical understanding of the observed features has also been attempted. (author)

  5. A model to accumulate fractionated dose in a deforming organ

    International Nuclear Information System (INIS)

    Yan Di; Jaffray, D.A.; Wong, J.W.

    1999-01-01

    Purpose: Measurements of internal organ motion have demonstrated that daily organ deformation exists throughout the course of radiation treatment. However, a method of constructing the resultant dose delivered to the organ volume remains a difficult challenge. In this study, a model to quantify internal organ motion and a method to construct a cumulative dose in a deforming organ are introduced. Methods and Materials: A biomechanical model of an elastic body is used to quantify patient organ motion in the process of radiation therapy. Intertreatment displacements of volume elements in an organ of interest is calculated by applying an finite element method with boundary conditions, obtained from multiple daily computed tomography (CT) measurements. Therefore, by incorporating also the measurements of daily setup error, daily dose delivered to a deforming organ can be accumulated by tracking the position of volume elements in the organ. Furthermore, distribution of patient-specific organ motion is also predicted during the early phase of treatment delivery using the daily measurements, and the cumulative dose distribution in the organ can then be estimated. This dose distribution will be updated whenever a new measurement becomes available, and used to reoptimize the ongoing treatment. Results: An integrated process to accumulate dosage in a daily deforming organ was implemented. In this process, intertreatment organ motion and setup error were systematically quantified, and incorporated in the calculation of the cumulative dose. An example of the rectal wall motion in a prostate treatment was applied to test the model. The displacements of volume elements in the rectal wall, as well as the resultant doses, were calculated. Conclusion: This study is intended to provide a systematic framework to incorporate daily patient-specific organ motion and setup error in the reconstruction of the cumulative dose distribution in an organ of interest. The realistic dose

  6. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  7. Galleria mellonella L. as model organism used in biomedical and other studies

    Science.gov (United States)

    Mikulak, Ewa; Gliniewicz, Aleksandra; Przygodzka, Marta; Solecka, Jolanta

    2018-01-01

    Comparative of studies of genomes of invertebrates and humans shows that in invertebrates including insects there are numerous homologues of human’s genes coding proteins involved in recognition pathogens or transduction of the expression signal. Thanks this features, insects such as Drosophila melanogaster M., Blattella germanica L., Culex quinquefasciatus S., Bombyx mori L. and Galleria mellonella L. are used in studies on virulence, host resistance or in assessing the in vivo efficacy of antibiotics, fungicides and other biologically active substances. G. mellonella (greater wax moth) are rapid growth, high fertility, size and short life cycle insects- these are features that should be met by good model organisms; therefore the number of researches with larvae of wax moth as the model organism for pathogens assays grows from year to year. This is showing by number of scientific publications about infection’s model of G. mellonella. An obstacle in the wide use of G. mellonella caterpillars as a model in biomedical research is the lack of standardized breeding of these insects, which would guarantee the reproducibility of the obtained results and lack of procedures and standards according to which biomedical research will be carried out. Despite this, the G. mellonella model can be used in the initial analysis before conventional in vivo tests and to reduce the number of tests performed on mammals.

  8. Stages in the development of a model organism as a platform for mechanistic models in developmental biology: Zebrafish, 1970-2000.

    Science.gov (United States)

    Meunier, Robert

    2012-06-01

    Model organisms became an indispensable part of experimental systems in molecular developmental and cell biology, constructed to investigate physiological and pathological processes. They are thought to play a crucial role for the elucidation of gene function, complementing the sequencing of the genomes of humans and other organisms. Accordingly, historians and philosophers paid considerable attention to various issues concerning this aspect of experimental biology. With respect to the representational features of model organisms, that is, their status as models, the main focus was on generalization of phenomena investigated in such experimental systems. Model organisms have been said to be models for other organisms or a higher taxon. This, however, presupposes a representation of the phenomenon in question. I will argue that prior to generalization, model organisms allow researchers to built generative material models of phenomena - structures, processes or the mechanisms that explain them - through their integration in experimental set-ups that carve out the phenomena from the whole organism and thus represent them. I will use the history of zebrafish biology to show how model organism systems, from around 1970 on, were developed to construct material models of molecular mechanisms explaining developmental or physiological processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Modelling the behaviour of organic degradation products

    International Nuclear Information System (INIS)

    Cross, J.E.; Ewart, F.T.; Greenfield, B.F.

    1989-03-01

    Results are presented from recent studies at Harwell which show that the degradation products which are formed when certain organic waste materials are exposed to the alkaline conditions typical of a cementitious environment, can enhance the solubility of plutonium, even at pH values as high as 12, by significant factors. Characterisation of the degradation products has been undertaken but the solubility enhancement does not appear to be related to the concentration of any of the major organic species that have been identified in the solutions. While it has not been possible to identify by analysis the organic ligand responsible for the increased solubility of plutonium, the behaviour of D-Saccharic acid does approach the behaviour of the degradation products. The PHREEQE code has been used to simulate the solubility of plutonium in the presence of D-Saccharic acid and other model degradation products, in order to explain the solubility enhancement. The extrapolation of the experimental conditions to the repository is the major objective, but in this work the ability of a model to predict the behaviour of plutonium over a range of experimental conditions has been tested. (author)

  10. Design and Simulation of a 6-Bit Successive-Approximation ADC Using Modeled Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Huyen Thanh Pham

    2016-01-01

    Full Text Available We have demonstrated a method for using proper models of pentacene P-channel and fullerene N-channel thin-film transistors (TFTs in order to design and simulate organic integrated circuits. Initially, the transistors were fabricated, and we measured their main physical and electrical parameters. Then, these organic TFTs (OTFTs were modeled with support of an organic process design kit (OPDK added in Cadence. The key specifications of the modeled elements were extracted from measured data, whereas the fitting ones were elected to replicate experimental curves. The simulating process proves that frequency responses of the TFTs cover all biosignal frequency ranges; hence, it is reasonable to deploy the elements to design integrated circuits used in biomedical applications. Complying with complementary rules, the organic circuits work properly, including logic gates, flip-flops, comparators, and analog-to-digital converters (ADCs as well. The proposed successive-approximation-register (SAR ADC consumes a power of 883.7 µW and achieves an ENOB of 5.05 bits, a SNR of 32.17 dB at a supply voltage of 10 V, and a sampling frequency of about 2 KHz.

  11. Model of the Dynamic Construction Process of Texts and Scaling Laws of Words Organization in Language Systems.

    Science.gov (United States)

    Li, Shan; Lin, Ruokuang; Bian, Chunhua; Ma, Qianli D Y; Ivanov, Plamen Ch

    2016-01-01

    Scaling laws characterize diverse complex systems in a broad range of fields, including physics, biology, finance, and social science. The human language is another example of a complex system of words organization. Studies on written texts have shown that scaling laws characterize the occurrence frequency of words, words rank, and the growth of distinct words with increasing text length. However, these studies have mainly concentrated on the western linguistic systems, and the laws that govern the lexical organization, structure and dynamics of the Chinese language remain not well understood. Here we study a database of Chinese and English language books. We report that three distinct scaling laws characterize words organization in the Chinese language. We find that these scaling laws have different exponents and crossover behaviors compared to English texts, indicating different words organization and dynamics of words in the process of text growth. We propose a stochastic feedback model of words organization and text growth, which successfully accounts for the empirically observed scaling laws with their corresponding scaling exponents and characteristic crossover regimes. Further, by varying key model parameters, we reproduce differences in the organization and scaling laws of words between the Chinese and English language. We also identify functional relationships between model parameters and the empirically observed scaling exponents, thus providing new insights into the words organization and growth dynamics in the Chinese and English language.

  12. Model of the Dynamic Construction Process of Texts and Scaling Laws of Words Organization in Language Systems.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available Scaling laws characterize diverse complex systems in a broad range of fields, including physics, biology, finance, and social science. The human language is another example of a complex system of words organization. Studies on written texts have shown that scaling laws characterize the occurrence frequency of words, words rank, and the growth of distinct words with increasing text length. However, these studies have mainly concentrated on the western linguistic systems, and the laws that govern the lexical organization, structure and dynamics of the Chinese language remain not well understood. Here we study a database of Chinese and English language books. We report that three distinct scaling laws characterize words organization in the Chinese language. We find that these scaling laws have different exponents and crossover behaviors compared to English texts, indicating different words organization and dynamics of words in the process of text growth. We propose a stochastic feedback model of words organization and text growth, which successfully accounts for the empirically observed scaling laws with their corresponding scaling exponents and characteristic crossover regimes. Further, by varying key model parameters, we reproduce differences in the organization and scaling laws of words between the Chinese and English language. We also identify functional relationships between model parameters and the empirically observed scaling exponents, thus providing new insights into the words organization and growth dynamics in the Chinese and English language.

  13. Modification of SWAT model for simulation of organic matter in Korean watersheds.

    Science.gov (United States)

    Jang, Jae-Ho; Jung, Kwang-Wook; Gyeong Yoon, Chun

    2012-01-01

    The focus of water quality modeling of Korean streams needs to be shifted from dissolved oxygen to algae or organic matter. In particular, the structure of water quality models should be modified to simulate the biochemical oxygen demand (BOD), which is a key factor in calculating total maximum daily loads (TMDLs) in Korea, using 5-day BOD determined in the laboratory (Bottle BOD(5)). Considering the limitations in simulating organic matter under domestic conditions, we attempted to model total organic carbon (TOC) as well as BOD by using a watershed model. For this purpose, the Soil and Water Assessment Tool (SWAT) model was modified and extended to achieve better correspondence between the measured and simulated BOD and TOC concentrations. For simulated BOD in the period 2004-2008, the Nash-Sutcliffe model efficiency coefficient increased from a value of -2.54 to 0.61. Another indicator of organic matter, namely, the simulated TOC concentration showed that the modified SWAT adequately reflected the observed values. The improved model can be used to predict organic matter and hence, may be a potential decision-making tool for TMDLs. However, it needs further testing for longer simulation periods and other catchments.

  14. A neural model of figure-ground organization.

    Science.gov (United States)

    Craft, Edward; Schütze, Hartmut; Niebur, Ernst; von der Heydt, Rüdiger

    2007-06-01

    Psychophysical studies suggest that figure-ground organization is a largely autonomous process that guides--and thus precedes--allocation of attention and object recognition. The discovery of border-ownership representation in single neurons of early visual cortex has confirmed this view. Recent theoretical studies have demonstrated that border-ownership assignment can be modeled as a process of self-organization by lateral interactions within V2 cortex. However, the mechanism proposed relies on propagation of signals through horizontal fibers, which would result in increasing delays of the border-ownership signal with increasing size of the visual stimulus, in contradiction with experimental findings. It also remains unclear how the resulting border-ownership representation would interact with attention mechanisms to guide further processing. Here we present a model of border-ownership coding based on dedicated neural circuits for contour grouping that produce border-ownership assignment and also provide handles for mechanisms of selective attention. The results are consistent with neurophysiological and psychophysical findings. The model makes predictions about the hypothetical grouping circuits and the role of feedback between cortical areas.

  15. Modeling of iodine radiation chemistry in the presence of organic compounds

    International Nuclear Information System (INIS)

    Taghipour, Fariborz; Evans, Greg J.

    2002-01-01

    A kinetic-based model was developed that simulates the radiation chemistry of iodine in the presence of organic compounds. The model's mechanistic description of iodine chemistry and generic semi-mechanistic reactions for various classes of organics, provided a reasonable representation of experimental results. The majority of the model and experimental results of iodine volatilization rates were in agreement within an order of magnitude

  16. A model of cognitive and operational memory of organizations in changing worlds

    OpenAIRE

    Giovanni Dosi; Luigi Marengo; Evita Paraskevopoulou; Marco Valente

    2015-01-01

    This work analyzes and models the nature and dynamics of organizational memory, as such an essential ingredient of organizational capabilities. There are two sides to it, namely a cognitive side, involving the beliefs and interpretative frameworks by which the organization categorizes the states of the world and its own internal states, and an operational one, including routines and procedures that store the knowledge of how to do things. We formalize both types of memory by means of evolving...

  17. An Ontology for Modeling Complex Inter-relational Organizations

    Science.gov (United States)

    Wautelet, Yves; Neysen, Nicolas; Kolp, Manuel

    This paper presents an ontology for organizational modeling through multiple complementary aspects. The primary goal of the ontology is to dispose of an adequate set of related concepts for studying complex organizations involved in a lot of relationships at the same time. In this paper, we define complex organizations as networked organizations involved in a market eco-system that are playing several roles simultaneously. In such a context, traditional approaches focus on the macro analytic level of transactions; this is supplemented here with a micro analytic study of the actors' rationale. At first, the paper overviews enterprise ontologies literature to position our proposal and exposes its contributions and limitations. The ontology is then brought to an advanced level of formalization: a meta-model in the form of a UML class diagram allows to overview the ontology concepts and their relationships which are formally defined. Finally, the paper presents the case study on which the ontology has been validated.

  18. I Have a Dream: Organic Movements Include Gene Manipulation to Improve Sustainable Farming

    Directory of Open Access Journals (Sweden)

    Gerhart U. Ryffel

    2017-03-01

    Full Text Available Several papers in a Special Issue of Sustainability have recently discussed various aspects to evaluate whether organic farming and gene manipulation are compatible. A special emphasis was given to new plant breeding techniques (NPBTs. These new approaches allow the most predictable genetic alterations of crop plants in ways that the genetically modified plant is identical to a plant generated by conventional breeding. The articles of the Special Issue present the arguments pro and contra the inclusion of the plants generated by NPBTs in organic farming. Organic movements have not yet made a final decision whether some of these techniques should be accepted or banned. In my view these novel genetically manipulated (GM crops could be used in such a way as to respect the requirements for genetically manipulated organisms (GMOs formulated by the International Federation of Organic Movements (IFOAM. Reviewing the potential benefits of disease-resistant potatoes and bananas, it seems possible that these crops support organic farming. To this end, I propose specific requirements that the organic movements should proactively formulate as their standards to accept specific GM crops.

  19. Evaluation of approaches focused on modelling of organic carbon stocks using the RothC model

    Science.gov (United States)

    Koco, Štefan; Skalský, Rastislav; Makovníková, Jarmila; Tarasovičová, Zuzana; Barančíková, Gabriela

    2014-05-01

    The aim of current efforts in the European area is the protection of soil organic matter, which is included in all relevant documents related to the protection of soil. The use of modelling of organic carbon stocks for anticipated climate change, respectively for land management can significantly help in short and long-term forecasting of the state of soil organic matter. RothC model can be applied in the time period of several years to centuries and has been tested in long-term experiments within a large range of soil types and climatic conditions in Europe. For the initialization of the RothC model, knowledge about the carbon pool sizes is essential. Pool size characterization can be obtained from equilibrium model runs, but this approach is time consuming and tedious, especially for larger scale simulations. Due to this complexity we search for new possibilities how to simplify and accelerate this process. The paper presents a comparison of two approaches for SOC stocks modelling in the same area. The modelling has been carried out on the basis of unique input of land use, management and soil data for each simulation unit separately. We modeled 1617 simulation units of 1x1 km grid on the territory of agroclimatic region Žitný ostrov in the southwest of Slovakia. The first approach represents the creation of groups of simulation units based on the evaluation of results for simulation unit with similar input values. The groups were created after the testing and validation of modelling results for individual simulation units with results of modelling the average values of inputs for the whole group. Tests of equilibrium model for interval in the range 5 t.ha-1 from initial SOC stock showed minimal differences in results comparing with result for average value of whole interval. Management inputs data from plant residues and farmyard manure for modelling of carbon turnover were also the same for more simulation units. Combining these groups (intervals of initial

  20. RELAP5-3D Code Includes ATHENA Features and Models

    International Nuclear Information System (INIS)

    Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.

    2006-01-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF 6 , xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)

  1. Self-organized quantum rings : Physical characterization and theoretical modeling

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Koenraad, P.M.; Fomin, V.M.

    2014-01-01

    An adequate modeling of the self-organized quantum rings is possible only on the basis of the modern characterization of those nanostructures.We discuss an atomic-scale analysis of the indium distribution of self-organized InGaAs quantum rings (QRs). The analysis of the shape, size and composition

  2. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  3. Development of a Short Form of the Abridged Big Five-Dimensional Circumplex Model to Aid with the Organization of Personality Traits.

    Science.gov (United States)

    Bucher, Meredith A; Samuel, Douglas B

    2018-02-01

    Although there has been widespread consensus on the use of the Five-Factor Model (FFM) of general personality functioning in personality research, there are various, diverse models of the lower order traits of the FFM domains. Given the usefulness of these finer grained traits, it is imperative to integrate facets proposed across a variety of models and eventually reach consensus on the lower level traits of the FFM. Due to its depth and coverage, the Abridged Big Five-Dimensional Circumplex (AB5C) model potentially provides a useful framework for organizing various faceted models due to its conceptual organization and inclusiveness. The only measure of this model-the IPIP-AB5C-has shown promise, but is limited by its length (i.e., 485 items). This study developed an abbreviated version of the IPIP-AB5C using an iterative process including item response theory methods. The shorter version maintained key features of the long form including a factor structure that matched the full form as well as facets that correlated in expected ways with other FFM measures. Building on this support, the short form was used to contextualize and organize the facets from 2 commonly used measures.

  4. Organized versus self-organized criticality in the abelian sandpile model

    OpenAIRE

    Fey-den Boer, AC Anne; Redig, FHJ Frank

    2005-01-01

    We define stabilizability of an infinite volume height configuration and of a probability measure on height configurations. We show that for high enough densities, a probability measure cannot be stabilized. We also show that in some sense the thermodynamic limit of the uniform measures on the recurrent configurations of the abelian sandpile model (ASM) is a maximal element of the set of stabilizable measures. In that sense the self-organized critical behavior of the ASM can be understood in ...

  5. Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Brandt, J.; Frohn, L. M.; Geels, C.

    2004-03-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange proceses of POPs.

  6. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    Directory of Open Access Journals (Sweden)

    C. Mouchel-Vallon

    2013-01-01

    Full Text Available The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation to 70% (octane oxidation of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively. Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  7. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model

    International Nuclear Information System (INIS)

    Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C.; Sweetman, Andrew J.

    2004-01-01

    A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 deg. x 5 deg. grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it

  8. Model of sustainable utilization of organic solids waste in Cundinamarca, Colombia

    Directory of Open Access Journals (Sweden)

    Solanyi Castañeda Torres

    2017-05-01

    Full Text Available Introduction: This article considers a proposal of a model of use of organic solids waste for the department of Cundinamarca, which responds to the need for a tool to support decision-making for the planning and management of organic solids waste. Objective: To perform an approximation of a conceptual technical and mathematician optimization model to support decision-making in order to minimize environmental impacts. Materials and methods: A descriptive study was applied due to the fact that some fundamental characteristics of the studied homogeneous phenomenon are presented and it is also considered to be quasi experimental. The calculation of the model for plants of the department is based on three axes (environmental, economic and social, that are present in the general equation of optimization. Results: A model of harnessing organic solids waste in the techniques of biological treatment of composting aerobic and worm cultivation is obtained, optimizing the system with the emissions savings of greenhouse gases spread into the atmosphere, and in the reduction of the overall cost of final disposal of organic solids waste in sanitary landfill. Based on the economic principle of utility that determines the environmental feasibility and sustainability in the plants of harnessing organic solids waste to the department, organic fertilizers such as compost and humus capture carbon and nitrogen that reduce the tons of CO2.

  9. Ames Culture Chamber System: Enabling Model Organism Research Aboard the international Space Station

    Science.gov (United States)

    Steele, Marianne

    2014-01-01

    Understanding the genetic, physiological, and behavioral effects of spaceflight on living organisms and elucidating the molecular mechanisms that underlie these effects are high priorities for NASA. Certain organisms, known as model organisms, are widely studied to help researchers better understand how all biological systems function. Small model organisms such as nem-atodes, slime mold, bacteria, green algae, yeast, and moss can be used to study the effects of micro- and reduced gravity at both the cellular and systems level over multiple generations. Many model organisms have sequenced genomes and published data sets on their transcriptomes and proteomes that enable scientific investigations of the molecular mechanisms underlying the adaptations of these organisms to space flight.

  10. Integrating centralized and decentralized organization structures: an education and development model.

    Science.gov (United States)

    Sheriff, R; Banks, A

    2001-01-01

    Organization change efforts have led to critically examining the structure of education and development departments within hospitals. This qualitative study evaluated an education and development model in an academic health sciences center. The model combines centralization and decentralization. The study results can be used by staff development educators and administrators when organization structure is questioned. This particular model maximizes the benefits and minimizes the limitations of centralized and decentralized structures.

  11. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  12. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  13. NEW MODEL FOR QUANTIFICATION OF ICT DEPENDABLE ORGANIZATIONS RESILIENCE

    Directory of Open Access Journals (Sweden)

    Zora Arsovski

    2011-03-01

    Full Text Available Business environment today demands high reliable organizations in every segment to be competitive on the global market. Beside that, ICT sector is becoming irreplaceable in many fields of business, from the communication to the complex systems for process control and production. To fulfill those requirements and to develop further, many organizations worldwide are implementing business paradigm called - organizations resilience. Although resilience is well known term in many science fields, it is not well studied due to its complex nature. This paper is dealing with developing the new model for assessment and quantification of ICT dependable organizations resilience.

  14. Application of the mathematical modelling and human phantoms for calculation of the organ doses

    International Nuclear Information System (INIS)

    Kluson, J.; Cechak, T.

    2005-01-01

    Increasing power of the computers hardware and new versions of the software for the radiation transport simulation and modelling of the complex experimental setups and geometrical arrangement enable to dramatically improve calculation of organ or target volume doses ( dose distributions) in the wide field of medical physics and radiation protection applications. Increase of computers memory and new software features makes it possible to use not only analytical (mathematical) phantoms but also allow constructing the voxel models of human or phantoms with voxels fine enough (e.g. 1·1·1 mm) to represent all required details. CT data can be used for the description of such voxel model geometry .Advanced scoring methods are available in the new software versions. Contribution gives the overview of such new possibilities in the modelling and doses calculations, discusses the simulation/approximation of the dosimetric quantities ( especially dose ) and calculated data interpretation. Some examples of application and demonstrations will be shown, compared and discussed. Present computational tools enables to calculate organ or target volumes doses with new quality of large voxel models/phantoms (including CT based patient specific model ), approximating the human body with high precision. Due to these features has more and more importance and use in the fields of medical and radiological physics, radiation protection, etc. (authors)

  15. The true meaning of 'exotic species' as a model for genetically engineered organisms.

    Science.gov (United States)

    Regal, P J

    1993-03-15

    The exotic or non-indigenous species model for deliberately introduced genetically engineered organisms (GEOs) has often been misunderstood or misrepresented. Yet proper comparisons of of ecologically competent GEOs to the patterns of adaptation of introduced species have been highly useful among scientists in attempting to determine how to apply biological theory to specific GEO risk issues, and in attempting to define the probabilities and scale of ecological risks with GEOs. In truth, the model predicts that most projects may be environmentally safe, but a significant minority may be very risky. The model includes a history of institutional follies that also should remind workers of the danger of oversimplifying biological issues, and warn against repeating the sorts of professional misjudgements that have too often been made in introducing organisms to new settings. We once expected that the non-indigenous species model would be refined by more analysis of species eruptions, ecological genetics, and the biology of select GEOs themselves, as outlined. But there has been political resistance to the effective regulation of GEOs, and a bureaucratic tendency to focus research agendas on narrow data collection. Thus there has been too little promotion by responsible agencies of studies to provide the broad conceptual base for truly science-based regulation. In its presently unrefined state, the non-indigenous species comparison would overestimate the risks of GEOs if it were (mis)applied to genetically disrupted, ecologically crippled GEOs, but in some cases of wild-type organisms with novel engineered traits, it could greatly underestimate the risks. Further analysis is urgently needed.

  16. Collisional-radiative model including recombination processes for W27+ ion★

    Science.gov (United States)

    Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro

    2017-10-01

    We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  17. Sustainable Organic Farming For Environmental Health A Social Development Model

    Directory of Open Access Journals (Sweden)

    Ijun Rijwan Susanto

    2015-05-01

    Full Text Available ABSTRACT In this study the researcher attempted 1 to understand the basic features of organic farming in The Paguyuban Pasundans Cianjur 2 to describe and understand how the stakeholders were are able to internalize the challenges of organic farming on their lived experiences in the community 3 to describe and understand how the stakeholders were are able to internalize and applied the values of benefits of organic farming in support of environmental health on their lived experiences in the community 4 The purpose was to describe and understand how the stakeholders who are able to articulate their ideas regarding the model of sustainable organic farming 5 The Policy Recommendation for Organic Farming. The researcher employed triangulation thorough finding that provides breadth and depth to an investigation offering researchers a more accurate picture of the phenomenon. In the implementation of triangulation researchers conducted several interviews to get saturation. After completion of the interview results are written compiled and shown to the participants to check every statement by every participant. In addition researchers also checked the relevant documents and direct observation in the field The participants of this study were the stakeholders namely 1 The leader of Paguyuban Pasundans Organic Farmer Cianjur PPOFC 2 Members of Paguyuban Pasundans Organic FarmersCianjur 3 Leader of NGO 4 Government officials of agriculture 5 Business of organic food 6 and Consumer of organic food. Generally the findings of the study revealed the following 1 PPOFC began to see the reality as the impact of modern agriculture showed in fertility problems due to contaminated soil by residues of agricultural chemicals such as chemical fertilizers and chemical pesticides. So he wants to restore the soil fertility through environmentally friendly of farming practices 2 the challenges of organic farming on their lived experiences in the community farmers did not

  18. Model potential for the description of metal/organic interface states

    Science.gov (United States)

    Armbrust, Nico; Schiller, Frederik; Güdde, Jens; Höfer, Ulrich

    2017-01-01

    We present an analytical one-dimensional model potential for the description of electronic interface states that form at the interface between a metal surface and flat-lying adlayers of π-conjugated organic molecules. The model utilizes graphene as a universal representation of these organic adlayers. It predicts the energy position of the interface state as well as the overlap of its wave function with the bulk metal without free fitting parameters. We show that the energy of the interface state depends systematically on the bond distance between the carbon backbone of the adayers and the metal. The general applicability and robustness of the model is demonstrated by a comparison of the calculated energies with numerous experimental results for a number of flat-lying organic molecules on different closed-packed metal surfaces that cover a large range of bond distances. PMID:28425444

  19. In Vivo RNAi-Based Screens: Studies in Model Organisms

    Directory of Open Access Journals (Sweden)

    Miki Yamamoto-Hino

    2013-11-01

    Full Text Available RNA interference (RNAi is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.

  20. A STRATEGIC MANAGEMENT MODEL FOR SERVICE ORGANIZATIONS

    OpenAIRE

    Andreea ZAMFIR

    2013-01-01

    This paper provides a knowledge-based strategic management of services model, with a view to emphasise an approach to gaining competitive advantage through knowledge, people and networking. The long-term evolution of the service organization is associated with the way in which the strategic management is practised.

  1. Expanding on Successful Concepts, Models, and Organization

    Science.gov (United States)

    If the goal of the AEP framework was to replace existing exposure models or databases for organizing exposure data with a concept, we would share Dr. von Göetz concerns. Instead, the outcome we promote is broader use of an organizational framework for exposure science. The f...

  2. NASCENT: an automatic protein interaction network generation tool for non-model organisms.

    Science.gov (United States)

    Banky, Daniel; Ordog, Rafael; Grolmusz, Vince

    2009-04-24

    Large quantity of reliable protein interaction data are available for model organisms in public depositories (e.g., MINT, DIP, HPRD, INTERACT). Most data correspond to experiments with the proteins of Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, Caenorhabditis elegans, Escherichia coli and Mus musculus. For other important organisms the data availability is poor or non-existent. Here we present NASCENT, a completely automatic web-based tool and also a downloadable Java program, capable of modeling and generating protein interaction networks even for non-model organisms. The tool performs protein interaction network modeling through gene-name mapping, and outputs the resulting network in graphical form and also in computer-readable graph-forms, directly applicable by popular network modeling software. http://nascent.pitgroup.org.

  3. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...... rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....

  4. Public attitudes to financial incentive models for organs

    DEFF Research Database (Denmark)

    Hoeyer, Klaus; Schicktanz, Silke; Deleuran, Ida

    2013-01-01

    Waiting lists for organs have stimulated interest in the use of financial incentives for organ donation (FIs), but the literature does not contain an adequate overview of studies of public attitudes toward this mode of procurement. We conducted a literature review of international peer......-reviewed research published between 2002 and 2012 on how members of the public position themselves toward FIs. We identified and analyzed 23 studies using MEDLINE, PsycINFO, Sociological Abstracts and cross-reference search. The search included whole organs, donation, quantitative and empirical qualitative social...... scientific studies on, public attitudes (excluding professionals and medical students). The review reveals a broad divergence of public opinions on financial incentives. However, quantitative studies showed a low overall level of acceptance of payment for organs in living donation (LD); only a slightly...

  5. Laos Organization Name Using Cascaded Model Based on SVM and CRF

    Directory of Open Access Journals (Sweden)

    Duan Shaopeng

    2017-01-01

    Full Text Available According to the characteristics of Laos organization name, this paper proposes a two layer model based on conditional random field (CRF and support vector machine (SVM for Laos organization name recognition. A layer of model uses CRF to recognition simple organization name, and the result is used to support the decision of the second level. Based on the driving method, the second layer uses SVM and CRF to recognition the complicated organization name. Finally, the results of the two levels are combined, And by a subsequent treatment to correct results of low confidence recognition. The results show that this approach based on SVM and CRF is efficient in recognizing organization name through open test for real linguistics, and the recalling rate achieve 80. 83%and the precision rate achieves 82. 75%.

  6. Extending Primitive Spatial Data Models to Include Semantics

    Science.gov (United States)

    Reitsma, F.; Batcheller, J.

    2009-04-01

    Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.

  7. A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons.

    Directory of Open Access Journals (Sweden)

    Dimitrios V Vavoulis

    Full Text Available Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm, often in combination with a local search method (such as gradient descent in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a

  8. Aging, neurogenesis, and caloric restriction in different model organisms.

    Science.gov (United States)

    Arslan-Ergul, Ayca; Ozdemir, A Tugrul; Adams, Michelle M

    2013-08-01

    Brain aging is a multifactorial process that is occurring across multiple cognitive domains. A significant complaint that occurs in the elderly is a decrement in learning and memory ability. Both rodents and zebrafish exhibit a similar problem with memory during aging. The neurobiological changes that underlie this cognitive decline are complex and undoubtedly influenced by many factors. Alterations in the birth of new neurons and neuron turnover may contribute to age-related cognitive problems. Caloric restriction is the only non-genetic intervention that reliably increases life span and healthspan across multiple organisms although the molecular mechanisms are not well-understood. Recently the zebrafish has become a popular model organism for understanding the neurobiological consequences but to date very little work has been performed. Similarly, few studies have examined the effects of dietary restriction in zebrafish. Here we review the literature related to memory decline, neurogenesis, and caloric restriction across model organisms and suggest that zebrafish has the potential to be an important animal model for understanding the complex interactions between age, neurobiological changes in the brain, and dietary regimens or their mimetics as interventions.

  9. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    Science.gov (United States)

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  10. Impact of organic-mineral matter interactions on thermal reaction pathways for coal model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, A.C. III; Britt, P.F.; Struss, J.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1995-07-01

    Coal is a complex, heterogeneous solid that includes interdispersed mineral matter. However, knowledge of organic-mineral matter interactions is embryonic, and the impact of these interactions on coal pyrolysis and liquefaction is incomplete. Clay minerals, for example, are known to be effective catalysts for organic reactions. Furthermore, clays such as montmorillonite have been proposed to be key catalysts in the thermal alteration of lignin into vitrinite during the coalification process. Recent studies by Hatcher and coworkers on the evolution of coalified woods using microscopy and NMR have led them to propose selective, acid-catalyzed, solid state reaction chemistry to account for retained structural integrity in the wood. However, the chemical feasibility of such reactions in relevant solids is difficult to demonstrate. The authors have begun a model compound study to gain a better molecular level understanding of the effects in the solid state of organic-mineral matter interactions relevant to both coal formation and processing. To satisfy the need for model compounds that remain nonvolatile solids at temperatures ranging to 450 C, model compounds are employed that are chemically bound to the surface of a fumed silica (Si-O-C{sub aryl}linkage). The organic structures currently under investigation are phenethyl phenyl ether (C{sub 6}H{sub 5}CH{sub 2}CH{sub 2}OC{sub 6}H{sub 5}) derivatives, which serve as models for {beta}-alkyl aryl ether units that are present in lignin and lignitic coals. The solid-state chemistry of these materials at 200--450 C in the presence of interdispersed acid catalysts such as small particle size silica-aluminas and montmorillonite clay will be reported. Initial focus will be on defining the potential impact of these interactions on coal pyrolysis and liquefaction.

  11. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...

  12. Multiple organ definition in CT using a Bayesian approach for 3D model fitting

    Science.gov (United States)

    Boes, Jennifer L.; Weymouth, Terry E.; Meyer, Charles R.

    1995-08-01

    Organ definition in computed tomography (CT) is of interest for treatment planning and response monitoring. We present a method for organ definition using a priori information about shape encoded in a set of biometric organ models--specifically for the liver and kidney-- that accurately represents patient population shape information. Each model is generated by averaging surfaces from a learning set of organ shapes previously registered into a standard space defined by a small set of landmarks. The model is placed in a specific patient's data set by identifying these landmarks and using them as the basis for model deformation; this preliminary representation is then iteratively fit to the patient's data based on a Bayesian formulation of the model's priors and CT edge information, yielding a complete organ surface. We demonstrate this technique using a set of fifteen abdominal CT data sets for liver surface definition both before and after the addition of a kidney model to the fitting; we demonstrate the effectiveness of this tool for organ surface definition in this low-contrast domain.

  13. Ethical models in bioethics: theory and application in organ allocation policies.

    Science.gov (United States)

    Petrini, C

    2010-12-01

    Policies for allocating organs to people awaiting a transplant constitute a major ethical challenge. First and foremost, they demand balance between the principles of beneficence and justice, but many other ethically relevant principles are also involved: autonomy, responsibility, equity, efficiency, utility, therapeutic outcome, medical urgency, and so forth. Various organ allocation models can be developed based on the hierarchical importance assigned to a given principle over the others, but none of the principles should be completely disregarded. An ethically acceptable organ allocation policy must therefore be in conformity, to a certain extent, with the requirements of all the principles. Many models for organ allocation can be derived. The utilitarian model aims to maximize benefits, which can be of various types on a social or individual level, such as the number of lives saved, prognosis, and so forth. The prioritarian model favours the neediest or those who suffer most. The egalitarian model privileges equity and justice, suggesting that all people should have an equal opportunity (casual allocation) or priority should be given to those who have been waiting longer. The personalist model focuses on each individual patient, attempting to mesh together all the various aspects affecting the person: therapeutic needs (urgency), fairness, clinical outcomes, respect for persons. In the individualistic model the main element is free choice and the system of opting-in is privileged. Contrary to the individualistic model, the communitarian model identities in the community the fundamental elements for the legitimacy of choices: therefore, the system of opting-out is privileged. This article does not aim at suggesting practical solutions. Rather, it furnishes to decision makers an overview on the possible ethical approach to this matter.

  14. [Incorporation of an organic MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using independent data sources]. Progress report, March 16, 1992--September 15, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.

    1992-09-01

    A project was initiated in March, 1992 to (1) incorporate a rigorous organic acid representation, based on empirical data and geochemical considerations, into the MAGIC model of acidification response, and (2) test the revised model using three sets of independent data. After six months of performance, the project is on schedule and the majority of the tasks outlined for Year 1 have been successfully completed. Major accomplishments to data include development of the organic acid modeling approach, using data from the Adirondack Lakes Survey Corporation (ALSC), and coupling the organic acid model with MAGIC for chemical hindcast comparisons. The incorporation of an organic acid representation into MAGIC can account for much of the discrepancy earlier observed between MAGIC hindcasts and paleolimnological reconstructions of preindustrial pH and alkalinity for 33 statistically-selected Adirondack lakes. Additional work is on-going for model calibration and testing with data from two whole-catchment artificial acidification projects. Results obtained thus far are being prepared as manuscripts for submission to the peer-reviewed scientific literature.

  15. Model predictions of long-lived storage of organic carbon in river deposits

    Directory of Open Access Journals (Sweden)

    M. A. Torres

    2017-11-01

    Full Text Available The mass of carbon stored as organic matter in terrestrial systems is sufficiently large to play an important role in the global biogeochemical cycling of CO2 and O2. Field measurements of radiocarbon-depleted particulate organic carbon (POC in rivers suggest that terrestrial organic matter persists in surface environments over millennial (or greater timescales, but the exact mechanisms behind these long storage times remain poorly understood. To address this knowledge gap, we developed a numerical model for the radiocarbon content of riverine POC that accounts for both the duration of sediment storage in river deposits and the effects of POC cycling. We specifically target rivers because sediment transport influences the maximum amount of time organic matter can persist in the terrestrial realm and river catchment areas are large relative to the spatial scale of variability in biogeochemical processes.Our results show that rivers preferentially erode young deposits, which, at steady state, requires that the oldest river deposits are stored for longer than expected for a well-mixed sedimentary reservoir. This geometric relationship can be described by an exponentially tempered power-law distribution of sediment storage durations, which allows for significant aging of biospheric POC. While OC cycling partially limits the effects of sediment storage, the consistency between our model predictions and a compilation of field data highlights the important role of storage in setting the radiocarbon content of riverine POC. The results of this study imply that the controls on the terrestrial OC cycle are not limited to the factors that affect rates of primary productivity and respiration but also include the dynamics of terrestrial sedimentary systems.

  16. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.

    Science.gov (United States)

    Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire

    2017-11-01

    Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  17. Development and evaluation of a skin organ model for the analysis of radiation effects

    International Nuclear Information System (INIS)

    Meineke, V.; Mueller, K.; Ridi, R.; Cordes, N.; Beuningen, D. van; Koehn, F.M.; Ring, J.; Mayerhofer, A.

    2004-01-01

    Background and purpose: the reaction of tissues to ionizing radiation involves alterations in cell-cell and cell-matrix interactions mediated by cellular adhesion molecules. The aim of this study was to develop and evaluate an artificial skin organ model for the analysis of radiation effects. Material and methods: a human co-culture system consisting of the spontaneously immortalized keratinocyte cell line HaCaT and primary HDFa fibroblasts embedded into a collagen sponge was established. This skin organ model has been characterized and evaluated for its suitability for radiobiological investigations. For that purpose, expression of β 1 -integrin following irradiation was compared in the skin organ model and in HaCaT monolayer cells (FACScan and immunohistochemistry). Furthermore, the influence of ionizing radiation on DNA fragmentation was investigated in the skin organ model (TUNEL assay). Results: the novel skin organ model showed characteristics of human skin as demonstrated by cytokeratin and Ki-67 immunoreactivity and by electron microscopy. A single dose of 5 Gy X-irradiation induced an upregulation of β 1 -integrin expression both in the skin organ model and in HaCaT cells. Following irradiation, β 1 -integrin immunoreactivity was intensified in the upper layers of the epidermis equivalent whereas it was almost absent in the deeper layers. Additionally, irradiation of the skin organ model also caused a marked increase of DNA fragmentation. Conclusion: these results demonstrate that the novel skin organ model is suitable to investigate cellular radiation effects under three-dimensional conditions. This allows to investigate radiation effects which cannot be demonstrated in monolayer cell cultures. (orig.)

  18. Successful Recovery and Transplantation of 11 Organs Including Face, Bilateral Upper Extremities, and Thoracic and Abdominal Organs From a Single Deceased Organ Donor.

    Science.gov (United States)

    Tullius, Stefan G; Pomahac, Bohdan; Kim, Heung Bae; Carty, Matthew J; Talbot, Simon G; Nelson, Helen M; Delmonico, Francis L

    2016-10-01

    We report on the to date largest recovery of 11 organs from a single deceased donor with the transplantation of face, bilateral upper extremities, heart, 1 lung, liver (split for 2 recipients), kidneys, pancreas, and intestine. Although logistically challenging, this case demonstrates the feasibility and safety of the recovery of multiple thoracic and abdominal organs with multiple vascular composite allotransplants and tissues. Our experience of 8 additional successful multiple vascular composite allotransplants, thoracic, and abdominal organ recoveries suggests that such procedures are readily accomplishable from the same deceased donor.

  19. Model-model Perencanaan Strategik

    OpenAIRE

    Amirin, Tatang M

    2005-01-01

    The process of strategic planning, used to be called as long-term planning, consists of several components, including strategic analysis, setting strategic direction (covering of mission, vision, and values), and action planning. Many writers develop models representing the steps of the strategic planning process, i.e. basic planning model, problem-based planning model, scenario model, and organic or self-organizing model.

  20. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  1. Lamination of organic solar cells and organic light emitting devices: Models and experiments

    International Nuclear Information System (INIS)

    Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Anye, V. C.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2015-01-01

    In this paper, a combined experimental, computational, and analytical approach is used to provide new insights into the lamination of organic solar cells and light emitting devices at macro- and micro-scales. First, the effects of applied lamination force (on contact between the laminated layers) are studied. The crack driving forces associated with the interfacial cracks (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and computational models. Guidelines are developed for the lamination of low-cost organic electronic structures

  2. Publicly available models to predict normal boiling point of organic compounds

    International Nuclear Information System (INIS)

    Oprisiu, Ioana; Marcou, Gilles; Horvath, Dragos; Brunel, Damien Bernard; Rivollet, Fabien; Varnek, Alexandre

    2013-01-01

    Quantitative structure–property models to predict the normal boiling point (T b ) of organic compounds were developed using non-linear ASNNs (associative neural networks) as well as multiple linear regression – ISIDA-MLR and SQS (stochastic QSAR sampler). Models were built on a diverse set of 2098 organic compounds with T b varying in the range of 185–491 K. In ISIDA-MLR and ASNN calculations, fragment descriptors were used, whereas fragment, FPTs (fuzzy pharmacophore triplets), and ChemAxon descriptors were employed in SQS models. Prediction quality of the models has been assessed in 5-fold cross validation. Obtained models were implemented in the on-line ISIDA predictor at (http://infochim.u-strasbg.fr/webserv/VSEngine.html)

  3. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    Falck, W.E.

    1989-01-01

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and metal cations and protons. A comprehensive overview over the properties of natural organic matter is given and experimental techniques are presented briefly. Two major concepts of modelling have been identified: discrete ligand models and continuous distribution model. Different modelling approaches like Discrete Ligand Models (s.s.), Random-Structure Model, Affinity Spectra, Statistical Distribution Models, Continuous Stability Function Models and surface sorption models and their advantages/disadvantages are discussed. (author)

  4. Tracking the long-distance dispersal of marine organisms: sensitivity to ocean model resolution

    OpenAIRE

    Putman, Nathan F.; He, Ruoying

    2013-01-01

    Ocean circulation models are widely used to simulate organism transport in the open sea, where challenges of directly tracking organisms across vast spatial and temporal scales are daunting. Many recent studies tout the use of ‘high-resolution’ models, which are forced with atmospheric data on the scale of several hours and integrated with a time step of several minutes or seconds. However, in many cases, the model's outputs that are used to simulate organism movement have been averaged to co...

  5. A convolution method for predicting mean treatment dose including organ motion at imaging

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2000-01-01

    Full text: The random treatment delivery errors (organ motion and set-up error) can be incorporated into the treatment planning software using a convolution method. Mean treatment dose is computed as the convolution of a static dose distribution with a variation kernel. Typically this variation kernel is Gaussian with variance equal to the sum of the organ motion and set-up error variances. We propose a novel variation kernel for the convolution technique that additionally considers the position of the mobile organ in the planning CT image. The systematic error of organ position in the planning CT image can be considered random for each patient over a population. Thus the variance of the variation kernel will equal the sum of treatment delivery variance and organ motion variance at planning for the population of treatments. The kernel is extended to deal with multiple pre-treatment CT scans to improve tumour localisation for planning. Mean treatment doses calculated with the convolution technique are compared to benchmark Monte Carlo (MC) computations. Calculations of mean treatment dose using the convolution technique agreed with MC results for all cases to better than ± 1 Gy in the planning treatment volume for a prescribed 60 Gy treatment. Convolution provides a quick method of incorporating random organ motion (captured in the planning CT image and during treatment delivery) and random set-up errors directly into the dose distribution. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  6. On the influence of the exposure model on organ doses

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1988-01-01

    Based on the design characteristics of the MIRD-V phantom, two sex-specific adult phantoms, ADAM and EVA were introduced especially for the calculation of organ doses resulting from external irradiation. Although the body characteristics of all the phantoms are in good agreement with those of the reference man and woman, they have some disadvantages related to the location and shape of organs and the form of the whole body. To overcome these disadvantages related to the location and shape of organs and form of the whole body. To overcome these disadvantages related to the location and shape of organs and the form of the whole body. To overcome these disadvantages and to obtain more realistic phantoms, a technique based on computer tomographic data (voxel-phantom) was developed. This technique allows any physical phantom or real body to be converted into computer files. The improvements are of special importance with regard to the skeleton, because a better modeling of the bone surfaces and separation of hard bone and bone marrow can be achieved. For photon irradiation, the sensitivity of the model on organ doses or the effective dose equivalent is important for operational radiation protection

  7. I Believe I Can Fly!: Use of Drosophila as a Model Organism in Neuropsychopharmacology Research.

    Science.gov (United States)

    Narayanan, Anjana S; Rothenfluh, Adrian

    2016-05-01

    Neuropsychiatric disorders are of complex etiology, often including a large genetic component. In order to help identify and study the molecular and physiological mechanisms that such genes participate in, numerous animal models have been established in a variety of species. Over the past decade, this has increasingly included the vinegar fly, Drosophila melanogaster. Here, we outline why we study an invertebrate organism in the context of neuropsychiatric disorders, and we discuss how we can gain insight from studies in Drosophila. We focus on a few disorders and findings to make the larger point that modeling these diseases in flies can have both mechanistic and predictive validity. Highlighting some translational examples, we underline the fact that their brains works more like ours than one would have anticipated.

  8. Organization of left–right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling

    Science.gov (United States)

    Shevtsova, Natalia A; Talpalar, Adolfo E; Markin, Sergey N; Harris-Warrick, Ronald M; Kiehn, Ole; Rybak, Ilya A

    2015-01-01

    Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline. In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified inhibitory (V0D) and excitatory (V0V) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce and suggest mechanistic explanations for several experimental observations. These phenomena include: different speed-dependent contributions of V0D and V0V CINs and V2a interneurons to left–right alternation of neural activity, switching gaits between the left–right alternating walking-like activity and the left–right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN pathways and suggest explanations for how these pathways maintain alternating and synchronous gaits at different locomotor speeds. The models propose testable predictions about the neural organization and operation of mammalian locomotor circuits. Key points Coordination of neuronal activity between left and right sides of the mammalian spinal cord is provided by several sets of commissural interneurons (CINs) whose axons cross the midline. Genetically identified inhibitory V

  9. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  10. Description of the new version 4.0 of the tritium model UFOTRI including user guide

    International Nuclear Information System (INIS)

    Raskob, W.

    1993-08-01

    In view of the future operation of fusion reactors the release of tritium may play a dominant role during normal operation as well as after accidents. Because of its physical and chemical properties which differ significantly from those of other radionuclides, the model UFOTRI for assessing the radiological consequences of accidental tritium releases has been developed. It describes the behaviour of tritium in the biosphere and calculates the radiological impact on individuals and the population due to the direct exposure and by the ingestion pathways. Processes such as the conversion of tritium gas into tritiated water (HTO) in the soil, re-emission after deposition and the conversion of HTO into organically bound tritium, are considered. The use of UFOTRI in its probabilistic mode shows the spectrum of the radiological impact together with the associated probability of occurrence. A first model version was established in 1991. As the ongoing work on investigating the main processes of the tritium behaviour in the environment shows up new results, the model has been improved in several points. The report describes the changes incorporated into the model since 1991. Additionally provides the up-dated user guide for handling the revised UFOTRI version which will be distributed to interested organizations. (orig.) [de

  11. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    Science.gov (United States)

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  12. Genome organization in the nucleus: From dynamic measurements to a functional model.

    Science.gov (United States)

    Vivante, Anat; Brozgol, Eugene; Bronshtein, Irena; Garini, Yuval

    2017-07-01

    A biological system is by definition a dynamic environment encompassing kinetic processes that occur at different length scales and time ranges. To explore this type of system, spatial information needs to be acquired at different time scales. This means overcoming significant hurdles, including the need for stable and precise labeling of the required probes and the use of state of the art optical methods. However, to interpret the acquired data, biophysical models that can account for these biological mechanisms need to be developed. The structure and function of a biological system are closely related to its dynamic properties, thus further emphasizing the importance of identifying the rules governing the dynamics that cannot be directly deduced from information on the structure itself. In eukaryotic cells, tens of thousands of genes are packed in the small volume of the nucleus. The genome itself is organized in chromosomes that occupy specific volumes referred to as chromosome territories. This organization is preserved throughout the cell cycle, even though there are no sub-compartments in the nucleus itself. This organization, which is still not fully understood, is crucial for a large number of cellular functions such as gene regulation, DNA breakage repair and error-free cell division. Various techniques are in use today, including imaging, live cell imaging and molecular methods such as chromosome conformation capture (3C) methods to better understand these mechanisms. Live cell imaging methods are becoming well established. These include methods such as Single Particle Tracking (SPT), Continuous Photobleaching (CP), Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS) that are currently used for studying proteins, RNA, DNA, gene loci and nuclear bodies. They provide crucial information on its mobility, reorganization, interactions and binding properties. Here we describe how these dynamic methods can be used to

  13. On the inference of function from structure using biomechanical modelling and simulation of extinct organisms

    Science.gov (United States)

    Hutchinson, John R.

    2012-01-01

    Biomechanical modelling and simulation techniques offer some hope for unravelling the complex inter-relationships of structure and function perhaps even for extinct organisms, but have their limitations owing to this complexity and the many unknown parameters for fossil taxa. Validation and sensitivity analysis are two indispensable approaches for quantifying the accuracy and reliability of such models or simulations. But there are other subtleties in biomechanical modelling that include investigator judgements about the level of simplicity versus complexity in model design or how uncertainty and subjectivity are dealt with. Furthermore, investigator attitudes toward models encompass a broad spectrum between extreme credulity and nihilism, influencing how modelling is conducted and perceived. Fundamentally, more data and more testing of methodology are required for the field to mature and build confidence in its inferences. PMID:21666064

  14. On agent cooperation : the relevance of cognitive plausibility for multiagent simulation models of organizations

    NARCIS (Netherlands)

    van den Broek, J.

    2001-01-01

    Human organizations and computational multiagent systems both are social systems because they are both made up of a large number of interacting parts. Since human organizations are arrangements of distributed real intelligence, any DAI model is in some sense a model of an organization. This

  15. On agent cooperation : The relevance of cognitive plausibility for multiagent simulation models of organizations

    NARCIS (Netherlands)

    Broek, J. van den

    2001-01-01

    Human organizations and computational multiagent systems both are social systems because they are both made up of a large number of interacting parts. Since human organizations are arrangements of distributed real intelligence, any DAI model is in some sense a model of an organization. This

  16. Modeling of Instabilities and Self-organization at the Frictional Interface

    Science.gov (United States)

    Mortazavi, Vahid

    frictional surface to exhibit "self-protection" and "self-healing" properties. Hence, this research is dealing with the fundamental concepts that allow the possibility of the development of a new generation of tribosystem and materials that reinforce such properties. In chapter 2, we investigate instabilities due to the temperature-dependency of the coefficient of friction. The temperature-dependency of the coefficient of friction can have a significant effect on the frictional sliding stability, by leading to the formation of "hot" and "cold" spots on the contacting surfaces. We formulate a stability criterion and perform a case study of a brake disk. In chapter 3, we study frictional running-in. Running-in is a transient period on the onset of the frictional sliding, in which friction and wear decrease to their stationary values. In this research, running-in is interpreted as friction-induced self-organization process. We introduce a theoretical model of running-in and investigate rough profile evolution assuming that its kinetics is driven by two opposite processes or events, i.e., smoothening which is typical for the deformation-driven friction and wear, and roughening which is typical for the adhesion-driven friction and wear. In chapter 4, we investigate the possibility of the so-called Turing-type pattern formation during friction. Turing or reaction-diffusion systems describe variations of spatial concentrations of chemical components with time due to local chemical reactions coupled with diffusion. During friction, the patterns can form at the sliding interface due to the mass transfer (diffusion), heat transfer, various tribochemical reactions, and wear. In chapter 5, we investigate how interfacial patterns including propagating trains of stick and slip zones form due to dynamic sliding instabilities. These can be categorized as self-organized patterns. We treat stick and slip as two phases at the interface, and study the effects related to phase transitions. Our

  17. MODELLING CONSUMERS' DEMAND FOR ORGANIC FOOD PRODUCTS: THE SWEDISH EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Manuchehr Irandoust

    2016-07-01

    Full Text Available This paper attempts to examine a few factors characterizing consumer preferences and behavior towards organic food products in the south of Sweden using a proportional odds model which captures the natural ordering of dependent variables and any inherent nonlinearities. The findings show that consumer's choice for organic food depends on perceived benefits of organic food (environment, health, and quality and consumer's perception and attitudes towards labelling system, message framing, and local origin. In addition, high willingness to pay and income level will increase the probability to buy organic food, while the cultural differences and socio-demographic characteristics have no effect on consumer behaviour and attitudes towards organic food products. Policy implications are offered.

  18. Knowledge Loss: A Defensive Model In Nuclear Research Organization Memory

    International Nuclear Information System (INIS)

    Mohamad Safuan Bin Sulaiman; Muhd Noor Muhd Yunus

    2013-01-01

    Knowledge is an essential part of research based organization. It should be properly managed to ensure that any pitfalls of knowledge retention due to knowledge loss of both tacit and explicit is mitigated. Audit of the knowledge entities exist in the organization is important to identify the size of critical knowledge. It is very much related to how much know-what, know-how and know-why experts exist in the organization. This study conceptually proposed a defensive model for Nuclear Malaysia's organization memory and application of Knowledge Loss Risk Assessment (KLRA) as an important tool for critical knowledge identification. (author)

  19. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  20. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects

    International Nuclear Information System (INIS)

    Gupta, Santosh K.; Baishya, Srimanta

    2013-01-01

    A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate (CSG) MOSFETs has been developed. Based on this a subthreshold drain current model has also been derived. This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model. The fringing gate capacitances taken into account are outer fringe capacitance, inner fringe capacitance, overlap capacitance, and sidewall capacitance. The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily. (semiconductor devices)

  1. Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Michele eMigliore

    2014-04-01

    Full Text Available The functional consequences of the laminar organization observed in cortical systems cannot be easily studied using standard experimental techniques, abstract theoretical representations, or dimensionally reduced models built from scratch. To solve this problem we have developed a full implementation of an olfactory bulb microcircuit using realistic three-dimensional inputs, cell morphologies, and network connectivity. The results provide new insights into the relations between the functional properties of individual cells and the networks in which they are embedded. To our knowledge, this is the first model of the mitral-granule cell network to include a realistic representation of the experimentally-recorded complex spatial patterns elicited in the glomerular layer by natural odor stimulation. Although the olfactory bulb, due to its organization, has unique advantages with respect to other brain systems, the method is completely general, and can be integrated with more general approaches to other systems. The model makes experimentally testable predictions on distributed processing and on the differential backpropagation of somatic action potentials in each lateral dendrite following odor learning, providing a powerful three-dimensional framework for investigating the functions of brain microcircuits.

  2. DESIGNING A DATA GOVERNANCE MODEL BASED ON SOFT SYSTEM METHODOLOGY (SSM) IN ORGANIZATION

    OpenAIRE

    Hanung Nindito Prasetyo; Kridanto surendro

    2015-01-01

    Today, many emerging various models of data governance like DAMA, DGI and the latest is a model from IBM. Model DAMA International is a data governance model designed by industry associations. The model requires the fulfillment of the entire artifact in a matrix that has been determined that too many components that must be built in data governance in an organization. While the data governance model is built from the data DGI consulting organization which requires the development of data gove...

  3. Self-organized Criticality Model for Ocean Internal Waves

    International Nuclear Information System (INIS)

    Wang Gang; Hou Yijun; Lin Min; Qiao Fangli

    2009-01-01

    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)

  4. There Is No Simple Model of the Plasma Membrane Organization

    Science.gov (United States)

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  5. Applicability of Socio-Technical Model (STM in Working System of Modern Organizations

    Directory of Open Access Journals (Sweden)

    Rosmaini Tasmin

    2011-10-01

    Full Text Available Knowledge has been identified as one of the most important resources in organization that contributes to competitive advantages. Organizations around the world realize and put into practice an approach that bases on technological and sociological aspects to fill-up the gaps in their workplaces. The Socio-Technical Model (STM is an established organizational model introduced by Trist since 1960s at Tavistock Institute, London. It relates two most common components exist in all organizations, namely social systems (human and technological systems (information technology, machinery and equipment in organizations over many decades. This paper reviews the socio-technical model from various perspectives of its developmental stages and ideas written by researchers. Therefore, several literature reviews on socio-technical model have been compiled and discussed to justify whether its basic argument matches with required practices in Techno-Social environments. Through a socio-technical perspective on Knowledge Management, this paper highlights the interplay between social systems and technological system. It also suggests that management and leadership play critical roles in establishing the techno-social perspective for the effective assimilation of Knowledge Management practices.

  6. Russia’s 2015 BRICS Presidency: Models of Engagement with International Organizations

    Directory of Open Access Journals (Sweden)

    Marina Larionova

    2016-09-01

    Full Text Available Six years after the first 2009 summit in Yekaterinburg, the BRICS grouping of Brazil, Russia, India, China and South Africa has established its identity as an informal global governance forum. The members have consistently consolidated their cooperation, expanded and deepened their agenda, coordinated efforts aimed at the recovery and growth of their economies, and engaged with other international organizations. This work continued during the Russian presidency in 2015. This article focuses on one dimension of BRICS performance: its engagement with international organizations. Atleast three reasons define the relevance of this analysis. First, since its launch the BRICS members collectively committed tobuilding a multipolar, fair and democratic world order, which would not be possible without cooperating with key international organizations. Second, the objective of enhancing the sustainability, legitimacy and effectiveness of the global governance architecture defines the need for the flexible combination of different models of engagement of summit institutions with other international institutions. Third, according to Russia’s BRICS Presidency Concept, one of its priorities was to transition to a qualitatively new level of engagement with international organizations.The analytical framework for this study thus builds on the theory of rational choice institutionalism. The calculus approach fits the analysis of summit institutions bringing together states from a wide range of cultures, continents and economic development. Its distinctive features clearly apply to the analysis of the origin and performance of the BRICS. First, members act in a highly strategic manner to attain their priorities. Second, summitry presents an arrangement where strategic interaction among leaders plays a major role in determining political outcomes. Third, rational choice institutionalism offers the greatest analytical leverage to settings where consensus among

  7. Using a Mechanistic Reactive Transport Model to Represent Soil Organic Matter Dynamics and Climate Sensitivity

    Science.gov (United States)

    Guerry, N.; Riley, W. J.; Maggi, F.; Torn, M. S.; Kleber, M.

    2011-12-01

    The nature of long term Soil Organic Matter (SOM) dynamics is uncertain and the mechanisms involved are crudely represented in site, regional, and global models. Recent work challenging the paradigm that SOM is stabilized because of its sequential transformations to more intrinsically recalcitrant compounds motivated us to develop a mechanistic modeling framework that can be used to test hypotheses of SOM dynamics. We developed our C cycling model in TOUGHREACT, an established 3-dimensional reactive transport solver that accounts for multiple phases (aqueous, gaseous, sorbed), multiple species, advection and diffusion, and multiple microbial populations. Energy and mass exchange through the soil boundaries are accounted for via ground heat flux, rainfall, C sources (e.g., exudation, woody, leaf, root litter) and C losses (e.g., CO2 emissions and DOC deep percolation). SOM is categorized according to the various types of compounds commonly found in the above mentioned C sources and microbial byproducts, including poly- and monosaccharides, lignin, amino compounds, organic acids, nucleic acids, lipids, and phenols. Each of these compounds is accounted for by one or more representative species in the model. A reaction network was developed to describe the microbially-mediated processes and chemical interactions of these species, including depolymerization, microbial assimilation, respiration and deposition of byproducts, and incorporation of dead biomass into SOM stocks. Enzymatic reactions are characterized by Michaelis-Menten kinetics, with maximum reaction rates determined by the species' O/C ratio. Microbial activity is further regulated by soil moisture content, O2 availability, pH, and temperature. For the initial set of simulations, literature values were used to constrain microbial Monod parameters, Michaelis-Menten parameters, sorption parameters, physical protection, partitioning of microbial byproducts, and partitioning of litter inputs, although there is

  8. A roller chain drive model including contact with guide-bars

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.

    2004-01-01

    A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...... and the sprocket centre, i.e. a constraint is added when such distance is less than the pitch radius. The unilateral kinematic constraint is removed when its associated constraint reaction force, applied on the roller, is in the direction of the root of the sprocket teeth. In order to improve the numerical...

  9. A constitutive model for the forces of a magnetic bearing including eddy currents

    Science.gov (United States)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  10. Turbulence and Self-Organization Modeling Astrophysical Objects

    CERN Document Server

    Marov, Mikhail Ya

    2013-01-01

    This book focuses on the development of continuum models of natural turbulent media. It provides a theoretical approach to the solutions of different problems related to the formation, structure and evolution of astrophysical and geophysical objects. A stochastic modeling approach is used in the mathematical treatment of these problems, which reflects self-organization processes in open dissipative systems. The authors also consider examples of ordering for various objects in space throughout their evolutionary processes. This volume is aimed at graduate students and researchers in the fields of mechanics, astrophysics, geophysics, planetary and space science.

  11. Including policy and management in socio-hydrology models: initial conceptualizations

    Science.gov (United States)

    Hermans, Leon; Korbee, Dorien

    2017-04-01

    Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.

  12. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  13. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  14. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    OpenAIRE

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  15. Virtuous organization: A structural equation modeling approach

    Directory of Open Access Journals (Sweden)

    Majid Zamahani

    2013-02-01

    Full Text Available For years, the idea of virtue was unfavorable among researchers and virtues were traditionally considered as culture-specific, relativistic and they were supposed to be associated with social conservatism, religious or moral dogmatism, and scientific irrelevance. Virtue and virtuousness have been recently considered seriously among organizational researchers. The proposed study of this paper examines the relationships between leadership, organizational culture, human resource, structure and processes, care for community and virtuous organization. Structural equation modeling is employed to investigate the effects of each variable on other components. The data used in this study consists of questionnaire responses from employees in Payam e Noor University in Yazd province. A total of 250 questionnaires were sent out and a total of 211 valid responses were received. Our results have revealed that all the five variables have positive and significant impacts on virtuous organization. Among the five variables, organizational culture has the most direct impact (0.80 and human resource has the most total impact (0.844 on virtuous organization.

  16. Participatory plant breeding and organic agriculture: A synergistic model for organic variety development in the United States

    Directory of Open Access Journals (Sweden)

    Adrienne C. Shelton

    2016-12-01

    Full Text Available Abstract Organic farmers require improved varieties that have been adapted to their unique soils, nutrient inputs, management practices, and pest pressures. One way to develop adapted varieties is to situate breeding programs in the environment of intended use, such as directly on organic farms, and in collaboration with organic farmers. This model is a form of participatory plant breeding, and was originally created in order to meet the needs of under-served, small-scale farmers in developing countries. A robust body of literature supports the quantitative genetic selection theory of participatory plant breeding, and helps to explain its increasing prevalence among organic breeding projects in the United States. The history of the organic farming movement in the United States highlights the cultural relevance of engaging organic farmers in the breeding process, complementing the biological rationale for participatory plant breeding. In addition, limited private investment in organic plant breeding encourages the involvement of plant breeders at public institutions. This paper synthesizes the biological, cultural, and economic justifications for utilizing participatory plant breeding as an appropriate methodology for organic cultivar development.

  17. 76 FR 34712 - Medicare Program; Pioneer Accountable Care Organization Model; Extension of the Submission...

    Science.gov (United States)

    2011-06-14

    ... stakeholders to develop initiatives to test innovative payment and service delivery models to reduce program...] Medicare Program; Pioneer Accountable Care Organization Model; Extension of the Submission Deadlines for... of the Pioneer Accountable Care Organization Model letters of intent to June 30, 2011 and the...

  18. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    OpenAIRE

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  19. Current developments in soil organic matter modeling and the expansion of model applications: a review

    International Nuclear Information System (INIS)

    Campbell, Eleanor E; Paustian, Keith

    2015-01-01

    Soil organic matter (SOM) is an important natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystem function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. We conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4) SOM dynamics in deep soil layers; and (5) SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions. (topical review)

  20. porewater chemistry experiment at Mont Terri rock laboratory. Reactive transport modelling including bacterial activity

    International Nuclear Information System (INIS)

    Tournassat, Christophe; Gaucher, Eric C.; Leupin, Olivier X.; Wersin, Paul

    2010-01-01

    Document available in extended abstract form only. An in-situ test in the Opalinus Clay formation, termed pore water Chemistry (PC) experiment, was run for a period of five years. It was based on the concept of diffusive equilibration whereby traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 of the pore water, but because of unexpected microbially- induced redox reactions, the objective was then changed to elucidate the biogeochemical processes happening in the borehole and to understand their impact on pH/pCO 2 and pH in the low permeability clay formation. The biologically perturbed chemical evolution of the PC experiment was simulated with reactive transport models. The aim of this modelling exercise was to develop a 'minimal-' model able to reproduce the chemical evolution of the PC experiment, i.e. the chemical evolution of solute inorganic and organic compounds (organic carbon, dissolved inorganic carbon etc...) that are coupled with each other through the simultaneous occurrence of biological transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and precipitation/dissolution of minerals (in the borehole and in the formation). An accurate description of the initial chemical conditions in the surrounding formation together with simplified kinetics rule mimicking the different phases of bacterial activities allowed reproducing the evolution of all main measured parameters (e.g. pH, TOC). Analyses from the overcoring and these simulations evidence the high buffer capacity of Opalinus clay regarding chemical perturbations due to bacterial activity. This pH buffering capacity is mainly attributed to the carbonate system as well as to the clay surfaces reactivity. Glycerol leaching from the pH-electrode might be the primary organic source responsible for

  1. Modeling cadmium in the feed chain and cattle organs

    OpenAIRE

    Fels-Klerx, van der, H.J.; Romkens, P.F.A.M.; Franz, E.; Raamsdonk, van, L.W.D.

    2011-01-01

    The objectives of this study were to estimate cadmium contamination levels in different scenarios related to soil characteristics and assumptions regarding cadmium accumulation in the animal tissues, using quantitative supply chain modeling. The model takes into account soil cadmium levels, soil pH, soil-to-plant transfer, animal consumption patterns, and transfer into animal organs (liver and kidneys). The model was applied to cattle up to the age of six years which were fed roughage (maize ...

  2. The SHOCT domain: a widespread domain under-represented in model organisms.

    Directory of Open Access Journals (Sweden)

    Ruth Y Eberhardt

    Full Text Available We have identified a new protein domain, which we have named the SHOCT domain (Short C-terminal domain. This domain is widespread in bacteria with over a thousand examples. But we found it is missing from the most commonly studied model organisms, despite being present in closely related species. It's predominantly C-terminal location, co-occurrence with numerous other domains and short size is reminiscent of the Gram-positive anchor motif, however it is present in a much wider range of species. We suggest several hypotheses about the function of SHOCT, including oligomerisation and nucleic acid binding. Our initial experiments do not support its role as an oligomerisation domain.

  3. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  4. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  5. Progress Towards an LES Wall Model Including Unresolved Roughness

    Science.gov (United States)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  6. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  7. Analisis Tingkat Motivasi Siswa Dalam Pembelajaran IPA Model Advance Organizer Berbasis Proyek

    Directory of Open Access Journals (Sweden)

    Tasiwan -

    2014-04-01

    Full Text Available atur kemajuan (advance organizer berbasis proyek. Sampel penelitian dipilih secara acak. Pada kelas  eksperimen diterapkan model pembelajaran advance organizer berbasis proyek sedangkan pada kelas kontrol diterapkan pembelajaran langsung (direct instruction tanpa advance organizer. Sebelum pembelajaran di kelas, siswa eksperimen dikelompokkan menjadi 8 kelompok yang terdiri atas 4 – 5 siswa. Setiap kelompok ditugaskan untuk merealisasikan proyek bel listrik, rangkaian arus seri – paralel, dan tuas. Produk proyek digunakan dalam pembelajaran dikelas sebagai advance organizer. Data diperoleh melalui observasi partisipatif, penilaian produk, peta konsep, laporan eksperimen, dan angket. Instrumen motivasi menggunakan skala motivasi ARCS. Hasil penelitian menunjukkan bahwa kelas eksperimen memiliki tingkat motivasi lebih baik dalam aspek perhatian, relevansi, kepercayaan diri, dan kepuasan pembelajaran dengan rata – rata tingkat motivasi sebesar 77,20, sedangkan tanpa advance organizer berbasis proyek sebesar 71,10. Disarankan siswa diberikan kemandirian penuh dalam proyek. This study was conducted to analyze the level of student motivation in learning science through models of advance organizer  based project . Samples were selected at random . In the experimental class advance organizer applied learning model based on a class project while learning control direct instruction without advance organizer . Prior learning in the classroom , students are grouped into 8 experimental groups consisting of 4-5 students . Each group was assigned a project to realize an electric bell , the circuit current series - parallel , and lever . Products used in a learning class project as advance organizer . The data obtained through participant observation , assessment product , concept maps , experimental reports , and questionnaires . Motivation instrument using ARCS motivation scale . Results showed that the experimental class had better motivation level

  8. Accounting for microbial habitats in modeling soil organic matter dynamics

    Science.gov (United States)

    Chenu, Claire; Garnier, Patricia; Nunan, Naoise; Pot, Valérie; Raynaud, Xavier; Vieublé, Laure; Otten, Wilfred; Falconer, Ruth; Monga, Olivier

    2017-04-01

    The extreme heterogeneity of soils constituents, architecture and inhabitants at the microscopic scale is increasingly recognized. Microbial communities exist and are active in a complex 3-D physical framework of mineral and organic particles defining pores of various sizes, more or less inter-connected. This results in a frequent spatial disconnection between soil carbon, energy sources and the decomposer organisms and a variety of microhabitats that are more or less suitable for microbial growth and activity. However, current biogeochemical models account for C dynamics at the macroscale (cm, m) and consider time- and spatially averaged relationships between microbial activity and soil characteristics. Different modelling approaches have intended to account for this microscale heterogeneity, based either on considering aggregates as surrogates for microbial habitats, or pores. Innovative modelling approaches are based on an explicit representation of soil structure at the fine scale, i.e. at µm to mm scales: pore architecture and their saturation with water, localization of organic resources and of microorganisms. Three recent models are presented here, that describe the heterotrophic activity of either bacteria or fungi and are based upon different strategies to represent the complex soil pore system (Mosaic, LBios and µFun). These models allow to hierarchize factors of microbial activity in soil's heterogeneous architecture. Present limits of these approaches and challenges are presented, regarding the extensive information required on soils at the microscale and to up-scale microbial functioning from the pore to the core scale.

  9. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign

    Directory of Open Access Journals (Sweden)

    G. Li

    2011-04-01

    Full Text Available Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1 a traditional 2-product secondary organic aerosol (SOA model with non-volatile primary organic aerosols (POA; (2 a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA (Mexico City Metropolitan Area 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS observations analyzed using the Positive Matrix Factorization (PMF technique at an urban background site (T0 and a suburban background site (T1 in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the

  10. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  11. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways

    International Nuclear Information System (INIS)

    Jin, Biao; Rolle, Massimo

    2016-01-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. - Highlights: • Mechanism-based, position-specific isotope modeling of micropollutants degradation. • Simultaneous description of concentration and primary and secondary isotope effects. • Key features of the model are demonstrated with three illustrative examples. • Model as a tool to explore reaction mechanisms and to design experiments. - We propose a modeling approach incorporating mechanistic information and

  12. A Data-Driven, Integrated Flare Model Based on Self-Organized Criticality

    Science.gov (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.

    2013-09-01

    We interpret solar flares as events originating in solar active regions having reached the self-organized critical state, by alternatively using two versions of an "integrated flare model" - one static and one dynamic. In both versions the initial conditions are derived from observations aiming to investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are reproduced after the self-organized critical state has been reached. In the static model, we first apply a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular-automaton evolution rules. Subsequent loading and relaxation steps lead the system to self-organized criticality, after which the statistical properties of the simulated events are examined. In the dynamic version we deploy an enhanced driving mechanism, which utilizes the observed evolution of active regions, making use of sequential vector magnetograms. We first apply the static cellular automaton model to consecutive solar vector magnetograms until the self-organized critical state is reached. We then evolve the magnetic field inbetween these processed snapshots through spline interpolation, acting as a natural driver in the dynamic model. The identification of magnetically unstable sites as well as their relaxation follow the same rules as in the static model after each interpolation step. Subsequent interpolation/driving and relaxation steps cover all transitions until the end of the sequence. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately satisfied in both versions of the model. We obtain robust power laws in the distribution functions of the modelled

  13. SOMPROF: A vertically explicit soil organic matter model

    NARCIS (Netherlands)

    Braakhekke, M.C.; Beer, M.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2011-01-01

    Most current soil organic matter (SOM) models represent the soil as a bulk without specification of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile may be of great importance for soil carbon cycling, both on short (hours to years) time scale, due to

  14. United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation

    Science.gov (United States)

    Black, R. X.

    2017-12-01

    We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.

  15. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  16. Modelling the self-organization and collapse of complex networks

    Indian Academy of Sciences (India)

    Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.

  17. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  18. Molecular analysis of the replication program in unicellular model organisms.

    Science.gov (United States)

    Raghuraman, M K; Brewer, Bonita J

    2010-01-01

    Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program of replication in particular. But what exactly is a temporal program of replication, and how might it arise? In this article, we explore this question, drawing again on the wealth of experimental information in unicellular model organisms.

  19. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2010-12-01

    With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific

  20. Modeling of secondary organic aerosol yields from laboratory chamber data

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2009-08-01

    Full Text Available Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA formation. Current models fall into three categories: empirical two-product (Odum, product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice.

  1. Modelling energy level alignment at organic interfaces and density functional theory

    DEFF Research Database (Denmark)

    Flores, F.; Ortega, J.; Vazquez, Patricia

    2009-01-01

    A review of our theoretical understanding of the band alignment at organic interfaces is presented with particular emphasis on the metal/organic (MO) case. The unified IDIS (induced density of interface states) and the ICT (integer charge transfer) models are reviewed and shown to describe qualit...

  2. An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale

    Science.gov (United States)

    Guo, B.; Tchelepi, H.

    2017-12-01

    Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different

  3. A metasystem of framework model organisms to study emergence of new host-microbe adaptations.

    Science.gov (United States)

    Gopalan, Suresh; Ausubel, Frederick M

    2008-01-01

    An unintended consequence of global industrialization and associated societal rearrangements is new interactions of microbes and potential hosts (especially mammals and plants), providing an opportunity for the rapid emergence of host-microbe adaptation and eventual establishment of new microbe-related diseases. We describe a new model system comprising the model plant Arabidopsis thaliana and several microbes, each representing different modes of interaction, to study such "maladaptations". The model microbes include human and agricultural pathogens and microbes that are commonly considered innocuous. The system has a large knowledge base corresponding to each component organism and is amenable to high-throughput automation assisted perturbation screens for identifying components that modulate host-pathogen interactions. This would aid in the study of emergence and progression of host-microbe maladaptations in a controlled environment.

  4. An organizing model for recent cognitive science work on the self.

    Science.gov (United States)

    Pageler, Ben

    2016-10-01

    An organizing model of 'the self' emerges from applying various kinds of brain injury to recent cognitive science and philosophical work on 'the self'. This model unifies various contents and mechanisms central to current notions of the self. The article then highlights several criteria and aspects of this notion of self. Qualities of the right type and level of psychological significance delineate 'the self' as an organizing concept useful for recent philosophical work and cognitive science research. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Fuzzy model for risk assessment of persistent organic pollutants in aquatic ecosystems

    International Nuclear Information System (INIS)

    Seguí, X.; Pujolasus, E.; Betrò, S.; Àgueda, A.; Casal, J.; Ocampo-Duque, W.; Rudolph, I.; Barra, R.; Páez, M.; Barón, E.; Eljarrat, E.; Barceló, D.; Darbra, R.M.

    2013-01-01

    We developed a model for evaluating the environmental risk of persistent organic pollutants (POPs) to aquatic organisms. The model is based on fuzzy theory and uses information provided by international experts through a questionnaire. It has been tested in two case studies for a particular type of POPs: brominated flame retardants (BFRs). The first case study is related to the EU-funded AQUATERRA project, with sampling campaigns carried out in two Ebro tributaries in Spain (the Cinca and Vero Rivers). The second one, named the BROMACUA project, assessed different aquatic ecosystems in Chile (San Vicente Bay) and Colombia (Santa Marta Marsh). In both projects, the BFRs under study were polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). However, the model can be extrapolated to other POPs and to different aquatic ecosystems to provide useful results for decision-makers. -- The risk of POPs for aquatic organisms was assessed at several sites around the world, using a fuzzy-based model to provide useful results for decision-makers

  6. Similarity-based search of model organism, disease and drug effect phenotypes

    KAUST Repository

    Hoehndorf, Robert; Gruenberger, Michael; Gkoutos, Georgios V; Schofield, Paul N

    2015-01-01

    Background: Semantic similarity measures over phenotype ontologies have been demonstrated to provide a powerful approach for the analysis of model organism phenotypes, the discovery of animal models of human disease, novel pathways, gene functions

  7. Clarifying the use of aggregated exposures in multilevel models: self-included vs. self-excluded measures.

    Directory of Open Access Journals (Sweden)

    Etsuji Suzuki

    Full Text Available Multilevel analyses are ideally suited to assess the effects of ecological (higher level and individual (lower level exposure variables simultaneously. In applying such analyses to measures of ecologies in epidemiological studies, individual variables are usually aggregated into the higher level unit. Typically, the aggregated measure includes responses of every individual belonging to that group (i.e. it constitutes a self-included measure. More recently, researchers have developed an aggregate measure which excludes the response of the individual to whom the aggregate measure is linked (i.e. a self-excluded measure. In this study, we clarify the substantive and technical properties of these two measures when they are used as exposures in multilevel models.Although the differences between the two aggregated measures are mathematically subtle, distinguishing between them is important in terms of the specific scientific questions to be addressed. We then show how these measures can be used in two distinct types of multilevel models-self-included model and self-excluded model-and interpret the parameters in each model by imposing hypothetical interventions. The concept is tested on empirical data of workplace social capital and employees' systolic blood pressure.Researchers assume group-level interventions when using a self-included model, and individual-level interventions when using a self-excluded model. Analytical re-parameterizations of these two models highlight their differences in parameter interpretation. Cluster-mean centered self-included models enable researchers to decompose the collective effect into its within- and between-group components. The benefit of cluster-mean centering procedure is further discussed in terms of hypothetical interventions.When investigating the potential roles of aggregated variables, researchers should carefully explore which type of model-self-included or self-excluded-is suitable for a given situation

  8. Low-order models of a single-screw expander for organic Rankine cycle applications

    Science.gov (United States)

    Ziviani, D.; Desideri, A.; Lemort, V.; De Paepe, M.; van den Broek, M.

    2015-08-01

    Screw-type volumetric expanders have been demonstrated to be a suitable technology for organic Rankine cycle (ORC) systems because of higher overall effectiveness and good part-load behaviour over other positive displacement machines. An 11 kWe single-screw expander (SSE) adapted from an air compressor has been tested in an ORC test-rig operating with R245fa as working fluid. A total of 60 steady-steady points have been obtained at four different rotational speeds of the expander in the range between 2000 rpm and 3300 rpm. The maximum electrical power output and overall isentropic effectiveness measured were 7.3 kW and 51.9%, respectively. In this paper, a comparison between two low-order models is proposed in terms of accuracy of the predictions, the robustness of the model and the computational time. The first model is the Pacejka equation-based model and the second is a semi-empirical model derived from a well-known scroll expander model and modified to include the geometric aspects of a single screw expander. The models have been calibrated with the available steady-state measurement points by identifying the proper parameters.

  9. Development of an inorganic and organic aerosol model (CHIMERE 2017β v1.0): seasonal and spatial evaluation over Europe

    Science.gov (United States)

    Couvidat, Florian; Bessagnet, Bertrand; Garcia-Vivanco, Marta; Real, Elsa; Menut, Laurent; Colette, Augustin

    2018-01-01

    A new aerosol module was developed and integrated in the air quality model CHIMERE. Developments include the use of the Model of Emissions and Gases and Aerosols from Nature (MEGAN) 2.1 for biogenic emissions, the implementation of the inorganic thermodynamic model ISORROPIA 2.1, revision of wet deposition processes and of the algorithms of condensation/evaporation and coagulation and the implementation of the secondary organic aerosol (SOA) mechanism H2O and the thermodynamic model SOAP. Concentrations of particles over Europe were simulated by the model for the year 2013. Model concentrations were compared to the European Monitoring and Evaluation Programme (EMEP) observations and other observations available in the EBAS database to evaluate the performance of the model. Performances were determined for several components of particles (sea salt, sulfate, ammonium, nitrate, organic aerosol) with a seasonal and regional analysis of results. The model gives satisfactory performance in general. For sea salt, the model succeeds in reproducing the seasonal evolution of concentrations for western and central Europe. For sulfate, except for an overestimation of sulfate in northern Europe, modeled concentrations are close to observations and the model succeeds in reproducing the seasonal evolution of concentrations. For organic aerosol, the model reproduces with satisfactory results concentrations for stations with strong modeled biogenic SOA concentrations. However, the model strongly overestimates ammonium nitrate concentrations during late autumn (possibly due to problems in the temporal evolution of emissions) and strongly underestimates summer organic aerosol concentrations over most of the stations (especially in the northern half of Europe). This underestimation could be due to a lack of anthropogenic SOA or biogenic emissions in northern Europe. A list of recommended tests and developments to improve the model is also given.

  10. From Learning Object to Learning Cell: A Resource Organization Model for Ubiquitous Learning

    Science.gov (United States)

    Yu, Shengquan; Yang, Xianmin; Cheng, Gang; Wang, Minjuan

    2015-01-01

    This paper presents a new model for organizing learning resources: Learning Cell. This model is open, evolving, cohesive, social, and context-aware. By introducing a time dimension into the organization of learning resources, Learning Cell supports the dynamic evolution of learning resources while they are being used. In addition, by introducing a…

  11. PENERAPAN MODEL PEMBELAJARAN ADVANCE ORGANIZER BERVISI SETS TERHADAP PENINGKATAN PENGUASAAN KONSEP KIMIA

    Directory of Open Access Journals (Sweden)

    Ilam Pratitis

    2015-11-01

    Full Text Available This study aims to determine the effect of the application of learning model with advance organizer envisions SETS to increase mastery of chemistry concepts in the high school in Semarang on buffer solution material. The design used in this research is the design of the control group non equivalent. Sampling was conducted with a purposive sampling technique, and obtained a XI 6 science grade as experimental class and class XI 5 science grade as control class. Data collection method used is the method of documentation, testing, observation, and questionnaires. The results showed that the average cognitive achievement of experimental class was 84, while the control class was 82. The result of data analysis showed that the effect of the application of learning model with advance organizer envisions SETS was able to increase the mastery of chemical concepts of 4%, with a correlation rate of 0.2. Based on the results, it can be concluded that the learning model with advance organizer envisions SETS had positive effect of increasing mastery of the concept of chemistry on buffer solution material. The advice given is learning model with organizer envisions SETS should also be applied to other chemistry materials. This is of course accompanied by a change in order to suit the needs of its effect on learning outcomes in the form of concept mastery of chemistry to be more increased.Keywords: Advance Organizer, Buffer Solution, Concept Mastery, SETS

  12. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  13. Optimising the anaerobic co-digestion of urban organic waste using dynamic bioconversion mathematical modelling

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Dorini, G.

    2016-01-01

    Mathematical anaerobic bioconversion models are often used as a convenient way to simulate the conversion of organic materials to biogas. The aim of the study was to apply a mathematical model for simulating the anaerobic co-digestion of various types of urban organic waste, in order to develop...... in a continuously stirred tank reactor. The model's outputs were validated with experimental results obtained in thermophilic conditions, with mixed sludge as a single substrate and urban organic waste as a co-substrate at hydraulic retention times of 30, 20, 15 and 10 days. The predicted performance parameter...... (methane productivity and yield) and operational parameter (concentration of ammonia and volatile fatty acid) values were reasonable and displayed good correlation and accuracy. The model was later applied to identify optimal scenarios for an urban organic waste co-digestion process. The simulation...

  14. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified Pseudomonas and Vibrio ...

  15. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  16. [Structural Equation Modeling on Living and Brain Death Organ Donation Intention in Nursing Students].

    Science.gov (United States)

    Kim, Eun A; Choi, So Eun

    2015-12-01

    The purpose of this study was to test and validate a model to predict living and brain death organ donation intention in nursing students. The conceptual model was based on the theory planned behavior. Quota sampling methodology was used to recruit 921 nursing students from all over the country and data collection was done from October 1 to December 20, 2013. The model fit indices for the hypothetical model were suitable for the recommended level. Knowledge, attitude, subjective norm and perceived behavioral control explained 40.2% and 40.1% respectively for both living and brain death organ donation intention. Subjective norm was the most direct influential factor for organ donation intention. Knowledge had significant direct effect on attitude and indirect effect on subjective norm and perceived behavioral control. These effects were higher in brain death organ donation intention than in living donation intention. The overall findings of this study suggest the need to develop systematic education programs to increases knowledge about brain death organ donation. The development, application, and evaluation of intervention programs are required to improve subjective norm.

  17. Parental Preferences for the Organization of Preschool Vaccination Programs Including Financial Incentives: A Discrete Choice Experiment

    Directory of Open Access Journals (Sweden)

    Darren Flynn PhD

    2017-05-01

    Full Text Available Objective: To establish preferences of parents and guardians of preschool children for the organization of preschool vaccination services, including financial incentives. Design: An online discrete choice experiment. Participants: Parents and guardians of preschool children (up to age 5 years who were (n = 259 and were not (n = 262 classified as at high risk of incompletely vaccinating their children. High risk of incomplete vaccination was defined as any of the following: aged less than 20 years, single parents, living in one of the 20% most deprived areas in England, had a preschool child with a disability, or had more than three children. Main Outcome Measures: Participant preferences expressed as positive (utility or negative (disutility on eight attributes and levels describing the organization of preschool vaccination programs. Results: There was no difference in preference for parental financial incentives compared to no incentive in parents “not at high risk” of incomplete vaccination. Parents who were “at high risk” expressed utility for cash incentives. Parents “at high risk” of incomplete vaccination expressed utility for information on the risks and benefits of vaccinations to be provided as numbers rather than charts or pictures. Both groups preferred universally available, rather than targeted, incentives. Utility was identified for shorter waiting times, and there were variable preferences for who delivered vaccinations. Conclusions: Cash incentives for preschool vaccinations in England would be welcomed by parents who are “at high risk” of incompletely vaccinating their children. Further work is required on the optimal mode and form of presenting probabilistic information on vaccination to parents/guardians, including preferences on mandatory vaccination schemes.

  18. Environmental stress responses and experimental handling artifacts of a model organism, the copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Nilsson, Birgitte; Jepsen, Per Meyer; Bucklin, Ann

    2018-01-01

    for these genes between 15 min and 24 h following exposure. Since handling stress clearly affects transcriptional patterns, it is important to consider handling when designing experiments, by either including additional controls or avoiding focus on impacted genes. Not considering handling in gene expression...... studies can lead to inaccurate conclusions. The present study provides a baseline for studying handling stress in future studies using this model organism and others....

  19. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  20. An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia.

    Science.gov (United States)

    Roeder, Ingo; Herberg, Maria; Horn, Matthias

    2009-04-01

    Previously, we have modeled hematopoietic stem cell organization by a stochastic, single cell-based approach. Applications to different experimental systems demonstrated that this model consistently explains a broad variety of in vivo and in vitro data. A major advantage of the agent-based model (ABM) is the representation of heterogeneity within the hematopoietic stem cell population. However, this advantage comes at the price of time-consuming simulations if the systems become large. One example in this respect is the modeling of disease and treatment dynamics in patients with chronic myeloid leukemia (CML), where the realistic number of individual cells to be considered exceeds 10(6). To overcome this deficiency, without losing the representation of the inherent heterogeneity of the stem cell population, we here propose to approximate the ABM by a system of partial differential equations (PDEs). The major benefit of such an approach is its independence from the size of the system. Although this mean field approach includes a number of simplifying assumptions compared to the ABM, it retains the key structure of the model including the "age"-structure of stem cells. We show that the PDE model qualitatively and quantitatively reproduces the results of the agent-based approach.

  1. International organizations as orchestrators

    CERN Document Server

    Abbott, Kenneth W

    2015-01-01

    International Organizations as Orchestrators reveals how IOs leverage their limited authority and resources to increase their effectiveness, power, and autonomy from states. By 'orchestrating' intermediaries - including NGOs - IOs can shape and steer global governance without engaging in hard, direct regulation. This volume is organized around a theoretical model that emphasizes voluntary collaboration and support. An outstanding group of scholars investigate the significance of orchestration across key issue areas, including trade, finance, environment and labor, and in leading organizations, including the GEF, G20, WTO, EU, Kimberley Process, UNEP and ILO. The empirical studies find that orchestration is pervasive. They broadly confirm the theoretical hypotheses while providing important new insights, especially that states often welcome IO orchestration as achieving governance without creating strong institutions. This volume changes our understanding of the relationships among IOs, nonstate actors and sta...

  2. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  3. A mathematical model for pressure-based organs behaving as biological pressure vessels.

    Science.gov (United States)

    Casha, Aaron R; Camilleri, Liberato; Gauci, Marilyn; Gatt, Ruben; Sladden, David; Chetcuti, Stanley; Grima, Joseph N

    2018-04-26

    We introduce a mathematical model that describes the allometry of physical characteristics of hollow organs behaving as pressure vessels based on the physics of ideal pressure vessels. The model was validated by studying parameters such as body and organ mass, systolic and diastolic pressures, internal and external dimensions, pressurization energy and organ energy output measurements of pressure-based organs in a wide range of mammals and birds. Seven rules were derived that govern amongst others, lack of size efficiency on scaling to larger organ sizes, matching organ size in the same species, equal relative efficiency in pressurization energy across species and direct size matching between organ mass and mass of contents. The lung, heart and bladder follow these predicted theoretical relationships with a similar relative efficiency across various mammalian and avian species; an exception is cardiac output in mammals with a mass exceeding 10kg. This may limit massive body size in mammals, breaking Cope's rule that populations evolve to increase in body size over time. Such a limit was not found in large flightless birds exceeding 100kg, leading to speculation about unlimited dinosaur size should dinosaurs carry avian-like cardiac characteristics. Copyright © 2018. Published by Elsevier Ltd.

  4. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    Science.gov (United States)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  5. Modeling of the transient mobility in disordered organic semiconductors

    NARCIS (Netherlands)

    Germs, W.C.; Van der Holst, J.M.M.; Van Mensfoort, S.L.M.; Bobbert, P.A.; Coehoorn, R.

    2011-01-01

    In non-steady-state experiments, the electrical response of devicesbased on disordered organic semiconductors often shows a large transient contribution due to relaxation of the out-of-equilibrium charge-carrier distribution. We have developed a model describing this process, based only on the

  6. Zebrabase: An intuitive tracking solution for aquatic model organisms

    OpenAIRE

    Oltova, Jana; Bartunek, Petr; Machonova, Olga; Svoboda, Ondrej; Skuta, Ctibor; Jindrich, Jindrich

    2018-01-01

    Small fish species, like zebrafish or medaka, are constantly gaining popularity in basic research and disease modeling as a useful alternative to rodent model organisms. However, the tracking options for fish within a facility are rather limited. Here, we present an aquatic species tracking database, Zebrabase, developed in our zebrafish research and breeding facility that represents a practical and scalable solution and an intuitive platform for scientists, fish managers and caretakers, in b...

  7. Mental models at work: cognitive causes and consequences of conflict in organizations.

    Science.gov (United States)

    Halevy, Nir; Cohen, Taya R; Chou, Eileen Y; Katz, James J; Panter, A T

    2014-01-01

    This research investigated the reciprocal relationship between mental models of conflict and various forms of dysfunctional social relations in organizations, including experiences of task and relationship conflicts, interpersonal hostility, workplace ostracism, and abusive supervision. We conceptualize individual differences in conflict construals as reflecting variation in people's belief structures about conflict and explore how different elements in people's associative networks-in particular, their beliefs about their best and worst strategy in conflict-relate to their personality, shape their experiences of workplace conflict, and influence others' behavioral intentions toward them. Five studies using a variety of methods (including cross-sectional surveys, a 12-week longitudinal diary study, and an experiment) show that the best strategy beliefs relate in theoretically meaningful ways to individuals' personality, shape social interactions and relationships significantly more than the worst strategy beliefs, and are updated over time as a result of individuals' ongoing experiences of conflict.

  8. Model Stimulus-Organism-Response: Penentu Perilaku Pembelian Konsumen Secara Situasional

    OpenAIRE

    Magdalena, Nonie

    2005-01-01

    Understanding about consumer purchase behavior is an essential aspect for developing organization bussiness strategic, especially in retailing. S-O-R (Stimulus-Organism-Response) model helps the practision and academics to understand which stimulus will influence consumers and the reaction that comsumer gave. One of the stimulus that explained in this article is the situation. Situation is an aspect that had change and hardly to predict. In other words, situation will determine consumer purch...

  9. Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols

    International Nuclear Information System (INIS)

    Bessagnet, B.; Menut, L.; Curci, G.; Hodzic, A.; Guillaume, B.; Liousse, C.; Moukhtar, S.; Pun, B.; Seigneur, C.; Schulz, M.

    2008-01-01

    In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 μg m -3 in the Northern Europe to 4 μg m -3 over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes. (authors)

  10. Lessons Learned from 2 Decades of Modelling Forest Dead Organic Matter and Soil Carbon at the National Scale

    Science.gov (United States)

    Shaw, C.; Kurz, W. A.; Metsaranta, J.; Bona, K. A.; Hararuk, O.; Smyth, C.

    2017-12-01

    The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) is a forest carbon budget model that operates on individual stands. It is applied from regional to national-scales in Canada for national and international reporting of GHG emissions and removals and in support of analyses of forest sector mitigation options and other scientific and policy questions. This presentation will review the history and continuous improvement process of representations of dead organic matter (DOM) and soil carbon modelling. Early model versions in which dead organic matter (DOM) pools only included litter, downed deadwood and soil, to the current version where these pools are estimated separately to better compare model estimates against field measurements, or new pools have been added. Uncertainty analyses consistently point at soil C pools as large sources of uncertainty. With the new ground plot measurements from the National Forest Inventory, and with a newly compiled forest soil carbon database, we have recently completed a model data assimilation exercise that helped reduce parameter uncertainties. Lessons learned from the continuous improvement process will be summarised and we will discuss how model modification have led to improved representation of DOM and soil carbon dynamics. We conclude by suggesting future research priorities that can advance DOM and soil carbon modelling in Canadian forest ecosystems.

  11. Surface complexation modeling of uranium (Vi) retained onto zirconium diphosphate in presence of organic acids

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Ordonez R, E.

    2010-10-01

    In the field of nuclear waste disposal, predictions regarding radionuclide migration through the geosphere, have to take account the effects of natural organic matter. This work presents an investigation of interaction mechanisms between U (Vi) and zirconium diphosphate (ZrP 2 O 7 ) in presence of organic acids (citric acid and oxalic acid). The retention reactions were previously examined using a batch equilibrium method. Previous results showed that U (Vi) retention was more efficient when citric acid or oxalic acid was present in solid surface at lower ph values. In order to determine the retention equilibria for both systems studied, a phosphorescence spectroscopy study was carried out. The experimental data were then fitted using the Constant Capacitance Model included in the FITEQL4.0 code. Previous results concerning surface characterization of ZrP 2 O 7 (surface sites density and surface acidity constants) were used to constraint the modeling. The best fit for U (Vi)/citric acid/ZrP 2 O 7 and U (Vi)/oxalic acid/ZrP 2 O 7 systems considered the formation of a ternary surface complex. (Author)

  12. Integration of systems biology with organs-on-chips to humanize therapeutic development

    Science.gov (United States)

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  13. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  14. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  15. Mature and emerging organic markets: Modelling consumer attitude and behaviour with Partial Least Square Approach

    OpenAIRE

    von Meyer-Höfer, Marie; von der Wense, Vera; Padilla Bravo, Carlos; Spiller, Achim

    2013-01-01

    Although the organic food sector has been the subject of research for around 20 years, little is known about consumer behaviour when comparing developed and emerging organic food markets using causal research models. Thus, by developing a behavioural model based on the Theory of Planned Behaviour (TPB), the aim of this research article is to investigate the main determinants of organic food consumption in a mature (Germany) and an emerging (Chile) organic market. Subjects aged 18 or above wer...

  16. Snpdat: Easy and rapid annotation of results from de novo snp discovery projects for model and non-model organisms

    Directory of Open Access Journals (Sweden)

    Doran Anthony G

    2013-02-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most abundant genetic variant found in vertebrates and invertebrates. SNP discovery has become a highly automated, robust and relatively inexpensive process allowing the identification of many thousands of mutations for model and non-model organisms. Annotating large numbers of SNPs can be a difficult and complex process. Many tools available are optimised for use with organisms densely sampled for SNPs, such as humans. There are currently few tools available that are species non-specific or support non-model organism data. Results Here we present SNPdat, a high throughput analysis tool that can provide a comprehensive annotation of both novel and known SNPs for any organism with a draft sequence and annotation. Using a dataset of 4,566 SNPs identified in cattle using high-throughput DNA sequencing we demonstrate the annotations performed and the statistics that can be generated by SNPdat. Conclusions SNPdat provides users with a simple tool for annotation of genomes that are either not supported by other tools or have a small number of annotated SNPs available. SNPdat can also be used to analyse datasets from organisms which are densely sampled for SNPs. As a command line tool it can easily be incorporated into existing SNP discovery pipelines and fills a niche for analyses involving non-model organisms that are not supported by many available SNP annotation tools. SNPdat will be of great interest to scientists involved in SNP discovery and analysis projects, particularly those with limited bioinformatics experience.

  17. Development of an inorganic and organic aerosol model (CHIMERE 2017β v1.0: seasonal and spatial evaluation over Europe

    Directory of Open Access Journals (Sweden)

    F. Couvidat

    2018-01-01

    Full Text Available A new aerosol module was developed and integrated in the air quality model CHIMERE. Developments include the use of the Model of Emissions and Gases and Aerosols from Nature (MEGAN 2.1 for biogenic emissions, the implementation of the inorganic thermodynamic model ISORROPIA 2.1, revision of wet deposition processes and of the algorithms of condensation/evaporation and coagulation and the implementation of the secondary organic aerosol (SOA mechanism H2O and the thermodynamic model SOAP. Concentrations of particles over Europe were simulated by the model for the year 2013. Model concentrations were compared to the European Monitoring and Evaluation Programme (EMEP observations and other observations available in the EBAS database to evaluate the performance of the model. Performances were determined for several components of particles (sea salt, sulfate, ammonium, nitrate, organic aerosol with a seasonal and regional analysis of results. The model gives satisfactory performance in general. For sea salt, the model succeeds in reproducing the seasonal evolution of concentrations for western and central Europe. For sulfate, except for an overestimation of sulfate in northern Europe, modeled concentrations are close to observations and the model succeeds in reproducing the seasonal evolution of concentrations. For organic aerosol, the model reproduces with satisfactory results concentrations for stations with strong modeled biogenic SOA concentrations. However, the model strongly overestimates ammonium nitrate concentrations during late autumn (possibly due to problems in the temporal evolution of emissions and strongly underestimates summer organic aerosol concentrations over most of the stations (especially in the northern half of Europe. This underestimation could be due to a lack of anthropogenic SOA or biogenic emissions in northern Europe. A list of recommended tests and developments to improve the model is also given.

  18. Increased Foraging in Outdoor Organic Pig Production—Modeling Environmental Consequences

    Directory of Open Access Journals (Sweden)

    Malene Jakobsen

    2015-11-01

    Full Text Available Consumers’ motivations for buying organic products include a wish of acquiring healthy, environmentally friendly products from production systems that also ensure a high level of animal welfare. However, the current Danish organic pig production faces important challenges regarding environmental impact of the system. High ammonia emissions arise from outdoor concrete areas with growing pigs and sows on pasture possess an increased risk of nitrogen (N leaching. Direct foraging in the range area is suggested as a way to improve the nutrient efficiency at farm level and to support a more natural behavior of the pig. Thus, by modeling, we investigated the environmental consequences of two alternative scenarios with growing pigs foraging in the range area and different levels of crops available for foraging—grass–clover or a combination of Jerusalem artichokes and lucerne. It was possible to have growing pigs on free-range without increasing N leaching compared to the current practice. The alternative system with Jerusalem artichokes and lucerne (high integration of forage showed the lowest carbon foot print with 3.12 CO2 eq kg−1 live weight pig compared to the current Danish pasture based system with 3.69 kg CO2 eq kg−1 live weight pig. Due to positive impact on soil carbon sequestration, the second alternative system based on grass-clover (low integration of forage showed a similar carbon foot print compared to current practice with 3.68 kg CO2 eq kg−1 live weight pig. It is concluded that in practice there is room for development of organic farming systems where direct foraging plays a central role.

  19. A predictive framework for evaluating models of semantic organization in free recall

    Science.gov (United States)

    Morton, Neal W; Polyn, Sean M.

    2016-01-01

    Research in free recall has demonstrated that semantic associations reliably influence the organization of search through episodic memory. However, the specific structure of these associations and the mechanisms by which they influence memory search remain unclear. We introduce a likelihood-based model-comparison technique, which embeds a model of semantic structure within the context maintenance and retrieval (CMR) model of human memory search. Within this framework, model variants are evaluated in terms of their ability to predict the specific sequence in which items are recalled. We compare three models of semantic structure, latent semantic analysis (LSA), global vectors (GloVe), and word association spaces (WAS), and find that models using WAS have the greatest predictive power. Furthermore, we find evidence that semantic and temporal organization is driven by distinct item and context cues, rather than a single context cue. This finding provides important constraint for theories of memory search. PMID:28331243

  20. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Science.gov (United States)

    Yilmaz, Hayriye; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2015-01-01

    The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs. PMID:28347035

  1. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-05-01

    Full Text Available The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807, with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs.

  2. Activating Global Operating Models: The bridge from organization design to performance

    Directory of Open Access Journals (Sweden)

    Amy Kates

    2015-07-01

    Full Text Available This article introduces the concept of activation and discusses its use in the implementation of global operating models by large multinational companies. We argue that five particular activators help set in motion the complex strategies and organizations required by global operating models.

  3. Artificial neural network study on organ-targeting peptides

    Science.gov (United States)

    Jung, Eunkyoung; Kim, Junhyoung; Choi, Seung-Hoon; Kim, Minkyoung; Rhee, Hokyoung; Shin, Jae-Min; Choi, Kihang; Kang, Sang-Kee; Lee, Nam Kyung; Choi, Yun-Jaie; Jung, Dong Hyun

    2010-01-01

    We report a new approach to studying organ targeting of peptides on the basis of peptide sequence information. The positive control data sets consist of organ-targeting peptide sequences identified by the peroral phage-display technique for four organs, and the negative control data are prepared from random sequences. The capacity of our models to make appropriate predictions is validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC) curve (the ROC score). VHSE descriptor produces statistically significant training models and the models with simple neural network architectures show slightly greater predictive power than those with complex ones. The training and test set statistics indicate that our models could discriminate between organ-targeting and random sequences. We anticipate that our models will be applicable to the selection of organ-targeting peptides for generating peptide drugs or peptidomimetics.

  4. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...

  5. Aggregated Demand Modelling Including Distributed Generation, Storage and Demand Response

    OpenAIRE

    Marzooghi, Hesamoddin; Hill, David J.; Verbic, Gregor

    2014-01-01

    It is anticipated that penetration of renewable energy sources (RESs) in power systems will increase further in the next decades mainly due to environmental issues. In the long term of several decades, which we refer to in terms of the future grid (FG), balancing between supply and demand will become dependent on demand actions including demand response (DR) and energy storage. So far, FG feasibility studies have not considered these new demand-side developments for modelling future demand. I...

  6. IntPath--an integrated pathway gene relationship database for model organisms and important pathogens.

    Science.gov (United States)

    Zhou, Hufeng; Jin, Jingjing; Zhang, Haojun; Yi, Bo; Wozniak, Michal; Wong, Limsoon

    2012-01-01

    Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and

  7. A model of virtual organization for corporate visibility and ...

    African Journals Online (AJOL)

    This paper considers the existing numerous research in business, Information and Communication Technology (ICT), examines a theoretical framework for value creation in a virtual world. Following a proposed model, a new strategic paradigm is created for corporate value; and virtual organization (VO) apply the use of ...

  8. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller's organ, of the cattle tick, Rhipicephalus australis.

    Directory of Open Access Journals (Sweden)

    Sergio Munoz

    Full Text Available The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller's organ, located in the tick's forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor.

  9. Dynamic data-driven integrated flare model based on self-organized criticality

    Science.gov (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M. K.

    2013-05-01

    Context. We interpret solar flares as events originating in active regions that have reached the self-organized critical state. We describe them with a dynamic integrated flare model whose initial conditions and driving mechanism are derived from observations. Aims: We investigate whether well-known scaling laws observed in the distribution functions of characteristic flare parameters are reproduced after the self-organized critical state has been reached. Methods: To investigate whether the distribution functions of total energy, peak energy, and event duration follow the expected scaling laws, we first applied the previously reported static cellular automaton model to a time series of seven solar vector magnetograms of the NOAA active region 8210 recorded by the Imaging Vector Magnetograph on May 1 1998 between 18:59 UT and 23:16 UT until the self-organized critical state was reached. We then evolved the magnetic field between these processed snapshots through spline interpolation, mimicking a natural driver in our dynamic model. We identified magnetic discontinuities that exceeded a threshold in the Laplacian of the magnetic field after each interpolation step. These discontinuities were relaxed in local diffusion events, implemented in the form of cellular automaton evolution rules. Subsequent interpolation and relaxation steps covered all transitions until the end of the processed magnetograms' sequence. We additionally advanced each magnetic configuration that has reached the self-organized critical state (SOC configuration) by the static model until 50 more flares were triggered, applied the dynamic model again to the new sequence, and repeated the same process sufficiently often to generate adequate statistics. Physical requirements, such as the divergence-free condition for the magnetic field, were approximately imposed. Results: We obtain robust power laws in the distribution functions of the modeled flaring events with scaling indices that agree well

  10. Modeling Temperature Dependent Singlet Exciton Dynamics in Multilayered Organic Nanofibers

    DEFF Research Database (Denmark)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob

    2018-01-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers, but also by the behavior of the excitons generated...... dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a Kinetic Monte Carlo (KMC) model is employed in combination with a genetic algorithm to theoretically reproduce time resolved photoluminescence measurements...

  11. Effect of dissolved organic matter on pre-equilibrium passive sampling: A predictive QSAR modeling study.

    Science.gov (United States)

    Lin, Wei; Jiang, Ruifen; Shen, Yong; Xiong, Yaxin; Hu, Sizi; Xu, Jianqiao; Ouyang, Gangfeng

    2018-04-13

    Pre-equilibrium passive sampling is a simple and promising technique for studying sampling kinetics, which is crucial to determine the distribution, transfer and fate of hydrophobic organic compounds (HOCs) in environmental water and organisms. Environmental water samples contain complex matrices that complicate the traditional calibration process for obtaining the accurate rate constants. This study proposed a QSAR model to predict the sampling rate constants of HOCs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides) in aqueous systems containing complex matrices. A homemade flow-through system was established to simulate an actual aqueous environment containing dissolved organic matter (DOM) i.e. humic acid (HA) and (2-Hydroxypropyl)-β-cyclodextrin (β-HPCD)), and to obtain the experimental rate constants. Then, a quantitative structure-activity relationship (QSAR) model using Genetic Algorithm-Multiple Linear Regression (GA-MLR) was found to correlate the experimental rate constants to the system state including physicochemical parameters of the HOCs and DOM which were calculated and selected as descriptors by Density Functional Theory (DFT) and Chem 3D. The experimental results showed that the rate constants significantly increased as the concentration of DOM increased, and the enhancement factors of 70-fold and 34-fold were observed for the HOCs in HA and β-HPCD, respectively. The established QSAR model was validated as credible (R Adj. 2 =0.862) and predictable (Q 2 =0.835) in estimating the rate constants of HOCs for complex aqueous sampling, and a probable mechanism was developed by comparison to the reported theoretical study. The present study established a QSAR model of passive sampling rate constants and calibrated the effect of DOM on the sampling kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A self-organized internal models architecture for coding sensory-motor schemes

    Directory of Open Access Journals (Sweden)

    Esaú eEscobar Juárez

    2016-04-01

    Full Text Available Cognitive robotics research draws inspiration from theories and models on cognition, as conceived by neuroscience or cognitive psychology, to investigate biologically plausible computational models in artificial agents. In this field, the theoretical framework of Grounded Cognition provides epistemological and methodological grounds for the computational modeling of cognition. It has been stressed in the literature that textit{simulation}, textit{prediction}, and textit{multi-modal integration} are key aspects of cognition and that computational architectures capable of putting them into play in a biologically plausible way are a necessity.Research in this direction has brought extensive empirical evidencesuggesting that textit{Internal Models} are suitable mechanisms forsensory-motor integration. However, current Internal Models architectures show several drawbacks, mainly due to the lack of a unified substrate allowing for a true sensory-motor integration space, enabling flexible and scalable ways to model cognition under the embodiment hypothesis constraints.We propose the Self-Organized Internal ModelsArchitecture (SOIMA, a computational cognitive architecture coded by means of a network of self-organized maps, implementing coupled internal models that allow modeling multi-modal sensory-motor schemes. Our approach addresses integrally the issues of current implementations of Internal Models.We discuss the design and features of the architecture, and provide empirical results on a humanoid robot that demonstrate the benefits and potentialities of the SOIMA concept for studying cognition in artificial agents.

  13. S5-4: Formal Modeling of Affordance in Human-Included Systems

    Directory of Open Access Journals (Sweden)

    Namhun Kim

    2012-10-01

    Full Text Available In spite of it being necessary for humans to consider modeling, analysis, and control of human-included systems, it has been considered a challenging problem because of the critical role of humans in complex systems and of humans' capability of executing unanticipated actions–both beneficial and detrimental ones. Thus, to provide systematic approaches to modeling human actions as a part of system behaviors, a formal modeling framework for human-involved systems in which humans play a controlling role based on their perceptual information is presented. The theory of affordance provides definitions of human actions and their associated properties; Finite State Automata (FSA based modeling is capable of mapping nondeterministic humans into computable components in the system representation. In this talk, we investigate the role of perception in human actions in the system operation and examine the representation of perceptual elements in affordance-based modeling formalism. The proposed framework is expected to capture the natural ways in which humans participate in the system as part of its operation. A human-machine cooperative manufacturing system control example and a human agent simulation example will be introduced for the illustrative purposes at the end of the presentation.

  14. Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bessagnet, B. [INERIS, Inst Nat Env Indust Risques, F-60550 Verneuil en Halatte, (France); Menut, L. [Ecole Poltechnique, Inst Pierre Simon Laplace, Lab Meteorol Dyn, F-91128 Palaiseau, (France); Curci, G. [Univ degli Studi dell' Aquila, CETEMPS, 67010 Coppito - L' Aquila, (Italy); Hodzic, A. [NCAR, Nat Center for Atmosph Research, Boulder, 80301, CO, (United States); Guillaume, B.; Liousse, C. [LA/OMP, Lab Aerol/Observ Midi-Pyrenees, F-31400 Toulouse, (France); Moukhtar, S. [York Univ, Centre Atmosph Chem, Toronto, (Italy); Pun, B.; Seigneur, C. [Atmosph and Environ Research, San Ramon, CA 94583, (United States); Schulz, M. [CEA-CNRS-UVSQ, IPSL, Lab Sciences Climat et Environm, F-91191 Gif sur Yvette, (France)

    2008-07-01

    In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 {mu}g m{sup -3} in the Northern Europe to 4 {mu}g m{sup -3} over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes. (authors)

  15. Molecular simulation of a model of dissolved organic matter.

    Science.gov (United States)

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S; Schulten, Hans-Rolf

    2005-08-01

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na+ or Ca2+ were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal-humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na+, Ca2+ was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca2+. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  16. ICoNOs MM: The IT-enabled Collaborative Networked Organizations Maturity Model

    NARCIS (Netherlands)

    Santana Tapia, R.G.

    2009-01-01

    The focus of this paper is to introduce a comprehensive model for assessing and improving maturity of business-IT alignment (B-ITa) in collaborative networked organizations (CNOs): the ICoNOs MM. This two dimensional maturity model (MM) addresses five levels of maturity as well as four domains to

  17. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for

  18. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  19. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  20. 3D Miniaturization of Human Organs for Drug Discovery.

    Science.gov (United States)

    Park, Joseph; Wetzel, Isaac; Dréau, Didier; Cho, Hansang

    2018-01-01

    "Engineered human organs" hold promises for predicting the effectiveness and accuracy of drug responses while reducing cost, time, and failure rates in clinical trials. Multiorgan human models utilize many aspects of currently available technologies including self-organized spherical 3D human organoids, microfabricated 3D human organ chips, and 3D bioprinted human organ constructs to mimic key structural and functional properties of human organs. They enable precise control of multicellular activities, extracellular matrix (ECM) compositions, spatial distributions of cells, architectural organizations of ECM, and environmental cues. Thus, engineered human organs can provide the microstructures and biological functions of target organs and advantageously substitute multiscaled drug-testing platforms including the current in vitro molecular assays, cell platforms, and in vivo models. This review provides an overview of advanced innovative designs based on the three main technologies used for organ construction leading to single and multiorgan systems useable for drug development. Current technological challenges and future perspectives are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. BioModels: expanding horizons to include more modelling approaches and formats.

    Science.gov (United States)

    Glont, Mihai; Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Malik-Sheriff, Rahuman S; Chelliah, Vijayalakshmi; Le Novère, Nicolas; Hermjakob, Henning

    2018-01-04

    BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer

    International Nuclear Information System (INIS)

    Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat

    2009-01-01

    The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for

  3. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms

    Science.gov (United States)

    Muyle, Aline; Käfer, Jos; Zemp, Niklaus; Mousset, Sylvain; Picard, Franck; Marais, Gabriel AB

    2016-01-01

    We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available. PMID:27492231

  4. Modeling the pH-mediated Extraction of Ionizable Organic Contaminants to Improve the Quality of Municipal Sewage Sludge Destined for Land Application

    OpenAIRE

    Venkatesan, Arjun K.; Halden, Rolf U.

    2016-01-01

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and...

  5. Self-organized dynamics in local load-sharing fiber bundle models.

    Science.gov (United States)

    Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2013-10-01

    We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.

  6. Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine.

    Science.gov (United States)

    Lee, Hyunsu; Park, Jae-Hyung; Seo, Incheol; Park, Sun-Hyun; Kim, Shin

    2014-12-21

    Mapping of tissue structure at the cellular, circuit, and organ-wide scale is important for understanding physiological and biological functions. A bio-electrochemical technique known as CLARITY used for three-dimensional anatomical and phenotypical mapping within transparent intact tissues has been recently developed. This method provided a major advance in understanding the structure-function relationships in circuits of the nervous system and organs by using whole-body clearing. Thus, in the present study, we aimed to improve the original CLARITY procedure and developed specific CLARITY protocols for various intact organs. We determined the optimal conditions for reducing bubble formation, discoloration, and depositing of black particles on the surface of tissue, which allowed production of clearer organ images. We also determined the appropriate replacement cycles of clearing solution for each type of organ, and convincingly demonstrated that 250-280 mA is the ideal range of electrical current for tissue clearing. We then acquired each type of cleared organs including brain, pancreas, liver, lung, kidney, and intestine. Additionally, we determined the images of axon fibers of hippocampal region, the Purkinje layer of cerebellum, and vessels and cellular nuclei of pancreas. CLARITY is an innovative biochemical technology for the structural and molecular analysis of various types of tissue. We developed improved CLARITY methods for clearing of the brain, pancreas, lung, intestine, liver, and kidney, and identified the appropriate experimental conditions for clearing of each specific tissue type. These optimized methods will be useful for the application of CLARITY to various types of organs.

  7. Implementing learning organization components in Ardabil Regional Water Company based on Marquardt systematic model

    Directory of Open Access Journals (Sweden)

    Shahram Mirzaie Daryani

    2015-09-01

    Full Text Available This main purpose of this study was to survey the implementation of learning organization characteristics based on Marquardt systematic model in Ardabil Regional Water Company. Two hundred and four staff (164 employees and 40 authorities participated in the study. For data collection Marquardt questionnaire was used which its validity and reliability had been confirmed. The results of the data analysis showed that learning organization characteristics were used more than average level in some subsystems of Marquardt model and there was a significant difference between current position and excellent position based on learning organization characteristic application. The results of this study can be used to improve work processes of organizations and institutions.

  8. Nephrology around Europe: organization models and management strategies: Spain.

    Science.gov (United States)

    de Francisco, Angel L M; Piñera, Celestino

    2011-01-01

    The main aim of this report is to present a picture of the current organization of nephrology in Spain. The Spanish health system offers almost universal coverage, a wide variety of services and a high-quality network of hospitals and primary care centers. Spain has a specialized health care training system that is highly developed, highly regulated, with the capacity to provide high-quality training in 54 different specialties. Nephrology is basically a hospital-based specialty. There are no private dialysis patients in Spain. Hemodialysis centers are 40% public, 15% private and 45% run by companies. The National Health System covers 95% of the population, and there is no cost to patients for treatment of renal disease (dialysis and transplant). We observed a clear decrease of nephrology in residents' election rankings, with position 29 out of 47 specialties in 2007. Some of the reasons for this are the complexity of the subject, no clear information at the university, reduction of professional posts and a very good public service with minimal private practice. In Spain, a model of organization for transplantation was adopted based on a decentralized transplant coordinating network. For cadaveric donors, it compares favorably with rates in other Western countries. Living donor transplantation is very low in Spain--just 10% of total renal transplantation activity. New programs due to financial constraints need to include reduced dialysis costs, greater cost-effectiveness of prescriptions, better handling of ethical issues related to the need for using a clinical score of chronic kidney disease patients to make decisions about conservative or renal replacement therapy and an action plan for improvement of organ donation and transplantation. Recovery of skills (acute kidney injury, biopsies, vascular access, etc.), research and advances in autonomous activities (imaging, surgical and medical vascular training, etc.) are some of the future educational paths needed in

  9. Towards a model-based inventory of soil organic carbon in agricultural soils for the Swiss greenhouse gas reporting

    Science.gov (United States)

    Staudt, K.; Leifeld, J.; Bretscher, D.; Fuhrer, J.

    2012-04-01

    The Swiss inventory submission under the United Nations Framework Convention on Climate Change (UNFCCC) reports on changes in soil organic carbon stocks under different land-uses and land-use changes. The approach currently employed for cropland and grassland soils combines Tier 1 and Tier 2 methods and is considered overly simplistic. As the UNFCC encourages countries to develop Tier 3 methods for national greenhouse gas reporting, we aim to build up a model-based inventory of soil organic carbon in agricultural soils in Switzerland. We conducted a literature research on currently employed higher-tier methods using process-based models in four countries: Denmark, Sweden, Finland and the USA. The applied models stem from two major groups differing in complexity - those belonging to the group of general ecosystem models that include a plant-growth submodel, e.g. Century, and those that simulate soil organic matter turnover but not plant-growth, e.g. ICBM. For the latter group, carbon inputs to the soil from plant residues and roots have to be determined separately. We will present some aspects of the development of a model-based inventory of soil organic carbon in agricultural soils in Switzerland. Criteria for model evaluation are, among others, modeled land-use classes and land-use changes, spatial and temporal resolution, and coverage of relevant processes. For model parameterization and model evaluation at the field scale, data from several long-term agricultural experiments and monitoring sites in Switzerland is available. A subsequent regional application of a model requires the preparation of regional input data for the whole country - among others spatio-temporal meteorological data, agricultural and soil data. Following the evaluation of possible models and of available data, preference for application in the Swiss inventory will be given to simpler model structures, i.e. models without a plant-growth module. Thus, we compared different allometric relations

  10. A Behavioral Maturity Model to Establish Knowledge Management in an Organization

    OpenAIRE

    Fashami, C. S.; Babaei, M.

    2017-01-01

    Modern organizations need intangible assets such as organizational knowledge and human resources to gain competitive advantage in the market. Organizations can provide opportunities for behavioral maturity of managers to establish knowledge management. This study tries to develop a behavioral maturity model for managements to examine effectiveness of knowledge management. The study is conducted in Iran Insurance Company as an empirical case study. Twenty academic and organizational experts ar...

  11. There Is No Simple Model of the Plasma Membrane Organization

    Czech Academy of Sciences Publication Activity Database

    de la serna, J. B.; Schütz, G.; Eggeling, Ch.; Cebecauer, Marek

    2016-01-01

    Roč. 4, SEP 2016 (2016), 106 ISSN 2296-634X R&D Projects: GA ČR GA15-06989S Institutional support: RVO:61388955 Keywords : plasma membrane * membrane organization models * heterogeneous distribution Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Survey Leading Organization Pada Organisasi Islam

    OpenAIRE

    Bantam, Dian J

    2015-01-01

    Islamic University is islamic organization that care with public's need, especially for education. One of the vision of Islamic Universities is leading and islamic, to bravely innovate and develop education based on islam. The aim of this study examined one models of Four God-Guided Organizations, there are leading organization. Sample included Islamic universities in Yogyakarta with 112 employees. MANOVA and descriptive test is used to analyze the data. Results showed approximately 48% of Is...

  13. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    Science.gov (United States)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  14. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  15. Model for Railway Infrastructure Management Organization

    Directory of Open Access Journals (Sweden)

    Gordan Stojić

    2012-03-01

    Full Text Available The provision of appropriate quality rail services has an important role in terms of railway infrastructure: quality of infrastructure maintenance, regulation of railway traffic, line capacity, speed, safety, train station organization, the allowable lines load and other infrastructure parameters.The analysis of experiences in transforming the railway systems points to the conclusion that there is no unique solution in terms of choice for institutional rail infrastructure management modes, although more than nineteen years have passed from the beginning of the implementation of the Directive 91/440/EEC. Depending on the approach to the process of restructuring the national railway company, adopted regulations and caution in its implementation, the existence or absence of a clearly defined transport strategy, the willingness to liberalize the transport market, there are several different ways for institutional management of railway infrastructure.A hybrid model for selection of modes of institutional rail infrastructure management was developed based on the theory of artificial intelligence, theory of fuzzy sets and theory of multicriteria optimization.KEY WORDSmanagement, railway infrastructure, organizational structure, hybrid model

  16. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  17. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  18. Modeling financial markets by self-organized criticality

    Science.gov (United States)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea

    2015-10-01

    We present a financial market model, characterized by self-organized criticality, that is able to generate endogenously a realistic price dynamics and to reproduce well-known stylized facts. We consider a community of heterogeneous traders, composed by chartists and fundamentalists, and focus on the role of informative pressure on market participants, showing how the spreading of information, based on a realistic imitative behavior, drives contagion and causes market fragility. In this model imitation is not intended as a change in the agent's group of origin, but is referred only to the price formation process. We introduce in the community also a variable number of random traders in order to study their possible beneficial role in stabilizing the market, as found in other studies. Finally, we also suggest some counterintuitive policy strategies able to dampen fluctuations by means of a partial reduction of information.

  19. Identification of Mission Sensitivities with Mission Modeling from the One System Organization at Hanford - 13292

    Energy Technology Data Exchange (ETDEWEB)

    Belsher, Jeremy D.; Pierson, Kayla L. [Washington River Protection Solutions, LLC, Richland, WA 99352 (United States); Gimpel, Rod F. [One System - Waste Treatment Project, Richland, WA 99352 (United States)

    2013-07-01

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in the predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)

  20. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.

    Science.gov (United States)

    Sengar, A; Kuipers, J A M; van Santen, Rutger A; Padding, J T

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  1. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    Science.gov (United States)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  2. An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations

    International Nuclear Information System (INIS)

    Caon, M.; School of Physics and Electronic Systems Engineering, University of South Australia, The Levels Campus, Mawson Lakes, South Australia, 5095; Pattison, J.

    1999-01-01

    Fifty-four consecutive CT scans have been used to construct a tomographic computational model of a 14-year-old female torso suitable for the determination of organ doses from CT. The model, known as ADELAIDE, is in the form of an input file compatible with user codes based on XYZDOS.MOR from the readily available EGS4 Monte Carlo radiation transport code. ADELAIDE's dimensions are close to the Australian averages for her age so the model is representative of a 14-year-old girl. The realistic anatomy in the model differs considerably from that in Cristy's 15-year-old mathematical computational model by having realistically shaped organs that are appropriately located within a real external contour. Average absorbed dose to organs from simulated CT examinations of the chest and abdomen have been calculated for ADELAIDE using EGS4 within a geometry specific to the General Electric Hi-Speed Advantage CT scanner and using an x-ray spectrum calculated using data from the scanner's x-ray tube. The simulations include the scanner's beam shaping filter and patient table. It is suggested that the resulting values have fewer possible sources of uncertainty than organ doses derived from dose coefficients calculated for a MIRD style model with mathematical anatomy and a spectrum that may not match that of the scanner. The organ doses were normalized using the scanner's CTDI measured free-in-air and an EGS4 simulation of the CTDI measurement. Effective dose to the torso from 26-slice chest and 24-slice abdomen examinations (at 120 kV, 200 mAs, 7 mm slices) is 4.6±0.1mSv and 4.3±0.1mSv respectively. (author)

  3. A physiologically based toxicokinetic (PBTK) model for moderately hydrophobic organic chemicals in the European eel (Anguilla anguilla)

    International Nuclear Information System (INIS)

    Brinkmann, Markus; Freese, Marko; Pohlmann, Jan-Dag; Kammann, Ulrike; Preuss, Thomas G.; Buchinger, Sebastian; Reifferscheid, Georg; Beiermeister, Anne; Hanel, Reinhold; Hollert, Henner

    2015-01-01

    The European eel (Anguilla anguilla) is a facultatively catadromous fish species with a complex life cycle. Its current population status is alarming: recruitment has decreased drastically since the 1980s and its stock is still considered to be outside safe biological limits. Although there is no consensus on the reasons for this situation, it is currently thought to have resulted from a combination of different stressors, including anthropogenic contaminants. To deepen our understanding of the processes leading to the accumulation of lipophilic organic contaminants in yellow eels (i.e. the feeding, continental growth stage), we developed a physiologically based toxicokinetic model using our own data and values from the literature. Such models can predict the uptake and distribution of water-borne organic chemicals in the whole fish and in different tissues at any time during exposure. The predictive power of the model was tested against experimental data for six chemicals with n-octanol-water partitioning coefficient (log K ow ) values ranging from 2.13–4.29. Model performance was excellent, with a root mean squared error of 0.28 log units. This model has the potential to help identify suitable habitats for restocking under eel management plans. - Highlights: • A PBTK model was developed for European eel (Anguilla anguilla). • Own experimental data and data from the literature were used for parameterization. • The predictive power of the model was excellent, with RMSE of 0.28 log units. • The developed model can be amended with sub-models for dietary and dermal exposure

  4. A physiologically based toxicokinetic (PBTK) model for moderately hydrophobic organic chemicals in the European eel (Anguilla anguilla)

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Markus [Department of Ecosystem Analysis, Institute for Environmental Research, ABBt — Aachen Biology and Biotechnology, RWTH Aachen University, Aachen (Germany); Freese, Marko; Pohlmann, Jan-Dag; Kammann, Ulrike [Thünen Institute of Fisheries Ecology, Hamburg (Germany); Preuss, Thomas G. [Environmental Biology and Chemodynamics, Institute for Environmental Research, ABBt — Aachen Biology and Biotechnology, RWTH Aachen University, Aachen (Germany); Buchinger, Sebastian; Reifferscheid, Georg [Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Koblenz (Germany); Beiermeister, Anne; Hanel, Reinhold [Thünen Institute of Fisheries Ecology, Hamburg (Germany); Hollert, Henner, E-mail: Henner.hollert@bio5.rwth-aachen.de [Department of Ecosystem Analysis, Institute for Environmental Research, ABBt — Aachen Biology and Biotechnology, RWTH Aachen University, Aachen (Germany); State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing (China); College of Resources and Environmental Science, Chongqing University, Chongqing (China); Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China)

    2015-12-01

    The European eel (Anguilla anguilla) is a facultatively catadromous fish species with a complex life cycle. Its current population status is alarming: recruitment has decreased drastically since the 1980s and its stock is still considered to be outside safe biological limits. Although there is no consensus on the reasons for this situation, it is currently thought to have resulted from a combination of different stressors, including anthropogenic contaminants. To deepen our understanding of the processes leading to the accumulation of lipophilic organic contaminants in yellow eels (i.e. the feeding, continental growth stage), we developed a physiologically based toxicokinetic model using our own data and values from the literature. Such models can predict the uptake and distribution of water-borne organic chemicals in the whole fish and in different tissues at any time during exposure. The predictive power of the model was tested against experimental data for six chemicals with n-octanol-water partitioning coefficient (log K{sub ow}) values ranging from 2.13–4.29. Model performance was excellent, with a root mean squared error of 0.28 log units. This model has the potential to help identify suitable habitats for restocking under eel management plans. - Highlights: • A PBTK model was developed for European eel (Anguilla anguilla). • Own experimental data and data from the literature were used for parameterization. • The predictive power of the model was excellent, with RMSE of 0.28 log units. • The developed model can be amended with sub-models for dietary and dermal exposure.

  5. Water and complex organic chemistry in the cold dark cloud Barnard 5: Observations and Models

    Science.gov (United States)

    Wirström, Eva; Charnley, Steven B.; Taquet, Vianney; Persson, Carina M.

    2015-08-01

    Studies of complex organic molecule (COM) formation have traditionally been focused on hot cores in regions of massive star formation, where chemistry is driven by the elevated temperatures - evaporating ices and allowing for endothermic reactions in the gas-phase. As more sensitive instruments have become available, the types of objects known to harbour COMs like acetaldehyde (CH3CHO), dimethyl ether (CH3OCH3), methyl formate (CH3OCHO), and ketene (CH2CO) have expanded to include low mass protostars and, recently, even pre-stellar cores. We here report on the first in a new category of objects harbouring COMs: the cold dark cloud Barnard 5 where non-thermal ice desorption induce complex organic chemistry entirely unrelated to local star-formation.Methanol, which only forms efficiently on the surfaces of dust grains, provide evidence of efficient non-thermal desorption of ices in the form of prominent emission peaks offset from protostellar activity and high density tracers in cold molecular clouds. A study with Herschel targeting such methanol emission peaks resulted in the first ever detection of gas-phase water offset from protostellar activity in a dark cloud, at the so called methanol hotspot in Barnard 5.To model the effect a transient injection of ices into the gas-phase has on the chemistry of a cold, dark cloud we have included gas-grain interactions in an existing gas-phase chemical model and connected it to a chemical reaction network updated and expanded to include the formation and destruction paths of the most common COMs. Results from this model will be presented.Ground-based follow-up studies toward the methanol hotspot in B5 have resulted in the detection of a number of COMs, including CH2CO, CH3CHO, CH3OCH3, and CH3OCHO, as well as deuterated methanol (CH2DOH). Observations have also confirmed that COM emission is extended and not localised to a core structure. The implications of these observational and theoretical studies of B5 will be discussed

  6. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    Science.gov (United States)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  7. Self-Organized Criticality Theory Model of Thermal Sandpile

    International Nuclear Information System (INIS)

    Peng Xiao-Dong; Qu Hong-Peng; Xu Jian-Qiang; Han Zui-Jiao

    2015-01-01

    A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics. (paper)

  8. Modelling the Impact of Organization Structure and Whistle Blowers on Intra-Organizational Corruption Contagion

    OpenAIRE

    Nekovee, Maziar; Pinto, Jonathan

    2017-01-01

    We complement the rich conceptual work on organizational corruption by quantitatively modelling the spread of corruption within organizations. We systematically vary four organizational culture-related parameters, i.e., organization structure, location of bad apple, employees propensity to become corrupted (corruption probability), and number of whistle-blowers. Our simulation studies find that in organizations with flatter structures, corruption permeates the organization at a lower threshol...

  9. Basic model for the prediction of 137Cs concentration in the organisms of detritus food chain

    International Nuclear Information System (INIS)

    Tateda, Yuzuru

    1997-01-01

    In order to predict 137 Cs concentrations in marine organisms for monitoring, a basic model for the prediction of nuclide levels in marine organisms of detritus food chain was studied. The equilibrated values of ( 137 Cs level in organism)/( 137 Cs level in seawater) derived from calculation agreed with the observed data, indicating validity of modeling conditions. The result of simulation by this basic model showed the following conclusions. 1) ''Ecological half-life'' of 137 Cs in organisms of food chain were 35 and 130 days for detritus feeder and benthic teleosts, respectively, indicating that there was no difference of the ecological half lives in organisms between in detritus food chain and in other food chains. 2) The 137 Cs concentration in organisms showed a peak at 18 and 100 days in detritus and detritus feeder, respectively, after the introduction of 137 Cs into environmental seawater. Their concentration ratios to 137 Cs peak level in seawater were within a range of 2.7-3.8, indicating insignificant difference in the response to 137 Cs change in seawater between in the organisms of detritus food chain and of other food chain. 3) The basic model studies makes it available that the prediction of 137 Cs level in organisms of food chain can be simulated in coastal ecosystem. (author)

  10. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  11. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-08-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  12. A method to employ the spatial organization of catchments into semi-distributed rainfall–runoff models

    Directory of Open Access Journals (Sweden)

    H. Oppel

    2017-08-01

    Full Text Available A distributed or semi-distributed deterministic hydrological model should consider the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject to a certain spatial organization which results in archetypes of combined characteristics. In order to reproduce the natural rainfall–runoff response the reduction of variance of catchment properties as well as the incorporation of the spatial organization of the catchment are desirable. In this study the width-function approach is utilized as a basic characteristic to analyse the succession of catchment characteristics. By applying this technique we were able to assess the context of catchment properties like soil or topology along the streamflow length and the network geomorphology, giving indications of the spatial organization of a catchment. Moreover, this information and this technique have been implemented in an algorithm for automated sub-basin ascertainment, which included the definition of zones within the newly defined sub-basins. The objective was to provide sub-basins that were less heterogeneous than common separation schemes. The algorithm was applied to two parameters characterizing the topology and soil of four mid-European watersheds. Resulting partitions indicated a wide range of applicability for the method and the algorithm. Additionally, the intersection of derived zones for different catchment characteristics could give insights into sub-basin similarities. Finally, a HBV96 case study demonstrated the potential benefits of modelling with the new subdivision technique.

  13. Towards integrated modelling of soil organic carbon cycling at landscape scale

    Science.gov (United States)

    Viaud, V.

    2009-04-01

    Soil organic carbon (SOC) is recognized as a key factor of the chemical, biological and physical quality of soil. Numerous models of soil organic matter turnover have been developed since the 1930ies, most of them dedicated to plot scale applications. More recently, they have been applied to national scales to establish the inventories of carbon stocks directed by the Kyoto protocol. However, only few studies consider the intermediate landscape scale, where the spatio-temporal pattern of land management practices, its interactions with the physical environment and its impacts on SOC dynamics can be investigated to provide guidelines for sustainable management of soils in agricultural areas. Modelling SOC cycling at this scale requires accessing accurate spatially explicit input data on soils (SOC content, bulk density, depth, texture) and land use (land cover, farm practices), and combining both data in a relevant integrated landscape representation. The purpose of this paper is to present a first approach to modelling SOC evolution in a small catchment. The impact of the way landscape is represented on SOC stocks in the catchment was more specifically addressed. This study was based on the field map, the soil survey, the crop rotations and land management practices of an actual 10-km² agricultural catchment located in Brittany (France). RothC model was used to drive soil organic matter dynamics. Landscape representation in the form of a systematic regular grid, where driving properties vary continuously in space, was compared to a representation where landscape is subdivided into a set of homogeneous geographical units. This preliminary work enabled to identify future needs to improve integrated soil-landscape modelling in agricultural areas.

  14. Dipole model analysis of highest precision HERA data, including very low Q"2's

    International Nuclear Information System (INIS)

    Luszczak, A.; Kowalski, H.

    2016-12-01

    We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low χ region, using fully correlated errors. We show, that these highest precision data are very well described within the dipole model framework starting from Q"2 values of 3.5 GeV"2 to the highest values of Q"2=250 GeV"2. To analyze the saturation effects we evaluated the data including also the very low 0.35< Q"2 GeV"2 region. The fits including this region show a preference of the saturation ansatz.

  15. Atmospheric transport of persistent organic pollutants - development of a 3-d dynamical transport model covering the northern hemisphere

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Frohn, L. M.; Brandt, J.

    2003-04-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur, lead, and mercury to the Arctic. The model has been validated carefully for these compounds. A new version of DEHM is currently being developed to describe the atmospheric transport of persistent organic pollutants (POPs) which are toxic, lipophilic and bio-accumulating compounds showing great persistence in the environment. The model has a horizontal resolution of 150 km x 150 km and 18 vertical layers, and it is driven by meteorological data from the numerical weather prediction model MM5V2. During environmental cycling POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The present model version describes the atmospheric transport of the pesticide alpha-hexachlorocyclohexane (alpha-HCH). Other POPs may be included when proper data on emissions and physical-chemical parameters becomes available. The model-processes and the first model results are presented. The atmospheric transport of alpha-HCH for the 1990s is well described by the model.

  16. A speech production model including the nasal Cavity

    DEFF Research Database (Denmark)

    Olesen, Morten

    In order to obtain articulatory analysis of speech production the model is improved. the standard model, as used in LPC analysis, to a large extent only models the acoustic properties of speech signal as opposed to articulatory modelling of the speech production. In spite of this the LPC model...... is by far the most widely used model in speech technology....

  17. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively

  18. Mathematical model of organic substrate degradation in solid waste windrow composting.

    Science.gov (United States)

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  19. Quasi-dynamic model for an organic Rankine cycle

    International Nuclear Information System (INIS)

    Bamgbopa, Musbaudeen O.; Uzgoren, Eray

    2013-01-01

    Highlights: • Study presents a simplified transient modeling approach for an ORC under variable heat input. • The ORC model is presented as a synthesis of its models of its sub-components. • The model is compared to benchmark numerical simulations and experimental data at different stages. - Abstract: When considering solar based thermal energy input to an organic Rankine cycle (ORC), intermittent nature of the heat input does not only adversely affect the power output but also it may prevent ORC to operate under steady state conditions. In order to identify reliability and efficiency of such systems, this paper presents a simplified transient modeling approach for an ORC operating under variable heat input. The approach considers that response of the system to heat input variations is mainly dictated by the evaporator. Consequently, overall system is assembled using dynamic models for the heat exchangers (evaporator and condenser) and static models of the pump and the expander. In addition, pressure drop within heat exchangers is neglected. The model is compared to benchmark numerical and experimental data showing that the underlying assumptions are reasonable for cases where thermal input varies in time. Furthermore, the model is studied on another configuration and mass flow rates of both the working fluid and hot water and hot water’s inlet temperature to the ORC unit are shown to have direct influence on the system’s response

  20. 76 FR 29249 - Medicare Program; Pioneer Accountable Care Organization Model: Request for Applications

    Science.gov (United States)

    2011-05-20

    ... Affordable Care Act, to test innovative payment and service delivery models that reduce spending under.... This Model will test the effectiveness of a combination of the following: Payment arrangements that...] Medicare Program; Pioneer Accountable Care Organization Model: Request for Applications AGENCY: Centers for...

  1. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish

    DEFF Research Database (Denmark)

    Baatrup, E

    1991-01-01

    metals are well known pollutants in the aquatic environment. Their interaction with relevant chemical stimuli may interfere with the communication between fish and environment. 5. The affinity for a number of ligands and macromolecules makes heavy metals most potent neurotoxins. 6. The present Mini......1. Today, fish in the environment are inevitably exposed to chemical pollution. Although most hazardous substances are present at concentrations far below the lethal level, they may still cause serious damage to the life processes of these animals. 2. Fish depend on an intact nervous system......, including their sense organs, for mediating relevant behaviour such as food search, predator recognition, communication and orientation. 3. Unfortunately, the nervous system is most vulnerable and injuries to its elements may dramatically change the behaviour and consequently the survival of fish. 4. Heavy...

  2. Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project

    Directory of Open Access Journals (Sweden)

    Anisimov Vladimir

    2018-01-01

    Full Text Available In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.

  3. Terahertz double-exponential model for adsorption of volatile organic compounds in active carbon

    International Nuclear Information System (INIS)

    Zhu, Jing; Zhan, Honglei; Miao, Xinyang; Zhao, Kun; Zhou, Qiong

    2017-01-01

    In terms of the evaluation of the diffusion-controlled adsorption and diffused rate, a mathematical model was built on the basis of the double-exponential kinetics model and terahertz amplitude in this letter. The double-exponential-THz model described the two-step mechanism controlled by diffusion. A rapid step involves external and internal diffusion, followed by a slow step controlled by intraparticle diffusion. The concentration gradient of the molecules promoted the organic molecules rapidly diffusing to the external surface of adsorbent. The solute molecules then transferred across the liquid film. Intraparticle diffusion began and was determined by the molecular sizes, as well as affinities between organics and activated carbon. (paper)

  4. Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project

    Science.gov (United States)

    Anisimov, Vladimir; Anisimov, Evgeniy; Chernysh, Anatoliy

    2018-03-01

    In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.

  5. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    Science.gov (United States)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  6. Model to the evolution of the organic matter in the pampa's soil. Relation with cultivation systems

    International Nuclear Information System (INIS)

    Andriulo, Adrian; Mary, Bruno; Guerif, Jerome; Balesdent, Jerome

    1996-08-01

    The objective of the work is to present a model to describe the evolution of the organic matter in soils of the Argentine's pampa. This model can be utilised to evaluate the evolution of the soil's fertility in the agricultural production at this moment. Three kinds of assay were done. The determination of organic carbon made possible to prove the Henin-Dupuis model and a derived model

  7. Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    NARCIS (Netherlands)

    Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.

    2015-01-01

    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a

  8. Nonlinearities and transit times in soil organic matter models: new developments in the SoilR package

    Science.gov (United States)

    Sierra, Carlos; Müller, Markus

    2016-04-01

    SoilR is an R package for implementing diverse models representing soil organic matter dynamics. In previous releases of this package, we presented the implementation of linear first-order models with any number of pools as well as radiocarbon dynamics. We present here new improvements of the package regarding the possibility to implement models with nonlinear interactions among state variables and the possibility to calculate ages and transit times for nonlinear models with time dependencies. We show here examples on how to implement model structures with Michaelis-Menten terms for explicit microbial growth and resource use efficiency, and Langmuir isotherms for representing adsorption of organic matter to mineral surfaces. These nonlinear terms can be implemented for any number of organic matter pools, microbial functional groups, or mineralogy, depending on user's requirements. Through a simple example, we also show how transit times of organic matter in soils are controlled by the time-dependencies of the input terms.

  9. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  10. Modeling organic aerosol concentrations and properties during winter 2014 in the northwestern Mediterranean region

    OpenAIRE

    Chrit, Mounir; Sartelet, Karine; Sciare, Jean; Majdi, Marwa; Nicolas, José; Petit, Jean-Eudes; Dulac, François

    2018-01-01

    Organic aerosols are measured at a remote site (Ersa) on Corsica Cape in the northwestern Mediterranean basin during the Chemistry-Aerosol Mediterranean Experiment (CharMEx) winter campaign of 2014, when high organic concentrations from anthropogenic origin are observed. This work aims at representing the observed organic aerosol concentrations and properties (oxidation state) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Becau...

  11. A Practical Model for Inbound Container Distribution Organization in Rail-Water Transhipping Terminal

    Directory of Open Access Journals (Sweden)

    Jiahao Zhao

    2018-01-01

    Full Text Available Rail-water transportation is a crucial component of intermodal transportation system. Effective operation of rail-water intermodal transportation requires not only railway network and advanced handling equipment, but also scientific and reasonable transportation organization. In this paper, we first briefly introduced the coordination area and related concepts. Then an inbound container distribution organization model (ICDOM was established taking into account many factors such as transhipping capacity, network capacity, and importance of containers, in order to minimize the total container-hours in the coordination area, which reflects the efficiency of inbound container distribution organization. Additionally, a genetic algorithm (GA was developed and the optimization results were evaluated, which showed that both of the model and the algorithm were effective.

  12. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    Science.gov (United States)

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  13. Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.

    Directory of Open Access Journals (Sweden)

    Sophie Bertrand

    Full Text Available How organisms move and disperse is crucial to understand how population dynamics relates to the spatial heterogeneity of the environment. Random walk (RW models are typical tools to describe movement patterns. Whether Lévy or alternative RW better describes forager movements is keenly debated. We get around this issue using the Generalized Pareto Distribution (GPD. GPD includes as specific cases Normal, exponential and power law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively. Whereas previous studies typically confronted a limited set of candidate models, GPD lets the most likely RW model emerge from the data. We illustrate the wide applicability of the method using GPS-tracked seabird foraging movements and fishing vessel movements tracked by Vessel Monitoring System (VMS, both collected in the Peruvian pelagic ecosystem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a synoptic characterization of the observed movement in terms of characteristic scale and diffusive property. They reveal and quantify the variability, among species and individuals, of the spatial strategies selected by predators foraging on a common prey field. The GPD parameters constitute relevant metrics for (1 providing a synthetic and pattern-oriented description of movement, (2 using top predators as ecosystem indicators and (3 studying the variability of spatial behaviour among species or among individuals with different personalities.

  14. Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.

    Science.gov (United States)

    Bertrand, Sophie; Joo, Rocío; Fablet, Ronan

    2015-01-01

    How organisms move and disperse is crucial to understand how population dynamics relates to the spatial heterogeneity of the environment. Random walk (RW) models are typical tools to describe movement patterns. Whether Lévy or alternative RW better describes forager movements is keenly debated. We get around this issue using the Generalized Pareto Distribution (GPD). GPD includes as specific cases Normal, exponential and power law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively. Whereas previous studies typically confronted a limited set of candidate models, GPD lets the most likely RW model emerge from the data. We illustrate the wide applicability of the method using GPS-tracked seabird foraging movements and fishing vessel movements tracked by Vessel Monitoring System (VMS), both collected in the Peruvian pelagic ecosystem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a synoptic characterization of the observed movement in terms of characteristic scale and diffusive property. They reveal and quantify the variability, among species and individuals, of the spatial strategies selected by predators foraging on a common prey field. The GPD parameters constitute relevant metrics for (1) providing a synthetic and pattern-oriented description of movement, (2) using top predators as ecosystem indicators and (3) studying the variability of spatial behaviour among species or among individuals with different personalities.

  15. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  16. Crossover to self-organized criticality in an inertial sandpile model

    OpenAIRE

    Head, DA; Rodgers, GJ

    1996-01-01

    We introduce a one-dimensional sandpile model which incorporates particle inertia. The inertial dynamics are governed by a new parameter which, as it passes through a threshold value, alters the toppling dynamics in such a way that the system no longer evolves to a self-organized critical state. A range of mean-field theories based on a kinetic equation approach is presented which confirm the numerical findings. We conclude by considering the physical applications of this model, particularly ...

  17. A data-driven modeling approach to identify disease-specific multi-organ networks driving physiological dysregulation.

    Directory of Open Access Journals (Sweden)

    Warren D Anderson

    2017-07-01

    Full Text Available Multiple physiological systems interact throughout the development of a complex disease. Knowledge of the dynamics and connectivity of interactions across physiological systems could facilitate the prevention or mitigation of organ damage underlying complex diseases, many of which are currently refractory to available therapeutics (e.g., hypertension. We studied the regulatory interactions operating within and across organs throughout disease development by integrating in vivo analysis of gene expression dynamics with a reverse engineering approach to infer data-driven dynamic network models of multi-organ gene regulatory influences. We obtained experimental data on the expression of 22 genes across five organs, over a time span that encompassed the development of autonomic nervous system dysfunction and hypertension. We pursued a unique approach for identification of continuous-time models that jointly described the dynamics and structure of multi-organ networks by estimating a sparse subset of ∼12,000 possible gene regulatory interactions. Our analyses revealed that an autonomic dysfunction-specific multi-organ sequence of gene expression activation patterns was associated with a distinct gene regulatory network. We analyzed the model structures for adaptation motifs, and identified disease-specific network motifs involving genes that exhibited aberrant temporal dynamics. Bioinformatic analyses identified disease-specific single nucleotide variants within or near transcription factor binding sites upstream of key genes implicated in maintaining physiological homeostasis. Our approach illustrates a novel framework for investigating the pathogenesis through model-based analysis of multi-organ system dynamics and network properties. Our results yielded novel candidate molecular targets driving the development of cardiovascular disease, metabolic syndrome, and immune dysfunction.

  18. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  19. A thermodynamical model for stress-fiber organization in contractile cells.

    Science.gov (United States)

    Foucard, Louis; Vernerey, Franck J

    2012-01-02

    Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell's mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and different substrate stiffness. Our results demonstrate that the stress fibers viscoelastic behavior plays a crucial role in their formation and organization and shows good consistency with various experiments.

  20. A formal approach to organization of educational objectives

    Directory of Open Access Journals (Sweden)

    Segedinac Milan

    2011-01-01

    Full Text Available The organization of educational objectives plays an important role in curriculum development process, since it enables the sequencing of educational experiences. The main goal of this paper is to propose a framework for the formal representation of educational objectives, which enables the evaluation of organization of educational objectives. The model is based on domain ontology, Bloom’s taxonomy and objectives organization in the competence-based knowledge space. The model is verified on the case study that evaluates the students‘ achievements in Chemistry field Solutions by conducting an informal knowledge test on the group of 199 14-year-old students of primary schools in the Republic of Serbia. The results obtained from the case study clearly indicate the necessity for including assessment of students‘ achievements in the organization of educational objectives. The proposed model enables evaluation of organization of educational objectives which could be further used for an iterative refinement of the organization of educational objectives.

  1. The economic efficiency of conservation measures for amphibians in organic farming--results from bio-economic modelling.

    Science.gov (United States)

    Schuler, Johannes; Sattler, Claudia; Helmecke, Angela; Zander, Peter; Uthes, Sandra; Bachinger, Johann; Stein-Bachinger, Karin

    2013-01-15

    This paper presents a whole farm bio-economic modelling approach for the assessment and optimisation of amphibian conservation conditions applied at the example of a large scale organic farm in North-Eastern Germany. The assessment focuses mainly on the habitat quality as affected by conservation measures such as through specific adapted crop production activities (CPA) and in-field buffer strips for the European tree frog (Hyla arborea), considering also interrelations with other amphibian species (i.e. common spadefoot toad (Pelobates fuscus), fire-bellied toad (Bombina bombina)). The aim of the approach is to understand, analyse and optimize the relationships between the ecological and economic performance of an organic farming system, based on the expectation that amphibians are differently impacted by different CPAs. The modelling system consists of a set of different sub-models that generate a farm model on the basis of environmentally evaluated CPAs. A crop-rotation sub-model provides a set of agronomically sustainable crop rotations that ensures overall sufficient nitrogen supply and controls weed, pest and disease infestations. An economic sub-model calculates the gross margins for each possible CPA including costs of inputs such as labour and machinery. The conservation effects of the CPAs are assessed with an ecological sub-model evaluates the potential negative or positive effect that each work step of a CPA has on amphibians. A mathematical programming sub-model calculates the optimal farm organization taking into account the limited factors of the farm (e.g. labour, land) as well as ecological improvements. In sequential model runs, the habitat quality is to be improved by the model, while the highest possible gross margin is still to be achieved. The results indicate that the model can be used to show the scope of action that a farmer has to improve habitat quality by reducing damage to amphibian population on its land during agricultural activities

  2. Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure.

    Science.gov (United States)

    Kaiyala, Karl J

    2014-01-01

    Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit 'local linearity.' Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying 'latent' allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.

  3. Safe distance car-following model including backward-looking and its stability analysis

    Science.gov (United States)

    Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin

    2013-03-01

    The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

  4. A Simulation Model of Combined Biogas, Bioethanol and Protein Fodder Co-Production in Organic Farming

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    In order to evaluate new strategies for the production of renewable energy within sustainable organic agriculture, a process-simulation model for a 100 ha organic farm was developed. Data used for the model was obtained from laboratory trials, literature data, consultancy with experts, and results...... ha organic farm with ethanol or biogas, respectively. This calculation was based on the assumption that the electrical efficiency of CHP (combined heat and power) unit was 38%. A variety of different scenarios can be simulated to mirror the farmer's needs....

  5. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  6. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.

    2017-01-01

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  7. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE)

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund; Scharff, H.

    2010-01-01

    for in the life-cycle impact assessment calculation, the small gas generation in low-organic waste landfills reduced the actual potential for energy generation and therefore the environmental savings obtained were reduced proportionally. Groundwater pollution from input of leachate was also evaluated and the WHO......The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1...

  8. Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Carbon Content in an Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S.

    2017-12-01

    Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content

  9. Dryout modeling in support of the organic tank safety project

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1998-08-01

    This work was performed for the Organic Tank Safety Project to evaluate the moisture condition of the waste surface organic-nitrate bearing tanks that are classified as being conditionally safe because sufficient water is present. This report describes the predictive modeling procedure used to predict the moisture content of waste in the future, after it has been subjected to dryout caused by water vapor loss through passive ventilation. This report describes a simplified procedure for modeling the drying out of tank waste. Dryout occurs as moisture evaporates from the waste into the headspace and then exits the tank through ventilation. The water vapor concentration within the waste of the headspace is determined by the vapor-liquid equilibrium, which depends on the waste's moisture content and temperature. This equilibrium has been measured experimentally for a variety of waste samples and is described by a curve called the water vapor partial pressure isotherm. This curve describes the lowering of the partial pressure of water vapor in equilibrium with the waste relative to pure water due to the waste's chemical composition and hygroscopic nature. Saltcake and sludge are described by two distinct calculations that emphasize the particular physical behavior or each. A simple, steady-state model is devised for each type to obtain the approximate drying behavior. The report shows the application of the model to Tanks AX-102, C-104, and U-105

  10. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM

    Science.gov (United States)

    Porod, W.; Staub, F.

    2012-11-01

    We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the

  11. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  12. Modeling and simulating command and control for organizations under extreme situations

    CERN Document Server

    Moon, Il-Chul; Kim, Tag Gon

    2013-01-01

    Commanding and controlling organizations in extreme situations is a challenging task in military, intelligence, and disaster management. Such command and control must be quick, effective, and considerate when dealing with the changing, complex, and risky conditions of the situation. To enable optimal command and control under extremes, robust structures and efficient operations are required of organizations. This work discusses how to design and conduct virtual experiments on resilient organizational structures and operational practices using modeling and simulation. The work illustrates key a

  13. Modeling Coupled Landscape Evolution and Soil Organic Carbon Dynamics in Intensively Management Landscapes

    Science.gov (United States)

    Yan, Q.; Kumar, P.

    2017-12-01

    Soil is the largest reservoir of carbon in the biosphere but in agricultural areas it is going through rapid erosion due disturbance arising from crop harvest, tillage, and tile drainage. Identifying whether the production of soil organic carbon (SOC) from the crops can compensate for the loss due to erosion is critical to ensure our food security and adapt to climate change. In the U.S. Midwest where large areas of land are intensively managed for agriculture practices, predicting soil quantity and quality are critical for maintaining crop yield and other Critical Zone services. This work focuses on modeling the coupled landscape evolutions soil organic carbon dynamics in agricultural fields. It couples landscape evolution, surface water runoff, organic matter transformation, and soil moisture dynamics to understand organic carbon gain and loss due to natural forcing and farming practices, such as fertilizer application and tillage. A distinctive feature of the model is the coupling of surface ad subsurface processes that predicts both surficial changes and transport along with the vertical transport and dynamics. Our results show that landscape evolution and farming practices play dominant roles in soil organic carbon (SOC) dynamics both above- and below-ground. Contrary to the common assumption that a vertical profile of SOC concentration decreases exponentially with depth, we find that in many situations SOC concentration below-ground could be higher than that at the surface. Tillage plays a complex role in organic matter dynamics. On one hand, tillage would accelerate the erosion rate, on the other hand, it would improve carbon storage by burying surface SOC into below ground. Our model consistently reproduces the observed above- and below-ground patterns of SOC in the field sites of Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). This model bridges the gaps between the landscape evolution, below- and above-ground hydrologic cycle, and

  14. Models of epidemics: when contact repetition and clustering should be included

    Directory of Open Access Journals (Sweden)

    Scholz Roland W

    2009-06-01

    Full Text Available Abstract Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave

  15. Use of Artificial Neural Network Models to Predict Indicator Organism Concentrations in an Urban Watershed

    Science.gov (United States)

    Mas, D. M.; Ahlfeld, D. P.

    2004-05-01

    Forecasting stream water quality is important for numerous aspects of resource protection and management. Fecal coliform and enteroccocus are primary indicator organisms used to assess potential pathogen contamination. Consequently, modeling the occurrence and concentration of fecal coliform and enterococcus is an important tool in watershed management. In addition, analyzing the relationship between model input and predicted indicator organisms is useful for elucidating possible sources of contamination and mechanisms of transport. While many process-based, statistical, and empirical models exist for water quality prediction, artificial neural network (ANN) models are increasingly being used for forecasting of water resources variables because ANNs are often capable of modeling complex systems for which behavioral rules are either unknown or difficult to simulate. The performance of ANNs compared to more established modeling approaches such as multiple linear regression (MLR) remains an importance research question. Data collected the U.S. Geological Survey in the lower Charles River in Massachusetts, USA in 1999-2000 was examined to determine correlation between various water quality constituents and indicator organisms and to explore the relationship between rainfall characteristics and indicator organism concentrations. Using the results of the statistical analysis to guide the selection of explanatory variables, MLR was performed to develop predictive equations for wet weather and dry weather conditions. The results show that the best-performing predictor variables are generally consistent for both indicator organisms considered. In addition, the regression equations show increasing indicator organism concentrations as a function of suspended sediment concentrations and length of time since last precipitation event, suggesting accumulation and wash off as a key mechanism of pathogen transport under wet weather conditions. This research also presents the

  16. The method for determination of parameters of the phenomenological continual model of soil organic matter transformation

    Directory of Open Access Journals (Sweden)

    S. I. Bartsev

    2015-06-01

    Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in first­order partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.

  17. A CONSOLIDATED MODEL OF ANALYSIS OF THE RELATIONS BETWEEN POLITICS AND MANAGEMENT WITHIN PUBLIC ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Catalina Maria GEORGESCU

    2011-01-01

    Full Text Available An interdisciplinary approach which combines the theoretical, empirical andconceptual dimensions, the present study tries to offer a new workperspective on the assessment and modeling of the relation between themanagement of public organizations and the political environment. Thetheoretical research was centered on reviewing the literature on the relationbetween the management of public organizations and the politicalenvironment. The empirical research was materialized by modeling with theregression technique of several aspects integrated to the relations betweenthe management of human resources within public organizations in theeducation field and the external political environment.

  18. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    purity of the final preparation. Using mini-gels (BioRad Mini-Protean II apparatus), each group can pour, run, and stain their own 8 7.3-cm gel within the lab period; destaining can be carried out at any time afterward. The main contaminating band observed is ovalbumin, at a molecular weight of 46,000. Computer Modeling Using the program Quanta (MSI, Burlington, MA) on Indigo workstations (Silicon Graphics, Hudson, MA), the students retrieve coordinates from an MSI version of the Protein Data Bank, display the structure, and rationalize what changes would occur with a mutated form of the protein. Even for those who do not have Quanta or analogous programs, structural coordinates are available through the Internet. Students are prepared for their independent use of the molecular modeling workstations through a series of tutorials during the course of the semester. These exercises require that the students become familiar with specific applications of Quanta, including setting secondary conformation and hydrogen bonds, energy calculations, selectively displaying parts of molecules, measuring interatomic distances, and editing existing proteins. This introduction to macromolecular modeling is comparable to that suggested by Harvey and Tan (17) as a brief introduction to the field. Peer Review For each writing assignment (short paper and grant proposal), one week of lab is devoted to the peer review process. Students are to come to lab with a draft of their paper and a cover letter to their reviewers, which states how far they believe they are in the writing process; what they like and don't like about their work at this stage; and in what specific areas they need help (e.g., audience level, organization, use of references). They exchange papers, reading two or three during the course of the lab period. For each paper, they fill out a peer review form, which requires that they summarize the paper; look for clarity of presentation, appropriate citations, and use of others

  19. An Organization's Extended (Soft) Competencies Model

    Science.gov (United States)

    Rosas, João; Macedo, Patrícia; Camarinha-Matos, Luis M.

    One of the steps usually undertaken in partnerships formation is the assessment of organizations’ competencies. Typically considered competencies of a functional or technical nature, which provide specific outcomes can be considered as hard competencies. Yet, the very act of collaboration has its specific requirements, for which the involved organizations must be apt to exercise other type of competencies that affect their own performance and the partnership success. These competencies are more of a behavioral nature, and can be named as soft-competencies. This research aims at addressing the effects of the soft competencies on the performance of the hard ones. An extended competencies model is thus proposed, allowing the construction of adjusted competencies profiles, in which the competency levels are adjusted dynamically according to the requirements of collaboration opportunities.

  20. Computational modeling of Metal-Organic Frameworks

    Science.gov (United States)

    Sung, Jeffrey Chuen-Fai

    In this work, the metal-organic frameworks MIL-53(Cr), DMOF-2,3-NH 2Cl, DMOF-2,5-NH2Cl, and HKUST-1 were modeled using molecular mechanics and electronic structure. The effect of electronic polarization on the adsorption of water in MIL-53(Cr) was studied using molecular dynamics simulations of water-loaded MIL-53 systems with both polarizable and non-polarizable force fields. Molecular dynamics simulations of the full systems and DFT calculations on representative framework clusters were utilized to study the difference in nitrogen adsorption between DMOF-2,3-NH2Cl and DMOF-2,5-NH 2Cl. Finally, the control of proton conduction in HKUST-1 by complexation of molecules to the Cu open metal site was investigated using the MS-EVB methodology.

  1. Project-matrix models of marketing organization

    OpenAIRE

    Gutić Dragutin; Rudelj Siniša

    2009-01-01

    Unlike theory and practice of corporation organization, in marketing organization numerous forms and contents at its disposal are not reached until this day. It can be well estimated that marketing organization today in most of our companies and in almost all its parts, noticeably gets behind corporation organization. Marketing managers have always been occupied by basic, narrow marketing activities as: sales growth, market analysis, market growth and market share, marketing research, introdu...

  2. Self-Organized Patterns Induced by Neimark-Sacker, Flip and Turing Bifurcations in a Discrete Predator-Prey Model with Lesie-Gower Functional Response

    Directory of Open Access Journals (Sweden)

    Feifan Zhang

    2017-06-01

    Full Text Available The formation of self-organized patterns in predator-prey models has been a very hot topic recently. The dynamics of these models, bifurcations and pattern formations are so complex that studies are urgently needed. In this research, we transformed a continuous predator-prey model with Lesie-Gower functional response into a discrete model. Fixed points and stability analyses were studied. Around the stable fixed point, bifurcation analyses including: flip, Neimark-Sacker and Turing bifurcation were done and bifurcation conditions were obtained. Based on these bifurcation conditions, parameters values were selected to carry out numerical simulations on pattern formation. The simulation results showed that Neimark-Sacker bifurcation induced spots, spirals and transitional patterns from spots to spirals. Turing bifurcation induced labyrinth patterns and spirals coupled with mosaic patterns, while flip bifurcation induced many irregular complex patterns. Compared with former studies on continuous predator-prey model with Lesie-Gower functional response, our research on the discrete model demonstrated more complex dynamics and varieties of self-organized patterns.

  3. Indonesian Private University Lecturer Performance Improvement Model to Improve a Sustainable Organization Performance

    Science.gov (United States)

    Suryaman

    2018-01-01

    Lecturer performance will affect the quality and carrying capacity of the sustainability of an organization, in this case the university. There are many models developed to measure the performance of teachers, but not much to discuss the influence of faculty performance itself towards sustainability of an organization. This study was conducted in…

  4. Position-specific isotope modeling of organic micropollutants transformations through different reaction pathways

    Science.gov (United States)

    Jin, Biao; Rolle, Massimo

    2016-04-01

    Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degradation pathways in different environmental systems. Recent advances in analytical techniques have promoted the fast development and implementation of multi-element CSIA. However, quantitative frameworks to evaluate multi-element stable isotope data and incorporating mechanistic information on the degradation processes [2,3] are still lacking. In this study we propose a mechanism-based modeling approach to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. We validate the proposed approach with the concentration and multi-element isotope data of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model precisely captures the dual element isotope trends characteristic of different reaction pathways and their range of variation consistent with observed multi-element (C, N) bulk isotope fractionation. The proposed approach can also be used as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. [1] Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., Wehrli, B., 2010. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. doi:10.1146/annurev-environ-100809-125342. [2] Jin, B., Haderlein, S.B., Rolle, M

  5. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  6. Research on Corporate Social Responsibility of Supply Chain System Based on the Self-organization Theory

    OpenAIRE

    Baoying Wang

    2013-01-01

    In this study, the characteristics of supply chain system are analyzed based on the Self-organization theory from the angle of view of supply chain system. The mathematical models when the system fulfilling social responsibility including self-organization evolution model and self-organization function model are developed to discuss the formation and function of self-organization in supply chain system and coordination. Some basic conditions and tactics about self-organization establishment a...

  7. An Integrated Model for Effective Knowledge Management in Chinese Organizations

    Science.gov (United States)

    An, Xiaomi; Deng, Hepu; Wang, Yiwen; Chao, Lemen

    2013-01-01

    Purpose: The purpose of this paper is to provide organizations in the Chinese cultural context with a conceptual model for an integrated adoption of existing knowledge management (KM) methods and to improve the effectiveness of their KM activities. Design/methodology/approaches: A comparative analysis is conducted between China and the western…

  8. Tomographic anthropomorphic models. Pt. 2. Organ doses from computed tomographic examinations in paediatric radiology

    International Nuclear Information System (INIS)

    Zankl, M.; Panzer, W.; Drexler, G.

    1993-11-01

    This report provides a catalogue of organ dose conversion factors resulting from computed tomographic (CT) examinations of children. Two radiation qualities and two exposure geometries were simulated as well as the use of asymmetrical beams. The use of further beam shaping devices was not considered. The organ dose conversion factors are applicable to babies at the age of ca. 2 months and to children between 5 and 7 years but can be used for other ages as well with the appropriate adjustments. For the calculations, the patients were represented by the GSF tomographic anthropomorphic models BABY and CHILD. The radiation transport in the body was simulated using a Monte Carlo method. The doses are presented as conversion factors of mean organ doses per air kerma free in air on the axis of rotation. Mean organ dose conversion factors are given per organ and per scanned body section of 1 cm height. The mean dose to an organ resulting from a particular CT examination can be estimated by summing up the contributions to the organ dose from all relevant sections. To facilitate the selection of the appropriate sections, a table is given which relates the tomographic models' coordinates to certain anatomical landmarks in the human body. (orig.)

  9. Gas-particle partitioning of semi-volatile organics on organic aerosols using a predictive activity coefficient model: analysis of the effects of parameter choices on model performance

    Science.gov (United States)

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M.

    The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the α-pinene-O 3 reaction was augmented by carrying out smog chamber partitioning experiments on aerosols from meat cooking, and catalyzed and uncatalyzed gasoline engine exhaust. Model compositions for aerosols from meat cooking and gasoline combustion emissions were used to calculate activity coefficients for the SOCs in the organic aerosols and the Pankow absorptive gas/particle partitioning model was used to calculate the partitioning coefficient Kp and quantitate the predictive improvements of using the activity coefficient. The slope of the log K p vs. log p L0 correlation for partitioning on aerosols from meat cooking improved from -0.81 to -0.94 after incorporation of activity coefficients iγ om. A stepwise regression analysis of the partitioning model revealed that for the data set used in this study, partitioning predictions on α-pinene-O 3 secondary aerosol and wood combustion aerosol showed statistically significant improvement after incorporation of iγ om, which can be attributed to their overall polarity. The partitioning model was sensitive to changes in aerosol composition when updated compositions for α-pinene-O 3 aerosol and wood combustion aerosol were used. The octanol-air partitioning coefficient's ( KOA) effectiveness as a partitioning correlator over a variety of aerosol types was evaluated. The slope of the log K p- log K OA correlation was not constant over the aerosol types and SOCs used in the study and the use of KOA for partitioning correlations can potentially lead to significant deviations, especially for polar aerosols.

  10. A dynamic contaminant fate model of organic compound: a case study of Nitrobenzene pollution in Songhua River, China.

    Science.gov (United States)

    Wang, Ce; Feng, Yujie; Zhao, Shanshan; Li, Bai-Lian

    2012-06-01

    A one-dimensional dynamic contaminant fate model, coupling kinematic wave flow option with advection-dispersion-reaction equation, has been applied to predict Nitrobenzene pollution emergency in Songhua River, China that occurred on November 13, 2005. The model includes kinetic processes including volatilization, photolysis and biodegradation, and diffusive mass exchange between water column and sediment layer as a function of particles settling and resuspension. Four kinds of quantitative statistical tests, namely Nash-Sutcliffe efficiency, percent bias, ratio of root-mean-square to the standard deviation of monitoring data and Theil's inequality coefficient, are adopted to evaluate model performance. The results generally show that the modeled and detected concentrations exhibit good consistency. Flow velocity in the river is most sensitive parameter to Nitrobenzene concentration in water column based on sensitivity analysis of input parameters. It indicates flow velocity has important impact on both distribution and variance of contaminant concentration. The model performs satisfactory for prediction of organic pollutant fate in Songhua River, with the ability to supply necessary information for pollution event control and early warning, which could be applied to similar long natural rivers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Model of lifetime prediction - Study of the behaviour of polymers and organic matrix composites

    International Nuclear Information System (INIS)

    Colin, X.

    2009-01-01

    The team 'Aging of Organic Materials' of the Process and Engineering Laboratory in Mechanics and Materials (Arts et Metiers, ParisTech) has developed the model of lifetime prediction for the prediction of the behaviour of polymers and organic composites. This model has already given evidence of a real predictive mean for various industrial applications, as for instance the prediction of a rupture under the coupled effect of a mechanical load and a chemical degradation. (O.M.)

  12. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation.

    Science.gov (United States)

    Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan

    2012-01-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.

  13. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  14. PROCESS DOCUMENTATION: A MODEL FOR KNOWLEDGE MANAGEMENT IN ORGANIZATIONS.

    Science.gov (United States)

    Haddadpoor, Asefeh; Taheri, Behjat; Nasri, Mehran; Heydari, Kamal; Bahrami, Gholamreza

    2015-10-01

    Continuous and interconnected processes are a chain of activities that turn the inputs of an organization to its outputs and help achieve partial and overall goals of the organization. These activates are carried out by two types of knowledge in the organization called explicit and implicit knowledge. Among these, implicit knowledge is the knowledge that controls a major part of the activities of an organization, controls these activities internally and will not be transferred to the process owners unless they are present during the organization's work. Therefore the goal of this study is identification of implicit knowledge and its integration with explicit knowledge in order to improve human resources management, physical resource management, information resource management, training of new employees and other activities of Isfahan University of Medical Science. The project for documentation of activities in department of health of Isfahan University of Medical Science was carried out in several stages. First the main processes and related sub processes were identified and categorized with the help of planning expert. The categorization was carried out from smaller processes to larger ones. In this stage the experts of each process wrote down all their daily activities and organized them into general categories based on logical and physical relations between different activities. Then each activity was assigned a specific code. The computer software was designed after understanding the different parts of the processes, including main and sup processes, and categorization, which will be explained in the following sections. The findings of this study showed that documentation of activities can help expose implicit knowledge because all of inputs and outputs of a process along with the length, location, tools and different stages of the process, exchanged information, storage location of the information and information flow can be identified using proper

  15. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  16. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China

    International Nuclear Information System (INIS)

    Song Yu; Dai Wei; Shao Min; Liu Ying; Lu Sihua; Kuster, William; Goldan, Paul

    2008-01-01

    Identifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models. Gasoline-related sources, petrochemical production, and liquefied petroleum gas (LPG) were identified by all three models as the major contributors, with UNMIX and PMF producing quite similar results. The contributions of gasoline-related sources and LPG estimated by the CMB model were higher, and petrochemical emissions were lower than in the UNMIX and PMF results, possibly because the VOC profiles used in the CMB model were for fresh emissions and the profiles extracted from ambient measurements by the two-factor analysis models were 'aged'. - VOCs sources were similar for three models with CMB showing a higher estimate for vehicles

  17. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Yu; Dai Wei [Department of Environmental Sciences, Peking University, Beijing 100871 (China); Shao Min [State Joint Key Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871 (China)], E-mail: mshao@pku.edu.cn; Liu Ying; Lu Sihua [State Joint Key Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871 (China); Kuster, William; Goldan, Paul [Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO 80305 (United States)

    2008-11-15

    Identifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models. Gasoline-related sources, petrochemical production, and liquefied petroleum gas (LPG) were identified by all three models as the major contributors, with UNMIX and PMF producing quite similar results. The contributions of gasoline-related sources and LPG estimated by the CMB model were higher, and petrochemical emissions were lower than in the UNMIX and PMF results, possibly because the VOC profiles used in the CMB model were for fresh emissions and the profiles extracted from ambient measurements by the two-factor analysis models were 'aged'. - VOCs sources were similar for three models with CMB showing a higher estimate for vehicles.

  18. Retention of U(VI) onto silica in presence of model organic molecules

    International Nuclear Information System (INIS)

    Pham, T.T.H.; Mercier-Bion, F.; Drot, R.; Lagarde, G.; Simoni, E.; Lambert, J.

    2008-01-01

    It is well-known that the organic matter influences the retention of ions onto mineral surfaces. However, the major part of concerned studies implies humic substances and complex solids. Another approach for identifying the sorption mechanisms is possible by studying simpler solids than those present in natural medium. So, silica is chosen as mineral surface because of its abundance in soils and of the presence of Si-O groups in clayey minerals. Uranium (VI) is selected as cation. Simple organic molecules like acetic (one carboxylic group) and oxalic (two carboxylic functions) acids are considered as models of the natural organic matter for understanding their role in the retention of U(VI) onto powders and slides of silica. Binary (organics/silica, U(VI)/silica) and ternary systems (organics/silica/U(VI)) are studied by complementary approaches. Sorption edges as function of pH are obtained by liquid scintillation methods and capillary electrophoresis. Different spectroscopic techniques are used to deduce the interactions between the organic matter and U(VI) sorbed onto the silica whose: Time-Resolved Laser induced Fluorescence Spectroscopy (TRLFS), X-ray Photoelectron Spectroscopy (XPS), Nuclear Microprobe Analysis (NMA). The results of the effect of these model organic molecules onto the U(VI) retention showed a good agreement between the different techniques. Concerning the acetic acid, there are not differences in the sorption percentages of uranyl (see the figure). All these results indicate that the uranyl-acetate complexes stay in the aqueous solution rather than sorbing onto the silica. On the contrary, oxalic acid influences the sorption of U(VI) onto the silica surface. The sorption percentage of U(VI) in the ternary system (oxalic acid/silica/U(VI)) is lower than the binary system (U(VI)/silica) (see the figure). So, the presence of oxalic acid decreases the sorption of U(VI) onto the silica surface. (authors)

  19. Organic Production Business Model and the Concept of Corporate Social Responsibility

    Directory of Open Access Journals (Sweden)

    Ekaterina ARABSKA

    2016-06-01

    Full Text Available The concept of corporate social responsibility (CSR considering competitiveness and sustainability issues in contemporary globalizing world is closely linked to organic production being a production system applying holistic approaches in the overall management and production activities and assurance of the highest degree of conformability to sustainable use and preservation of resources. The paper examines the organic production as a business model corresponding to the spheres of CSR regarding society, environment, human capital and work conditions, knowledge and education. The focus in on sustainable business practices in organic production assessed in the study from the point of view of management, environment, human resources, public relations and business environment considered in five dimensions: economic, social, environmental, cultural and accountability.

  20. A Behavioral Maturity Model to Establish Knowledge Management in an Organization

    Directory of Open Access Journals (Sweden)

    C. S. Fashami

    2017-06-01

    Full Text Available Modern organizations need intangible assets such as organizational knowledge and human resources to gain competitive advantage in the market. Organizations can provide opportunities for behavioral maturity of managers to establish knowledge management. This study tries to develop a behavioral maturity model for managements to examine effectiveness of knowledge management. The study is conducted in Iran Insurance Company as an empirical case study. Twenty academic and organizational experts are selected for the study. Employees and managers of Iran Insurance Company are used to measure and test conceptual model (behavioral maturity of managers to establish knowledge management. Both interview and questionnaire tools are used to collect data. Fuzzy AHP and PLS methods are used to analyze the collected data. Fuzzy AHP results show that transformational leadership, human and social skills, knowledge orientation, emotional intelligence, trustful climate are identified as highly effective priorities.

  1. Organization And Financing Models Of Health Service In Selected Countries

    Directory of Open Access Journals (Sweden)

    Branimir Marković

    2009-07-01

    Full Text Available The introductory part of the work gives a short theoretical presentation regarding possible financing models of health services in the world. In the applicative part of the work we shall present the basic practical models of financing health services in the countries that are the leaders of classic methods of health services financing, e. g. the USA, Great Britain, Germany and Croatia. Working out the applicative part of the work we gave the greatest significance to analysis of some macroeconomic indicators in health services (tendency of total health consumption in relation to GDP, average consumption per insured person etc., to structure analysis of health insurance and just to the scheme of health service organization and financing. We presume that each model of health service financing contains certain limitations that can cause problem (weak organization, increase of expenses etc.. This is the reason why we, in the applicative part of the work, paid a special attention to analysis of financial difficulties in the health sector and pointed to the needs and possibilities of solving them through possible reform measures. The end part of the work aims to point out to advantages and disadvantages of individual financing sources through the comparison method (budgetary – taxes or social health insurance – contributions.

  2. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    Science.gov (United States)

    Couvidat, F.; Sartelet, K.

    2015-04-01

    In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly

  3. Modeling the Structure and Effectiveness of Intelligence Organizations: Dynamic Information Flow Simulation

    National Research Council Canada - National Science Library

    Behrman, Robert; Carley, Kathleen

    2003-01-01

    This paper describes the Dynamic Information Flow Simulation (DIFS), an abstract model for analyzing the structure and function of intelligence support organizations and the activities of entities within...

  4. Organic Chemistry of Meteorites

    Science.gov (United States)

    Chang, S.; Morrison, David (Technical Monitor)

    1994-01-01

    Studies of the molecular structures and C,N,H-isotopic compositions of organic matter in meteorites reveal a complex history beginning in the parent interstellar cloud which spawned the solar system. Incorporation of interstellar dust and gas in the protosolar nebula followed by further thermal and aqueous processing on primordial parent bodies of carbonaceous, meteorites have produced an inventory of diverse organic compounds including classes now utilized in biochemistry. This inventory represents one possible set of reactants for chemical models for the origin of living systems on the early Earth. Evidence bearing on the history of meteoritic organic matter from astronomical observations and laboratory investigations will be reviewed and future research directions discussed.

  5. Development of a whole-organism model to screen new compounds for sun protection.

    Science.gov (United States)

    Wang, Yun-Hsin; Wen, Chi-Chung; Yang, Zhi-Shiang; Cheng, Chien-Chung; Tsai, Jen-Ning; Ku, Chia-Chen; Wu, Hsin-Ju; Chen, Yau-Hung

    2009-01-01

    We used zebrafish as a whole-organism model to screen new compounds for sun protection activity. First of all, we designed a series of UVB exposure experiments and recorded the phenotypic changes of zebrafish embryos. Results showed that 100 mJ/cm(2) of UVB given six times separated by 30 min intervals is the best condition. Fin malformation (reduced and/or absent fin) phenotypes are the most evident consequences after exposure to UVB. Each fin was affected by UVB, including pelvic, ventral, caudal, and dorsal fin, but pelvic fin seemed to be the most sensitive target after UVB exposure. We furthermore carried out "prevention" and "treatment" experiments using green tea extract and/or (-)-epigallocatechin (EGCG) to test this whole-organism model by observing the morphological changes of all fins (especially pelvic fin) after UVB exposure. Effects of UVB, green tea extract and EGCG on fin development were assessed using the Kaplan-Meier analysis, log-rank test and Cox proportional hazards regression. Results showed that a zebrafish pelvic fin in the UVB + green tea (treatment) group is 5.51 (range from 2.39 to 14.90) times, one in the UVB + green tea (prevention) group is 7.04 (range from 3.11 to 18.92) times, and one in the 25 ppm of EGCG (prevention) group is 22.19 (range from 9.40 to 61.50) times more likely to return to normal fin than one in the UVB only group. On the basis of these observations, we believe this model is effective for screening the higher stability and lower toxicity of new compounds, such as small chemicals which are derivative from EGCG or other dietary agents for sun protection.

  6. A unitarized meson model including color Coulomb interaction

    International Nuclear Information System (INIS)

    Metzger, Kees.

    1990-01-01

    Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs

  7. Equation of State Selection for Organic Rankine Cycle Modeling Under Uncertainty

    DEFF Research Database (Denmark)

    Frutiger, Jerome; O'Connell, John; Abildskov, Jens

    In recent years there has been a great interest in the design and selection of working fluids for low-temperature Organic Rankine Cycles (ORC), to efficiently produce electrical power from waste heat from chemical engineering applications, as well as from renewable energy sources such as biomass...... cycle, all influence the model output uncertainty. The procedure is highlighted for an ORC for with a low-temperature heat source from exhaust gas from a marine diesel engine.[1] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for lowtemperature organic Rankine cycles. Energy 2007...

  8. Causal model of safety-checking action of the staff of nuclear power plants and the organization climate

    International Nuclear Information System (INIS)

    Fukui, Hirokazu; Yoshida, Michio; Yamaura, Kazuho

    2000-01-01

    For those who run an organization, it is critical to identify the causal relationship between the organization's characteristics and the safety-checking action of its staff, in order to effectively implement activities for promoting safety. In this research. a causal model of the safety-checking action was developed and factors affecting it were studied. A questionnaire survey, which includes safety awareness, attitude toward safety, safety culture and others, was conducted at three nuclear power plants and eight factors were extracted by means of factor analysis of the questionnaire items. The extracted eight interrelated factors were as follows: work norm, supervisory action, interest in training, recognition of importance, safety-checking action, the subject of safety, knowledge/skills, and the attitude of an organization. Among them, seven factors except the recognition of importance were defined as latent variables and a causal model of safety-checking action was constructed. By means of covariance structure analysis, it was found that the three factors: the attitude of an organization, supervisory action and the subject of safety, have a significant effect on the safety-checking action. Moreover, it was also studied that workplaces in which these three factors are highly regarded form social environment where safety-checking action is fully supported by the workplace as a whole, while workplaces in which these three factors are poorly regarded do not fully form social environment where safety-checking action is supported. Therefore, the workplaces form an organizational environment where safety-checking action tends to depend strongly upon the knowledge or skills of individuals. On top of these, it was noted that the attitude of an organization and supervisory action are important factors that serve as the first trigger affecting the formation of the organizational climate for safety. (author)

  9. Causal model of safety-checking action of the staff of nuclear power plants and the organization climate

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Hirokazu [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan); Yoshida, Michio; Yamaura, Kazuho [Japan Institute for Group Dynamics, Fukuoka (Japan)

    2000-09-01

    For those who run an organization, it is critical to identify the causal relationship between the organization's characteristics and the safety-checking action of its staff, in order to effectively implement activities for promoting safety. In this research. a causal model of the safety-checking action was developed and factors affecting it were studied. A questionnaire survey, which includes safety awareness, attitude toward safety, safety culture and others, was conducted at three nuclear power plants and eight factors were extracted by means of factor analysis of the questionnaire items. The extracted eight interrelated factors were as follows: work norm, supervisory action, interest in training, recognition of importance, safety-checking action, the subject of safety, knowledge/skills, and the attitude of an organization. Among them, seven factors except the recognition of importance were defined as latent variables and a causal model of safety-checking action was constructed. By means of covariance structure analysis, it was found that the three factors: the attitude of an organization, supervisory action and the subject of safety, have a significant effect on the safety-checking action. Moreover, it was also studied that workplaces in which these three factors are highly regarded form social environment where safety-checking action is fully supported by the workplace as a whole, while workplaces in which these three factors are poorly regarded do not fully form social environment where safety-checking action is supported. Therefore, the workplaces form an organizational environment where safety-checking action tends to depend strongly upon the knowledge or skills of individuals. On top of these, it was noted that the attitude of an organization and supervisory action are important factors that serve as the first trigger affecting the formation of the organizational climate for safety. (author)

  10. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  11. Learning from the organic food system as a model for sustainable food systems - the Organic Food System Program

    DEFF Research Database (Denmark)

    Kahl, Johannes; Strassner, Carola; Hertwig, Jostein

    2016-01-01

    habits, cultural, social, ethical, economic and political criteria play an increasingly important role as values. An organic values-based supply chain links food production to values such as partnership, cooperation and trust. Within a values-based supply chain, all actors should be connected through......Today’s understanding of food systems includes product-specific values (e.g. palatability, taste, nutritional and safety values, health promotion) and process-oriented values (e.g. environmental impact, animal welfare and social fairness). These values are currently challenged and changing. Food...... a shared vision. Visions, indicators and parameters have been developed for the organic food system (OFS). In order to identify and leverage values within the OFS, it has to be critically analysed and documented. This makes the OFS a “living laboratory” for sustainable food systems, linking organic...

  12. Molecular classification of pesticides including persistent organic pollutants, phenylurea and sulphonylurea herbicides.

    Science.gov (United States)

    Torrens, Francisco; Castellano, Gloria

    2014-06-05

    Pesticide residues in wine were analyzed by liquid chromatography-tandem mass spectrometry. Retentions are modelled by structure-property relationships. Bioplastic evolution is an evolutionary perspective conjugating effect of acquired characters and evolutionary indeterminacy-morphological determination-natural selection principles; its application to design co-ordination index barely improves correlations. Fractal dimensions and partition coefficient differentiate pesticides. Classification algorithms are based on information entropy and its production. Pesticides allow a structural classification by nonplanarity, and number of O, S, N and Cl atoms and cycles; different behaviours depend on number of cycles. The novelty of the approach is that the structural parameters are related to retentions. Classification algorithms are based on information entropy. When applying procedures to moderate-sized sets, excessive results appear compatible with data suffering a combinatorial explosion. However, equipartition conjecture selects criterion resulting from classification between hierarchical trees. Information entropy permits classifying compounds agreeing with principal component analyses. Periodic classification shows that pesticides in the same group present similar properties; those also in equal period, maximum resemblance. The advantage of the classification is to predict the retentions for molecules not included in the categorization. Classification extends to phenyl/sulphonylureas and the application will be to predict their retentions.

  13. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  14. Faults self-organized by repeated earthquakes in a quasi-static antiplane crack model

    Directory of Open Access Journals (Sweden)

    D. Sornette

    1996-01-01

    Full Text Available We study a 2D quasi-static discrete crack anti-plane model of a tectonic plate with long range elastic forces and quenched disorder. The plate is driven at its border and the load is transferred to all elements through elastic forces. This model can be considered as belonging to the class of self-organized models which may exhibit spontaneous criticality, with four additional ingredients compared to sandpile models, namely quenched disorder, boundary driving, long range forces and fast time crack rules. In this 'crack' model, as in the 'dislocation' version previously studied, we find that the occurrence of repeated earthquakes organizes the activity on well-defined fault-like structures. In contrast with the 'dislocation' model, after a transient, the time evolution becomes periodic with run-aways ending each cycle. This stems from the 'crack' stress transfer rule preventing criticality to organize in favour of cyclic behaviour. For sufficiently large disorder and weak stress drop, these large events are preceded by a complex spacetime history of foreshock activity, characterized by a Gutenberg-Richter power law distribution with universal exponent B = 1±0.05. This is similar to a power law distribution of small nucleating droplets before the nucleation of the macroscopic phase in a first-order phase transition. For large disorder and large stress drop, and for certain specific initial disorder configurations, the stress field becomes frustrated in fast time: out-of-plane deformations (thrust and normal faulting and/or a genuine dynamics must be introduced to resolve this frustration.

  15. Partitioning of Nanoparticles into Organic Phases and Model Cells

    Energy Technology Data Exchange (ETDEWEB)

    Posner, J.D.; Westerhoff, P.; Hou, W-C.

    2011-08-25

    There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basic partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like

  16. Toward a model of employee engagement in a public service organization

    DEFF Research Database (Denmark)

    Nielsen, Mette Strange

    Employee engagement has long been capturing the attention of researchers and practitioners, (e.g. Bakker, Albrecht, & Leiter, 2011; Buckingham & Coffman, 1999) due to its positive impact on various measures of organizational performance (Gruman & Saks, 2011; Harter, Schmidt, & Hayes, 2002; Mone...... & London, 2010). To date, however, employee engagement has primarily been studied in private manufacturing firms leaving out a gap of research in a public service organization, such as eldercare organizations, although engagement according to Boselie (2010) is highly relevant in the specific context....... The purpose of the PhD project is to build a model explaining employee engagement in a public service organization. Research on work design theory (e.g. Hackman & Oldham, 1976) will be used, since it has often been applied to identify antecedents associated with engagement (Bakker & Demerouti, 2007; Kahn...

  17. Barrier formation at organic interfaces in a Cu(100)-benzenethiolate-pentacene heterostructure

    DEFF Research Database (Denmark)

    Betti, M.G.; Kanjilal, A.; Mariani, C.

    2008-01-01

    The energy level alignment at the metal-organic and organic-organic interfaces of the Cu(100)/benzenethiolate/pentacene heterostructure is studied by photoemission spectroscopy and discussed theoretically using a model that includes, in a consistent way, charge transfer, Pauli repulsion, intrinsic...

  18. Dynamic model of organic pollutant degradation in three dimensional packed bed electrode reactor.

    Science.gov (United States)

    Pang, Tianting; Wang, Yan; Yang, Hui; Wang, Tianlei; Cai, Wangfeng

    2018-04-21

    A dynamic model of semi-batch three-dimensional electrode reactor was established based on the limiting current density, Faraday's law, mass balance and a series of assumptions. Semi-batch experiments of phenol degradation were carried out in a three-dimensional electrode reactor packed with activated carbon under different conditions to verify the model. The factors such as the current density, the electrolyte concentration, the initial pH value, the flow rate of organic and the initial organic concentration were examined to know about the pollutant degradation in the three-dimensional electrode reactor. The various concentrations and logarithm of concentration of phenol with time were compared with the dynamic model. It was shown that the calculated data were in good agreement with experimental data in most cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    -stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...... consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two...

  20. Self-organized criticality in asymmetric exclusion model with noise for freeway traffic

    Science.gov (United States)

    Nagatani, Takashi

    1995-02-01

    The one-dimensional asymmetric simple-exclusion model with open boundaries for parallel update is extended to take into account temporary stopping of particles. The model presents the traffic flow on a highway with temporary deceleration of cars. Introducing temporary stopping into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. In the self-organized critical state, start-stop waves (or traffic jams) appear with various sizes (or lifetimes). The typical interval between consecutive jams scales as ≃ Lv with v = 0.51 ± 0.05 where L is the system size. It is shown that the cumulative jam-interval distribution Ns( L) satisfies the finite-size scaling form ( Ns( L) ≃ L- vf( s/ Lv). Also, the typical lifetime ≃ Lv‧ with v‧ = 0.52 ± 0.05. The cumulative distribution Nm( L) of lifetimes satisfies the finite-size scaling form Nm( L)≃ L-1g( m/ Lv‧).

  1. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.

    Science.gov (United States)

    Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L; Tindal, Christopher; Thomas, Howard; Ougham, Helen J; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J; Millar, Andrew J

    2014-09-30

    Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.

  2. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application

    International Nuclear Information System (INIS)

    Venkatesan, Arjun K.; Halden, Rolf U.

    2016-01-01

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000 t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~ pH 2) followed by basic (~ pH 12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40 ± 16 t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. - Highlights: • Sorption model predicts the leachability of ionizable organics from sludge. • Ionic organics make up 82% of total contaminant mass in U.S. sludge. • 36–85% of ionic organic pollutants are removable by pH treatment. • Proposed sludge treatment promises cost-effective risk reduction.

  3. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Arjun K.; Halden, Rolf U., E-mail: halden@asu.edu

    2016-04-15

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000 t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~ pH 2) followed by basic (~ pH 12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40 ± 16 t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. - Highlights: • Sorption model predicts the leachability of ionizable organics from sludge. • Ionic organics make up 82% of total contaminant mass in U.S. sludge. • 36–85% of ionic organic pollutants are removable by pH treatment. • Proposed sludge treatment promises cost-effective risk reduction.

  4. Modelling of natural organic matter-linked radionuclide transport in Boom clay

    International Nuclear Information System (INIS)

    Govaerts, J.; Maes, N.

    2012-01-01

    Document available in extended abstract form only. In the framework of the Belgian research program on long term management of high-level and/or long-lived radioactive wastes coordinated by ONDRAF/NIRAS, Boom Clay is investigated for its potential to host a deep geological disposal repository. In order to demonstrate the suitability of the Boom Clay as a host rock, the mobility of critical radionuclides in this clay layer has been the subject of research during many years. As actinides, lanthanides and transition metals are known to form strong complexes with organic substances, the influence of the Natural Organic Matter (NOM) present in Boom Clay on the mobility of these critical radionuclides is of crucial importance. Interaction of radionuclides with OM present in Boom Clay could on the one hand retard the migration due to complexation/colloid interaction with the immobile OM, and on the other hand the mobility and solubility of the radionuclide can be enhanced by the formation of complexes/colloids with the mobile OM. The conceptual understanding (and its numerical modelling) of the kinetic stability and transport of these complexes/colloids is therefore regarded as highly important for the the long-term safety assesment of the geological disposal. This can be broken down into two subproblems: 1. Describing the transport behaviour of mobile OM in Boom Clay; 2. Describing the interaction of RN with mobile OM and the transport behaviour of the resulting complexes in Boom Clay. The first part of this paper revolves around the first subproblem, where a robust model for the description of the migration behaviour of Natural Organic Matter (NOM) is derived based on data from column migration experiments using 14 C-labelled NOM Tracer solution, obtained in the framework of the EC TRANCOM-II project. Clay plugs of different lengths and different Darcy velocities were used. Inverse modelling with the MATLAB and COMSOL numerical code was done in order to identify the

  5. Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments

    International Nuclear Information System (INIS)

    Scialdone, Onofrio; Guarisco, Chiara; Galia, Alessandro

    2011-01-01

    The electrochemical oxidation of organics in water performed in micro reactors on boron doped diamond (BDD) anode was investigated both theoretically and experimentally in order to find the influence of various operative parameters on the conversion and the current efficiency CE of the process. The electrochemical oxidation of formic acid (FA) was selected as a model case. High conversions for a single passage of the electrolytic solution inside the cell were obtained by operating with proper residence times and low distances between cathode and anode. The effect of initial concentration, flow rate and current density was investigated in detail. Theoretical predictions were in very good agreement with experimental results for both mass transfer control, oxidation reaction control and mixed kinetic regimes in spite of the fact that no adjustable parameters was used. Mass transfer process was successfully modelled by considering for simplicity a constant Sh number (e.g., a constant mass transfer coefficient k m ) for a process performed with no high values of the current intensity to minimize the effect of the gas bubbling on the flowdynamic pattern. For mixed kinetic regimes, two different modelling approaches were used. In the first one, the oxidation of organics at BDD was assumed to be mass transfer controlled and to occur with an intrinsic 100% CE when applied current density is higher than the limiting current density. In the second case, the CE of the process was modelled assuming that the competition between organic and water oxidation depends only on the electrodic material and on the nature and the concentration of the organic. In the latter case a better agreement between experimental data and theoretical predictions was observed.

  6. Asymptotic Solution of a Model for Bilayer Organic Diodes and Solar Cells

    KAUST Repository

    Richardson, Giles

    2012-11-15

    Organic diodes and solar cells are constructed by placing together two organic semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical behavior of such devices has been successfully modeled numerically using conventional drift diffusion together with recombination (which is usually assumed to be bimolecular) and thermal generation. Here a particular model is considered and the dark current-voltage curve and the spatial structure of the solution across the device is extracted analytically using asymptotic methods. We concentrate on the case of Shockley-Read-Hall recombination but note the extension to other recombination mechanisms. We find that there are three regimes of behavior, dependent on the total current. For small currents-i.e., at reverse bias or moderate forward bias-the structure of the solution is independent of the total current. For large currents-i.e., at strong forward bias-the current varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers. There is then a narrow range of currents where the behavior undergoes a transition between the two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is critical in determining where the transition occurs. The extension of the theory to organic solar cells generating current under illumination is discussed as is the analogous current-voltage curves derived where the photo current is small. Finally, by comparing the analytic results to real experimental data, we show how the model parameters can be extracted from the shape of current-voltage curves measured in the dark. © 2012 Society for Industrial and Applied Mathematics.

  7. Asymptotic Solution of a Model for Bilayer Organic Diodes and Solar Cells

    KAUST Repository

    Richardson, Giles; Please, Colin; Foster, Jamie; Kirkpatrick, James

    2012-01-01

    Organic diodes and solar cells are constructed by placing together two organic semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical behavior of such devices has been successfully modeled numerically using conventional drift diffusion together with recombination (which is usually assumed to be bimolecular) and thermal generation. Here a particular model is considered and the dark current-voltage curve and the spatial structure of the solution across the device is extracted analytically using asymptotic methods. We concentrate on the case of Shockley-Read-Hall recombination but note the extension to other recombination mechanisms. We find that there are three regimes of behavior, dependent on the total current. For small currents-i.e., at reverse bias or moderate forward bias-the structure of the solution is independent of the total current. For large currents-i.e., at strong forward bias-the current varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers. There is then a narrow range of currents where the behavior undergoes a transition between the two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is critical in determining where the transition occurs. The extension of the theory to organic solar cells generating current under illumination is discussed as is the analogous current-voltage curves derived where the photo current is small. Finally, by comparing the analytic results to real experimental data, we show how the model parameters can be extracted from the shape of current-voltage curves measured in the dark. © 2012 Society for Industrial and Applied Mathematics.

  8. Allometric scaling and cell ratios in multi-organ in vitro models of human metabolism

    Directory of Open Access Journals (Sweden)

    Nadia eUcciferri

    2014-12-01

    Full Text Available Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step towards building an integrated picture of systemic metabolism and signalling in physiological or pathological conditions. However the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here we analyse the physiologic relationship between cells, cell metabolism and exchange in the human body using allometric rules, downscaling them to an organ-on-a plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (Cell Number Scaling Model, CNSM, and Metabolic and Surface Scaling model, MSSM are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions which can be extrapolated to the in vivo

  9. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism

    International Nuclear Information System (INIS)

    Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti

    2014-01-01

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  10. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ucciferri, Nadia [CNR Institute of Clinical Physiology, Pisa (Italy); Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy); Sbrana, Tommaso [Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy); Ahluwalia, Arti, E-mail: arti.ahluwalia@unipi.it [CNR Institute of Clinical Physiology, Pisa (Italy); Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy)

    2014-12-17

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  11. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.

    Science.gov (United States)

    Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti

    2014-01-01

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  12. Assessment and improvement of biotransfer models to cow's milk and beef used in exposure assessment tools for organic pollutants.

    Science.gov (United States)

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2015-11-01

    The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow's milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants. Copyright © 2015. Published by Elsevier Ltd.

  13. Including model uncertainty in risk-informed decision making

    International Nuclear Information System (INIS)

    Reinert, Joshua M.; Apostolakis, George E.

    2006-01-01

    Model uncertainties can have a significant impact on decisions regarding licensing basis changes. We present a methodology to identify basic events in the risk assessment that have the potential to change the decision and are known to have significant model uncertainties. Because we work with basic event probabilities, this methodology is not appropriate for analyzing uncertainties that cause a structural change to the model, such as success criteria. We use the risk achievement worth (RAW) importance measure with respect to both the core damage frequency (CDF) and the change in core damage frequency (ΔCDF) to identify potentially important basic events. We cross-check these with generically important model uncertainties. Then, sensitivity analysis is performed on the basic event probabilities, which are used as a proxy for the model parameters, to determine how much error in these probabilities would need to be present in order to impact the decision. A previously submitted licensing basis change is used as a case study. Analysis using the SAPHIRE program identifies 20 basic events as important, four of which have model uncertainties that have been identified in the literature as generally important. The decision is fairly insensitive to uncertainties in these basic events. In three of these cases, one would need to show that model uncertainties would lead to basic event probabilities that would be between two and four orders of magnitude larger than modeled in the risk assessment before they would become important to the decision. More detailed analysis would be required to determine whether these higher probabilities are reasonable. Methods to perform this analysis from the literature are reviewed and an example is demonstrated using the case study

  14. Explaining the “how” of self-esteem development : The self-organizing self-esteem model

    NARCIS (Netherlands)

    de Ruiter, Naomi M.P.; van Geert, Paul L.C.; Kunnen, E. Saskia

    2017-01-01

    The current article proposes a theoretical model of self-esteem called the Self-Organizing Self-Esteem (SOSE) model. The model provides an integrative framework for conceptualizing and understanding the intrinsic dynamics of self-esteem and the role of the context across 3 levels of development: The

  15. Risk management in organic coffee supply chains : testing the usefulness of critical risk models

    NARCIS (Netherlands)

    Brusselaers, J.F.; Benninga, J.; Hennen, W.H.G.J.

    2011-01-01

    This report documents the findings of the analysis of the supply chain of organic coffee from Uganda to the Netherlands using a Chain Risk Model (CRM). The CRM considers contamination of organic coffee with chemicals as a threat for the supply chain, and analyses the consequences of contamination in

  16. Comparative modeling of coevolution in communities of unicellular organisms: adaptability and biodiversity.

    Science.gov (United States)

    Lashin, Sergey A; Suslov, Valentin V; Matushkin, Yuri G

    2010-06-01

    We propose an original program "Evolutionary constructor" that is capable of computationally efficient modeling of both population-genetic and ecological problems, combining these directions in one model of required detail level. We also present results of comparative modeling of stability, adaptability and biodiversity dynamics in populations of unicellular haploid organisms which form symbiotic ecosystems. The advantages and disadvantages of two evolutionary strategies of biota formation--a few generalists' taxa-based biota formation and biodiversity-based biota formation--are discussed.

  17. A Model of Self-Organizing Head-Centered Visual Responses in Primate Parietal Areas

    Science.gov (United States)

    Mender, Bedeho M. W.; Stringer, Simon M.

    2013-01-01

    We present a hypothesis for how head-centered visual representations in primate parietal areas could self-organize through visually-guided learning, and test this hypothesis using a neural network model. The model consists of a competitive output layer of neurons that receives afferent synaptic connections from a population of input neurons with eye position gain modulated retinal receptive fields. The synaptic connections in the model are trained with an associative trace learning rule which has the effect of encouraging output neurons to learn to respond to subsets of input patterns that tend to occur close together in time. This network architecture and synaptic learning rule is hypothesized to promote the development of head-centered output neurons during periods of time when the head remains fixed while the eyes move. This hypothesis is demonstrated to be feasible, and each of the core model components described is tested and found to be individually necessary for successful self-organization. PMID:24349064

  18. Children and adolescents' internal models of food-sharing behavior include complex evaluations of contextual factors.

    Science.gov (United States)

    Markovits, Henry; Benenson, Joyce F; Kramer, Donald L

    2003-01-01

    This study examined internal representations of food sharing in 589 children and adolescents (8-19 years of age). Questionnaires, depicting a variety of contexts in which one person was asked to share a resource with another, were used to examine participants' expectations of food-sharing behavior. Factors that were varied included the value of the resource, the relation between the two depicted actors, the quality of this relation, and gender. Results indicate that internal models of food-sharing behavior showed systematic patterns of variation, demonstrating that individuals have complex contextually based internal models at all ages, including the youngest. Examination of developmental changes in use of individual patterns is consistent with the idea that internal models reflect age-specific patterns of interactions while undergoing a process of progressive consolidation.

  19. Scaling, phase transitions, and nonuniversality in a self-organized critical cellular-automaton model

    International Nuclear Information System (INIS)

    Christensen, K.; Olami, Z.

    1992-01-01

    We present a two-dimensional continuous cellular automaton that is equivalent to a driven spring-block model. Both the conservation and the anisotropy in the model are controllable quantities. Above a critical level of conservation, the model exhibits self-organized criticality. The self-organization of this system and hence the critical exponents depend on the conservation and the boundary conditions. In the critical isotropic nonconservative phase, the exponents change continuously as a function of conservation. Furthermore, the exponents vary continuously when changing the boundary conditions smoothly. Consequently, there is no universality of the critical exponents. We discuss the relevance of this for earthquakes. Introducing anisotropy changes the scaling of the distribution function, but not the power-law exponent. We explore the phase diagram of this model. We find that at low conservation levels a localization transition occurs. We see two additional phase transitions. The first is seen when moving from the conservative into the nonconservative model. The second appears when passing from the anisotropic two-dimensional system to the purely one-dimensional system

  20. Transparent model of temporal bone and vestibulocochlear organ made by 3D printing.

    Science.gov (United States)

    Suzuki, Ryoji; Taniguchi, Naoto; Uchida, Fujio; Ishizawa, Akimitsu; Kanatsu, Yoshinori; Zhou, Ming; Funakoshi, Kodai; Akashi, Hideo; Abe, Hiroshi

    2018-01-01

    The vestibulocochlear organ is composed of tiny complex structures embedded in the petrous part of the temporal bone. Landmarks on the temporal bone surface provide the only orientation guide for dissection, but these need to be removed during the course of dissection, making it difficult to grasp the underlying three-dimensional structures, especially for beginners during gross anatomy classes. We report herein an attempt to produce a transparent three-dimensional-printed model of the human ear. En bloc samples of the temporal bone from donated cadavers were subjected to computed tomography (CT) scanning, and on the basis of the data, the surface temporal bone was reconstructed with transparent resin and the vestibulocochlear organ with white resin to create a 1:1.5 scale model. The carotid canal was stuffed with red cotton, and the sigmoid sinus and internal jugular vein were filled with blue clay. In the inner ear, the internal acoustic meatus, cochlea, and semicircular canals were well reconstructed in detail with white resin. The three-dimensional relationships of the semicircular canals, spiral turns of the cochlea, and internal acoustic meatus were well recognizable from every direction through the transparent surface resin. The anterior semicircular canal was obvious immediately beneath the arcuate eminence, and the topographical relationships of the vestibulocochlear organ and adjacent great vessels were easily discernible. We consider that this transparent temporal bone model will be a very useful aid for better understanding of the gross anatomy of the vestibulocochlear organ.

  1. The generalized model of organization and planning of regional gas supply monitoring

    Directory of Open Access Journals (Sweden)

    Maria V. Shevchenko

    2015-12-01

    Full Text Available At the moment, gas is one of the most promising types of fuel in Ukraine. In this regard, the problems associated with its transportation in the regional system of gas supply are relevant. Now it is not completely solved and needs detailed study the problem of monitoring the regional gas supply system. Aim: The aim of the study is to improve the efficiency of the regional gas supply system at the expense of the organization and planning of gas transport monitoring and, in the future, the synthesis of the monitoring system of regional gas supply. Materials and Methods: The generalized model of organization and planning of monitoring regional gas suppliers were developed to achieve this goal. It allows making decisions on the organization of the monitoring system. In addition, this model makes it possible to plan under conditions of multicriteriality and uncertainty of the source data. Results: The basic criteria and constraints for solving the problem of organizing and planning the monitoring system of regional gas supply are proposed in this work. The corresponding computations were made to confirm the assumptions. The calculations were carried out in context of uncertainty of input data using a set of methods for the analysis of hierarchies, exhaustive search, as well as the methods of decision making in context of uncertainty.

  2. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  3. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  4. USE OF THE “ROTHC” MODEL TO SIMULATE SOIL ORGANIC CARBON DYNAMICS ON A SILTY-LOAM INCEPTISOL IN NORTHERN ITALY UNDER DIFFERENT FERTILIZATION PRACTICES

    Directory of Open Access Journals (Sweden)

    Rosa Francaviglia

    2014-01-01

    Full Text Available We evaluated the efficiency of the RothC model to simulate Soil Organic Carbon (SOC dynamics after 12 years of organic and mineral fertilization practices in a study area located in northern Italy, on a silty-loam Inceptisol with a rotation including tomato, maize and alfalfa. The model performance was assessed by RMSE and EF coefficients. RothC simulated well observed SOC decreases in 71 samples (RMSE=7.42; EF=0.79, while performed with less accuracy when considering all samples (96 samples; RMSE=12.37; EF=0.58, due to the fact that the model failed in case of measured SOC increases (25 samples; RMSE=20.77; EF=-0.038. The model was used to forecast the SOC dynamics over a 50 year period under the same pedoclimatic conditions. Only clay contents >15% allowed to predict increasing levels of SOC respect to the starting values.

  5. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  6. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  7. MODEL OF PROVIDING WITH DEVELOPMENT STRATEGY FOR INFORMATION TECHNOLOGIES IN AN ORGANIZATION

    Directory of Open Access Journals (Sweden)

    A. A. Kuzkin

    2015-03-01

    Full Text Available Subject of research. The paper presents research and instructional tools for assessment of providing with the development strategy for information technologies in an organization. Method. The corresponding assessment model is developed which takes into consideration IT-processes equilibrium according to selected efficiency factors of information technologies application. Basic results. The model peculiarity resides in applying neuro-fuzzy approximators where the conclusion is drawn upon fuzzy logic, and membership functions are adjusted through the use of neural networks. For the adequacy testing of the suggested model, due diligence result analysis has been carried out for the IT-strategy executed in the “Navigator” group of companies at the stage of implementation and support of new technologies and production methods. Data visualization with a circle diagram is applied for the comparative evaluation of the analysis results. The chosen model adequacy is proved by the agreement between predictive assessments for IT-strategy performance targets derived by means of the fuzzy cognitive model over 12 months planning horizon and the real values of these targets upon the expiry of the given planning term. Practical significance. The developed model application gives the possibility to solve the problem of sustainability assessment for the process of providing the required IT-strategy realization level based upon the fuzzy cognitive map analysis and to reveal IT-objectives changing tendencies for an organization over the stated planning interval.

  8. A Contigency Model for Predicting Institutionalization of Innovation Across Divergent Organizations.

    Science.gov (United States)

    Howes, Nancy J.

    This study was undertaken to compare the variables related to the successful institutionalization of changes across divergent organizations, and to design, through cross-validation, an interorganization model of change. Descriptive survey questionnaires and structured interviews were the instruments used. The respondent sample consisted of 1,500…

  9. Peningkatan Keterampilan Pengambilan Keputusan Dan Penguasaan Konsep IPA Melalui Model Pembelajaran Advance Organizer Di Sekolah Dasar

    OpenAIRE

    Badarudin

    2017-01-01

    Peningkatan Keterampilan Pengambilan Keputusan dan Penguasaan Konsep IPA melalui Model Pembelajaran Advance Organizer di Sekolah Dasar. Penelitian ini bertujuan untuk mengetahui perbedaan peningkatan keterampilan pengambilan keputusan dan pemahaman konsep IPA siswa sebagai dampak dari implementasi model Advance Organizer. Penelitian ini menggunakan metode kuasi eksperimen dengan desain Non equivalent (Pre-Test and Post- Test) Control Groups Design. Subyek penelitian adalah siswa kelas V pada ...

  10. Working fluid charge oriented off-design modeling of a small scale Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Liu, Liuchen; Zhu, Tong; Ma, Jiacheng

    2017-01-01

    Highlights: • Organic Rankine Cycle model considering working fluid charge has been established. • Overall solution algorithm of system off-design performance is proposed. • Variation trend of different zones in both heat exchangers can be observed. • Optimal working fluid charge volume for different output work has been estimated. - Abstract: Organic Rankine Cycle system is one of the most widely used technique for low-grade waste heat recovery. Developing of dynamic Organic Rankine Cycle models played an increasingly important part in system performance prediction. The present paper developed a working fluid charge oriented model for an small scale Organic Rankine Cycle to calculate the theoretical value of working fluid charge level for the system under rated condition. The two heat exchangers are divided into three different zones and related heat transfer correlations are employed to estimate the length variation of each zones. Steady state models have been applied to describe the performance of pump and expander. Afterwards, an overall solution algorithm based on the established model has been proposed in order to exact simulate the system’s off-design performance. Additionally, the impact of different working fluid charge volumes has also been discussed. Simulation results clearly shows the variation trend of different zones in both heat exchangers, as well as the variation trend of system operating parameters under various expander output work. Furthermore, the highest thermal efficiency can be reached 6.37% under rated conditions with a working fluid charge volume of 34.6 kg.

  11. [The social hygienic model of organization of preventive activities concerning rural population of the Omskaia oblast].

    Science.gov (United States)

    Berehnoii, V G

    2016-01-01

    The study was carried out concerning environmental factors and social hygienic portrait of rural residents. The analysis determined environmental, social and behavioral risk factors of health. The pathologies of risk for rural residents were substantiated. In conditions of degradation of accessibility of medical care to inhabitants residing outside of district centers specified by decreasing of capacity of hospital medical care and decreasing of accessibility of out-patient services, the visiting trips of physicians ’ teams and activities concerning development of hygienic literacy were organized in 2012-2014. This approach permitted ameliorating health indices and organization of medical care for the given category of citizen, including positive results in decreasing of mortality, timely diagnostic of diseases, reduction of number of emergency operations in central district hospitals and attenuation of intensity of impact of regulative risk factors. All this determined in the upshot social and economic effectiveness of advanced model of prevention of health disorders of rural residents.

  12. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali [Mining and Petroleum Engineering Faculty, Institut Teknologi Bandung, Bandung, 40132 (Indonesia)

    2015-09-30

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.

  13. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    International Nuclear Information System (INIS)

    Herawati, Ida; Winardhi, Sonny; Priyono, Awali

    2015-01-01

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented

  14. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations.

    Science.gov (United States)

    Heringa, Minne B; Geraets, Liesbeth; van Eijkeren, Jan C H; Vandebriel, Rob J; de Jong, Wim H; Oomen, Agnes G

    2016-12-01

    Titanium dioxide white pigment consists of particles of various sizes, from which a fraction is in the nano range (food as additive E 171 as well as in other products, such as food supplements and toothpaste. Here, we assessed whether a human health risk can be expected from oral ingestion of these titanium dioxide nanoparticles (TiO 2 NPs), based on currently available information. Human health risks were assessed using two different approaches: Approach 1, based on intake, i.e. external doses, and Approach 2, based on internal organ concentrations using a kinetic model in order to account for accumulation over time (the preferred approach). Results showed that with Approach 1, a human health risk is not expected for effects in liver and spleen, but a human health risk cannot be excluded for effects on the ovaries. When based on organ concentrations by including the toxicokinetics of TiO 2 NPs (Approach 2), a potential risk for liver, ovaries and testes is found. This difference between the two approaches shows the importance of including toxicokinetic information. The currently estimated risk can be influenced by factors such as absorption, form of TiO 2 , particle fraction, particle size and physico-chemical properties in relation to toxicity, among others. Analysis of actual particle concentrations in human organs, as well as organ concentrations and effects in liver and the reproductive system after chronic exposure to well-characterized TiO 2 (NPs) in animals are recommended to refine this assessment.

  15. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Defraene, Gilles; Van den Bergh, Laura; Al-Mamgani, Abrahim; Haustermans, Karin; Heemsbergen, Wilma; Van den Heuvel, Frank; Lebesque, Joos V.

    2012-01-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011–0.013) clinical factor was “previous abdominal surgery.” As second significant (p = 0.012–0.016) factor, “cardiac history” was included in all three rectal bleeding fits, whereas including “diabetes” was significant (p = 0.039–0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003–0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D 50 . Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions

  16. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Defraene, Gilles, E-mail: gilles.defraene@uzleuven.be [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Van den Bergh, Laura [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Al-Mamgani, Abrahim [Department of Radiation Oncology, Erasmus Medical Center - Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Haustermans, Karin [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Heemsbergen, Wilma [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Van den Heuvel, Frank [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Lebesque, Joos V. [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2012-03-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints

  17. Estimating the fates of organic contaminants in an aquifer using QSAR.

    Science.gov (United States)

    Lim, Seung Joo; Fox, Peter

    2013-01-01

    The quantitative structure activity relationship (QSAR) model, BIOWIN, was modified to more accurately estimate the fates of organic contaminants in an aquifer. The predictions from BIOWIN were modified to include oxidation and sorption effects. The predictive model therefore included the effects of sorption, biodegradation, and oxidation. A total of 35 organic compounds were used to validate the predictive model. The majority of the ratios of predicted half-life to measured half-life were within a factor of 2 and no ratio values were greater than a factor of 5. In addition, the accuracy of estimating the persistence of organic compounds in the sub-surface was superior when modified by the relative fraction adsorbed to the solid phase, 1/Rf, to that when modified by the remaining fraction of a given compound adsorbed to a solid, 1 - fs.

  18. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  19. LSOT: A Lightweight Self-Organized Trust Model in VANETs

    Directory of Open Access Journals (Sweden)

    Zhiquan Liu

    2016-01-01

    Full Text Available With the advances in automobile industry and wireless communication technology, Vehicular Ad hoc Networks (VANETs have attracted the attention of a large number of researchers. Trust management plays an important role in VANETs. However, it is still at the preliminary stage and the existing trust models cannot entirely conform to the characteristics of VANETs. This work proposes a novel Lightweight Self-Organized Trust (LSOT model which contains trust certificate-based and recommendation-based trust evaluations. Both the supernodes and trusted third parties are not needed in our model. In addition, we comprehensively consider three factor weights to ease the collusion attack in trust certificate-based trust evaluation, and we utilize the testing interaction method to build and maintain the trust network and propose a maximum local trust (MLT algorithm to identify trustworthy recommenders in recommendation-based trust evaluation. Furthermore, a fully distributed VANET scenario is deployed based on the famous Advogato dataset and a series of simulations and analysis are conducted. The results illustrate that our LSOT model significantly outperforms the excellent experience-based trust (EBT and Lightweight Cross-domain Trust (LCT models in terms of evaluation performance and robustness against the collusion attack.

  20. Engineering Functional Epithelium for Regenerative Medicine and In Vitro Organ Models: A Review

    Science.gov (United States)

    Vrana, Nihal E.; Lavalle, Philippe; Dokmeci, Mehmet R.; Dehghani, Fariba; Ghaemmaghami, Amir M.

    2013-01-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the