WorldWideScience

Sample records for model neurobiological preparations

  1. Towards a neurobiological model of offending.

    Science.gov (United States)

    Mitchell, Ian J; Beech, Anthony R

    2011-07-01

    In this paper we consider how disturbances in the neurobiological/neurochemical processes at a young age lead to problematic attachment styles in later life, and which can potentiate probability of offending behavior. In particular, we will contrast attachment and offending patterns of the more generalist type of offender (i.e., those who have a varied criminal career, committing both violent and non-violent offenses, in extremis the psychopathic type of offender), with the more specialist sexual offender (prototypically, the fixated pedophile), in the light of a preliminary neurobiological model. Here, we will argue that these two extremes of offenders show, or are predicted to show, differential patterns of neurochemical/neurobiological functioning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Successful and unsuccessful psychopaths: a neurobiological model.

    Science.gov (United States)

    Gao, Yu; Raine, Adrian

    2010-01-01

    Despite increasing interest in psychopathy research, surprisingly little is known about the etiology of non-incarcerated, successful psychopaths. This review provides an analysis of current knowledge on the similarities and differences between successful and unsuccessful psychopaths derived from five population sources: community samples, individuals from employment agencies, college students, industrial psychopaths, and serial killers. An initial neurobiological model of successful and unsuccessful psychopathy is outlined. It is hypothesized that successful psychopaths have intact or enhanced neurobiological functioning that underlies their normal or even superior cognitive functioning, which in turn helps them to achieve their goals using more covert and nonviolent methods. In contrast, in unsuccessful, caught psychopaths, brain structural and functional impairments together with autonomic nervous system dysfunction are hypothesized to underlie cognitive and emotional deficits and more overt violent offending.

  3. Neurobiological correlates of cognitions in fear and anxiety: a cognitive-neurobiological information-processing model.

    Science.gov (United States)

    Hofmann, Stefan G; Ellard, Kristen K; Siegle, Greg J

    2012-01-01

    We review likely neurobiological substrates of cognitions related to fear and anxiety. Cognitive processes are linked to abnormal early activity reflecting hypervigilance in subcortical networks involving the amygdala, hippocampus, and insular cortex, and later recruitment of cortical regulatory resources, including activation of the anterior cingulate cortex and prefrontal cortex to implement avoidant response strategies. Based on this evidence, we present a cognitive-neurobiological information-processing model of fear and anxiety, linking distinct brain structures to specific stages of information processing of perceived threat.

  4. Body Dysmorphic Disorder: Neurobiological Features and an Updated Model

    Science.gov (United States)

    Li, Wei; Arienzo, Donatello; Feusner, Jamie D.

    2013-01-01

    Body Dysmorphic Disorder (BDD) affects approximately 2% of the population and involves misperceived defects of appearance along with obsessive preoccupation and compulsive behaviors. There is evidence of neurobiological abnormalities associated with symptoms in BDD, although research to date is still limited. This review covers the latest neuropsychological, genetic, neurochemical, psychophysical, and neuroimaging studies and synthesizes these findings into an updated (yet still preliminary) neurobiological model of the pathophysiology of BDD. We propose a model in which visual perceptual abnormalities, along with frontostriatal and limbic system dysfunction, may combine to contribute to the symptoms of impaired insight and obsessive thoughts and compulsive behaviors expressed in BDD. Further research is necessary to gain a greater understanding of the etiological formation of BDD symptoms and their evolution over time. PMID:25419211

  5. An interoceptive model of bulimia nervosa: A neurobiological systematic review.

    Science.gov (United States)

    Klabunde, Megan; Collado, Danielle; Bohon, Cara

    2017-11-01

    The objective of our study was to examine the neurobiological support for an interoceptive sensory processing model of bulimia nervosa (BN). To do so, we conducted a systematic review of interoceptive sensory processing in BN, using the PRISMA guidelines. We searched PsychInfo, Pubmed, and Web of Knowledge databases to identify biological and behavioral studies that examine interoceptive detection in BN. After screening 390 articles for inclusion and conducting a quality assessment of articles that met inclusion criteria, we reviewed 41 articles. We found that global interoceptive sensory processing deficits may be present in BN. Specifically there is evidence of abnormal brain function, structure and connectivity in the interoceptive neural network, in addition to gastric and pain processing disturbances. These results suggest that there may be a neurobiological basis for global interoceptive sensory processing deficits in BN that remain after recovery. Data from taste and heart beat detection studies were inconclusive; some studies suggest interoceptive disturbances in these sensory domains. Discrepancies in findings appear to be due to methodological differences. In conclusion, interoceptive sensory processing deficits may directly contribute to and explain a variety of symptoms present in those with BN. Further examination of interoceptive sensory processing deficits could inform the development of treatments for those with BN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Realistic Avatar Eye and Head Animation Using a Neurobiological Model of Visual Attention

    National Research Council Canada - National Science Library

    Itti, L; Dhavale, N; Pighin, F

    2003-01-01

    We describe a neurobiological model of visual attention and eye/head movements in primates, and its application to the automatic animation of a realistic virtual human head watching an unconstrained...

  7. Auditory object perception: A neurobiological model and prospective review.

    Science.gov (United States)

    Brefczynski-Lewis, Julie A; Lewis, James W

    2017-10-01

    Interaction with the world is a multisensory experience, but most of what is known about the neural correlates of perception comes from studying vision. Auditory inputs enter cortex with its own set of unique qualities, and leads to use in oral communication, speech, music, and the understanding of emotional and intentional states of others, all of which are central to the human experience. To better understand how the auditory system develops, recovers after injury, and how it may have transitioned in its functions over the course of hominin evolution, advances are needed in models of how the human brain is organized to process real-world natural sounds and "auditory objects". This review presents a simple fundamental neurobiological model of hearing perception at a category level that incorporates principles of bottom-up signal processing together with top-down constraints of grounded cognition theories of knowledge representation. Though mostly derived from human neuroimaging literature, this theoretical framework highlights rudimentary principles of real-world sound processing that may apply to most if not all mammalian species with hearing and acoustic communication abilities. The model encompasses three basic categories of sound-source: (1) action sounds (non-vocalizations) produced by 'living things', with human (conspecific) and non-human animal sources representing two subcategories; (2) action sounds produced by 'non-living things', including environmental sources and human-made machinery; and (3) vocalizations ('living things'), with human versus non-human animals as two subcategories therein. The model is presented in the context of cognitive architectures relating to multisensory, sensory-motor, and spoken language organizations. The models' predictive values are further discussed in the context of anthropological theories of oral communication evolution and the neurodevelopment of spoken language proto-networks in infants/toddlers. These phylogenetic

  8. Musical hallucinosis: case reports and possible neurobiological models.

    Science.gov (United States)

    Mocellin, Ramon; Walterfang, Mark; Velakoulis, Dennis

    2008-04-01

    The perception of music without a stimulus, or musical hallucination, is reported in both organic and psychiatric disorders. It is most frequently described in the elderly with associated hearing loss and accompanied by some degree of insight. In this setting it is often referred to as 'musical hallucinosis'. The aim of the authors was to present examples of this syndrome and review the current understanding of its neurobiological basis. We describe three cases of persons experiencing musical hallucinosis in the context of hearing deficits with varying degrees of associated central nervous system abnormalities. Putative neurobiological mechanisms, in particular those involving de-afferentation of a complex auditory recognition system by complete or partial deafness, are discussed in the light of current information from the literature. Musical hallucinosis can be experienced in those patients with hearing impairment and is phenomenologically distinct for hallucinations described in psychiatric disorders.

  9. The Central Role of Recognition in Auditory Perception: A Neurobiological Model

    Science.gov (United States)

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…

  10. Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation.

    Science.gov (United States)

    Anderson, Andrew James; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Aguilar, Mario; Wang, Xixi; Doko, Donias; Raizada, Rajeev D S

    2017-09-01

    We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Unmasking feigned sanity: a neurobiological model of emotion processing in primary psychopathy.

    Science.gov (United States)

    van Honk, Jack; Schutter, Dennis J L G

    2006-05-01

    The neurobiological basis of primary psychopathy, an emotional disorder characterised by a lack of fear and empathy, on the one hand, and extremely violent, antisocial tendencies, on the other, is relatively unknown. Nevertheless, theoretical models that emphasise the role of fearlessness, imbalanced motivation, defective somatic markers, and dysfunctional violence inhibition mechanisms have complementary proposals regarding motivations and brain mechanisms involved. Presently, incorporating the heuristic value of these models and further theorising on the basis of recent data from neuropsychology, neuroendocrinology, neuroimaging, and repetitive transcranial magnetic stimulation (rTMS), an attempt is made to construct a neurobiological framework of emotion processing in primary psychopathy with clinical applicability. According to this framework, defective emotional processing in primary psychopathy results from bottom-up hormone-mediated imbalances at: (1) the subcortical level; (2) in subcortico-cortical "cross-talk"; that end up in an instrumental stance at the cortical level (3). An endocrine dual-system approach for the fine-tuned restoration of these hormone-mediated imbalances is proposed as a possible clinical application. This application may be capable of laying a neurobiological foundation for more successful sociotherapeutic interventions in primary psychopathy.

  12. Mind from genes and neurons: a neurobiological model of Freudian psychology.

    Science.gov (United States)

    Brito, Gilberto N O

    2002-10-01

    A hypothetical neurobiological model of Freud's architecture of the mind is presented in an attempt to unify concepts and data derived from molecular biology (e.g., genomic imprinting), systems neuroscience (e.g., neuroanatomochemical circuitries), evolutionary psychology (e.g., human mating strategies), and Freudian psychology. The model posits that events related to genomic imprinting can be regulated in a tissue-specific manner over the course of neural development such that imprinting along the matriline would favor the development of corticostriatal structures whereas imprinting along the patriline would favor the development of limbic-subcortical structures. A neuropsychological analysis of the brain requirements for successful mating presumably would put an evolutionary premium on the corticostriatal system (matrilineal) in men and limbic-subcortical systems (patrilineal) in women. Additionally, the model emphasizes that the ego and the super-ego of Freudian psychology are dependent on corticostriatal mechanisms (matriline-related), while the id is dependent on brainstem processes (patriline-related). It is hoped that the model herein presented has heuristic value for a rapprochement of psychoanalysis and neurobiology.

  13. The default mode network and recurrent depression: a neurobiological model of cognitive risk factors.

    Science.gov (United States)

    Marchetti, Igor; Koster, Ernst H W; Sonuga-Barke, Edmund J; De Raedt, Rudi

    2012-09-01

    A neurobiological account of cognitive vulnerability for recurrent depression is presented based on recent developments of resting state neural networks. We propose that alterations in the interplay between task positive (TP) and task negative (TN) elements of the Default Mode Network (DMN) act as a neurobiological risk factor for recurrent depression mediated by cognitive mechanisms. In the framework, depression is characterized by an imbalance between TN-TP components leading to an overpowering of TP by TN activity. The TN-TP imbalance is associated with a dysfunctional internally-focused cognitive style as well as a failure to attenuate TN activity in the transition from rest to task. Thus we propose the TN-TP imbalance as overarching neural mechanism involved in crucial cognitive risk factors for recurrent depression, namely rumination, impaired attentional control, and cognitive reactivity. During remission the TN-TP imbalance persists predisposing to vulnerability of recurrent depression. Empirical data to support this model is reviewed. Finally, we specify how this framework can guide future research efforts.

  14. Aspects of Piaget's cognitive developmental psychology and neurobiology of psychotic disorders - an integrative model.

    Science.gov (United States)

    Gebhardt, Stefan; Grant, Phillip; von Georgi, Richard; Huber, Martin T

    2008-09-01

    Psychological, neurobiological and neurodevelopmental approaches have frequently been used to provide pathogenic concepts on psychotic disorders. However, aspects of cognitive developmental psychology have hardly been considered in current models. Using a hypothesis-generating approach an integration of these concepts was conducted. According to Piaget (1896-1980), assimilation and accommodation as forms of maintenance and modification of cognitive schemata represent fundamental processes of the brain. In general, based on the perceived input stimuli, cognitive schemata are developed resulting in a conception of the world, the realistic validity and the actuality of which is still being controlled and modified by cognitive adjustment processes. In psychotic disorders, however, a disproportion of environmental demands and the ability to activate required neuronal adaptation processes occurs. We therefore hypothesize a failure of the adjustment of real and requested output patterns. As a consequence autonomous cognitive schemata are generated, which fail to adjust with reality resulting in psychotic symptomatology. Neurobiological, especially neuromodulatory and neuroplastic processes play a central role in these perceptive and cognitive processes. In conclusion, integration of cognitive developmental psychology into the existing pathogenic concepts of psychotic disorders leads to interesting insights into basic disease mechanisms and also guides future research in the cognitive neuroscience of such disorders.

  15. Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction

    Directory of Open Access Journals (Sweden)

    Bianca Jupp

    2013-03-01

    Full Text Available Impulsivity describes the tendency of an individual to act prematurely without foresight and is associated with a number of neuropsychiatric co-morbidities, including drug addiction. As such, there is increasing interest in the neurobiological mechanisms of impulsivity, as well as the genetic and environmental influences that govern the expression of this behaviour. Tests used on rodent models of impulsivity share strong parallels with tasks used to assess this trait in humans, and studies in both suggest a crucial role of monoaminergic corticostriatal systems in the expression of this behavioural trait. Furthermore, rodent models have enabled investigation of the causal relationship between drug abuse and impulsivity. Here, we review the use of rodent models of impulsivity for investigating the mechanisms involved in this trait, and how these mechanisms could contribute to the pathogenesis of addiction.

  16. Imaging and Modeling Laboratory in Neurobiology and Oncology - IMNC. Activity report 2008-2012

    International Nuclear Information System (INIS)

    Charon, Yves; Arlaud, Nathalie; Mastrippolito, Roland

    2014-09-01

    The Imaging and Modeling Laboratory in Neurobiology and Oncology (IMNC) is an interdisciplinary unit shared between the Paris-Sud and Paris-Diderot universities and the National Institute of Nuclear and particle physics (IN2P3). Created in January 2006, the laboratory activities are structured around three main topics: the clinical and pre-clinical multi-modal imaging (optical and isotopic), the modeling of tumoral processes, and radiotherapy. This report presents the activities of the laboratory during the years 2008-2012: 1 - Forewords; 2 - Highlights; 3 - Research teams: Small animal imaging; Metabolism, imaging and olfaction; Surgery imaging in oncology; Quantification in molecular imaging; Modeling of biological systems; 4 - Technical innovations: Instrumentation, Scientific calculation, Biology department, valorisation and open-source softwares; 5 - Publications; 6 - Scientific life, communication and teaching activities; 7 - Laboratory operation; 8 - Perspectives

  17. Using the Activity-based Anorexia Rodent Model to Study the Neurobiological Basis of Anorexia Nervosa.

    Science.gov (United States)

    Chowdhury, Tara Gunkali; Chen, Yi-Wen; Aoki, Chiye

    2015-10-22

    Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive - running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals' wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.

  18. Animal Models of Post-Traumatic Stress Disorder and Recent Neurobiological Insights

    Science.gov (United States)

    Whitaker, Annie M.; Gilpin, Nicholas W.; Edwards, Scott

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a complex psychiatric disorder characterized by the intrusive re-experiencing of past trauma, avoidant behavior, enhanced fear, and hyperarousal following a traumatic event in vulnerable populations. Preclinical animal models do not replicate the human condition in its entirety, but seek to mimic symptoms or endophenotypes associated with PTSD. Although many models of traumatic stress exist, few adequately capture the complex nature of the disorder and the observed individual variability in susceptibility of humans to develop PTSD. In addition, various types of stressors may produce different molecular neuroadaptations that likely contribute to the various behavioral disruptions produced by each model, although certain consistent neurobiological themes related to PTSD have emerged. For example, animal models report traumatic stress- and trauma reminder-induced alterations in neuronal activity in the amygdala and prefrontal cortex, in agreement with the human PTSD literature. Models have also provided a conceptual framework for the often observed combination of PTSD and co-morbid conditions such as alcohol use disorder (AUD). Future studies will continue to refine preclinical PTSD models in hopes of capitalizing on their potential to deliver new and more efficacious treatments for PTSD and associated psychiatric disorders. PMID:25083568

  19. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

    Science.gov (United States)

    Kim, Ki Chan; Gonzales, Edson Luck; Lázaro, María T.; Choi, Chang Soon; Bahn, Geon Ho; Yoo, Hee Jeong; Shin, Chan Young

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance. PMID:27133257

  20. Craving to quit: psychological models and neurobiological mechanisms of mindfulness training as treatment for addictions.

    Science.gov (United States)

    Brewer, Judson A; Elwafi, Hani M; Davis, Jake H

    2013-06-01

    Humans suffer heavily from substance use disorders and other addictions. Despite much effort that has been put into understanding the mechanisms of the addictive process, treatment strategies have remained suboptimal over the past several decades. Mindfulness training, which is based on ancient Buddhist models of human suffering, has recently shown preliminary efficacy in treating addictions. These early models show remarkable similarity to current models of the addictive process, especially in their overlap with operant conditioning (positive and negative reinforcement). Further, they may provide explanatory power for the mechanisms of mindfulness training, including its effects on core addictive elements, such as craving, and the underlying neurobiological processes that may be active therein. In this review, using smoking as an example, we will highlight similarities between ancient and modern views of the addictive process, review studies of mindfulness training for addictions and their effects on craving and other components of this process, and discuss recent neuroimaging findings that may inform our understanding of the neural mechanisms of mindfulness training. 2013 APA, all rights reserved

  1. Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models.

    Science.gov (United States)

    Harrison, E L; Baune, B T

    2014-05-13

    Childhood adversity alters the predisposition to psychiatric disorders later in life. Those with psychiatric conditions and a history of early adversity exhibit a higher incidence of treatment resistance compared with individuals with no such history. Modulation of the influence early stress exerts over neurobiology may help to prevent the development of psychiatric disorders in some cases, while attenuating the extent of treatment resistance in those with established psychiatric disorders. This review aims to critically evaluate the ability of behavioural, environmental and pharmacologic interventions to modulate neurobiological changes induced by early stress in animal models. Databases were systematically searched to locate literature relevant to this review. Early adversity was defined as stress that resulted from manipulation of the mother-infant relationship. Analysis was restricted to animal models to enable characterisation of how a given intervention altered specific neurobiological changes induced by early stress. A wide variety of changes in neurobiology due to early stress are amenable to intervention. Behavioural interventions in childhood, exercise in adolescence and administration of epigenetic-modifying drugs throughout life appear to best modulate cellar and behavioural alterations induced by childhood adversity. Other pharmacotherapies, such as endocannabinoid system modulators, anti-inflammatories and antidepressants can also influence these neurobiological and behavioural changes that result from early stress, although findings are less consistent at present and require further investigation. Further work is required to examine the influence that behavioural interventions, exercise and epigenetic-modifying drugs exert over alterations that occur following childhood stress in human studies, before possible translational into clinical practice is possible.

  2. Neurobiological and Memory Models of Risky Decision Making in Adolescents versus Young Adults

    Science.gov (United States)

    Reyna, Valerie F.; Estrada, Steven M.; DeMarinis, Jessica A.; Myers, Regina M.; Stanisz, Janine M.; Mills, Britain A.

    2011-01-01

    Predictions of fuzzy-trace theory and neurobiological approaches are examined regarding risk taking in a classic decision-making task--the framing task--as well as in the context of real-life risk taking. We report the 1st study of framing effects in adolescents versus adults, varying risk and reward, and relate choices to individual differences,…

  3. Stochastic modeling of neurobiological time series: Power, coherence, Granger causality, and separation of evoked responses from ongoing activity

    Science.gov (United States)

    Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou

    2006-06-01

    In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.

  4. [Neurobiology of Tourette Syndrome].

    Science.gov (United States)

    Ünal, Dilek; Akdemir, Devrim

    2016-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder characterized by chronic motor and vocal tics. Although it is a common disorder in childhood, the etiology of Tourette Syndrome has not been fully elucidated yet. Studies, -conducted so far- have revealed differences in neurobiological structures of individuals who suffer from Tourette Syndrome. The objective of this review is to assess etiological and pathophysiological studies in the Tourette Syndrome literature. An electronical search was conducted in PubMed database using the keywords tic disorders, Tourette Syndrome, neurobiology, genetics, neuroimaging and animal models. Research and review studies published between 1985 and 2015, with a selection preference towards recent publications, were reviewed. According to the studies, genetic predisposition hypothesis is considered as a priority. However, a precise genetic disorder associated with Tourette Syndrome has not been found. The evidence from postmortem and neuroimaging studies in heterogenous patient groups and animal studies supports the pathological involvement of cortico-striato-thalamo-cortical (CSTC) circuits in Tourette Syndrome. Consequently, the most emphasized hypothesis in the pathophysiology is the dopaminergic dysfunction in these circuits. Furthermore, these findings of the animal, postmortem and neuroimaging studies have confirmed the neurodevelopmental hypothesis of Tourette Syndrome. In conclusion, more studies are needed to understand the etiology of the disorder. The data obtained from neurobiological studies of the disorder will not only shed light on the way of Tourette Syndrome, but also guide studies on its treatment options.

  5. Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment

    Directory of Open Access Journals (Sweden)

    Jillian Vinall

    2016-12-01

    Full Text Available Chronic pain during childhood and adolescence can lead to persistent pain problems and mental health disorders into adulthood. Posttraumatic stress disorders and depressive and anxiety disorders are mental health conditions that co-occur at high rates in both adolescent and adult samples, and are linked to heightened impairment and disability. Comorbid chronic pain and psychopathology has been explained by the presence of shared neurobiology and mutually maintaining cognitive-affective and behavioral factors that lead to the development and/or maintenance of both conditions. Particularly within the pediatric chronic pain population, these factors are embedded within the broader context of the parent–child relationship. In this review, we will explore the epidemiology of, and current working models explaining, these comorbidities. Particular emphasis will be made on shared neurobiological mechanisms, given that the majority of previous research to date has centered on cognitive, affective, and behavioral mechanisms. Parental contributions to co-occurring chronic pain and psychopathology in childhood and adolescence will be discussed. Moreover, we will review current treatment recommendations and future directions for both research and practice. We argue that the integration of biological and behavioral approaches will be critical to sufficiently address why these comorbidities exist and how they can best be targeted in treatment.

  6. Avoidant/Restrictive Food Intake Disorder: a Three-Dimensional Model of Neurobiology with Implications for Etiology and Treatment.

    Science.gov (United States)

    Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T

    2017-08-01

    DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.

  7. Neurobiological basis of parenting disturbance.

    Science.gov (United States)

    Newman, Louise K; Harris, Melissa; Allen, Joanne

    2011-02-01

    It has been proposed that early attachment relationships shape the structure and reactivity of social brain structures that underlie later social capacities. We provide a review of the literature surrounding the development of neurological regulatory systems during infancy and outline recent research suggesting these systems go on to underlie adaptive parental responses. We review evidence in the peer-reviewed psychiatric literature including (i) observational human literature on the neurobiological and social sequelae of early parenting experiences, (ii) experimental animal literature on the effects of early maternal care on neurological development, (iii) experimental animal literature on the neurobiological underpinnings of parenting behaviours, (iv) observational and fMRI evidence on the neurobiological correlates of parenting behaviours, (v) functional and volumetric imaging studies on adults affected by borderline personality disorder. The development of infant regulatory systems is influenced by early parenting experiences. These frontolimbic regulatory systems are also heavily implicated in normal parental responses to infant cues. These frontolimbic disturbances are also observed in studies of borderline personality disorder; a disorder associated with poor emotional regulation, early trauma and disturbed parenting. While the current literature is limited to animal models of abnormal care giving, existing disorders associated with deficits in regulatory capacity and abnormal frontolimbic functioning may yet provide a human model of the neurobiology of parenting disturbance.

  8. Opaque models: Using drugs and dreams to explore the neurobiological basis of mental phenomena.

    Science.gov (United States)

    Langlitz, Nicolas

    2017-01-01

    On the basis of four historical and ethnographic case studies of modeling in neuroscience laboratories, this chapter introduces a distinction between transparent and opaque models. A transparent model is a simplified representation of a real world phenomenon. If it is not patently clear, it is at least much better comprehended than its objects of representation. An opaque model, by contrast, looks at one only partially understood phenomenon to stand in for another partially understood phenomenon. Here, the model is often just as complex as its target. Examples of such opaque models discussed in this chapter are the use of hallucinogen intoxication in humans and animals as well as the dreaming brain as models of psychosis as well as the dreaming brain as a model of consciousness in general. Several functions of opaque models are discussed, ranging from the generation of funding to the formulation of new research questions. While science studies scholars have often emphasized the epistemic fertility of failures of representation, the opacity of hallucinogen intoxications and dreams seems to have diminished the potential to produce positive knowledge from the representational relationship between the supposed models and their targets. Bidirectional comparisons between inebriation, dreaming, and psychosis, however, proved to be generative on the level of basic science. Moreover, the opaque models discussed in this chapter implicated cosmologies that steered research endeavors into certain directions rather than others. © 2017 Elsevier B.V. All rights reserved.

  9. Opposite brain emotion-regulation patterns in identity states of dissociative identity disorder: a PET study and neurobiological model.

    Science.gov (United States)

    Reinders, Antje A T S; Willemsen, Antoon T M; den Boer, Johan A; Vos, Herry P J; Veltman, Dick J; Loewenstein, Richard J

    2014-09-30

    Imaging studies in posttraumatic stress disorder (PTSD) have shown differing neural network patterns between hypo-aroused/dissociative and hyper-aroused subtypes. Since dissociative identity disorder (DID) involves different emotional states, this study tests whether DID fits aspects of the differing brain-activation patterns in PTSD. While brain activation was monitored using positron emission tomography, DID individuals (n=11) and matched DID-simulating healthy controls (n=16) underwent an autobiographic script-driven imagery paradigm in a hypo-aroused and a hyper-aroused identity state. Results were consistent with those previously found in the two PTSD subtypes for the rostral/dorsal anterior cingulate, the prefrontal cortex, and the amygdala and insula, respectively. Furthermore, the dissociative identity state uniquely activated the posterior association areas and the parahippocampal gyri, whereas the hyper-aroused identity state uniquely activated the caudate nucleus. Therefore, we proposed an extended PTSD-based neurobiological model for emotion modulation in DID: the hypo-aroused identity state activates the prefrontal cortex, cingulate, posterior association areas and parahippocampal gyri, thereby overmodulating emotion regulation; the hyper-aroused identity state activates the amygdala and insula as well as the dorsal striatum, thereby undermodulating emotion regulation. This confirms the notion that DID is related to PTSD as hypo-aroused and hyper-arousal states in DID and PTSD are similar. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Characterizing ingestive behavior through licking microstructure: Underlying neurobiology and its use in the study of obesity in animal models.

    Science.gov (United States)

    Johnson, Alexander W

    2018-02-01

    Ingestive behavior is controlled by multiple distinct peripheral and central physiological mechanisms that ultimately determine whether a particular food should be accepted or avoided. As rodents consume a fluid they display stereotyped rhythmic tongue movements, and by analyzing the temporal distribution of pauses of licking, it is possible through analyses of licking microstructure to uncover dissociable evaluative and motivational variables that contribute to ingestive behavior. The mean number of licks occurring within each burst of licking (burst and cluster size) reflects the palatability of the consumed solution, whereas the frequency of initiating novel bouts of licking behavior (burst and cluster number) is dependent upon the degree of gastrointestinal inhibition that accrues through continued fluid ingestion. This review describes the analysis of these measures within a context of the behavioral variables that come to influence the acceptance or avoidance of a fluid, and the neurobiological mechanisms that underlie alterations in the temporal distribution of pauses of licks. The application of these studies to models of obesity in animals is also described. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Preparing Instructional Leaders: A Model

    Science.gov (United States)

    Brazer, S. David; Bauer, Scott C.

    2013-01-01

    Purpose: This article proposes a model that provides one means of making instructional leadership the central focus of leadership preparation. It draws from conceptualizations of teaching and learning as well as organizational and leadership theory to advocate for greater coherence in education leadership programs. Conceptual Argument: We begin…

  12. Effects of Some Neurobiological Factors in a Self-organized Critical Model Based on Neural Networks

    International Nuclear Information System (INIS)

    Zhou Liming; Zhang Yingyue; Chen Tianlun

    2005-01-01

    Based on an integrate-and-fire mechanism, we investigate the effect of changing the efficacy of the synapse, the transmitting time-delayed, and the relative refractoryperiod on the self-organized criticality in our neural network model.

  13. Toward a Neurobiological Basis for Understanding Learning in University Modeling Instruction Physics Courses

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2018-05-01

    Full Text Available Modeling Instruction (MI for University Physics is a curricular and pedagogical approach to active learning in introductory physics. A basic tenet of science is that it is a model-driven endeavor that involves building models, then validating, deploying, and ultimately revising them in an iterative fashion. MI was developed to provide students a facsimile in the university classroom of this foundational scientific practice. As a curriculum, MI employs conceptual scientific models as the basis for the course content, and thus learning in a MI classroom involves students appropriating scientific models for their own use. Over the last 10 years, substantial evidence has accumulated supporting MI's efficacy, including gains in conceptual understanding, odds of success, attitudes toward learning, self-efficacy, and social networks centered around physics learning. However, we still do not fully understand the mechanisms of how students learn physics and develop mental models of physical phenomena. Herein, we explore the hypothesis that the MI curriculum and pedagogy promotes student engagement via conceptual model building. This emphasis on conceptual model building, in turn, leads to improved knowledge organization and problem solving abilities that manifest as quantifiable functional brain changes that can be assessed with functional magnetic resonance imaging (fMRI. We conducted a neuroeducation study wherein students completed a physics reasoning task while undergoing fMRI scanning before (pre and after (post completing a MI introductory physics course. Preliminary results indicated that performance of the physics reasoning task was linked with increased brain activity notably in lateral prefrontal and parietal cortices that previously have been associated with attention, working memory, and problem solving, and are collectively referred to as the central executive network. Critically, assessment of changes in brain activity during the physics

  14. The Use of Animal Models to Decipher Physiological and Neurobiological Alterations of Anorexia Nervosa Patients

    Science.gov (United States)

    Méquinion, Mathieu; Chauveau, Christophe; Viltart, Odile

    2015-01-01

    Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa. PMID:26042085

  15. Emotional voices in context: a neurobiological model of multimodal affective information processing.

    Science.gov (United States)

    Brück, Carolin; Kreifelts, Benjamin; Wildgruber, Dirk

    2011-12-01

    Just as eyes are often considered a gateway to the soul, the human voice offers a window through which we gain access to our fellow human beings' minds - their attitudes, intentions and feelings. Whether in talking or singing, crying or laughing, sighing or screaming, the sheer sound of a voice communicates a wealth of information that, in turn, may serve the observant listener as valuable guidepost in social interaction. But how do human beings extract information from the tone of a voice? In an attempt to answer this question, the present article reviews empirical evidence detailing the cerebral processes that underlie our ability to decode emotional information from vocal signals. The review will focus primarily on two prominent classes of vocal emotion cues: laughter and speech prosody (i.e. the tone of voice while speaking). Following a brief introduction, behavioral as well as neuroimaging data will be summarized that allows to outline cerebral mechanisms associated with the decoding of emotional voice cues, as well as the influence of various context variables (e.g. co-occurring facial and verbal emotional signals, attention focus, person-specific parameters such as gender and personality) on the respective processes. Building on the presented evidence, a cerebral network model will be introduced that proposes a differential contribution of various cortical and subcortical brain structures to the processing of emotional voice signals both in isolation and in context of accompanying (facial and verbal) emotional cues. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Emotional voices in context: A neurobiological model of multimodal affective information processing

    Science.gov (United States)

    Brück, Carolin; Kreifelts, Benjamin; Wildgruber, Dirk

    2011-12-01

    Just as eyes are often considered a gateway to the soul, the human voice offers a window through which we gain access to our fellow human beings' minds - their attitudes, intentions and feelings. Whether in talking or singing, crying or laughing, sighing or screaming, the sheer sound of a voice communicates a wealth of information that, in turn, may serve the observant listener as valuable guidepost in social interaction. But how do human beings extract information from the tone of a voice? In an attempt to answer this question, the present article reviews empirical evidence detailing the cerebral processes that underlie our ability to decode emotional information from vocal signals. The review will focus primarily on two prominent classes of vocal emotion cues: laughter and speech prosody (i.e. the tone of voice while speaking). Following a brief introduction, behavioral as well as neuroimaging data will be summarized that allows to outline cerebral mechanisms associated with the decoding of emotional voice cues, as well as the influence of various context variables (e.g. co-occurring facial and verbal emotional signals, attention focus, person-specific parameters such as gender and personality) on the respective processes. Building on the presented evidence, a cerebral network model will be introduced that proposes a differential contribution of various cortical and subcortical brain structures to the processing of emotional voice signals both in isolation and in context of accompanying (facial and verbal) emotional cues.

  17. The neurobiological basis of ADHD

    Directory of Open Access Journals (Sweden)

    Curatolo Paolo

    2010-12-01

    Full Text Available Abstract Attention-Deficit/Hyperactivity Disorder is not a single pathophysiological entity and appears to have a complex etiology. There are multiple genetic and environmental risk factors with small individual effect that act in concert to create a spectrum of neurobiological liability. Structural imaging studies show that brains of children with Attention-Deficit/Hyperactivity Disorder are significantly smaller than unaffected controls. The prefrontal cortex, basal ganglia and cerebellum are differentially affected and evidence indicating reduced connectivity in white matter tracts in key brain areas is emerging. Genetic, pharmacological, imaging, and animal models highlight the important role of dopamine dysregulation in the neurobiology of Attention-Deficit/Hyperactivity Disorder. To date, stimulants are the most effective psychopharmacological treatments available for Attention-Deficit/Hyperactivity Disorder. Currently only immediate release methylphenidate and atomoxetine are approved for the treatment of ADHD in Italy. Drug treatment should always be part of a comprehensive plan that includes psychosocial, behavioural and educational advice and interventions.

  18. Neurobiology of consciousness: an overview.

    Science.gov (United States)

    Delacour, J

    1997-05-01

    The aim of this review is to connect the phenomenology of consciousness to its neurobiology. A survey of the recent literature revealed the following points. (1) Comprehensive descriptions of consciousness, of its subjective as well as of its objective aspects, are both possible and necessary for its scientific study. An intentionality-modeling structure (an unified and stable ego refers to objects or to itself in the framework of a stable, reproducible, predictable world) accounts for the main features. (2) The material basis of consciousness can be clarified without recourse to new properties of matter or to quantum physics. Current neurobiology appears to be able to handle the problem. In fact, the neurobiology of consciousness is already in progress, and has achieved substantial results. At the system level, its main sources of data are: the neurophysiology of sleep-wakefulness, brain imaging of mental representations, attention and working memory, the neuropsychology of frontal syndrome, and awareness-unawareness dissociations in global amnesia and different forms of agnosia. At an intermediate level of organization, the mechanisms of consciousness may be the formation of a certain kind of neural assembly. (3) Further research may focus on neuropsychology and neurophysiology of object perception and recognition as a natural model of intentionality, perception of time, body schema, interhemispheric communications, 'voluntary' acts and mental images. The synthetic and dynamic views provided by brain imaging may be decisive for discovering the neural correlates of the integrative aspects of consciousness. (4) The neurobiological approach may, beyond the finding of cellular and molecular mechanisms, improve the general concepts of consciousness, overcome their antinomies and, against epiphenomenalism, definitely establish the reality of consciousness.

  19. Neurobiological basis of PTSD

    International Nuclear Information System (INIS)

    Yamasue, Hidenori; Kasai, Kiyoto

    2006-01-01

    This review describes posttraumatic stress disorder (PTSD) from the aspect that it is one of precious neurobiological models where the stress caused by an outer environmental factor affects the livings afterwards. Also described are the actual imaging investigations of PTSD in people encountered the sarin subway terrorism in Tokyo (1995). High resolution MRI has revealed the decreased volume of hippocampus in PTSD patients in recent years. In victims of the terrorism above, authors have found that the volume of anterior cingulate cortical (ACC) gray matter is reduced in voxel-based MRI morphometry and the reduction is well correlated with PTSD severity and lower P300 amplitude. PET and fMRI have shown the hyperactivity of amygdala and hypoactivity of medial prefrontal region around ACC in PTSD. Findings in conditioned animal studies have indicated the importance of ACC neuronal cell activation for fear extinction, where, in humans, fMRI has revealed the cooperation between amygdala and ACC. At present, genetic factors like serotonin transporter polymorphism, environmental ones at infantile stage and their interactive activity are subject to investigation and discussion. Imaging studies will contribute to the clinical diagnosis, treatment and intervention of PTSD. (T.I)

  20. [Recent progress in neurobiological mechanisms of depression].

    Science.gov (United States)

    Gao, Yu-Bo; Li, Liang-Ping; Zhu, Xin-Hong; Gao, Tian-Ming

    2012-08-25

    Revealing the neurobiological mechanism of depression has always been a big challenge in the field of neuroscience. Not only are depressive syndromes heterogeneous and their aetiologies diverse, but also some symptoms are impossible to reproduce in animal models. Nevertheless, great progress has been made on the understanding and treatment of depression in recent years. In this review, we focus on key leading hypotheses in the neurobiological mechanism of depression, examine their strengths and weaknesses critically, and also highlight new insights that promise to extend the understanding of depression and its treatment.

  1. The neurobiology of individuality

    Science.gov (United States)

    de Bivort, Benjamin

    2015-03-01

    Individuals often display conspicuously different patterns of behavior, even when they are very closely related genetically. These differences give rise to our sense of individuality, but what is their molecular and neurobiological basis? Individuals that are nominally genetically identical differ at various molecular and neurobiological levels: cell-to-cell variation in somatic genomes, cell-to-cell variation in expression patterns, individual-to-individual variation in neuronal morphology and physiology, and individual-to-individual variation in patterns of brain activity. It is unknown which of these levels is fundamentally causal of behavioral differences. To investigate this problem, we use the fruit fly Drosophila melanogaster, whose genetic toolkit allows the manipulation of each of these mechanistic levels, and whose rapid lifecycle and small size allows for high-throughput automation of behavioral assays. This latter point is crucial; identifying inter-individual behavioral differences requires high sample sizes both within and across individual animals. Automated behavioral characterization is at the heart of our research strategy. In every behavior examined, individual flies have individual behavioral preferences, and we have begun to identify both neural genes and circuits that control the degree of behavioral variability between individuals.

  2. The neurobiology of syntax: beyond string sets

    Science.gov (United States)

    Petersson, Karl Magnus; Hagoort, Peter

    2012-01-01

    The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty. PMID:22688633

  3. Preparing for business model change

    DEFF Research Database (Denmark)

    Cavalcante, Sergio Andre

    2014-01-01

    The purpose of this paper is to investigate managers’ initiatives in the context of an emergent technology and their effect on the business models of firms. Building on four case studies of organizations interested in using an emergent technology for commercial purposes, this study applies...... a process-based framework of business model change. The main finding is that managers’ initiatives occur in the context of a “pre-stage” of potential business model change, which includes processes of experimenting and learning. The pre-stage finding gives a better understanding of when change initiatives...... affect a business model and when they do not, allowing managers to adopt a more proactive behaviour and guide their organizations towards effective business model change. The main contribution of this paper is to suggest the inclusion of the pre-stage idea in research and practice, since...

  4. Stalking: a neurobiological perspective.

    Science.gov (United States)

    Marazziti, Donatella; Falaschi, Valentina; Lombardi, Amedeo; Mungai, Francesco; Dell'Osso, Liliana

    2015-01-01

    Nowadays stalking is becoming a real social emergency, as it may often fuel severe aggressive behaviours. No exhaustive aetiological hypothesis is still available regarding this complex phenomenon. However, the detailed descriptions of some of its peculiar features allow to draw with cautions some general suggestions. Probably stalking may arise from the derangement of those neural networks subserving the so-called social brain and the pair bonding formation, in particular the processes of attachment/separation, attraction/romantic love/reward. In addition, it seems to be modulated by excessive functioning of the dopamine system coupled with decreased serotonin tone. It is believed that the investigation and deepening of its possible neurobiological substrates may be helpful in the prevention of the severe consequences of stalking.

  5. The neurobiology of fatherhood.

    Science.gov (United States)

    Rilling, James K; Mascaro, Jennifer S

    2017-06-01

    Only about 5% of mammalian species exhibit paternal caregiving in nature, and paternal behavior has evolved multiple times independently among mammals. The most parsimonious way to evolve paternal behavior may be to utilize pre-existing neural systems that are in place for maternal behavior. Despite evidence for similarity in the neurobiology of maternal and paternal behavior in rodents, paternal behavior also has its own dedicated neural circuitry in some species. Human fathers engage conserved subcortical systems that motivate caregiving in rodent parents and human mothers, as well as cortical systems involved with empathy that they share with human mothers. Finally, paternal behavior is modulated by similar hormones and neuropeptides in rodents, non-human primates, and humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Neurobiology of Congenital Amusia.

    Science.gov (United States)

    Peretz, Isabelle

    2016-11-01

    The past decade of research has provided compelling evidence that musical engagement is a fundamental human trait, and its biological basis is increasingly scrutinized. In this endeavor, the detailed study of individuals who have musical deficiencies is instructive because of likely neurogenetic underpinnings. Such individuals have 'congenital amusia', an umbrella term for lifelong musical disabilities that cannot be attributed to intellectual disability, lack of exposure, or brain damage after birth. Key points are reviewed here that have emerged during recent years regarding the neurobiology of the disorder, focusing on the importance of recurrent processing between the right inferior frontal cortex and the auditory cortex for conscious monitoring of musical pitch, and how this relates to developmental cognitive disorders in general. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The neurobiology of falls.

    Science.gov (United States)

    Fasano, Alfonso; Plotnik, Meir; Bove, Francesco; Berardelli, Alfredo

    2012-12-01

    Falling is a major clinical problem; especially, in elderly population as it often leads to fractures, immobilization, poor quality of life and life-span reduction. Given the growing body of evidences on the physiopathology of balance disorders in humans, in recent years the approach of research on falls has completely changed and new instruments and new definitions have been formulated. Among them, the definition of "idiopathic faller" (i.e. no overt cause for falling in a given subject) represented a milestone in building the "science of falling". This review deals with the new determinants of the neurobiology of falling: (1) the role of motor impairment and particularly of those "mild parkinsonian signs" frequently detectable in elderly subjects, (2) the role of executive and attentive resources when coping with obstacles, (3) the role of vascular lesions in "highest level gait disorder" (a condition tightly connected with senile gait, cautious gait and frailty), (4) the role of the failure of automaticity or inter-limbs coordination/symmetry during walking and such approach would definitely help the development of screening instrument for subjects at risk (still lacking in present days). This translational approach will lead to the development of specific therapeutic interventions.

  8. Stress: Neurobiology, consequences and management

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2013-01-01

    Full Text Available Stress, both physical and psychological, is attracting increasing attention among neuroresearchers. In the last 20 decades, there has been a surge of interest in the research of stress-induced manifestations and this approach has resulted in the development of more appropriate animal models for stress-associated pathologies and its therapeutic management. These stress models are an easy and convenient method for inducing both psychological and physical stress. To understand the behavioral changes underlying major depression, molecular and cellular studies are required. Dysregulation of the stress system may lead to disturbances in growth and development, and may this may further lead to the development of various other psychiatric disorders. This article reviews the different types of stress and their neurobiology, including the different neurotransmitters affected. There are various complications associated with stress and their management through various pharmacological and non-pharmacological techniques. The use of herbs in the treatment of stress-related problems is practiced in both Indian and Western societies, and it has a vast market in terms of anti-stress medications and treatments. Non-pharmacological techniques such as meditation and yoga are nowadays becoming very popular as a stress-relieving therapy because of their greater effectiveness and no associated side effects. Therefore, this review highlights the changes under stress and stressor and their impact on different animal models in understanding the mechanisms of stress along with their effective and safe management.

  9. Neurobiology and clinical implications of lucid dreaming

    OpenAIRE

    Mota-Rolim, Sérgio A.; Araujo, John F.

    2013-01-01

    Several lines of evidence converge to the idea that rapid eye movement sleep (REMS) is a good model to foster our understanding of psychosis. Both REMS and psychosis course with internally generated perceptions and lack of rational judgment, which is attributed to a hyperlimbic activity along with hypofrontality. Interestingly, some individuals can become aware of dreaming during REMS, a particular experience known as lucid dreaming (LD), whose neurobiological basis is still controversi...

  10. Neurobiology of insomnia as measured with FMRI

    OpenAIRE

    Orff, Henry John

    2010-01-01

    Insomnia, the most common sleep disorder afflicting adults, is diagnostically characterized by a chronic complaint of difficulty sleeping at night and a report of consequent impairment in daytime functioning. Despite this diagnostic requirement and the relative prevalence of daytime distress in patients with insomnia, studies to date have shown only limited evidence of objective daytime impairment in this population. This investigation tested a neurobiological compensation model which attempt...

  11. Neurobiological correlates of social functioning in autism.

    Science.gov (United States)

    Neuhaus, Emily; Beauchaine, Theodore P; Bernier, Raphael

    2010-08-01

    Although autism is defined by deficits in three areas of functioning (social, communicative, and behavioral), impairments in social interest and restricted behavioral repertoires are central to the disorder. As a result, a detailed understanding of the neurobiological systems subserving social behavior may have implications for prevention, early identification, and intervention for affected families. In this paper, we review a number of potential neurobiological mechanisms--across several levels of analysis--that subserve normative social functioning. These include neural networks, neurotransmitters, and hormone systems. After describing the typical functioning of each system, we review available empirical findings specific to autism. Among the most promising potential mechanisms of social behavioral deficits in autism are those involving neural networks including the amygdala, the mesocorticolimbic dopamine system, and the oxytocin system. Particularly compelling are explanatory models that integrate mechanisms across biological systems, such as those linking dopamine and oxytocin with brain regions critical to reward processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. A debate on current eating disorder diagnoses in light of neurobiological findings: is it time for a spectrum model?

    Directory of Open Access Journals (Sweden)

    Brooks Samantha

    2012-07-01

    Full Text Available Abstract Background Sixty percent of eating disorders do not meet criteria for anorexia- or bulimia nervosa, as defined by the Diagnostic and Statistical Manual version 4 (DSM-IV. Instead they are diagnosed as ‘eating disorders not otherwise specified’ (EDNOS. Discrepancies between criteria and clinical reality currently hampering eating disorder diagnoses in the DSM-IV will be addressed by the forthcoming DSM-V. However, future diagnoses for eating disorders will rely on current advances in the fields of neuroimaging and genetics for classification of symptoms that will ultimately improve treatment. Discussion Here we debate the classification issues, and discuss how brain imaging and genetic discoveries might be interwoven into a model of eating disorders to provide better classification and treatment. The debate concerns: a current issues in the classification of eating disorders in the DSM-IV, b changes proposed for DSM-V, c neuroimaging eating disorder research and d genetic eating disorder research. Summary We outline a novel evidence-based ‘impulse control’ spectrum model of eating disorders. A model of eating disorders is proposed that will aid future diagnosis of symptoms, coinciding with contemporary suggestions by clinicians and the proposed changes due to be published in the DSM-V.

  13. A debate on current eating disorder diagnoses in light of neurobiological findings: is it time for a spectrum model?

    Science.gov (United States)

    2012-01-01

    Background Sixty percent of eating disorders do not meet criteria for anorexia- or bulimia nervosa, as defined by the Diagnostic and Statistical Manual version 4 (DSM-IV). Instead they are diagnosed as ‘eating disorders not otherwise specified’ (EDNOS). Discrepancies between criteria and clinical reality currently hampering eating disorder diagnoses in the DSM-IV will be addressed by the forthcoming DSM-V. However, future diagnoses for eating disorders will rely on current advances in the fields of neuroimaging and genetics for classification of symptoms that will ultimately improve treatment. Discussion Here we debate the classification issues, and discuss how brain imaging and genetic discoveries might be interwoven into a model of eating disorders to provide better classification and treatment. The debate concerns: a) current issues in the classification of eating disorders in the DSM-IV, b) changes proposed for DSM-V, c) neuroimaging eating disorder research and d) genetic eating disorder research. Summary We outline a novel evidence-based ‘impulse control’ spectrum model of eating disorders. A model of eating disorders is proposed that will aid future diagnosis of symptoms, coinciding with contemporary suggestions by clinicians and the proposed changes due to be published in the DSM-V. PMID:22770364

  14. Neurobiological Substrates of Tourette's Disorder

    NARCIS (Netherlands)

    Leckman, James F.; Bloch, Michael H.; Smith, Megan E.; Larabi, Daouia; Hampson, Michelle

    Objective: This article reviews the available scientific literature concerning the neurobiological substrates of Tourette's disorder (TD). Methods: The electronic databases of PubMed, ScienceDirect, and PsycINFO were searched for relevant studies using relevant search terms. Results:

  15. Mental health: More than neurobiology

    NARCIS (Netherlands)

    Fried, E.; Tuerlinckx, F.; Borsboom, D.

    2014-01-01

    The decision by the US National Institute of Mental Health (NIMH) to fund only research into the neurobiological roots of mental disorders (Nature 507, 288; 2014) presumes that these all result from brain abnormalities. But this is not the case for many people with mental-health issues and we fear

  16. Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2012-02-01

    Full Text Available Abstract Background There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models. Methods To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes. Findings We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1 Changes in brain and neuronal morphology; (2 electrophysiological changes; (3 neurological changes; and (4 higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms. Conclusions The results indicated that mutations

  17. Obsessive-Compulsive Homeland Security: Insights from the Neurobiological Security Motivation System

    Science.gov (United States)

    2018-03-01

    HOMELAND SECURITY: INSIGHTS FROM THE NEUROBIOLOGICAL SECURITY MOTIVATION SYSTEM by Marissa D. Madrigal March 2018 Thesis Advisor...FROM THE NEUROBIOLOGICAL SECURITY MOTIVATION SYSTEM 5. FUNDING NUMBERS 6. AUTHOR(S) Marissa D. Madrigal 7. PERFORMING ORGANIZATION NAME(S) AND...how activation of the neurobiological security- motivation system can lead to securitization in response to a security speech act. It explores the model

  18. Tactile learning in rodents: Neurobiology and neuropharmacology.

    Science.gov (United States)

    Roohbakhsh, Ali; Shamsizadeh, Ali; Arababadi, Mohammad Kazemi; Ayoobi, Fateme; Fatemi, Iman; Allahtavakoli, Mohammad; Mohammad-Zadeh, Mohammad

    2016-02-15

    Animal models of learning and memory have been the subject of considerable research. Rodents such as mice and rats are nocturnal animals with poor vision, and their survival depends on their sense of touch. Recent reports have shown that whisker somatosensation is the main channel through which rodents collect and process environmental information. This review describes tactile learning in rodents from a neurobiological and neuropharmacological perspective, and how this is involved in memory-related processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Temporal Dynamics Model of Emotional Memory Processing: A Synthesis on the Neurobiological Basis of Stress-Induced Amnesia, Flashbulb and Traumatic Memories, and the Yerkes-Dodson Law

    OpenAIRE

    Diamond, David M.; Campbell, Adam M.; Park, Collin R.; Halonen, Joshua; Zoladz, Phillip R.

    2007-01-01

    We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our “temporal dynamics†model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced ...

  20. [The neurobiology of antisocial behaviour].

    Science.gov (United States)

    Loomans, M M; Tulen, J H M; van Marle, H J C

    2010-01-01

    Neuro-imaging is being used increasingly to provide explanations for antisocial behaviour. To make a neurobiological contribution to the diagnosis of many types of antisocial behaviour. The literature was searched using PubMed and combinations of the keywords 'psychopathy', 'antisocial', 'neurobiology' and 'neuro-anatomy' for the period 1990-2009. Impairments in the prefrontal cortex, amygdala, hippocampus, superior temporal gyrus, corpus callosum and anterior cingulate cortex provide a possible explanation for a large number of the symptoms associated with antisocial behaviour. The concept of psychopathy is connected mainly with impairments in a prefrontal-temporal-limbic system. CONCLUSION Combinations of deficiencies in the associated brain areas and malfunctioning of the communication between the various brain structures seem to play a more important role than deficiencies in the separate brain structures.

  1. The neurobiology of uncertainty: implications for statistical learning.

    Science.gov (United States)

    Hasson, Uri

    2017-01-05

    The capacity for assessing the degree of uncertainty in the environment relies on estimating statistics of temporally unfolding inputs. This, in turn, allows calibration of predictive and bottom-up processing, and signalling changes in temporally unfolding environmental features. In the last decade, several studies have examined how the brain codes for and responds to input uncertainty. Initial neurobiological experiments implicated frontoparietal and hippocampal systems, based largely on paradigms that manipulated distributional features of visual stimuli. However, later work in the auditory domain pointed to different systems, whose activation profiles have interesting implications for computational and neurobiological models of statistical learning (SL). This review begins by briefly recapping the historical development of ideas pertaining to the sensitivity to uncertainty in temporally unfolding inputs. It then discusses several issues at the interface of studies of uncertainty and SL. Following, it presents several current treatments of the neurobiology of uncertainty and reviews recent findings that point to principles that serve as important constraints on future neurobiological theories of uncertainty, and relatedly, SL. This review suggests it may be useful to establish closer links between neurobiological research on uncertainty and SL, considering particularly mechanisms sensitive to local and global structure in inputs, the degree of input uncertainty, the complexity of the system generating the input, learning mechanisms that operate on different temporal scales and the use of learnt information for online prediction.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  2. Introduction to the special section: Mind and matter: New insights on the role of parental cognitive and neurobiological functioning in process models of parenting.

    Science.gov (United States)

    Deater-Deckard, Kirby; Sturge-Apple, Melissa L

    2017-02-01

    This is an introduction to the special section on neurobiological and neurocognitive factors in parenting. The collection of 11 papers are published in 2 serial subsections of consecutive issues of the journal. The science they present captures the leading edge of work examining the interface of cognitive, emotional, behavioral, and physiological self-regulation in parenting and how these operate to protect or increment risk for poorer parenting among families who face chronic stressors (e.g., poverty, single parenthood, homelessness, mood disorders). Samples span the poor to the affluent, many ethnicities, several nationalities, and a wide variety of geographic locations. The studies also are diverse in the methods employed, spanning behavioral and questionnaire indicators of executive function and effortful control, attentional and social-cognitive biases, and psychophysiology. Taken together, the papers present clear and compelling evidence for the crucial role of parental neurobiological and neurocognitive deficits and strengths in the etiology of distressed and resilient parenting. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Quantum and Multidimensional Explanations in a Neurobiological Context of Mind.

    Science.gov (United States)

    Korf, Jakob

    2015-08-01

    This article examines the possible relevance of physical-mathematical multidimensional or quantum concepts aiming at understanding the (human) mind in a neurobiological context. Some typical features of the quantum and multidimensional concepts are briefly introduced, including entanglement, superposition, holonomic, and quantum field theories. Next, we consider neurobiological principles, such as the brain and its emerging (physical) mind, evolutionary and ontological origins, entropy, syntropy/neg-entropy, causation, and brain energy metabolism. In many biological processes, including biochemical conversions, protein folding, and sensory perception, the ubiquitous involvement of quantum mechanisms is well recognized. Quantum and multidimensional approaches might be expected to help describe and model both brain and mental processes, but an understanding of their direct involvement in mental activity, that is, without mediation by molecular processes, remains elusive. More work has to be done to bridge the gap between current neurobiological and physical-mathematical concepts with their associated quantum-mind theories. © The Author(s) 2014.

  4. Applying neurobiology to the treatment of adults with anorexia nervosa.

    Science.gov (United States)

    Hill, Laura; Peck, Stephanie Knatz; Wierenga, Christina E; Kaye, Walter H

    2016-01-01

    Anorexia nervosa is a severe, biologically based brain disorder with significant medical complications. It is critical that new, effective treatments are developed to interrupt the persistent course of the illness due to the medical and psychological sequelae. Several psychosocial, behavioral and pharmacologic interventions have been investigated in adult anorexia nervosa; however, evidence shows that their impact is weak and treatment effects are generally small. This paper describes a new neurobiological anorexia nervosa model that shifts focus from solely external influences, such as social and family, to include internal influences that integrate genetic and neurobiological contributions, across the age span. The model serves as a theoretical structure for a new, five-day treatment, outlined in this paper, targeting anorexia nervosa temperament, which integrates neurobiological dimensions into evidence-based treatment interventions. The treatment is in two phases. Phase I is a five day, 40 hour treatment for anorexia nervosa adults. Phase II is the follow-up and is currently being developed. Preliminary qualitative acceptability data on 37 adults with anorexia nervosa and 60 supports (e.g., spouses, parents, aunts, friends, partners, children of anorexia nervosa adults) are promising from Phase I. Clients with anorexia nervosa and their supports report that learning neurobiological facts improved their understanding of the illness and helped equip them with better tools to manage anorexia nervosa traits and symptoms. In addition, nutritional knowledge changed significantly. This is the first neurobiologically based, five-day treatment for adults with anorexia nervosa and their supports. It is a new model that outlines underlying genetic and neurobiological contributions to anorexia nervosa that serves as a foundation to treat both traits and symptoms. Preliminary qualitative findings are promising, with both clients and supports reporting that the

  5. Neurobiology of emotions: an update.

    Science.gov (United States)

    Esperidião-Antonio, Vanderson; Majeski-Colombo, Marilia; Toledo-Monteverde, Diana; Moraes-Martins, Glaciele; Fernandes, Juliana José; Bauchiglioni de Assis, Marjorie; Montenegro, Stefânia; Siqueira-Batista, Rodrigo

    2017-06-01

    The 'nature' of emotions is one of the archaic themes of Western thought, thematized in different cultural manifestations - such as art, science, philosophy, myths and religion -, since Ancient times. In the last decades, the advances in neurosciences have permitted the construction of hypotheses that explain emotions, especially through the studies involving the limbic system. To present an updated discussion about the neurobiology of processes relating to emotions - focusing (1) on the main neural structures that relate to emotions, (2) the paths and circuits of greater relevance, (3) the implicated neurotransmitters, (4) the connections that possess neurovegetative control and (5) the discussion about the main emotions - is the objective of this present article.

  6. Neurobiology of aggression and violence

    OpenAIRE

    Ortega Escobar, Joaquín; Alcázar Córcoles, Miguel Ángel

    2016-01-01

    La neurobiología de la agresión y la violencia es de interés para la psicología jurídica porque buenaparte de la conducta delictiva tiene componentes violentos. En esta revisión se definen en primer lugarambos conceptos, para diferenciar a continuación los tipos de agresión (impulsiva vs. instrumental) queaparecen en la literatura científica y finalmente analizar las estructuras nerviosas que según los estudiossobre lesiones cerebrales o de neuroimagen están asociadas con la agresión. Esta re...

  7. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  8. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  9. [Neurobiological foundations underlying normal and disturbed sexuality].

    Science.gov (United States)

    Krüger, T H C; Kneer, J

    2017-05-01

    Sexual functions are regulated by hormonal and neurochemical factors as well as neuronal networks. An understanding of these basic principles is necessary for the diagnostics, counselling and treatment of sexual problems. Description of essential mechanisms of sexual function on a neurochemical and neuronal level. Literature search, selection and discussion of relevant studies. Analogous to the dual control model there are primary inhibitory (e. g. serotonin) and excitatory neurotransmitter systems (e.g. sex steroids and dopamine). Moreover, neuronal structures have been identified that are responsible for processing sexual stimuli. These networks are altered in subjects with sexual disorders or by pharmacological treatment, e. g. antiandrogens and selective serotonin reuptake inhibitors (SSRI) CONCLUSION: Knowledge of the neurobiology of sexuality forms the foundations for the treatment of sexual dysfunctions in psychiatry and other disciplines.

  10. Mathematical methods in biology and neurobiology

    CERN Document Server

    Jost, Jürgen

    2014-01-01

    Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies:   • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations.   The biological applications range from molecular to evolutionary and ecological levels, for example:   • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombi...

  11. Comparative Models for Preparing Teachers of Minorities.

    Science.gov (United States)

    Titus, Dale; Dolgos, Kathleen

    This paper highlights three programs that prepare culturally sensitive teachers to meet the needs of minority students. The University of Hawaii's Preservice Education for Teachers of Minorities has a partnership with the Kamehameha Schools/Bishop Estate private school for children of Hawaiian ancestry. The school brings new culturally sensitive…

  12. Modelling preparation and consumption of pork products

    DEFF Research Database (Denmark)

    Swart, Arno; Nauta, Maarten; Evers, Eric

    is thoroughly mixed, and Salmonellae may be present in the interior of hamburger patties, undercooking may occur, and Salmonellae may survive. Dry cured sausages, including all variations therein like chorizo, salami, etc., are eaten uncooked. Food preparation habits are highly variable and accurate data...

  13. The neurobiology of psychopathy: a neurodevelopmental perspective.

    Science.gov (United States)

    Gao, Yu; Glenn, Andrea L; Schug, Robert A; Yang, Yaling; Raine, Adrian

    2009-12-01

    We provide an overview of the neurobiological underpinnings of psychopathy. Cognitive and affective-emotional processing deficits are associated with abnormal brain structure and function, particularly the amygdala and orbitofrontal cortex. There is limited evidence of lower cortisol levels being associated with psychopathic personality. Initial developmental research is beginning to suggest that these neurobiological processes may have their origins early in life. Findings suggest that psychopathic personality may, in part, have a neurodevelopmental basis. Future longitudinal studies delineating neurobiological correlates of the analogues of interpersonal-affective and antisocial features of psychopathy in children are needed to further substantiate a neurodevelopmental hypothesis of psychopathy.

  14. Obesity and addiction: neurobiological overlaps.

    Science.gov (United States)

    Volkow, N D; Wang, G-J; Tomasi, D; Baler, R D

    2013-01-01

    Drug addiction and obesity appear to share several properties. Both can be defined as disorders in which the saliency of a specific type of reward (food or drug) becomes exaggerated relative to, and at the expense of others rewards. Both drugs and food have powerful reinforcing effects, which are in part mediated by abrupt dopamine increases in the brain reward centres. The abrupt dopamine increases, in vulnerable individuals, can override the brain's homeostatic control mechanisms. These parallels have generated interest in understanding the shared vulnerabilities between addiction and obesity. Predictably, they also engendered a heated debate. Specifically, brain imaging studies are beginning to uncover common features between these two conditions and delineate some of the overlapping brain circuits whose dysfunctions may underlie the observed deficits. The combined results suggest that both obese and drug-addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning, self-control, stress reactivity and interoceptive awareness. In parallel, studies are also delineating differences between them that centre on the key role that peripheral signals involved with homeostatic control exert on food intake. Here, we focus on the shared neurobiological substrates of obesity and addiction. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  15. The Neurobiology of Methamphetamine Induced Psychosis

    Directory of Open Access Journals (Sweden)

    Jennifer Hsin-Wen Hsieh

    2014-07-01

    Full Text Available Chronic methamphetamine abuse commonly leads to psychosis, with positive and cognitive symptoms that are similar to those of schizophrenia. Methamphetamine induced psychosis (MAP can persist and diagnoses of MAP often change to a diagnosis of schizophrenia over time. Studies in schizophrenia have found much evidence of cortical GABAergic dysfunction. Methamphetamine psychosis is a well studied model for schizophrenia, however there is little research on the effects of methamphetamine on cortical GABAergic function in the model, and the neurobiology of MAP is unknown. This paper reviews the effects of methamphetamine on dopaminergic pathways, with focus on its ability to increase glutamate release in the cortex. Excess cortical glutamate would likely damage GABAergic interneurons, and evidence of this disturbance as a result of methamphetamine treatment will be discussed. We propose that cortical GABAergic interneurons are particularly vulnerable to glutamate overflow as a result of subcellular location of NMDA receptors on interneurons in the cortex. Damage to cortical GABAergic function would lead to dysregulation of cortical signals, resulting in psychosis, and further support methamphetamine induced psychosis as a model for schizophrenia.

  16. Neurobiology of anxious depression: a review.

    Science.gov (United States)

    Ionescu, Dawn F; Niciu, Mark J; Mathews, Daniel C; Richards, Erica M; Zarate, Carlos A

    2013-04-01

    Anxious depression is a common, distinct clinical subtype of major depressive disorder (MDD). This review summarizes current neurobiological knowledge regarding anxious depression. Peer-reviewed articles, published January 1970 through September 2012, were identified via PUBMED, EMBASE, and Cochrane Library, using the following key words: anxious depression electroencephalography (EEG), anxious depression functional magnetic resonance imaging (fMRI), anxious depression genetics, anxious depression neurobiology, and anxious melancholia neurobiology. Despite a general dearth of neurobiological research, the results suggest that anxious depression-when defined either syndromally or dimensionally-has distinct neurobiological findings that separate it from nonanxious depression. Structural neuroimaging, EEG, genetics, and neuropsychiatric studies revealed differences in subjects with anxious depression compared to other groups. Endocrine differences between individuals with anxious depression and those with nonanxious depression have also been noted, as evidenced by abnormal responses elicited by exogenous stimulation of the system. Despite these findings, heterogeneity in the definition of anxious depression complicates the results. Because exploring the neurobiology of this depressive subtype is important for improving diagnosis, prognosis, and treatment, enrichment strategies to decrease heterogeneity within the field should be employed for future research. © 2013 Wiley Periodicals, Inc.

  17. [Psychotherapy of Depression as Neurobiological Process - Evidence from Neuroimaging].

    Science.gov (United States)

    Rubart, Antonie; Hohagen, Fritz; Zurowski, Bartosz

    2018-06-01

    Research on neurobiological effects of psychotherapy in depression facilitates the improvement of treatment strategies. The cortico-limbic dysregulation model serves as a framework for numerous studies on neurobiological changes in depression. In this model, depression is described as hypoactivation of dorsal cortical brain regions in conjunction with hyperactivation of ventral paralimbic regions. This assumption has been supported by various studies of structural and functional brain abnormalities in depression. However, also regions not included in the original cortico-limbic dysregulation model, such as the dorsomedial prefrontal cortex, seem to play an important role in depression. Functional connectivity studies of depression have revealed an enhanced connectivity within the so-called default mode network which is involved in self-referential thinking. Studies also point to a normalization of limbic and cortical brain activity, especially in the anterior cingulate cortex, during psychotherapy. Some neurobiological markers like the activity of the anterior cingulate cortex, striatum and insula as well as hippocampal volume have been proposed to predict treatment response on a group-level. The activity of the anterior insula appears to be a candidate bio-marker for differential indication for psychotherapy or pharmacotherapy. The cortico-limbic dysregulation model and following research have inspired new forms of treatment for depression like deep brain stimulation of the subgenual anterior cingulate cortex, repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex, neurofeedback and attention training. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Integrated neurobiology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Vladimir eMaletic

    2014-08-01

    Full Text Available From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity—reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition—limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional unified field theory of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia—the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the HPA axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great

  19. Neurobiological linkage between stress and sleep

    Science.gov (United States)

    Sanford, Larry D.; Wellman, Laurie L.

    2012-10-01

    Stress can have a significant negative impact on health and stress-induced alterations in sleep are implicated in both human sleep disorders and in psychiatric disorders in which sleep is affected. We have demonstrated that the amygdala, a region critical for regulating emotion, is a key modulator of sleep. Our current research is focused on understanding how the amygdala and stressful emotion affect sleep and on the role sleep plays in recovery from stress. We have implemented animal models to examine the how stress and stress-related memories impact sleep. Experiencing uncontrollable stress and reminders of uncontrollable stress can produce significant reductions in sleep, in particular rapid eye movement sleep. We are using these models to explore the neurobiology linking stress-related emotion and sleep. This research is relevant for sleep disorders such as insomnia and into mental disorders in which sleep is affected such as post-traumatic stress disorder (PTSD), which is typically characterized by a prominent sleep disturbance in the aftermath of exposure to a psychologically traumatic event.

  20. Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2016-01-01

    This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…

  1. Toward integrating psyche and soma: psychoanalysis and neurobiology.

    Science.gov (United States)

    Flannery, J; Taylor, G

    1981-02-01

    The brain is the "key organ" for understanding mind/body/illness relationships. During the past two decades neurobiological research has generated a plethora of new data and concepts which have increased tremendously our knowledge of the functioning brain. As a result the psychoanalytic view of the relationship between mind and brain may seem at risk of becoming outmoded. Yet while psychoanalytic theory may no longer be wholly tenable, psychoanalysis continues to offer interesting and heuristically valuable isomorphic models of cortical function. On the other hand neurobiology provides a corrective influence on psychoanalytic concept-building, causing theory to be refined as it is tested against the results of research. One possible result of interdisciplinary cross-fertilization is that a revised theory of the function of dreams and fantasy may throw light on the vicissitudes of somatic experience, and the pathogenesis of psychophysiological disorder.

  2. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law.

    Science.gov (United States)

    Diamond, David M; Campbell, Adam M; Park, Collin R; Halonen, Joshua; Zoladz, Phillip R

    2007-01-01

    We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our "temporal dynamics" model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a "configural/cognitive map" mode to a "flashbulb memory" mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.

  3. Integrated Neurobiology of Bipolar Disorder

    Science.gov (United States)

    Maletic, Vladimir; Raison, Charles

    2014-01-01

    From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity – reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition – limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional “unified field theory” of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial–neuronal interactions. Among these glial elements are microglia – the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic–pituitary–adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of

  4. Integrating Tax Preparation with FAFSA Completion: Three Case Models

    Science.gov (United States)

    Daun-Barnett, Nathan; Mabry, Beth

    2012-01-01

    This research compares three different models implemented in four cities. The models integrated free tax-preparation services to assist low-income families with their completion of the Free Application for Federal Student Aid (FAFSA). There has been an increased focus on simplifying the FAFSA process. However, simplification is not the only…

  5. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology

    Directory of Open Access Journals (Sweden)

    Jennie Leach

    2010-02-01

    Full Text Available Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system (CNS implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell (NPC biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration towards novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

  6. [Conversion disorder : functional neuroimaging and neurobiological mechanisms].

    Science.gov (United States)

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G

    2017-04-01

    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.

  7. QUALITY IMPROVEMENT MODEL AT THE MANUFACTURING PROCESS PREPARATION LEVEL

    Directory of Open Access Journals (Sweden)

    Dusko Pavletic

    2009-12-01

    Full Text Available The paper expresses base for an operational quality improvement model at the manufacturing process preparation level. A numerous appropriate related quality assurance and improvement methods and tools are identified. Main manufacturing process principles are investigated in order to scrutinize one general model of manufacturing process and to define a manufacturing process preparation level. Development and introduction of the operational quality improvement model is based on a research conducted and results of methods and tools application possibilities in real manufacturing processes shipbuilding and automotive industry. Basic model structure is described and presented by appropriate general algorithm. Operational quality improvement model developed lays down main guidelines for practical and systematic application of quality improvements methods and tools.

  8. The Temporal Dynamics Model of Emotional Memory Processing: A Synthesis on the Neurobiological Basis of Stress-Induced Amnesia, Flashbulb and Traumatic Memories, and the Yerkes-Dodson Law

    Directory of Open Access Journals (Sweden)

    Phillip R. Zoladz

    2007-03-01

    Full Text Available We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our “temporal dynamics” model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a “configural/cognitive map” mode to a “flashbulb memory” mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.

  9. The Neurobiology of Trust and Schooling

    Science.gov (United States)

    Sankey, Derek

    2018-01-01

    Are there neurobiological reasons why we are willing to trust other people and why "trust" and moral values such as "care" play a quite pivotal role in our social lives and the judgements we make, including our social interactions and judgements made in the context of schooling? In pursuing this question, this paper largely…

  10. The Neurobiology of Swallowing and Dysphagia

    Science.gov (United States)

    Miller, Arthur J.

    2008-01-01

    The neurobiological study of swallowing and its dysfunction, defined as dysphagia, has evolved over two centuries beginning with electrical stimulation applied directly to the central nervous system, and then followed by systematic investigations that have used lesioning, transmagnetic stimulation, magnetoencephalography, and functional magnetic…

  11. Modelling and analysis of CVD processes for ceramic membrane preparation

    NARCIS (Netherlands)

    Brinkman, H.W.; Cao, G.Z.; Meijerink, J.; de Vries, Karel Jan; Burggraaf, Anthonie

    1993-01-01

    A mathematical model is presented that describes the modified chemical vapour deposition (CVD) process (which takes place in advance of the electrochemical vapour deposition (EVD) process) to deposit ZrO2 inside porous media for the preparation and modification of ceramic membranes. The isobaric

  12. Neurobiology and clinical implications of lucid dreaming.

    Science.gov (United States)

    Mota-Rolim, Sérgio A; Araujo, John F

    2013-11-01

    Several lines of evidence converge to the idea that rapid eye movement sleep (REMS) is a good model to foster our understanding of psychosis. Both REMS and psychosis course with internally generated perceptions and lack of rational judgment, which is attributed to a hyperlimbic activity along with hypofrontality. Interestingly, some individuals can become aware of dreaming during REMS, a particular experience known as lucid dreaming (LD), whose neurobiological basis is still controversial. Since the frontal lobe plays a role in self-consciousness, working memory and attention, here we hypothesize that LD is associated with increased frontal activity during REMS. A possible way to test this hypothesis is to check whether transcranial magnetic or electric stimulation of the frontal region during REMS triggers LD. We further suggest that psychosis and LD are opposite phenomena: LD as a physiological awakening while dreaming due to frontal activity, and psychosis as a pathological intrusion of dream features during wake state due to hypofrontality. We further suggest that LD research may have three main clinical implications. First, LD could be important to the study of consciousness, including its pathologies and other altered states. Second, LD could be used as a therapy for recurrent nightmares, a common symptom of depression and post-traumatic stress disorder. Finally, LD may allow for motor imagery during dreaming with possible improvement of physical rehabilitation. In all, we believe that LD research may clarify multiple aspects of brain functioning in its physiological, altered and pathological states. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Atypical Neurotransmitters and the Neurobiology of Depression.

    Science.gov (United States)

    Joca, Samia Regiane; Moreira, Fabricio Araujo; Wegener, Gregers

    2015-01-01

    Since the first report that the mechanism of action of antidepressants involves the facilitation of monoaminergic neurotransmission in the brain in the 1960s, the leading hypothesis about the neurobiology of depression has been the so called "monoaminergic hypothesis". However, a growing body of evidence from the last two decades also supports important involvement of non-monoaminergic mechanisms in the neurobiology of depression and antidepressant action. The discovery of nitric oxide (NO) and endocannabinoid signaling in the brain during the 1990s challenged the wellestablished criteria of classical neurotransmission. These transmitters are synthesized and released on demand by the postsynaptic neurons, and may act as a retrograde messenger on the presynaptic terminal, modulating neurotransmitter release. These unconventional signaling mechanisms and the important role as neural messengers have classified NO and endocannabinoids as atypical neurotransmitters. They are able to modulate neural signaling mediated by the main conventional neurotransmitters systems in the brain, including the monoaminergic, glutamatergic and GABAergic signaling systems. This review aims at discussing the fundamental aspects of NO- and endocannabinoid-mediated signaling in the brain, and how they can be related to the neurobiology of depression. Both preclinical and clinical evidence supporting the involvement of these atypical neurotransmitters in the neurobiology of depression, and in the antidepressant effects are presented here. The evidence is discussed on basis of their ability to modulate different neurotransmitter systems in the brain, including monoaminergic and glutamatergic ones. A better comprehension of NO and endocannabinoid signaling mechanisms in the neurobiology depression could provide new avenues for the development of novel non-monoamine based antidepressants.

  14. The Neurobiology of Collective Action

    Directory of Open Access Journals (Sweden)

    Paul Joseph Zak

    2013-11-01

    Full Text Available This essay introduces a neurologically-informed mathematical model of collective action that reveals the role for empathy and distress in motivating costly helping behaviors. We report three direct tests of model with a key focus on the neuropeptide oxytocin as well as a variety of indirect tests. These studies, from our lab and other researchers, show support for the model. Our findings indicate that empathic concern, via the brain's release of oxytocin, is a trigger for collective action. We discuss the implications from this model for our understanding why human beings engage in costly collective action.

  15. Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the Voltage-Current relation in neurobiological microdomains

    Science.gov (United States)

    Cartailler, J.; Schuss, Z.; Holcman, D.

    2017-01-01

    The electro-diffusion of ions is often described by the Poisson-Nernst-Planck (PNP) equations, which couple nonlinearly the charge concentration and the electric potential. This model is used, among others, to describe the motion of ions in neuronal micro-compartments. It remains at this time an open question how to determine the relaxation and the steady state distribution of voltage when an initial charge of ions is injected into a domain bounded by an impermeable dielectric membrane. The purpose of this paper is to construct an asymptotic approximation to the solution of the stationary PNP equations in a d-dimensional ball (d = 1 , 2 , 3) in the limit of large total charge. In this geometry the PNP system reduces to the Liouville-Gelfand-Bratú (LGB) equation, with the difference that the boundary condition is Neumann, not Dirichlet, and there is a minus sign in the exponent of the exponential term. The entire boundary is impermeable to ions and the electric field satisfies the compatibility condition of Poisson's equation. These differences replace attraction by repulsion in the LGB equation, thus completely changing the solution. We find that the voltage is maximal in the center and decreases toward the boundary. We also find that the potential drop between the center and the surface increases logarithmically in the total number of charges and not linearly, as in classical capacitance theory. This logarithmic singularity is obtained for d = 3 from an asymptotic argument and cannot be derived from the analysis of the phase portrait. These results are used to derive the relation between the outward current and the voltage in a dendritic spine, which is idealized as a dielectric sphere connected smoothly to the nerve axon by a narrow neck. This is a fundamental microdomain involved in neuronal communication. We compute the escape rate of an ion from the steady density in a ball, which models a neuronal spine head, to a small absorbing window in the sphere. We

  16. The neurobiological link between compassion and love

    Science.gov (United States)

    Esch, Tobias; Stefano, George B.

    2011-01-01

    Summary Love and compassion exert pleasant feelings and rewarding effects. Besides their emotional role and capacity to govern behavior, appetitive motivation, and a general ‘positive state’, even ‘spiritual’ at times, the behaviors shown in love and compassion clearly rely on neurobiological mechanisms and underlying molecular principles. These processes and pathways involve the brain’s limbic motivation and reward circuits, that is, a finely tuned and profound autoregulation. This capacity to self-regulate emotions, approach behaviors and even pair bonding, as well as social contact in general, i.e., love, attachment and compassion, can be highly effective in stress reduction, survival and overall health. Yet, molecular biology is the basis of interpersonal neurobiology, however, there is no answer to the question of what comes first or is more important: It is a cybernetic capacity and complex circuit of autoregulation that is clearly ‘amazing’. PMID:21358615

  17. The neurobiology of the human memory.

    Science.gov (United States)

    Fietta, Pierluigi; Fietta, Pieranna

    2011-01-01

    Memory can be defined as the ability to acquire, process, store, and retrieve information. Memory is indispensable for learning, adaptation, and survival of every living organism. In humans, the remembering process has acquired great flexibility and complexity, reaching close links with other mental functions, such as thinking and emotions. Changes in synaptic connectivity and interactions among multiple neural networks provide the neurobiological substrates for memory encoding, retention, and consolidation. Memory may be categorized as short-term and long-term memory (according to the storage temporal duration), as implicit and explicit memory (with respect to the consciousness of remembering), as declarative (knowing that [fact]) and procedural (knowing how [skill]) memory, or as sensory (echoic, iconic and haptil), semantic, and episodic memory (according to the various remembering domains). Significant advances have been obtained in understanding memory neurobiology, but much remains to be learned in its cognitive, psychological, and phenomenological aspects.

  18. Bodily Intimacy and its Neurobiological Foundations

    OpenAIRE

    Jesús Conill

    2017-01-01

    The first part of this study stresses the importance of intimacy for human life and defends the biological standpoint against the functionalist computational stance. This is based on the concept of bodily subjectivity in Nietzsche, bodily, emotional and spiritual intimacy in Ortega y Gasset, and bodily and personal intimacy in Zubiri. The second part sets forth a significant selection taken from studies on the neurobiological foundations of bodily intimacy, reaching beyond sterile reductionis...

  19. Aggression and anxiety: social context and neurobiological links

    Directory of Open Access Journals (Sweden)

    Inga D Neumann

    2010-03-01

    Full Text Available Psychopathologies such as anxiety- and depression-related disorders are often characterized by impaired social behaviours including excessive aggression and violence. Excessive aggression and violence likely develop as a consequence of generally disturbed emotional regulation, such as abnormally high or low levels of anxiety. This suggests an overlap between brain circuitries and neurochemical systems regulating aggression and anxiety. In this review, we will discuss different forms of male aggression, rodent models of excessive aggression, and neurobiological mechanisms underlying male aggression in the context of anxiety. We will summarize our attempts to establish an animal model of high and abnormal aggression using rats selected for high (HAB versus low (LAB anxiety-related behaviour. Briefly, male LAB rats and, to a lesser extent, male HAB rats show high and abnormal forms of aggression compared with non-selected (NAB rats, making them a suitable animal model for studying excessive aggression in the context of extremes in innate anxiety. In addition, we will discuss differences in the activity of the hypothalamic-pituitary-adrenal axis, brain arginine vasopressin, and the serotonin systems, among others, which contribute to the distinct behavioural phenotypes related to aggression and anxiety. Further investigation of the neurobiological systems in animals with distinct anxiety phenotypes might provide valuable information about the link between excessive aggression and disturbed emotional regulation, which is essential for understanding the social and emotional deficits that are characteristic of many human psychiatric disorders.

  20. Foraging for brain stimulation: toward a neurobiology of computation.

    Science.gov (United States)

    Gallistel, C R

    1994-01-01

    The self-stimulating rat performs foraging tasks mediated by simple computations that use interreward intervals and subjective reward magnitudes to determine stay durations. This is a simplified preparation in which to study the neurobiology of the elementary computational operations that make cognition possible, because the neural signal specifying the value of a computationally relevant variable is produced by direct electrical stimulation of a neural pathway. Newly developed measurement methods yield functions relating the subjective reward magnitude to the parameters of the neural signal. These measurements also show that the decision process that governs foraging behavior divides the subjective reward magnitude by the most recent interreward interval to determine the preferability of an option (a foraging patch). The decision process sets the parameters that determine stay durations (durations of visits to foraging patches) so that the ratios of the stay durations match the ratios of the preferabilities.

  1. Diterpenes: Advances in Neurobiological Drug Research.

    Science.gov (United States)

    Islam, Md Torequl; da Silva, Claucenira Bandeira; de Alencar, Marcus Vinícius Oliveira Barros; Paz, Márcia Fernanda Correia Jardim; Almeida, Fernanda Regina de Castro; Melo-Cavalcante, Ana Amélia de Carvalho

    2016-06-01

    A significant number of studies have been performed with diterpene effect on the brain. Our study aims to make a systematic revision on them. The initial purpose of this review was to screen diterpenes with neurological activity, in particular those that have already been studied and published in different journals (databases until August 2015). The second purpose was to make an action-wise discussion as results viewed on them by taking into drug discovery and development account. Diterpenes considered in this review were selected on the basis of updated information on them and having sufficient information on their screenings. We identified several examples of diterpenes having an interest in further study. We have included the possible sources of them as observed in evidence, their known molecular neurobiological mechanisms, and the active constituents responsible for such activities with the doses and test systems. Results suggest diterpenes to have neurobiological activities like neuro-protection, anti-epileptic, anxiolytic, anti-Alzheimer's disease, anti-Parkinson's disease, anti-cerebral ischemia, anti-neuropathic pain, anti-neuro-inflammatory, and many more. In conclusion, diterpenes may be the prominent candidates in neurobiological drug research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Neurobiological findings related to Internet use disorders.

    Science.gov (United States)

    Park, Byeongsu; Han, Doug Hyun; Roh, Sungwon

    2017-07-01

    In the last 10 years, numerous neurobiological studies have been conducted on Internet addiction or Internet use disorder. Various neurobiological research methods - such as magnetic resonance imaging; nuclear imaging modalities, including positron emission tomography and single photon emission computed tomography; molecular genetics; and neurophysiologic methods - have made it possible to discover structural or functional impairments in the brains of individuals with Internet use disorder. Specifically, Internet use disorder is associated with structural or functional impairment in the orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex, and posterior cingulate cortex. These regions are associated with the processing of reward, motivation, memory, and cognitive control. Early neurobiological research results in this area indicated that Internet use disorder shares many similarities with substance use disorders, including, to a certain extent, a shared pathophysiology. However, recent studies suggest that differences in biological and psychological markers exist between Internet use disorder and substance use disorders. Further research is required for a better understanding of the pathophysiology of Internet use disorder. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  3. A River Model Intercomparison Project in Preparation for SWOT

    Science.gov (United States)

    David, C. H.; Andreadis, K.; Famiglietti, J. S.; Beighley, E.; Boone, A. A.; Yamazaki, D.; Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Fisher, C. K.; Kim, H.; Biancamaria, S.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) mission is currently scheduled to launch at the beginning of next decade. SWOT is expected to retrieve unprecedented measurements of water extent, elevation, and slope in the largest terrestrial water bodies. Such potential transformative information motivates the investigation of our ability to ingest the associated data into continental-scale models of terrestrial hydrology. In preparation for the expected SWOT observations, an inter-comparison of continental-scale river models is being performed. This comparison experiment focuses on four of the world's largest river basins: the Amazon, the Mississippi, the Niger, and the Saint-Lawrence. This ongoing project focuses on two main research questions: 1) How can we best prepare for the expected SWOT continental to global measurements before SWOT even flies?, and 2) What is the added value of including SWOT terrestrial measurements into global hydro models for enhancing our understanding of the terrestrial water cycle and the climate system? We present here the results of the second year of this project which now includes simulations from six numerical models of rivers over the Mississippi and sheds light on the implications of various modeling choices on simulation quality as well as on the potential impact of SWOT observations.

  4. Neurobiological mechanisms of placebo responses.

    Science.gov (United States)

    Zubieta, Jon-Kar; Stohler, Christian S

    2009-03-01

    Expectations, positive or negative, are modulating factors influencing behavior. They are also thought to underlie placebo effects, potentially impacting perceptions and biological processes. We used sustained pain as a model to determine the neural mechanisms underlying placebo-induced analgesia and affective changes in healthy humans. Subjects were informed that they could receive either an active agent or an inactive compound, similar to routine clinical trials. Using PET and the mu-opioid selective radiotracer [(11)C]carfentanil we demonstrate placebo-induced activation of opioid neurotransmission in a number of brain regions. These include the rostral anterior cingulate, orbitofrontal and dorsolateral prefrontal cortex, anterior and posterior insula, nucleus accumbens, amygdala, thalamus, hypothalamus, and periaqueductal grey. Some of these regions overlap with those involved in pain and affective regulation but also motivated behavior. The activation of endogenous opioid neurotransmission was further associated with reductions in pain report and negative affective state. Additional studies with the radiotracer [(11)C]raclopride, studies labeling dopamine D2/3 receptors, also demonstrate the activation of nucleus accumbens dopamine during placebo administration under expectation of analgesia. Both dopamine and opioid neurotransmission were related to expectations of analgesia and deviations from those initial expectations. When the activity of the nucleus accumbens was probed with fMRI using a monetary reward expectation paradigm, its activation was correlated with both dopamine, opioid responses to placebo in this region and the formation of placebo analgesia. These data confirm that specific neural circuits and neurotransmitter systems respond to the expectation of benefit during placebo administration, inducing measurable physiological changes.

  5. Attachment, neurobiology, and mentalizing along the psychosis continuum

    Directory of Open Access Journals (Sweden)

    Martin Debbané

    2016-08-01

    Full Text Available In this review article, we outline the evidence linking attachment adversity to the psychosis, from the premorbid stages of the disorder to its clinical forms. To better understand the neurobiological mechanisms through which insecure attachment may contribute to psychosis, we identify at least five neurobiological pathways linking attachment to risk for developing psychosis. Besides its well documented influence on the hypothalamic-pituary-adrenal (HPA axis, insecure attachment may also contribute to neurodevelopmental risk through the dopaminergic and oxytonergic systems, as well as bear influence on neuroinflammation and oxidative stress responses. We further consider the neuroscientific and behavioural studies that underpin mentalization as a suite of processes potentially moderating the risk to transition to psychotic disorders. In particular, mentalization may help the individual compensate for endophenotypical impairments in the integration of sensory and metacognitive information. We propose a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis.

  6. The neurobiology of the emotional adolescent: From the inside out

    Science.gov (United States)

    Guyer, Amanda E.; Silk, Jennifer S.; Nelson, Eric E.

    2016-01-01

    Adolescents are commonly portrayed as highly emotional, with their behaviors often hijacked by their emotions. Research on the neural substrates of adolescent affective behavior is beginning to paint a more nuanced picture of how neurodevelopmental changes in brain function influence affective behavior, and how these influences are modulated by external factors in the environment. Recent neurodevelopmental models suggest that the brain is designed to promote emotion regulation, learning, and affiliation across development, and that affective behavior reciprocally interacts with age-specific social demands and different social contexts. In this review, we discuss current findings on neurobiological mechanisms of adolescents’ affective behavior and highlight individual differences in and social-contextual influences on adolescents’ emotionality. Neurobiological mechanisms of affective processes related to anxiety and depression are also discussed as examples. As the field progresses, it will be critical to test new hypotheses generated from the foundational empirical and conceptual work and to focus on identifying more precisely how and when neural networks change in ways that promote or thwart adaptive affective behavior during adolescence. PMID:27506384

  7. Attachment, Neurobiology, and Mentalizing along the Psychosis Continuum.

    Science.gov (United States)

    Debbané, Martin; Salaminios, George; Luyten, Patrick; Badoud, Deborah; Armando, Marco; Solida Tozzi, Alessandra; Fonagy, Peter; Brent, Benjamin K

    2016-01-01

    In this review article, we outline the evidence linking attachment adversity to psychosis, from the premorbid stages of the disorder to its clinical forms. To better understand the neurobiological mechanisms through which insecure attachment may contribute to psychosis, we identify at least five neurobiological pathways linking attachment to risk for developing psychosis. Besides its well documented influence on the hypothalamic-pituary-adrenal (HPA) axis, insecure attachment may also contribute to neurodevelopmental risk through the dopaminergic and oxytonergic systems, as well as bear influence on neuroinflammation and oxidative stress responses. We further consider the neuroscientific and behavioral studies that underpin mentalization as a suite of processes potentially moderating the risk to transition to psychotic disorders. In particular, mentalization may help the individual compensate for endophenotypical impairments in the integration of sensory and metacognitive information. We propose a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis.

  8. Attachment, Neurobiology, and Mentalizing along the Psychosis Continuum

    Science.gov (United States)

    Debbané, Martin; Salaminios, George; Luyten, Patrick; Badoud, Deborah; Armando, Marco; Solida Tozzi, Alessandra; Fonagy, Peter; Brent, Benjamin K.

    2016-01-01

    In this review article, we outline the evidence linking attachment adversity to psychosis, from the premorbid stages of the disorder to its clinical forms. To better understand the neurobiological mechanisms through which insecure attachment may contribute to psychosis, we identify at least five neurobiological pathways linking attachment to risk for developing psychosis. Besides its well documented influence on the hypothalamic-pituary-adrenal (HPA) axis, insecure attachment may also contribute to neurodevelopmental risk through the dopaminergic and oxytonergic systems, as well as bear influence on neuroinflammation and oxidative stress responses. We further consider the neuroscientific and behavioral studies that underpin mentalization as a suite of processes potentially moderating the risk to transition to psychotic disorders. In particular, mentalization may help the individual compensate for endophenotypical impairments in the integration of sensory and metacognitive information. We propose a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis. PMID:27597820

  9. Bodily Intimacy and its Neurobiological Foundations

    Directory of Open Access Journals (Sweden)

    Jesús Conill

    2017-02-01

    Full Text Available The first part of this study stresses the importance of intimacy for human life and defends the biological standpoint against the functionalist computational stance. This is based on the concept of bodily subjectivity in Nietzsche, bodily, emotional and spiritual intimacy in Ortega y Gasset, and bodily and personal intimacy in Zubiri. The second part sets forth a significant selection taken from studies on the neurobiological foundations of bodily intimacy, reaching beyond sterile reductionisms: its possible neuronal substrate (the neurology of intimacy?, the brain as selectional system, mirror neurons, synaesthesia and neurophenomenology. It ends by putting forward the problem of the power of intimacy, the conflict between this and the reputation.

  10. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    International Nuclear Information System (INIS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-01-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts. (paper)

  11. Model for solid oxide fuel cell cathodes prepared by infiltration

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang

    2017-01-01

    A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC......, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed...... scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (rp) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural...

  12. [Preparation of simulate craniocerebral models via three dimensional printing technique].

    Science.gov (United States)

    Lan, Q; Chen, A L; Zhang, T; Zhu, Q; Xu, T

    2016-08-09

    Three dimensional (3D) printing technique was used to prepare the simulate craniocerebral models, which were applied to preoperative planning and surgical simulation. The image data was collected from PACS system. Image data of skull bone, brain tissue and tumors, cerebral arteries and aneurysms, and functional regions and relative neural tracts of the brain were extracted from thin slice scan (slice thickness 0.5 mm) of computed tomography (CT), magnetic resonance imaging (MRI, slice thickness 1mm), computed tomography angiography (CTA), and functional magnetic resonance imaging (fMRI) data, respectively. MIMICS software was applied to reconstruct colored virtual models by identifying and differentiating tissues according to their gray scales. Then the colored virtual models were submitted to 3D printer which produced life-sized craniocerebral models for surgical planning and surgical simulation. 3D printing craniocerebral models allowed neurosurgeons to perform complex procedures in specific clinical cases though detailed surgical planning. It offered great convenience for evaluating the size of spatial fissure of sellar region before surgery, which helped to optimize surgical approach planning. These 3D models also provided detailed information about the location of aneurysms and their parent arteries, which helped surgeons to choose appropriate aneurismal clips, as well as perform surgical simulation. The models further gave clear indications of depth and extent of tumors and their relationship to eloquent cortical areas and adjacent neural tracts, which were able to avoid surgical damaging of important neural structures. As a novel and promising technique, the application of 3D printing craniocerebral models could improve the surgical planning by converting virtual visualization into real life-sized models.It also contributes to functional anatomy study.

  13. Neurobiological roots of language in primate audition: common computational properties.

    Science.gov (United States)

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L; Rauschecker, Josef P

    2015-03-01

    Here, we present a new perspective on an old question: how does the neurobiology of human language relate to brain systems in nonhuman primates? We argue that higher-order language combinatorics, including sentence and discourse processing, can be situated in a unified, cross-species dorsal-ventral streams architecture for higher auditory processing, and that the functions of the dorsal and ventral streams in higher-order language processing can be grounded in their respective computational properties in primate audition. This view challenges an assumption, common in the cognitive sciences, that a nonhuman primate model forms an inherently inadequate basis for modeling higher-level language functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. PET and SPECT of neurobiological systems

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Gent Univ. (Belgium). Dept. of Nuclear Medicine; Otte, Andreas [Univ. of Applied Sciences, Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-04-01

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  15. Neurobiological Mediators of Squalor-dwelling Behavior.

    Science.gov (United States)

    Kahn, David A

    2017-09-01

    Squalor-dwelling behavior has been characterized as living in conditions so unsanitary that feelings of revulsion are elicited among visitors. This behavior is commonly associated with an insensitivity to distress/disgust and a failure to understand the direness of one's living situation, which leads to social isolation and impairment in quality of life. Etiologically, several associations have been described in the literature, including age-related decline, lower socioeconomic status, and rural dwelling status. Primary neuropsychiatric disorders, such as psychosis, alcoholism, dementia, personality disorders, developmental delays, and learning or physical disabilities are frequently seen in squalor-dwelling individuals. However, none of these disorders seems to be necessary or sufficient to explain the behavior. Neurobiologically, squalor-dwelling behavior has been associated with frontal lobe dysfunction as evidenced by executive dysfunction; however, cognitive impairments also fail to completely explain this behavior. The purpose of this report is to describe a typical case of squalor-dwelling behavior and use it as an example to illustrate the complexity of uncovering the neurobiological basis for this maladaptive personal and public health threat. Neuroimaging findings from our case and a review of the literature point toward decreased activity in the insular cortex and the amygdala as a unifying biological explanation for squalor-dwelling behaviors.

  16. Plant neurobiology and green plant intelligence : science, metaphors and nonsense

    NARCIS (Netherlands)

    Struik, P.C.; Yin, X.; Meinke, H.B.

    2008-01-01

    This paper analyses the recent debates on the emerging science of plant neurobiology, which claims that the individual green plant should be considered as an intelligent organism. Plant neurobiology tries to use elements from animal physiology as elegant metaphors to trigger the imagination in

  17. Neurobiology of Schemas and Schema-Mediated Memory.

    Science.gov (United States)

    Gilboa, Asaf; Marlatte, Hannah

    2017-08-01

    Schemas are superordinate knowledge structures that reflect abstracted commonalities across multiple experiences, exerting powerful influences over how events are perceived, interpreted, and remembered. Activated schema templates modulate early perceptual processing, as they get populated with specific informational instances (schema instantiation). Instantiated schemas, in turn, can enhance or distort mnemonic processing from the outset (at encoding), impact offline memory transformation and accelerate neocortical integration. Recent studies demonstrate distinctive neurobiological processes underlying schema-related learning. Interactions between the ventromedial prefrontal cortex (vmPFC), hippocampus, angular gyrus (AG), and unimodal associative cortices support context-relevant schema instantiation and schema mnemonic effects. The vmPFC and hippocampus may compete (as suggested by some models) or synchronize (as suggested by others) to optimize schema-related learning depending on the specific operationalization of schema memory. This highlights the need for more precise definitions of memory schemas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Optogenetics: a new enlightenment age for zebrafish neurobiology.

    Science.gov (United States)

    Del Bene, Filippo; Wyart, Claire

    2012-03-01

    Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications,new genetically encoded optical tools, fluorescent sensors, and light-gated channels have been generated,creating the field of "optogenetics." It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio-temporal resolution.We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.

  19. Preparation of the Digital Elevation Model for Orthophoto CR Production

    Science.gov (United States)

    Švec, Z.; Pavelka, K.

    2016-06-01

    The Orthophoto CR is produced in co-operation with the Land Survey Office and the Military Geographical and Hydrometeorological Office. The product serves to ensure a defence of the state, integrated crisis management, civilian tasks in support of the state administration and the local self-government of the Czech Republic as well. It covers the whole area of the Republic and for ensuring its up-to-datedness is reproduced in the biennial period. As the project is countrywide, it keeps the project within the same parameters in urban and rural areas as well. Due to economic reasons it cańt be produced as a true ortophoto because it requires large side and forward overlaps of the aerial photographs and a preparation of the digital surface model instead of the digital terrain model. Use of DTM without some objects of DSM for orthogonalization purposes cause undesirable image deformations in the Orthophoto. There are a few data sets available for forming a suitable elevation model. The principal source should represent DTMs made from data acquired by the airborne laser scanning of the entire area of the Czech Republic that was carried out in the years 2009-2013, the DMR4G in the grid form and the DMR5G in TIN form respectively. It can be replenished by some vector objects (bridges, dams, etc.) taken from the geographic base data of the Czech Republic or obtained by new stereo plotting. It has to be taken into account that the option of applying DSM made from image correlation is also available. The article focuses on the possibilities of DTM supplement for ortogonalization. It looks back to the recent transition from grid to hybrid elevation models, problems that occurred, its solution and getting some practical remarks. Afterwards it assesses the current state and deals with the options for updating the model. Some accuracy analysis are included.

  20. PREPARATION OF THE DIGITAL ELEVATION MODEL FOR ORTHOPHOTO CR PRODUCTION

    Directory of Open Access Journals (Sweden)

    Z. Švec

    2016-06-01

    Full Text Available The Orthophoto CR is produced in co-operation with the Land Survey Office and the Military Geographical and Hydrometeorological Office. The product serves to ensure a defence of the state, integrated crisis management, civilian tasks in support of the state administration and the local self-government of the Czech Republic as well. It covers the whole area of the Republic and for ensuring its up-to-datedness is reproduced in the biennial period. As the project is countrywide, it keeps the project within the same parameters in urban and rural areas as well. Due to economic reasons it can´t be produced as a true ortophoto because it requires large side and forward overlaps of the aerial photographs and a preparation of the digital surface model instead of the digital terrain model. Use of DTM without some objects of DSM for orthogonalization purposes cause undesirable image deformations in the Orthophoto. There are a few data sets available for forming a suitable elevation model. The principal source should represent DTMs made from data acquired by the airborne laser scanning of the entire area of the Czech Republic that was carried out in the years 2009-2013, the DMR4G in the grid form and the DMR5G in TIN form respectively. It can be replenished by some vector objects (bridges, dams, etc. taken from the geographic base data of the Czech Republic or obtained by new stereo plotting. It has to be taken into account that the option of applying DSM made from image correlation is also available. The article focuses on the possibilities of DTM supplement for ortogonalization. It looks back to the recent transition from grid to hybrid elevation models, problems that occurred, its solution and getting some practical remarks. Afterwards it assesses the current state and deals with the options for updating the model. Some accuracy analysis are included.

  1. Speech perception at the interface of neurobiology and linguistics.

    Science.gov (United States)

    Poeppel, David; Idsardi, William J; van Wassenhove, Virginie

    2008-03-12

    Speech perception consists of a set of computations that take continuously varying acoustic waveforms as input and generate discrete representations that make contact with the lexical representations stored in long-term memory as output. Because the perceptual objects that are recognized by the speech perception enter into subsequent linguistic computation, the format that is used for lexical representation and processing fundamentally constrains the speech perceptual processes. Consequently, theories of speech perception must, at some level, be tightly linked to theories of lexical representation. Minimally, speech perception must yield representations that smoothly and rapidly interface with stored lexical items. Adopting the perspective of Marr, we argue and provide neurobiological and psychophysical evidence for the following research programme. First, at the implementational level, speech perception is a multi-time resolution process, with perceptual analyses occurring concurrently on at least two time scales (approx. 20-80 ms, approx. 150-300 ms), commensurate with (sub)segmental and syllabic analyses, respectively. Second, at the algorithmic level, we suggest that perception proceeds on the basis of internal forward models, or uses an 'analysis-by-synthesis' approach. Third, at the computational level (in the sense of Marr), the theory of lexical representation that we adopt is principally informed by phonological research and assumes that words are represented in the mental lexicon in terms of sequences of discrete segments composed of distinctive features. One important goal of the research programme is to develop linking hypotheses between putative neurobiological primitives (e.g. temporal primitives) and those primitives derived from linguistic inquiry, to arrive ultimately at a biologically sensible and theoretically satisfying model of representation and computation in speech.

  2. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior

    Science.gov (United States)

    Vetreno, Ryan P.; Broadwater, Margaret A.; Robinson, Donita L.

    2016-01-01

    Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative–motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity

  3. Neurobiology of inflammation-associated anorexia

    Directory of Open Access Journals (Sweden)

    Laurent Gautron

    2010-01-01

    Full Text Available Compelling data demonstrate that inflammation-associated anorexia directly results from the action of pro-inflammatory factors, primarily cytokines and prostaglandins E2, on the nervous system. For instance, the aforementioned pro-inflammatory factors can stimulate the activity of peripheral sensory neurons, and induce their own de novo synthesis and release into the brain parenchyma and cerebrospinal fluid. Ultimately, it results in the mobilization of a specific neural circuit that shuts down appetite. The present article describes the different cell groups and neurotransmitters involved in inflammation-associated anorexia and examines how they interact with neural systems regulating feeding such as the melanocortin system. A better understanding of the neurobiological mechanisms underlying inflammation-associated anorexia will help to develop appetite stimulants for cancer and AIDS patients.

  4. Neurobiological Adaptations to Violence across Development

    Science.gov (United States)

    Mead, Hilary K.; Beauchaine, Theodore P.; Shannon, Katherine E.

    2009-01-01

    Adaptation to violent environments across development involves a multitude of cascading effects spanning many levels of analysis from genes to behavior. In this review, we (a) examine the potentiating effects of violence on genetic vulnerabilities and the functioning of neurotransmitter systems in producing both internalizing and externalizing psychopathology, (b) consider the impact of violence on the developing human stress and startle responses, and (c) brain development including the hippocampus and prefrontal cortex. This review integrates literature on the developmental effects of violence on rodents, non-human primates, and humans. Many neurobiological changes that are adaptive for survival in violent contexts become maladaptive in other environments, conferring life-long risk for psychopathology. PMID:20102643

  5. Biological sex affects the neurobiology of autism

    Science.gov (United States)

    Lombardo, Michael V.; Suckling, John; Ruigrok, Amber N. V.; Chakrabarti, Bhismadev; Ecker, Christine; Deoni, Sean C. L.; Craig, Michael C.; Murphy, Declan G. M.; Bullmore, Edward T.; Baron-Cohen, Simon

    2013-01-01

    In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the ‘extreme male brain’ theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P males with autism. How differences in neuroanatomy relate to the similarities in cognition between males and females with autism remains to be understood. Future research should stratify by biological sex to reduce

  6. Modeling and preparation of activated carbon for methane storage II. Neural network modeling and experimental studies of the activated carbon preparation

    International Nuclear Information System (INIS)

    Namvar-Asl, Mahnaz; Soltanieh, Mohammad; Rashidi, Alimorad

    2008-01-01

    This study describes the activated carbon (AC) preparation for methane storage. Due to the need for the introduction of a model, correlating the effective preparation parameters with the characteristic parameters of the activated carbon, a model was developed by neural networks. In a previous study [Namvar-Asl M, Soltanieh M, Rashidi A, Irandoukht A. Modeling and preparation of activated carbon for methane storage: (I) modeling of activated carbon characteristics with neural networks and response surface method. Proceedings of CESEP07, Krakow, Poland; 2007.], the model was designed with the MATLAB toolboxes providing the best response for the correlation of the characteristics parameters and the methane uptake of the activated carbon. Regarding this model, the characteristics of the activated carbon were determined for a target methane uptake. After the determination of the characteristics, the demonstrated model of this work guided us to the selection of the effective AC preparation parameters. According to the modeling results, some samples were prepared and their methane storage capacity was measured. The results were compared with those of a target methane uptake (special amount of methane storage). Among the designed models, one of them illustrated the methane storage capacity of 180 v/v. It was finally found that the neural network modeling for the assay of the efficient AC preparation parameters was financially feasible, with respect to the determined methane storage capacity. This study could be useful for the development of the Adsorbed Natural Gas (ANG) technology

  7. Allowing for surface preparation in stress corrosion cracking modelling

    International Nuclear Information System (INIS)

    Berge, P.; Buisine, D.; Gelpi, A.

    1997-01-01

    When a 600 alloy component is significantly deformed during installation, by welding, rolling, bending, its stress corrosion cracking in Pressurized Water Nuclear Reactor's primary coolant, is significantly changed by the initial surface treatment. Therefore, the crack initiated time may be reduced by several orders of magnitude for certain surfaces preparations. Allowing for cold working of the surface, for which modelling is proposed, depends less on the degree of cold work then on the depths of the hardened layers. Honing hardens the metal over depths of about one micron for vessel head penetrations, for example, and has little influence on subsequent behaviour after the part deforms. On the other hand, coarser turning treatment produces cold worked layers which can reach several tens of microns and can very significantly reduce the initiation time compared to fine honing. So evaluation after depths of hardening is vital on test pieces for interpreting laboratory results as well as on service components for estimating their service life. Suppression by mechanical or chemical treatment of these layers, after deformation, seems to be the most appropriate solution for reducing over-stressing connected with surface treatment carried out before deformation. (author)

  8. Utilizing the PREPaRE Model When Multiple Classrooms Witness a Traumatic Event

    Science.gov (United States)

    Bernard, Lisa J.; Rittle, Carrie; Roberts, Kathy

    2011-01-01

    This article presents an account of how the Charleston County School District responded to an event by utilizing the PREPaRE model (Brock, et al., 2009). The acronym, PREPaRE, refers to a range of crisis response activities: P (prevent and prepare for psychological trauma), R (reaffirm physical health and perceptions of security and safety), E…

  9. An embodied view of octopus neurobiology.

    Science.gov (United States)

    Hochner, Binyamin

    2012-10-23

    Octopuses have a unique flexible body and unusual morphology, but nevertheless they are undoubtedly a great evolutionary success. They compete successfully with vertebrates in their ecological niche using a rich behavioral repertoire more typical of an intelligent predator which includes extremely effective defensive behavior--fast escape swimming and an astonishing ability to adapt their shape and color to their environment. The most obvious characteristic feature of an octopus is its eight long and flexible arms, but these pose a great challenge for achieving the level of motor and sensory information processing necessary for their behaviors. First, coordinating motion is a formidable task because of the infinite degrees of freedom that have to be controlled; and second, it is hard to use body coordinates in this flexible animal to represent sensory information in a central control system. Here I will review experimental results suggesting that these difficulties, arising from the animal's morphology, have imposed the evolution of unique brain/body/behavior relationships best explained as intelligent behavior which emerges from the octopus's embodied organization. The term 'intelligent embodiment' comes from robotics and refers to an approach to designing autonomous robots in which the behavior emerges from the dynamic physical and sensory interactions of the agent's materials, morphology and environment. Consideration of the unusual neurobiology of the octopus in the light of its unique morphology suggests that similar embodied principles are instrumental for understanding the emergence of intelligent behavior in all biological systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Conversion disorder: towards a neurobiological understanding

    Science.gov (United States)

    Harvey, Samuel B; Stanton, Biba R; David, Anthony S

    2006-01-01

    Conversion disorders are a common cause of neurological disability, but the diagnosis remains controversial and the mechanism by which psychological stress can result in physical symptoms “unconsciously” is poorly understood. This review summarises research examining conversion disorder from a neurobiological perspective. Early observations suggesting a role for hemispheric specialization have not been replicated consistently. Patients with sensory conversion symptoms have normal evoked responses in primary and secondary somatosensory cortex but a reduction in the P300 potential, which is thought to reflect a lack of conscious processing of sensory stimuli. The emergence of functional imaging has provided the greatest opportunity for understanding the neural basis of conversion symptoms. Studies have been limited by small patient numbers and failure to control for confounding variables. The evidence available would suggest a broad hypothesis that frontal cortical and limbic activation associated with emotional stress may act via inhibitory basal ganglia–thalamocortical circuits to produce a deficit of conscious sensory or motor processing. The conceptual difficulties that have limited progress in this area are discussed. A better neuropsychiatric understanding of the mechanisms of conversion symptoms may improve our understanding of normal attention and volition and reduce the controversy surrounding this diagnosis. PMID:19412442

  11. Towards a neurobiology of creativity in nonhuman animals.

    Science.gov (United States)

    Kaufman, Allison B; Butt, Allen E; Kaufman, James C; Colbert-White, Erin N

    2011-08-01

    We propose a cognitive and neurobiological framework for creativity in nonhuman animals based on the framework previously proposed by Kaufman and Kaufman (2004), with additional insight from recent animal behavior research, behavioral neuroscience, and creativity theories. The additional information has lead to three major changes in the 2004 model-the addition of novelty seeking as a subcategory of novelty recognition, the addition of specific neurological processing sites that correspond to each of the processes, and the transformation of the model into a spectrum in which all three levels represent different degrees of the creative process (emphasis on process) and the top level, dubbed innovation, is defined by the creative product. The framework remains a three-level model of creativity. The first level is composed of both the cognitive ability to recognize novelty, a process linked to hippocampal function, and the seeking out of novelty, which is linked to dopamine systems. The next level is observational learning, which can range in complexity from imitation to the cultural transmission of creative behavior. Observational learning may critically depend on the cerebellum, in addition to cortical regions. At the peak of the model is innovative behavior, which can include creating a tool or exhibiting a behavior with the specific understanding that it is new and different. Innovative behavior may be especially dependent upon the prefrontal cortex and/or the balance between left and right hemisphere functions. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  12. Social Context Effects on Decision-Making: A Neurobiological Approach

    NARCIS (Netherlands)

    M. Stallen (Mirre)

    2013-01-01

    textabstractThis thesis explores how social context influences the neurobiological processes underlying decision-making. To this end, this research takes an interdisciplinary approach, combining methods and insights from Psychology, Marketing, Economics, and Neuroscience. In particular, behavioural

  13. A Biometric for Neurobiology of Influence with Social Informatics Using Game Theory

    Directory of Open Access Journals (Sweden)

    Mark Rahmes

    2013-04-01

    Full Text Available This paper is constructed on the premise that human belief dependent emotions can be triggered by story-telling or narratives. With recent technological advancements to measure neurobiological measurements of the brain, such as functional magnetic resonance imaging (fMRI and non-invasive brain computing interface (BCI equipment, these technologies can allow for visualization and data collection of brain activation patterns showing unconsciously controlled responses to narratives or stories. Current game theory application to belief networks has been modeled to help explain observed behavior when material payoffs of others matters to the individual. We discuss a method of how game theory, utilizing communication packet theory, can now be modeled to belief dependent emotions and intentions measured through a new biometric tool correlating neurobiological emotional states and responses.

  14. A Biometric for Neurobiology of Influence with Social Informatics Using Game Theory

    Directory of Open Access Journals (Sweden)

    Mark Rahmes

    2013-12-01

    Full Text Available This paper is constructed on the premise that human belief dependent emotions can be triggered by story-telling or narratives. With recent technological advancements to measure neurobiological measurements of the brain, such as functional magnetic resonance imaging (fMRI and non-invasive brain computing interface (BCI equipment, these technologies can allow for visualization and data collection of brain activation patterns showing unconsciously controlled responses to narratives or stories. Current game theory application to belief networks has been modeled to help explain observed behavior when material payoffs of others matters to the individual. We discuss a method of how game theory, utilizing communication packet theory, can now be modeled to belief dependent emotions and intentions measured through a new biometric tool correlating neurobiological emotional states and responses.

  15. Stress and neurobiology of coping styles

    Directory of Open Access Journals (Sweden)

    Vsevolod V. Nemets

    2017-06-01

    Full Text Available In stressful environment, animal can use different coping strategies. Passive animals manifest freezing behaviour at predator attacks, active ones are trying to have an impact on a stressful situation. Each coping style is presupposed to have a neurobiological basis and it helps animals to survive in aggressive and mutable environment. Being under a long lasting stress, leaders can be affected by cardiovascular and ulcer diseases, but a short term impact can cheer them up, improve neuroendocrine stress response more than passive coping style in animals. This paper analyzes animal pattern of coping behaviour, their inheritance based on gender, social status and age. The research shows how anxiety affects social behaviour of people individuals and typological reactions were compared. These patterns can be used by people in a situation of uncontrolled stress to prevent diseases and depressive disorders through altering one’s type of behavior to the one which is more effective. In addition, knowledge of behavioural types can assist teachers in implementing the learning process as in stress situations (e.g. taking exams, working on course papers, doing tests not all students are able to effectively perceive and present the resulting material. On the other hand, active students could encourage short-term rather than long-term stressor irritation. It is necessary to pay special attention to students with low social economic status who display active response to stress. According to statistics, problem students often become aggressors and commit antisocial and sometimes criminal acts. The coping styles mentioned here above are not polar, there are no clear boundaries of personality. In addition, behaving according to the active / non-active type is identified by customary and inherited behaviour patterns.

  16. Alcohol and Suicide: Neurobiological and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Leo Sher

    2006-01-01

    Full Text Available Alcohol, primarily in the form of ethyl alcohol (ethanol, has occupied an important place in the history of humankind for at least 8,000 years. In most Western societies, at least 90% of people consume alcohol at some time during their lives, and 30% or more of drinkers develop alcohol-related problems. Severe alcohol-related life impairment, alcohol dependence (alcoholism, is observed at some time during their lives in about 10% of men and 3—5% of women. An additional 5—10% of each sex develops persistent, but less intense, problems that are diagnosed as alcohol abuse. It this review, neurobiological aspects of suicidal behavior in alcoholism is discussed. In individuals with comorbid depression and alcoholism, greater serotonergic impairment may be associated with higher risk of completed suicide. Dopaminergic dysfunction may play an important role in the pathophysiology of suicidal behavior in alcoholism. Brain damage and neurobehavioral deficits are associated with alcohol use disorders and may contribute to suicidal behavior in persons with alcohol dependence or abuse. Aggression/impulsivity and alcoholism severity affect risk for suicide among individuals with alcoholism. Major depressive episodes and stressful life events particularly, partner-relationship disruptions, may precipitate suicidal behavior in individuals with alcohol use disorders. Alcohol misuse and psychosocial adversity can combine to increase stress on the person, and, thereby, potentially, increase the risk for suicidal behavior. The management of suicidal patients with alcohol use disorders is also discussed. It is to be hoped that the efforts of clinicians will reduce morbidity and mortality associated with alcohol misuse.

  17. Internet Addiction in adolescence: Neurobiological, psychosocial and clinical issues.

    Science.gov (United States)

    Cerniglia, L; Zoratto, F; Cimino, S; Laviola, G; Ammaniti, M; Adriani, W

    2017-05-01

    Despite it has not been formally included in DSM-5 as a disorder, 'Internet addiction (IA)' has become a worldwide issue. It can be broadly defined as a non-chemical, behavioral addiction, which involves human-machine interaction. We pinpoint it as an "instrumental" form of social interaction (i.e. mediated by machines), a notion that appears useful for the sake of possible preclinical modeling. The features of Internet use reveals as addictive when this comes at the expense of genuine real-life sociability, with an overlap towards the hikikomori phenomenon (i.e., extreme retreat to one's own room). Due to the specific neuro-developmental plasticity in adolescence, IA poses risks to youths' mental health, and may likely produce negative consequences in everyday life. The thwarted development of adolescents' identity, self-image and adaptive social relationships is discussed: the IA adolescents often suffer loss of control, feelings of anger, symptoms of distress, social withdrawal, and familial conflicts. Further, more severe clinical conditions are also associated to IA, such as dysthymic, bipolar, affective, social-anxiety disorders, as well as major depression. This paper overviews the literature on IA, from neuro-biological, psycho-social and clinical standpoints, taking into account recent debates on diagnostic criteria, nosographic label and assessment tools. Neuroimaging data and neurochemical regulations are illustrated with links to pathogenetic hypotheses, which are amenable to validation through innovative preclinical modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evaluation of new injection and cavity preparation model in local anesthesia teaching

    NARCIS (Netherlands)

    Yekta, S.S.; Lampert, F.; Kazemi, S.; Kazemi, R.; Brand, H.S.; Baart, J.A.; Mazandarani, M.

    2013-01-01

    The aim of this study was to evaluate a recently developed preclinical injection and cavity preparation model in local anesthesia. Thirty-three dental students administered an inferior alveolar nerve block injection in the model, followed by preparation on a tooth. The injection was evaluated by

  19. MBA in Education Leadership: A Model for Developing an Interdisciplinary Principal Preparation Program

    Science.gov (United States)

    Smith, Rachel A.; Somers, John

    2016-01-01

    This paper presents a model for developing an interdisciplinary principal preparation program, an MBA in Education Leadership, which integrates best practices in both education and business within an educational context. The paper addresses gaps that exist in many traditional principal preparation programs and provides an alternative model, which…

  20. Neurobiological indicators of disinhibition in posttraumatic stress disorder.

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M; Miller, Mark W; Milberg, William P; Salat, David H; Amick, Melissa M; Fortier, Catherine B; McGlinchey, Regina E

    2015-08-01

    Deficits in impulse control are increasingly recognized in association with posttraumatic stress disorder (PTSD). To our further understanding of the neurobiology of PTSD-related disinhibition, we examined alterations in brain morphology and network connectivity associated with response inhibition failures and PTSD severity. The sample consisted of 189 trauma-exposed Operation Enduring Freedom/Operation Iraqi Freedom veterans (89% male, ages 19-62) presenting with a range of current PTSD severity. Disinhibition was measured using commission errors on a Go/No-Go (GNG) task with emotional stimuli, and PTSD was assessed using a measure of current symptom severity. Whole-brain vertex-wise analyses of cortical thickness revealed two clusters associated with PTSD-related disinhibition (Monte Carlo cluster corrected P < 0.05). The first cluster included portions of right inferior and middle frontal gyri and frontal pole. The second cluster spanned portions of left medial orbital frontal, rostral anterior cingulate, and superior frontal gyrus. In both clusters, commission errors were associated with reduced cortical thickness at higher (but not lower) levels of PTSD symptoms. Resting-state functional magnetic resonance imaging analyses revealed alterations in the functional connectivity of the right frontal cluster. Together, study findings suggest that reductions in cortical thickness in regions involved in flexible decision-making, emotion regulation, and response inhibition contribute to impulse control deficits in PTSD. Furthermore, aberrant coupling between frontal regions and networks involved in selective attention, memory/learning, and response preparation suggest disruptions in functional connectivity may also play a role. © 2015 Wiley Periodicals, Inc.

  1. Towards a neurobiological understanding of alexithymia

    Directory of Open Access Journals (Sweden)

    Nicolás Meza-Concha

    2017-05-01

    Full Text Available Resumen Si bien la literatura especializada sobre la etiología de la alexitimia es controvertida, la investigación neurobiológica sobre el fenómeno ha demostrado importantes avances. El objetivo de esta revisión es analizar la evidencia disponible en relación a las bases neurofisiológicas de la alexitimia. Se realizó una revisión exhaustiva de artículos disponibles en MEDLINE/PubMed, EBSCO y SciELO. Inicialmente, se vinculó a la alexitimia con una conexión cerebral interhemisférica reducida. Desde la perspectiva traumática infantil, la corteza prefrontal derecha y la red neuronal por defecto experimentarían alteraciones, primero hipermetabólicas (desregulación dopaminérgica y glutamatérgica y luego hipometabólicas-disociativas (desregulación serotoninérgica y opioide, resultando en una consciencia interoceptiva y emocional distorsionada. Las neuronas espejo son el sustrato neurobiológico fundamental de la teoría de la mente y la cognición social, intrínsecamente vinculadas con la alexitimia, involucrando cortezas como la parietal, la temporal, la premotora, la cingulada y el giro frontal inferior. Otras estructuras involucradas son amígdala (expresión facial y reactividad emocional, ínsula (interocepción, integración emocional y empatía y cerebelo (cerebelo límbico y consciencia somatosensorial. La genética molecular ha detectado polimorfismos en el gen del transportador de serotonina, en los genes de las enzimas del metabolismo dopaminérgico y del factor neurotrófico derivado del cerebro, mientras que el rol de la oxitocina es controvertido. En conclusión, numerosos estudios demuestran contundentemente la existencia de una neurobiología subyacente a la alexitimia. Sin embargo, la investigación es aún poco concluyente y debe considerar los factores ambientales, traumáticos, sociales y psicológicos que contribuyen al origen del fenómeno.

  2. Optical Probes for Neurobiological Sensing and Imaging.

    Science.gov (United States)

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-04-13

    probing entire neurobiological units with high spatiotemporal resolution. Thus, we introduce selected applications for ion and neurotransmitter detection to investigate both neurons and non-neuronal brain cells. We focus on families of optical probes because of their ability to sense a wide array of molecules and convey spatial information with minimal damage to tissue. We start with a discussion of currently available molecular probes, highlight recent advances in genetically modified fluorescent probes for ions and small molecules, and end with the latest research in nanosensors for biological imaging. Customizable, nanoscale optical sensors that accurately and dynamically monitor the local environment with high spatiotemporal resolution could lead to not only new insights into the function of all cell types but also a broader understanding of how diverse neural signaling systems act in conjunction with neighboring cells in a spatially relevant manner.

  3. The Influence of Prebiotics on Neurobiology and Behavior.

    Science.gov (United States)

    Kao, A C C; Harty, S; Burnet, P W J

    2016-01-01

    Manipulating the intestinal microbiota for the benefit of the brain is a concept that has become widely acknowledged. Prebiotics are nondigestible nutrients (i.e., fibers, carbohydrates, or various saccharides) that proliferate intrinsic, beneficial gut bacteria, and so provide an alternative strategy for effectively altering the enteric ecosystem, and thence brain function. Rodent studies demonstrating neurobiological changes following prebiotic intake are slowly emerging, and have thus far revealed significant benefits in disease models, including antiinflammatory and neuroprotective actions. There are also compelling data showing the robust and favorable effects of prebiotics on several behavioral paradigms including, anxiety, learning, and memory. At present, studies in humans are limited, though there is strong evidence for prebiotics modulating emotional processes and the neuroendocrine stress response that may underlie the pathophysiology of anxiety. While the mechanistic details linking the enteric microbiota to the central nervous system remain to be elucidated, there are a number of considerations that can guide future studies. These include the modulation of intestinal endocrine systems and inflammatory cascades, as well as direct interaction with the enteric nervous system and gut mucosa. Our knowledge of gut microbiome-brain communication is steadily progressing, and thorough investigations validating the use of prebiotics in the treatment of neuropsychiatric disorders would be highly valued and are encouraged. © 2016 Elsevier Inc. All rights reserved.

  4. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    Science.gov (United States)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning

  5. Schizophrenia and bipolar disorder: The road from similarities and clinical heterogeneity to neurobiological types.

    Science.gov (United States)

    Dacquino, Claudia; De Rossi, Pietro; Spalletta, Gianfranco

    2015-09-20

    Although diagnosis is a central issue in medical care, in psychiatry its value is still controversial. The function of diagnosis is to indicate treatments and to help clinicians take better care of patients. The fundamental role of diagnosis is to predict outcome and prognosis. To date serious concern persists regarding the clinical utility and predictive validity of the diagnosis system in psychiatry, which is at the most syndromal. Schizophrenia and bipolar disorder, which nosologists consider two distinct disorders, are the most discussed psychiatric illnesses. Recent findings in different fields of psychiatric research, such as neuroimaging, neuropathology, neuroimmunology, neuropsychology and genetics, have led to other conceptualizations. Individuals with schizophrenia or bipolar disorder vary greatly with regard to symptoms, illness course, treatment response, cognitive and functional impairment and biological correlates. In fact, it is possible to find heterogeneous correlates even within the same syndrome, i.e., from one stage of the disorder to another. Thus, it is possible to identify different subsyndromes, which share some clinical and neurobiological characteristics. The main goal of modern psychiatry is to ovethrow these barriers and to obtain a better understanding of the biological profiles underlying heterogeneous clinical features and thus reduce the variance and lead to a homogeneous definition. The translational research model, which connects the basic neuroscience research field with clinical experience in psychiatry, aims to investigate different neurobiological features of syndromes and of the shared neurobiological features between two syndromes. In fact, this approach should help us to better understand the neurobiological pathways underlying clinical entities, and even to distinguish different, more homogeneous, diagnostic subtypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Neurobiology of dysregulated motivational systems in drug addiction

    Science.gov (United States)

    Edwards, Scott; Koob, George F

    2010-01-01

    The progression from recreational drug use to drug addiction impacts multiple neurobiological processes and can be conceptualized as a transition from positive to negative reinforcement mechanisms driving both drug-taking and drug-seeking behaviors. Neurobiological mechanisms for negative reinforcement, defined as drug taking that alleviates a negative emotional state, involve changes in the brain reward system and recruitment of brain stress (or antireward) systems within forebrain structures, including the extended amygdala. These systems are hypothesized to be dysregulated by excessive drug intake and to contribute to allostatic changes in reinforcement mechanisms associated with addiction. Points of intersection between positive and negative motivational circuitry may further drive the compulsivity of drug addiction but also provide a rich neurobiological substrate for therapeutic intervention. PMID:20563312

  7. “Love” Phenomenon and Neurobiology of Love Relations

    Directory of Open Access Journals (Sweden)

    Ali Evren Tufan

    2010-01-01

    Full Text Available The biology; especially the neurobiological features of the “love” phenomenon has recently started to attract attention. Love relations and attachment, which is closely related with them, are known to be important in health and disease. Love and love relations are found to be complex neurobiological phenomena based on activation of the limbic system of the brain. Those processes involve oxytocin, vasopressin, dopamine and serotonergic functions. Additionally, endorphine and endogenous opiate systems as well as nitrous oxide play role in those processes. The stages of love and love relations may demonstrate different neurochemical and neurophysiological features and may partially overlap with m aternal, romantic and sexual love and attachments. The aim of this article is to evaluate the common neurobiological pathways underlying the “love” phenomenon as well as their importance in medicine and health.

  8. Neurobiology of anorexia and bulimia nervosa.

    Science.gov (United States)

    Kaye, Walter

    2008-04-22

    Anorexia nervosa (AN) and bulimia nervosa (BN) are related disorders of unknown etiology that most commonly begin during adolescence in women. AN and BN have unique and puzzling symptoms, such as restricted eating or binge-purge behaviors, body image distortions, denial of emaciation, and resistance to treatment. These are often chronic and relapsing disorders, and AN has the highest death rate of any psychiatric disorder. The lack of understanding of the pathogenesis of this illness has hindered the development of effective interventions, particularly for AN. Individuals with AN and BN are consistently characterized by perfectionism, obsessive-compulsiveness, and dysphoric mood. Individuals with AN tend to have high constraint, constriction of affect and emotional expressiveness, ahendonia and asceticism, whereas individuals with BN tend to be more impulsive and sensation seeking. Such symptoms often begin in childhood, before the onset of an eating disorder, and persist after recovery, suggesting they are traits that create a vulnerability for developing an ED. There is growing acknowledgement that neurobiological vulnerabilities make a substantial contribution to the pathogenesis of AN and BN. Considerable evidence suggests that altered brain serotonin (5-HT) function contributes to dysregulation of appetite, mood, and impulse control in AN and BN. Brain imaging studies, using 5-HT specific ligands, show that disturbances of 5-HT function occur when people are ill, and persist after recovery from AN and BN. It is possible that a trait-related disturbance of 5-HT neuronal modulation predates the onset of AN and contributes to premorbid symptoms of anxiety, obsessionality, and inhibition. This dysphoric temperament may involve an inherent dysregulation of emotional and reward pathways which also mediate the hedonic aspects of feeding, thus making these individuals vulnerable to disturbed appetitive behaviors. Restricting food intake may become powerfully

  9. Neurobiology of Fear and Specific Phobias

    Science.gov (United States)

    Garcia, René

    2017-01-01

    Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized…

  10. New Model of Mobile Learning for the High School Students Preparing for the Unified State Exam

    Science.gov (United States)

    Khasianov, Airat; Shakhova, Irina

    2017-01-01

    In this paper we study a new model of mobile learning for the Unified State Exam ("USE") preparation in Russian Federation. "USE"--is the test school graduates need to pass in order to obtain Russian matura. In recent years the efforts teachers put for preparation of their students to the "USE" diminish how well the…

  11. Preparing for success: Readiness models for rural telehealth

    Directory of Open Access Journals (Sweden)

    Jennett P

    2005-01-01

    Full Text Available Background: Readiness is an integral and preliminary step in the successful implementation of telehealth services into existing health systems within rural communities. Methods and Materials: This paper details and critiques published international peer-reviewed studies that have focused on assessing telehealth readiness for rural and remote health. Background specific to readiness and change theories is provided, followed by a critique of identified telehealth readiness models, including a commentary on their readiness assessment tools. Results: Four current readiness models resulted from the search process. The four models varied across settings, such as rural outpatient practices, hospice programs, rural communities, as well as government agencies, national associations, and organizations. All models provided frameworks for readiness tools. Two specifically provided a mechanism by which communities could be categorized by their level of telehealth readiness. Discussion: Common themes across models included: an appreciation of practice context, strong leadership, and a perceived need to improve practice. Broad dissemination of these telehealth readiness models and tools is necessary to promote awareness and assessment of readiness. This will significantly aid organizations to facilitate the implementation of telehealth.

  12. Stress and Memory: Behavioral Effects and Neurobiological Mechanisms

    Directory of Open Access Journals (Sweden)

    M. Teresa Pinelo-Nava

    2007-04-01

    Full Text Available Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge or extrinsic (induced by conditions completely unrelated to the cognitive task, tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner, while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect. Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects.

  13. [Neurobiology and pharmacotherapy of social phobia].

    Science.gov (United States)

    Aouizerate, B; Martin-Guehl, C; Tignol, J

    2004-01-01

    Social phobia (also known as social anxiety disorder) is still not clearly understood. It was not established as an authentic psychiatric entity until the diagnostic nomenclature of the American Psychiatric Association DSM III in 1980. In recent years, increasing attention among researchers has contributed to provide important information about the genetic, familial and temperamental bases of social phobia and its neurochemical, neuroendocrinological and neuroanatomical substrates, which remain to be further investigated. Up to date, there have been several findings about the possible influence of variables, including particularly genetic, socio-familial and early temperamental (eg behavioral inhibition) factors that represent risk for the later development of social phobia. Clinical neurobiological studies, based on the use of exogenous compounds such as lactate, CO2, caffeine, epinephrine, flumazenil or cholecystokinin/pentagastrin to reproduce naturally occurring phobic anxiety, have shown that patients with social phobia appear to exhibit an intermediate sensitivity between patients with panic disorder and control subjects. No difference in the rate of panic attacks in response to lactate, low concentrations of CO2 (5%), epinephrine or flumazenil was observed between patients with social phobia and normal healthy subjects, both being less reactive compared to patients with panic disorder. However, patients with social phobia had similar anxiety reactions to high concentrations of CO2 (35%), caffeine or cholecystokinin/pentagastrin than those seen in patients with panic disorder, both being more intensive than in controls. Several lines of evidence suggest specific neurotransmitter system alterations in social phobia, especially with regard to the serotoninergic, noradrenergic and dopaminergic systems. Although no abnormality in platelet serotonin transporter density has been found, patients with social phobia appear to show an enhanced sensitivity of both post

  14. Cases as Shared Inquiry: A Dialogical Model of Teacher Preparation.

    Science.gov (United States)

    Harrington, Helen L.; Garrison, James W.

    1992-01-01

    A dialogical model is proposed for connecting theory to practice in teacher education by conceiving of cases from case-based pedagogy as problems that initiate shared inquiry. Cases with genuine cognitive and axiological content can initiate self-directed, student-centered inquiry while building democratic dialogical communities. (SLD)

  15. The neurobiology of offensive aggression : Revealing a modular view

    NARCIS (Netherlands)

    de Boer, S F; Olivier, B; Veening, J; Koolhaas, J.M.

    Experimental studies aimed at understanding the neurobiology of aggression started in the early 20th century, and by employing increasingly sophisticated tools of functional neuroanatomy (i.e., from electric/chemical lesion and stimulation techniques to neurochemical mapping and manipulations) have

  16. THE NEUROBIOLOGICAL, SOCIAL AND EVOLUTIONARY ASPECTS OF INTER PERSONAL ATTRACTION

    OpenAIRE

    Smrithi; Devdas; Ashok; Meghashree; Aarathi

    2015-01-01

    Interpersonal Attraction is the attraction between two people, which leads to friendships and even romantic relationships. Although Interpersonal Attraction has been a long - standing concept, only recently it is being studied regarding its neurobiological and socio evolutionary basis. It is now a major area of research in Social as well as Evolutionary Psychology.

  17. Matching the Neurobiology of Learning to Teaching Principles

    Science.gov (United States)

    Moffett, Nelle; Fleisher, Steven C.

    2013-01-01

    The authors describe principles of good teaching drawn from meta-analyses of research on teaching effectiveness. Recent developments in neurobiology are presented and aligned to provide biological support for these principles. To make it easier for college faculty to try out sample instructional strategies, the authors map principles of good…

  18. Neglected but Exciting Concepts in Developmental and Neurobiological Psychology

    Science.gov (United States)

    Jordan, Evan M.; Thomas, David G.

    2017-01-01

    This review provides an evaluative overview of five concepts specific to developmental and neurobiological psychology that are found to be largely overlooked in current textbooks. A sample of 19 introductory psychology texts was surveyed to develop a list, including glial cell signaling, grandmother cells, memory reconsolidation, brain plasticity,…

  19. The neurobiology and pharmacology of depression: A comparative ...

    African Journals Online (AJOL)

    Background. Over the past decade, targeted drug design has led to significant advances in the pharmacological management of depression. A serendipitous approach to drug discovery has therefore been replaced by the development of drugs acting on predetermined neurobiological targets recognised to be involved in ...

  20. Feather pecking and monoamines - a behavioral and neurobiological approach

    NARCIS (Netherlands)

    Kops, M.S.|info:eu-repo/dai/nl/341590649

    2014-01-01

    Severe feather pecking (SFP) remains one of the major welfare issues in laying hens. SFP is the pecking at and pulling out of feathers, inflicting damage to the plumage and skin of the recipient. The neurobiological profile determining the vulnerability of individual hens to develop into a severe

  1. What artificial grammar learning reveals about the neurobiology of syntax

    NARCIS (Netherlands)

    Petersson, K.M.; Folia, V.; Hagoort, P.

    2012-01-01

    : In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple

  2. What artificial grammar learning reveals about the neurobiology of syntax

    NARCIS (Netherlands)

    Petersson, K.M.; Vasiliki, F.; Hagoort, P.

    2012-01-01

    In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple

  3. Sex Influences on the Neurobiology of Learning and Memory

    Science.gov (United States)

    Andreano, Joseph M.; Cahill, Larry

    2009-01-01

    In essentially every domain of neuroscience, the generally implicit assumption that few, if any, meaningful differences exist between male and female brain function is being challenged. Here we address how this development is influencing studies of the neurobiology of learning and memory. While it has been commonly held that males show an…

  4. Neurobiological and neurocognitive effects of chronic cigarette smoking and alcoholism.

    Science.gov (United States)

    Durazzo, Timothy C; Meyerhoff, Dieter J

    2007-05-01

    Chronic cigarette smoking is associated with adverse effects on cardiac, pulmonary, and vascular function as well as the increased risk for various forms of cancer. However, little is known about the effects of chronic smoking on human brain function. Although smoking rates have decreased in the developed world, they remain high in individuals with alcohol use disorders (AUD) and other neuropsychiatric conditions. Despite the high prevalence of chronic smoking in AUD, few studies have addressed the potential neurobiological or neurocognitive consequences of chronic smoking in alcohol use disorders. Here, we review the the neurobiological and neurocognitive findings in both AUD and chronic cigarette smoking, followed by a review of the effects of comorbid cigarette smoking on neurobiology and neurocognition in AUD. Recent research suggests that comorbid chronic cigarette smoking modulates magnetic resonance-detectable brain injury and neurocognition in alcohol use disorders and adversely affects neurobiological and neurocognitive recovery in abstinent alcoholics.. Consideration of the potential separate and interactive effects of chronic smoking and alcohol use disorders may have significant implications for pharmacological and behavioral treatment interventions.

  5. Preparing radiology staff to meet service goals: a training model.

    Science.gov (United States)

    Ricciardone, E B; Stepanovich, P H; West, V T

    1994-01-01

    This article describes a model used to train radiology staff in customer service relations at a large southeastern medical center. Information about the needs of the radiology department and staff was acquired through quantitative and qualitative assessments. The primary goal of the training was twofold: 1) to develop employee awareness of customer expectations and 2) to develop problem-solving skills to respond to customer service related issues. Instructional methods compatible with adult learning were used and training results were assessed. Positive changes in employee attitudes and behaviors are described and recommendations for training development and implementation are discussed.

  6. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  7. Application of product modelling - seen from a work preparation viewpoint

    DEFF Research Database (Denmark)

    Hvam, Lars

    and methods, as only a minor part of the engineering work in these functions in the planning system until now has been supported with IT. The aim is to develop methods for analysing which activities to support with IT, and in relation to this, define context and structure of the IT-systems to support......, over building a model, and to the final programming of an application. It has been stressed out to carry out all the phases in the outline of procedure in the empirical work, one of the reasons being to prove that it is possible, with a reasonable consumption of resources, to build an application......Manufacturing companies spends an increasing amount of the total work resources in the manufacturing planning system with the activities of e.g. specifying products and methods, scheduling, procurement etc. By this the potential for obtaining increased productivity moves from the direct costs...

  8. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder

    Science.gov (United States)

    Gilpin, N. W.; Weiner, J. L.

    2016-01-01

    Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact. PMID:27749004

  9. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder.

    Science.gov (United States)

    Gilpin, N W; Weiner, J L

    2017-01-01

    Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. Value-Added Models for Teacher Preparation Programs: Validity and Reliability Threats, and a Manageable Alternative

    Science.gov (United States)

    Brady, Michael P.; Heiser, Lawrence A.; McCormick, Jazarae K.; Forgan, James

    2016-01-01

    High-stakes standardized student assessments are increasingly used in value-added evaluation models to connect teacher performance to P-12 student learning. These assessments are also being used to evaluate teacher preparation programs, despite validity and reliability threats. A more rational model linking student performance to candidates who…

  11. Neurobiological Correlates in Internet Gaming Disorder: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Daria J. Kuss

    2018-05-01

    Full Text Available Internet Gaming Disorder (IGD is a potential mental disorder currently included in the third section of the latest (fifth edition of the Diagnostic and Statistical Manual for Mental Disorders (DSM-5 as a condition that requires additional research to be included in the main manual. Although research efforts in the area have increased, there is a continuing debate about the respective criteria to use as well as the status of the condition as mental health concern. Rather than using diagnostic criteria which are based on subjective symptom experience, the National Institute of Mental Health advocates the use of Research Domain Criteria (RDoC which may support classifying mental disorders based on dimensions of observable behavior and neurobiological measures because mental disorders are viewed as biological disorders that involve brain circuits that implicate specific domains of cognition, emotion, and behavior. Consequently, IGD should be classified on its underlying neurobiology, as well as its subjective symptom experience. Therefore, the aim of this paper is to review the neurobiological correlates involved in IGD based on the current literature base. Altogether, 853 studies on the neurobiological correlates were identified on ProQuest (in the following scholarly databases: ProQuest Psychology Journals, PsycARTICLES, PsycINFO, Applied Social Sciences Index and Abstracts, and ERIC and on MEDLINE, with the application of the exclusion criteria resulting in reviewing a total of 27 studies, using fMRI, rsfMRI, VBM, PET, and EEG methods. The results indicate there are significant neurobiological differences between healthy controls and individuals with IGD. The included studies suggest that compared to healthy controls, gaming addicts have poorer response-inhibition and emotion regulation, impaired prefrontal cortex (PFC functioning and cognitive control, poorer working memory and decision-making capabilities, decreased visual and auditory

  12. Neurobiological Correlates in Internet Gaming Disorder: A Systematic Literature Review

    Science.gov (United States)

    Kuss, Daria J.; Pontes, Halley M.; Griffiths, Mark D.

    2018-01-01

    Internet Gaming Disorder (IGD) is a potential mental disorder currently included in the third section of the latest (fifth) edition of the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) as a condition that requires additional research to be included in the main manual. Although research efforts in the area have increased, there is a continuing debate about the respective criteria to use as well as the status of the condition as mental health concern. Rather than using diagnostic criteria which are based on subjective symptom experience, the National Institute of Mental Health advocates the use of Research Domain Criteria (RDoC) which may support classifying mental disorders based on dimensions of observable behavior and neurobiological measures because mental disorders are viewed as biological disorders that involve brain circuits that implicate specific domains of cognition, emotion, and behavior. Consequently, IGD should be classified on its underlying neurobiology, as well as its subjective symptom experience. Therefore, the aim of this paper is to review the neurobiological correlates involved in IGD based on the current literature base. Altogether, 853 studies on the neurobiological correlates were identified on ProQuest (in the following scholarly databases: ProQuest Psychology Journals, PsycARTICLES, PsycINFO, Applied Social Sciences Index and Abstracts, and ERIC) and on MEDLINE, with the application of the exclusion criteria resulting in reviewing a total of 27 studies, using fMRI, rsfMRI, VBM, PET, and EEG methods. The results indicate there are significant neurobiological differences between healthy controls and individuals with IGD. The included studies suggest that compared to healthy controls, gaming addicts have poorer response-inhibition and emotion regulation, impaired prefrontal cortex (PFC) functioning and cognitive control, poorer working memory and decision-making capabilities, decreased visual and auditory functioning, and a

  13. Cost Effectiveness of Screening Colonoscopy Depends on Adequate Bowel Preparation Rates - A Modeling Study.

    Directory of Open Access Journals (Sweden)

    James Kingsley

    Full Text Available Inadequate bowel preparation during screening colonoscopy necessitates repeating colonoscopy. Studies suggest inadequate bowel preparation rates of 20-60%. This increases the cost of colonoscopy for our society.The aim of this study is to determine the impact of inadequate bowel preparation rate on the cost effectiveness of colonoscopy compared to other screening strategies for colorectal cancer (CRC.A microsimulation model of CRC screening strategies for the general population at average risk for CRC. The strategies include fecal immunochemistry test (FIT every year, colonoscopy every ten years, sigmoidoscopy every five years, or stool DNA test every 3 years. The screening could be performed at private practice offices, outpatient hospitals, and ambulatory surgical centers.At the current assumed inadequate bowel preparation rate of 25%, the cost of colonoscopy as a screening strategy is above society's willingness to pay (<$50,000/QALY. Threshold analysis demonstrated that an inadequate bowel preparation rate of 13% or less is necessary before colonoscopy is considered more cost effective than FIT. At inadequate bowel preparation rates of 25%, colonoscopy is still more cost effective compared to sigmoidoscopy and stool DNA test. Sensitivity analysis of all inputs adjusted by ±10% showed incremental cost effectiveness ratio values were influenced most by the specificity, adherence, and sensitivity of FIT and colonoscopy.Screening colonoscopy is not a cost effective strategy when compared with fecal immunochemical test, as long as the inadequate bowel preparation rate is greater than 13%.

  14. Insomnia: psychological and neurobiological aspects and non-pharmacological treatments

    Directory of Open Access Journals (Sweden)

    Yara Fleury Molen

    2014-01-01

    Full Text Available Insomnia involves difficulty in falling asleep, maintaining sleep or having refreshing sleep. This review gathers the existing informations seeking to explain insomnia, including those that focus on psychological aspects and those considered neurobiological. Insomnia has been defined in psychological (cognitive components, such as worries and rumination, and behavioral aspects, such as classic conditioning and physiological terms (increased metabolic rate, with increased muscle tone, heart rate and temperature. From the neurobiological point of view, there are two perspectives: one which proposes that insomnia occurs in association with a failure to inhibit wakefulness and another that considers hyperarousal as having an important role in the physiology of sleep. The non-pharmacological interventions developed to face different aspects of insomnia are presented.

  15. Insomnia: psychological and neurobiological aspects and non-pharmacological treatments.

    Science.gov (United States)

    Molen, Yara Fleury; Carvalho, Luciane Bizari Coin; Prado, Lucila Bizari Fernandes do; Prado, Gilmar Fernandes do

    2014-01-01

    Insomnia involves difficulty in falling asleep, maintaining sleep or having refreshing sleep. This review gathers the existing informations seeking to explain insomnia, including those that focus on psychological aspects and those considered neurobiological. Insomnia has been defined in psychological (cognitive components, such as worries and rumination, and behavioral aspects, such as classic conditioning) and physiological terms (increased metabolic rate, with increased muscle tone, heart rate and temperature). From the neurobiological point of view, there are two perspectives: one which proposes that insomnia occurs in association with a failure to inhibit wakefulness and another that considers hyperarousal as having an important role in the physiology of sleep. The non-pharmacological interventions developed to face different aspects of insomnia are presented.

  16. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms

    Science.gov (United States)

    Singh, Amit; Kar, Sujita Kumar

    2017-01-01

    Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT. PMID:28783929

  17. Neurobiological correlates of panic disorder and agoraphobia.

    Directory of Open Access Journals (Sweden)

    Al-Haddad M

    2001-01-01

    Full Text Available Panic Disorder and agoraphobia offer considerable diagnostic and management challenges, particularly in general practice. We describe a typical case of panic disorder in a young adult. The recent advances in our understanding of brain functions can be used to explain to a certain extent the biologic basis of panic disorder. A hypothetical model integrating current views on panic disorder and agoraphobia has been proposed. The management principles including the role of cognitive therapy and pharmacotherapy have been discussed.

  18. Do Test Design and Uses Influence Test Preparation? Testing a Model of Washback with Structural Equation Modeling

    Science.gov (United States)

    Xie, Qin; Andrews, Stephen

    2013-01-01

    This study introduces Expectancy-value motivation theory to explain the paths of influences from perceptions of test design and uses to test preparation as a special case of washback on learning. Based on this theory, two conceptual models were proposed and tested via Structural Equation Modeling. Data collection involved over 870 test takers of…

  19. Neurobiological correlates of internet gaming disorder: Similarities to pathological gambling.

    Science.gov (United States)

    Fauth-Bühler, M; Mann, K

    2017-01-01

    The number of massively multiplayer online games (MMOs) is on the rise worldwide along with the fascination that they inspire. Problems occur when the use of MMOs becomes excessive at the expense of other life domains. Although not yet formally included as disorder in common diagnostic systems, internet gaming disorder (IGD) is considered a "condition for further study" in section III of the DSM-5. The current review aims to provide an overview of cognitive and neurobiological data currently available on IGD, with a particular focus on impulsivity, compulsivity, and sensitivity to reward and punishment. Additionally, we also compare these findings on IGD with data from studies on pathological gambling (PG)-so far the only condition officially classified as a behavioral addiction in the DSM-5. Multiple similarities have been observed in the neurobiology of IGD and PG, as measured by alterations in brain function and behavior. Both patients with IGD and those with PG exhibited decreased loss sensitivity; enhanced reactivity to gaming and gambling cues, respectively; enhanced impulsive choice behavior; aberrant reward-based learning; and no changes in cognitive flexibility. In conclusion, the evidence base on the neurobiology of gaming and gambling disorders is beginning to illuminate the similarities between the two. However, as only a few studies have addressed the neurobiological basis of IGD, and some of these studies suffer from significant limitations, more research is required before IGD's inclusion as a second behavioral addiction in the next versions of the ICD and DSM can be justified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Neurobiological Basis of Insight in Schizophrenia: A Systematic Review.

    Science.gov (United States)

    Xavier, Rose Mary; Vorderstrasse, Allison

    2016-01-01

    Insight in schizophrenia is defined as awareness into illness, symptoms, and need for treatment and has long been associated with cognition, other psychopathological symptoms, and several adverse clinical and functional outcomes. However, the biological basis of insight is not clearly understood. The aim of this systematic review was to critically evaluate and summarize advances in the study of the biological basis of insight in schizophrenia and to identify gaps in this knowledge. A literature search of PubMed, CINAHL, PsycINFO, and EMBASE databases was conducted using search terms to identify articles relevant to the biology of insight in schizophrenia published in the last 6 years. Articles that focused on etiology of insight in schizophrenia and those that examined the neurobiology of insight in schizophrenia or psychoses were chosen for analysis. Articles on insight in conditions other than schizophrenia or psychoses and which did not investigate the neurobiological underpinnings of insight were excluded from the review. Twenty-six articles met the inclusion criteria for this review. Of the 26 articles, 3 focused on cellular abnormalities and 23 were neuroimaging studies. Preliminary data identify the prefrontal cortex, cingulate cortex, and regions of the temporal and parietal lobe (precuneus, inferior parietal lobule) and hippocampus as the neural correlates of insight. A growing body of literature attests to the neurobiological basis of insight in schizophrenia. Current evidence supports the neurobiological basis of insight in schizophrenia and identifies specific neural correlates for insight types and its dimensions. Further studies that examine the precise biological mechanisms of insight are needed to apply this knowledge to effective clinical intervention development.

  1. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    Science.gov (United States)

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. © 2016 American Society for Parenteral and Enteral Nutrition.

  2. Controlling legs for locomotion-insights from robotics and neurobiology.

    Science.gov (United States)

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  3. Addicted to palatable foods: comparing the neurobiology of Bulimia Nervosa to that of drug addiction.

    Science.gov (United States)

    Hadad, Natalie A; Knackstedt, Lori A

    2014-05-01

    Bulimia nervosa (BN) is highly comorbid with substance abuse and shares common phenotypic and genetic predispositions with drug addiction. Although treatments for the two disorders are similar, controversy remains about whether BN should be classified as addiction. Here, we review the animal and human literature with the goal of assessing whether BN and drug addiction share a common neurobiology. Similar neurobiological features are present following administration of drugs and bingeing on palatable food, especially sugar. Specifically, both disorders involve increases in extracellular dopamine (DA), D1 binding, D3 messenger RNA (mRNA), and ΔFosB in the nucleus accumbens (NAc). Animal models of BN reveal increases in ventral tegmental area (VTA) DA and enzymes involved in DA synthesis that resemble changes observed after exposure to addictive drugs. Additionally, alterations in the expression of glutamate receptors and prefrontal cortex activity present in human BN or following sugar bingeing in animals are comparable to the effects of addictive drugs. The two disorders differ in regards to alterations in NAc D2 binding, VTA DAT mRNA expression, and the efficacy of drugs targeting glutamate to treat these disorders. Although additional empirical studies are necessary, the synthesis of the two bodies of research presented here suggests that BN shares many neurobiological features with drug addiction. While few Food and Drug Administration-approved options currently exist for the treatment of drug addiction, pharmacotherapies developed in the future, which target the glutamate, DA, and opioid systems, may be beneficial for the treatment of both BN and drug addiction.

  4. The psychological development of panic disorder: implications for neurobiology and treatment.

    Science.gov (United States)

    Cosci, Fiammetta

    2012-06-01

    The aim of this study was to survey the available literature on psychological development of panic disorder with or without agoraphobia [PD(A)] and its relationship with the neurobiology and the treatment of panic. Both a computerized (PubMed) and a manual search of the literature were performed. Only English papers published in peer-reviewed journals and referring to PD(A) as defined by the diagnostic classifications of the American Psychiatric Association or of the World Health Organization were included. A staging model of panic exists and is applicable in clinical practice. In a substantial proportion of patients with PD(A), a prodromal phase and, despite successful treatment, residual symptoms can be identified. Both prodromes and residual symptoms allow the monitoring of disorder evolution during recovery via the rollback phenomenon. The different stages of the disorder, as well as the steps of the rollback, have a correspondence in the neurobiology and in the treatment of panic. However, the treatment implications of the longitudinal model of PD(A) are not endorsed, and adequate interventions of enduring effects are missing.

  5. Love is more than just a kiss: a neurobiological perspective on love and affection.

    Science.gov (United States)

    de Boer, A; van Buel, E M; Ter Horst, G J

    2012-01-10

    Love, attachment, and truth of human monogamy have become important research themes in neuroscience. After the introduction of functional Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET), neuroscientists have demonstrated increased interest in the neurobiology and neurochemistry of emotions, including love and affection. Neurobiologists have studied pair-bonding mechanisms in animal models of mate choice to elucidate neurochemical mechanisms underlying attachment and showed possible roles for oxytocin, vasopressin, and dopamine and their receptors in pair-bonding and monogamy. Unresolved is whether these substances are also critically involved in human attachment. The limited number of available imaging studies on love and affection is hampered by selection bias on gender, duration of a love affair, and cultural differences. Brain activity patterns associated with romantic love, shown with fMRI, overlapped with regions expressing oxytocin receptors in the animal models, but definite proof for a role of oxytocin in human attachment is still lacking. There is also evidence for a role of serotonin, cortisol, nerve growth factor, and testosterone in love and attachment. Changes in brain activity related to the various stages of a love affair, gender, and cultural differences are unresolved and will probably become important research themes in this field in the near future. In this review we give a resume of the current knowledge of the neurobiology of love and attachment and we discuss in brief the truth of human monogamy. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Early Childhood Teacher Preparation: A Tale of Authors and Multimedia, A Model of Technology Integration Described.

    Science.gov (United States)

    Wetzel, Keith; McLean, S. V.

    1997-01-01

    Describes collaboration of two teacher educators, one in early childhood language arts and one in computers in education. Discusses advantages and disadvantages and extensions of this model, including how a college-wide survey revealed that students in teamed courses are better prepared to teach and learn with technology. (DR)

  7. The Politics and Statistics of Value-Added Modeling for Accountability of Teacher Preparation Programs

    Science.gov (United States)

    Lincove, Jane Arnold; Osborne, Cynthia; Dillon, Amanda; Mills, Nicholas

    2014-01-01

    Despite questions about validity and reliability, the use of value-added estimation methods has moved beyond academic research into state accountability systems for teachers, schools, and teacher preparation programs (TPPs). Prior studies of value-added measurement for TPPs test the validity of researcher-designed models and find that measuring…

  8. Using of Video Modeling in Teaching a Simple Meal Preparation Skill for Pupils of Down Syndrome

    Science.gov (United States)

    AL-Salahat, Mohammad Mousa

    2016-01-01

    The current study aimed to identify the impact of video modeling upon teaching three pupils with Down syndrome the skill of preparing a simple meal (sandwich), where the training was conducted in a separate classroom in schools of normal students. The training consisted of (i) watching the video of an intellectually disabled pupil, who is…

  9. Unlock The Genıus Within:NEUROBIOLOGICAL TRAUMA, TEACHING, AND TRANSFORMATIVE LEARNING

    Directory of Open Access Journals (Sweden)

    Tojde

    2005-07-01

    Full Text Available Here, Daniel S. Janik, MD, PhD, argues replacing education and teaching with non-traumatic, curiosity-based, discovery-driven, and mentor-assisted transformational learning. Unlock the Genius Within is an easy read that explains-in conversational manner-the newest ideas on neurobiological and transformational learning beginning with what's wrong with education and ending with a call for reader participation in developing an applying neurobiological learning and transformational learning theory and methodology. Janik draws extensively from his own experiences first as a physician working with psychological recovery from trauma, and then as an educator and linguist in applying neurobiological-based transformational learning in clinics, classrooms, and tutoring. Features:· Descriptions of classical and contemporary research alongside allusions to popular movies and television programs· Suggested further readings· Neurobiological learning web resourcesThroughout this book, the author incorporates humor, wisdom, and anecdotes to draw readers into traditionally incomprehensible concepts and information that demonstrates transformational learning. It will be of interest to teachers (postsecondary, secondary, and ESL, administrators, counselors, parents, students, and medical researchers. http://www.rowmaneducation.com/ISBN/1578862914 Throughout this book, the author incorporates humor, wisdom, and anecdotes to draw readers into traditionally incomprehensible concepts and information that demonstrates transformational learning. It will be of interest to teachers (postsecondary, secondary, and ESL, administrators, counselors, parents, students, and medical researchers. About The Author Dr. Daniel S. Janik is a physician and University Studies Coordinator at Intercultural Communications College, a private English second language and college preparation school in Honolulu, Hawaii, USA. Reviews for Unlock the Genius Within: Neurobiological Trauma

  10. A QMRA Model for Salmonella in Pork Products During Preparation and Consumption

    DEFF Research Database (Denmark)

    Swart, A. N.; Leusden, F.; Nauta, Maarten

    2016-01-01

    As part of a quantitative microbiological risk assessment (QMRA) food chain model, this article describes a model for the consumer phase for Salmonella‐contaminated pork products. Three pork products were chosen as a proxy for the entire pork product spectrum: pork cuts, minced meat patties, and ...... factors “knife cleaning” and “preparation of a salad” are important parameters for pork cuts. For minced meat cleaning of the board, salad consumption, refrigerator temperature, and storage time were significant....

  11. Cultural Adaptation of a Neurobiologically Informed Intervention in Local and International Contexts.

    Science.gov (United States)

    Pakulak, Eric; Hampton Wray, Amanda; Longoria, Zayra; Garcia Isaza, Alejandra; Stevens, Courtney; Bell, Theodore; Burlingame, Sarah; Klein, Scott; Berlinski, Samuel; Attanasio, Orazio; Neville, Helen

    2017-12-01

    The relationship between early adversity and numerous negative outcomes across the lifespan is evident in a wide range of societies and cultures (e.g., Pakulak, Stevens, & Neville, 2018). Among the most affected neural systems are those supporting attention, self-regulation, and stress regulation. As such, these systems represent targets for neurobiologically informed interventions addressing early adversity. In prior work with monolingual native English-speaking families, we showed that a two-generation intervention targeting these systems in families improves outcomes across multiple domains including child brain function for selective attention (for detail, see Neville et al., 2013). Here, we discuss the translation and cultural adaptation (CA) of this intervention in local and international contexts, which required systematic consideration of cultural differences that could affect program acceptability. First, we conducted a translation and CA of our program to serve Latino families in the United States using the Cultural Adaptation Process (CAP), a model that works closely with stakeholders in a systematic, iterative process. Second, to implement the adapted program in Medellín, Colombia, we conducted a subsequent adaptation for Colombian culture using the same CAP. Our experience underscores the importance of consideration of cultural differences and a systematic approach to adaptation before assessing the efficacy of neurobiologically informed interventions in different cultural contexts. © 2017 Wiley Periodicals, Inc.

  12. Behavioral characteristics and neurobiological substrates shared by Pavlovian sign-tracking and drug abuse.

    Science.gov (United States)

    Tomie, Arthur; Grimes, Kathryn L; Pohorecky, Larissa A

    2008-06-01

    Drug abuse researchers have noted striking similarities between behaviors elicited by Pavlovian sign-tracking procedures and prominent symptoms of drug abuse. In Pavlovian sign-tracking procedures, repeated paired presentations of a small object (conditioned stimulus, CS) with a reward (unconditioned stimulus, US) elicits a conditioned response (CR) that typically consists of approaching the CS, contacting the CS, and expressing consummatory responses at the CS. Sign-tracking CR performance is poorly controlled and exhibits spontaneous recovery and long-term retention, effects that resemble relapse. Sign-tracking resembles psychomotor activation, a syndrome of behavioral responses evoked by addictive drugs, and the effects of sign-tracking on corticosterone levels and activation of dopamine pathways resemble the neurobiological effects of abused drugs. Finally, the neurobiological profile of individuals susceptible to sign-tracking resembles the pathophysiological profile of vulnerability to drug abuse, and vulnerability to sign-tracking predicts vulnerability to impulsive responding and alcohol self-administration. Implications of sign-tracking for models of drug addiction are considered.

  13. MODEL OF TECTONIC EARTHQUAKE PREPARATION AND OCCURRENCE AND ITS PRECURSORS IN CONDITIONS OF CRUSTAL STRETCHING

    Directory of Open Access Journals (Sweden)

    R. M. Semenov

    2018-01-01

    Full Text Available In connection with changes in the stress-strain state of the Earth's crust, various physical and mechanical processes, including destruction, take place in the rocks and are accompanied by tectonic earthquakes. Different models have been proposed to describe earthquake preparation and occurrence, depending on the mechanisms and the rates of geodynamic processes. One of the models considers crustal stretching that is characteristic of formation of rift structures. The model uses the data on rock samples that are stretched until destruction in a special laboratory installation. Based on the laboratory modeling, it is established that the samples are destroyed in stages that are interpreted as stages of preparation and occurrence of an earthquake source. The preparation stage of underground tremors is generally manifested by a variety of temporal (long-, medium- and short-term precursors. The main shortcoming of micro-modeling is that, considering small sizes of the investigated samples, it is impossible to reveal a link between the plastic extension of rocks (taking place in the earthquake hypocenter and the rock rupture. Plasticity is the ability of certain rocks to change shape and size irreversibly, while the rock continuity is maintained, in response to applied external forces. In order to take into account the effect of plastic deformation of rocks on earthquake preparation and occurrence, we propose not to refer to the diagrams showing stretching of the rock samples, but use a typical diagram of metal stretching, which can be obtained when testing a metal rod for breakage (Fig. 1. The diagram of metal stretching as a function of the relative elongation (to some degree of approximation and taking into account the coefficient of plasticity can be considered as a model of preparation and occurrence of an earthquake source in case of rifting. The energy released in the period immediately preceding the earthquake contributes to the emergence of

  14. Neurobiology of rodent self-grooming and its value for translational neuroscience.

    Science.gov (United States)

    Kalueff, Allan V; Stewart, Adam Michael; Song, Cai; Berridge, Kent C; Graybiel, Ann M; Fentress, John C

    2016-01-01

    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders--including models of autism spectrum disorder and obsessive compulsive disorder--that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.

  15. Neurobiological, Psychosocial and Environmental Causes of Violence and Aggression

    Directory of Open Access Journals (Sweden)

    Ozhan Yalcin

    2013-08-01

    Full Text Available In psychiatric practice psychotic disorders, mania, substance and alcohol related disorders, antisocial and borderline personality disorders, attention deficit hyperactivity disorder, conduct disorder, mental retardation, organic brain syndrome, delirium, stereotypical movement disorders, trichotillomania, eating disorders and other obsessive-compulsive spectrum disorders, pervasive developmental disorders, major depressive disorder, mixt episodes are closely related with agression towards surrounding and other people and towards self. Although as in suicide agression and violence are not always related to prominent psychopatology, violence and agression are closely associated with crime. In some societies, especially ritualistic agressive behaviours towards self are perceived as culturally normative. Sex, temperamental and cognitive patterns, medical factors also neurobiological and neuropsychiatric causes like neurotransmitters and hormonal factors and their metabolism, glucocorticoid and cholesterol metabolism, genetic factors and also ecological, toxical, nutritional factors, psychosocial and psychodynamic factors can be related with development and severity of agression and violence towards surrounding, other people and towards self. Although it is accepted that there isn’t single explanation of the individual differences about the tendency to violence, there are contradicting points of view among researchers about the most significant risc factor. Probably development or alleveation of violent behavior is influenced by the reciprocal interaction between psychosocial, psychodynamic, temperamental, neuropsychiatric, enviromental, genetic factors, parenting styles, quality of nurturition and education and school mental health interventions. Positive psychosocial, familial, educational factors, psychiatric interventions, protective mental health quality and positive government political attitudes can restorate negative genetic

  16. Internet and Video Game Addictions: Diagnosis, Epidemiology, and Neurobiology.

    Science.gov (United States)

    Sussman, Clifford J; Harper, James M; Stahl, Jessica L; Weigle, Paul

    2018-04-01

    In the past 2 decades, there has been substantial increase in availability and use of digital technologies, including the Internet, computer games, smart phones, and social media. Behavioral addiction to use of technologies spawned a body of related research. The recent inclusion of Internet gaming disorder as a condition for further study in the DSM-V invigorated a new wave of researchers, thereby expanding our understanding of these conditions. This article reviews current research, theory, and practice regarding the diagnosis, epidemiology, and neurobiology of Internet and video game addictions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [Neurobiological aspects of personality disorders and emotional instability].

    Science.gov (United States)

    Petrovic, Predrag

    2016-12-06

    Neurobiological aspects of personality disorders and emotional instability ADHD and mental disorders encompassing emotional instability such as emotionally unstable personality disorder and antisocial personality disorder can potentially be explained by a suboptimal regulation of information processing in the brain. ADHD involves suboptimal function of non-emotional attentional regulatory processes and emotional instability involves suboptimal emotional regulation. A network including prefrontal areas, anterior cingulate cortex, basal ganglia and specific neuromodulatory systems such as the dopamine system are dysfunctional in both ADHD and emotional instability. One might suggest that a dimensional view better describes these mental states than categorical diagnoses.

  18. Diagnosis, treatment, and neurobiology of autism in children.

    Science.gov (United States)

    Lainhart, J E; Piven, J

    1995-08-01

    Autism is a developmental neuropsychiatric disorder defined by the presence of social and communicative deficits, restricted and repetitive behaviors and interests, and a characteristic course. Research suggests that hereditary factors play a principal role in the etiology of most cases. A phenotype broader than autism, including milder social and language-based cognitive deficits, appears to be inherited. Although the pathogenesis is unknown, neurobiologic mechanisms clearly underlie the disorder. Neuropathologic studies have demonstrated abnormalities in limbic structures, the cerebellum, and the cortex. New advances in behavioral therapies and pharmacologic treatment are important components of successful multidisciplinary treatment of this disorder.

  19. A quantitative exposure model simulating human norovirus transmission during preparation of deli sandwiches.

    Science.gov (United States)

    Stals, Ambroos; Jacxsens, Liesbeth; Baert, Leen; Van Coillie, Els; Uyttendaele, Mieke

    2015-03-02

    Human noroviruses (HuNoVs) are a major cause of food borne gastroenteritis worldwide. They are often transmitted via infected and shedding food handlers manipulating foods such as deli sandwiches. The presented study aimed to simulate HuNoV transmission during the preparation of deli sandwiches in a sandwich bar. A quantitative exposure model was developed by combining the GoldSim® and @Risk® software packages. Input data were collected from scientific literature and from a two week observational study performed at two sandwich bars. The model included three food handlers working during a three hour shift on a shared working surface where deli sandwiches are prepared. The model consisted of three components. The first component simulated the preparation of the deli sandwiches and contained the HuNoV reservoirs, locations within the model allowing the accumulation of NoV and the working of intervention measures. The second component covered the contamination sources being (1) the initial HuNoV contaminated lettuce used on the sandwiches and (2) HuNoV originating from a shedding food handler. The third component included four possible intervention measures to reduce HuNoV transmission: hand and surface disinfection during preparation of the sandwiches, hand gloving and hand washing after a restroom visit. A single HuNoV shedding food handler could cause mean levels of 43±18, 81±37 and 18±7 HuNoV particles present on the deli sandwiches, hands and working surfaces, respectively. Introduction of contaminated lettuce as the only source of HuNoV resulted in the presence of 6.4±0.8 and 4.3±0.4 HuNoV on the food and hand reservoirs. The inclusion of hand and surface disinfection and hand gloving as a single intervention measure was not effective in the model as only marginal reductions of HuNoV levels were noticeable in the different reservoirs. High compliance of hand washing after a restroom visit did reduce HuNoV presence substantially on all reservoirs. The

  20. Neurobiologically Inspired Approaches to Nonlinear Process Control and Modeling

    Science.gov (United States)

    1999-12-31

    incorporates second messenger reaction kinetics and calcium dynamics to represent the nonlinear dynamics and the crucial role of neuromodulation in local...reflex). The dynamic neuromodulation as a mechanism for the nonlinear attenuation is the novel result of this study. Ear- lier simulations have shown

  1. Preparation of Self Hardening-modelling Polyurethane for Wood Repairing and Cracks Injection

    International Nuclear Information System (INIS)

    Meligi, G.A.; Elnahas, H.H.; Ammar, A.H.

    2014-01-01

    Self hardening composite as a modelling clay was prepared from polyurethane, two parts (A) and (B) where (A) contains polyol (polyether), vinyl acetate versatic ester copolymer (VAcVe) and magnesium silicate or wood powder and (B) contains toluene diisocyanate (TDI) as a hardening agent. The two parts mixed thoroughly giving soft putty like feel, open working time 1-2 h and cures hard overnight (24 h full cure). Factors affecting working time and full cure were evaluated. Also, measurements of surface hardness, compressive strength, scanning electron microscopy (SEM), water absorption and effect of ionizing radiation were studied. The suggestion for using the prepared polyurethane composite as clay dries as hard as a rock in the field of wood repair and cracks injection for building walls were recommended. Keywords: Polyurethane, modelling clay, radiation, wood repair and cracks injection.

  2. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    Science.gov (United States)

    Otero, Valerie; Pollock, Steven; Finkelstein, Noah

    2010-11-01

    In response to substantial evidence that many U.S. students are inadequately prepared in science and mathematics, we have developed an effective and adaptable model that improves the education of all students in introductory physics and increases the numbers of talented physics majors becoming certified to teach physics. We report on the Colorado Learning Assistant model and discuss its effectiveness at a large research university. Since its inception in 2003, we have increased the pool of well-qualified K-12 physics teachers by a factor of approximately three, engaged scientists significantly in the recruiting and preparation of future teachers, and improved the introductory physics sequence so that students' learning gains are typically double the traditional average.

  3. Preparing the Model for Prediction Across Scales (MPAS) for global retrospective air quality modeling

    Science.gov (United States)

    The US EPA has a plan to leverage recent advances in meteorological modeling to develop a "Next-Generation" air quality modeling system that will allow consistent modeling of problems from global to local scale. The meteorological model of choice is the Model for Predic...

  4. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    Directory of Open Access Journals (Sweden)

    Kathleen Thomaes

    2016-03-01

    Full Text Available Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS. The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses.

  5. Neurobiological Phenotypes Associated with a Family History of Alcoholism

    Science.gov (United States)

    Cservenka, Anita

    2015-01-01

    Background Individuals with a family history of alcoholism are at much greater risk for developing an alcohol use disorder (AUD) than youth or adults without such history. A large body of research suggests that there are premorbid differences in brain structure and function in family history positive (FHP) individuals relative to their family history negative (FHN) peers. Methods This review summarizes the existing literature on neurobiological phenotypes present in FHP youth and adults by describing findings across neurophysiological and neuroimaging studies. Results Neuroimaging studies have shown FHP individuals differ from their FHN peers in amygdalar, hippocampal, basal ganglia, and cerebellar volume. Both increased and decreased white matter integrity has been reported in FHP individuals compared with FHN controls. Functional magnetic resonance imaging studies have found altered inhibitory control and working memory-related brain response in FHP youth and adults, suggesting neural markers of executive functioning may be related to increased vulnerability for developing AUDs in this population. Additionally, brain activity differences in regions involved in bottom-up reward and emotional processing, such as the nucleus accumbens and amygdala, have been shown in FHP individuals relative to their FHN peers. Conclusions It is critical to understand premorbid neural characteristics that could be associated with cognitive, reward-related, or emotional risk factors that increase risk for AUDs in FHP individuals. This information may lead to the development of neurobiologically informed prevention and intervention studies focused on reducing the incidence of AUDs in high-risk youth and adults. PMID:26559000

  6. Neurobiological phenotypes associated with a family history of alcoholism.

    Science.gov (United States)

    Cservenka, Anita

    2016-01-01

    Individuals with a family history of alcoholism are at much greater risk for developing an alcohol use disorder (AUD) than youth or adults without such history. A large body of research suggests that there are premorbid differences in brain structure and function in family history positive (FHP) individuals relative to their family history negative (FHN) peers. This review summarizes the existing literature on neurobiological phenotypes present in FHP youth and adults by describing findings across neurophysiological and neuroimaging studies. Neuroimaging studies have shown FHP individuals differ from their FHN peers in amygdalar, hippocampal, basal ganglia, and cerebellar volume. Both increased and decreased white matter integrity has been reported in FHP individuals compared with FHN controls. Functional magnetic resonance imaging studies have found altered inhibitory control and working memory-related brain response in FHP youth and adults, suggesting neural markers of executive functioning may be related to increased vulnerability for developing AUDs in this population. Additionally, brain activity differences in regions involved in bottom-up reward and emotional processing, such as the nucleus accumbens and amygdala, have been shown in FHP individuals relative to their FHN peers. It is critical to understand premorbid neural characteristics that could be associated with cognitive, reward-related, or emotional risk factors that increase risk for AUDs in FHP individuals. This information may lead to the development of neurobiologically informed prevention and intervention studies focused on reducing the incidence of AUDs in high-risk youth and adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Bridging the interval: theory and neurobiology of trace conditioning.

    Science.gov (United States)

    Raybuck, Jonathan D; Lattal, K Matthew

    2014-01-01

    An early finding in the behavioral analysis of learning was that conditioned responding weakens as the conditioned stimulus (CS) and unconditioned stimulus (US) are separated in time. This "trace" conditioning effect has been the focus of years of research in associative learning. Theoretical accounts of trace conditioning have focused on mechanisms that allow associative learning to occur across long intervals between the CS and US. These accounts have emphasized degraded contingency effects, timing mechanisms, and inhibitory learning. More recently, study of the neurobiology of trace conditioning has shown that even a short interval between the CS and US alters the circuitry recruited for learning. Here, we review some of the theoretical and neurobiological mechanisms underlying trace conditioning with an emphasis on recent studies of trace fear conditioning. Findings across many studies have implications not just for how we think about time and conditioning, but also for how we conceptualize fear conditioning in general, suggesting that circuitry beyond the usual suspects needs to be incorporated into current thinking about fear, learning, and anxiety. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration.

    Science.gov (United States)

    Amanullah, Ayeman; Upadhyay, Arun; Joshi, Vibhuti; Mishra, Ribhav; Jana, Nihar Ranjan; Mishra, Amit

    2017-12-01

    Proteins are ordered useful cellular entities, required for normal health and organism's survival. The proteome is the absolute set of cellular expressed proteins, which regulates a wide range of physiological functions linked with all domains of life. In aging cells or under unfavorable cellular conditions, misfolding of proteins generates common pathological events linked with neurodegenerative diseases and aging. Current advances of proteome studies systematically generates some progress in our knowledge that how misfolding of proteins or their accumulation can contribute to the impairment or depletion of proteome functions. Still, the underlying causes of this unrecoverable loss are not clear that how such unsolved transitions give rise to multifactorial challengeable degenerative pathological conditions in neurodegeneration. In this review, we specifically focus and systematically summarize various molecular mechanisms of proteostasis maintenance, as well as discuss progressing neurobiological strategies, promising natural and pharmacological candidates, which can be useful to counteract the problem of proteopathies. Our article emphasizes an urgent need that now it is important for us to recognize the fundamentals of proteostasis to design a new molecular framework and fruitful strategies to uncover how the proteome defects are associated with aging and neurodegenerative diseases. A enhance understanding of progress link with proteome and neurobiological challenges may provide new basic concepts in the near future, based on pharmacological agents, linked with impaired proteostasis and neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Neurobiology of cognitive remediation therapy for schizophrenia: a systematic review.

    Science.gov (United States)

    Thorsen, Anders Lillevik; Johansson, Kyrre; Løberg, Else-Marie

    2014-01-01

    Cognitive impairment is an important aspect of schizophrenia, where cognitive remediation therapy (CRT) is a promising treatment for improving cognitive functioning. While neurobiological dysfunction in schizophrenia has been the target of much research, the neural substrate of cognitive remediation and recovery has not been thoroughly examined. The aim of the present article is to systematically review the evidence for neural changes after CRT for schizophrenia. The reviewed studies indicate that CRT affects several brain regions and circuits, including prefrontal, parietal, and limbic areas, both in terms of activity and structure. Changes in prefrontal areas are the most reported finding, fitting to previous evidence of dysfunction in this region. Two limitations of the current research are the few studies and the lack of knowledge on the mechanisms underlying neural and cognitive changes after treatment. Despite these limitations, the current evidence suggests that CRT is associated with both neurobiological and cognitive improvement. The evidence from these findings may shed light on both the neural substrate of cognitive impairment in schizophrenia, and how better treatment can be developed and applied.

  10. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior.

    Science.gov (United States)

    Lockery, S R; Lawton, K J; Doll, J C; Faumont, S; Coulthard, S M; Thiele, T R; Chronis, N; McCormick, K E; Goodman, M B; Pruitt, B L

    2008-06-01

    With a nervous system of only 302 neurons, the free-living nematode Caenorhabditis elegans is a powerful experimental organism for neurobiology. However, the laboratory substrate commonly used in C. elegans research, a planar agarose surface, fails to reflect the complexity of this organism's natural environment, complicates stimulus delivery, and is incompatible with high-resolution optophysiology experiments. Here we present a new class of microfluidic devices for C. elegans neurobiology and behavior: agarose-free, micron-scale chambers and channels that allow the animals to crawl as they would on agarose. One such device mimics a moist soil matrix and facilitates rapid delivery of fluid-borne stimuli. A second device consists of sinusoidal channels that can be used to regulate the waveform and trajectory of crawling worms. Both devices are thin and transparent, rendering them compatible with high-resolution microscope objectives for neuronal imaging and optical recording. Together, the new devices are likely to accelerate studies of the neuronal basis of behavior in C. elegans.

  11. The Neurobiological Impact of Ghrelin Suppression after Oesophagectomy

    Directory of Open Access Journals (Sweden)

    Conor F. Murphy

    2016-12-01

    Full Text Available Ghrelin, discovered in 1999, is a 28-amino-acid hormone, best recognized as a stimulator of growth hormone secretion, but with pleiotropic functions in the area of energy homeostasis, such as appetite stimulation and energy expenditure regulation. As the intrinsic ligand of the growth hormone secretagogue receptor (GHS-R, ghrelin appears to have a broad array of effects, but its primary role is still an area of debate. Produced mainly from oxyntic glands in the stomach, but with a multitude of extra-metabolic roles, ghrelin is implicated in complex neurobiological processes. Comprehensive studies within the areas of obesity and metabolic surgery have clarified the mechanism of these operations. As a stimulator of growth hormone (GH, and an apparent inducer of positive energy balance, other areas of interest include its impact on carcinogenesis and tumour proliferation and its role in the cancer cachexia syndrome. This has led several authors to study the hormone in the cancer setting. Ghrelin levels are acutely reduced following an oesophagectomy, a primary treatment modality for oesophageal cancer. We sought to investigate the nature of this postoperative ghrelin suppression, and its neurobiological implications.

  12. Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, and characterization

    OpenAIRE

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren; Skov, Anne Ladegaard

    2015-01-01

    Polydimethylsiloxane (PDMS) microspheres are prepared by mixing homogeneous dispersions of vinyl-functional PDMS and a curing agent using mechanical stirring in a series of aqueous solutions, and curing at 80 8C for 2 h. In order to verify the experimental diameter and size distributions of the PDMS microspheres, the Hinze-Kolmogorov theory is applied to predict the mean diameter, and a population balance model as well as the maximum entropy formalism are used to describe the size distributio...

  13. Integrating hydrologic modeling web services with online data sharing to prepare, store, and execute models in hydrology

    Science.gov (United States)

    Gan, T.; Tarboton, D. G.; Dash, P. K.; Gichamo, T.; Horsburgh, J. S.

    2017-12-01

    Web based apps, web services and online data and model sharing technology are becoming increasingly available to support research. This promises benefits in terms of collaboration, platform independence, transparency and reproducibility of modeling workflows and results. However, challenges still exist in real application of these capabilities and the programming skills researchers need to use them. In this research we combined hydrologic modeling web services with an online data and model sharing system to develop functionality to support reproducible hydrologic modeling work. We used HydroDS, a system that provides web services for input data preparation and execution of a snowmelt model, and HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. To make the web services easy to use, we developed a HydroShare app (based on the Tethys platform) to serve as a browser based user interface for HydroDS. In this integration, HydroDS receives web requests from the HydroShare app to process the data and execute the model. HydroShare supports storage and sharing of the results generated by HydroDS web services. The snowmelt modeling example served as a use case to test and evaluate this approach. We show that, after the integration, users can prepare model inputs or execute the model through the web user interface of the HydroShare app without writing program code. The model input/output files and metadata describing the model instance are stored and shared in HydroShare. These files include a Python script that is automatically generated by the HydroShare app to document and reproduce the model input preparation workflow. Once stored in HydroShare, inputs and results can be shared with other users, or published so that other users can directly discover, repeat or modify the modeling work. This approach provides a collaborative environment that integrates hydrologic web services with a data and model sharing

  14. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  15. Investigation on the neurobiological correlates of social anxiety disorder using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sladky, R.

    2012-01-01

    Functional MRI is based on the very intuitive principle that neuronal activity leads to locally increased energy demand, which can be measured due to the different magnetic properties of oxygenated and deoxygenated blood. Interdisciplinary research and development in MR physics, engineering, bioinformatics and neuroscience have made fMRI an indispensible research tool for all domains of cognitive science. Besides basic research, fMRI has become a gold standard diagnostic method for clinical applications, as well. The main goal of the present doctoral thesis was to contribute to the understanding of the neural mechanisms of social anxiety disorder (SAD) patients. SAD is a disabling psychiatric conditions that impairs social interactions and acts as a major risk factor for depression and addiction. To this end, an fMRI study has been conducted on a population of SAD patients and healthy controls to highlight functional aberrations within the emotion regulation network. Failed adaptation towards social stressors, such as emotional faces, is a characterizing symptom of SAD. And indeed, in this study, which involved an emotion discrimination task, group differences in neural habituation of SAD patients were found in the amygdala and the orbitofrontal cortex (OFC), two central nodes of the emotion regulation network. To highlight the causal neurobiological mechanisms, the same data were analyzed using dynamic causal modeling (DCM). In this study, a difference in effective connectivity between the OFC and the amygdala was found. In healthy subjects, the OFC showed to down-regulate amygdalar activation, which corresponds to the conception of cognitive top-down control over affective influences. In SAD patients, however, a positive effective connectivity from OFC to amygdala was found, indicating a positive feedback loop between these regions. This finding, thus, nurtures a neurobiological model that could explain the decreased inhibition of affective stimuli by cognitive

  16. Assessing the place of neurobiological explanations in accounts of a family member's addiction.

    Science.gov (United States)

    Meurk, Carla; Fraser, Doug; Weier, Megan; Lucke, Jayne; Carter, Adrian; Hall, Wayne

    2016-07-01

    The brain disease model of addiction posits that addiction is a persistent form of neural dysfunction produced by chronic drug use, which makes it difficult for addicted persons to become and remain abstinent. As part of an anticipatory policy analysis of addiction neuroscience, we engaged family members of addicted individuals to assess their views on the place and utility of brain-based accounts of addiction. Fifteen in-depth qualitative interviews were conducted and used to develop a quantitative online survey that was completed by 55 family members. This article reports responses on what addiction is and how it is caused and responses to explanations of the brain disease model of addiction. Participants gave multiple reasons for their family members developing an addiction and there was no single dominant belief about the best way to describe addiction. Participants emphasised the importance of both scientific and non-scientific perspectives on addiction by providing multifactorial explanations of their family members' addictions. Most family members acknowledged that repeated drug use can cause changes to the brain, but they varied in their reactions to labelling addiction a 'brain disease'. They believed that understanding addiction, and how it is caused, could help them support their addicted relative. Participants' beliefs about neurobiological information and the brain disease model of addiction appeared to be driven by empathetic, utilitarian considerations rather than rationalist ones. We discuss the importance of providing information about the nature and causes of addiction. [Meurk C, Fraser D, Weier M, Lucke J, Carter A, Hall W. Assessing the place of neurobiological explanations in accounts of a family member's addiction. Drug Alcohol Rev 2016;35:461-469]. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  17. Application of the PEE Model to essay composition in an IELTS preparation class

    Directory of Open Access Journals (Sweden)

    Ender Orlando Velasco Tovar

    2015-01-01

    Full Text Available Based on two case studies, this study investigates the application of the Point, Explanation, Example (PEE model to essay composition in a multi-lingual IELTS preparation class. This model was incorporated into an eight-week programme of instruction to ESL adults in London, England. Students preparing for the IELTS exam were asked to write pre and post instruction essays on a given topic within 40 minutes. Employing the IELTS band descriptors (IELTS, 2013b and analyses of coherence and cohesion in line with Systemic Functional Linguistic concepts (Halliday and Matthiessen, 2004; McCarthy, 1991, samples of students’ writing were analysed. Data from students’ pre and post instruction interviews was also gathered and analysed. The findings of this study suggest that the PEE model is to some extent effective in improving the essay composition performance of IELTS students, in particular in the area of cohesion and coherence. Students find the PEE model useful in regard to the clarity and structure that the model seems to add to their essays.

  18. Use of computational modeling in preparation and evaluation of surface imprinted xerogels for binding tetracycline

    International Nuclear Information System (INIS)

    Pace, Samantha J.; Nguyen, Eric; Baria, Maximillian P.; Mojica, Elmer-Rico E.

    2015-01-01

    Linear alkyl alkoxysilanes (methoxy and ethoxy-based) of varying length were used in preparing tetracycline surface imprinted silica xerogels by the sol–gel process. The resulting xerogels were characterized in terms of binding tetracycline (TC) by using tritium-labeled TC. Results showed preferential binding in the ethoxysilane based xerogels in comparison to methoxysilane based xerogels. A computational approach using the interaction energy (IE) between TC and each alkyl alkoxysilane was deduced as a rational way of predicting the formulation that would provide the best analytical performance for a given molecularly imprinted xerogel (MIX). Hartree-Fock calculations revealed an increase in IE as the length of the carbon chain increases until an optimum value at C6 in both alkoxysilanes. This is consistent with the experimental results wherein the C6 xerogel formulation has the highest imprinting factor. These results show the potential of using computational modeling as a rational way of preparing surface imprinted materials. (author)

  19. The Models of Human Resource Development in Preparing Prisoners for Entrepreneurship in Banjarmasin

    Directory of Open Access Journals (Sweden)

    Zainal Arifin

    2015-09-01

    Full Text Available Tendency to ex-prisoners back into previous environment after being released from the detention center is a phenomenon that raises a big question. Although training programs have become routine activities provided by the government every year and inmates are trained in various skills in preparation for their after-free, some still choose to return to the criminal world.  Empirical studies show that there are two main causes, namely (1 the training program is given to make them skilled workers that after they acquire freedom no company will hire former prisoners, (2 there are constraints such as capital and knowledge emerge as for those starting and running a business. A new approach is necessary for construction problems. This study attempts to test the model of human resource development for former prisoners to prepare them for entrepreneurship. This study is the first step in testing the model of development of human resources for ex-prisoners to prepare them for entrepreneurship. In this study, the object to be examined is inmates of a prison in Banjarmasin. The data collection is done by filling in questionnaires, in-depth interviews to 150 inmates of their last year before the end of the period of detention, business confidence surveys, training and mentoring consultancy. The results from the test using MSC-T Miner questionnaire method showed 100 of the 150 prisoners have entrepreneurial potential. 100 people have been matched with their preferred business qualifications only 50 people who have interest in accordance with market rates. Intervention by the research team is to provide motivation and knowledge about entrepreneurship and personality development showed better results than before the intervention of the 50 inmates in preparing for entrepreneurship.

  20. ALL OUR SONS: THE DEVELOPMENTAL NEUROBIOLOGY AND NEUROENDOCRINOLOGY OF BOYS AT RISK.

    Science.gov (United States)

    Schore, Allan N

    2017-01-01

    Why are boys at risk? To address this question, I use the perspective of regulation theory to offer a model of the deeper psychoneurobiological mechanisms that underlie the vulnerability of the developing male. The central thesis of this work dictates that significant gender differences are seen between male and female social and emotional functions in the earliest stages of development, and that these result from not only differences in sex hormones and social experiences but also in rates of male and female brain maturation, specifically in the early developing right brain. I present interdisciplinary research which indicates that the stress-regulating circuits of the male brain mature more slowly than those of the female in the prenatal, perinatal, and postnatal critical periods, and that this differential structural maturation is reflected in normal gender differences in right-brain attachment functions. Due to this maturational delay, developing males also are more vulnerable over a longer period of time to stressors in the social environment (attachment trauma) and toxins in the physical environment (endocrine disruptors) that negatively impact right-brain development. In terms of differences in gender-related psychopathology, I describe the early developmental neuroendocrinological and neurobiological mechanisms that are involved in the increased vulnerability of males to autism, early onset schizophrenia, attention deficit hyperactivity disorder, and conduct disorders as well as the epigenetic mechanisms that can account for the recent widespread increase of these disorders in U.S. culture. I also offer a clinical formulation of early assessments of boys at risk, discuss the impact of early childcare on male psychopathogenesis, and end with a neurobiological model of optimal adult male socioemotional functions. © 2017 Michigan Association for Infant Mental Health.

  1. Impact of glutathione-enriched inactive dry yeast preparations on the stability of terpenes during model wine aging

    OpenAIRE

    Rodríguez-Bencomo, Juan José; Andújar-Ortiz, Inmaculada; Moreno-Arribas, M. Victoria; Simó, Carolina; González, Javier; Chana, Antonio; Dávalos, J.Z.; Pozo-Bayón, Mª Ángeles

    2014-01-01

    The impact of the addition of glutathione-enriched Inactive dry yeast preparations (g-IDYs) on the stability of some typical wine terpenes (linalool, α-terpineol, β-citronellol, and nerol) stored under accelerated oxidative conditions was evaluated in model wines. Additionally, the effects of a second type of IDY preparation with a different claim (fermentative nutrient) and the sole addition of commercial glutathione into the model wines were also assessed. Model wines were spiked with the l...

  2. Towards a neurobiological understanding of pain in chronic pancreatitis

    DEFF Research Database (Denmark)

    Olesen, Søren S; Krauss, Theresa; Demir, Ihsan Ekin

    2017-01-01

    a chronic pain syndrome. Objectives: We aimed to characterize the neurobiological signature of pain associated with CP and to discuss its implications for treatment strategies. Methods: Relevant basic and clinical articles were selected for review following an extensive search of the literature. Results......: Pathophysiological changes in the peripheral (pancreatic gland) and central nervous system characterize the pain syndrome associated with CP; involved mechanisms can be broken down to 3 main branches: (1) peripheral sensitization, (2) pancreatic neuropathy, and (3) neuroplastic changes in the central pain pathways...... with those observed in neuropathic pain disorders and have important implications for treatment; adjuvant analgesics are effective in a subset of patients, and neuromodulation and neuropsychological interventions may prove useful in the future. Conclusion: Chronic pancreatitis is associated with abnormal...

  3. Sex differences in stress-related psychiatric disorders: neurobiological perspectives.

    Science.gov (United States)

    Bangasser, Debra A; Valentino, Rita J

    2014-08-01

    Stress is associated with the onset and severity of several psychiatric disorders that occur more frequently in women than men, including posttraumatic stress disorder (PTSD) and depression. Patients with these disorders present with dysregulation of several stress response systems, including the neuroendocrine response to stress, corticolimbic responses to negatively valenced stimuli, and hyperarousal. Thus, sex differences within their underlying circuitry may explain sex biases in disease prevalence. This review describes clinical studies that identify sex differences within the activity of these circuits, as well as preclinical studies that demonstrate cellular and molecular sex differences in stress responses systems. These studies reveal sex differences from the molecular to the systems level that increase endocrine, emotional, and arousal responses to stress in females. Exploring these sex differences is critical because this research can reveal the neurobiological underpinnings of vulnerability to stress-related psychiatric disorders and guide the development of novel pharmacotherapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Survey of Artistic Value: From Analytic Philosophy to Neurobiology

    Directory of Open Access Journals (Sweden)

    Zachary P. Norwood

    2013-12-01

    Full Text Available Analytic philosophers have disputed the nature of “artistic value” for over six decades, bringing much needed clarity and rigor to a subject discussed with fashionable obscurity in other disciplines. This essay frames debates between analytic philosophers on artistic value and suggests new directions for future research. In particular, the problem of “intrinsic value” is considered, that is, whether a work’s value derives from its experienced properties, as a work of art, or from cultural trends outside the work’s properties. It is argued that neurobiological research helps resolve perceived differences between a work’s intrinsic and extrinsic values. A work can be both rewarding and punishing on its own, “intrinsic” merit—as a percipient, real thing in the world evoking predictable kinds of emotion—and with respect to ever shifting, “extrinsic” cultural norms.

  5. Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila.

    Science.gov (United States)

    Chakravarti, L; Moscato, E H; Kayser, M S

    2017-01-01

    Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans. © 2017 Elsevier Inc. All rights reserved.

  6. Toward a neurobiology of temporal cognition: advances and challenges.

    Science.gov (United States)

    Gibbon, J; Malapani, C; Dale, C L; Gallistel, C

    1997-04-01

    A rich tradition of normative psychophysics has identified two ubiquitous properties of interval timing: the scalar property, a strong form of Weber's law, and ratio comparison mechanisms. Finding the neural substrate of these properties is a major challenge for neurobiology. Recently, advances have been made in our understanding of the brain structures important for timing, especially the basal ganglia and the cerebellum. Surgical intervention or diseases of the cerebellum generally result in increased variability in temporal processing, whereas both clock and memory effects are seen for neurotransmitter interventions, lesions and diseases of the basal ganglia. We propose that cerebellar dysfunction may induce deregulation of tonic thalamic tuning, which disrupts gating of the mnemonic temporal information generated in the basal ganglia through striato-thalamo-cortical loops.

  7. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    Science.gov (United States)

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  8. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease.

    Science.gov (United States)

    Kumar, Kushal; Kumar, Ashwani; Keegan, Richard M; Deshmukh, Rahul

    2018-02-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive deterioration of cognitive functions. The pathological hallmarks are extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles of tau protein. The cognitive deficits seen are thought to be due to synaptic dysfunction and neurochemical deficiencies. Various neurochemical abnormalities have been observed during progressive ageing, and are linked to cognitive abnormalities as seen with the sporadic form of AD. Acetylcholinesterase inhibitors are one of the major therapeutic strategies used for the treatment of AD. During the last decade, various new therapeutic strategies have shown beneficial effects in preclinical studies and under clinical development for the treatment of AD. The present review is aimed at discussing the neurobiology of AD and association of neurochemical abnormalities associated with cognitive deterioration and new therapeutic strategies for the treatment of AD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Collective motion in animal groups from a neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention.

    Science.gov (United States)

    Lemasson, B H; Anderson, J J; Goodwin, R A

    2009-12-21

    We explore mechanisms associated with collective animal motion by drawing on the neurobiological bases of sensory information processing and decision-making. The model uses simplified retinal processes to translate neighbor movement patterns into information through spatial signal integration and threshold responses. The structure provides a mechanism by which individuals can vary their sets of influential neighbors, a measure of an individual's sensory load. Sensory loads are correlated with group order and density, and we discuss their adaptive values in an ecological context. The model also provides a mechanism by which group members can identify, and rapidly respond to, novel visual stimuli.

  10. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Imaging the neurobiological substrate of atypical depression by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Salmaso, Dario [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Nardo, Davide [University of Rome La Sapienza, Department of Psychology, Rome (Italy); Jonsson, Cathrine; Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Gardner, Ann [Karolinska University Hospital Huddinge, Karolinska Institutet, Department of Clinical Neuroscience, Section of Psychiatry, Stockholm (Sweden)

    2007-01-15

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in {sup 99m}Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  12. Imaging the neurobiological substrate of atypical depression by SPECT

    International Nuclear Information System (INIS)

    Pagani, Marco; Salmaso, Dario; Nardo, Davide; Jonsson, Cathrine; Larsson, Stig A.; Jacobsson, Hans; Gardner, Ann

    2007-01-01

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in 99m Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  13. Integrating Technology into Teacher Preparation and Practice: A Two-way Mentoring Model

    Directory of Open Access Journals (Sweden)

    Jim Kerr

    2004-07-01

    Full Text Available This article reports on a pilot case study exploring the opportunity for authentic professional development in the use of technology. Self-selected pre-service and in- service teachers were paired so as to reinforce and enhance, firstly, their computer skill development and, secondly, their ability to integrate these same skills into classroom teaching practices. It was proposed that both groups of participants would derive benefit from these pairings. Results overwhelming support this and suggest (a a model for better preparing teacher candidates to be able to integrate computer skills into classroom programming and (b a new, perhaps more efficient, method of professional development for busy, dedicated classroom teachers.

  14. Use of Graph-Theoretic Models in Technological Preparation of Assembly Plant

    Directory of Open Access Journals (Sweden)

    Peter Franzevich Yurchik

    2015-05-01

    Full Text Available The article examines the existing ways of describing the structural and technological properties of the product in the process of building and repair. It turned out that the main body of work on the preparation process of assembling production uses graph-theoretic model of the product. It is shown that, in general, the structural integrity of many-form connections and relations on the set of components that can not be adequately described by binary structures, such as graphs, networks or trees.

  15. Physical characterization of biomass fuels prepared for suspension firing in utility boilers for CFD modelling

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Yin, Chungen; Kær, Søren Knudsen

    2007-01-01

    A sample of 1.2 kg Danish wheat straw (Jutland, 1997) prepared for suspension firing in a PF boiler has been analyzed for the purpose of generating size and shape distribution functions applicable to numerical modelling of combustion processes involving biomass, characterised by highly anisotropic...... shapes. The sample is subdivided by straw type, and coherent size, type and mass distribution parameters are reported for the entire sample. This type of data is necessary in order to use CFD reliably as a design and retrofit tool for co-firing biomass with fossil fuels, as the combustion processes...

  16. A new dietary model to study colorectal carcinogenesis: experimental design, food preparation, and experimental findings.

    Science.gov (United States)

    Rozen, P; Liberman, V; Lubin, F; Angel, S; Owen, R; Trostler, N; Shkolnik, T; Kritchevsky, D

    1996-01-01

    Experimental dietary studies of human colorectal carcinogenesis are usually based on the AIN-76A diet, which is dissimilar to human food in source, preparation, and content. The aims of this study were to examine the feasibility of preparing and feeding rats the diet of a specific human population at risk for colorectal neoplasia and to determine whether changes in the colonic morphology and metabolic contents would differ from those resulting from a standard rat diet. The mean daily food intake composition of a previously evaluated adenoma patient case-control study was used for the "human adenoma" (HA) experimental diet. Foods were prepared as for usual human consumption and processed by dehydration to the physical characteristics of an animal diet. Sixty-four female Sprague-Dawley rats were randomized and fed ad libitum the HA or the AIN-76A diet. Every eight weeks, eight rats from each group were sacrificed, and the colons and contents were examined. Analysis of the prepared food showed no significant deleterious changes; food intake and weight gain were similar in both groups. Compared with the controls, the colonic contents of rats fed the HA diet contained significantly less calcium, concentrations of neutral sterols, total lipids, and cholic and deoxycholic acids were increased, and there were no colonic histological changes other than significant epithelial hyperproliferation. This initial study demonstrated that the HA diet can be successfully processed for feeding to experimental animals and is acceptable and adequate for growth but induces significant metabolic and hyperproliferative changes in the rat colon. This dietary model may be useful for studies of human food, narrowing the gap between animal experimentation and human nutritional research.

  17. The Neurobiology of Imagination: Possible Role of Interaction-Dominant Dynamics and Default Mode Network

    Directory of Open Access Journals (Sweden)

    Luigi Francesco Agnati

    2013-05-01

    Full Text Available This work aims at presenting some hypotheses about the potential neurobiological substrate of imagery and imagination. For the present purposes, we will define imagery as the production of mental images associated with previous percepts, and imagination as the faculty of forming mental images of a novel character relating to something that has never been actually experienced by the subject but at a great extent emerges from his inner world.The two processes appear intimately related and imagery can arguably be considered as one of the main components of imagination. In this proposal, we argue that exaptation and redeployment, two basic concepts capturing important aspects of the evolution of biological structures and functions (Anderson 2007, could also be useful in explaining imagery and imagination. As far as imagery is concerned it is proposed that neural structures originally implicated in performing certain functions, e.g. motor actions, can be reused for the imagery of the virtual execution of that function. As far as imagination is concerned we speculate that it can be the result of a tinkering that combines and modifies stored perceptual information and concepts leading to the creation of novel mental objects that are shaped by the subject peculiar inner world. Hence it is related to his self-awareness. The neurobiological substrate of the tinkering process could be found in a hierarchical model of the brain characterized by a multiplicity of functional modules (FMs that can be assembled according to different spatial and temporal scales. Thus, it is surmised that a possible mechanism for the emergence of imagination could be represented by modulatory mechanisms controlling the perviousness of modifiers along the communication channels within and between FMs leading to their dynamically reassembling into novel configurations.

  18. Structural neurobiological correlates of Mayer-Salovery-Caruso Emotional Intelligence Test performance in early course schizophrenia.

    Science.gov (United States)

    Wojtalik, Jessica A; Eack, Shaun M; Keshavan, Matcheri S

    2013-01-10

    The Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) is a key measure of social cognition in schizophrenia that has good psychometric properties and is recommended by the MATRICS committee. As a way to further investigate the validity of the MSCEIT, this study sought to examine the neurobiological correlates of MSCEIT performance in patients with early course schizophrenia. A total of 51 patients diagnosed with early course, stabilized schizophrenia or schizoaffective disorder completed structural magnetic resonance imaging (MRI) scans and the MSCEIT. Investigation of the associations between MSCEIT performance and gray matter morphology was examined by conducting voxel-based morphometry (VBM) analyses across hypothesized social-cognitive regions of interest using automated anatomical labeling in Statistical Parametric Mapping Software, version 5 (SPM5). All VBM analyses utilized general linear models examining gray matter density partitioned images, adjusting for demographic and illness-related confounds. VBM results were then followed up with confirmatory volumetric analyses. Patients with poorer overall and Facilitating, Understanding, and Managing Emotions subscale performances on the MSCEIT showed significantly reduced gray matter density in the left parahippocampal gyrus. Additionally, attenuated performance on the Facilitating and Managing Emotions subscales was significantly associated with reduced right posterior cingulate gray matter density. All associations observed between MSCEIT performance and gray matter density were supported with confirmatory gray matter volumetric analyses, with the exception of the association between the right posterior cingulate and the facilitation of emotions. These findings provide additional evidence for the MSCEIT as a valid social-cognitive measure by elucidating its correlates with neurobiological structures commonly implicated in emotion processing. These findings provide additional biological evidence

  19. ALGORITHM OF PREPARATION OF THE TRAINING SAMPLE USING 3D-FACE MODELING

    Directory of Open Access Journals (Sweden)

    D. I. Samal

    2016-01-01

    Full Text Available The algorithm of preparation and sampling for training of the multiclass qualifier of support vector machines (SVM is provided. The described approach based on the modeling of possible changes of the face features of recognized person. Additional features like perspectives of shooting, conditions of lighting, tilt angles were introduced to get improved identification results. These synthetic generated changes have some impact on the classifier learning expanding the range of possible variations of the initial image. The classifier learned with such extended example is ready to recognize unknown objects better. The age, emotional looks, turns of the head, various conditions of lighting, noise, and also some combinations of the listed parameters are chosen as the key considered parameters for modeling. The third-party software ‘FaceGen’ allowing to model up to 150 parameters and available in a demoversion for free downloading is used for 3D-modeling.The SVM classifier was chosen to test the impact of the introduced modifications of training sample. The preparation and preliminary processing of images contains the following constituents like detection and localization of area of the person on the image, assessment of an angle of rotation and an inclination, extension of the range of brightness of pixels and an equalization of the histogram to smooth the brightness and contrast characteristics of the processed images, scaling of the localized and processed area of the person, creation of a vector of features of the scaled and processed image of the person by a Principal component analysis (algorithm NIPALS, training of the multiclass SVM-classifier.The provided algorithm of expansion of the training selection is oriented to be used in practice and allows to expand using 3D-models the processed range of 2D – photographs of persons that positively affects results of identification in system of face recognition. This approach allows to compensate

  20. Mathematical models of hydrocyclone performance in various copper ores preparation circuits

    Directory of Open Access Journals (Sweden)

    Niedoba Tomasz

    2016-01-01

    Full Text Available Copper ores located in the Lubin-Glogow Copper Basin contain three main lithological fractions: sandstone, carbonate and shale. This fact is the basic problem of organization and conducting ore preparation to flotation. The existing circuit of feed preparation contains (in ZG Rudna five classification nodes of hydrocyclones which fit for various purposes. The elaboration of concept of monitoring work of these nodes should be based on appropriate mathematical models of process. It was decided that either regressive or non-dimensional models that is classification according to Svarovsky, and particularly Plitt’s, will be suitable, in the aspects of d50 and partition sharpness. Errors resulting from determination of the features being part of the equations were also important. In this paper the errors were divided into technical and technological. The issue of experiments organization (mineralogical investigation connected with each classification node was also addressed. It is obvious that each classification node must obtain its characteristics because of various comminution products directed to classification.

  1. TADALURING Microteaching Learning Model (TMLM: Preparing Professional Teacher by Pre-Service Training

    Directory of Open Access Journals (Sweden)

    Arifmiboy

    2018-01-01

    Full Text Available As a certified professional, teacher forms indispensable roles in achieving the learning objectives. The complexity of teacher’s profession decidedly requires the teacher to master a number of competencies and skills. One of them is to master the basic teaching skills. Realizing the complexities of the teacher’s profession and the requirement of teacher’s profession, LPTK –Faculty of Teacher Training and Education– which produces professional teacher, requires enhancing the teacher’s quality and creativity through pre-service teaching and training. Microteaching is one of the efforts to prepare the candidate for a professional teacher in higher education. The growth of a number of students being served with the availability of micro teaching laboratories is, however, disproportionate. Consequently, the problems faced are the time management, the laboratory utilization, the availability of sufficient microteaching infrastructures as well as the implementation of micro teaching itself. One of the ways to solve the problems is to develop a microteaching model adapting the force driving sophisticated ICT named TADALURING Microteaching Learning Model (TMLM. The Instructional Systems Design (ISD made use of developing the model is Borg and Gall procedures. The cyclical phases of conducting the research were preliminary research, development, field-testing, and dissemination. The research finding indicates that the trial-tested model is stated valid, practical, and effective. The TADALURING Microteaching Learning Model (TMLM is essentially accentuated on a face-to-face classroom, online and offline practices.

  2. [Preparation of monoclonal antibody against 4-amylphenol and homology modeling of its Fv fragment].

    Science.gov (United States)

    Cheng, Lei; Wu, Haizhen; Fei, Jing; Zhang, Lujia; Ye, Jiang; Zhang, Huizhan

    2017-03-01

    Objective To prepare and characterize a monoclonal antibody (mAb) against 4-amylphenol (4-AP), clone its cDNA sequence and make homology modeling for its Fv fragment. Methods A high-affinity anti-4-AP mAb was generated from a hybridoma cell line F10 using electrofusion between splenocytes from APA-BSA-immunized mouse and Sp2/0 myeloma cells. Then we extracted the mRNA of F10 cells and cloned the cDNA of mAb. The homology modeling and molecular docking of its Fv fragment was conducted with biological software. Results Under the optimum conditions, the ic-ELISA equation was y=A 2 +(A 1 -A 2 )/(1+(x/x 0 ) p ) (A 1 =1.28; A 2 =-0.066; x 0 =12560.75; p=0.74) with a correlation coefficient (R 2 ) of 0.997. The lowest detectable limit was 0.65 μg/mL. The heavy and light chains of mAb respectively belonged to IgG1 and Kappa. The homology modeling and molecular docking studies revealed that the binding of 4-Ap and mAb was attributed to the hydrogen bond and hydrophobic interactions. Conclusion The study successfully established a stable 4-AP mAb-secreting hybridoma cell line. The study on spatial structure of Fv fragment using homology modeling provided a reference for the development and design of single chain variable fragments.

  3. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval.

    Science.gov (United States)

    Winters, Boyer D; Saksida, Lisa M; Bussey, Timothy J

    2008-07-01

    Tests of object recognition memory, or the judgment of the prior occurrence of an object, have made substantial contributions to our understanding of the nature and neurobiological underpinnings of mammalian memory. Only in recent years, however, have researchers begun to elucidate the specific brain areas and neural processes involved in object recognition memory. The present review considers some of this recent research, with an emphasis on studies addressing the neural bases of perirhinal cortex-dependent object recognition memory processes. We first briefly discuss operational definitions of object recognition and the common behavioural tests used to measure it in non-human primates and rodents. We then consider research from the non-human primate and rat literature examining the anatomical basis of object recognition memory in the delayed nonmatching-to-sample (DNMS) and spontaneous object recognition (SOR) tasks, respectively. The results of these studies overwhelmingly favor the view that perirhinal cortex (PRh) is a critical region for object recognition memory. We then discuss the involvement of PRh in the different stages--encoding, consolidation, and retrieval--of object recognition memory. Specifically, recent work in rats has indicated that neural activity in PRh contributes to object memory encoding, consolidation, and retrieval processes. Finally, we consider the pharmacological, cellular, and molecular factors that might play a part in PRh-mediated object recognition memory. Recent studies in rodents have begun to indicate the remarkable complexity of the neural substrates underlying this seemingly simple aspect of declarative memory.

  4. Psychoanalytic dream theory and recent neurobiological findings about REM sleep.

    Science.gov (United States)

    Wasserman, M D

    1984-01-01

    I have reviewed Hobson and McCarley's activation-synthesis hypothesis of dreaming which attempts to show that the instigation and certain formal aspects of dreaming are physiologically determined by a brainstem neuronal mechanism, their reasons for suggesting major revisions in psychoanalytic dream theory, and neurophysiological data that are inconsistent with their hypothesis. I then discussed the concept of mind-body isomorphism pointing out that they use this concept inconsistently, that despite their denials they regularly view physiology as primary and psychological processes as secondary, and that they frequently make the error of mixing the languages of physiology and psychology in their explanatory statements. Finally, in order to evaluate Hobson and McCarley's claim that their findings require revision of psychoanalytic dream theory, I examined their discussions of chase dreams, flying dreams, sexual dreams, the formal characteristics of dreams, the forgetting of dreams, and the instigation of dreams. I concluded that although their fascinating physiological findings may be central to understanding the neurobiology of REM sleep, they do not alter the meaning and interpretation of dreams gleaned through psychoanalytic study.

  5. The Neurobiology and Psychology of Pedophilia: Recent Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Gilian eTenbergen

    2015-06-01

    Full Text Available A pedophilic disorder is recognized for its impairment to the individual and for the harm it may cause others. Pedophilia is often considered a side issue and research into the nature of pedophilia is delayed in comparison to research into other psychiatric disorders. However, with the increasing use of neuroimaging techniques, such as functional and structural Magnetic Resonance Imaging (sMRI, fMRI together with neuropsychological studies we are increasing our knowledge of predisposing and accompanying factors contributing to pedophilia development. At the same time we are faced with methodological challenges such as group differences between studies including age, intelligence, and comorbidities together with a lack of careful assessment and control of child sexual abuse. Having this in mind this review highlights the most important studies investigating pedophilia, with a strong emphasis on (neuro- biological studies, combined with a brief explanation of research into normal human sexuality. We focus on some of the recent theories on the etiology of pedophilia such as the concept of a general neurodevelopmental disorder and/or alterations of structure and function in frontal, temporal and limbic brain areas. With this approach we aim to not only provide an update and overview but also a framework for future research and to address one of the most significant questions of how pedophilia may be explained by neurobiological and developmental alterations.

  6. Neuroscience of exercise: from neurobiology mechanisms to mental health.

    Science.gov (United States)

    Matta Mello Portugal, Eduardo; Cevada, Thais; Sobral Monteiro-Junior, Renato; Teixeira Guimarães, Thiago; da Cruz Rubini, Ercole; Lattari, Eduardo; Blois, Charlene; Camaz Deslandes, Andrea

    2013-01-01

    The neuroscience of exercise is a growing research area that is dedicated to furthering our understanding of the effects that exercise has on mental health and athletic performance. The present study examined three specific topics: (1) the relationship between exercise and mental disorders (e.g. major depressive disorder, dementia and Parkinson's disease), (2) the effects of exercise on the mood and mental health of athletes, and (3) the possible neurobiological mechanisms that mediate the effects of exercise. Positive responses to regular physical exercise, such as enhanced functional capacity, increased autonomy and improved self-esteem, are frequently described in the recent literature, and these responses are all good reasons for recommending regular exercise. In addition, physical exercise may improve both mood and adherence to an exercise program in healthy individuals and might modulate both the performance and mental health of athletes. Exercise is associated with the increased synthesis and release of both neurotransmitters and neurotrophic factors, and these increases may be associated with neurogenesis, angiogenesis and neuroplasticity. This review is a call-to-action that urges researchers to consider the importance of understanding the neuroscience of physical exercise and its contributions to sports science. Copyright © 2013 S. Karger AG, Basel.

  7. Neurobiological considerations in understanding behavioral treatments for pathological gambling.

    Science.gov (United States)

    Potenza, Marc N; Balodis, Iris M; Franco, Christine A; Bullock, Scott; Xu, Jiansong; Chung, Tammy; Grant, Jon E

    2013-06-01

    Pathological gambling (PG), a disorder currently categorized as an impulse-control disorder but being considered as a nonsubstance addiction in Diagnostic and Statistical Manual of Mental Disorders (5th ed.) discussions, represents a significant public health concern. Over the past decade, considerable advances have been made with respect to understanding the biological underpinnings of PG. Research has also demonstrated the efficacies of multiple treatments, particularly behavioral therapies, for treating PG. Despite these advances, relatively little is known regarding how biological measures, particularly those assessing brain function, relate to treatments for PG. In this article, we present a conceptual review focusing on the neurobiology of behavioral therapies for PG. To illustrate issues related to study design, we present proof-of-concept preliminary data that link Stroop-related brain activations prior to treatment onset to treatment outcome in individuals with PG receiving a cognitive-behavioral treatment incorporating aspects of imaginal desensitization and motivational interviewing. We conclude with recommendations about current and future directions regarding how to incorporate and translate biological findings into improved therapies for individuals with nonsubstance and substance addictions. 2013 APA, all rights reserved

  8. Downward Causation and the Neurobiology of Free Will

    CERN Document Server

    Murphy, Nancey; O’Connor, Timothy

    2009-01-01

    How is free will possible in the light of the physical and chemical underpinnings of brain activity and recent neurobiological experiments? How can the emergence of complexity in hierarchical systems such as the brain, based at the lower levels in physical interactions, lead to something like genuine free will? The nature of our understanding of free will in the light of present-day neuroscience is becoming increasingly important because of remarkable discoveries on the topic being made by neuroscientists at the present time, on the one hand, and its crucial importance for the way we view ourselves as human beings, on the other. A key tool in understanding how free will may arise in this context is the idea of downward causation in complex systems, happening coterminously with bottom up causation, to form an integral whole. Top-down causation is usually neglected, and is therefore emphasized in the other part of the book’s title. The concept is explored in depth, as are the ethical and legal implications of...

  9. The Neurobiology and Psychology of Pedophilia: Recent Advances and Challenges

    Science.gov (United States)

    Tenbergen, Gilian; Wittfoth, Matthias; Frieling, Helge; Ponseti, Jorge; Walter, Martin; Walter, Henrik; Beier, Klaus M.; Schiffer, Boris; Kruger, Tillmann H. C.

    2015-01-01

    A pedophilic disorder is recognized for its impairment to the individual and for the harm it may cause to others. Pedophilia is often considered a side issue and research into the nature of pedophilia is delayed in comparison to research into other psychiatric disorders. However, with the increasing use of neuroimaging techniques, such as functional and structural magnetic resonance imaging (sMRI, fMRI), together with neuropsychological studies, we are increasing our knowledge of predisposing and accompanying factors contributing to pedophilia development. At the same time, we are faced with methodological challenges, such as group differences between studies, including age, intelligence, and comorbidities, together with a lack of careful assessment and control of child sexual abuse. Having this in mind, this review highlights the most important studies investigating pedophilia, with a strong emphasis on (neuro-) biological studies, combined with a brief explanation of research into normal human sexuality. We focus on some of the recent theories on the etiology of pedophilia such as the concept of a general neurodevelopmental disorder and/or alterations of structure and function in frontal, temporal, and limbic brain areas. With this approach, we aim to not only provide an update and overview but also a framework for future research and to address one of the most significant questions of how pedophilia may be explained by neurobiological and developmental alterations. PMID:26157372

  10. The Neurobiology and Psychology of Pedophilia: Recent Advances and Challenges.

    Science.gov (United States)

    Tenbergen, Gilian; Wittfoth, Matthias; Frieling, Helge; Ponseti, Jorge; Walter, Martin; Walter, Henrik; Beier, Klaus M; Schiffer, Boris; Kruger, Tillmann H C

    2015-01-01

    A pedophilic disorder is recognized for its impairment to the individual and for the harm it may cause to others. Pedophilia is often considered a side issue and research into the nature of pedophilia is delayed in comparison to research into other psychiatric disorders. However, with the increasing use of neuroimaging techniques, such as functional and structural magnetic resonance imaging (sMRI, fMRI), together with neuropsychological studies, we are increasing our knowledge of predisposing and accompanying factors contributing to pedophilia development. At the same time, we are faced with methodological challenges, such as group differences between studies, including age, intelligence, and comorbidities, together with a lack of careful assessment and control of child sexual abuse. Having this in mind, this review highlights the most important studies investigating pedophilia, with a strong emphasis on (neuro-) biological studies, combined with a brief explanation of research into normal human sexuality. We focus on some of the recent theories on the etiology of pedophilia such as the concept of a general neurodevelopmental disorder and/or alterations of structure and function in frontal, temporal, and limbic brain areas. With this approach, we aim to not only provide an update and overview but also a framework for future research and to address one of the most significant questions of how pedophilia may be explained by neurobiological and developmental alterations.

  11. The Neurobiology of Orofacial Pain and Sleep and Their Interactions.

    Science.gov (United States)

    Lavigne, G J; Sessle, B J

    2016-09-01

    This article provides an overview of the neurobiology of orofacial pain as well as the neural processes underlying sleep, with a particular focus on the mechanisms that underlie pain and sleep interactions including sleep disorders. Acute pain is part of a hypervigilance system that alerts the individual to injury or potential injury of tissues. It can also disturb sleep. Disrupted sleep is often associated with chronic pain states, including those that occur in the orofacial region. The article presents many insights that have been gained in the last few decades into the peripheral and central mechanisms involved in orofacial pain and its modulation, as well as the circuits and processes in the central nervous system that underlie sleep. Although it has become clear that sleep is essential to preserve and maintain health, it has also been found that pain, particularly chronic pain, is commonly associated with disturbed sleep. In the presence of chronic pain, a circular relationship may prevail, with mutual deleterious influences causing an increase in pain and a disruption of sleep. This article also reviews findings that indicate that reducing orofacial pain and improving sleep need to be targeted together in the management of acute to chronic orofacial pain states in order to improve an orofacial pain patient's quality of life, to prevent mood alterations or exacerbation of sleep disorder (e.g., insomnia, sleep-disordered breathing) that can negatively affect their pain, and to promote healing and optimize their health. © International & American Associations for Dental Research 2016.

  12. The Neurobiological Grounding of Persistent Stuttering: from Structure to Function.

    Science.gov (United States)

    Neef, Nicole E; Anwander, Alfred; Friederici, Angela D

    2015-09-01

    Neuroimaging and transcranial magnetic stimulation provide insights into the neuronal mechanisms underlying speech disfluencies in chronic persistent stuttering. In the present paper, the goal is not to provide an exhaustive review of existing literature, but rather to highlight robust findings. We, therefore, conducted a meta-analysis of diffusion tensor imaging studies which have recently implicated disrupted white matter connectivity in stuttering. A reduction of fractional anisotropy in persistent stuttering has been reported at several different loci. Our meta-analysis revealed consistent deficits in the left dorsal stream and in the interhemispheric connections between the sensorimotor cortices. In addition, recent fMRI meta-analyses link stuttering to reduced left fronto-parieto-temporal activation while greater fluency is associated with boosted co-activations of right fronto-parieto-temporal areas. However, the physiological foundation of these irregularities is not accessible with MRI. Complementary, transcranial magnetic stimulation (TMS) reveals local excitatory and inhibitory regulation of cortical dynamics. Applied to a speech motor area, TMS revealed reduced speech-planning-related neuronal dynamics at the level of the primary motor cortex in stuttering. Together, this review provides a focused view of the neurobiology of stuttering to date and may guide the rational design of future research. This future needs to account for the perpetual dynamic interactions between auditory, somatosensory, and speech motor circuits that shape fluent speech.

  13. Neurobiology of anxiety disorders and implications for treatment.

    Science.gov (United States)

    Garakani, Amir; Mathew, Sanjay J; Charney, Dennis S

    2006-11-01

    The neurobiology of the anxiety disorders, which include panic disorder, post-traumatic stress disorder (PTSD), and specific phobias, among others, has been clarified by advances in the field of classical or Pavlovian conditioning, and in our understanding of basic mechanisms of memory and learning. Fear conditioning occurs when a neutral conditioned stimulus (such as a tone) is paired with an aversive, or unconditioned stimulus (such as a footshock), and then in the absence of the unconditioned stimulus, causes a conditioned fear response. Preclinical studies have shown that the amygdala plays a key role in fear circuitry, and that abnormalities in amygdala pathways can affect the acquisition and expression of fear conditioning. Drugs such as glutamate N-methyl-D-aspartate (NMDA) antagonists, and blockers of voltage-gated calcium channels, in the amygdala, may block these effects. There is also preliminary evidence for the use of centrally acting beta-adrenergic antagonists, like propranolol, to inhibit consolidation of traumatic memories in PTSD. Finally, fear extinction, which entails new learning of fear inhibition, is central to the mechanism of effective anti-anxiety treatments. Several pharmacological manipulations, such as D-cycloserine, a partial NMDA agonist, have been found to facilitate extinction. Combining these medication approaches with psychotherapies that promote extinction, such as cognitive behavioral therapy (CBT), may offer patients with anxiety disorders a rapid and robust treatment with good durability of effect.

  14. Towards a neurobiological understanding of pain in chronic pancreatitis: mechanisms and implications for treatment

    Directory of Open Access Journals (Sweden)

    Søren S. Olesen

    2017-12-01

    Conclusion:. Chronic pancreatitis is associated with abnormal processing of pain at the peripheral and central level of the pain system. This neurobiological understanding of pain has important clinical implications for treatment and prevention of pain chronification.

  15. Love is more than just a kiss : A neurobiological perspective on love and affection

    NARCIS (Netherlands)

    de Boer, A.; van Buel, E. M.; ter Horst, G. J.

    2012-01-01

    Love, attachment, and truth of human monogamy have become important research themes in neuroscience. After the introduction of functional Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET), neuroscientists have demonstrated increased interest in the neurobiology and

  16. Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis

    International Nuclear Information System (INIS)

    Youness, Rasha A.; Taha, Mohammed A.; Elhaes, Hanan; Ibrahim, Medhat

    2017-01-01

    Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder has been successively synthesized by mechanochemical method. The effect of milling times on the formation of B-CHA was investigated by Fourier transform infrared spectroscopy, X-ray diffraction technique and scanning electron microscopy. Moreover, physical as well as mechanical properties were examined as a function of milling time. Furthermore, theoretical model was presented for hydroxyapatite (HA). Semiempirical calculations at PM6 level were used to calculate thermal parameters including entropy; enthalpy; heat capacity; free energy and heat of formation in the temperature range from 200 up to 500 k. The results revealed that single phase B-CHA was successfully formed after 8 h of milling when Ball to Powder Ratio (BPR) equals to 10:1. Results revealed that entropy; enthalpy and heat capacity gradually increased as a function of temperature while, free energy and heat of formation decreased with the increasing of temperature. Comparison with higher level of theory was conducted at HF and DFT using the models HF/3-21g**; B3LYP/6-31G(d,p) and B3LYP/LANL2DZ, respectively and indicated that PM6 could be utilized with appropriate accuracy and time to study physical and thermochemical parameters for HA. - Highlights: • Preparation of Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder by mechanochemical method. • Characterization of CHA. • Semiemperical and DFT models for CHA.

  17. Optimising resolution for a preparative separation of Chinese herbal medicine using a surrogate model sample system.

    Science.gov (United States)

    Ye, Haoyu; Ignatova, Svetlana; Peng, Aihua; Chen, Lijuan; Sutherland, Ian

    2009-06-26

    This paper builds on previous modelling research with short single layer columns to develop rapid methods for optimising high-performance counter-current chromatography at constant stationary phase retention. Benzyl alcohol and p-cresol are used as model compounds to rapidly optimise first flow and then rotational speed operating conditions at a preparative scale with long columns for a given phase system using a Dynamic Extractions Midi-DE centrifuge. The transfer to a high value extract such as the crude ethanol extract of Chinese herbal medicine Millettia pachycarpa Benth. is then demonstrated and validated using the same phase system. The results show that constant stationary phase modelling of flow and speed with long multilayer columns works well as a cheap, quick and effective method of optimising operating conditions for the chosen phase system-hexane-ethyl acetate-methanol-water (1:0.8:1:0.6, v/v). Optimum conditions for resolution were a flow of 20 ml/min and speed of 1200 rpm, but for throughput were 80 ml/min at the same speed. The results show that 80 ml/min gave the best throughputs for tephrosin (518 mg/h), pyranoisoflavone (47.2 mg/h) and dehydrodeguelin (10.4 mg/h), whereas for deguelin (100.5 mg/h), the best flow rate was 40 ml/min.

  18. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    Science.gov (United States)

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  19. Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Youness, Rasha A. [Spectroscopy Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt); Taha, Mohammed A. [Solid-State Physics Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt); Elhaes, Hanan [Physics Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, 11757 Cairo (Egypt); Ibrahim, Medhat, E-mail: medahmed6@yahoo.com [Spectroscopy Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt)

    2017-04-01

    Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder has been successively synthesized by mechanochemical method. The effect of milling times on the formation of B-CHA was investigated by Fourier transform infrared spectroscopy, X-ray diffraction technique and scanning electron microscopy. Moreover, physical as well as mechanical properties were examined as a function of milling time. Furthermore, theoretical model was presented for hydroxyapatite (HA). Semiempirical calculations at PM6 level were used to calculate thermal parameters including entropy; enthalpy; heat capacity; free energy and heat of formation in the temperature range from 200 up to 500 k. The results revealed that single phase B-CHA was successfully formed after 8 h of milling when Ball to Powder Ratio (BPR) equals to 10:1. Results revealed that entropy; enthalpy and heat capacity gradually increased as a function of temperature while, free energy and heat of formation decreased with the increasing of temperature. Comparison with higher level of theory was conducted at HF and DFT using the models HF/3-21g**; B3LYP/6-31G(d,p) and B3LYP/LANL2DZ, respectively and indicated that PM6 could be utilized with appropriate accuracy and time to study physical and thermochemical parameters for HA. - Highlights: • Preparation of Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder by mechanochemical method. • Characterization of CHA. • Semiemperical and DFT models for CHA.

  20. Model features as the basis of preparation of boxers individualization principal level (elite

    Directory of Open Access Journals (Sweden)

    O.J. Pavelec

    2013-10-01

    Full Text Available Purpose to improve the system of training boxers of higher categories (elite. Individualization of the training process using the model characteristics special physical preparedness. Materials : The study was conducted during 2000-2010. Participated boxers national team of Ukraine in the amount of 43 people. Of those honored masters of sport 6, masters of sports of international class 16, masters of sports 21. The average age of the athletes 23.5 years. Results : justified and features a specially designed model of physical fitness boxing class. It is established that the boxers middle weight classes (64 75 kg have an advantage over other boxers weight categories (light and after a hard in the development of speed and strength endurance. The presented model characteristics can guide the professional fitness boxing (elite, as representatives of the sport. Conclusions : It is established that the structure of the special physical training boxers depends on many components, such as weight category, tactical fighter role, skill level, stage of preparation.

  1. Preparing the Dutch delta for future droughts: model based support in the national Delta Programme

    Science.gov (United States)

    ter Maat, Judith; Haasnoot, Marjolijn; van der Vat, Marnix; Hunink, Joachim; Prinsen, Geert; Visser, Martijn

    2014-05-01

    Keywords: uncertainty, policymaking, adaptive policies, fresh water management, droughts, Netherlands, Dutch Deltaprogramme, physically-based complex model, theory-motivated meta-model To prepare the Dutch Delta for future droughts and water scarcity, a nation-wide 4-year project, called Delta Programme, is established to assess impacts of climate scenarios and socio-economic developments and to explore policy options. The results should contribute to a national adaptive plan that is able to adapt to future uncertain conditions, if necessary. For this purpose, we followed a model-based step-wise approach, wherein both physically-based complex models and theory-motivated meta-models were used. First step (2010-2011) was to make a quantitative problem description. This involved a sensitivity analysis of the water system for drought situations under current and future conditions. The comprehensive Dutch national hydrological instrument was used for this purpose and further developed. Secondly (2011-2012) our main focus was on making an inventory of potential actions together with stakeholders. We assessed efficacy, sell-by date of actions, and reassessed vulnerabilities and opportunities for the future water supply system if actions were (not) taken. A rapid assessment meta-model was made based on the complex model. The effects of all potential measures were included in the tool. Thirdly (2012-2013), with support of the rapid assessment model, we assessed the efficacy of policy actions over time for an ensemble of possible futures including sea level rise and climate and land use change. Last step (2013-2014) involves the selection of preferred actions from a set of promising actions that meet the defined objectives. These actions are all modeled and evaluated using the complex model. The outcome of the process will be an adaptive management plan. The adaptive plan describes a set of preferred policy pathways - sequences of policy actions - to achieve targets under

  2. Self-awareness, self-regulation, and self-transcendence (S-ART): a framework for understanding the neurobiological mechanisms of mindfulness

    OpenAIRE

    Vago, David R.; Silbersweig, David A.

    2012-01-01

    Mindfulness—as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and cr...

  3. Self-Awareness, Self-Regulation, and Self-Transcendence (S-ART): A Framework for Understanding the Neurobiological Mechanisms of Mindfulness

    OpenAIRE

    David R. Vago; David R. Vago; Silbersweig A. David; Silbersweig A. David

    2012-01-01

    Mindfulness - as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and ...

  4. [The neurobiology of sleep: Cajal and present-day neuroscience].

    Science.gov (United States)

    Velayos-Jorge, J L; Hernández-Roca, J J; Moleres-Echevarría, F J

    We briefly describe the most significant findings obtained recently concerning the sleep-waking cycle in comparison to the studies conducted by Cajal on the same subject. This paper includes a short biographical sketch of Santiago Ramón y Cajal, with special emphasis on his importance within the framework of neuroscience. Cajal represents the decisive turning point in neurobiological studies, with the discovery of the synapse and his law of dynamic polarization. We conduct a short survey of the current knowledge about the phases of sleep and oneiric phenomena, based on their anatomo-physiological foundations. We present a summary of the history of the subject and analyze the contributions made by Cajal to this field, i.e. his study of the associative cortices, which are essential in memory processes and related to the mechanisms governing the sleep-waking cycle. For Cajal the fine anatomy of the thalamus must be considered in relation to the specificity of its connections an idea that is still completely valid today. He did not observe any projections of the thalamic reticular nucleus towards the cerebral cortex, a fact that has been corroborated using modern-day techniques. He spoke of the involvement of neuroglia in the attentional and sleep processes, which is so, although not quite in the way Cajal thought. He considered the production of dreams to be based on intimate neural mechanisms, which is still so. He also studied other brain structures related with the regulation of the sleep waking cycle, although avoiding any specific mention of the mechanisms controlling such a cycle. Furthermore, he conducted self-observation studies with a high degree of insight. Cajal studied the phenomena of attention and sleep in an objective manner and contributed a number of significant interpretations, some of which are now somewhat outdated while others are still wholly valid today.

  5. Cannabis; Epidemiological, Neurobiological and Psychopathological Issues: An Update.

    Science.gov (United States)

    De Luca, Maria Antonietta; Di Chiara, Gaetano; Cadoni, Cristina; Lecca, Daniele; Orsolini, Laura; Papanti, Duccio; Corkery, John; Schifano, Fabrizio

    2017-01-01

    Cannabis is the illicit drug with both the largest current levels of consumption and the highest reported lifetime prevalence levels in the world. Across different countries, the prevalence of cannabis use varies according to the individual income, with the highest use being reported in North America, Australia and Europe. Despite its 'soft drug' reputation, cannabis misuse may be associated with several acute and chronic adverse effects. The present article aims at reviewing several papers on epidemiological, neurobiological and psychopathological aspects of the use of cannabis. The PubMed database was here examined in order to collect and discuss a range of identified papers. Cannabis intake usually starts during late adolescence/early adulthood (15-24 years) and drastically decreases in adulthood with the acquisition of working, familiar and social responsibilities. Clinical evidence supports the current socio-epidemiological alarm concerning the increased consumption among youngsters and the risks related to the onset of psychotic disorders. The mechanism of action of cannabis presents some analogies with other abused drugs, e.g. opiates. Furthermore, it has been well demonstrated that cannabis intake in adolescence may facilitate the transition to the use and/or abuse of other psychotropic drugs, hence properly being considered a 'gateway drug'. Some considerations on synthetic cannabimimetics are provided here as well. In conclusion, the highest prevalence of cannabis use and the social perception of a relatively low associated risk are in contrast with current knowledge based on biological and clinical evidence. Indeed, there are concerns relating to cannabis intake association with detrimental effects on both cognitive impairment and mental health. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability

    Science.gov (United States)

    Fowler, Christie D.; Kenny, Paul J.

    2013-01-01

    Nicotine stimulates brain reward circuitries, most prominently the mesocorticolimbic dopamine system, and this action is considered critical in establishing and maintaining the tobacco smoking habit. Compounds that attenuate nicotine reward are considered promising therapeutic candidates for tobacco dependence, but many of these agents have other actions that limit their potential utility. Nicotine is also highly noxious, particularly at higher doses, and aversive reactions to nicotine after initial exposure can decrease the likelihood of developing a tobacco habit in many first time smokers. Nevertheless, relatively little is known about the mechanisms of nicotine aversion. The purpose of this review is to present recent new insights into the neurobiological mechanisms that regulate avoidance of nicotine. First, the role of the mesocorticolimbic system, so often associated with nicotine reward, in regulating nicotine aversion is highlighted. Second, genetic variation that modifies noxious responses to nicotine and thereby influences vulnerability to tobacco dependence, in particular variation in the CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster, will be discussed. Third, the role of the habenular complex in nicotine aversion, primarily medial habenular projections to the interpeduncular nucleus (IPN) but also lateral habenular projections to rostromedial tegmental nucleus (RMTg) and ventral tegmental area (VTA) are reviewed. Forth, brain circuits that are enriched in nAChRs, but whose role in nicotine avoidance has not yet been assessed, will be proposed. Finally, the feasibility of developing novel therapeutic agents for tobacco dependence that act not by blocking nicotine reward but by enhancing nicotine avoidance will be considered. PMID:24055497

  7. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye

    International Nuclear Information System (INIS)

    Du Wenli; Xu Zirong; Han Xinyan; Xu Yinglei; Miao Zhiguo

    2008-01-01

    The present study dealt with the adsorption of eosin Y, as a model anionic dye, from aqueous solution using chitosan nanoparticles prepared by the ionic gelation between chitosan and tripolyphosphate. The nanoparticles were characterized by atomic force microscopy (AFM), size and zeta potential analysis. A batch system was applied to study the adsorption of eosin Y from aqueous solution by chitosan nanoparticles. The results showed that the adsorption of eosin Y on chitosan nanoparticles was affected by contact time, eosin Y concentration, pH and temperature. Experimental data followed Langmuir isotherm model and the adsorption capacity was found to be 3.333 g/g. The adsorption process was endothermic in nature with an enthalpy change (ΔH) of 16.7 kJ/mol at 20-50 deg. C. The optimum pH value for eosin Y removal was found to be 2-6. The dye was desorbed from the chitosan nanoparticles by increasing the pH of the solution

  8. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye

    Energy Technology Data Exchange (ETDEWEB)

    Du Wenli [Institute of Feed Science, College of Animal Science, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310029 (China)], E-mail: wenlidu@126.com; Xu Zirong; Han Xinyan; Xu Yinglei; Miao Zhiguo [Institute of Feed Science, College of Animal Science, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310029 (China)

    2008-05-01

    The present study dealt with the adsorption of eosin Y, as a model anionic dye, from aqueous solution using chitosan nanoparticles prepared by the ionic gelation between chitosan and tripolyphosphate. The nanoparticles were characterized by atomic force microscopy (AFM), size and zeta potential analysis. A batch system was applied to study the adsorption of eosin Y from aqueous solution by chitosan nanoparticles. The results showed that the adsorption of eosin Y on chitosan nanoparticles was affected by contact time, eosin Y concentration, pH and temperature. Experimental data followed Langmuir isotherm model and the adsorption capacity was found to be 3.333 g/g. The adsorption process was endothermic in nature with an enthalpy change ({delta}H) of 16.7 kJ/mol at 20-50 deg. C. The optimum pH value for eosin Y removal was found to be 2-6. The dye was desorbed from the chitosan nanoparticles by increasing the pH of the solution.

  9. The ITER magnets: Preparation for full size construction based on the results of the model coil programme

    International Nuclear Information System (INIS)

    Huguet, M.

    2003-01-01

    The ITER magnets are long-lead time items and the preparation of their construction is the subject of a major and coordinated effort of the ITER International Team and Participant Teams. The results of the ITER model coil programme constitute the basis and the main source of data for the preparation of the technical specifications for the procurement of the ITER magnets. A review of the salient results of the ITER model coil programme is given and the significance of these results for the preparation of full size industrial production is explained. The model coil programme has confirmed the validity of the design and the manufacturer's ability to produce the coils with the required quality level. The programme has also allowed the optimisation of the conductor design and the identification of further development which would lead to cost reductions of the toroidal field coil case. (author)

  10. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  11. Mindfulness and Emotion Regulation: Insights from Neurobiological, Psychological, and Clinical Studies

    Science.gov (United States)

    Guendelman, Simón; Medeiros, Sebastián; Rampes, Hagen

    2017-01-01

    There is increasing interest in the beneficial clinical effects of mindfulness-based interventions (MBIs). Research has demonstrated their efficacy in a wide range of psychological conditions characterized by emotion dysregulation. Neuroimaging studies have evidenced functional and structural changes in a myriad of brain regions mainly involved in attention systems, emotion regulation, and self-referential processing. In this article we review studies on psychological and neurobiological correlates across different empirically derived models of research, including dispositional mindfulness, mindfulness induction, MBIs, and expert meditators in relation to emotion regulation. From the perspective of recent findings in the neuroscience of emotion regulation, we discuss the interplay of top-down and bottom-up emotion regulation mechanisms associated with different mindfulness models. From a phenomenological and cognitive perspective, authors have argued that mindfulness elicits a “mindful emotion regulation” strategy; however, from a clinical perspective, this construct has not been properly differentiated from other strategies and interventions within MBIs. In this context we propose the distinction between top-down and bottom-up mindfulness based emotion regulation strategies. Furthermore, we propose an embodied emotion regulation framework as a multilevel approach for understanding psychobiological changes due to mindfulness meditation regarding its effect on emotion regulation. Finally, based on clinical neuroscientific evidence on mindfulness, we open perspectives and dialogues regarding commonalities and differences between MBIs and other psychotherapeutic strategies for emotion regulation. PMID:28321194

  12. The preparation of aneurysm model in rabbits by vessel ligation and elastase-induced technique

    International Nuclear Information System (INIS)

    Lu Chuan; Xie Qianyu; Liu Linxiang

    2010-01-01

    Objective: To establish an aneurysm model, which is quite similar to the human intracranial aneurysm in morphology, in rabbits by means of vessel ligation together with elastase-induced technique. Methods: Sixteen New Zealand white rabbits were used in this study. Distal carotid ligation and intraluminal elastase incubation was employed in ten rabbits (study group) to create aneurysm on the right common carotid artery. And surgical suture of a segment of the left carotid common artery was carried out in six rabbits (used as control group) to establish the aneurysm model. DSA exam of the created aneurysms by using catheterization via femoral artery was performed at one week and at one month after surgery. The patency, morphology and pathology of the aneurysms were observed. The results were statistically analyzed. Results: The aneurysms in both groups remained patent after they were created. Angiography one week after the surgery showed that all the aneurysms in study group were patent, while in control group only two aneurysms showed opacification with contrast medium and the remaining four aneurysms were all occluded. DSA at one month after the procedure demonstrated that all the aneurysms in study group remained patent, and the previous two patent aneurysms in control group became occluded. The mean width and length of the aneurysmal cavity in study group immediately after the procedure were (3.70 ± 0.16) mm and (6.53 ± 0.65) mm respectively, which enlarged to (5.06 ± 0.31) mm and (9.0 ± 0.52) mm respectively one month after the surgery. The difference in size changes was statistically significant (P < 0.05). Pathologically, almost complete absence of the internal elastic lamina and medial wall elastin of the aneurysms was observed. Conclusion: The aneurysm model prepared with vessel ligation together with elastase-induced technique carries high patent rate and possesses the feature of spontaneous growing, moreover, its morphology is quite similar to the

  13. Social ‘wanting’ dysfunction in autism: neurobiological underpinnings and treatment implications

    Directory of Open Access Journals (Sweden)

    Kohls Gregor

    2012-06-01

    Full Text Available Abstract Most behavioral training regimens in autism spectrum disorders (ASD rely on reward-based reinforcement strategies. Although proven to significantly increase both cognitive and social outcomes and successfully reduce aberrant behaviors, this approach fails to benefit a substantial number of affected individuals. Given the enormous amount of clinical and financial resources devoted to behavioral interventions, there is a surprisingly large gap in our knowledge of the basic reward mechanisms of learning in ASD. Understanding the mechanisms for reward responsiveness and reinforcement-based learning is urgently needed to better inform modifications that might improve current treatments. The fundamental goal of this review is to present a fine-grained literature analysis of reward function in ASD with reference to a validated neurobiological model of reward: the ‘wanting’/’liking’ framework. Despite some inconsistencies within the available literature, the evaluation across three converging sets of neurobiological data (neuroimaging, electrophysiological recordings, and neurochemical measures reveals good evidence for disrupted reward-seeking tendencies in ASD, particularly in social contexts. This is most likely caused by dysfunction of the dopaminergic–oxytocinergic ‘wanting’ circuitry, including the ventral striatum, amygdala, and ventromedial prefrontal cortex. Such a conclusion is consistent with predictions derived from diagnostic criteria concerning the core social phenotype of ASD, which emphasize difficulties with spontaneous self-initiated seeking of social encounters (that is, social motivation. Existing studies suggest that social ‘wanting’ tendencies vary considerably between individuals with ASD, and that the degree of social motivation is both malleable and predictive of intervention response. Although the topic of reward responsiveness in ASD is very new, with much research still needed, the current data

  14. A model of Piron's preparation-question structures in Ludwig's selection structures

    Science.gov (United States)

    Cattaneo, Gianpiero; Nisticò, Giuseppe

    1993-03-01

    We give a model of the basic Jauch-Piron (JP) approach to quantum physics, i.e., of “preparation-question structure” (with four basic axioms and without axioms C, P, A), in terms of Ludwig's “selection structure”; in the latter structure the primitive notion of “individual sample” of a physical entity is formally described (without making reference to any probability concept). Once we interpret Piron's concept of “question” in Ludwig's context of a selection structure, we find that there is no difficulty in formalizing notions such as “performable together questions”; moreover, results such as “ α ˜˜= α” or “( αδ Β)˜= α ˜▽ Β˜” can be formally proved. We develop the theory along the lines of the JP approach; the set of JP propositions is derived and it turns out to be a complete lattice, as happens in Piron's theory, but with a different physical interpretation of the lattice operations. Finally, we study some connections between the standard Ludwig foundation and our approach.

  15. The neurobiology of safety and threat learning in infancy.

    Science.gov (United States)

    Debiec, Jacek; Sullivan, Regina M

    2017-09-01

    What an animal needs to learn to survive is altered dramatically as they change from dependence on the parent for protection to independence and reliance on self-defense. This transition occurs in most altricial animals, but our understanding of the behavioral neurobiology has mostly relied on the infant rat. The transformation from dependence to independence occurs over three weeks in pups and is accompanied by complex changes in responses to both natural and learned threats and the supporting neural circuitry. Overall, in early life, the threat system is quiescent and learning is biased towards acquiring attachment related behaviors to support attachment to the caregiver and proximity seeking. Caregiver-associated cues learned in infancy have the ability to provide a sense of safety throughout lifetime. This attachment/safety system is activated by learning involving presumably pleasurable stimuli (food, warmth) but also painful stimuli (tailpinch, moderate shock). At about the midway point to independence, pups begin to have access to the adult-like amygdala-dependent threat system and amygdala-dependent responses to natural dangers such as predator odors. However, pups have the ability to switch between the infant and adult-like system, which is controlled by maternal presence and modification of stress hormones. Specifically, if the pup is alone, it will learn fear but if with the mother it will learn attachment (10-15days of age). As pups begin to approach weaning, pups lose access to the attachment system and rely only on the amygdala-dependent threat system. However, pups learning system is complex and exhibits flexibility that enables the mother to override the control of the attachment circuit, since newborn pups may acquire threat responses from the mother expressing fear in their presence. Together, these data suggest that the development of pups' threat learning system is not only dependent upon maturation of the amygdala, but it is also exquisitely

  16. Modelling and observation of transionospheric propagation results from ISIS II in preparation for ePOP

    Directory of Open Access Journals (Sweden)

    R. G. Gillies

    2007-02-01

    Full Text Available The enhanced Polar Outflow Probe (ePOP is scheduled to be launched as part of the Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer (CASSIOPE satellite in early 2008. A Radio Receiver Instrument (RRI on ePOP will receive HF transmissions from various ground-based transmitters. In preparation for the ePOP mission, data from a similar transionospheric experiment performed by the International Satellites for Ionospheric Studies (ISIS II satellite has been studied. Prominent features in the received 9.303-MHz signal were periodic Faraday fading of signal intensity at rates up to 13 Hz and a time of arrival delay between the O- and X-modes of up to 0.8 ms. Both features occurred when the satellite was above or south of the Ottawa transmitter. Ionospheric models for ray tracing were constructed using both International Reference Ionosphere (IRI profiles and local peak electron density values from ISIS ionograms. Values for fade rate and differential mode delay were computed and compared to the values observed in the ISIS II data. The computed values showed very good agreement to the observed values of both received signal parameters when the topside sounding foF2 values were used to scale IRI profiles, but not when strictly modelled IRI profiles were used. It was determined that the primary modifier of the received signal parameters was the foF2 density and not the shape of the profile. This dependence was due to refraction, at the 9.303-MHz signal frequency, causing the rays to travel larger distances near the peak density where essentially all the mode splitting occurred. This study should assist in interpretation of ePOP RRI data when they are available.

  17. Preparation of A Spaceflight: Apoptosis Search in Sutured Wound Healing Models

    Directory of Open Access Journals (Sweden)

    Stefan Riwaldt

    2017-12-01

    Full Text Available To prepare the ESA (European Space Agency spaceflight project “Wound healing and Sutures in Unloading Conditions”, we studied mechanisms of apoptosis in wound healing models based on ex vivo skin tissue cultures, kept for 10 days alive in serum-free DMEM/F12 medium supplemented with bovine serum albumin, hydrocortisone, insulin, ascorbic acid and antibiotics at 32 °C. The overall goal is to test: (i the viability of tissue specimens; (ii the gene expression of activators and inhibitors of apoptosis and extracellular matrix components in wound and suture models; and (iii to design analytical protocols for future tissue specimens after post-spaceflight download. Hematoxylin-Eosin and Elastica-van-Gieson staining showed a normal skin histology with no signs of necrosis in controls and showed a normal wound suture. TdT-mediated dUTP-biotin nick end labeling for detecting DNA fragmentation revealed no significant apoptosis. No activation of caspase-3 protein was detectable. FASL, FADD, CASP3, CASP8, CASP10, BAX, BCL2, CYC1, APAF1, LAMA3 and SPP1 mRNAs were not altered in epidermis and dermis samples with and without a wound compared to 0 day samples (specimens investigated directly post-surgery. BIRC5, CASP9, and FN1 mRNAs were downregulated in epidermis/dermis samples with and/or without a wound compared to 0 day samples. BIRC2, BIRC3 were upregulated in 10 day wound samples compared to 0 day samples in epidermis/dermis. RELA/FAS mRNAs were elevated in 10 day wound and no wound samples compared to 0 day samples in dermis. In conclusion, we demonstrate that it is possible to maintain live skin tissue cultures for 10 days. The viability analysis showed no significant signs of cell death in wound and suture models. The gene expression analysis demonstrated the interplay of activators and inhibitors of apoptosis and extracellular matrix components, thereby describing important features in ex vivo sutured wound healing models. Collectively, the

  18. Preparation of A Spaceflight: Apoptosis Search in Sutured Wound Healing Models.

    Science.gov (United States)

    Riwaldt, Stefan; Monici, Monica; Graver Petersen, Asbjørn; Birk Jensen, Uffe; Evert, Katja; Pantalone, Desiré; Utpatel, Kirsten; Evert, Matthias; Wehland, Markus; Krüger, Marcus; Kopp, Sascha; Frandsen, Sofie; Corydon, Thomas; Sahana, Jayashree; Bauer, Johann; Lützenberg, Ronald; Infanger, Manfred; Grimm, Daniela

    2017-12-03

    To prepare the ESA (European Space Agency) spaceflight project "Wound healing and Sutures in Unloading Conditions", we studied mechanisms of apoptosis in wound healing models based on ex vivo skin tissue cultures, kept for 10 days alive in serum-free DMEM/F12 medium supplemented with bovine serum albumin, hydrocortisone, insulin, ascorbic acid and antibiotics at 32 °C. The overall goal is to test: (i) the viability of tissue specimens; (ii) the gene expression of activators and inhibitors of apoptosis and extracellular matrix components in wound and suture models; and (iii) to design analytical protocols for future tissue specimens after post-spaceflight download. Hematoxylin-Eosin and Elastica-van-Gieson staining showed a normal skin histology with no signs of necrosis in controls and showed a normal wound suture. TdT-mediated dUTP-biotin nick end labeling for detecting DNA fragmentation revealed no significant apoptosis. No activation of caspase-3 protein was detectable. FASL , FADD , CASP3 , CASP8 , CASP10 , BAX , BCL2 , CYC1 , APAF1 , LAMA3 and SPP1 mRNAs were not altered in epidermis and dermis samples with and without a wound compared to 0 day samples (specimens investigated directly post-surgery). BIRC5 , CASP9 , and FN1 mRNAs were downregulated in epidermis/dermis samples with and/or without a wound compared to 0 day samples. BIRC2 , BIRC3 were upregulated in 10 day wound samples compared to 0 day samples in epidermis/dermis. RELA/FAS mRNAs were elevated in 10 day wound and no wound samples compared to 0 day samples in dermis. In conclusion, we demonstrate that it is possible to maintain live skin tissue cultures for 10 days. The viability analysis showed no significant signs of cell death in wound and suture models. The gene expression analysis demonstrated the interplay of activators and inhibitors of apoptosis and extracellular matrix components, thereby describing important features in ex vivo sutured wound healing models. Collectively, the performed

  19. Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant vertebrate lineages

    KAUST Repository

    Nowicki, Jessica; Pratchett, Morgan; Walker, Stefan; Coker, Darren James; O'Connell, Lauren A.

    2017-01-01

    Pair bonding has independently evolved numerous times among vertebrates. The governing neural mechanisms of pair bonding have only been studied in depth in the mammalian model species, the prairie vole, Microtus ochrogaster. In this species, oxytocin (OT), arginine vasopressin (AVP), dopamine (DA), and opioid (OP) systems play key roles in signaling in the formation and maintenance of pair bonding by targeting specific social and reward-mediating brain regions. By contrast, the neural basis of pair bonding is poorly studied in other vertebrates, and especially those of early origins, limiting our understanding of the evolutionary history of pair bonding regulatory mechanisms. We compared receptor gene expression between pair bonded and solitary individuals across eight socio-functional brain regions. We found that in females, ITR and V1aR receptor expression varied in the lateral septum-like region (the Vv/Vl), while in both sexes D1R, D2R, and MOR expression varied within the mesolimbic reward system, including a striatum-like region (the Vc); mirroring sites of action in M. ochrogaster. This study provides novel insights into the neurobiology of teleost pair bonding. It also reveals high convergence in the neurochemical mechanisms governing pair bonding across actinopterygians and sarcopterygians, by repeatedly co-opting and similarly assembling deep neurochemical and neuroanatomical homologies that originated in ancestral osteithes.

  20. The Cannabis Pathway to Non-Affective Psychosis may Reflect Less Neurobiological Vulnerability

    Science.gov (United States)

    Løberg, Else-Marie; Helle, Siri; Nygård, Merethe; Berle, Jan Øystein; Kroken, Rune A.; Johnsen, Erik

    2014-01-01

    There is a high prevalence of cannabis use reported in non-affective psychosis. Early prospective longitudinal studies conclude that cannabis use is a risk factor for psychosis, and neurochemical studies on cannabis have suggested potential mechanisms for this effect. Recent advances in the field of neuroscience and genetics may have important implications for our understanding of this relationship. Importantly, we need to better understand the vulnerability × cannabis interaction to shed light on the mediators of cannabis as a risk factor for psychosis. Thus, the present study reviews recent literature on several variables relevant for understanding the relationship between cannabis and psychosis, including age of onset, cognition, brain functioning, family history, genetics, and neurological soft signs (NSS) in non-affective psychosis. Compared with non-using non-affective psychosis, the present review shows that there seem to be fewer stable cognitive deficits in patients with cannabis use and psychosis, in addition to fewer NSS and possibly more normalized brain functioning, indicating less neurobiological vulnerability for psychosis. There are, however, some familiar and genetic vulnerabilities present in the cannabis psychosis group, which may influence the cannabis pathway to psychosis by increasing sensitivity to cannabis. Furthermore, an earlier age of onset suggests a different pathway to psychosis in the cannabis-using patients. Two alternative vulnerability models are presented to integrate these seemingly paradoxical findings PMID:25477825

  1. The cannabis pathway to non-affective psychosis may reflect less neurobiological vulnerability

    Directory of Open Access Journals (Sweden)

    Else-Marie eLøberg

    2014-11-01

    Full Text Available There is a high prevalence of cannabis use reported in non-affective psychosis. Early prospective longitudinal studies conclude that cannabis use is a risk factor for psychosis, and neurochemical studies on cannabis have suggested potential mechanisms for this effect. Recent advances in the field of neuroscience and genetics may have important implications for our understanding of this relationship. Importantly, we need to better understand the vulnerability x cannabis interaction to shed light on the mediators of cannabis as a risk factor for psychosis. Thus, the present study reviews recent literature on several variables relevant for understanding the relationship between cannabis and psychosis, including age of onset, cognition, brain functioning, family history, genetics and neurological soft signs (NSS in non-affective psychosis. Compared with non-using non-affective psychosis, the present review shows that there seem to be fewer stable cognitive deficits in patients with cannabis use and psychosis, in addition to fewer NSS and possibly more normalized brain functioning, indicating less neurobiological vulnerability for psychosis. There are, however, some familiar and genetic vulnerabilities present in the cannabis psychosis group which may influence the cannabis pathway to psychosis by increasing sensitivity to cannabis. Furthermore, an earlier age of onset suggests a different pathway to psychosis in the cannabis-using patients. Two alternative vulnerability models are presented to integrate these seemingly paradoxical findings.

  2. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior.

    Science.gov (United States)

    Sokolov, Alexander N; Pavlova, Marina A; Klosterhalfen, Sibylle; Enck, Paul

    2013-12-01

    Cocoa products and chocolate have recently been recognized as a rich source of flavonoids, mainly flavanols, potent antioxidant and anti-inflammatory agents with established benefits for cardiovascular health but largely unproven effects on neurocognition and behavior. In this review, we focus on neuromodulatory and neuroprotective actions of cocoa flavanols in humans. The absorbed flavonoids penetrate and accumulate in the brain regions involved in learning and memory, especially the hippocampus. The neurobiological actions of flavanols are believed to occur in two major ways: (i) via direct interactions with cellular cascades yielding expression of neuroprotective and neuromodulatory proteins that promote neurogenesis, neuronal function and brain connectivity, and (ii) via blood-flow improvement and angiogenesis in the brain and sensory systems. Protective effects of long-term flavanol consumption on neurocognition and behavior, including age- and disease-related cognitive decline, were shown in animal models of normal aging, dementia, and stroke. A few human observational and intervention studies appear to corroborate these findings. Evidence on more immediate action of cocoa flavanols remains limited and inconclusive, but warrants further research. As an outline for future research on cocoa flavanol impact on human cognition, mood, and behavior, we underscore combination of functional neuroimaging with cognitive and behavioral measures of performance. Copyright © 2013. Published by Elsevier Ltd.

  3. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification.

    Science.gov (United States)

    Tresguerres, Martin; Hamilton, Trevor J

    2017-06-15

    Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABA A receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABA A receptor antagonist gabazine on control animals and those exposed to elevated CO 2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABA A receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO 2 -induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms. © 2017. Published by The Company of Biologists Ltd.

  4. Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant vertebrate lineages

    KAUST Repository

    Nowicki, Jessica

    2017-11-14

    Pair bonding has independently evolved numerous times among vertebrates. The governing neural mechanisms of pair bonding have only been studied in depth in the mammalian model species, the prairie vole, Microtus ochrogaster. In this species, oxytocin (OT), arginine vasopressin (AVP), dopamine (DA), and opioid (OP) systems play key roles in signaling in the formation and maintenance of pair bonding by targeting specific social and reward-mediating brain regions. By contrast, the neural basis of pair bonding is poorly studied in other vertebrates, and especially those of early origins, limiting our understanding of the evolutionary history of pair bonding regulatory mechanisms. We compared receptor gene expression between pair bonded and solitary individuals across eight socio-functional brain regions. We found that in females, ITR and V1aR receptor expression varied in the lateral septum-like region (the Vv/Vl), while in both sexes D1R, D2R, and MOR expression varied within the mesolimbic reward system, including a striatum-like region (the Vc); mirroring sites of action in M. ochrogaster. This study provides novel insights into the neurobiology of teleost pair bonding. It also reveals high convergence in the neurochemical mechanisms governing pair bonding across actinopterygians and sarcopterygians, by repeatedly co-opting and similarly assembling deep neurochemical and neuroanatomical homologies that originated in ancestral osteithes.

  5. A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescence.

    Science.gov (United States)

    Winsper, Catherine; Marwaha, Steven; Lereya, Suzet Tanya; Thompson, Andrew; Eyden, Julie; Singh, Swaran P

    2016-12-01

    Contemporary theories for the aetiology of borderline personality disorder (BPD) take a lifespan approach asserting that inborn biological predisposition is potentiated across development by environmental risk factors. In this review, we present and critically evaluate evidence on the neurobiology of BPD in childhood and adolescence, compare this evidence to the adult literature, and contextualise within a neurodevelopmental framework. A systematic review was conducted to identify studies examining the neurobiological (i.e. genetic, structural neuroimaging, neurophysiological, and neuropsychological) correlates of BPD symptoms in children and adolescents aged 19 years or under. We identified, quality assessed, and narratively summarised 34 studies published between 1980 and June 2016. Similar to findings in adult populations, twin studies indicated moderate to high levels of heritability of BPD, and there was some evidence for gene-environment interactions. Also consistent with adult reports is that some adolescents with BPD demonstrated structural (grey and white matter) alterations in frontolimbic regions and neuropsychological abnormalities (i.e. reduced executive function and disturbances in social cognition). These findings suggest that neurobiological abnormalities observed in adult BPD may not solely be the consequence of chronic morbidity or prolonged medication use. They also provide tentative support for neurodevelopmental theories of BPD by demonstrating that neurobiological markers may be observed from childhood onwards and interact with environmental factors to increase risk of BPD in young populations. Prospective studies with a range of repeated measures are now required to elucidate the temporal unfurling of neurobiological features and further delineate the complex pathways to BPD.

  6. Impact of glutathione-enriched inactive dry yeast preparations on the stability of terpenes during model wine aging.

    Science.gov (United States)

    Rodríguez-Bencomo, Juan José; Andújar-Ortiz, Inmaculada; Moreno-Arribas, M Victoria; Simó, Carolina; González, Javier; Chana, Antonio; Dávalos, Juan; Pozo-Bayón, M Ángeles

    2014-02-12

    The impact of the addition of glutathione-enriched Inactive dry yeast preparations (g-IDYs) on the stability of some typical wine terpenes (linalool, α-terpineol, β-citronellol, and nerol) stored under accelerated oxidative conditions was evaluated in model wines. Additionally, the effects of a second type of IDY preparation with a different claim (fermentative nutrient) and the sole addition of commercial glutathione into the model wines were also assessed. Model wines were spiked with the low molecular weight fraction (loss of typical wine terpenes in model wines submitted to accelerated aging conditions. The g-IDY preparation did indeed release reduced GSH into the model wines, although this compound did not seem exclusively related to the protective effect on some aroma compounds determined in both model wines. The presence of other sulfur-containing compounds from yeast origin in g-IDY, and also the presence of small yeast peptides, such as methionine/tryptophan/tyrosine-containing tripeptide in both types of IDYs, seemed to be related to the antioxidant activity determined in the two permeates and to the minor loss of some terpenes in the model wines spiked with them.

  7. AERA Statement on Use of Value-Added Models (VAM) for the Evaluation of Educators and Educator Preparation Programs

    Science.gov (United States)

    Educational Researcher, 2015

    2015-01-01

    The purpose of this statement is to inform those using or considering the use of value-added models (VAM) about their scientific and technical limitations in the evaluation of educators and programs that prepare teachers. The statement briefly reviews the background and current context of using VAM for evaluations, enumerates specific psychometric…

  8. Preparation and Antioxidant Activity of Ethyl-Linked Anthocyanin-Flavanol Pigments from Model Wine Solutions.

    Science.gov (United States)

    Li, Lingxi; Zhang, Minna; Zhang, Shuting; Cui, Yan; Sun, Baoshan

    2018-05-03

    Anthocyanin-flavanol pigments, formed during red wine fermentation and storage by condensation reactions between anthocyanins and flavanols (monomers, oligomers, and polymers), are one of the major groups of polyphenols in aged red wine. However, knowledge of their biological activities is lacking. This is probably due to the structural diversity and complexity of these molecules, which makes the large-scale separation and isolation of the individual compounds very difficult, thus restricting their further study. In this study, anthocyanins (i.e., malvidin-3-glucoside, cyanidin-3-glucoside, and peonidin-3-glucoside) and (⁻)-epicatechin were first isolated at a preparative scale by high-speed counter-current chromatography. The condensation reaction between each of the isolated anthocyanins and (⁻)-epicatechin, mediated by acetaldehyde, was conducted in model wine solutions to obtain ethyl-linked anthocyanin-flavanol pigments. The effects of pH, molar ratio, and temperature on the reaction rate were investigated, and the reaction conditions of pH 1.7, molar ratio 1:6:10 (anthocyanin/(⁻)-epicatechin/acetaldehyde), and reaction temperature of 35 °C were identified as optimal for conversion of anthocyanins to ethyl-linked anthocyanin-flavanol pigments. Six ethyl-linked anthocyanin-flavanol pigments were isolated in larger quantities and collected under optimal reaction conditions, and their chemical structures were identified by HPLC-QTOF-MS and ECD analyses. Furthermore, DPPH, ABTS, and FRAP assays indicate that ethyl-linked anthocyanin-flavanol pigments show stronger antioxidant activities than their precursor anthocyanins.

  9. Preparation and Antioxidant Activity of Ethyl-Linked Anthocyanin-Flavanol Pigments from Model Wine Solutions

    Directory of Open Access Journals (Sweden)

    Lingxi Li

    2018-05-01

    Full Text Available Anthocyanin-flavanol pigments, formed during red wine fermentation and storage by condensation reactions between anthocyanins and flavanols (monomers, oligomers, and polymers, are one of the major groups of polyphenols in aged red wine. However, knowledge of their biological activities is lacking. This is probably due to the structural diversity and complexity of these molecules, which makes the large-scale separation and isolation of the individual compounds very difficult, thus restricting their further study. In this study, anthocyanins (i.e., malvidin-3-glucoside, cyanidin-3-glucoside, and peonidin-3-glucoside and (–-epicatechin were first isolated at a preparative scale by high-speed counter-current chromatography. The condensation reaction between each of the isolated anthocyanins and (–-epicatechin, mediated by acetaldehyde, was conducted in model wine solutions to obtain ethyl-linked anthocyanin-flavanol pigments. The effects of pH, molar ratio, and temperature on the reaction rate were investigated, and the reaction conditions of pH 1.7, molar ratio 1:6:10 (anthocyanin/(–-epicatechin/acetaldehyde, and reaction temperature of 35 °C were identified as optimal for conversion of anthocyanins to ethyl-linked anthocyanin-flavanol pigments. Six ethyl-linked anthocyanin-flavanol pigments were isolated in larger quantities and collected under optimal reaction conditions, and their chemical structures were identified by HPLC-QTOF-MS and ECD analyses. Furthermore, DPPH, ABTS, and FRAP assays indicate that ethyl-linked anthocyanin-flavanol pigments show stronger antioxidant activities than their precursor anthocyanins.

  10. Preparation and biodistribution of 99Tcm-lomefloxacin in inflammatory model mice

    International Nuclear Information System (INIS)

    Liu Jianfeng; Han Jiankui; Zhang Chao; Hou Guihua

    2009-01-01

    Objective: The study of 99 TC m -ciprofloxacin, a fluoroquinolones antibiotic, as a tracer for infection and inflammation imaging has been reported. The aim of this study was to investigate the radio-labeling and biodistribution of lomefloxacin (fluoroquinolones analogue) as an inflammatory imaging agent. Methods: 99 TC m -lomefloxacin was prepared and it underwent quality control with thin layer chromatography (TLC). The different labeling conditions were compared. The radiochemical purity, labeling efficiency, stability and lipid/water partition coefficient of 99 TC m -lomefloxacin were measured. The binding activities of 99 TC m -lomefloxacin with Staphylococci aureus (S. aureus)in vitro were tested. 99 TC m -lomefloxacin was in-ieeted through tail vein in the S. aureus-induced inflammatory model mice. The mice were sacrificed and their blood. inflammatory muscles. major organs were taken out at different time after tracer inieetion. Then the radioactivity count of these samples was measured to observe biodistribution. Whole-body radioauto-graphic images were obtained with storage phosphor screen system. Variance analysis using Concise Statis-tics 10.3 software was performed. Results: 99 TC m -lomefloxacin was lipid-soluble with labeling efficiency of 97.5%. The radiochemieal purity was more than 95% at 6 h after storing in room temperature. In vitro test 99 TC m -lomefloxacin showed good binding characteristic with S. auaresu and was positively correlated with the colony number of S. aureus. The highest binding appeared at 1 h. In vivo 99 TC 5 m-lomefloxacin apparently accumulated in inflammatory tissues at 2 h after tracer injection with the uptake ratio of 4.07 ± 1.05 in inflammatory muscles to control muscles. Whole-body autoradiography showed that all inflammation foci were visualized. Conclusion: 99 TC m -lomefloxacin may be a novel potential agent for inflammatory imaging. (authors)

  11. A review of the neurobiological basis of dyslexia in the adult population.

    Science.gov (United States)

    Soriano-Ferrer, M; Piedra Martínez, E

    Adult dyslexia affects about 4% of the population. However, studies on the neurobiological basis of dyslexia in adulthood are scarce compared to paediatric studies. This review investigates the neurobiological basis of dyslexia in adulthood. Using PsycINFO, a database of psychology abstracts, we identified 11 studies on genetics, 9 neurostructural studies, 13 neurofunctional studies and 24 neurophysiological studies. Results from the review show that dyslexia is highly heritable and displays polygenic transmission. Likewise, adult neuroimaging studies found structural, functional, and physiological changes in the parieto-occipital and occipito-temporal regions, and in the inferior frontal gyrus, in adults with dyslexia. According to different studies, aetiology in cases of adult dyslexia is complex. We stress the need for neurobiological studies of dyslexia in languages with transparent spelling systems. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. [Neurobiological determinism: questionable inferences on human freedom of choice and forensic criminal responsibility].

    Science.gov (United States)

    Urbaniok, F; Hardegger, J; Rossegger, A; Endrass, J

    2006-08-01

    Several authors argue that criminal behavior is generally caused by neurobiological deficits. Based on this neurobiological perspective of assumed causality, the concept of free will is questioned, and the theory of neurobiological determinism of all human behavior is put forward, thus maintaining that human beings are not responsible for their actions, and consequently the principle of guilt should be given up in criminal law. In this context the controversial debate on determinism and indeterminism, which has been held for centuries, has flared up anew, especially within the science of criminal law. When critically examining the current state of research, it becomes apparent that the results do not support the existence of a universally valid neurobiological causality of criminal behavior, nor a theory of an absolute neurobiological determinism. Neither is complete determination of all phenomena in the universe--as maintained--the logical conclusion of the principle of causality, nor is it empirically confirmed. Analyzed methodically, it cannot be falsified, and thus, as a theory which cannot be empirically tested, it represents a dogma against which plausible objections can be made. The criticism of the concept of free will, and even more so of human accountability and criminal responsibility, is not put forward in a valid way. The principle of relative determinism--the evaluation of the degree of determinism of personality factors potentially reducing criminal responsibility, which includes concrete observations and analysis of behavior--thus remains a central and cogent approach to the assessment of criminal responsibility. To sum up, the theories proposed by some authors on the complete neurobiological determinism of human behavior, and the subsequent impossibility of individual responsibility and guilt, reveal both methodical misconception and a lack of empirical foundation.

  13. Can understanding the neurobiology of body dysmorphic disorder (BDD) inform treatment?

    Science.gov (United States)

    Rossell, Susan L; Harrison, Ben J; Castle, David

    2015-08-01

    We aim to provide a clinically focused review of the neurobiological literature in body dysmorphic disorder (BDD), with a focus on structural and functional neuroimaging. There has been a recent influx of studies examining the underlying neurobiology of BDD using structural and functional neuroimaging methods. Despite obvious symptom similarities with obsessive-compulsive disorder (OCD), no study to date has directly compared the two groups using neuroimaging techniques. Studies have established that there are limbic and visual cortex abnormalities in BDD, in contrast to fronto-striatal differences in OCD. Such data suggests affect or visual training maybe useful in BDD. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  14. [Is it still the "royal way"? The dream as a junction of neurobiology and psychoanalysis].

    Science.gov (United States)

    Simon, Mária

    2011-01-01

    Some decades ago the dream seemed to be randomly generated by brain stem mechanisms in the cortical and subcortical neuronal networks. However, most recent empirical data, studies on brain lesions and functional neuroimaging results have refuted this theory. Several data support that motivation pathways, memory systems, especially implicit, emotional memory play an important role in dream formation. This essay reviews how the results of neurobiology and cognitive psychology can be fitted into the theoretical frameworks and clinical practice of the psychoanalysis. The main aim is to demonstrate that results of neurobiology and empirical observations of psychoanalysis are complementary rather than contradictory.

  15. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling.

    Science.gov (United States)

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of

  16. Evidence of Neurobiological Changes in the Presymptomatic PINK1 Knockout Rat.

    Science.gov (United States)

    Ferris, Craig F; Morrison, Thomas R; Iriah, Sade; Malmberg, Samantha; Kulkarni, Praveen; Hartner, Jochen C; Trivedi, Malav

    2018-01-01

    Genetic models of Parkinson's disease (PD) coupled with advanced imaging techniques can elucidate neurobiological disease progression, and can help identify early biomarkers before clinical signs emerge. PTEN-induced putative kinase 1 (PINK1) helps protect neurons from mitochondrial dysfunction, and a mutation in the associated gene is a risk factor for recessive familial PD. The PINK1 knockout (KO) rat is a novel model for familial PD that has not been neuroradiologically characterized for alterations in brain structure/function, alongside behavior, prior to 4 months of age. To identify biomarkers of presymptomatic PD in the PINK1 -/- rat at 3 months using magnetic resonance imaging techniques. At postnatal weeks 12-13; one month earlier than previously reported signs of motor and cognitive dysfunction, this study combined imaging modalities, including assessment of quantitative anisotropy across 171 individual brain areas using an annotated MRI rat brain atlas to identify sites of gray matter alteration between wild-type and PINK1 -/- rats. The olfactory system, hypothalamus, thalamus, nucleus accumbens, and cerebellum showed differences in anisotropy between experimental groups. Molecular analyses revealed reduced levels of glutathione, ATP, and elevated oxidative stress in the substantia nigra, striatum and deep cerebellar nuclei. Mitochondrial genes encoding proteins in Complex IV, along with mRNA levels associated with mitochondrial function and genes involved in glutathione synthesis were reduced. Differences in brain structure did not align with any cognitive or motor impairment. These data reveal early markers, and highlight novel brain regions involved in the pathology of PD in the PINK1 -/- rat before behavioral dysfunction occurs.

  17. Soup "du Jour" and so Much More: A Model for School Leader Preparation

    Science.gov (United States)

    Sherman, Ross B.; Gill, Peggy B.; Sherman, Cynthia A.

    2007-01-01

    The future of educational leadership lies in the ability to teach the next generation of leaders how to use their conceptual and intellectual skills; in essence, how to think critically, solve problems appropriately, make decisions cogently and provide leadership to the enterprise. The key to preparing administrators is not "HOW" future leaders…

  18. Changing from Traditional Practice to a New Model for Preparing Future Leaders

    Science.gov (United States)

    Devin, Mary; Augustine-Shaw, Donna; Hachiya, Robert F.

    2016-01-01

    Since the first Kansas State University (KSU) master's academies in 2000, the academy focus has moved from preparing candidates for principal positions to the broader vision of teacher leadership, recognizing that today's leadership relies on a team, not an individual. As leadership in schools becomes ever more challenging, requiring multiple…

  19. The Culture of Family: How a Model Early Childhood Teacher Preparation Program Navigates a Limited Context

    Science.gov (United States)

    Nitecki, Elena

    2012-01-01

    This article examines an extraordinarily successful early childhood education teacher preparation program at an urban 2-year college struggling with retention. The Early Childhood Education Program in this case study is able to maintain a graduation rate that is over four times greater than that of the college average and has a reputation for…

  20. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  1. Neurobiological Correlates and Predictors of Two Distinct Personality Trait Pathways to Escalated Alcohol Use

    Directory of Open Access Journals (Sweden)

    Malak Abu Shakra

    2018-01-01

    Interpretation: This double dissociation provides evidence of distinct neurobiological profiles in a priori identified personality trait-based risk groups for AUDs, and links these signatures to clinically relevant substance use outcomes at follow-up. AUD subtypes might benefit from motivationally and personality-specific ameliorative and preventative interventions.

  2. Formation and adaptation of memory : Neurobiological mechanisms underlying learning and reversal learning

    NARCIS (Netherlands)

    Havekes, Robbert

    2008-01-01

    The hippocampus is a brain region that plays a critical role in memory formation. In addition, it has been suggested that this brain region is important for ‘updating’ information that is incorrect or outdated. The main goal of this thesis project was to investigate which neurobiological processes

  3. Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice.

    Science.gov (United States)

    Caulfield, Jasmine I; Caruso, Michael J; Michael, Kerry C; Bourne, Rebecca A; Chirichella, Nicole R; Klein, Laura C; Craig, Timothy; Bonneau, Robert H; August, Avery; Cavigelli, Sonia A

    2017-05-30

    Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Neurobiology and Psychiatric Perspective of Vaginismus: Linking the Pharmacological and Psycho-Social Interventions.

    Science.gov (United States)

    Kadir, Zuri Shahidii; Sidi, Hatta; Kumar, Jaya; Das, Srijit; Midin, Marhani; Baharuddin, Najwa

    2018-01-01

    Vaginismus is an involuntary muscle contraction of the outer third of vaginal barrel causing sexual penetration almost impossible. It is generally classified under sexual pain disorder (SPD). In Diagnostic and Statistical Manual, 5th edition (DSM-5), it is classified under the new rubric of Genito-Pelvic Pain/Sexual Penetration Disorder. This fear-avoidance condition poses an ongoing significant challenge to the medical and health professionals due to the very demanding needs in health care despite its unpredictable prognosis. The etiology of vaginismus is complex: through multiple biopsycho- social processes, involving bidirectional connections between pelvic-genital (local) and higher mental function (central regulation). It has robust neural and psychological-cognitive loop feedback involvement. The internal neural circuit involves an inter-play of at least two-pathway systems, i.e. both "quick threat assessment" of occipital-limbic-occipital-prefrontal-pelvic-genital; and the chronic pain pathways through the genito-spinothalamic-parietal-pre-frontal system, respectively. In this review, a neurobiology root of vaginismus is deliberated with the central role of an emotional-regulating amygdala, and other neural loop, i.e. hippocampus and neo-cortex in the core psychopathology of fear, disgust, and sexual avoidance. Many therapists view vaginismus as a neglected art-and-science which demands a better and deeper understanding on the clinico-pathological correlation to enhance an effective model for the bio-psycho-social treatment. As vaginismus has a strong presentation in psychopathology, i.e. fear of penetration, phobic avoidance, disgust, and anticipatory anxiety, we highlighted a practical psychiatric approach to the clinical management of vaginismus, based on the current core knowledge in the perspective of neuroscience. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Neurobiological approaches to a better understanding of human nature and human values

    Directory of Open Access Journals (Sweden)

    Gerald Hüther

    2006-04-01

    Full Text Available The most important finding made in the field of neurobiological research during the last decade is the discovery of the enormous experience-dependent plasticity of the human brain. The elaboration and stabilization of synaptic connectivity, and therefore, the complexity of neuronal networks in the higher brain centres depend to a far greater extent than previously believed on how – or rather, for which purpose – an individual uses his brain, the goals pursued, the experiences made in the course of his life, the models used for orientation, the values providing stability and eliciting a sense of commitment. The transmission and internalization of culture-specific abilities and of culture-specific values is achieved primarily during childhood by nonverbal communication (mirror neuron system, imitation learning as well as by implicit and explicit experiences (reward system, avoidance and reinforcement learning. Therefore the structural and functional organization of the human brain is crucially determined by social and cultural factors. Especially the frontal cortex with its highly complex neuronal networks involved in executive functions, evaluation an decision making must be conceptualized as a social, culturally shaped construct. The most important prerequisites for the transgenerational transmission of human values and their deep implementation into the higher frontocortical networks of the brains of subsequent generations are secure affectional relationships and a broad spectrum of different challenges. Only under such conditions, children are able to stabilize sufficiently complex networks and internal representations for metacognitive competences in their brains. This delicate process of experience-dependent organization of neuronal connectivity is seriously and often also persistently hampered or prematurely terminated by uncontrollable stress experiences. This danger ought be minimized by education programs aiming at the implementation

  6. Induction of innate immune genes in brain create the neurobiology of addiction.

    Science.gov (United States)

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Neurobiology of apathy in Alzheimer's disease Neurobiologia da apatia na doença de Alzheimer

    Directory of Open Access Journals (Sweden)

    Henrique Cerqueira Guimarães

    2008-06-01

    Full Text Available Apathy is considered the most frequent neuropsychiatric disturbance in dementia and its outcome is generally deleterious. Apathy can be related to a dysfunction of the anatomical-system that supports the generation of voluntary actions, namely the prefrontal cortex and/or the prefrontal-subcortical circuits. In Alzheimer's disease, pathological and neuroimaging data indicate that apathy is likely due to a dysfunction of the medial prefrontal cortex. Accordingly, in this review article, we propose a pathophysiological model to explain apathetic behavior in Alzheimer's disease, combining data from neuroimaging, neuropathology and experimental research on the role of orbito-frontal cortex, anterior cingulate cortex, basal ganglia and dopamine in decision-making neurobiology.Apatia é considerada a alteração neuropsiquiátrica mais freqüente nas demências e suas conseqüências são habitualmente deletérias. Apatia pode ser relacionada à disfunção do sistema anatômico responsável pela geração de ações voluntárias, conhecido com córtex pré-frontal e/ou circuitos pré-frontais-subcorticais. Na doença de Alzheimer, evidências neuropatológicas e de neuroimagem funcional indicam que a apatia é provavelmente decorrente da disfunção do córtex pré-frontal medial. Assim, neste artigo de revisão, apresentamos uma proposta de um modelo fisiopatológico para explicar o comportamento apático na doença de Alzheimer, combinando dados de neuropatologia, neuroimagem e experimentação animal sobre o papel do córtex órbito-frontal, cíngulo anterior, núcleos da base e dopamina na neurobiologia da tomada de decisão.

  8. Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction.

    Science.gov (United States)

    Sweitzer, Maggie M; Donny, Eric C; Hariri, Ahmad R

    2012-06-01

    Addictive disorders are heritable, but the search for candidate functional polymorphisms playing an etiological role in addiction is hindered by complexity of the phenotype and the variety of factors interacting to impact behavior. Advances in human genome sequencing and neuroimaging technology provide an unprecedented opportunity to explore the impact of functional genetic variants on variability in behaviorally relevant neural circuitry. Here, we present a model for merging these technologies to trace the links between genes, brain, and addictive behavior. We describe imaging genetics and discuss the utility of its application to addiction. We then review data pertaining to impulsivity and reward circuitry as an example of how genetic variation may lead to variation in behavioral phenotype. Finally, we present preliminary data relating the neural basis of reward processing to individual differences in nicotine dependence. Complex human behaviors such as addiction can be traced to their basic genetic building blocks by identifying intermediate behavioral phenotypes, associated neural circuitry, and underlying molecular signaling pathways. Impulsivity has been linked with variation in reward-related activation in the ventral striatum (VS), altered dopamine signaling, and functional polymorphisms of DRD2 and DAT1 genes. In smokers, changes in reward-related VS activation induced by smoking abstinence may be associated with severity of nicotine dependence. Variation in genes related to dopamine signaling may contribute to heterogeneity in VS sensitivity to reward and, ultimately, to addiction. These findings illustrate the utility of the imaging genetics approach for investigating the neurobiological basis for vulnerability to addiction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Mesoscale Model Data Preparation and Execution: A New Method Utilizing the Internet

    National Research Council Canada - National Science Library

    Kirby, Stephen

    2002-01-01

    In order to streamline and simplify the methodologies required to obtain and process the requisite meteorological data for mesoscale meteorological models such as the Battlescale Forecast Model (BFM...

  10. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    Science.gov (United States)

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  11. Binge Drinking and the Young Brain: A Mini Review of the Neurobiological Underpinnings of Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Daniel F. Hermens

    2018-01-01

    Full Text Available Binge drinking has significant effects on memory, particularly with regards to the transfer of information to long-term storage. Partial or complete blocking of memory formation is known as blackout. Youth represents a critical period in brain development that is particularly vulnerable to alcohol misuse. Animal models show that the adolescent brain is more vulnerable to the acute and chronic effects of alcohol compared with the adult brain. This mini-review addresses the neurobiological underpinnings of binge drinking and associated memory loss (blackout in the adolescent and young adult period. Although the extent to which there are pre-existing versus alcohol-induced neurobiological changes remains unclear, it is likely that repetitive binge drinking in youth has detrimental effects on cognitive and social functioning. Given its role in learning and memory, the hippocampus is a critical region with neuroimaging research showing notable changes in this structure associated with alcohol misuse in young people. There is a great need for earlier identification of biological markers associated with alcohol-related brain damage. As a means to assess in vivo neurochemistry, magnetic resonance spectroscopy (MRS has emerged as a particularly promising technique since changes in neurometabolites often precede gross structural changes. Thus, the current paper addresses how MRS biomarkers of neurotransmission (glutamate, GABA and oxidative stress (indexed by depleted glutathione in the hippocampal region of young binge drinkers may underlie propensity for blackouts and other memory impairments. MRS biomarkers may have particular utility in determining the acute versus longer-term effects of binge drinking in young people.

  12. The influence of BANXIAXIEXIN decoction and its analogous preparations on neurotensin (NT) in rat models with reflux esophagitis

    International Nuclear Information System (INIS)

    Liu Xiaoni; Gao Yanqing; Si Yinchu; Niu Xin

    2003-01-01

    Objective: To investigate the mechanism of BANXIAXIEXIN TANG Decoction and its analogous preparations in treatment of reflux esophagitis. Methods: 60 rat models with duodenogastroesophageal reflux were divided into 4 equal numbered groups; control group, BANXIAXIEXIN TANG group, SHENGJIANGXIEXIN TANG group, GANCAOXIEXIN TANG group. The contents of NT in hypothalamus, ileum and plasma were measured by radioimmunoassay in all these models and the relationship between NT concentration and degree of esophageal mucosa injury in the control group was analysed. Results: BANXIAXIEXIN Decoction and its analogous preparations could reduce the degree of the esophageal mucosa injury significantly (p<0.01). Compared with the control group: the hypothalamus content of NT in SHENGJIANGXIEXIN TANG group was significantly lowered (p<0.05), the ileum content of NT in BANXIAXIEXIN TANG group was significantly lowered (p<0.01), the plasma contents of NT in both groups were significantly lowered (p<0.05) as well. There was positive correlation (r=0.442, p<0.01) between content of NT in ileum and degree of the esophageal mucosa injury in control group. Conclusion: NT may play an important role in the development reflux esophagitis. Regulating the synthesis and secretion of NT may be one of the mechanisms of BANXIAXIEXIN Decoction and its analogus preparations in treatment of reflux esophagitis

  13. Anti-fatigue activity of sea cucumber peptides prepared from Stichopus japonicus in an endurance swimming rat model.

    Science.gov (United States)

    Ye, Jing; Shen, Caihong; Huang, Yayan; Zhang, Xueqin; Xiao, Meitian

    2017-10-01

    Sea cucumber (Stichopus japonicus) is a well-known nutritious and luxurious seafood in Asia which has attracted increasing attention because of its nutrition and bioactivities in recent years. In this study, the anti-fatigue activity of sea cucumber peptides (SCP) prepared from S. japonicus was evaluated in a load-induced endurance swimming model. The SCP prepared in this study was mainly made up of low-molecular-weight peptides (fatigue was significantly improved by SCP treatment. Meanwhile, the remarkable alterations of energy metabolic markers, antioxidant enzymes, antioxidant capacity and oxidative stress biomarkers were normalized. Moreover, administration of SCP could modulate alterations of inflammatory cytokines and downregulate the overexpression of TRL4 and NF-κB. SCP has anti-fatigue activity and it exerted its anti-fatigue effect probably through normalizing energy metabolism as well as alleviating oxidative damage and inflammatory responses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Preparing Greenberger-Horne-Zeilinger and W states on a long-range Ising spin model by global controls

    Science.gov (United States)

    Chen, Jiahui; Zhou, Hui; Duan, Changkui; Peng, Xinhua

    2017-03-01

    Entanglement, a unique quantum resource with no classical counterpart, remains at the heart of quantum information. The Greenberger-Horne-Zeilinger (GHZ) and W states are two inequivalent classes of multipartite entangled states which cannot be transformed into each other by means of local operations and classic communication. In this paper, we present the methods to prepare the GHZ and W states via global controls on a long-range Ising spin model. For the GHZ state, general solutions are analytically obtained for an arbitrary-size spin system, while for the W state, we find a standard way to prepare the W state that is analytically illustrated in three- and four-spin systems and numerically demonstrated for larger-size systems. The number of parameters required in the numerical search increases only linearly with the size of the system.

  15. Neurobiological factors as predictors of cognitive-behavioral therapy outcome in individuals with antisocial behavior: a review of the literature.

    Science.gov (United States)

    Cornet, Liza J M; de Kogel, Catharina H; Nijman, Henk L I; Raine, Adrian; van der Laan, Peter H

    2014-11-01

    This review focuses on the predictive value of neurobiological factors in relation to cognitive-behavioral therapy outcome among individuals with antisocial behavior. Ten relevant studies were found. Although the literature on this topic is scarce and diverse, it appears that specific neurobiological characteristics, such as physiological arousal levels, can predict treatment outcome. The predictive value of neurobiological factors is important as it could give more insight into the causes of variability in treatment outcome among individuals with antisocial behavior. Furthermore, results can contribute to improvement in current treatment selection procedures and to the development of alternative treatment options. © The Author(s) 2013.

  16. The preparation of landslide map by Landslide Numerical Risk Factor (LNRF model and Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi Torkashvand

    2014-12-01

    Full Text Available One of the risks to threaten mountainous areas is that hillslope instability caused damage to lands. One of the most dangerous instabilities is mass movement and much movement occurs due to slip. The aim of this study is zonation of landslide hazards in a basin of the Ardebil province, the eastern slopes of Sabalan, Iran. Geological and geomorphologic conditions, climate and type of land use have caused susceptibility of this watershed to landslides. Firstly, maps of the main factors affecting landslide occurrence including slope, distance from faults, lithology, elevation and precipitation were prepared and digitized. Then, by using interpretation of aerial photos and satellite images and field views, the ground truth map of landslides was prepared. Each basic layer (factor and landslide map were integrated to compute the numeric value of each factor with the help of a Landslide Numerical Risk Factor (LNRF model and landslide occurrence percent obtained in different units from each of the maps. Finally, with overlapping different data layers, a landslide hazard zonation map was prepared. Results showed that 67.85% of the basin has high instability, 7.76% moderate instability and 24.39% low instability.

  17. Vasoactive side effects of intravenous immunoglobulin preparations in a rat model and their treatment with recombinant platelet-activating factor acetylhydrolase

    NARCIS (Netherlands)

    Bleeker, W. K.; Teeling, J. L.; Verhoeven, A. J.; Rigter, G. M.; Agterberg, J.; Tool, A. T.; Koenderman, A. H.; Kuijpers, T. W.; Hack, C. E.

    2000-01-01

    Previously, we observed in a rat model that intravenous administration of intramuscular immunoglobulin preparations induced a long-lasting hypotension, which appeared to be associated with the presence of IgG polymers and dimers in the preparations, but unrelated to complement activation. We found

  18. A Cognitive and Neural Model for Adaptive Emotion Reading by Mirroring Preparation States and Hebbian Learning

    NARCIS (Netherlands)

    Bosse, T.; Memon, Z.A.; Treur, J.

    2012-01-01

    Two types of modelling approaches exist to reading an observed person's emotions: with or without making use of the observing person's own emotions. This paper focuses on an integrated approach that combines both types of approaches in an adaptive manner. The proposed models were inspired by recent

  19. Preparing Middle School Teachers to Use Science Models Effectively when Teaching about Weather and Climate Topics

    Science.gov (United States)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.

    2012-12-01

    According to the National Science Education Standards (NSES), teachers are encouraged to use science models in the classroom as a way to aid in the understanding of the nature of the scientific process. This is of particular importance to the atmospheric science community because climate and weather models are very important when it comes to understanding current and future behaviors of our atmosphere. Although familiar with weather forecasts on television and the Internet, most people do not understand the process of using computer models to generate weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Therefore, it makes sense that recent research in science education indicates that scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. The purpose of this research study is to describe how three middle school teachers use science models to teach about topics in climate and weather, as well as the challenges they face incorporating models effectively into the classroom. Participants in this study took part in a week long professional development designed to orient them towards appropriate use of science models for a unit on weather, climate, and energy concepts. The course design was based on empirically tested features of effective professional development for science teachers and was aimed at teaching content to the teachers while simultaneously orienting them towards effective use of science models in the classroom in a way that both aids in learning about the content knowledge as well as how models are used in scientific inquiry. Results indicate that teachers perceive models to be physical representations that can be used as evidence to convince students that the teacher's conception of the concept is correct. Additionally, teachers tended to use them as ways to explain an idea to

  20. Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children.

    Science.gov (United States)

    Chilosi, Anna Maria; Lorenzini, Irene; Fiori, Simona; Graziosi, Valentina; Rossi, Giuseppe; Pasquariello, Rosa; Cipriani, Paola; Cioni, Giovanni

    2015-11-01

    Childhood apraxia of speech (CAS) is a neurogenic Speech Sound Disorder whose etiology and neurobiological correlates are still unclear. In the present study, 32 Italian children with idiopathic CAS underwent a comprehensive speech and language, genetic and neuroradiological investigation aimed to gather information on the possible behavioral and neurobiological markers of the disorder. The results revealed four main aggregations of behavioral symptoms that indicate a multi-deficit disorder involving both motor-speech and language competence. Six children presented with chromosomal alterations. The familial aggregation rate for speech and language difficulties and the male to female ratio were both very high in the whole sample, supporting the hypothesis that genetic factors make substantial contribution to the risk of CAS. As expected in accordance with the diagnosis of idiopathic CAS, conventional MRI did not reveal macrostructural pathogenic neuroanatomical abnormalities, suggesting that CAS may be due to brain microstructural alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. To what extent do neurobiological sleep-waking processes support psychoanalysis?

    Science.gov (United States)

    Gottesmann, Claude

    2010-01-01

    Sigmund Freud's thesis was that there is a censorship during waking that prevents memory of events, drives, wishes, and feelings from entering the consciousness because they would induce anxiety due to their emotional or ethical unacceptability. During dreaming, because the efficiency of censorship is decreased, latent thought contents can, after dream-work involving condensation and displacement, enter the dreamer's consciousness under the figurative form of manifest content. The quasi-closed dogma of psychoanalytic theory as related to unconscious processes is beginning to find neurobiological confirmation during waking. Indeed, there are active processes that suppress (repress) unwanted memories from entering consciousness. In contrast, it is more difficult to find neurobiological evidence supporting an organized dream-work that would induce meaningful symbolic content, since dream mentation most often only shows psychotic-like activities. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    Science.gov (United States)

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  3. Trait and neurobiological correlates of individual differences in dream recall and dream content.

    Science.gov (United States)

    Blagrove, Mark; Pace-Schott, Edward F

    2010-01-01

    Individuals differ greatly in their dream recall frequency, in their incidence of recalling types of dreams, such as nightmares, and in the content of their dreams. This chapter reviews work on the waking life correlates of these differences between people in their experience of dreaming and reviews some of the neurobiological correlates of these individual differences. The chapter concludes that despite there being trait-like aspects of general dream recall and of dream content, very few psychometrically assessed correlates for dream recall frequency and dream content have been found. More successful has been the investigation of correlates of frequency of particular types of dreams, such as nightmares and lucid dreams, and also of how waking-life experience is associated with dream content. There is also potential in establishing neurobiological correlates of individual differences in dream recall and dream content, and recent work on this is reviewed. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Humanization in newborn care: interpersonal relationships and their importance to the neurobiological organization

    Directory of Open Access Journals (Sweden)

    Saul Cypel

    2007-03-01

    Full Text Available Humanization in newborn care is an ever more emphasized proposalin maternity ward care, both in normal delivery conditions andespecially, when medical intercurrences (prematurity, infections, etc.occur in neonatal intensive care units. The relevance of this approachis based on the current understanding and valorization of the earlyinterpersonal relationships in the organization of the neurobiologicalfoundations to which more complex living and learning experienceswill successively add, building what is currently conceptualized asDevelopmental Neurobiology. The present paper has the objectiveof stressing these aspects, attempting to correlate them with thecorresponding neurobiological structures, stressing the fact thatthe early bonds established by the newborn will shape the neuronalcircuitry responsible for future behaviors and actions of this child.

  5. Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?

    OpenAIRE

    Gjorgjieva, Julijana; Biron, David; Haspel, Gal

    2014-01-01

    Animals use a nervous system for locomotion in some stage of their life cycle. The nematode Caenorhabditis elegans, a major animal model for almost all fields of experimental biology, has long been used for detailed studies of genetic and physiological locomotion mechanisms. Of its 959 somatic cells, 302 are neurons that are identifiable by lineage, location, morphology, and neurochemistry in every adult hermaphrodite. Of those, 75 motoneurons innervate body wall muscles that provide the thru...

  6. NEUROBIOLOGICAL AND CLINICAL RELATIONSHIP BETWEEN PSYCHIATRIC DISORDERS AND CHRONIC PAIN

    OpenAIRE

    Barš, Marijana; Đorđević, Veljko; Gregurek, Rudolf; Bulajić, Maša

    2010-01-01

    Pain is one of the most ubiquitious problems of today's world, its impact being far-reaching. Current conceptualizations of pain medicine adopt a bio-psycho-social perspective. In this model, pain is best described as an interactive, psycho-physiological behaviour pattern that cannot be divided into independet psycho-social and physical components. Neurophysiologic substrates of the pain experience can be broken down into the pain transmission elements emanating from peripheral, spinal, and s...

  7. Neurobiologic Correlates of Attention and Memory Deficits Following Critical Illness in Early Life.

    Science.gov (United States)

    Schiller, Raisa M; IJsselstijn, Hanneke; Madderom, Marlous J; Rietman, André B; Smits, Marion; van Heijst, Arno F J; Tibboel, Dick; White, Tonya; Muetzel, Ryan L

    2017-10-01

    Survivors of critical illness in early life are at risk of long-term-memory and attention impairments. However, their neurobiologic substrates remain largely unknown. A prospective follow-up study. Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands. Thirty-eight school-age (8-12 yr) survivors of neonatal extracorporeal membrane oxygenation and/or congenital diaphragmatic hernia with an intelligence quotient greater than or equal to 80 and a below average score (z score ≤ -1.5) on one or more memory tests. None. Intelligence, attention, memory, executive functioning, and visuospatial processing were assessed and compared with reference data. White matter microstructure and hippocampal volume were assessed using diffusion tensor imaging and structural MRI, respectively. Global fractional anisotropy was positively associated with selective attention (β = 0.53; p = 0.030) and sustained attention (β = 0.48; p = 0.018). Mean diffusivity in the left parahippocampal region of the cingulum was negatively associated with visuospatial memory, both immediate (β = -0.48; p = 0.030) and delayed recall (β = -0.47; p = 0.030). Mean diffusivity in the parahippocampal region of the cingulum was negatively associated with verbal memory delayed recall (left: β = -0.52, p = 0.021; right: β = -0.52, p = 0.021). Hippocampal volume was positively associated with verbal memory delayed recall (left: β = 0.44, p = 0.037; right: β = 0.67, p = 0.012). Extracorporeal membrane oxygenation treatment or extracorporeal membrane oxygenation type did not influence the structure-function relationships. Our findings indicate specific neurobiologic correlates of attention and memory deficits in school-age survivors of neonatal extracorporeal membrane oxygenation and congenital diaphragmatic hernia. A better understanding of the neurobiology following critical illness, both in early and in adult life, may lead to earlier identification of patients at risk for impaired

  8. Mindfulness and Emotion Regulation: Insights from Neurobiological, Psychological, and Clinical Studies

    OpenAIRE

    Guendelman, Simón; Medeiros, Sebastián; Rampes, Hagen

    2017-01-01

    There is increasing interest in the beneficial clinical effects of mindfulness-based interventions (MBIs). Research has demonstrated their efficacy in a wide range of psychological conditions characterized by emotion dysregulation. Neuroimaging studies have evidenced functional and structural changes in a myriad of brain regions mainly involved in attention systems, emotion regulation, and self-referential processing. In this article we review studies on psychological and neurobiological corr...

  9. Genetic and neurobiological aspects of attention deficit hyperactive disorder: a review.

    OpenAIRE

    Hechtman, L

    1994-01-01

    This paper reviews key studies that have addressed genetic and neurobiological aspects in attention deficit hyperactive disorder. Genetic studies can be divided into three distinct types: twin, adoption, and family studies. Evidence for a particular mode of inheritance and the possible specific genetic abnormalities are also explored. There is strong evidence of genetic involvement in this condition, although a clear-cut mode of inheritance and specific genetic abnormalities are yet to be det...

  10. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies.

    Directory of Open Access Journals (Sweden)

    Clare eFinlay

    2014-06-01

    Full Text Available Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson's disease (PD developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography (PET and functional magnetic resonance imaging (fMRI. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry (VBM. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.

  11. A new Model for the Preparing for an Academic Career in the Geosciences Workshop

    Science.gov (United States)

    Gilbert, L. A.; Marin-Spiotta, E.; LeMay, L.; Reed, D. E.; Desai, A. R.; Macdonald, H.

    2016-12-01

    The NAGT/On the Cutting Edge program has offered annual workshops on Preparing for an Academic Career in the Geosciences since 2003, providing professional development for more than 800 graduate students and post-docs. In July 2016, the multi-day workshop was modified to be integrated into a larger conference, the Earth Educators' Rendezvous. This new format brought both challenges and opportunities. Like prior workshops, participants engaged with peers and workshop leaders from a range of educational settings to improve their application and interview skills for academic jobs, become more effective at goal-setting and time management, and broaden their network of colleagues and resources to jump-start teaching and research as a faculty member. They learned about academic careers in different educational settings (two-year colleges, primarily undergraduate institutions, and research-focused universities), and developed plans and goals for their next career stage. The biggest challenge of the new workshop format was paring down material from 2.5 full days. Thus, in addition to the 3 morning sessions allocated for the workshop, leaders added a 3-hour teaching statement review dinner, an optional evening session to discuss finances and work-life balance, and optional small group lunch discussions on all 3 days, which were all well attended. Participants were then able to take advantage of afternoon sessions at the Rendezvous, including demonstrations of exemplary teaching, plenary talks, poster sessions, and mini-workshops on topics from curriculum design to proposal writing. Participant reviews were positive and nearly all aspects were ranked as most valuable, with an overall satisfaction mean of 9.1 on a scale from 1-10, with 10 being "Very satisfied." Participants particularly valued the sessions related to careers and the job search process. Some wished the workshop had been longer to cover more material. Participants enjoyed the opportunity to gain more skills at

  12. Action control processes in autism spectrum disorder--insights from a neurobiological and neuroanatomical perspective.

    Science.gov (United States)

    Chmielewski, Witold X; Beste, Christian

    2015-01-01

    Autism spectrum disorders (ASDs) encompass a range of syndromes that are characterized by social interaction impairments, verbal and nonverbal communication difficulties, and stereotypic or repetitive behaviours. Although there has been considerable progress in understanding the mechanisms underlying the changes in the 'social' and 'communicative' aspects of ASD, the neurofunctional architecture of repetitive and stereotypic behaviours, as well as other cognitive domains related to response and action control, remain poorly understood. Based on the findings of neurobiological and neuroanatomical alterations in ASD and the functional neuroanatomy and neurobiology of different action control functions, we emphasize that changes in action control processes, including response inhibition, conflict and response monitoring, task switching, dual-tasking, motor timing, and error monitoring, are important facets of ASD. These processes must be examined further to understand the executive control deficits in ASD that are related to stereotypic or repetitive behaviours as a major facet of ASD. The review shows that not all domains of action control are strongly affected in ASD. Several factors seem to determine the consistency with which alterations in cognitive control are reported. These factors relate to the relevance of neurobiological changes in ASD for the cognitive domains examined and in how far action control relies upon the adjustment of prior experience. Future directions and hypotheses are outlined that may guide basic and clinical research on action control in ASD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Chronic Stress in Adolescents and Its Neurobiological and Psychopathological Consequences: An RDoC Perspective.

    Science.gov (United States)

    Sheth, Chandni; McGlade, Erin; Yurgelun-Todd, Deborah

    2017-01-01

    The Research Domain Criteria (RDoC) initiative provides a strategy for classifying psychopathology based on behavioral dimensions and neurobiological measures. Neurodevelopment is an orthogonal dimension in the current RDoC framework; however, it has not yet been fully incorporated into the RDoC approach. A combination of both a neurodevelopmental and RDoC approach offers a multidimensional perspective for understanding the emergence of psychopathology during development. Environmental influence (e.g., stress) has a profound impact on the risk for development of psychiatric illnesses. It has been shown that chronic stress interacts with the developing brain, producing significant changes in neural circuits that eventually increase the susceptibility for development of psychiatric disorders. This review highlights effects of chronic stress on the adolescent brain, as adolescence is a period characterized by a combination of significant brain alterations, high levels of stress, and emergence of psychopathology. The literature synthesized in this review suggests that chronic stress-induced changes in neurobiology and behavioral constructs underlie the shared vulnerability across a number of disorders in adolescence. The review particularly focuses on depression and substance use disorders; however, a similar argument can also be made for other psychopathologies, including anxiety disorders. The summarized findings underscore the need for a framework to integrate neurobiological findings from disparate psychiatric disorders and to target transdiagnostic mechanisms across disorders.

  14. Experimental medicine in drug addiction: towards behavioral, cognitive and neurobiological biomarkers.

    Science.gov (United States)

    Duka, Theodora; Crombag, Hans S; Stephens, David N

    2011-09-01

    Several theoretical frameworks have been developed to understand putative processes and mechanisms involved in addiction. Whilst these 'theories of addiction' disagree about importance and/or nature of a number of key psychological processes (e.g. the necessity of craving and/or the involvement of drug-value representations), a number of commonalities exist. For instance, it is widely accepted that Pavlovian associations between cues and environmental contexts and the drug effects acquired over the course of addiction play a critical role, especially in relapse vulnerability in detoxified addicts. Additionally, all theories of addiction (explicitly or implicitly) propose that chronic drug exposure produces persistent neuroplastic changes in neurobiological circuitries underlying critical emotional, cognitive and motivational processes, although disagreement exists as to the precise nature of these neurobiological changes and/or their psychological consequences. The present review, rather than limiting itself to any particular theoretical stance, considers various candidate psychological, neurobiological and/or behavioral processes in addiction and outlines conceptual and procedural approaches for the experimental medicine laboratory. The review discusses (1) extinction, renewal and (re)consolidation of learned associations between cues and drugs, (2) the drug reward value, (3) motivational states contributing to drug seeking and (4) reflective (top-down) and sensory (bottom-up) driven decision-making. In evaluating these psychological and/or behavioral processes and their relationship to addiction we make reference to putative underlying brain structures identified by basic animal studies and/or imaging studies with humans.

  15. The dissociative subtype of posttraumatic stress disorder: rationale, clinical and neurobiological evidence, and implications.

    Science.gov (United States)

    Lanius, Ruth A; Brand, Bethany; Vermetten, Eric; Frewen, Paul A; Spiegel, David

    2012-08-01

    Clinical and neurobiological evidence for a dissociative subtype of posttraumatic stress disorder (PTSD) has recently been documented. A dissociative subtype of PTSD is being considered for inclusion in the forthcoming Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) to address the symptoms of depersonalization and derealization found among a subset of patients with PTSD. This article reviews research related to the dissociative subtype including antecedent, concurrent, and predictive validators as well as the rationale for recommending the dissociative subtype. The relevant literature pertaining to the dissociative subtype of PTSD was reviewed. Latent class analyses point toward a specific subtype of PTSD consisting of symptoms of depersonalization and derealization in both veteran and civilian samples of PTSD. Compared to individuals with PTSD, those with the dissociative subtype of PTSD also exhibit a different pattern of neurobiological response to symptom provocation as well as a differential response to current cognitive behavioral treatment designed for PTSD. We recommend that consideration be given to adding a dissociative subtype of PTSD in the revision of the DSM. This facilitates more accurate analysis of different phenotypes of PTSD, assist in treatment planning that is informed by considering the degree of patients' dissociativity, will improve treatment outcome, and will lead to much-needed research about the prevalence, symptomatology, neurobiology, and treatment of individuals with the dissociative subtype of PTSD. © 2012 Wiley Periodicals, Inc.

  16. A tribute to Peter H Seeburg (1944-2016: a founding father of molecular neurobiology

    Directory of Open Access Journals (Sweden)

    William Wisden

    2016-11-01

    Full Text Available On 22nd August 2016, the fields of molecular neurobiology and endocrinology lost one of their pioneers and true giants, Peter Seeburg, who died aged 72, a day after his birthday. His funeral ceremony took place in Heidelberg where he had worked since 1988, first as a professor at the University of Heidelberg (ZMBH and then since 1996 as a director of the Max Plank Institute (Dept. of Molecular Neurobiology. Many of Peter’s former colleagues, students and postdocs came together with his family members to celebrate his life. Touching eulogies were given by no less than two Nobel prize winners: the physiologist Bert Sakmann, who collaborated with Peter for many years, and the developmental biologist Christiane Nüsslein-Vollhard, who was a friend and fellow PhD student with Peter. His professional contemporary, Heinrich Betz, gave a warm and endearing assessment of Peter’s contributions to the field of molecular neurobiology. One of Peter’s sons, Daniel P. Seeburg, now a neuroradiologist in the USA, and biotechnologist Karoly Nikolics, one of Peter’s friends from the days of Genentech, both emotionally summed up the warm and intense character of the man that many of his former students and postdocs knew.

  17. The neurobiology of reward and cognitive control systems and their role in incentivizing health behavior.

    Science.gov (United States)

    Garavan, Hugh; Weierstall, Karen

    2012-11-01

    This article reviews the neurobiology of cognitive control and reward processes and addresses their role in the treatment of addiction. We propose that the neurobiological mechanisms involved in treatment may differ from those involved in the etiology of addiction and consequently are worthy of increased investigation. We review the literature on reward and control processes and evidence of differences in these systems in drug addicted individuals. We also review the relatively small literature on neurobiological predictors of abstinence. We conclude that prefrontal control systems may be central to a successful recovery from addiction. The frontal lobes have been shown to regulate striatal reward-related processes, to be among the regions that predict treatment outcome, and to show elevated functioning in those who have succeeded in maintaining abstinence. The evidence of the involvement of the frontal lobes in recovery is consistent with the hypothesis that recovery is a distinct process that is more than the undoing of those processes involved in becoming addicted and a return to the pre-addiction state of the individual. The extent to which these frontal systems are engaged by treatment interventions may contribute to their efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Some guidance on preparing validation plans for the DART Full System Models.

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Genetha Anne; Hough, Patricia Diane; Hills, Richard Guy (Sandia National Laboratories, Albuquerque, NM)

    2009-03-01

    Planning is an important part of computational model verification and validation (V&V) and the requisite planning document is vital for effectively executing the plan. The document provides a means of communicating intent to the typically large group of people, from program management to analysts to test engineers, who must work together to complete the validation activities. This report provides guidelines for writing a validation plan. It describes the components of such a plan and includes important references and resources. While the initial target audience is the DART Full System Model teams in the nuclear weapons program, the guidelines are generally applicable to other modeling efforts. Our goal in writing this document is to provide a framework for consistency in validation plans across weapon systems, different types of models, and different scenarios. Specific details contained in any given validation plan will vary according to application requirements and available resources.

  19. Basic Science of Preparation: Transmission Electron Microscopy and Modeling of Copper and Aluminum Targets

    National Research Council Canada - National Science Library

    Murr, L

    2001-01-01

    .... Also included in this work is an attempt to validate mathematical modelling of experimental results through the use of a computer hydrocode, AUTODYN-2D, which allows for the simulation of ballistic...

  20. The Distracted Brain : The neurobiology and neuropsychology of attention-deficit/hyperactivity problems in the general population

    NARCIS (Netherlands)

    S.E. Mous (Sabine)

    2015-01-01

    markdownabstractThis thesis focuses on the neurobiology and neuropsychology of attention-deficit/hyperactivity problems in the general population. The notion that child psychopathology might be better described within a dimensional framework, rather than with clearly defined diagnostic categories,

  1. Genetic risk prediction and neurobiological understanding of alcoholism

    Science.gov (United States)

    Levey, D F; Le-Niculescu, H; Frank, J; Ayalew, M; Jain, N; Kirlin, B; Learman, R; Winiger, E; Rodd, Z; Shekhar, A; Schork, N; Kiefe, F; Wodarz, N; Müller-Myhsok, B; Dahmen, N; Nöthen, M; Sherva, R; Farrer, L; Smith, A H; Kranzler, H R; Rietschel, M; Gelernter, J; Niculescu, A B

    2014-01-01

    We have used a translational Convergent Functional Genomics (CFG) approach to discover genes involved in alcoholism, by gene-level integration of genome-wide association study (GWAS) data from a German alcohol dependence cohort with other genetic and gene expression data, from human and animal model studies, similar to our previous work in bipolar disorder and schizophrenia. A panel of all the nominally significant P-value SNPs in the top candidate genes discovered by CFG  (n=135 genes, 713 SNPs) was used to generate a genetic  risk prediction score (GRPS), which showed a trend towards significance (P=0.053) in separating  alcohol dependent individuals from controls in an independent German test cohort. We then validated and prioritized our top findings from this discovery work, and subsequently tested them in three independent cohorts, from two continents. In order to validate and prioritize the key genes that drive behavior without some of the pleiotropic environmental confounds present in humans, we used a stress-reactive animal model of alcoholism developed by our group, the D-box binding protein (DBP) knockout mouse, consistent with the surfeit of stress theory of addiction proposed by Koob and colleagues. A much smaller panel (n=11 genes, 66 SNPs) of the top CFG-discovered genes for alcoholism, cross-validated and prioritized by this stress-reactive animal model showed better predictive ability in the independent German test cohort (P=0.041). The top CFG scoring gene for alcoholism from the initial discovery step, synuclein alpha (SNCA) remained the top gene after the stress-reactive animal model cross-validation. We also tested this small panel of genes in two other independent test cohorts from the United States, one with alcohol dependence (P=0.00012) and one with alcohol abuse (a less severe form of alcoholism; P=0.0094). SNCA by itself was able to separate alcoholics from controls in the alcohol-dependent cohort (P=0.000013) and the alcohol abuse

  2. Genetic risk prediction and neurobiological understanding of alcoholism.

    Science.gov (United States)

    Levey, D F; Le-Niculescu, H; Frank, J; Ayalew, M; Jain, N; Kirlin, B; Learman, R; Winiger, E; Rodd, Z; Shekhar, A; Schork, N; Kiefer, F; Kiefe, F; Wodarz, N; Müller-Myhsok, B; Dahmen, N; Nöthen, M; Sherva, R; Farrer, L; Smith, A H; Kranzler, H R; Rietschel, M; Gelernter, J; Niculescu, A B

    2014-05-20

    We have used a translational Convergent Functional Genomics (CFG) approach to discover genes involved in alcoholism, by gene-level integration of genome-wide association study (GWAS) data from a German alcohol dependence cohort with other genetic and gene expression data, from human and animal model studies, similar to our previous work in bipolar disorder and schizophrenia. A panel of all the nominally significant P-value SNPs in the top candidate genes discovered by CFG  (n=135 genes, 713 SNPs) was used to generate a genetic  risk prediction score (GRPS), which showed a trend towards significance (P=0.053) in separating  alcohol dependent individuals from controls in an independent German test cohort. We then validated and prioritized our top findings from this discovery work, and subsequently tested them in three independent cohorts, from two continents. A panel of all the nominally significant P-value single-nucleotide length polymorphisms (SNPs) in the top candidate genes discovered by CFG (n=135 genes, 713 SNPs) were used to generate a Genetic Risk Prediction Score (GRPS), which showed a trend towards significance (P=0.053) in separating alcohol-dependent individuals from controls in an independent German test cohort. In order to validate and prioritize the key genes that drive behavior without some of the pleiotropic environmental confounds present in humans, we used a stress-reactive animal model of alcoholism developed by our group, the D-box binding protein (DBP) knockout mouse, consistent with the surfeit of stress theory of addiction proposed by Koob and colleagues. A much smaller panel (n=11 genes, 66 SNPs) of the top CFG-discovered genes for alcoholism, cross-validated and prioritized by this stress-reactive animal model showed better predictive ability in the independent German test cohort (P=0.041). The top CFG scoring gene for alcoholism from the initial discovery step, synuclein alpha (SNCA) remained the top gene after the stress

  3. Effects of homeopathic preparations on human prostate cancer growth in cellular and animal models.

    Science.gov (United States)

    MacLaughlin, Brian W; Gutsmuths, Babett; Pretner, Ewald; Jonas, Wayne B; Ives, John; Kulawardane, Don Victor; Amri, Hakima

    2006-12-01

    The use of dietary supplements for various ailments enjoys unprecedented popularity. As part of this trend, Sabal serrulata (saw palmetto) constitutes the complementary treatment of choice with regard to prostate health. In homeopathy, Sabal serrulata is commonly prescribed for prostate problems ranging from benign prostatic hyperplasia to prostate cancer. The authors' work assessed the antiproliferative effects of homeopathic preparations of Sabal serrulata, Thuja occidentalis, and Conium maculatum, in vivo, on nude mouse xenografts, and in vitro, on PC-3 and DU-145 human prostate cancer as well as MDA-MB-231 human breast cancer cell lines. Treatment with Sabal serrulata in vitro resulted in a 33% decrease of PC-3 cell proliferation at 72 hours and a 23% reduction of DU-145 cell proliferation at 24 hours (PConium maculatum did not have any effect on human prostate cancer cell proliferation. In vivo, prostate tumor xenograft size was significantly reduced in Sabal serrulata-treated mice compared to untreated controls (P=.012). No effect was observed on breast tumor growth. Our study clearly demonstrates a biologic response to homeopathic treatment as manifested by cell proliferation and tumor growth. This biologic effect was (i)significantly stronger to Sabal serrulata than to controls and (ii)specific to human prostate cancer. Sabal serrulata should thus be further investigated as a specific homeopathic remedy for prostate pathology.

  4. Preparation and Biological Evaluation of Radioiodinated Risperidone and Lamotrigine as Models for Brain Imaging

    International Nuclear Information System (INIS)

    Saddar, E.; El-Tawoosy, M.; Motaleb, H.A.

    2014-01-01

    Brain imaging technology is becoming an important tool in both research and clinical care. Due to the sensitivity of brain imaging technology, neuroscientists are able to visualize brain structure and function from the level of individual molecules to the whole brain, recognize and diagnose neurological disorders, develop new strategies for treatment and determine how therapies work. The study aimed to take advantages from drugs that are able to cross the brain barrier for the development of potential radiopharmaceuticals for non-invasive brain imaging. Risperidone and lamotrigine were successfully labeled with 125 I via direct electrophilic substitution reaction at 80 degree C. The reaction parameters affecting the preparation process were studied. 125 I-risperidone and 125 I-lamotrigine gave maximum labeling yield of 89 % ± 3.75 and 97.5 % ± 1.0 %, respectively and their stability were up to 6 and 24 h, respectively. Biodistribution studies showed that maximum uptake of 125 I-risperidone and 125 I-lamotrigine in the brain of mice were 4.27 % ± 0.38 and 2.45 % ± 0.18 of the injected activity/g tissue organ, at 10

  5. Waking and dreaming consciousness: neurobiological and functional considerations.

    Science.gov (United States)

    Hobson, J A; Friston, K J

    2012-07-01

    This paper presents a theoretical review of rapid eye movement sleep with a special focus on pontine-geniculate-occipital waves and what they might tell us about the functional anatomy of sleep and consciousness. In particular, we review established ideas about the nature and purpose of sleep in terms of protoconsciousness and free energy minimization. By combining these theoretical perspectives, we discover answers to some fundamental questions about sleep: for example, why is homeothermy suspended during sleep? Why is sleep necessary? Why are we not surprised by our dreams? What is the role of synaptic regression in sleep? The imperatives for sleep that emerge also allow us to speculate about the functional role of PGO waves and make some empirical predictions that can, in principle, be tested using recent advances in the modeling of electrophysiological data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Inner Speech: Development, Cognitive Functions, Phenomenology, and Neurobiology

    Science.gov (United States)

    2015-01-01

    Inner speech—also known as covert speech or verbal thinking—has been implicated in theories of cognitive development, speech monitoring, executive function, and psychopathology. Despite a growing body of knowledge on its phenomenology, development, and function, approaches to the scientific study of inner speech have remained diffuse and largely unintegrated. This review examines prominent theoretical approaches to inner speech and methodological challenges in its study, before reviewing current evidence on inner speech in children and adults from both typical and atypical populations. We conclude by considering prospects for an integrated cognitive science of inner speech, and present a multicomponent model of the phenomenon informed by developmental, cognitive, and psycholinguistic considerations. Despite its variability among individuals and across the life span, inner speech appears to perform significant functions in human cognition, which in some cases reflect its developmental origins and its sharing of resources with other cognitive processes. PMID:26011789

  7. Waking and dreaming consciousness: Neurobiological and functional considerations

    Science.gov (United States)

    Hobson, J.A.; Friston, K.J.

    2012-01-01

    This paper presents a theoretical review of rapid eye movement sleep with a special focus on pontine-geniculate-occipital waves and what they might tell us about the functional anatomy of sleep and consciousness. In particular, we review established ideas about the nature and purpose of sleep in terms of protoconsciousness and free energy minimization. By combining these theoretical perspectives, we discover answers to some fundamental questions about sleep: for example, why is homeothermy suspended during sleep? Why is sleep necessary? Why are we not surprised by our dreams? What is the role of synaptic regression in sleep? The imperatives for sleep that emerge also allow us to speculate about the functional role of PGO waves and make some empirical predictions that can, in principle, be tested using recent advances in the modeling of electrophysiological data. PMID:22609044

  8. Survival probability of diffusion with trapping in cellular neurobiology

    Science.gov (United States)

    Holcman, David; Marchewka, Avi; Schuss, Zeev

    2005-09-01

    The problem of diffusion with absorption and trapping sites arises in the theory of molecular signaling inside and on the membranes of biological cells. In particular, this problem arises in the case of spine-dendrite communication, where the number of calcium ions, modeled as random particles, is regulated across the spine microstructure by pumps, which play the role of killing sites, while the end of the dendritic shaft is an absorbing boundary. We develop a general mathematical framework for diffusion in the presence of absorption and killing sites and apply it to the computation of the time-dependent survival probability of ions. We also compute the ratio of the number of absorbed particles at a specific location to the number of killed particles. We show that the ratio depends on the distribution of killing sites. The biological consequence is that the position of the pumps regulates the fraction of calcium ions that reach the dendrite.

  9. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development.

    Science.gov (United States)

    Brett, Zoë H; Humphreys, Kathryn L; Fleming, Alison S; Kraemer, Gary W; Drury, Stacy S

    2015-05-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic-pituitary-adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal-infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.

  10. Preparation of silver nanoparticles from synthetic and natural sources: remediation model for PAHs

    International Nuclear Information System (INIS)

    Abbasi, M.; Saeed, F.; Rafique, U.

    2013-01-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85 percentage in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs). (author)

  11. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    International Nuclear Information System (INIS)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-01-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs)

  12. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    Science.gov (United States)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-06-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs).

  13. Beyond Ethnic Tidbits: Toward a Critical and Dialogical Model in Multicultural Social Justice Teacher Preparation

    Science.gov (United States)

    Convertino, Christina

    2016-01-01

    This praxis article outlines the value of using a critical and dialogical model (CDM) to teach multicultural social justice education to preservice teachers. Based on practitioner research, the article draws on the author's own teaching experiences to highlight how key features of CDM can be used to help pre-service teachers move beyond thinking…

  14. Model to predict inhomogeneous protein-sugar distribution in powders prepared by spray drying

    NARCIS (Netherlands)

    Grasmeijer, Niels; Frijlink, Henderik W.; Hinrichs, Wouter L. J.

    2016-01-01

    A protein can be stabilized by spray drying an aqueous solution of the protein and a sugar, thereby incorporating the protein into a glassy sugar matrix. For optimal stability, the protein should be homogeneously distributed inside the sugar matrix. The aim of this study was to develop a model that

  15. Understanding and Harnessing the Power of the Cohort Model in Preparing Educational Leaders.

    Science.gov (United States)

    Teitel, Lee

    1997-01-01

    The University of Massachusetts at Boston (UMB) shifted all of its school leadership programs to the cohort model. This article reviews UMB's school leadership programs, describes the survey methodology used to take stock of the program and its cohort design, then summarizes survey findings to identify five different types of impacts reported by…

  16. Domain Models of "The Market" - In Preparation for E-Commerce

    DEFF Research Database (Denmark)

    Bjørner, Dines

    2003-01-01

    An analysis is presented, in the form both of an informal narrative and a formal model of "The Market" of buyers and sellers, agents, brokers and traders - who inquire about products and services, issue quotations, orders, delivers, receives, accepts, invoices, pays, rejects, returns and gets ref...

  17. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment.

    Science.gov (United States)

    Pittenger, Christopher; Bloch, Michael H; Williams, Kyle

    2011-12-01

    Obsessive compulsive disorder is prevalent, disabling, incompletely understood, and often resistant to current therapies. Established treatments consist of specialized cognitive-behavioral psychotherapy and pharmacotherapy with medications targeting serotonergic and dopaminergic neurotransmission. However, remission is rare, and more than a quarter of OCD sufferers receive little or no benefit from these approaches, even when they are optimally delivered. New insights into the disorder, and new treatment strategies, are urgently needed. Recent evidence suggests that the ubiquitous excitatory neurotransmitter glutamate is dysregulated in OCD, and that this dysregulation may contribute to the pathophysiology of the disorder. Here we review the current state of this evidence, including neuroimaging studies, genetics, neurochemical investigations, and insights from animal models. Finally, we review recent findings from small clinical trials of glutamate-modulating medications in treatment-refractory OCD. The precise role of glutamate dysregulation in OCD remains unclear, and we lack blinded, well-controlled studies demonstrating therapeutic benefit from glutamate-modulating agents. Nevertheless, the evidence supporting some important perturbation of glutamate in the disorder is increasingly strong. This new perspective on the pathophysiology of OCD, which complements the older focus on monoaminergic neurotransmission, constitutes an important focus of current research and a promising area for the ongoing development of new therapeutics. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The neurobiology of food intake in an obesogenic environment.

    Science.gov (United States)

    Berthoud, Hans-Rudolf

    2012-11-01

    The objective of this non-systematic review of the literature is to highlight some of the neural systems and pathways that are affected by the various intake-promoting aspects of the modern food environment and explore potential modes of interaction between core systems such as hypothalamus and brainstem primarily receptive to internal signals of fuel availability and forebrain areas such as the cortex, amygdala and meso-corticolimbic dopamine system, primarily processing external signals. The modern lifestyle with its drastic changes in the way we eat and move puts pressure on the homoeostatic system responsible for the regulation of body weight, which has led to an increase in overweight and obesity. The power of food cues targeting susceptible emotions and cognitive brain functions, particularly of children and adolescents, is increasingly exploited by modern neuromarketing tools. Increased intake of energy-dense foods high in fat and sugar is not only adding more energy, but may also corrupt neural functions of brain systems involved in nutrient sensing as well as in hedonic, motivational and cognitive processing. It is concluded that only long-term prospective studies in human subjects and animal models with the capacity to demonstrate sustained over-eating and development of obesity are necessary to identify the critical environmental factors as well as the underlying neural systems involved. Insights from these studies and from modern neuromarketing research should be increasingly used to promote consumption of healthy foods.

  19. The neurobiology of sexual partner preferences in rams.

    Science.gov (United States)

    Roselli, Charles E; Stormshak, Fred

    2009-05-01

    The question of what causes a male animal to seek out and choose a female as opposed to another male mating partner is unresolved and remains an issue of considerable debate. The most developed biologic theory is the perinatal organizational hypothesis, which states that perinatal hormone exposure mediates sexual differentiation of the brain. Numerous animal experiments have assessed the contribution of perinatal testosterone and/or estradiol exposure to the development of a male-typical mate preference, but almost all have used hormonally manipulated animals. In contrast, variations in sexual partner preferences occur spontaneously in domestic rams, with as many as 8% of the population exhibiting a preference for same-sex mating partners (male-oriented rams). Thus, the domestic ram is an excellent experimental model to study possible links between fetal neuroendocrine programming of neural mechanisms and adult sexual partner preferences. In this review, we present an overview of sexual differentiation in relation to sexual partner preferences. We then summarize results that test the relevance of the organizational hypothesis to expression of same-sex sexual partner preferences in rams. Finally, we demonstrate that the sexual differentiation of brain and behavior in sheep does not depend critically on aromatization of testosterone to estradiol.

  20. Neurobiological and clinical relationship between psychiatric disorders and chronic pain.

    Science.gov (United States)

    Bras, Marijana; Dordević, Veljko; Gregurek, Rudolf; Bulajić, Masa

    2010-06-01

    Pain is one of the most ubiquitous problems of today's world, its impact being far-reaching. Current conceptualizations of pain medicine adopt a bio-psycho-social perspective. In this model, pain is best described as an interactive, psycho-physiological behavioral pattern that cannot be divided into independent psycho-social and physical components. Neurophysiologic substrates of the pain experience can be broken down into the pain transmission elements emanating from peripheral, spinal, and supra-spinal processes. There are many complex mechanisms involved in pain processing within the central nervous system, being influenced by genetics, interaction of neurotransmitters and their receptors, and pain- augmenting and pain-inhibiting neural circuits. The patient's emotional experiences, beliefs and expectations may determine the outcome of treatment, and are fully emphasized in the focus of treatment interventions. There are several common psychiatric disorders accompanying and complicating the experience of pain that warrant clinical attention and that can be the focus of psychiatric treatment. These include depression, anxiety, sleep disorders, somatoform disorders, substance-related disorders and personality disorders. Complex and disabling pain conditions often require comprehensive pain treatment programs, involving interdisciplinary and multimodal treatment approaches. There are many roles that the psychiatrist can perform in the assessment and treatment of the patients with pain, individually tailored to meet the specific needs of the patient. Rational poly-pharmacy is of a high importance in the treatment of patients with chronic pain, with antidepressants and anticonvulsants contributing as the important adjuvant analgesic agents.

  1. The Neurobiology of Sexual Partner Preferences in Rams

    Science.gov (United States)

    Roselli, Charles E.; Stormshak, Fred

    2009-01-01

    The question of what causes a male animal to seek out and choose a female as opposed to another male mating partner is unresolved and remains an issue of considerable debate. The most developed biologic theory is the perinatal organizational hypothesis, which states that perinatal hormone exposure mediates sexual differentiation of the brain. Numerous animal experiments have assessed the contribution of perinatal testosterone and/or estradiol exposure to the development of a male-typical mate preference, but almost all have used hormonally manipulated animals. In contrast, variations in sexual partner preferences occur spontaneously in domestic rams, with as many as 8% of the population exhibiting a preference for same-sex mating partners (male-oriented rams). Thus, the domestic ram is an excellent experimental model to study possible links between fetal neuroendocrine programming of neural mechanisms and adult sexual partner preferences. In this review, we present an overview of sexual differentiation in relation to sexual partner preferences. We then summarize results that test the relevance of the organizational hypothesis to expression of same-sex sexual partner preferences in rams. Finally, we demonstrate that the sexual differentiation of brain and behavior in sheep do not depend critically on aromatization of testosterone to estradiol. PMID:19446078

  2. RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality.

    Science.gov (United States)

    Borrel, Alexandre; Fourches, Denis

    2017-12-01

    There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications. http://www.realityconvert.com. dfourch@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  3. Overcoming the Critical Shortage of STEM - Prepared Secondary Students Through Modeling and Simulation

    Science.gov (United States)

    Spencer, Thomas; Berry, Brandon

    2012-01-01

    In developing understanding of technological systems - modeling and simulation tools aid significantly in the learning and visualization processes. In design courses we sketch , extrude, shape, refine and animate with virtual tools in 3D. Final designs are built using a 3D printer. Aspiring architects create spaces with realistic materials and lighting schemes rendered on model surfaces to create breathtaking walk-throughs of virtual spaces. Digital Electronics students design systems that address real-world needs. Designs are simulated in virtual circuits to provide proof of concept before physical construction. This vastly increases students' ability to design and build complex systems. We find students using modeling and simulation in the learning process, assimilate information at a much faster pace and engage more deeply in learning. As Pre-Engineering educators within the Career and Technical Education program at our school division's Technology Academy our task is to help learners in their quest to develop deep understanding of complex technological systems in a variety of engineering disciplines. Today's young learners have vast opportunities to learn with tools that many of us only dreamed about a decade or so ago when we were engaged in engineering and other technical studies. Today's learner paints with a virtual brush - scenes that can aid significantly in the learning and visualization processes. Modeling and simulation systems have become the new standard tool set in the technical classroom [1-5]. Modeling and simulation systems are now applied as feedback loops in the learning environment. Much of the study of behavior change through the use of feedback loops can be attributed to Stanford Psychologist Alfred Bandura. "Drawing on several education experiments involving children, Bandura observed that giving individuals a clear goal and a means to evaluate their progress toward that goal greatly increased the likelihood that they would achieve it."

  4. Recent developments in MrBUMP: better search-model preparation, graphical interaction with search models, and solution improvement and assessment.

    Science.gov (United States)

    Keegan, Ronan M; McNicholas, Stuart J; Thomas, Jens M H; Simpkin, Adam J; Simkovic, Felix; Uski, Ville; Ballard, Charles C; Winn, Martyn D; Wilson, Keith S; Rigden, Daniel J

    2018-03-01

    Increasing sophistication in molecular-replacement (MR) software and the rapid expansion of the PDB in recent years have allowed the technique to become the dominant method for determining the phases of a target structure in macromolecular X-ray crystallography. In addition, improvements in bioinformatic techniques for finding suitable homologous structures for use as MR search models, combined with developments in refinement and model-building techniques, have pushed the applicability of MR to lower sequence identities and made weak MR solutions more amenable to refinement and improvement. MrBUMP is a CCP4 pipeline which automates all stages of the MR procedure. Its scope covers everything from the sourcing and preparation of suitable search models right through to rebuilding of the positioned search model. Recent improvements to the pipeline include the adoption of more sensitive bioinformatic tools for sourcing search models, enhanced model-preparation techniques including better ensembling of homologues, and the use of phase improvement and model building on the resulting solution. The pipeline has also been deployed as an online service through CCP4 online, which allows its users to exploit large bioinformatic databases and coarse-grained parallelism to speed up the determination of a possible solution. Finally, the molecular-graphics application CCP4mg has been combined with MrBUMP to provide an interactive visual aid to the user during the process of selecting and manipulating search models for use in MR. Here, these developments in MrBUMP are described with a case study to explore how some of the enhancements to the pipeline and to CCP4mg can help to solve a difficult case.

  5. Modeling drain current of indium zinc oxide thin film transistors prepared by solution deposition technique

    Science.gov (United States)

    Qiang, Lei; Liang, Xiaoci; Cai, Guangshuo; Pei, Yanli; Yao, Ruohe; Wang, Gang

    2018-06-01

    Indium zinc oxide (IZO) thin film transistor (TFT) deposited by solution method is of considerable technological interest as it is a key component for the fabrication of flexible and cheap transparent electronic devices. To obtain a principal understanding of physical properties of solution-processed IZO TFT, a new drain current model that account for the charge transport is proposed. The formulation is developed by incorporating the effect of gate voltage on mobility and threshold voltage with the carrier charges. It is demonstrated that in IZO TFTs the below threshold regime should be divided into two sections: EC - EF > 3kT and EC - EF ≤ 3kT, where kT is the thermal energy, EF and EC represent the Fermi level and the conduction band edge, respectively. Additionally, in order to describe conduction mechanisms more accurately, the extended mobility edge model is conjoined, which can also get rid of the complicated and lengthy computations. The good agreement between measured and calculated results confirms the efficiency of this model for the design of integrated large-area thin film circuits.

  6. Preparation, characterization and in silico modeling of biodegradable nanoparticles containing cyclosporine A and coenzyme Q10

    Energy Technology Data Exchange (ETDEWEB)

    Ankola, D D; Ravi Kumar, M N V [Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR (United Kingdom); Durbin, E W [Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Buxton, G A [Department of Sciences, Robert Morris University, 6001 University Boulevard, Moon Township, PA 15108 (United States); Schaefer, J; Bakowsky, U, E-mail: mnvrkumar@strath.ac.uk [Department of Pharmaceutics and Biopharmacy, Philipps Universitt, 35037 Marburg (Germany)

    2010-02-10

    Combination therapy will soon become a reality, particularly for those patients requiring poly-therapy to treat co-existing disease states. This becomes all the more important with the increasing cost, time and complexity of the drug discovery process prompting one to look at new delivery systems to increase the efficacy, safety and patient compliance of existing drugs. Along this line, we attempted to design nano-scale systems for simultaneous encapsulation of cyclosporine A (CsA) and coenzyme Q10 (CoQ10) and model their encapsulation and release kinetics. The in vitro characterization of the co-encapsulated nanoparticles revealed that the surfactant nature, concentration, external phase volume, droplet size reduction method and drug loading concentration can all influence the overall performance of the nanoparticles. The semi-quantitative solubility study indicates the strong influence of CoQ10 on CsA entrapment which was thought to be due to an increase in the lipophilicity of the overall system. The in vitro dissolution profile indicates the influence of CoQ10 on CsA release (64%) to that of individual particles of CsA, where the release is faster and higher (86%) on 18th day. The attempts to model the encapsulation and release kinetics were successful, offering a possibility to use such models leading to high throughput screening of drugs and their nature, alone or in combination for a particular polymer, if chi-parameters are understood.

  7. Protective Effect of a Lipid-Based Preparation from Mycobacterium smegmatis in a Murine Model of Progressive Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles García

    2014-01-01

    Full Text Available A more effective vaccine against tuberculosis (TB is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb, the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms, could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL or nonadjuvanted (LMs showed significant reductions in bacterial load (P<0.01 compared to the negative control group (animals immunized with phosphate buffered saline (PBS. Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG. Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P<0.01 and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.

  8. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    Science.gov (United States)

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  9. Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers.

    Science.gov (United States)

    Zellnitz, Sarah; Redlinger-Pohn, Jakob Dominik; Kappl, Michael; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2013-04-15

    The aim of this work is the physical modification and characterization of the surface topography of glass beads used as model carriers in dry powder inhalers (DPIs). By surface modification the contact area between drug and carrier and thereby interparticle forces may be modified. Thus the performance of DPIs that relies on interparticle interactions may be improved. Glass beads were chosen as model carriers because various prospects of physical surface modification may be applied without affecting other factors also impacting interparticle interactions like particle size and shape. To generate rough surfaces glass beads were processed mechanically by friction and impaction in a ball mill with different grinding materials that were smaller and harder with respect to the glass beads. By varying the grinding time (4 h, 8 h) and by using different grinding media (tungsten carbide, quartz) surfaces with different shades of roughness were generated. Depending on the hardness of the grinding material and the grinding time the surface roughness was more or less pronounced. Surface roughness parameters and specific surface area were determined via several complementary techniques in order to get an enhanced understanding of the impact of the modifying procedure on the surface properties of the glass beads. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS

    Science.gov (United States)

    De Rose, Francescaelena; Marotta, Roberto; Talani, Giuseppe; Catelani, Tiziano; Solari, Paolo; Poddighe, Simone; Borghero, Giuseppe; Marrosu, Francesco; Sanna, Enrico; Kasture, Sanjay; Acquas, Elio; Liscia, Anna

    2017-01-01

    The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms. PMID:28102336

  11. MODEL SYSTEM EVALUATIONS OF MEAT EMULSIONS PREPARED WITH DIFFERENT EDIBLE BEEF BY PRODUCTS AND FATS AND OIL

    Directory of Open Access Journals (Sweden)

    Mustafa KARAKAYA

    1997-02-01

    Full Text Available Emulsion parameters of different meat by-products (beef head-meat, beef heart and liver and animal fats and oil (beef fat, mutton fat, sheep tail-fat and corn oil were studied in a model system. The results of the study showed that the highest emulsion capacity (EC was with the heart meat and beef fat emulsion while the lowest EC was measured in the beef head-meat and sheep tail-fat combination. Corn oil gave the best emulsification with beef head-meat and liver, and beef fat resulted the second best results. Beef head-meat gave the most stable emulsion with all fats, but the emulsions prepared with heart and liver were generally unstable.

  12. Sample preparation and biomass determination of SRF model mixture using cryogenic milling and the adapted balance method

    Energy Technology Data Exchange (ETDEWEB)

    Schnöller, Johannes, E-mail: johannes.schnoeller@chello.at; Aschenbrenner, Philipp; Hahn, Manuel; Fellner, Johann; Rechberger, Helmut

    2014-11-15

    Highlights: • An alternative sample comminution procedure for SRF is tested. • Proof of principle is shown on a SRF model mixture. • The biogenic content of the SRF is analyzed with the adapted balance method. • The novel method combines combustion analysis and a data reconciliation algorithm. • Factors for the variance of the analysis results are statistically quantified. - Abstract: The biogenic fraction of a simple solid recovered fuel (SRF) mixture (80 wt% printer paper/20 wt% high density polyethylene) is analyzed with the in-house developed adapted balance method (aBM). This fairly new approach is a combination of combustion elemental analysis (CHNS) and a data reconciliation algorithm based on successive linearisation for evaluation of the analysis results. This method shows a great potential as an alternative way to determine the biomass content in SRF. However, the employed analytical technique (CHNS elemental analysis) restricts the probed sample mass to low amounts in the range of a few hundred milligrams. This requires sample comminution to small grain sizes (<200 μm) to generate representative SRF specimen. This is not easily accomplished for certain material mixtures (e.g. SRF with rubber content) by conventional means of sample size reduction. This paper presents a proof of principle investigation of the sample preparation and analysis of an SRF model mixture with the use of cryogenic impact milling (final sample comminution) and the adapted balance method (determination of biomass content). The so derived sample preparation methodology (cutting mills and cryogenic impact milling) shows a better performance in accuracy and precision for the determination of the biomass content than one solely based on cutting mills. The results for the determination of the biogenic fraction are within 1–5% of the data obtained by the reference methods, selective dissolution method (SDM) and {sup 14}C-method ({sup 14}C-M)

  13. A Molecular Neurobiological Approach to Understanding the Aetiology of Chronic Fatigue Syndrome (Myalgic Encephalomyelitis or Systemic Exertion Intolerance Disease) with Treatment Implications.

    Science.gov (United States)

    Monro, Jean A; Puri, Basant K

    2018-02-06

    Currently, a psychologically based model is widely held to be the basis for the aetiology and treatment of chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME)/systemic exertion intolerance disease (SEID). However, an alternative, molecular neurobiological approach is possible and in this paper evidence demonstrating a biological aetiology for CFS/ME/SEID is adduced from a study of the history of the disease and a consideration of the role of the following in this disease: nitric oxide and peroxynitrite, oxidative and nitrosative stress, the blood-brain barrier and intestinal permeability, cytokines and infections, metabolism, structural and chemical brain changes, neurophysiological changes and calcium ion mobilisation. Evidence is also detailed for biologically based potential therapeutic options, including: nutritional supplementation, for example in order to downregulate the nitric oxide-peroxynitrite cycle to prevent its perpetuation; antiviral therapy; and monoclonal antibody treatment. It is concluded that there is strong evidence of a molecular neurobiological aetiology, and so it is suggested that biologically based therapeutic interventions should constitute a focus for future research into CFS/ME/SEID.

  14. Artificial Intelligence in Numerical Modeling of Silver Nanoparticles Prepared in Montmorillonite Interlayer Space

    Directory of Open Access Journals (Sweden)

    Parvaneh Shabanzadeh

    2013-01-01

    Full Text Available Artificial neural network (ANN models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the casting methods. An understanding of the interrelationships between input variables is essential for interpreting the sensitivity data and optimizing the design parameters. Silver nanoparticles (Ag-NPs have attracted considerable attention for chemical, physical, and medical applications due to their exceptional properties. The nanocrystal silver was synthesized into an interlamellar space of montmorillonite by using the chemical reduction technique. The method has an advantage of size control which is essential in nanometals synthesis. Silver nanoparticles with nanosize and devoid of aggregation are favorable for several properties. In this investigation, the accuracy of artificial neural network training algorithm was applied in studying the effects of different parameters on the particles, including the AgNO3 concentration, reaction temperature, UV-visible wavelength, and montmorillonite (MMT d-spacing on the prediction of size of silver nanoparticles. Analysis of the variance showed that the AgNO3 concentration and temperature were the most significant factors affecting the size of silver nanoparticles. Using the best performing artificial neural network, the optimum conditions predicted were a concentration of AgNO3 of 1.0 (M, MMT d-spacing of 1.27 nm, reaction temperature of 27°C, and wavelength of 397.50 nm.

  15. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues

    KAUST Repository

    Cali, Corrado

    2015-07-14

    Advances for application of electron microscopy to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions (3D). From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here, we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room where we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of electron microscopy (EM) preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to observe a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. This article is protected by copyright. All rights reserved.

  16. The Molecular Neurobiology of Twelve Steps Program & Fellowship: Connecting the Dots for Recovery.

    Science.gov (United States)

    Blum, Kenneth; Thompson, Benjamin; Demotrovics, Zsolt; Femino, John; Giordano, John; Oscar-Berman, Marlene; Teitelbaum, Scott; Smith, David E; Roy, A Kennison; Agan, Gozde; Fratantonio, James; Badgaiyan, Rajendra D; Gold, Mark S

    There are some who suggest that alcoholism and drug abuse are not diseases at all and that they are not consequences of a brain disorder as espoused recently by the American Society of Addiction Medicine (ASAM). Some would argue that addicts can quit on their own and moderate their alcohol and drug intake. When they present to a treatment program or enter the 12 Step Program & Fellowship, many addicts finally achieve complete abstinence. However, when controlled drinking fails, there may be successful alternatives that fit particular groups of individuals. In this expert opinion, we attempt to identify personal differences in recovery, by clarifying the molecular neurobiological basis of each step of the 12 Step Program. We explore the impact that the molecular neurobiological basis of the 12 steps can have on Reward Deficiency Syndrome (RDS) despite addiction risk gene polymorphisms. This exploration has already been accomplished in part by Blum and others in a 2013 Springer Neuroscience Brief. The purpose of this expert opinion is to briefly, outline the molecular neurobiological and genetic links, especially as they relate to the role of epigenetic changes that are possible in individuals who regularly attend AA meetings. It begs the question as to whether "12 steps programs and fellowship" does induce neuroplasticity and continued dopamine D2 receptor proliferation despite carrying hypodopaminergic type polymorphisms such as DRD2 A1 allele. "Like-minded" doctors of ASAM are cognizant that patients in treatment without the " psycho-social-spiritual trio ," may not be obtaining the important benefits afforded by adopting 12-step doctrines. Are we better off with coupling medical assisted treatment (MAT) that favors combining dopamine agonist modalities (DAM) as possible histone-deacetylase activators with the 12 steps followed by a program that embraces either one or the other? While there are many unanswered questions, at least we have reached a time when

  17. The neurobiology of pleasure, reward processes, addiction and their health implications.

    Science.gov (United States)

    Esch, Tobias; Stefano, George B

    2004-08-01

    Modern science begins to understand pleasure as a potential component of salutogenesis. Thereby, pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. Further, health implications related to pleasurable activities are analyzed. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors, i.e., motivational toxicity. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, endorphin and endogenous morphinergic mechanisms may play a role. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways. Thus, the concrete outcome of pleasant experiences may be a question of dose. Moderate pleasurable experiences are able to enhance biological flexibility and health. Hence, pleasure can be a resistance resource or may serve salutogenesis. Natural rewards are mediated by sensory organ stimulation, thereby exhibiting a potential association with complementary medical approaches. Trust and belief can be part of a self-healing potential connected with rewarding stimuli. Further, the placebo response physiologically resembles pleasure phenomena, since both involve brain's reward circuitry stimulation and subjective feelings of well-being. Pleasurable activities can stimulate

  18. Microbial endocrinology: Why the intersection of microbiology and neurobiology matters to poultry health.

    Science.gov (United States)

    Villageliu, Daniel N; Lyte, Mark

    2017-08-01

    The union of microbiology and neurobiology has led to a revolution in the way we view the microbiome. Now recognized as important symbionts, the microorganisms which inhabit multiple niches in mammalian and avian (chicken) hosts, such as the intestinal tract and skin, serve and influence many important physiological functions. The realization that the gut microbiome serves as a kind of "microbial organ" has important implications for many areas of biology. In this paper advances in the field of microbial endocrinology which may hold relevance for the poultry industry are examined. © 2017 Poultry Science Association Inc.

  19. The Neurobiological Impact of Postpartum Maternal Depression: Prevention and Intervention Approaches.

    Science.gov (United States)

    Drury, Stacy S; Scaramella, Laura; Zeanah, Charles H

    2016-04-01

    The lasting negative impact of postpartum depression (PPD) on offspring is well established. PPD seems to have an impact on neurobiological pathways linked to socioemotional regulation, cognitive and executive function, and physiologic stress response systems. This review focus on examining the current state of research defining the effect of universal, selected, and indicated interventions for PPD on infant neurodevelopment. Given the established lasting, and potentially intergenerational, negative implications of maternal depression, enhanced efforts targeting increased identification and early intervention approaches for PPD that have an impact on health outcomes in both infants and mothers represent a critical public health concern. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Professor Eric Can't See: A Project-Based Learning Case for Neurobiology Students.

    Science.gov (United States)

    Ogilvie, Judith Mosinger; Ribbens, Eric

    2016-01-01

    "Professor Eric Can't See" is a semi-biographical case study written for an upper level undergraduate Neurobiology of Disease course. The case is integrated into a unit using a project-based learning approach to investigate the retinal degenerative disorder Retinitis pigmentosa and the visual system. Some case study scenes provide specific questions for student discussion and problem-based learning, while others provide background for student inquiry and related active learning exercises. The case was adapted from "'Chemical Eric' Can't See," and could be adapted for courses in general neuroscience or sensory neuroscience.

  1. The Self-Organizing Psyche: Nonlinear and Neurobiological Contributions to Psychoanalysis

    Science.gov (United States)

    Stein, A. H.

    Sigmund Freud attempted to align nineteenth century biology (and the dynamically conservative, continuous, Newtonian mechanics that underlie it) with discontinuous conscious experience. His tactics both set the future course for psychoanalytic development and introduced seemingly intractable complications into its metapsychology. In large part, these arose from what we now recognize were biological errors and dynamical oversimplifications amid his physical assumptions. Their correction, brought about by integrating nonlinear dynamics and neuro-biological research findings with W. Bion's reading of metapsychology, fundamentally supports a psychoanalysis based upon D. W. Winnicott's ideas surrounding play within transitional space.

  2. [Neurousurpation--the expropriation and suppression of Dölle's neurobiological pioneer work].

    Science.gov (United States)

    Bertram, Wulf

    2011-08-01

    The discovery of a hitherto unpublished dissertational thesis in the archive of a publishing house has lead to a lost publication by Ernst August Dölle. In this manuscript, the author reports on the stimulation of a cerebral libido area in the dog, long before Olds and Milner published their work on the discovery of the rewarding area. The reasons for the suppression of this early publication by Dölle are investigated and are ascribed to an effort to use his neurobiologic research for secret mental manipulation experiments of the CIA at the beginning of the Cold War. George Thieme Verlag KG Stuttgart · New York.

  3. Does footprint preparation influence tendon-to-bone healing after rotator cuff repair in an animal model?

    Science.gov (United States)

    Ficklscherer, Andreas; Loitsch, Thomas; Serr, Michaela; Gülecyüz, Mehmet F; Niethammer, Thomas R; Müller, Hans-Helge; Milz, Stefan; Pietschmann, Matthias F; Müller, Peter E

    2014-02-01

    The aim of this study was to investigate the influence of footprint spongialization and radiofrequency ablation on rotator cuff repair outcomes compared with an untreated group in a rat model. We randomly assigned 189 Sprague-Dawley rats to either a spongialization, radiofrequency ablation, or untreated group. After separation of the supraspinatus tendon from the greater tubercle, the footprint was prepared by removing the cortical bone with a burr (spongialization), was prepared by ablating soft tissue with a radiofrequency ablation device, or was left unaltered (untreated). Biomechanical testing (after 7 weeks, n = 165) and histologic analysis after 1 and 7 weeks (n = 24) followed reinsertion. The mean load to failure was 17.51 ± 4.46 N/mm(2) in the spongialization group, 15.56 ± 4.85 N/mm(2) in the radiofrequency ablation group, and 19.21 ± 5.19 N/mm(2) in the untreated group. A significant difference was found between the spongialization and radiofrequency ablation groups (P = .0409), as well as between the untreated and radiofrequency ablation groups (P = .0014). There was no significant difference between the spongialization and untreated groups (P = .2456). The mean area of fibrocartilage transition, characterized by the presence of type II collagen, was larger after 1 and 7 weeks in the spongialization group (0.57 ± 0.1 mm(2) and 0.58 ± 0.1 mm(2), respectively) and untreated group (0.51 ± 0.1 mm(2) and 0.51 ± 0.2 mm(2), respectively) than in the radiofrequency ablation group (0.11 ± 0.1 mm(2) and 0.4 ± 0.1 mm(2), respectively) with P rotator cuff repair may influence tendon-to-bone healing. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    Science.gov (United States)

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  5. Implementation is crucial but must be neurobiologically grounded. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    Science.gov (United States)

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L.

    2014-09-01

    From the perspective of language, Fitch's [1] claim that theories of cognitive computation should not be separated from those of implementation surely deserves applauding. Recent developments in the Cognitive Neuroscience of Language, leading to the new field of the Neurobiology of Language [2-4], emphasise precisely this point: rather than attempting to simply map cognitive theories of language onto the brain, we should aspire to understand how the brain implements language. This perspective resonates with many of the points raised by Fitch in his review, such as the discussion of unhelpful dichotomies (e.g., Nature versus Nurture). Cognitive dichotomies and debates have repeatedly turned out to be of limited usefulness when it comes to understanding language in the brain. The famous modularity-versus-interactivity and dual route-versus-connectionist debates are cases in point: in spite of hundreds of experiments using neuroimaging (or other techniques), or the construction of myriad computer models, little progress has been made in their resolution. This suggests that dichotomies proposed at a purely cognitive (or computational) level without consideration of biological grounding appear to be "asking the wrong questions" about the neurobiology of language. In accordance with these developments, several recent proposals explicitly consider neurobiological constraints while seeking to explain language processing at a cognitive level (e.g. [5-7]).

  6. Dynamically stable associative learning: a neurobiologically based ANN and its applications

    Science.gov (United States)

    Vogl, Thomas P.; Blackwell, Kim L.; Barbour, Garth; Alkon, Daniel L.

    1992-07-01

    Most currently popular artificial neural networks (ANN) are based on conceptions of neuronal properties that date back to the 1940s and 50s, i.e., to the ideas of McCullough, Pitts, and Hebb. Dystal is an ANN based on current knowledge of neurobiology at the cellular and subcellular level. Networks based on these neurobiological insights exhibit the following advantageous properties: (1) A theoretical storage capacity of bN non-orthogonal memories, where N is the number of output neurons sharing common inputs and b is the number of distinguishable (gray shade) levels. (2) The ability to learn, store, and recall associations among noisy, arbitrary patterns. (3) A local synaptic learning rule (learning depends neither on the output of the post-synaptic neuron nor on a global error term), some of whose consequences are: (4) Feed-forward, lateral, and feed-back connections (as well as time-sensitive connections) are possible without alteration of the learning algorithm; (5) Storage allocation (patch creation) proceeds dynamically as associations are learned (self- organizing); (6) The number of training set presentations required for learning is small (different expressions and/or corrupted by noise, and on reading hand-written digits (98% accuracy) and hand-printed Japanese Kanji (90% accuracy) is demonstrated.

  7. Neurobiology of empathy and callousness: implications for the development of antisocial behavior.

    Science.gov (United States)

    Shirtcliff, Elizabeth A; Vitacco, Michael J; Graf, Alexander R; Gostisha, Andrew J; Merz, Jenna L; Zahn-Waxler, Carolyn

    2009-01-01

    Information on the neurobiology of empathy and callousness provides clinicians with an opportunity to develop sophisticated understanding of mechanisms underpinning antisocial behavior and its counterpart, moral decision-making. This article provides an integrated in-depth review of hormones (e.g. peripheral steroid hormones such as cortisol) and brain structures (e.g. insula, anterior cingulate cortex, and amygdala) implicated in empathy, callousness, and psychopathic-like behavior. The overarching goal of this article is to relate these hormones and brain structures to moral decision-making. This review will begin in the brain, but will then integrate information about biological functioning in the body, specifically stress-reactivity. Our aim is to integrate understanding of neural processes with hormones such as cortisol, both of which have demonstrated relationships to empathy, psychopathy, and antisocial behavior. The review proposes that neurobiological impairments in individuals who display little empathy are not necessarily due to a reduced ability to understand the emotions of others. Instead, evidence suggests that individuals who show little arousal to the distress of others likewise show decreased physiological arousal to their own distress; one manifestation of reduced stress reactivity may be a dysfunction in empathy, which supports psychopathic-like constructs (e.g. callousness). This integration will assist in the development of objective methodologies that can inform and monitor treatment interventions focused on decreasing antisocial behavior. Copyright 2009 John Wiley & Sons, Ltd.

  8. The neurobiology of oppositional defiant disorder and conduct disorder: altered functioning in three mental domains.

    Science.gov (United States)

    Matthys, Walter; Vanderschuren, Louk J M J; Schutter, Dennis J L G

    2013-02-01

    This review discusses neurobiological studies of oppositional defiant disorder and conduct disorder within the conceptual framework of three interrelated mental domains: punishment processing, reward processing, and cognitive control. First, impaired fear conditioning, reduced cortisol reactivity to stress, amygdala hyporeactivity to negative stimuli, and altered serotonin and noradrenaline neurotransmission suggest low punishment sensitivity, which may compromise the ability of children and adolescents to make associations between inappropriate behaviors and forthcoming punishments. Second, sympathetic nervous system hyporeactivity to incentives, low basal heart rate associated with sensation seeking, orbitofrontal cortex hyporeactiviy to reward, and altered dopamine functioning suggest a hyposensitivity to reward. The associated unpleasant emotional state may make children and adolescents prone to sensation-seeking behavior such as rule breaking, delinquency, and substance abuse. Third, impairments in executive functions, especially when motivational factors are involved, as well as structural deficits and impaired functioning of the paralimbic system encompassing the orbitofrontal and cingulate cortex, suggest impaired cognitive control over emotional behavior. In the discussion we argue that more insight into the neurobiology of oppositional defiance disorder and conduct disorder may be obtained by studying these disorders separately and by paying attention to the heterogeneity of symptoms within each disorder.

  9. The Dissociative Subtype of Post-traumatic Stress Disorder: Research Update on Clinical and Neurobiological Features.

    Science.gov (United States)

    van Huijstee, Jytte; Vermetten, Eric

    2017-10-21

    Recently, a dissociative subtype of post-traumatic stress disorder (PTSD) has been included in the DSM-5. This review focuses on the clinical and neurobiological features that distinguish the dissociative subtype of PTSD from non-dissociative PTSD. Clinically, the dissociative subtype of PTSD is associated with high PTSD severity, predominance of derealization and depersonalization symptoms, a more significant history of early life trauma, and higher levels of comorbid psychiatric disorders. Furthermore, PTSD patients with dissociative symptoms exhibit different psychophysiological and neural responses to the recall of traumatic memories. While individuals with non-dissociative PTSD exhibit an increased heart rate, decreased activation of prefrontal regions, and increased activation of the amygdala in response to traumatic reminders, individuals with the dissociative subtype of PTSD show an opposite pattern. It has been proposed that dissociation is a regulatory strategy to restrain extreme arousal in PTSD through hyperinhibition of limbic regions. In this research update, promises and pitfalls in current research studies on the dissociative subtype of PTSD are listed. Inclusion of the dissociative subtype of PTSD in the DSM-5 stimulates research on the prevalence, symptomatology, and neurobiology of the dissociative subtype of PTSD and poses a challenge to improve treatment outcome in PTSD patients with dissociative symptoms.

  10. Studying the neurobiology of human social interaction: Making the case for ecological validity.

    Science.gov (United States)

    Hogenelst, Koen; Schoevers, Robert A; aan het Rot, Marije

    2015-01-01

    With this commentary we make the case for an increased focus on the ecological validity of the measures used to assess aspects of human social functioning. Impairments in social functioning are seen in many types of psychopathology, negatively affecting the lives of psychiatric patients and those around them. Yet the neurobiology underlying abnormal social interaction remains unclear. As an example of human social neuroscience research with relevance to biological psychiatry and clinical psychopharmacology, this commentary discusses published experimental studies involving manipulation of the human brain serotonin system that included assessments of social behavior. To date, these studies have mostly been laboratory-based and included computer tasks, observations by others, or single-administration self-report measures. Most laboratory measures used so far inform about the role of serotonin in aspects of social interaction, but the relevance for real-life interaction is often unclear. Few studies have used naturalistic assessments in real life. We suggest several laboratory methods with high ecological validity as well as ecological momentary assessment, which involves intensive repeated measures in naturalistic settings. In sum, this commentary intends to stimulate experimental research on the neurobiology of human social interaction as it occurs in real life.

  11. A Targeted Review of the Neurobiology and Genetics of Behavioral Addictions: An Emerging Area of Research

    Science.gov (United States)

    Leeman, Robert F.; Potenza, Marc N.

    2013-01-01

    This review summarizes neurobiological and genetic findings in behavioral addictions, draws parallels with findings pertaining to substance use disorders and offers suggestions for future research. Articles concerning brain function, neurotransmitter activity and family history/genetics findings for behavioral addictions involving gambling, internet use, video game playing, shopping, kleptomania and sexual activity were reviewed. Behavioral addictions involve dysfunction in several brain regions, particularly the frontal cortex and striatum. Findings from imaging studies incorporating cognitive tasks have arguably been more consistent than cue-induction studies. Early results suggest white and gray matter differences. Neurochemical findings suggest roles for dopaminergic and serotonergic systems, but results from clinical trials seem more equivocal. While limited, family history/genetic data support heritability for pathological gambling and that those with behavioral addictions are more likely to have a close family member with some form of psychopathology. Parallels exist between neurobiological and genetic/family history findings in substance and non-substance addictions, suggesting that compulsive engagement in these behaviors may constitute addictions. Findings to date are limited, particularly for shopping, kleptomania and sexual behavior. Genetic understandings are at an early stage. Future research directions are offered. PMID:23756286

  12. A targeted review of the neurobiology and genetics of behavioural addictions: an emerging area of research.

    Science.gov (United States)

    Leeman, Robert F; Potenza, Marc N

    2013-05-01

    This review summarizes neurobiological and genetic findings in behavioural addictions, draws parallels with findings pertaining to substance use disorders, and offers suggestions for future research. Articles concerning brain function, neurotransmitter activity, and family history and (or) genetic findings for behavioural addictions involving gambling, Internet use, video game playing, shopping, kleptomania, and sexual activity were reviewed. Behavioural addictions involve dysfunction in several brain regions, particularly the frontal cortex and striatum. Findings from imaging studies incorporating cognitive tasks have arguably been more consistent than cue-induction studies. Early results suggest white and grey matter differences. Neurochemical findings suggest roles for dopaminergic and serotonergic systems, but results from clinical trials seem more equivocal. While limited, family history and genetic data support heritability for pathological gambling and that people with behavioural addictions are more likely to have a close family member with some form of psychopathology. Parallels exist between neurobiological and genetic and family history findings in substance and nonsubstance addictions, suggesting that compulsive engagement in these behaviours may constitute addictions. To date, findings are limited, particularly for shopping, kleptomania, and sexual behaviour. Genetic understandings are at an early stage. Future research directions are offered.

  13. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  14. Student-Designed Service-Learning Projects in an Undergraduate Neurobiology Course

    Directory of Open Access Journals (Sweden)

    Katharine V. Northcutt

    2015-12-01

    Full Text Available One of the challenges in teaching a service-learning course is obtaining student buy-in from all students in the course. To circumvent this problem, I have let students in my undergraduate Neurobiology course design their own service-learning projects at the beginning of the semester. Although this can be chaotic because it requires last-minute planning, I have made it successful through facilitating student communication in the classroom, requiring thorough project proposals, meeting with students regularly, and monitoring group progress through written reflection papers. Most of my students have strong opinions about the types of projects that they want to carry out, and many students have used connections that they have already made with local organizations. Almost all projects that students have designed to this point involve teaching basic concepts of neurobiology to children of various ages while simultaneously sparking their interest in science. Through taking ownership of the project and designing it such that it works well with their strengths, interests, and weekly schedule, students have become more engaged in service learning and view it as a valuable experience. Despite some class time being shifted away from more traditional assignments, students have performed equally well in the course, and they are more eager to talk with others about course concepts. Furthermore, the feedback that I have received from community partners has been excellent, and some students have maintained their work with the organizations.

  15. Variations in the neurobiology of reading in children and adolescents born full term and preterm

    Directory of Open Access Journals (Sweden)

    Katherine E. Travis

    2016-01-01

    Full Text Available Diffusion properties of white matter tracts have been associated with individual differences in reading. Individuals born preterm are at risk of injury to white matter. In this study we compared the associations between diffusion properties of white matter and reading skills in children and adolescents born full term and preterm. 45 participants, aged 9–17 years, included 26 preterms (born <36 weeks' gestation and 19 full-terms. Tract fractional anisotropy (FA profiles were generated for five bilateral white matter tracts previously associated with reading: anterior superior longitudinal fasciculus (aSLF, arcuate fasciculus (Arc, corticospinal tract (CST, uncinate fasciculus (UF and inferior longitudinal fasciculus (ILF. Mean scores on reading for the two groups were in the normal range and were not statistically different. In both groups, FA was associated with measures of single word reading and comprehension in the aSLF, AF, CST, and UF. However, correlations were negative in the full term group and positive in the preterm group. These results demonstrate variations in the neurobiology of reading in children born full term and preterm despite comparable reading skills. Findings suggest that efficient information exchange required for strong reading abilities may be accomplished via a different balance of neurobiological mechanisms in different groups of readers.

  16. The shared neuroanatomy and neurobiology of comorbid chronic pain and PTSD: therapeutic implications.

    Science.gov (United States)

    Scioli-Salter, Erica R; Forman, Daniel E; Otis, John D; Gregor, Kristin; Valovski, Ivan; Rasmusson, Ann M

    2015-04-01

    Chronic pain and posttraumatic stress disorder (PTSD) are disabling conditions that affect biological, psychological, and social domains of functioning. Clinical research demonstrates that patients who are affected by chronic pain and PTSD in combination experience greater pain, affective distress, and disability than patients with either condition alone. Additional research is needed to delineate the interrelated pathophysiology of chronic pain and PTSD, with the goal of facilitating more effective therapies to treat both conditions more effectively; current treatment strategies for chronic pain associated with PTSD have limited efficacy and place a heavy burden on patients, who must visit various specialists to manage these conditions separately. This article focuses on neurobiological factors that may contribute to the coprevalence and synergistic interactions of chronic pain and PTSD. First, we outline how circuits that mediate emotional distress and physiological threat, including pain, converge. Secondly, we discuss specific neurobiological mediators and modulators of these circuits that may contribute to chronic pain and PTSD symptoms. For example, neuropeptide Y, and the neuroactive steroids allopregnanolone and pregnanolone (together termed ALLO) have antistress and antinociceptive properties. Reduced levels of neuropeptide Y and ALLO have been implicated in the pathophysiology of both chronic pain and PTSD. The potential contribution of opioid and cannabinoid system factors also will be discussed. Finally, we address potential novel methods to restore the normal function of these systems. Such novel perspectives regarding disease and disease management are vital to the pursuit of relief for the many individuals who struggle with these disabling conditions.

  17. Neurobiological response to EMDR therapy in clients with different psychological traumas

    Directory of Open Access Journals (Sweden)

    MARCO ePAGANI

    2015-10-01

    Full Text Available We assessed cortical activation differences in real-time upon exposure to traumatic memory between two distinct groups of psychologically traumatised clients also in comparison with healthy controls. We used electroencephalography (EEG to compare neuronal activation throughout the bilateral stimulation phase of Eye Movement Desensitization and Reprocessing (EMDR sessions. We compared activation between the first (T0 and the last (T1 session, the latter performed after processing the index trauma. The group including all clients showed significantly higher cortical activity in orbito-frontal cortex at T0 shifting at T1 towards posterior associative regions. However the subgroup of clients with chronic exposure to the traumatic event showed a cortical firing at both stages which was closer to that of controls. For the first time EEG monitoring enabled to disclose neurobiological differences between groups of clients with different trauma histories during the reliving of the traumatic event. Cortical activations in clients chronically exposed to traumatic memories were moderate, suggesting an association between social and environmental contexts with the neurobiological response to trauma exposure and psychotherapy.

  18. The neurobiology of addiction: the perspective from magnetic resonance imaging present and future

    Science.gov (United States)

    Nestor, Liam J.

    2016-01-01

    Abstract Background and Aims Addiction is associated with severe economic and social consequences and personal tragedies, the scientific exploration of which draws upon investigations at the molecular, cellular and systems levels with a wide variety of technologies. Magnetic resonance imaging (MRI) has been key to mapping effects observed at the microscopic and mesoscopic scales. The range of measurements from this apparatus has opened new avenues linking neurobiology to behaviour. This review considers the role of MRI in addiction research, and what future technological improvements might offer. Methods A hermeneutic strategy supplemented by an expansive, systematic search of PubMed, Scopus and Web of Science databases, covering from database inception to October 2015, with a conjunction of search terms relevant to addiction and MRI. Formal meta‐analyses were prioritized. Results Results from methods that probe brain structure and function suggest frontostriatal circuitry disturbances within specific cognitive domains, some of which predict drug relapse and treatment response. New methods of processing imaging data are opening opportunities for understanding the role of cerebral vasculature, a global view of brain communication and the complex topology of the cortical surface and drug action. Future technological advances include increases in MRI field strength, with concomitant improvements in image quality. Conclusions The magnetic resonance imaging literature provides a limited but convergent picture of the neurobiology of addiction as global changes to brain structure and functional disturbances to frontostriatal circuitry, accompanied by changes in anterior white matter. PMID:27452960

  19. Revisiting the Basic Symptom Concept: Towards Translating Risk Symptoms for Psychosis into Neurobiological Targets

    Directory of Open Access Journals (Sweden)

    Frauke eSchultze-Lutter

    2016-01-01

    Full Text Available In its initial formulation, the concept of basic symptoms (BSs integrated findings on the early symptomatic course of schizophrenia and first in vivo evidence of accompanying brain aberrations. It argued that the subtle subclinical disturbances in mental processes described as BSs were the most direct self-experienced expression of the underlying neurobiological aberrations of the disease. Other characteristic symptoms of psychosis (e.g., delusions, hallucinations were conceptualized as secondary phenomena, resulting from dysfunctional beliefs and suboptimal coping styles with emerging BSs and/or concomitant stressors. While BSs can occur in many mental disorders, in particular affective disorders, a subset of perceptive and cognitive BSs appear to be specific to psychosis and are currently employed in two alternative risk criteria. However, despite their clinical recognition in the early detection of psychosis, neurobiological research on the aetiopathology of psychosis with neuroimaging methods has only just begun to consider the neural correlate of BSs. This perspective paper reviews the emerging evidence of an association between BSs and aberrant brain activation, connectivity patterns, and metabolism, and outlines promising routes for the use of BSs in aetiopathological research on psychosis.

  20. The neurobiology of impulse control disorders in Parkinson's disease: from neurotransmitters to neural networks.

    Science.gov (United States)

    Vriend, Chris

    2018-01-30

    Impulse control disorders (ICD) are common neuropsychiatric disorders that can arise in Parkinson's disease (PD) patients after commencing dopamine replacement therapy. Approximately 15% of all patients develop these disorders and many more exhibit subclinical symptoms of impulsivity. ICD is thought to develop due to an interaction between the use of dopaminergic medication and an as yet unknown neurobiological vulnerability that either pre-existed before PD onset (possibly genetic) or is associated with neural alterations due to the PD pathology. This review discusses genes, neurotransmitters and neural networks that have been implicated in the pathophysiology of ICD in PD. Although dopamine and the related reward system have been the main focus of research, recently, studies have started to look beyond those systems to find new clues to the neurobiological underpinnings of ICD and come up with possible new targets for treatment. Studies on the whole-brain connectome to investigate the global alterations due to ICD development are currently lacking. In addition, there is a dire need for longitudinal studies that are able to disentangle the contributions of individual (genetic) traits and secondary effects of the PD pathology and chronic dopamine replacement therapy to the development of ICD in PD.

  1. Probabilistic risk model for staphylococcal intoxication from pork-based food dishes prepared in food service establishments in Korea.

    Science.gov (United States)

    Kim, Hyun Jung; Griffiths, Mansel W; Fazil, Aamir M; Lammerding, Anna M

    2009-09-01

    Foodborne illness contracted at food service operations is an important public health issue in Korea. In this study, the probabilities for growth of, and enterotoxin production by, Staphylococcus aureus in pork meat-based foods prepared in food service operations were estimated by the Monte Carlo simulation. Data on the prevalence and concentration of S. aureus as well as compliance to guidelines for time and temperature controls during food service operations were collected. The growth of S. aureus was initially estimated by using the U.S. Department of Agriculture's Pathogen Modeling Program. A second model based on raw pork meat was derived to compare cell number predictions. The correlation between toxin level and cell number as well as minimum toxin dose obtained from published data was adopted to quantify the probability of staphylococcal intoxication. When data gaps were found, assumptions were made based on guidelines for food service practices. Baseline risk model and scenario analyses were performed to indicate possible outcomes of staphylococcal intoxication under the scenarios generated based on these data gaps. Staphylococcal growth was predicted during holding before and after cooking, and the highest estimated concentration (4.59 log CFU/g for the 99.9th percentile value) of S. aureus was observed in raw pork initially contaminated with S. aureus and held before cooking. The estimated probability for staphylococcal intoxication was very low, using currently available data. However, scenario analyses revealed an increased possibility of staphylococcal intoxication when increased levels of initial contamination in the raw meat, andlonger holding time both before and after cooking the meat occurred.

  2. Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: A photodegradation kinetic model

    Science.gov (United States)

    Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, Chunyang; Zhang, Jinlong; Moshfegh, A. Z.

    2018-03-01

    Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher than the ZnO NWs under UV light. In addition, it was also determined that photodegradation rate constant (k) for the BH- ZnO NWs surface obeys a linear function with the branch length (l) and their correlation was described by using a proposed kinetic model.

  3. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology.

    Science.gov (United States)

    Radaei, Payam; Mashayekhan, Shohreh; Vakilian, Saeid

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. PREPARATION,COMPLEX MECHANISM AND STRUCTURE MODEL OF METALLOPHTHALOC- YANINE-Fe3O4 NANOPARTICLES COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    MPc-Fe3O4-nanoparticles composite(M=Co, Cu, Ni, Mn) have been prepared and the factors that influence their mean size have been studied. The mean size of the nanoparticles composite increase with the increase of complex temperature. The interaction of MPc with Fe3O4 nanoparticles has been studied. There are M-O covalent bonding and ionic bonding between MPc and Fe3O4 nanoparticles. The intensities of M-O bonding and ionic bonding are in vestigated .The complex mechanism of MPc with Fe3O4 nanoparticles have been studied. First, there are complex between MPc and all Fe3O4 nanoparticles. Then, Fe3O4 nanoparticles accumulate together to form the accumulators, MPc have the function of cohering Fe3O4 nanoparticles. A considerable number of MPc combine with Fe3O4 nanoparticles on the surface of the accumulators to form MPc-Fe3O4 nanoparticles composite. All the above proesses take place spontaneously. The structure model of MPc-Fe3O4 nanoparticles composite has also been investigated. Inside the MPc-Fe3O4 nanoparticles composite, Fe3O4 nanoparticles accumulate together without order, on the surface of the composite, MPc form molecular dispersion layer. The threshold of molecular dispersion layer are also investigated.

  5. A New Composite Eyeball-Periorbital Transplantation Model in Humans: An Anatomical Study in Preparation for Eyeball Transplantation.

    Science.gov (United States)

    Siemionow, Maria; Bozkurt, Mehmet; Zor, Fatih; Kulahci, Yalcin; Uygur, Safak; Ozturk, Can; Djohan, Risal; Papay, Frank

    2018-04-01

    Vascularized composite allotransplantation offers a new hope for restoration of orbital content and perhaps vision. The aim of this study was to introduce a new composite eyeball-periorbital transplantation model in fresh cadavers in preparation for composite eyeball allotransplantation in humans. The composite eyeball-periorbital transplantation flap borders included the inferior border, outlined by the infraorbital rim; the medial border, created by the nasal dorsum; the lateral border, created by the lateral orbital rim; and the superior border, created by the superior part of the eyebrow. The pedicle of the flap included the facial artery, superficial temporal artery, and external jugular vein. The skin and subcutaneous tissues of the periorbital region were dissected and the bony tissue was reached. A coronal incision was performed and the frontal lobe of the brain was reached by means of frontal osteotomy. Ophthalmic and oculomotor nerves were also included in the flap. After a "box osteotomy" around the orbit, the dissection was completed. Methylene blue and indocyanine green injection (SPY Elite System) was performed to show the integrity of the vascular territories after facial flap harvest. Adequate venous return was observed within the flap after methylene blue dye injection. Laser-assisted indocyanine green angiography identified a well-defined vascular network within the entire composite eyeball-periorbital transplantation flap. For the first time, a novel composite eyeball-periorbital transplantation model in human cadavers was introduced. Good perfusion of the flap confirmed the feasibility of composite eyeball-periorbital transplantation in the clinical setting. Although harvesting of the flap is challenging, it introduces a new option for reconstruction of the periorbital region including the eyeball.

  6. Preparation of liposomal amiodarone and investigation of its cardiomyocyte-targeting ability in cardiac radiofrequency ablation rat model

    Directory of Open Access Journals (Sweden)

    Zhuge Y

    2016-05-01

    Full Text Available Ying Zhuge,1,* Zhi-Feng Zheng,1,* Mu-Qing Xie,2 Lin Li,2 Fang Wang,1 Feng Gao2,3 1Department of Cardiology, Shanghai First People’s Hospital of Nanjing Medical University, 2Department of Pharmaceutics, School of Pharmacy, 3Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, People’s Republic of China*These authors contributed equally to this workAbstract: The objective of this study was to develop an amiodarone hydrochloride (ADHC-loaded liposome (ADHC-L formulation and investigate its potential for cardiomyocyte targeting after cardiac radiofrequency ablation (CA in vivo. The ADHC-L was prepared by thin-film method combined with ultrasonication and extrusion. The preparation process was optimized by Box–Behnken design with encapsulation efficiency as the main evaluation index. The optimum formulation was quantitatively obtained with a diameter of 99.9±0.4 nm, a zeta potential of 35.1±10.9 mV, and an encapsulation efficiency of 99.5%±13.3%. Transmission electron microscopy showed that the liposomes were spherical particles with integrated bilayers and well dispersed with high colloidal stability. Pharmacokinetic studies were investigated in rats after intravenous administration, which revealed that compared with free ADHC treatment, ADHC-L treatment showed a 5.1-fold increase in the area under the plasma drug concentration–time curve over a period of 24 hours (AUC0–24 h and an 8.5-fold increase in mean residence time, suggesting that ADHC-L could facilitate drug release in a more stable and sustained manner while increasing the circulation time of ADHC, especially in the blood. Biodistribution studies of ADHC-L demonstrated that ADHC concentration in the heart was 4.1 times higher after ADHC-L treatment in CA rat model compared with ADHC-L sham-operated treatment at 20 minutes postinjection. Fluorescence imaging studies further proved that the heart

  7. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology.

    Science.gov (United States)

    Kowalski, Jennifer R; Hoops, Geoffrey C; Johnson, R Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students' experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. © 2016 J. R. Kowalski et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology.

    Science.gov (United States)

    Tarlacı, Sultan; Pregnolato, Massimo

    2016-05-01

    The concepts of quantum brain, quantum mind and quantum consciousness have been increasingly gaining currency in recent years, both in scientific papers and in the popular press. In fact, the concept of the quantum brain is a general framework. Included in it are basically four main sub-headings. These are often incorrectly used interchangeably. The first of these and the one which started the quantum mind/consciousness debate was the place of consciousness in the problem of measurement in quantum mechanics. Debate on the problem of quantum measurement and about the place of the conscious observer has lasted almost a century. One solution to this problem is that the participation of a conscious observer in the experiment will radically change our understanding of the universe and our relationship with the outside world. The second topic is that of quantum biology. This topic has become a popular field of research, especially in the last decade. It concerns whether or not the rules of quantum physics operate in biological structures. It has been shown in the latest research on photosynthesis, the sense of smell and magnetic direction finding in animals that the laws of quantum physics may operate in warm-wet-noisy biological structures. The third sub-heading is quantum neurobiology. This topic has not yet gained wide acceptance and is still in its early stages. Its primary purpose is directed to understand whether the laws of quantum physics are effective in the biology of the nervous system or not. A further step in brain neurobiology, toward the understanding of consciousness formation, is the research of quantum laws effects upon neural network functions. The fourth and final topic is quantum psychopathology. This topic takes its basis and its support from quantum neurobiology. It comes from the idea that if quantum physics is involved in the normal working of the brain, diseased conditions of the brain such as depression, anxiety, dementia, schizophrenia and

  9. Updated strategy and test of new concepts for groundwater flow modelling in Forsmark in preparation of site descriptive modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB (Sweden); Leven, Jakob [Geosigma AB (Sweden); Hartley, Lee; Holton, David; McCarthy, Rachel; Roberts, David [Serco Assurance (United Kingdom)

    2007-01-15

    As part of the preliminary Site Descriptive Modelling (SDM version 1.2) for the Initial Site Investigation (ISI) stage at Forsmark, Simpevarp and Laxemar, a methodology was developed for constructing hydrogeological models of the crystalline bedrock. The methodology achieved reasonable success given the restricted amounts and types of data available at the time. Notwithstanding, several issues of concern have surfaced following the reviews of the preliminary site descriptions of the three sites. Possible solutions to parts of the problems have been discussed internally for a longer time and an integrated view and strategy forward has been formulated. The 'new strategy' is not a complete shift in methodology, however, but a refocusing on and clarification of the key aspects that the hydrogeological SDM needs to accomplish. In broad terms the basic principle of the 'new strategy' suggested is to develop an overall conceptual model that first establishes the major flowing deformation zones, and then gradually approaches determination of the hydraulic properties of the bedrock outside these zones in the potential repository volume. On each scale, the focus of the description should be on features/structures of significance on that scale. Clearly, a detailed (although statistical) description of the repository and canister deposition hole scale is the end goal, but this approach (which also is more the traditional approach in hydrogeology) is judged to provide a much better motivated overall geometrical description. Furthermore, the 'new strategy' puts more emphasis on field testing (e.g. interference tests) and data analyses and less on numerical simulation and calibration. That is, before extensive (and costly) simulations and model calibrations are made it needs to be clearly understood what could be the potential gains of carrying them out. This report presents the conceptual model development for Forsmark in preparation of the site

  10. Self-Awareness, Self-Regulation, and Self-Transcendence (S-ART: A Framework for Understanding the Neurobiological Mechanisms of Mindfulness

    Directory of Open Access Journals (Sweden)

    David R. Vago

    2012-10-01

    Full Text Available Mindfulness - as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind. Mindfulness is described through systematic mental training that develops meta-awareness (self-awareness, an ability to effectively modulate one’s behavior (self-regulation, and the development of a positive relationship between self and other that transcends self-focused needs and increases prosocial characteristics (self-transcendence. This framework of self-awareness, regulation, and transcendence (S-ART illustrates a method for becoming aware of the conditions that cause (and remove distortions or biases. The development of S-ART through meditation is proposed to modulate self-specifying and narrative self-networks through an integrative fronto-parietal control network. Relevant perceptual, cognitive, emotional, and behavioral neuropsychological processes are highlighted, including intention and motivation, attention regulation, emotion regulation, extinction and reconsolidation, prosociality, non-attachment and decentering. The S-ART framework and neurobiological model is based on our growing understanding of the mechanisms for neurocognition, empirical literature, and through dismantling the specific meditation practices thought to cultivate mindfulness. The proposed framework will inform future research in the contemplative sciences and target specific areas for development in the treatment of psychological disorders.

  11. Self-awareness, self-regulation, and self-transcendence (S-ART): a framework for understanding the neurobiological mechanisms of mindfulness.

    Science.gov (United States)

    Vago, David R; Silbersweig, David A

    2012-01-01

    Mindfulness-as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind. Mindfulness is described through systematic mental training that develops meta-awareness (self-awareness), an ability to effectively modulate one's behavior (self-regulation), and a positive relationship between self and other that transcends self-focused needs and increases prosocial characteristics (self-transcendence). This framework of self-awareness, -regulation, and -transcendence (S-ART) illustrates a method for becoming aware of the conditions that cause (and remove) distortions or biases. The development of S-ART through meditation is proposed to modulate self-specifying and narrative self-networks through an integrative fronto-parietal control network. Relevant perceptual, cognitive, emotional, and behavioral neuropsychological processes are highlighted as supporting mechanisms for S-ART, including intention and motivation, attention regulation, emotion regulation, extinction and reconsolidation, prosociality, non-attachment, and decentering. The S-ART framework and neurobiological model is based on our growing understanding of the mechanisms for neurocognition, empirical literature, and through dismantling the specific meditation practices thought to cultivate mindfulness. The proposed framework will inform future research in the contemplative sciences and target specific areas for development in the treatment of psychological disorders.

  12. Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings.

    Science.gov (United States)

    Potenza, Marc N

    2008-10-12

    Gambling is a prevalent recreational behaviour. Approximately 5% of adults have been estimated to experience problems with gambling. The most severe form of gambling, pathological gambling (PG), is recognized as a mental health condition. Two alternate non-mutually exclusive conceptualizations of PG have considered it as an obsessive-compulsive spectrum disorder and a 'behavioural' addiction. The most appropriate conceptualization of PG has important theoretical and practical implications. Data suggest a closer relationship between PG and substance use disorders than exists between PG and obsessive-compulsive disorder. This paper will review data on the neurobiology of PG, consider its conceptualization as a behavioural addiction, discuss impulsivity as an underlying construct, and present new brain imaging findings investigating the neural correlates of craving states in PG as compared to those in cocaine dependence. Implications for prevention and treatment strategies will be discussed.

  13. NEUROBIOLOGICAL AND PSYCHOPATHOLOGICAL MECHANISMS UNDERLYING ADDICTION-LIKE BEHAVIORS: AN OVERVIEW AND THEMATIC SYNTHESIS.

    Directory of Open Access Journals (Sweden)

    Loredana Scala

    2017-08-01

    Full Text Available The term dependency is increasingly being used also to explain symptoms resulting from the repetition of a behavior or legalized and socially accepted activities that do not involve substance assumption. These activities, although considered normal habits of daily life can become real addictions that may affect and disrupt socio-relational and working functioning. Growing evidence suggests to consider behavioral addictions similar to drug dependence for their common symptoms, the high frequency of poly-dependence conditions, and the correlation in risk (impulsivity, sensation seeking, early exposure, familiarity and protective (parental control, adequate metacognitive skills factors. The aim of this paper is to describe addiction in its general aspects, highlighting the underlying neurobiological and psychopathological mechanisms.

  14. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes.

    Science.gov (United States)

    Van Le, Quan; Isbell, Lynne A; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-11-19

    Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates' heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage.

  15. Gain weight by "going diet?" Artificial sweeteners and the neurobiology of sugar cravings: Neuroscience 2010.

    Science.gov (United States)

    Yang, Qing

    2010-06-01

    America's obesity epidemic has gathered much media attention recently. A rise in the percent of the population who are obese coincides with an increase in the widespread use of non-caloric artificial sweeteners, such as aspartame (e.g., Diet Coke) and sucralose (e.g., Pepsi One), in food products (Figure 1). Both forward and reverse causalities have been proposed. While people often choose "diet" or "light" products to lose weight, research studies suggest that artificial sweeteners may contribute to weight gain. In this mini-review, inspired by a discussion with Dr. Dana Small at Yale's Neuroscience 2010 conference in April, I first examine the development of artificial sweeteners in a historic context. I then summarize the epidemiological and experimental evidence concerning their effects on weight. Finally, I attempt to explain those effects in light of the neurobiology of food reward.

  16. "More than skin deep": stress neurobiology and mental health consequences of racial discrimination.

    Science.gov (United States)

    Berger, Maximus; Sarnyai, Zoltán

    2015-01-01

    Ethnic minority groups across the world face a complex set of adverse social and psychological challenges linked to their minority status, often involving racial discrimination. Racial discrimination is increasingly recognized as an important contributing factor to health disparities among non-dominant ethnic minorities. A growing body of literature has recognized these health disparities and has investigated the relationship between racial discrimination and poor health outcomes. Chronically elevated cortisol levels and a dysregulated hypothalamic-pituitary-adrenal (HPA) axis appear to mediate effects of racial discrimination on allostatic load and disease. Racial discrimination seems to converge on the anterior cingulate cortex (ACC) and may impair the function of the prefrontal cortex (PFC), hence showing substantial similarities to chronic social stress. This review provides a summary of recent literature on hormonal and neural effects of racial discrimination and a synthesis of potential neurobiological pathways by which discrimination affects mental health.

  17. Epidemiology, neurobiology and pharmacological interventions related to suicide deaths and suicide attempts in bipolar disorder

    DEFF Research Database (Denmark)

    Schaffer, Ayal; Isometsä, Erkki T; Tondo, Leonardo

    2015-01-01

    associations with suicide attempts and deaths in bipolar disorder, but few replication studies. Data on treatment with lithium or anticonvulsants are strongly suggestive for prevention of suicide attempts and deaths, but additional data are required before relative anti-suicide effects can be confirmed......, and the most common methods, are important building blocks to greater awareness and improved interventions for suicide prevention in bipolar disorder. Replication of genetic findings and stronger prospective data on treatment options are required before more decisive conclusions can be made regarding......OBJECTIVES: Bipolar disorder is associated with elevated risk of suicide attempts and deaths. Key aims of the International Society for Bipolar Disorders Task Force on Suicide included examining the extant literature on epidemiology, neurobiology and pharmacotherapy related to suicide attempts...

  18. [The "diagnosis" in the light of Charles S. Peirce, Sherlock Holmes, Sigmund Freud and modern neurobiology].

    Science.gov (United States)

    Adler, R H

    2006-05-10

    A diagnostic hypothesis is a causa ficta. It is an assumption, suitable to explain phenomena, which are not yet proven to be the only and valid explanation of the observed. One of Wilhelm Hauff's faitales illustrates how a hypothesis is generated. It is based on the interpretation of signs. Signs are of an ikonic, an indexical or a symbolic nature. According to S. Peirce, a hypothesis is created by abduction, to Conan Doyle's Sherlock Holmes by immersion into thoughts, and to S. Freud by free floating attention. The three procedures are alike. Neurobiological structures and functions, which correspond to these processes, are described; especially the emotional-implicite memory. The technique of hypothesis-generation is meaningful to clinical medicine.

  19. Post-traumatic stress disorder: the neurobiological impact of psychological trauma

    Science.gov (United States)

    Sherin, Jonathan E.; Nemeroff, Charles B.

    2011-01-01

    The classic fight-or-flight response to perceived threat is a reflexive nervous phenomenon thai has obvious survival advantages in evolutionary terms. However, the systems that organize the constellation of reflexive survival behaviors following exposure to perceived threat can under some circumstances become dysregulated in the process. Chronic dysregulation of these systems can lead to functional impairment in certain individuals who become “psychologically traumatized” and suffer from post-traumatic stress disorder (PTSD), A body of data accumulated over several decades has demonstrated neurobiological abnormalities in PTSD patients. Some of these findings offer insight into the pathophysiology of PTSD as well as the biological vulnerability of certain populations to develop PTSD, Several pathological features found in PTSD patients overlap with features found in patients with traumatic brain injury paralleling the shared signs and symptoms of these clinical syndromes. PMID:22034143

  20. Neurobiological mechanisms behind the spatiotemporal illusions of awareness that are used for advocating prediction or postdiction

    Directory of Open Access Journals (Sweden)

    Talis eBachmann

    2013-01-01

    Full Text Available The fact that it takes time for the brain to process information from the changing environment underlies many experimental phenomena of awareness of spatiotemporal events, including a number of astonishing illusions. These phenomena have been explained from the predictive and postdictive theoretical perspectives. Here I describe the most extensively studied phenomena in order to see how well the two perspectives can explain them. Next, the neurobiological perceptual retouch mechanism of producing stimulation awareness is characterized and its work in causing the listed illusions is described. A perspective on how brain mechanisms of conscious perception produce the phenomena supportive of the postdictive view is presented in this article. At the same time, some of the phenomena cannot be explained by the traditional postdictive account, but can be interpreted from the perceptual retouch theory perspective.

  1. Personality, Executive Control, and Neurobiological Characteristics Associated with Different Forms of Risky Driving.

    Directory of Open Access Journals (Sweden)

    Thomas G Brown

    Full Text Available Road crashes represent a huge burden on global health. Some drivers are prone to repeated episodes of risky driving (RD and are over-represented in crashes and related morbidity. However, their characteristics are heterogeneous, hampering development of targeted intervention strategies. This study hypothesized that distinct personality, cognitive, and neurobiological processes are associated with the type of RD behaviours these drivers predominantly engage in.Four age-matched groups of adult (19-39 years males were recruited: 1 driving while impaired recidivists (DWI, n = 36; 2 non-alcohol reckless drivers (SPEED, n = 28; 3 drivers with a mixed RD profile (MIXED, n = 27; and 4 low-risk control drivers (CTL, n = 47. Their sociodemographic, criminal history, driving behaviour (by questionnaire and simulation performance, personality (Big Five traits, impulsivity, reward sensitivity, cognitive (disinhibition, decision making, behavioural risk taking, and neurobiological (cortisol stress response characteristics were gathered and contrasted.Compared to controls, group SPEED showed greater sensation seeking, disinhibition, disadvantageous decision making, and risk taking. Group MIXED exhibited more substance misuse, and antisocial, sensation seeking and reward sensitive personality features. Group DWI showed greater disinhibition and more severe alcohol misuse, and compared to the other RD groups, the lowest level of risk taking when sober. All RD groups exhibited less cortisol increase in response to stress compared to controls.Each RD group exhibited a distinct personality and cognitive profile, which was consistent with stimulation seeking in group SPEED, fearlessness in group MIXED, and poor behavioural regulation associated with alcohol in group DWI. As these group differences were uniformly accompanied by blunted cortisol stress responses, they may reflect the disparate behavioural consequences of dysregulation of the stress system. In sum, RD

  2. Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates.

    Science.gov (United States)

    Petkov, Christopher I; Jarvis, Erich D

    2012-01-01

    Vocal learners such as humans and songbirds can learn to produce elaborate patterns of structurally organized vocalizations, whereas many other vertebrates such as non-human primates and most other bird groups either cannot or do so to a very limited degree. To explain the similarities among humans and vocal-learning birds and the differences with other species, various theories have been proposed. One set of theories are motor theories, which underscore the role of the motor system as an evolutionary substrate for vocal production learning. For instance, the motor theory of speech and song perception proposes enhanced auditory perceptual learning of speech in humans and song in birds, which suggests a considerable level of neurobiological specialization. Another, a motor theory of vocal learning origin, proposes that the brain pathways that control the learning and production of song and speech were derived from adjacent motor brain pathways. Another set of theories are cognitive theories, which address the interface between cognition and the auditory-vocal domains to support language learning in humans. Here we critically review the behavioral and neurobiological evidence for parallels and differences between the so-called vocal learners and vocal non-learners in the context of motor and cognitive theories. In doing so, we note that behaviorally vocal-production learning abilities are more distributed than categorical, as are the auditory-learning abilities of animals. We propose testable hypotheses on the extent of the specializations and cross-species correspondences suggested by motor and cognitive theories. We believe that determining how spoken language evolved is likely to become clearer with concerted efforts in testing comparative data from many non-human animal species.

  3. Adult Attention Deficit Hyperactivity Disorder: Neurobiology, Diagnostic Problems and Clinical Features

    Directory of Open Access Journals (Sweden)

    Cengiz Tuglu

    2010-04-01

    Full Text Available Attention-deficit/hyperactivity disorder (ADHD is a chronic, lifelong neurobeha-vioral disorder with childhood-onset, which seriously impairs the affected adults in a variety of daily living functions like academic, social and occupational functioning. Prevalence of ADHD declines with age in the general population. The approximate prevalence rates of ADHD is 8% in childhood, 6% in adolescence and 4% in adulthood. The unclear validity of DSM-IV diagnostic criteria for this condition can lead to reduced prevalence rates by underestimation of the prevalence of adult ADHD. The disorder is characterized by behavioral symptoms of inattention, hyperactivity, and impulsivity across the life cycle and is associated with considerable morbidity and disability. Although its etiology remains unclear, considerable evidence documents its strong neurobiological and genetic underpinnings. ADHD is associated with a high percentage of comorbid psychiatric disorders in every lifespan. In adulthood between 65-89% of all patients with ADHD suffer from one or more additional psychiatric disorders, above all mood and anxiety disorders, substance use disorders and personality disorders, which complicate the clinical picture in terms of diagnostics, treatment and outcome issues. The high comorbidity with other psychiatric disorders, the resulting deficits in social competences and risky health behavior that often go along with a diminished life quality must be stressed in these patients. Preventive and therapeutic interventions should be taken at an early stage to counteract the possible negative influences of ADHD on functioning and relationships. In this paper, we reviewed the historical aspects, epidemiology, neurobiology, comorbidity, diagnostic difficulties and clinical features of adult ADHD.

  4. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Mayte Alvarez-Crespo

    Full Text Available Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL and ventromedial (LaVM parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field, intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like behaviors if food is not available.

  5. The role of BDNF and HPA axis in the neurobiology of burnout syndrome.

    Science.gov (United States)

    Onen Sertoz, Ozen; Tolga Binbay, Ibrahim; Koylu, Ersin; Noyan, Aysin; Yildirim, Emre; Elbi Mete, Hayriye

    2008-08-01

    Chronic stress is known to affect the HPA axis. The few clinical studies which have been conducted on HPA-axis function in burnout have produced inconsistent results. The etiological relationship between sBDNF and burnout has not yet been studied. The aim of the current study was to investigate the role of BDNF and HPA axis in the neurobiology of burnout. In the current study 37 clinically diagnosed burnout participants were compared with 35 healthy controls in terms of BDNF, HPA axis, burnout symptoms, depression, anxiety and psychosomatic complaints. Basal serum cortisol, sBDNF and cortisol level after 1 mg DST was sampled. We found no significant differences in terms of HPA-axis function (for basal serum cortisol, p=0.592; for cortisol level after 1 mg DST, p=0.921), but we did find lowered sBDNF levels in burnout group (88.66+/-18.15 pg/ml) as compared to healthy controls (102.18+/-20.92 pg/ml) and the difference was statistically significant (p=0.005). Logistic Regression Analysis revealed that emotional exhaustion (p=0.05), depersonalization (p=0.005) and depression (p=0.025) were significantly associated with burnout. sBDNF levels correlated negatively with emotional exhaustion (r=-,268, p=0.026), depersonalization (r=-,333, p=0.005) and correlated positively with competence (r=0.293, p=0.015) sub-scales of burnout inventory. However, there were no significant relationships between cortisol levels and sBDNF levels (r=0.80, p=0.51), depression, anxiety, psychosomatic complaints and burnout inventory. Our results suggest that low BDNF might contribute to the neurobiology of burnout syndrome and it seems to be associated with burnout symptoms including altered mood and cognitive functions.

  6. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Radaei, Payam [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Mashayekhan, Shohreh, E-mail: mashayekhan@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Vakilian, Saeid [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Stem Cell Technology Research Center, Tehran 1997775555 (Iran, Islamic Republic of)

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350 μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7 days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. - Highlights: • Gelatin-chitosan Micro-carriers fabricated by electrospray ionization method. • The effects of blend ratio, the syringe feeding rate, and voltage on micro-carrier optimization were investigated via RSM. • Both diameter and mechanical strength of Micro-carriers have a quadratic relationship with selected parameters. • The optimum conditions with fixed diameter of 350μm and maximized strength in different blend ratios were achieved. • The elasticity and biocompatibility of desirable fabricated micro-carriers characterized.

  7. The Neurobiology of Speech Perception and Production-Can Functional Imaging Tell Us Anything We Did Not Already Know?

    Science.gov (United States)

    Scott, Sophie K.

    2012-01-01

    Our understanding of the neurobiological basis for human speech production and perception has benefited from insights from psychology, neuropsychology and neurology. In this overview, I outline some of the ways that functional imaging has added to this knowledge and argue that, as a neuroanatomical tool, functional imaging has led to some…

  8. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    NARCIS (Netherlands)

    Thomaes, Kathleen; de Kloet, Carien; Wilker, Sarah; El-Hage, Wissam; Schäfer, Ingo; Kleim, Birgit; Schmahl, Christian; van Zuiden, Mirjam

    2016-01-01

    Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to

  9. A Neural Systems-Based Neurobiology and Neuropsychiatry Course: Integrating Biology, Psychodynamics, and Psychology in the Psychiatric Curriculum

    Science.gov (United States)

    Lacy, Timothy; Hughes, John D.

    2006-01-01

    Objective: Psychotherapy and biological psychiatry remain divided in psychiatry residency curricula. Behavioral neurobiology and neuropsychiatry provide a systems-level framework that allows teachers to integrate biology, psychodynamics, and psychology. Method: The authors detail the underlying assumptions and outline of a neural systems-based…

  10. Neurobiological correlates of externalizing and prosocial behavior in school-age children : A study on truths and lies

    NARCIS (Netherlands)

    S. Thijssen (Sandra)

    2015-01-01

    markdownabstractThis thesis describes a series of studies on the neurobiological correlates of externalizing and prosocial behavior in six-to ten-year old children. Chapter 1 provides an outline and describes the background and aims of our work. The studies described in this thesis are embedded in

  11. The Significance of Human-Animal Relationships as Modulators of Trauma Effects in Children: A Developmental Neurobiological Perspective

    Science.gov (United States)

    Yorke, Jan

    2010-01-01

    Emotional stress and trauma impacts the neurobiology of children. They are especially vulnerable given the developmental plasticity of the brain. The neural synaptic circular processes between the anterior cingulated cortex, prefrontal cortex, amygdala and the hypothalamus are altered. Trauma results in the release of the peptide glucocortisoid,…

  12. The effect of different levels of sunflower head pith addition on the properties of model system emulsions prepared from fresh and frozen beef.

    Science.gov (United States)

    Sariçoban, Cemalettin; Yilmaz, Mustafa Tahsin; Karakaya, Mustafa; Tiske, Sümeyra Sultan

    2010-01-01

    The effect of sunflower head pith on the functional properties of emulsions was studied by using a model system. Oil/water (O/W) model emulsion systems were prepared from fresh and frozen beef by the addition of the pith at five concentrations. Emulsion capacity (EC), stability (ES), viscosity (EV), colour and flow properties of the prepared model system emulsions were analyzed. The pith addition increased the EC and ES and the highest EC and ES values were reached when 5% of pith added; however, further increase in the pith concentration caused an inverse trend in these values. Fresh beef emulsions had higher EC and ES values than did frozen beef emulsions. One percent pith concentration was the critic level for the EV values of fresh beef emulsions. EV values of the emulsions reached a maximum level at 5% pith level, followed by a decrease at 7% pit level.

  13. Testing the neurobiological model of emotion-enhanced memory with emotion elicited by music

    OpenAIRE

    Carr, Sherilene Margaret

    2017-01-01

    Extensive research has revealed that central and peripheral physiological mechanisms that act to assess and respond to negative and arousing emotional events also act to consolidate memory for the event. An area of research yet to be fully investigated is the effect of positive and arousing emotion on long-term memory. The paucity of research may be due to the difficulty in experimentally manipulating positive and arousing emotions in the research laboratory. A source of emotional arousal ...

  14. Realistic Avatar Eye and Head Animation Using a Neurobiological Model of Visual Attention

    National Research Council Canada - National Science Library

    Itti, L; Dhavale, N; Pighin, F

    2003-01-01

    .... The system is successful at autonomously saccading towards and tracking salient targets in a variety of video clips, including synthetic stimuli, real outdoors scenes and gaming console outputs...

  15. Personnel Preparation.

    Science.gov (United States)

    Fair, George, Ed.; Stodden, Robert, Ed.

    1981-01-01

    Three articles comprise a section on personnel preparation in vocational education. Articles deal with two inservice programs in career/vocational education for the handicapped and a project to train paraprofessionals to assist special educators in vocational education. (CL)

  16. Report: Optimization study of the preparation factors for argan oil microcapsule based on hybrid-level orthogonal array design via SPSS modeling.

    Science.gov (United States)

    Zhao, Xi; Wu, Xiaoli; Zhou, Hui; Jiang, Tao; Chen, Chun; Liu, Mingshi; Jin, Yuanbao; Yang, Dongsheng

    2014-11-01

    To optimize the preparation factors for argan oil microcapsule using complex coacervation of chitosan cross-linked with gelatin based on hybrid-level orthogonal array design via SPSS modeling. Eight relatively significant factors were firstly investigated and selected as calculative factors for the orthogonal array design from the total of ten factors effecting the preparation of argan oil microcapsule by utilizing the single factor variable method. The modeling of hybrid-level orthogonal array design was built in these eight factors with the relevant levels (9, 9, 9, 9, 7, 6, 2 and 2 respectively). The preparation factors for argan oil microcapsule were investigated and optimized according to the results of hybrid-level orthogonal array design. The priorities order and relevant optimum levels of preparation factors standard to base on the percentage of microcapsule with the diameter of 30~40 μm via SPSS. Experimental data showed that the optimum factors were controlling the chitosan/gelatin ratio, the systemic concentration and the core/shell ratio at 1:2, 1.5% and 1:7 respectively, presetting complex coacervation pH at 6.4, setting cross-linking time and complex coacervation at 75 min and 30 min, using the glucose-delta lactone as the type of cross-linking agent, and selecting chitosan with the molecular weight of 2000~3000.

  17. An Optical Lightning Simulator in an Electrified Cloud-Resolving Model to Prepare the Future Space Lightning Missions

    Science.gov (United States)

    Bovalo, Christophe; Defer, Eric; Pinty, Jean-Pierre

    2016-04-01

    The future decade will see the launch of several space missions designed to monitor the total lightning activity. Among these missions, the American (Geostationary Lightning Mapper - GLM) and European (Lightning Imager - LI) optical detectors will be onboard geostationary satellites (GOES-R and MTG, respectively). For the first time, the total lightning activity will be monitored over the full Earth disk and at a very high temporal resolution (2 and 1 ms, respectively). Missions like the French Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) and ISS-LIS will bring complementary information in order to better understand the lightning physics and to improve the weather prediction (nowcasting and forecasting). Such missions will generate a huge volume of new and original observations for the scientific community and weather prediction centers that have to be prepared. Moreover, before the launch of these missions, fundamental questions regarding the interpretation of the optical signal property and its relation to cloud optical thickness and lightning discharge processes need to be further investigated. An innovative approach proposed here is to use the synergy existing in the French MesoNH Cloud-Resolving Model (CRM). Indeed, MesoNH is one of the only CRM able to simulate the lifecycle of electrical charges generated within clouds through non-inductive charging process (dependent of the 1-moment microphysical scheme). The lightning flash geometry is based on a fractal law while the electrical field is diagnosed thanks to the Gauss' law. The lightning optical simulator is linked to the electrical scheme as the lightning radiance at 777.4 nm is a function of the lightning current, approximated by the charges neutralized along the lightning path. Another important part is the scattering of this signal by the hydrometeors (mainly ice particles) that is taken into account. Simulations at 1-km resolution are done over the Langmuir Laboratory (New

  18. Solution preparation

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results

  19. What to Consider When Preparing a Model Core Curriculum for GIS Ethics: Objectives, Methods, and a Sketch of Content

    Science.gov (United States)

    Davis, Michael

    2014-01-01

    The purpose of this article is to provide a summary of what is known about teaching ethics in engineering, science, and related disciplines. Such a summary should provide a useful starting point for preparation of a detailed curriculum for teaching the ethics of geo-coded information systems broadly understood ("GIS ethics" for short).…

  20. Using existing growth models to predict RCW habitat development following site preparation: pitfalls of the process and potential growth response

    Science.gov (United States)

    Benjamin O. Knapp; Joan L. Walker

    2013-01-01

    Land managers throughout the Southeast are interested in restoring the longleaf pine (Pinus palustris Mill.) ecosystem, due in part to its value as habitat for the endangered red-cockaded woodpecker (Picoides borealis). In 2003, we established a study at Camp Lejeune, NC, to determine the effects of common site preparation...

  1. A Competency Model for Determining the Professional Profiles of Faculty at Teacher Preparation Schools in Southern Mexico

    Science.gov (United States)

    Mijangos-Noh, Juan Carlos; Canto-Herrera, Pedro J.; Cisneros-Cohernour, Edith J.

    2006-01-01

    In this paper we present the preliminary findings of a study focused on determining the demographic and professional profiles and competencies of professors teaching at the Normal Schools that prepare elementary school teachers in the Southeast of Mexico. Data collection involves multiple methods of data collection including focus group…

  2. The healing effects of herbal preparations from Sambucus ebulus and Urtica dioica in full-thickness wound models

    Directory of Open Access Journals (Sweden)

    Esmaeil Babaei

    2017-05-01

    Conclusions: Topical ointments prepared from the extracts of U. dioica and S. ebulus and their combination possess strong wound healing properties. It is postulated that a synergistic effect may exist between the two extracts since the combination 2% showed better results than the sole extracts.

  3. Modelling and simulation-based support for interoperability exercises in preparation of 2010 FIFA World Cup South Africa

    CSIR Research Space (South Africa)

    Le Roux, WH

    2008-11-01

    Full Text Available and successful event, are busy with preparations. Some of these include exercises at the provincial disaster management centres and involve multiple role players. Important aspects of such exercises are the training of personnel, fine-tuning of drills...

  4. [The normative concept of guilt in criminal law between freedom of will and neurobiological determinism].

    Science.gov (United States)

    Czerner, Frank

    2006-01-01

    To make criminal conduct liable to punishment, criminal responsibility, defined as individual blameworthiness in terms of social ethics, is required as point of reference--both to create and limit the state's right to punish the offender. Neurobiological findings and more recent investigations in brain research have given rise to serious doubts regarding this "conditio sine qua non" of the state's power monopoly. As a result of preceding unconscious decisions, so the argument goes, Man is not free in his will, and the normative principle of culpability would need to be relinquished in favour of a "law of measures" detached from guilt. A detailed analysis of the underlying experimental setups, in particular the investigations by Benjamin Libet involving the measurement of the readiness potential, has shown, however, that the results of the test methods do not justify the demand for a profound change up to the point of a total revision of criminal law, and that they cannot invalidate the concept of freedom of will apostrophised on principle. The empirical data obtained fail to demonstrate if and why decisions of the will should not be free, the more so as the nomothetic method used ignores completely the idiographic understanding and interpretation of the always context-related and socio-structurally (pre)-moulded personality of the offender. Performed in a laboratory setting as individual actions with a comparatively simple structure and unrelated to a concrete situation, they can by no means be translated to the (more) complex situation under which an offence is committed including the decision-making processes determined by psychodynamic, motivational and intentional aspects as well as highly specific reciprocal interactions within the offender-victim constellation. Even if these experiments had shown the determined nature of human decisions, they would not necessarily have to bring about a conceptual change of paradigms of the normative concept of guilt, because

  5. Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies

    Science.gov (United States)

    Davis, Margaret T.; Holmes, Sophie E.; Pietrzak, Robert H.; Esterlis, Irina

    2018-01-01

    Chronic stress accounts for billions of dollars of economic loss annually in the United States alone, and is recognized as a major source of disability and mortality worldwide. Robust evidence suggests that chronic stress plays a significant role in the onset of severe and impairing psychiatric conditions, including major depressive disorder, bipolar disorder, and posttraumatic stress disorder. Application of molecular imaging techniques such as positron emission tomography and single photon emission computed tomography in recent years has begun to provide insight into the molecular mechanisms by which chronic stress confers risk for these disorders. The present paper provides a comprehensive review and synthesis of all positron emission tomography and single photon emission computed tomography imaging publications focused on the examination of molecular targets in individuals with major depressive disorder, posttraumatic stress disorder, or bipolar disorder to date. Critical discussion of discrepant findings and broad strengths and weaknesses of the current body of literature is provided. Recommended future directions for the field of molecular imaging to further elucidate the neurobiological substrates of chronic stress-related disorders are also discussed. This article is part of the inaugural issue for the journal focused on various aspects of chronic stress. PMID:29862379

  6. The neurobiology of focus and distraction: The case for incorporating mindfulness into leadership.

    Science.gov (United States)

    Mohapel, Paul

    2018-05-01

    Increasingly health leaders are experiencing greater demands and pressures, which require the need for better focus while limiting unwarranted distractions. This article offers a neurobiological explanation of how the brain focuses and becomes distracted, in order to help health leaders gain insight into their own effectiveness. Two main neural circuits are contrasted: the mind-wandering default mode circuit and the attentional central executive system. These two systems act in an antagonistic pairing, where the degree of toggling between systems is associated with the degree a person can sustain focus and filter out unwarranted distractions. Excessive multitasking appears to compromise the neural switch of these two systems, thereby diminishing our focus and concentration. In contrast, mindfulness practice is shown to have the opposite effect by enhancing the neural switch, thereby enhancing leadership focus that can lead to greater flexibility, foresight, regulation, and creativity. To conclude, leaders who are excessively distracted, such as with multitasking, may be compromising cognitive brain functioning, while engaging in mindfulness may replenish the brain and thereby enhance leaders' ability to sustain focus and tap into higher cognitive functioning.

  7. Neurobiological and psychosocial conditionings of rationality of criminal behaviour – review

    Directory of Open Access Journals (Sweden)

    Przemysław Piotrowski

    2011-12-01

    Full Text Available The term “rationality” has been mentioned for ages in philosophical discourse, and later in science. No wonder that considerations regarding the reasons behind committing crimes involve the question of rationality of culprits. The article comprises a review of contemporary research on factors which, on a neurobiological, psychological or social level, modify the level of rationality of criminals. In case of the juveniles, factors such as not fully developed brain structures, the influence of hormonal changes resulting in emotional instability and peer pressure, should also be taken into account. Adult criminals often manifest a deficit of activity in the prefrontal cortex of the brain, combined with increased activity in the subcortex, resulting in an increased propensity for violence. Neurophysiologic disorders may be accompanied by factors reducing the rationality, such as: errors in thinking, habitual use of neutralisation techniques or being lead by the, typical for street culture, perception of justice. All of the above should be taken into account as a part of a multi-aspect analyses of the causes of crime.

  8. The Relationship between Sleep Problems, Neurobiological Alterations, Core Symptoms of Autism Spectrum Disorder, and Psychiatric Comorbidities

    Directory of Open Access Journals (Sweden)

    Luigi Mazzone

    2018-05-01

    Full Text Available Children with Autism Spectrum Disorder (ASD are at an increased risk for sleep disturbances, and studies indicate that between 50 and 80% of children with ASD experience sleep problems. These problems increase parental stress and adversely affect family quality of life. Studies have also suggested that sleep disturbances may increase behavioral problems in this clinical population. Although understanding the causes of sleep disorders in ASD is a clinical priority, the causal relationship between these two conditions remains unclear. Given the complex nature of ASD, the etiology of sleep problems in this clinical population is probably multi-factorial. In this overview, we discuss in detail three possible etiological explanations of sleep problems in ASD that can all contribute to the high rate of these symptoms in ASD. Specifically, we examine how neurobiological alterations, genetic mutations, and disrupted sleep architecture can cause sleep problems in individuals with ASD. We also discuss how sleep problems may be a direct result of core symptoms of ASD. Finally, a detailed examination of the relationship between sleep problems and associated clinical features and psychiatric comorbidities in individuals with ASD is described.

  9. Neurobiological Foundations of Acupuncture: The Relevance and Future Prospect Based on Neuroimaging Evidence

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2013-01-01

    Full Text Available Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental factors involving acupuncture. Converging evidence focusing on acute effects of acupuncture has revealed significant modulatory activities at widespread cerebrocerebellar brain regions. Given the delayed effect of acupuncture, block-designed analysis may produce bias, and acupuncture shared a common feature that identified voxels that coded the temporal dimension for which multiple levels of their dynamic activities in concert cause the processing of acupuncture. Expectation in acupuncture treatment has a physiological effect on the brain network, which may be heterogeneous from acupuncture mechanism. “Deqi” response, bearing clinical relevance and association with distinct nerve fibers, has the specific neurophysiology foundation reflected by neural responses to acupuncture stimuli. The type of sham treatment chosen is dependent on the research question asked and the type of acupuncture treatment to be tested. Due to the complexities of the therapeutic mechanisms of acupuncture, using multiple controls is an optimal choice.

  10. The Neurobiology Shaping Affective Touch: Expectation, Motivation, and Meaning in the Multisensory Context

    Science.gov (United States)

    Ellingsen, Dan-Mikael; Leknes, Siri; Løseth, Guro; Wessberg, Johan; Olausson, Håkan

    2016-01-01

    Inter-individual touch can be a desirable reward that can both relieve negative affect and evoke strong feelings of pleasure. However, if other sensory cues indicate it is undesirable to interact with the toucher, the affective experience of the same touch may be flipped to disgust. While a broad literature has addressed, on one hand the neurophysiological basis of ascending touch pathways, and on the other hand the central neurochemistry involved in touch behaviors, investigations of how external context and internal state shapes the hedonic value of touch have only recently emerged. Here, we review the psychological and neurobiological mechanisms responsible for the integration of tactile “bottom–up” stimuli and “top–down” information into affective touch experiences. We highlight the reciprocal influences between gentle touch and contextual information, and consider how, and at which levels of neural processing, top-down influences may modulate ascending touch signals. Finally, we discuss the central neurochemistry, specifically the μ-opioids and oxytocin systems, involved in affective touch processing, and how the functions of these neurotransmitters largely depend on the context and motivational state of the individual. PMID:26779092

  11. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor

    Energy Technology Data Exchange (ETDEWEB)

    Lenka, Abhishek; Bhalsing, Ketaki Swapnil; Jhunjhunwala, Ketan [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore, Karnataka (India); National Institute of Mental Health and Neurosciences, Department of Clinical Neurosciences, Bangalore, Karnataka (India); Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn [National Institute of Mental Health and Neurosciences, Department of Neuroimaging and Interventional Radiology, Bangalore, Karnataka (India); Naduthota, Rajini M.; Yadav, Ravi; Pal, Pramod Kumar [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore, Karnataka (India)

    2017-02-15

    Essential tremor (ET) is the most common movement disorder among adults. Although ET has been recognized as a mono-symptomatic benign illness, reports of non-motor symptoms and non-tremor motor symptoms have increased its clinical heterogeneity. The neural correlates of ET are not clearly understood. The aim of this study was to understand the neurobiology of ET using resting state fMRI. Resting state functional MR images of 30 patients with ET and 30 age- and gender-matched healthy controls were obtained. The functional connectivity of the two groups was compared using whole-brain seed-to-voxel-based analysis. The ET group had decreased connectivity of several cortical regions especially of the primary motor cortex and the primary somatosensory cortex with several right cerebellar lobules compared to the controls. The thalamus on both hemispheres had increased connectivity with multiple posterior cerebellar lobules and vermis. Connectivity of several right cerebellar seeds with the cortical and thalamic seeds had significant correlation with an overall score of Fahn-Tolosa-Marin tremor rating scale (FTM-TRS) as well as the subscores for head tremor and limb tremor. Seed-to-voxel resting state connectivity analysis revealed significant alterations in the cerebello-thalamo-cortical network in patients with ET. These alterations correlated with the overall FTM scores as well as the subscores for limb tremor and head tremor in patients with ET. These results further support the previous evidence of cerebellar pathology in ET. (orig.)

  12. Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning.

    Science.gov (United States)

    Todd, Travis P; Vurbic, Drina; Bouton, Mark E

    2014-02-01

    This article reviews research on the behavioral and neural mechanisms of extinction as it is represented in both Pavlovian and instrumental learning. In Pavlovian extinction, repeated presentation of a signal without its reinforcer weakens behavior evoked by the signal; in instrumental extinction, repeated occurrence of a voluntary action without its reinforcer weakens the strength of the action. In either case, contemporary research at both the behavioral and neural levels of analysis has been guided by a set of extinction principles that were first generated by research conducted at the behavioral level. The review discusses these principles and illustrates how they have informed the study of both Pavlovian and instrumental extinction. It shows that behavioral and neurobiological research efforts have been tightly linked and that their results are readily integrated. Pavlovian and instrumental extinction are also controlled by compatible behavioral and neural processes. Since many behavioral effects observed in extinction can be multiply determined, we suggest that the current close connection between behavioral-level and neural-level analyses will need to continue. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Impulse control disorders in Parkinson's disease: definition, epidemiology, risk factors, neurobiology and management.

    Science.gov (United States)

    Ceravolo, Roberto; Frosini, Daniela; Rossi, Carlo; Bonuccelli, Ubaldo

    2009-12-01

    There is increasing awareness that impulse control disorders (ICDs), including pathological gambling, hyper-sexuality, compulsive eating and buying, can occur as a complication of Parkinson's disease (PD). In addition, other impulsive or compulsive disorders have been reported to occur, including dopamine dysregulation syndrome (DDS) and punding. Case reports and prospective studies have reported an association between ICDs and the use of dopamine receptor agonists at higher doses, and DDS has been associated with L-dopa at higher doses or short-acting dopamine receptor agonists. Risk factors for ICDs include male sex, younger age or younger age at PD onset, a pre-PD history of ICD symptoms, history of substance use or bipolar disorder, and a personality profile characterized by impulsiveness. The management of clinically significant ICD symptoms should consist of modifications to dopamine replacement therapy, particularly dopamine receptor agonists, which is usually associated with an improvement of ICDs. There is no empirical evidence supporting the use of psychiatric drugs for ICDs in PD. Functional neuroimaging studies such as functional MRI and PET can investigate in vivo the neurobiological basis of these pathological behaviours. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia.

    Science.gov (United States)

    Radulovic, Jelena

    2017-03-01

    Psychological stress can impact memory systems in several different ways. In individuals with healthy defense and coping systems, stress results in the formation of negatively valenced memories whose ability to induce emotional and somatic distress subsides with time. Vulnerable individuals, however, go on to develop stress-related disorders such as post-traumatic stress disorder (PTSD) and suffer from significant memory abnormalities. Whether expressed as intrusive trauma memories, partial amnesia, or dissociative amnesia, such abnormalities are thought to be the core source of patients' symptoms, which are often debilitating and implicate an entire socio-cognitive-affective spectrum. With this in mind, and focusing on stress-responsive hippocampal microcircuits, this article highlights recent advances in the neurobiology of memory that allow us to (1) isolate and visualize memory circuits, (2) change their activity using genetic tools and state-dependent manipulations, and (3) directly examine their impact on socio-affective circuits and global network connectivity. By integrating these approaches, we are now in a position to address important questions that have troubled psychiatry for a long time-questions such as are traumatic memories special, and why are stress effects on memory diverse. Furthering our fundamental understanding of memory in the framework of adaptive and maladaptive stress responses has the potential to boost the development of new treatments that can benefit patients suffering from psychological trauma.

  15. The Role of Pleasure Neurobiology and Dopamine in Mental Health Disorders.

    Science.gov (United States)

    Worley, Julie

    2017-09-01

    Recent evidence and research has demonstrated that the pleasure response and associated neurotransmitters and brain circuits play a significant role in substance use disorders (SUDs). It was thought that negative behaviors associated with SUDs resulted from negative choices, but it is now known that chemical changes in the brain drive those behaviors. Several mental health disorders (e.g., eating disorders, non-suicidal self-injury, compulsive sex behaviors, internet gaming, gambling) are also thought to involve those same pleasure responses, neurotransmitters, and brain regions. Studies have shown that the use of naltrexone, a dopamine antagonist, can reduce symptoms of these disorders. It is important for nurses to understand the underlying physiology of mental health disorders that are thought to have an addictive or craving component. This understanding can help reduce stigma. Educating patients about likely neurobiological causes for their disorders can also help reduce guilt and shame. Nurses should educate patients about these disorders and evidence-based treatments, including off-label use of naltrexone. [Journal of Psychosocial Nursing and Mental Health Services, 55(9), 17-21.]. Copyright 2017, SLACK Incorporated.

  16. A systematic review of neurobiological and clinical features of mindfulness meditations.

    Science.gov (United States)

    Chiesa, A; Serretti, A

    2010-08-01

    Mindfulness meditation (MM) practices constitute an important group of meditative practices that have received growing attention. The aim of the present paper was to systematically review current evidence on the neurobiological changes and clinical benefits related to MM practice in psychiatric disorders, in physical illnesses and in healthy subjects. A literature search was undertaken using Medline, ISI Web of Knowledge, the Cochrane collaboration database and references of retrieved articles. Controlled and cross-sectional studies with controls published in English up to November 2008 were included. Electroencephalographic (EEG) studies have revealed a significant increase in alpha and theta activity during meditation. Neuroimaging studies showed that MM practice activates the prefrontal cortex (PFC) and the anterior cingulate cortex (ACC) and that long-term meditation practice is associated with an enhancement of cerebral areas related to attention. From a clinical viewpoint, Mindfulness-Based Stress Reduction (MBSR) has shown efficacy for many psychiatric and physical conditions and also for healthy subjects, Mindfulness-Based Cognitive Therapy (MBCT) is mainly efficacious in reducing relapses of depression in patients with three or more episodes, Zen meditation significantly reduces blood pressure and Vipassana meditation shows efficacy in reducing alcohol and substance abuse in prisoners. However, given the low-quality designs of current studies it is difficult to establish whether clinical outcomes are due to specific or non-specific effects of MM. Despite encouraging findings, several limitations affect current studies. Suggestions are given for future research based on better designed methodology and for future directions of investigation.

  17. Genetics, Cognition and Neurobiology of Schizotypal Personality: A Review of the Overlap with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ulrich eEttinger

    2014-02-01

    Full Text Available Schizotypy refers to a set of temporally stable traits that are observed in the general population and that resemble the signs and symptoms of schizophrenia. Here, we review evidence from studies on genetics, cognition, perception, motor and oculomotor control, brain structure, brain function and psychopharmacology in schizotypy. We specifically focused on identifying areas of overlap between schizotypy and schizophrenia. Evidence was corroborated that significant overlap exists between the two, covering the behavioural, brain structural and functional as well molecular levels. In particular, several studies showed that individuals with high levels of schizotypal traits exhibit alterations in neurocognitive task performance and underlying brain function similar to the deficits seen in patients with schizophrenia. Studies of brain structure have shown both volume reductions and increases in schizotypy, pointing to schizophrenia-like deficits as well as possible protective or compensatory mechanisms. Experimental pharmacological studies have shown that high levels of schizotypy are associated with (i enhanced dopaminergic response in striatum following administration of amphetamine and (ii improvement of cognitive performance following administration of antipsychotic compounds. Together, this body of work suggests that schizotypy shows overlap with schizophrenia across multiple behavioural and neurobiological domains, suggesting that the study of schizotypal traits may be useful in improving our understanding of the aetiology of schizophrenia.

  18. Neuroimaging assessment of early and late neurobiological sequelae of traumatic brain injury: implications for CTE

    Directory of Open Access Journals (Sweden)

    Mark eSundman

    2015-09-01

    Full Text Available Traumatic brain injury (TBI has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE. The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc., and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau, review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.

  19. Behavioural, hormonal and neurobiological mechanisms of aggressive behaviour in human and nonhuman primates.

    Science.gov (United States)

    de Almeida, Rosa Maria Martins; Cabral, João Carlos Centurion; Narvaes, Rodrigo

    2015-05-01

    Aggression is a key component for social behaviour and can have an adaptive value or deleterious consequences. Here, we review the role of sex-related differences in aggressive behaviour in both human and nonhuman primates. First, we address aggression in primates, which varies deeply between species, both in intensity and in display, ranging from animals that are very aggressive, such as chimpanzees, to the nonaggressive bonobos. Aggression also influences the hierarchical structure of gorillas and chimpanzees, and is used as the main tool for dealing with other groups. With regard to human aggression, it can be considered a relevant adaptation for survival or can have negative impacts on social interaction for both sexes. Gender plays a critical role in aggressive and competitive behaviours, which are determined by a cascade of physiological changes, including GABAergic and serotonergic systems, and sex neurosteroids. The understanding of the neurobiological bases and behavioural determinants of different types of aggression is fundamental for minimising these negative impacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Playing Music for a Smarter Ear: Cognitive, Perceptual and Neurobiological Evidence

    Science.gov (United States)

    Strait, Dana; Kraus, Nina

    2012-01-01

    Human hearing depends on a combination of cognitive and sensory processes that function by means of an interactive circuitry of bottom-up and top-down neural pathways, extending from the cochlea to the cortex and back again. Given that similar neural pathways are recruited to process sounds related to both music and language, it is not surprising that the auditory expertise gained over years of consistent music practice fine-tunes the human auditory system in a comprehensive fashion, strengthening neurobiological and cognitive underpinnings of both music and speech processing. In this review we argue not only that common neural mechanisms for speech and music exist, but that experience in music leads to enhancements in sensory and cognitive contributors to speech processing. Of specific interest is the potential for music training to bolster neural mechanisms that undergird language-related skills, such as reading and hearing speech in background noise, which are critical to academic progress, emotional health, and vocational success. PMID:22993456

  1. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor

    International Nuclear Information System (INIS)

    Lenka, Abhishek; Bhalsing, Ketaki Swapnil; Jhunjhunwala, Ketan; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Naduthota, Rajini M.; Yadav, Ravi; Pal, Pramod Kumar

    2017-01-01

    Essential tremor (ET) is the most common movement disorder among adults. Although ET has been recognized as a mono-symptomatic benign illness, reports of non-motor symptoms and non-tremor motor symptoms have increased its clinical heterogeneity. The neural correlates of ET are not clearly understood. The aim of this study was to understand the neurobiology of ET using resting state fMRI. Resting state functional MR images of 30 patients with ET and 30 age- and gender-matched healthy controls were obtained. The functional connectivity of the two groups was compared using whole-brain seed-to-voxel-based analysis. The ET group had decreased connectivity of several cortical regions especially of the primary motor cortex and the primary somatosensory cortex with several right cerebellar lobules compared to the controls. The thalamus on both hemispheres had increased connectivity with multiple posterior cerebellar lobules and vermis. Connectivity of several right cerebellar seeds with the cortical and thalamic seeds had significant correlation with an overall score of Fahn-Tolosa-Marin tremor rating scale (FTM-TRS) as well as the subscores for head tremor and limb tremor. Seed-to-voxel resting state connectivity analysis revealed significant alterations in the cerebello-thalamo-cortical network in patients with ET. These alterations correlated with the overall FTM scores as well as the subscores for limb tremor and head tremor in patients with ET. These results further support the previous evidence of cerebellar pathology in ET. (orig.)

  2. Neurobiología de la agresión y la violencia

    Directory of Open Access Journals (Sweden)

    Joaquín Ortega-Escobar

    2016-01-01

    Full Text Available La neurobiología de la agresión y la violencia es de interés para la psicología jurídica porque buena parte de la conducta delictiva tiene componentes violentos. En esta revisión se definen en primer lugar ambos conceptos, para diferenciar a continuación los tipos de agresión (impulsiva vs. instrumental que aparecen en la literatura científica y finalmente analizar las estructuras nerviosas que según los estudios sobre lesiones cerebrales o de neuroimagen están asociadas con la agresión. Esta revisión destaca: a las estructuras subcorticales como el hipotálamo/tronco del encéfalo, donde se genera la conducta agresiva y la amígdala, implicada en procesar estímulos emocionalmente destacados; b las estructuras corticales como la corteza prefrontal (que comprende la corteza orbitofrontal, la corteza prefrontal ventromedial y la corteza cingulada anterior, que parecen ser hipofuncionales en los sujetos violentos. Por último, se revisan estudios sobre el papel del neurotransmisor serotonina en la manifestación del comportamiento agresivo.

  3. Incision and stress regulation in borderline personality disorder: neurobiological mechanisms of self-injurious behaviour.

    Science.gov (United States)

    Reitz, Sarah; Kluetsch, Rosemarie; Niedtfeld, Inga; Knorz, Teresa; Lis, Stefanie; Paret, Christian; Kirsch, Peter; Meyer-Lindenberg, Andreas; Treede, Rolf-Detlef; Baumgärtner, Ulf; Bohus, Martin; Schmahl, Christian

    2015-08-01

    Patients with borderline personality disorder frequently show non-suicidal self-injury (NSSI). In these patients, NSSI often serves to reduce high levels of stress. Investigation of neurobiological mechanisms of NSSI in borderline personality disorder. In total, 21 women with borderline personality disorder and 17 healthy controls underwent a stress induction, followed by either an incision into the forearm or a sham treatment. Afterwards participants underwent resting-state functional magnetic resonance imaging while aversive tension, heart rate and heart rate variability were assessed. We found a significant influence of incision on subjective and objective stress levels with a stronger decrease of aversive tension in the borderline personality disorder group following incision than sham. Amygdala activity decreased more and functional connectivity with superior frontal gyrus normalised after incision in the borderline personality disorder group. Decreased stress levels and amygdala activity after incision support the assumption of an influence of NSSI on emotion regulation in individuals with borderline personality disorder and aids in understanding why these patients use self-inflicted pain to reduce inner tension. © The Royal College of Psychiatrists 2015.

  4. The neurobiology shaping affective touch: Expectation, motivation, and meaning in the multisensory context

    Directory of Open Access Journals (Sweden)

    Dan-Mikael eEllingsen

    2016-01-01

    Full Text Available Inter-individual touch can be a desirable reward that can both relieve negative affect and evoke strong feelings of pleasure. However, if other sensory cues indicate it is undesirable to interact with the toucher, the affective experience of the same touch may be flipped to disgust. While a broad literature has addressed, on one hand the neurophysiological basis of ascending touch pathways, and on the other hand the central neurochemistry involved in touch behaviors, investigations of how external context and internal state shapes the hedonic value of touch have only recently emerged. Here, we review the psychological and neurobiological mechanisms responsible for the integration of tactile bottom-up stimuli and top-down information into affective touch experiences. We highlight the reciprocal influences between gentle touch and contextual information, and consider how, and at which levels of neural processing, top-down influences may modulate ascending touch signals. Finally, we discuss the central neurochemistry, specifically the µ-opioids and oxytocin systems, involved in affective touch processing, and how the functions of these neurotransmitters largely depend on the context and motivational state of the individual.

  5. Endocrine function and neurobiology of the longest-living rodent, the naked mole-rat.

    Science.gov (United States)

    Edrey, Yael H; Park, Thomas J; Kang, Hyesin; Biney, Adriana; Buffenstein, Rochelle

    2011-01-01

    Animals that have evolved exceptional capabilities, such as extraordinary longevity may reveal pertinent and potentially critical insights into biomedical research that are not readily apparent in standard laboratory animals. Naked mole-rats (Heterocephalus glaber; NMRs) are extremely long-lived (30 years) mouse-sized rodents. They clearly have evolved superior anti-aging mechanisms as evident by the markedly attenuated age-related decline in physiological function, sustained reproductive capacity and pronounced cancer resistance throughout their long-lives. These eusocial rodents, like the social insects, live in colonies with breeding restricted to one female and a few males. Subordinates are sexually monomorphic, yet retain the ability to become breeders, and can undergo growth surges and neural modifications at any time throughout their life. This plasticity in physiological and behavioral aspects may have contributed to their long-lives. Naked mole-rats show numerous adaptations to life underground including extreme tolerance of hypoxia, acid insensitivity, as well as independence of photoendocrine systems. Here we review what is known about their unique social structure, sensory systems, endocrinology and neurobiology, and highlight areas that may be pertinent to biogerontology. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Neurobiology of Insight Deficits in Schizophrenia: An fMRI Study

    Science.gov (United States)

    Shad, Mujeeb U.; Keshavan, Matcheri S.

    2015-01-01

    Prior research has shown insight deficits in schizophrenia to be associated with specific neuroimaging changes (primarily structural) especially in the prefrontal sub-regions. However, little is known about the functional correlates of impaired insight. Seventeen patients with schizophrenia (mean age 40.0±10.3; M/F= 14/3) underwent fMRI on a Philips 3.0 T Achieva system while performing on a self-awareness task containing self- vs. other-directed sentence stimuli. SPM5 was used to process the imaging data. Preprocessing consisted of realignment, coregistration, and normalization, and smoothing. A regression analysis was used to examine the relationship between brain activation in response to self-directed versus other-directed sentence stimuli and average scores on behavioral measures of awareness of symptoms and attribution of symptoms to the illness from Scale to Assess Unawareness of Mental Disorders. Family Wise Error correction was employed in the fMRI analysis. Average scores on awareness of symptoms (1 = aware; 5 = unaware) were associated with activation of multiple brain regions, including prefrontal, parietal and limbic areas as well as basal ganglia. However, average scores on correct attribution of symptoms (1 = attribute; 5 = misattribute) were associated with relatively more localized activation of prefrontal cortex and basal ganglia. These findings suggest that unawareness and misattribution of symptoms may have different neurobiological basis in schizophrenia. While symptom unawareness may be a function of a more complex brain network, symptom misattribution may be mediated by specific brain regions. PMID:25957484

  7. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory.

    Science.gov (United States)

    Ikemoto, Satoshi

    2010-11-01

    Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area. Published by Elsevier Ltd.

  8. Mozart, Mozart Rhythm and Retrograde Mozart Effects: Evidences from Behaviours and Neurobiology Bases.

    Science.gov (United States)

    Xing, Yingshou; Xia, Yang; Kendrick, Keith; Liu, Xiuxiu; Wang, Maosen; Wu, Dan; Yang, Hua; Jing, Wei; Guo, Daqing; Yao, Dezhong

    2016-01-21

    The phenomenal finding that listening to Mozart K.448 enhances performance on spatial tasks has motivated a continuous surge in promoting music education over the past two decades. But there have been inconsistent reports in previous studies of the Mozart effect. Here conducted was a systematic study, with Mozart and retrograde Mozart music, Mozart music rhythm and pitch, behaviours and neurobiology tests, rats and humans subjects. We show that while the Mozart K.448 has positive cognitive effects, the retrograde version has a negative effect on rats' performance in the Morris water maze test and on human subjects' performance in the paper folding and cutting test and the pencil-and-paper maze test. Such findings are further confirmed by subsequent immunohistochemical analyses in rats on the neurogenesis and protein levels of BDNF and its receptor, TrkB. Furthermore, when the rhythm and pitch of the normal and retrograde Mozart music are manipulated independently, the learning performance of the rats in the Morris water maze test indicated that rhythm is a crucial element in producing the behavioural effects. These findings suggest that the nature of Mozart effect is the Mozart rhythm effect, and indicate that different music may have quite different to opposite effects. Further study on rhythm effect may provide clues to understand the common basis over animals from rats to humans.

  9. Is it possible to delete a philosophical consciousness? Metaphysical aspects of Ssearle’s neurobiological approach of free will

    Directory of Open Access Journals (Sweden)

    Grujić Snežana

    2016-01-01

    Full Text Available In an effort to adjust his theoretical comprehension to the existing natural-scientific paradigm, Searle develops neurobiological naturalism, an approach which should rely on basic facts obtained from the neuroscience researches of living organisms when solving basic philosophical problems. This paper briefly presents this view’s theory leading to the argumentation that Searle’s point of view is of metaphysical characteristics which is exactly what he was trying to avoid. The metaphysical character of Searle’s neurobiological naturalism has been seen through the problem of free will resulting from his understanding of consciousness. The argumentation is based on an analysis of the concepts, the gap and the self, as well as on possible solutions of the problem of free will (hypothesis 1 and 2.

  10. Theoretical and practical insights for anorexia nervosa and major depression: novel neurobiological targets for pharmacology and brain stimulation therapies

    OpenAIRE

    Keating, Charlotte

    2017-01-01

    Major Depression (MD) and Anorexia Nervosa (AN) often present co-morbidly and both share neurobiological abnormalities. MD presents up to 3 times as often in females than males and AN presents in up to 95% of females. In the illness phase, pathophysiological evidence indicates similar abnormalities in both clinical groups including; dysfunction in the serotonin system (5-hydroxytryptamine, 5-HT) (of which some abnormalities persist following recovery) and between 60-80% of patients in both gr...

  11. Neurobiological correlates of externalizing and prosocial behavior in school-age children: A study on truths and lies

    OpenAIRE

    Thijssen, Sandra

    2015-01-01

    markdownabstractThis thesis describes a series of studies on the neurobiological correlates of externalizing and prosocial behavior in six-to ten-year old children. Chapter 1 provides an outline and describes the background and aims of our work. The studies described in this thesis are embedded in the Generation R study, a prospective cohort from fetal life onwards in Rotterdam, the Netherlands. We describe both structural (chapter 2, 3, and 6) and functional neuroimaging studies (chapter 4 a...

  12. Sample preparation

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Sample preparation prior to HPLC analysis is certainly one of the most important steps to consider in trace or ultratrace analysis. For many years scientists have tried to simplify the sample preparation process. It is rarely possible to inject a neat liquid sample or a sample where preparation may not be any more complex than dissolution of the sample in a given solvent. The last process alone can remove insoluble materials, which is especially helpful with the samples in complex matrices if other interactions do not affect extraction. Here, it is very likely a large number of components will not dissolve and are, therefore, eliminated by a simple filtration process. In most cases, the process of sample preparation is not as simple as dissolution of the component interest. At times, enrichment is necessary, that is, the component of interest is present in very large volume or mass of material. It needs to be concentrated in some manner so a small volume of the concentrated or enriched sample can be injected into HPLC. 88 refs

  13. Evaluation of regional-scale water level simulations using various river routing schemes within a hydrometeorological modelling framework for the preparation of the SWOT mission

    Science.gov (United States)

    Häfliger, V.; Martin, E.; Boone, A. A.; Habets, F.; David, C. H.; Garambois, P. A.; Roux, H.; Ricci, S. M.; Thévenin, A.; Berthon, L.; Biancamaria, S.

    2014-12-01

    The ability of a regional hydrometeorological model to simulate water depth is assessed in order to prepare for the SWOT (Surface Water and Ocean Topography) mission that will observe free surface water elevations for rivers having a width larger than 50/100 m. The Garonne river (56 000 km2, in south-western France) has been selected owing to the availability of operational gauges, and the fact that different modeling platforms, the hydrometeorological model SAFRAN-ISBA-MODCOU and several fine scale hydraulic models, have been extensively evaluated over two reaches of the river. Several routing schemes, ranging from the simple Muskingum method to time-variable parameter kinematic and diffusive waves schemes with time varying parameters, are tested using predetermined hydraulic parameters. The results show that the variable flow velocity scheme is advantageous for discharge computations when compared to the original Muskingum routing method. Additionally, comparisons between water level computations and in situ observations led to root mean square errors of 50-60 cm for the improved Muskingum method and 40-50 cm for the kinematic-diffusive wave method, in the downstream Garonne river. The error is larger than the anticipated SWOT resolution, showing the potential of the mission to improve knowledge of the continental water cycle. Discharge computations are also shown to be comparable to those obtained with high-resolution hydraulic models over two reaches. However, due to the high variability of river parameters (e.g. slope and river width), a robust averaging method is needed to compare the hydraulic model outputs and the regional model. Sensitivity tests are finally performed in order to have a better understanding of the mechanisms which control the key hydrological processes. The results give valuable information about the linearity, Gaussianity and symetry of the model, in order to prepare the assimilation of river heights in the model.

  14. MODEL OF THE IMPLEMENTATION PROCESS OF DESIGNING A CLOUD-BASED LEARNING ENVIRONMENT FOR THE PREPARATION OF BACHELOR OF COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Vakaliuk T.

    2017-12-01

    Full Text Available The article presents the model of the process of implementation of the design of a cloud-oriented learning environment (CBLE for the preparation of bachelor of computer science, which consists of seven stages: analysis, setting goals and objectives, formulating requirements for the cloud-oriented learning environment, modeling the CBLE, developing CBLE, using CBLE in the educational Bachelor of Computer Science and Performance Testing. Each stage contains sub-steps. The analysis stage is considered in three aspects: psychological, pedagogical and technological. The formulation of the requirements for the CBLE was carried out taking into account the content and objectives of the training; experience of using CBLE; the personal qualities and knowledge, skills and abilities of students. The simulation phase was divided into sub-stages: the development of a structural and functional model of the CBLE for the preparation of bachelors of computer science; development of a model of cloud-oriented learning support system (COLSS; development of a model of interaction processes in CBLE. The fifth stage was also divided into the following sub-steps: domain registration and customization of the appearance of COLSS; definition of the disciplines provided by the curriculum preparation of bachelors of computer science; creation of own cabinets of teachers and students; download educational and methodological and accompanying materials; the choice of traditional and cloud-oriented forms, methods, means of training. The verification of the functioning of the CBLE will be carried out in the following areas: the functioning of the CBLE; results of students' educational activity; formation of information and communication competence of students.

  15. The acceptability, feasibility, and possible benefits of a neurobiologically-informed 5-day multifamily treatment for adults with anorexia nervosa.

    Science.gov (United States)

    Wierenga, Christina E; Hill, Laura; Knatz Peck, Stephanie; McCray, Jason; Greathouse, Laura; Peterson, Danika; Scott, Amber; Eisler, Ivan; Kaye, Walter H

    2018-05-02

    Novel treatments for adults with anorexia nervosa (AN) are lacking. Recent scientific advances have identified neurobiologically-driven temperament contributors to AN symptoms that may guide development of more effective treatments. This preliminary study evaluates the acceptability, feasibility and possible benefits of a multicenter open trial of an intensive 5-day neurobiologically-informed multifamily treatment for adults with AN and their supports (SU). The temperament-focused treatment combines psychoeducation of AN neurobiology and SU involvement to develop skills to manage traits contributing to disease chronicity. Fifty-four adults with AN and at least one SU (n = 73) received the 5-day treatment. Acceptability, feasibility, and attrition were measured post-treatment. Clinical outcome (BMI, eating disorder psychopathology, family function) was assessed post-treatment and at >3-month follow-up. The treatment had low attrition, with only one drop-out. Patients and SU rated the intervention as highly acceptable, and clinicians reported good feasibility. At post-treatment, patients demonstrated significantly increased BMI, reduced eating disorder psychopathology, and improved family function. Benefits were maintained in the 39 patients who completed follow-up assessment, with 62% reporting full or partial remission. Preliminary results are promising and suggest this novel treatment is feasible and acceptable. To establish treatment efficacy, fully-powered randomized controlled trials are necessary. © 2018 Wiley Periodicals, Inc.

  16. Is lead exposure in early life an environmental risk factor for Schizophrenia? Neurobiological connections and testable hypotheses.

    Science.gov (United States)

    Guilarte, Tomás R; Opler, Mark; Pletnikov, Mikhail

    2012-06-01

    Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental origin in which both genes and environmental factors come together to produce a schizophrenia phenotype later in life. The challenging questions have been which genes and what environmental factors? Although there is evidence that different chromosome loci and several genes impart susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the environment, only recently there has been an interest in studying gene × environment interactions. Recent evidence of a potential association between prenatal lead (Pb(2+)) exposure and schizophrenia precipitated the search for plausible neurobiological connections. The most promising connection is that in schizophrenia and in developmental Pb(2+) exposure there is strong evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the NMDA receptor (NMDAR) complex during critical periods of development may alter neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going proof of concept gene-environment interaction studies of early life Pb(2+) exposure in mice expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that is strongly associated with schizophrenia and allied mental disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Neurobiological Programming of Early Life Stress: Functional Development of Amygdala-Prefrontal Circuitry and Vulnerability for Stress-Related Psychopathology.

    Science.gov (United States)

    VanTieghem, Michelle R; Tottenham, Nim

    2017-04-25

    Early adverse experiences are associated with heighted vulnerability for stress-related psychopathology across the lifespan. While extensive work has investigated the effects of early adversity on neurobiology in adulthood, developmental approaches can provide further insight on the neurobiological mechanisms that link early experiences and long-term mental health outcomes. In the current review, we discuss the role of emotion regulation circuitry implicated in stress-related psychopathology from a developmental and transdiagnostic perspective. We highlight converging evidence suggesting that multiple forms of early adverse experiences impact the functional development of amygdala-prefrontal circuitry. Next, we discuss how adversity-induced alterations in amygdala-prefrontal development are associated with symptoms of emotion dysregulation and psychopathology. Additionally, we discuss potential mechanisms through which protective factors may buffer the effects of early adversity on amygdala-prefrontal development to confer more adaptive long-term outcomes. Finally, we consider limitations of the existing literature and make suggestions for future longitudinal and translational research that can better elucidate the mechanisms linking early adversity, neurobiology, and emotional phenotypes. Together, these findings may provide further insight into the neuro-developmental mechanisms underlying the emergence of adversity-related emotional disorders and facilitate the development of targeted interventions that can ameliorate risk for psychopathology in youth exposed to early life stress.

  18. Is Lead Exposure in Early Life An Environmental Risk Factor for Schizophrenia? Neurobiological Connections and Testable Hypotheses

    Science.gov (United States)

    Guilarte, Tomás R.; Opler, Mark; Pletnikov, Mikhail

    2013-01-01

    Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental origin in which both genes and environmental factors come together to produce a schizophrenia phenotype later in life. The challenging questions have been which genes and what environmental factors? Although there is evidence that different chromosome loci and several genes impart susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the environment, only recently there has been an interest in studying gene × environment interactions. Recent evidence of a potential association between prenatal lead (Pb2+) exposure and schizophrenia precipitated the search for plausible neurobiological connections. The most promising connection is that in schizophrenia and in developmental Pb2+ exposure there is strong evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the NMDA receptor (NMDAR) complex during critical periods of development may alter neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going proof of concept gene-environment interaction studies of early life Pb2+ exposure in mice expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that is strongly associated with schizophrenia and allied mental disorders. PMID:22178136

  19. Analysis of human tissue management models for medical research: preparation for implementation of the 2012 revision of the Bioethics and Safety Act of Korea.

    Science.gov (United States)

    Ryu, Young-Joon; Kim, Hankyeom; Jang, Sejin; Koo, Young-Mo

    2013-06-01

    Efficient management of human tissue samples is a critical issue; the supply of samples is unable to satisfy the current demands for research. Lack of informed consent is also an ethical problem. One of the goals of the 2012 revision of Korea's Bioethics and Safety Act was to implement regulations that govern the management of human tissue samples. To remain competitive, medical institutions must prepare for these future changes. In this report, we review two tissue management models that are currently in use; model 1 is the most common system utilized by hospitals in Korea and model 2 is implemented by some of the larger institutions. We also propose three alternative models that offer advantages over the systems currently in use. Model 3 is a multi-bank model that protects the independence of physicians and pathologists. Model 4 utilizes a comprehensive single bioresource bank; although in this case, the pathologists gain control of the samples, which may make it difficult to implement. Model 5, which employs a bioresource utilization steering committee (BUSC), is viable to implement and still maintains the advantages of Model 4. To comply with the upcoming law, we suggest that physicians and pathologists in an institution should collaborate to choose one of the improved models of tissue management system that best fits for their situation.

  20. The neuropsychology and neurobiology of late-onset schizophrenia and very-late-onset schizophrenia-like psychosis : a critical review

    OpenAIRE

    Assche, Van, Lies; Morrens, Manuel; Luyten, Patrick; Ven, Van de, Luc; Vandenbulcke, Mathieu

    2017-01-01

    Abstract: OBJECTIVE: The current review discusses neuropsychological profiles and the longitudinal course of cognitive dysfunction in Late Onset Schizophrenia (LOS) and Very-late-onset schizophrenia-like psychosis (VLOSLP), and attempts to clarify its neurobiological underpinnings. METHOD: A systematic literature search resulted in 29 publications describing original research on the neuropsychology of LOS/VLOSLP and 46 studies focussing on neurobiology. RESULTS: Although mildly progressive co...

  1. Adapted preparation technique for screw-type implants: explorative in vitro pilot study in a porcine bone model.

    Science.gov (United States)

    Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter

    2007-02-01

    The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.

  2. Preparation of {sup 183,184}Re samples for modelling a rapid gas phase chemistry of Nielsbohrium (Ns), element 107

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, R.; Gaeggeler, H.W.; Eichler, B.; Tuerler, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Chemical gas phase reactions of the heavier group 7 elements in the system O{sub 2}/H{sub 2}O are presumably best suited for a separation of Nielsbohrium from the lighter transactinides. We expect a higher reaction velocity using the more reactive gas system O{sub 3}/H{sub 2}O{sub 2}. For the experimental verification of this idea we prepared {sup 183}Re/{sup 184}Re samples for thermochromatography experiments with both gas systems. (author) 8 refs.

  3. Translational new approaches for investigating mood disorders in rodents and what they may reveal about the underlying neurobiology of major depressive disorder.

    Science.gov (United States)

    Robinson, Emma S J

    2018-03-19

    Mood disorders represent one of society's most costly and challenging health burdens. The drug treatments used today were initially discovered serendipitously in the 1950s. Animal models were then developed based on the ability of these drugs to alter specific behaviours. These models have played a major role in the development of the second generation of antidepressants. However, their use has been heavily criticized, particularly in relation to whether they recapitulate similar underlying biology to the psychiatric disorder they are proposed to represent. This article considers our work in the field of affective bias and the development of a translational research programme to try to develop and validate better animal models. We discuss whether the new data that have arisen from these studies support an alternative perspective on the underlying neurobiological processes that lead to major depressive disorder (MDD). Specifically, this article will consider whether a neuropsychological mechanism involving affective biases plays a causal role in the development of MDD and its associated emotional and behavioural symptoms. These animal studies also raise the possibility that neuropsychological mechanisms involving affective biases are a precursor to, rather than a consequence of, the neurotrophic changes linked to MDD.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'. © 2018 The Authors.

  4. Neurobiologia dos transtornos do controle dos impulsos The neurobiology of impulse control disorders

    Directory of Open Access Journals (Sweden)

    Wendol A Williams

    2008-05-01

    Full Text Available OBJETIVO: Revisar os artigos sobre substratos neurobiológicos dos transtornos do controle dos impulsos. O jogo patológico é o foco central desta revisão na medida em que a maioria dos estudos biológicos dos formalmente classificados como transtornos do controle dos impulsos examinou este transtorno. MÉTODO: Foi feita uma busca no banco de dados Medline de artigos publicados de 1966 até o presente para identificar aqueles relevantes para serem revisados neste artigo. DESFECHOS: Estudos pré-clínicos sugerem que a neuromodulação das monoaminas cerebrais está associada à tomada de decisões impulsivas e aos comportamentos de risco. Os estudos clínicos implicam diversos sistemas de neurotransmissores (serotoninérgico, dopaminérgico, adrenérgico e opióide na fisiopatologia do jogo patológico e de outros transtornos do controle dos impulsos. Estudos de neuroimagem preliminares têm indicado o córtex pré-frontal ventromedial e o estriato ventral como atuantes na fisiopatologia do jogo patológico e de outros transtornos do controle dos impulsos. As contribuições genéticas para o jogo patológico parecem substanciais e os estudos iniciais têm relacionado esse transtorno a polimorfismos alélicos específicos, ainda que os achados de varredura genômica ainda tenham que ser publicados. CONCLUSÃO: Mesmo que tenham sido logrados avanços significativos em nossa compreensão sobre os transtornos do controle dos impulsos, mais pesquisas são necessárias para ampliar o conhecimento existente e traduzir esses achados em avanços clínicos.OBJECTIVE: To review the neurobiological substrates of impulse control disorders. Pathological gambling is a main focus of the review in that most biological studies of the formal impulse control disorders have examined this disorder. METHOD: The medical database Medline from 1966 to present was searched to identify relevant articles that were subsequently reviewed to generate this manuscript

  5. The neurobiology of self-face recognition in depressed adolescents with low or high suicidality.

    Science.gov (United States)

    Quevedo, Karina; Ng, Rowena; Scott, Hannah; Martin, Jodi; Smyda, Garry; Keener, Matt; Oppenheimer, Caroline W

    2016-11-01

    This study sought to test whether the neurobiology of self-processing differentiated depressed adolescents with high suicidality (HS) from those with low suicidality (LS) and healthy controls (HC; N = 119, MAGE = 14.79, SD = 1.64, Min = 11.3, Max = 17.8). Participants completed a visual self-recognition task in the scanner during which they identified their own or an unfamiliar adolescent face across 3 emotional expressions (happy, neutral or sad). A 3-group (HS, LS, HC) by 2 within-subject factors (2 Self conditions [self, other] and 3 Emotions [happy, neutral, sad]) GLM yielded (a) a main effect of Self condition with all participants showing higher activity in the right occipital, precuneus and fusiform during the self- versus other-face conditions; (b) a main effect of Group where all depressed youth showed higher dorsolateral prefrontal cortex activity than HC across all conditions, and with HS showing higher cuneus and occipital activity versus both LS and HC; and (c) a Group by Self by Emotion interaction with HS showing lower activity in both mid parietal, limbic, and prefrontal areas in the Happy self versus other-face condition relative to the LS group, who in turn had less activity compared to HC youth. Covarying for depression severity replicated all results except the third finding; In this subsequent analysis, a Group by Self interaction showed that although HC had similar midline cortical structure (MCS) activity for all faces, LS showed higher MCS activity for the self versus other faces, whereas HS showed the opposite pattern. Results suggest that the neurophysiology of emotionally charged self-referential information can distinguish depressed, suicidal youth versus nonsuicidal depressed and healthy adolescents. Neurophysiological differences and implications for the prediction of suicidality in youth are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Aging and risk taking: toward an integration of cognitive, emotional, and neurobiological perspectives

    Directory of Open Access Journals (Sweden)

    Shao R

    2014-04-01

    Full Text Available Robin Shao,1,2 Tatia MC Lee1–31Laboratory of Neuropsychology, 2Laboratory of Social Cognitive Affective Neuroscience, 3The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong KongAbstract: In this article, we characterize the relationship between natural aging and risky decision making through an integration of cognitive, emotional, and neurobiological theories on the effects of natural aging. Based on the existing evidence, we propose that the positivity emotional bias in elderly adults steers them away from taking high risks and toward more conservative approaches during decision making as part of their positive emotional regulatory strategies. However, aging is also associated with marked declines in cognitive functioning, such as attention and working memory, as well as impaired reinforcement-based associative learning, which arises from anatomical and functional declines in the dopaminergic transmission systems and in distinct brain regions such as the dorsolateral prefrontal cortex and hippocampus. In consequence, elderly adults may deviate from their usual conservative stance and toward more risk-taking tendencies, as observed in a subset of studies, if the demands of the risk-taking task exceed their cognitive and learning capacities. More empirical investigations are needed to determine the key factors that influence elderly individuals' decision making and behavior in risky situations. Research in this field is likely to have important practical implications for the financial and medical decision making of elderly adults, as well as promoting designated help targeting the elderly population in making important life decisions.Keywords: risky decision making, aging, insula, cognition, dopaminergic system

  7. The neurobiological drive for overeating implicated in Prader-Willi syndrome.

    Science.gov (United States)

    Zhang, Yi; Wang, Jing; Zhang, Guansheng; Zhu, Qiang; Cai, Weiwei; Tian, Jie; Zhang, Yi Edi; Miller, Jennifer L; Wen, Xiaotong; Ding, Mingzhou; Gold, Mark S; Liu, Yijun

    2015-09-16

    Prader-Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous fMRI studies examined the activation of eating-related neural circuits in PWS patients with or without exposures to food cues and found an excessive eating motivation and a reduced inhibitory control of cognitive processing of food. However, the effective connectivity between various brain areas or neural circuitry critically implicated in both the biological and behavioral control of overeating in PWS is largely unexplored. The current study combined resting-state fMRI and Granger causality analysis (GCA) techniques to investigate interactive causal influences among key neural pathways underlying overeating in PWS. We first defined the regions of interest (ROIs) that demonstrated significant alterations of the baseline brain activity levels in children with PWS (n = 21) as compared to that of their normal siblings controls (n = 18), and then carried out GCA to characterize the region-to-region interactions among these ROIs. Our data revealed significantly enhanced causal influences from the amygdala to the hypothalamus and from both the medial prefrontal cortex and anterior cingulate cortex to the amygdala in patients with PWS (P < 0.001). These alterations offer new explanations for hypothalamic regulation of homeostatic energy intake and impairment in inhibitory control circuit. The deficits in these dual aspects may jointly contribute to the extreme hyperphagia in PWS. This study provides both a new methodological and a neurobiological perspective to aid in a better understanding of neural mechanisms underlying obesity in the general public. This article is part of a Special Issue entitled 1618. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Neurobiological mechanisms associated with facial affect recognition deficits after traumatic brain injury.

    Science.gov (United States)

    Neumann, Dawn; McDonald, Brenna C; West, John; Keiski, Michelle A; Wang, Yang

    2016-06-01

    The neurobiological mechanisms that underlie facial affect recognition deficits after traumatic brain injury (TBI) have not yet been identified. Using functional magnetic resonance imaging (fMRI), study aims were to 1) determine if there are differences in brain activation during facial affect processing in people with TBI who have facial affect recognition impairments (TBI-I) relative to people with TBI and healthy controls who do not have facial affect recognition impairments (TBI-N and HC, respectively); and 2) identify relationships between neural activity and facial affect recognition performance. A facial affect recognition screening task performed outside the scanner was used to determine group classification; TBI patients who performed greater than one standard deviation below normal performance scores were classified as TBI-I, while TBI patients with normal scores were classified as TBI-N. An fMRI facial recognition paradigm was then performed within the 3T environment. Results from 35 participants are reported (TBI-I = 11, TBI-N = 12, and HC = 12). For the fMRI task, TBI-I and TBI-N groups scored significantly lower than the HC group. Blood oxygenation level-dependent (BOLD) signals for facial affect recognition compared to a baseline condition of viewing a scrambled face, revealed lower neural activation in the right fusiform gyrus (FG) in the TBI-I group than the HC group. Right fusiform gyrus activity correlated with accuracy on the facial affect recognition tasks (both within and outside the scanner). Decreased FG activity suggests facial affect recognition deficits after TBI may be the result of impaired holistic face processing. Future directions and clinical implications are discussed.

  9. The brain decade in debate: I. Neurobiology of learning and memory

    Directory of Open Access Journals (Sweden)

    Baddeley A.

    2000-01-01

    Full Text Available This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex, or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas or the modulation of the storage of memories related to emotional events (e.g., amygdala. This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.

  10. Comorbid substance use disorder in schizophrenia: a selective overview of neurobiological and cognitive underpinnings.

    Science.gov (United States)

    Thoma, Patrizia; Daum, Irene

    2013-09-01

    Although individuals with schizophrenia show a lifetime prevalence of 50% for suffering from a comorbid substance use disorder, substance abuse usually represents an exclusion criterion for studies on schizophrenia. This implies that surprisingly little is known about a large group of patients who are particularly difficult to treat. The aim of the present work is to provide a brief and non-exhaustive overview of the current knowledgebase about neurobiological and cognitive underpinnings for dual diagnosis schizophrenia patients. Studies published within the last 20 years were considered using computerized search engines. The focus was on nicotine, caffeine, alcohol, cannabis and cocaine being among the most common substances of abuse. All drugs of abuse target dopaminergic, glutamatergic and GABAergic transmission which are also involved in the pathophysiology of schizophrenia. Current literature suggests that neurocognitive function might beless disrupted in substance-abusing compared to non-abusing schizophrenia patients, but in particular the neuroimaging database on this topic is sparse. Detrimental effects on brain structure and function were shown for patients for whom alcohol is the main substance of abuse. It is as yet unclear whether this finding might be an artifact of age differences of patient subgroups with different substance abuse patterns. More research is warranted on the specific neurocognitive underpinnings of schizophrenia patients abusing distinct psychoactive substances. Treatment programs might either benefit from preserved cognitive function as a resource or specifically target cognitive impairment in different subgroups of addicted schizophrenia patients. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  11. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Michael eStuart

    2015-09-01

    Full Text Available Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells, however recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the HPA axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 which has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer’s disease and depression in the elderly, and prenatal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, proinflammatory cytokines secretion, expression of ICAM-1 and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and/or therapeutic targets in

  12. Systematic Review of the Neurobiological Relevance of Chemokines to Psychiatric Disorders.

    Science.gov (United States)

    Stuart, Michael J; Singhal, Gaurav; Baune, Bernhard T

    2015-01-01

    Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however, the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells; however, recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the hypothalamus-pituitary-adrenal axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 that has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer's disease and depression in the elderly, and pre-natal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, and CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, pro-inflammatory cytokines secretion, expression of ICAM-1, and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and

  13. Role of addiction and stress neurobiology on food intake and obesity.

    Science.gov (United States)

    Sinha, Rajita

    2018-01-01

    The US remains at the forefront of a global obesity epidemic with a significant negative impact on public health. While it is well known that a balance between energy intake and expenditure is homeostatically regulated to control weight, growing evidence points to multifactorial social, neurobehavioral and metabolic determinants of food intake that influence obesity risk. This review presents factors such as the ubiquitous presence of rewarding foods in the environment and increased salience of such foods that stimulate brain reward motivation and stress circuits to influence eating behaviors. These rewarding foods via conditioned and reinforcing effects stimulate not only metabolic, but also stress hormones, that, in turn, hijack the brain emotional (limbic) and motivational (striatal) pathways, to promote food craving and excessive food intake. Furthermore, the impact of high levels of stress and trauma and altered metabolic environment (e.g. higher weight, altered insulin sensitivity) on prefrontal cortical self-control processes that regulate emotional, motivational and visceral homeostatic mechanisms of food intake and obesity risk are also discussed. A heuristic framework is presented in which the interactive dynamic effects of neurobehavioral adaptations in metabolic, motivation and stress neurobiology may further support food craving, excessive food intake and weight gain in a complex feed-forward manner. Implications of such adaptations in brain addictive-motivational and stress pathways and their effects on excessive food intake and weight gain are discussed to highlight key questions that requires future research attention in order to better understand and address the growing obesity epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Clinical and neurobiological effects of aerobic exercise in dental phobia: A randomized controlled trial.

    Science.gov (United States)

    Lindenberger, Brigitt L; Plag, Jens; Schumacher, Sarah; Gaudlitz, Katharina; Bischoff, Sophie; Bobbert, Thomas; Dimeo, Fernando; Petzold, Moritz B; Kirschbaum, Clemens; Dudás, Zsuzsa; Ströhle, Andreas

    2017-11-01

    Physical activity has shown to be effective in anxiety disorders. For specific phobia, no studies are available that systematically examined the effects of an aerobic exercise intervention on phobic fear within a randomized-controlled design. Therefore, we investigated the acute effect of a standardized aerobic training on clinical symptoms of dental phobia as well as on stress-related neurobiological markers. Within a crossover design, 30 patients with dental phobia (mean age: 34.1 years; mean score of the Dental Anxiety Scale: 18.8) underwent two minor dental interventions separated by 7 days. Dental treatment was performed after 30 min of physical activity at either 20% VO 2 max (control) or 70% VO 2 max (intervention), respectively. To control for habituation, patients were randomly assigned to one of the two conditions prior to the first intervention. Moreover, saliva samples were collected at five times in order to determine changes in salivary cortisol (sC) and alpha-amylase (sAA) due to treatment. In comparison to baseline, aerobic exercise within 70% VO 2 max significantly reduced clinical anxiety and sC concentrations before, during, and after the dental treatment. In contrast, the control condition led to decreased sAA levels at different time points of measurement. Habituation occurred at the second study day, independent of the order. Our study provides evidence for an effect of moderate-intense exercise on clinical symptoms and sC in patients with dental phobia. Therefore, acute aerobic exercise might be a simple and low-cost intervention to reduce disorder-specific phobic fear. © 2017 Wiley Periodicals, Inc.

  15. Preparation of pre-confluent retinal cells increases graft viability in vitro and in vivo: a mouse model.

    Directory of Open Access Journals (Sweden)

    Kevin P Kennelly

    Full Text Available PURPOSE: Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure "transplant conditions" (TC. We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE cell line, DH01. METHODS: Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and cleaved caspase 3 immunolabeling of subretinal allografts. RESULTS: Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01. Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1% that did not increase following TC (4.8%±0.5%. However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%. Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001. Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001. CONCLUSION: Pre-confluent cells should be used to maximize graft cell viability.

  16. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshkumar, Moorthy [Department of Biochemistry, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600020 (India); Sastry, Thotapalli Parvathaleswara [Bioproducts Laboratory, Central Leather Research Institute, Chennai 600020 (India); Sathish Kumar, Muniram [Department of Pharmaceutics, Anna University, Trichy, Tamilnadu (India); Dinesh, Murugan Girija [Thanthai Hansroever College, Perambalur, Tamilnadu (India); Kannappan, Sudalyandi [Central Institute of Brackish Water Aquaculture, Chennai 600028 (India); Suguna, Lonchin, E-mail: slonchin@yahoo.co.uk [Department of Biochemistry, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600020 (India)

    2012-09-15

    Highlights: ► Gold nanoparticles prepared using eco-friendly method with good in vitro stability. ► Can be used as drug delivery system. ► Did not show any toxicity in zebrafish embryo. ► More toxic to cancer cells when compared to N-Au-Mp and Mp. -- Abstract: The objective of this study is to synthesize green chemistry based gold nanoparticles by sun light irradiation method. The prepared gold nanoparticles (AuNPs) were modified using folic acid and then coupled with 6-mercaptopurine. These modified nanoparticles were used as a tool for targeted drug delivery to treat laryngeal cancer. In the present study, novel bionanocomposites containing nutrient agar coated gold nano particles (N-AuNPs) coupled with 6-mercaptopurine (drug) (N-AuNPs-Mp), folic acid (ligand) (N-AuNPs-Mp-Fa) and rhodamine (dye) (N-AuNPs-Rd), a fluorescent agent, were prepared and characterized by IR, UV, TEM, Particle size analysis and in vitro stability. The toxicity and fluorescence of N-Au was studied using zebrafish embryo model. The in vitro cytotoxicity of free Mp, N-Au-Mp and N-Au-Mp-Fa against HEp-2 cells was compared and found that the amount of Mp required to achieve 50% of growth of inhibition (IC{sub 50}) was much lower in N-Au-Mp-Fa than in free Mp and N-Au-Mp.

  17. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model

    International Nuclear Information System (INIS)

    Ganeshkumar, Moorthy; Sastry, Thotapalli Parvathaleswara; Sathish Kumar, Muniram; Dinesh, Murugan Girija; Kannappan, Sudalyandi; Suguna, Lonchin

    2012-01-01

    Highlights: ► Gold nanoparticles prepared using eco-friendly method with good in vitro stability. ► Can be used as drug delivery system. ► Did not show any toxicity in zebrafish embryo. ► More toxic to cancer cells when compared to N-Au-Mp and Mp. -- Abstract: The objective of this study is to synthesize green chemistry based gold nanoparticles by sun light irradiation method. The prepared gold nanoparticles (AuNPs) were modified using folic acid and then coupled with 6-mercaptopurine. These modified nanoparticles were used as a tool for targeted drug delivery to treat laryngeal cancer. In the present study, novel bionanocomposites containing nutrient agar coated gold nano particles (N-AuNPs) coupled with 6-mercaptopurine (drug) (N-AuNPs-Mp), folic acid (ligand) (N-AuNPs-Mp-Fa) and rhodamine (dye) (N-AuNPs-Rd), a fluorescent agent, were prepared and characterized by IR, UV, TEM, Particle size analysis and in vitro stability. The toxicity and fluorescence of N-Au was studied using zebrafish embryo model. The in vitro cytotoxicity of free Mp, N-Au-Mp and N-Au-Mp-Fa against HEp-2 cells was compared and found that the amount of Mp required to achieve 50% of growth of inhibition (IC 50 ) was much lower in N-Au-Mp-Fa than in free Mp and N-Au-Mp.

  18. Preparing a seismic hazard model for Switzerland: the view from PEGASOS Expert Group 3 (EG1c)

    Energy Technology Data Exchange (ETDEWEB)

    Musson, R. M. W. [British Geological Survey, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Sellami, S. [Swiss Seismological Service, ETH-Hoenggerberg, Zuerich (Switzerland); Bruestle, W. [Regierungspraesidium Freiburg, Abt. 9: Landesamt fuer Geologie, Rohstoffe und Bergbau, Ref. 98: Landeserdbebendienst, Freiburg im Breisgau (Germany)

    2009-05-15

    The seismic hazard model used in the PEGASOS project for assessing earth-quake hazard at four NPP sites was a composite of four sub-models, each produced by a team of three experts. In this paper, one of these models is described in detail by the authors. A criticism sometimes levelled at probabilistic seismic hazard studies is that the process by which seismic source zones are arrived at is obscure, subjective and inconsistent. Here, we attempt to recount the stages by which the model evolved, and the decisions made along the way. In particular, a macro-to-micro approach was used, in which three main stages can be described. The first was the characterisation of the overall kinematic model, the 'big picture' of regional seismo-genesis. Secondly, this was refined to a more detailed seismotectonic model. Lastly, this was used as the basis of individual sources, for which parameters can be assessed. Some basic questions had also to be answered about aspects of the approach to modelling to be used: for instance, is spatial smoothing an appropriate tool to apply? Should individual fault sources be modelled in an intra-plate environment? Also, the extent to which alternative modelling decisions should be expressed in a logic tree structure has to be considered. (author)

  19. Financial Preparation for Retirement in Brazil: a Cross-Cultural Test of the Interdisciplinary Financial Planning Model.

    Science.gov (United States)

    França, Lucia H F; Hershey, Douglas A

    2018-03-01

    In this investigation, we attempt to replicate the Interdisciplinary Financial Planning Model advanced by Hershey et al. (International Journal of Aging and Human Development, 70, 1-38, 2010) using a sample of Brazilian adults. This model, which was originally tested on individuals from The Netherlands and the United States, posits that psychological, social, and economic forces are key determinants of retirement planning practices and perceptions of saving adequacy. Taken together, fifteen hypotheses were subject to evaluation. Participants were 167 Brazilian working adults, 21-69 years of age, who were married or cohabitating at the time of testing. A path analysis model showed substantial support for the theoretical framework, with all variables found to contribute directly or indirectly to the prediction of financial planning and saving adequacy. Furthermore, two new paths were found to emerge in the Brazilian model that were not observed in the original investigation. This cross-national replication of the Interdisciplinary Financial Planning Model extends research on the topic to a developing country in which relatively few empirical studies of retirement planning have been carried out. Other analyses in the article focus on direct comparisons between the Brazilian model and the models developed based on American and Dutch respondents, with an eye toward better understanding how cultural forces shape the retirement planning process. The discussion focuses on how models of financial planning, such as the Hershey et al. (2010) model, can inform the development of savings-oriented education and intervention programs.

  20. Preparing a seismic hazard model for Switzerland: the view from PEGASOS Expert Group 3 (EG1c)

    International Nuclear Information System (INIS)

    Musson, R. M. W.; Sellami, S.; Bruestle, W.

    2009-01-01

    The seismic hazard model used in the PEGASOS project for assessing earth-quake hazard at four NPP sites was a composite of four sub-models, each produced by a team of three experts. In this paper, one of these models is described in detail by the authors. A criticism sometimes levelled at probabilistic seismic hazard studies is that the process by which seismic source zones are arrived at is obscure, subjective and inconsistent. Here, we attempt to recount the stages by which the model evolved, and the decisions made along the way. In particular, a macro-to-micro approach was used, in which three main stages can be described. The first was the characterisation of the overall kinematic model, the 'big picture' of regional seismo-genesis. Secondly, this was refined to a more detailed seismotectonic model. Lastly, this was used as the basis of individual sources, for which parameters can be assessed. Some basic questions had also to be answered about aspects of the approach to modelling to be used: for instance, is spatial smoothing an appropriate tool to apply? Should individual fault sources be modelled in an intra-plate environment? Also, the extent to which alternative modelling decisions should be expressed in a logic tree structure has to be considered. (author)