WorldWideScience

Sample records for model modifying heat

  1. A modified lattice Bhatnagar-Gross-Krook model for convection heat transfer in porous media

    CERN Document Server

    Wang, Liang; Guo, Zhaoli

    2015-01-01

    The lattice Bhatnagar-Gross-Krook (LBGK) model has become the most popular one in the lattice Boltzmann method for simulating the convection heat transfer in porous media. However, the LBGK model generally suffers from numerical instability at low fluid viscosities and effective thermal diffusivities. In this paper, a modified LBGK model is developed for incompressible thermal flows in porous media at the representative elementary volume scale, in which the shear rate and temperature gradient are incorporated into the equilibrium distribution functions. With two additional parameters, the relaxation times in the collision process can be fixed at a proper value invariable to the viscosity and the effective thermal diffusivity. In addition, by constructing a modified equilibrium distribution function and a source term in the evolution equation of temperature field, the present model can recover the macroscopic equations correctly through the Chapman-Enskog analysis, which is another key point different from pre...

  2. Computational modeling of latent-heat-storage in PCM modified interior plaster

    Science.gov (United States)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  3. Computational modeling of latent-heat-storage in PCM modified interior plaster

    Energy Technology Data Exchange (ETDEWEB)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)

    2016-06-08

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  4. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2017-01-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  5. Experimental and numerical study of nanofluid in heat exchanger fitted by modified twisted tape: exergy analysis and ANN prediction model

    Science.gov (United States)

    Maddah, Heydar; Ghasemi, Nahid; Keyvani, Bahram; Cheraghali, Ramin

    2016-09-01

    Present study provides an experimental investigation of the exergetic efficiency due to the flow and heat transfer of nanofluids in different geometries and flow regimes of the double pipe heat exchangers. The experiments with different Geometrical Progression Ratio (GPR) of twists as the new modified twisted tapes and different nanofluid concentration were performed under similar operation condition. Pitch length of the proposed twisted tapes and consequently the twist ratios changed along the twists with respect to the Geometrical Progression Ratio (GPR) whether reducer (RGPR 1). Regarding the experimental data, utilization of RGPR twists together with nanofluids tends to increase exergetic efficiency. Since the Prediction of exergetic efficiency from experimental process is complex and time consuming, artificial neural networks for identification of the relationship, which may exist between the thermal and flow parameters and exergetic efficiency, have been utilized. The network input consists of five parameters (Re,Pr ,φ, Tr, GPR) that crucially dominate the heat transfer process. The results proved that the introduced ANN model is reliable and capable in proposing a proper development plan for a heat exchanger and/or to determine the optimal plan of operation for heat transfer process.

  6. A Mesoscale Meteorological Model of Modified Land Cover to the Effect of Urban Heat Island in Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Yopi Ilhamsyah

    2012-08-01

    Full Text Available A mesoscale meteorological model of modified land cover to the effect of urban heat island (UHI in Jakarta was done. Although higher temperature in the city has been generally known, factors and issues that result in the increase of temperature particularly nighttime temperature over the city, however, are not well-understood. Jakarta, the capital of Indonesia, is encountering urbanization problems foremost. The increasing demand of housing as well as rapid development of sky crapper building, market places and highway diminishes the vegetation which in turn trap heat in the troposphere throughout the year, particularly during dry season on June-August. The fifth-generation mesoscale meteorological model (MM5 was employed in the study. The model involves medium range forecast planetary boundary layer (MRF PBL scheme and land surface with two following parameters: i.e. roughness length over land and thermal inertia of land. These two parameters are chosen to enhance the characteristics of land surface. The simulation was carried out for 3 days on August 5-7, 2004 during dry season. The results showed that the simulation of surface temperature done by MM5 modified land cover described a good comparison to that of weather observation data. As a result, the effect of UHI was also well-observed during day-time. In addition, MM5 modified land cover simulation also illustrated a well-development of sea-breeze and country-breeze during mid-day and nighttime, respectively. However, long-term simulation is still required. Thus, daily diurnal cycles of air temperature and their differences can be well-observed in detail.

  7. Mixed Convection of Alumina/Water Nanofluid in Microchannels using Modified Buongiorno’s Model in Presence of Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Amir Malvandi

    2016-01-01

    Full Text Available The nanoparticle migration effects on mixed convection of alumina/water nanofluid in a vertical microchannel in the presence of heat source/sink with asymmetric wall heating are theoretically investigated. The modified two-component heterogeneous model is employed for the nanofluid in the hypothesis that the Brownian motion and the thermophoresis are the only significant bases of nanoparticle migration. Because of low dimensional structures in microchannels, a linear slip condition is considered at the surfaces, which appropriately represents the non-equilibrium region near the interface. Considering hydrodynamically and thermally fully developed flow, the basic partial differential equations including the continuity, momentum, energy, and nanoparticle fraction have been reduced to two-point ordinary boundary value differential equations before they have been solved numerically. The scale analysis of governing equations has shown that the buoyancy effects due to the temperature distribution is insignificant, however, the buoyancy effects due to the concentration distribution of nanoparticles have considerable effects on the flow and heat transfer characteristics of nanofluids. It is also revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the symmetry of the velocity, temperature and nanoparticle concentration profiles. Moreover, the best performance of the system is achieved under one-sided heating and a greater slip velocity at the walls.

  8. Numerical simulations of a coupled radiative?conductive heat transfer model using a modified Monte Carlo method

    KAUST Repository

    Kovtanyuk, Andrey E.

    2012-01-01

    Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer and an equation of the conductive heat exchange. The problem is characterized by anisotropic scattering of the medium and by specularly and diffusely reflecting boundaries. For the computation of solutions of this problem, two approaches based on iterative techniques are considered. First, a recursive algorithm based on some modification of the Monte Carlo method is proposed. Second, the diffusion approximation of the radiative transfer equation is utilized. Numerical comparisons of the approaches proposed are given in the case of isotropic scattering. © 2011 Elsevier Ltd. All rights reserved.

  9. Role of the heat capacity change in understanding and modeling melting thermodynamics of complementary duplexes containing standard and nucleobase-modified LNA.

    Science.gov (United States)

    Hughesman, Curtis B; Turner, Robin F B; Haynes, Charles A

    2011-06-14

    Melting thermodynamic data obtained by differential scanning calorimetry (DSC) are reported for 43 duplexed oligonucleotides containing one or more locked nucleic acid (LNA) substitutions. The measured heat capacity change (ΔC(p)) for the helix-to-coil transition is used to compute the changes in enthalpy and entropy for melting of an LNA-bearing duplex at the T(m) of its corresponding isosequential unmodified DNA duplex to allow rigorous thermodynamic analysis of the stability enhancements provided by LNA substitutions. Contrary to previous studies, our analysis shows that the origin of the improved stability is almost exclusively a net reduction (ΔΔS° thermodynamics and the increased melting temperature (ΔT(m)) of heteroduplexes formed between an unmodified DNA strand and a complementary strand containing any number and configuration of standard LNA nucleotides A, T, C, and G. This single-base thermodynamic (SBT) model requires only four entropy-related parameters in addition to ΔC(p). Finally, DSC data for 20 duplexes containing the nucleobase-modified LNAs 2-aminoadenine (D) and 2-thiothymine (H) are reported and used to determine SBT model parameters for D and H. The data and model suggest that along with the greater stability enhancement provided by D and H bases relative to their corresponding A and T analogues, the unique pseudocomplementary properties of D-H base pairs may make their use appealing for in vitro and in vivo applications.

  10. A modified stanton number for heat transfer through fabric surface

    Directory of Open Access Journals (Sweden)

    Zhang Shen-Zhong

    2015-01-01

    Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.

  11. Business models of heat entrepreneurship in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, Lasse [North Karelia University of Applied Sciences, Yliopistokatu 6, FI-80100 Joensuu (Finland); Suhonen, Niko [University of Eastern Finland, Department of Law, P.O. Box 111, FI-80101 Joensuu (Finland)

    2010-07-15

    This paper presents the business models of small-scale heat energy production in Finland. Firstly, the development of heat entrepreneurship in the country is presented, including the remarkable growth of small and medium size enterprises (SMEs) in the last 15 years. Secondly, the concept of business model (business architecture of product/service flows and earning logics) is modified to the framework of wood heat production. The business model concept, and its sub-concepts, is applied in a brief review of current heat energy businesses in Finland. We arrive at a business model of heat entrepreneurships that are public companies/utilities, public-private partnerships, private companies and cooperatives, Energy Saving Company (ESCO), network model of large enterprise and franchising. Descriptive cases of these models are presented. Finally, the paper concludes with a discussion on the applicability of the business models in different operational environments and geographical contexts. (author)

  12. A Modified Entropy Generation Number for Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    This paper demonstrates the difference between the entropy generation number method proposed by Bejian and the method of entropy generation per unit amount of heat transferred in analyzing the ther-modynamic performance of heat exchangers,points out the reason for leading to the above difference.A modified entropy generation number for evaluating the irreversibility of heat exchangers is proposed which is in consistent with the entropy generation per unit amount of heat transferred in entropy generation analysis.The entropy generated by friction is also investigated.Results show that when the entropy generated by friction in heat exchangers in taken into account,there is a minimum total entropy generation number while the NTU and the ratio of heat capacity rates vary.The existence of this minimum is the prerequisite of heat exchanger optimization.

  13. Improvement of fuel consumption and maintenance of heating furnaces using a modified heating pattern

    Institute of Scientific and Technical Information of China (English)

    Hsun-Heng Tsai; Shiuh-Ming Chang

    2007-01-01

    This article studies the transient heat conduction in a slab when passing through various sections of the furnace,and focuses on the thickness of the scale layer formed on the slab.The transient heat conduction behavior ora slab in various sections of the heating furnace is analyzed using the Laplace transformation method,including the pre-heating zone,the first heating zone,the second heating zone,and the soaking zone.The heating pattern of the furnace is then modified to reduce fuel consumption.The simulation results show that the scale layer formed on the slab significantly influences the quality of the hot rolled coil formed,and how the furnace parameters affect the efficiency of the furnace and the quality of the coil.

  14. Heat sink analytical modelling

    OpenAIRE

    Guitart Corominas, Joaquim

    2010-01-01

    Electronics has leaded most technological advances of the past 60 years. There are technologies with domains particularly developed for electronics such as material science, electromagnetism, system dynamics and also heat transfer. The relation to heat transfer is because the heat generation of electronics devices. Commonly, these devices need additional cooling in order to avoid extreme temperatures inside it. Heat sinks allow this supplementary cooling, so they are omnipresent i...

  15. Cluster banding heat source model

    Institute of Scientific and Technical Information of China (English)

    Zhang Liguo; Ji Shude; Yang Jianguo; Fang Hongyuan; Li Yafan

    2006-01-01

    Concept of cluster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source model is deduced based on energy conservation law.Because the expression of cluster banding heat source model deduced is suitable for random weld width, quantitative analysis of welding stress field for large welding structures which have regular welds can be made quickly.

  16. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Science.gov (United States)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  17. Numerical modeling of microwave heating

    Directory of Open Access Journals (Sweden)

    Shukla A.K.

    2010-01-01

    Full Text Available The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.

  18. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease.

    Directory of Open Access Journals (Sweden)

    Chan Chung

    2016-05-01

    Full Text Available Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1, promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.

  19. Study on Curing Kinetics of Heat-resistant Flexible Polyamide Modified Epoxy Resin Adhesive

    Directory of Open Access Journals (Sweden)

    Hua Li

    2015-04-01

    Full Text Available In order to study the effects of numerous variables affecting the reaction rate of heat-resistant flexible modified epoxy resin adhesive, the curing kinetics of polyamide modified epoxy resin was studied. The heat-resistant flexible modified epoxy resin adhesive cured at room-temperature was prepared with epoxy resin, polysulfide rubber and organosilicone as adhesive component, polyamide as main curing agent and addition of different modified filler and the curing agent containing benzene ring structure. The curing kinetics of polyamide modified epoxy resin was studied by Differential Scanning Calorimetry (DSC at different heating speeds and the characteristic temperatures of the curing process were analyzed and confirmed. the kinetics parameters of activation energy was calculated using Flynn-Wall-Ozawa equation and Kissinger equation, respectively, then the kinetic model of curing reaction was built as d&alpha/dt = 4.38×107 exp (-57740/RT (1-&alpha0.93, the results show that the two-parameter model is adequate to represent the curing reaction process, the model can well describe the curing reaction process of the studied resin. The DSC curves obtained using the experimental data show a good agreement with that theoretically calculated. The research results will provide theoretical basis for the choice of manufacturing process and the optimization of processing window.

  20. Multidimensional numerical modeling of heat exchangers

    Science.gov (United States)

    Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).

  1. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  2. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  3. Modified Bonnor-Ebert spheres with ambipolar diffusion heating

    CERN Document Server

    Nejad-Asghar, M

    2016-01-01

    Magnetic fluctuations through the molecular cloud cores can produce ambipolar diffusion (AD) heating, which consequently can produce temperature gradients through the core. The aim of this paper is to investigate the effects of these produced temperature gradients on the radius and mass of the non-isothermal modified Bonnor-Ebert spheres (MBES). Here, we use the parameter $\\kappa$ to represent the magnetic fluctuations through the molecular cloud cores. This parameter introduces the change of magnetic filed strength in the length-scale. The results show that increasing of $\\kappa$ leads to an increase of the radius and mass of MBES. The most important result is existence of the gravitationally stable high-mass prestellar cores at the low-density molecular medium with great magnetic fluctuations.

  4. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application

    Institute of Scientific and Technical Information of China (English)

    张寅平; 胡先旭; 郝磬; 王馨

    2003-01-01

    This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.

  5. Modelling heat transfer in heterogeneous media using fractional calculus.

    Science.gov (United States)

    Sierociuk, Dominik; Dzielinski, Andrzej; Sarwas, Grzegorz; Petras, Ivo; Podlubny, Igor; Skovranek, Tomas

    2013-05-13

    This paper presents the results of modelling the heat transfer process in heterogeneous media with the assumption that part of the heat flux is dispersed in the air around the beam. The heat transfer process in a solid material (beam) can be described by an integer order partial differential equation. However, in heterogeneous media, it can be described by a sub- or hyperdiffusion equation which results in a fractional order partial differential equation. Taking into consideration that part of the heat flux is dispersed into the neighbouring environment we additionally modify the main relation between heat flux and the temperature, and we obtain in this case the heat transfer equation in a new form. This leads to the transfer function that describes the dependency between the heat flux at the beginning of the beam and the temperature at a given distance. This article also presents the experimental results of modelling real plant in the frequency domain based on the obtained transfer function.

  6. Modified Heisenberg Ferromagnet Model and Integrable Equation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We investigate some integrable modified Heisenberg ferromagnet models by using the prolongation structure theory. Through associating them with the motion of curve in Minkowski space, the corresponding coupled integrable equations are presented.

  7. Comparison of Frictional Heating Models

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Nicholas R [ORNL; Blau, Peter Julian [ORNL

    2013-10-01

    The purpose of this work was to compare the predicted temperature rises using four well-known models for frictional heating under a few selected conditions in which similar variable inputs are provided to each model. Classic papers by Archard, Kuhlmann-Wilsdorf, Lim and Ashby, and Rabinowicz have been examined, and a spreadsheet (Excel ) was developed to facilitate the calculations. This report may be used in conjunction with that spreadsheet. It explains the background, assumptions, and rationale used for the calculations. Calculated flash temperatures for selected material combinations, under a range of applied loads and sliding speeds, are tabulated. The materials include AISI 52100 bearing steel, CDA 932 bronze, NBD 200 silicon nitride, Ti-6Al-4V alloy, and carbon-graphite material. Due to the assumptions made by the different models, and the direct way in which certain assumed quantities, like heat sink distances or asperity dimensions, enter into the calculations, frictional hearing results may differ significantly; however, they can be similar in certain cases in light of certain assumptions that are shared between the models.

  8. Genetically Modified Pig Models for Human Diseases

    Institute of Scientific and Technical Information of China (English)

    Nana Fan; Liangxue Lai

    2013-01-01

    Genetically modified animal models are important for understanding the pathogenesis of human disease and developing therapeutic strategies.Although genetically modified mice have been widely used to model human diseases,some of these mouse models do not replicate important disease symptoms or pathology.Pigs are more similar to humans than mice in anatomy,physiology,and genome.Thus,pigs are considered to be better animal models to mimic some human diseases.This review describes genetically modified pigs that have been used to model various diseases including neurological,cardiovascular,and diabetic disorders.We also discuss the development in gene modification technology that can facilitate the generation of transgenic pig models for human diseases.

  9. Modified Claus process probabilistic model

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R. [Chemical Engineering Dept., Univ. of La Laguna (Spain)

    2006-03-15

    A model is proposed for the simulation of an industrial Claus unit with a straight-through configuration and two catalytic reactors. Process plant design evaluations based on deterministic calculations does not take into account the uncertainties that are associated with the different input variables. A probabilistic simulation method was applied in the Claus model to obtain an impression of how some of these inaccuracies influences plant performance. (orig.)

  10. Mathematical model of induction heating

    Science.gov (United States)

    Rak, Josef

    2017-07-01

    One of mathematical models of induction heating can be described by a parabolic differential equation with the specific Joule looses in the body. Advantage of this method is that the detailed knowledge of the 3D-magnetic field is not necessary and move of the body or the inductor can be easily implemented. The specific Joule looses can computed by solving the Fredholm integral equation of the second kind for the eddy current of density by the Nyström method with the singularity subtraction.

  11. A heat transfer model of a horizontal ground heat exchanger

    Science.gov (United States)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  12. Goldstone models of modified gravity

    Science.gov (United States)

    Brax, Philippe; Valageas, Patrick

    2017-02-01

    We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its Λ -CDM counterpart while cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force while it is enhanced in the convex case. In both cases, the departures from the Λ -CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the Λ -CDM scenario. This could lead to an over-abundance of small clumps. We use a thermodynamic analysis and show that although convex models have a phase transition between homogeneous and inhomogeneous phases, on cosmological scales the system does not enter the inhomogeneous phase. On the other hand, for galactic

  13. A Modified Sensitive Driving Cellular Automaton Model

    Institute of Scientific and Technical Information of China (English)

    GE Hong-Xia; DAI Shi-Qiang; DONG Li-Yun; LEI Li

    2005-01-01

    A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is called the non-sensitive driving cellular automaton model. And then it is incorporated with a sensitive driving NaSch model,in which the randomization brake is arranged before the deterministic deceleration. A parameter related to the variable security gap is determined through simulation. Comparison of the simulation results indicates that the variable security gap has different influence on the two models. The fundamental diagram obtained by simulation with the modified sensitive driving NaSch model shows that the maximumflow are in good agreement with the observed data, indicating that the presented model is more reasonable and realistic.

  14. A novel circuit topology of modified switched boost hybrid resonant inverter fitted induction heating equipment

    Directory of Open Access Journals (Sweden)

    Bhattacharya Ananyo

    2016-12-01

    Full Text Available A novel circuit topology of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment is presented in this paper for efficient induction heating. Recently, induction heating technique is becoming very popular for both domestic and industrial purposes because of its high energy efficiency and controllability. Generally in induction heating, a high frequency alternating magnetic field is required to induce the eddy currents in the work piece. High frequency resonant inverters are incorporated in induction heating equipment which produce a high frequency alternating magnetic field surrounding the coil. Previously this high frequency alternating magnetic field was produced by voltage source inverters. But VSIs have several demerits. So, in this paper, a new scheme of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment has been depicted which enhances the energy efficiency and controllability and the same is validated by PSIM.

  15. Modelling Void Abundance in Modified Gravity

    CERN Document Server

    Voivodic, Rodrigo; Llinares, Claudio; Mota, David F

    2016-01-01

    We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f(R) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surv...

  16. A New Model of Nonlocal Modified Gravity

    CERN Document Server

    Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran

    2014-01-01

    We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$

  17. Nonperturbative approach to the modified statistical model

    Energy Technology Data Exchange (ETDEWEB)

    Magdy, M.A.; Bekmezci, A.; Sever, R. [Middle East Technical Univ., Ankara (Turkey)

    1993-12-01

    The modified form of the statistical model is used without making any perturbation. The mass spectra of the lowest S, P and D levels of the (Q{bar Q}) and the non-self-conjugate (Q{bar q}) mesons are studied with the Song-Lin potential. The authors results are in good agreement with the experimental and theoretical findings.

  18. A Heat Dynamic Model for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2015-01-01

    This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heati...

  19. Gauge models in modified triplectic quantization

    CERN Document Server

    Geyer, B; Moshin, P Y; Geyer, Bodo; Lavrov, Petr M.; Moshin, Pavel Yu.

    2001-01-01

    We apply the modified triplectic formalism for quantizing several popular gauge models - non-abelian antisymmetric tensor field model, W2-gravity and two-dimensional gravity with dynamical torsion. The explicit solutions are obtained for the generating equations of the quantum action and the gauge-fixing functional. Using these solutions we construct the vacuum functional and obtain the corresponding transformations of the extended BRST symmetry.

  20. Heat Treatment of Modified 6005A Alloy for Vehicles

    Institute of Scientific and Technical Information of China (English)

    CAO Ling-fei; WANG Ming-pu; GUO Ming-xing; LI Zhou

    2004-01-01

    Modified 6005A alloy was reported and its mechanical properties were studied by tensile test, hardness measurement and TEM analysis. Results show that the favorable aging condition for 6005A is 175℃ for 8h, and the nose temperature of its TTP (Time-temperature-properties) curves is about 370℃. In a moderate temperature zone (270℃<T<390℃), the alloy has much high quench sensitivity. Therefore, in on-line extrusion, water spray quench and moderate temperature should be taken to enhance quench rate, then 6005A alloy can be quench hardened and its quenching distortion can be reduced

  1. Preparation of the Heat Resistant Adhesive of NBR Modified BMI

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A Kind of homogeneous resin, which can be used as thermal resistant adhesive and matrix for composite,was prepared by bis(4-maleimidophenyl)methane (BMI), 4,4'-diaminodiphenylmethane(DDM), aniline(An), phenol type epoxy resin (F-51) and nitrile -butadiene rubber (NBR) through solution copolymerization. The reaction from prepolymerization to curing of the resin system was studied. And the factors such as raw material ratio and curing temperature, which affect thermal resistance and adhesives of cured product,were also analyzed. SEM and IR spectra were utilized to discuss the mechanisms of toughness and reaction of modified BMI.

  2. Identification of a cytotoxic molecule in heat-modified citrus pectin.

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cambier, Pierre; El Bkassiny, Sandy; Tikad, Abdellatif; Dieu, Marc; Vincent, Stéphane P; Van Cutsem, Pierre; Michiels, Carine

    2016-02-10

    Modified forms of citrus pectin possess anticancer properties. However, their mechanism of action and the structural features involved remain unclear. Here, we showed that citrus pectin modified by heat treatment displayed cytotoxic effects in cancer cells. A fractionation approach was used aiming to identify active molecules. Dialysis and ethanol precipitation followed by HPLC analysis evidenced that most of the activity was related to molecules with molecular weight corresponding to low degree of polymerization oligogalacturonic acid. Heat-treatment of galacturonic acid also generated cytotoxic molecules. Furthermore, heat-modified galacturonic acid and heat-fragmented pectin contained the same molecule that induced cell death when isolated by HPLC separation. Mass spectrometry analyses revealed that 4,5-dihydroxy-2-cyclopenten-1-one was one cytotoxic molecule present in heat-treated pectin. Finally, we synthesized the enantiopure (4R,5R)-4,5-dihydroxy-2-cyclopenten-1-one and demonstrated that this molecule was cytotoxic and induced a similar pattern of apoptotic-like features than heat-modified pectin.

  3. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  4. The effect of heat waves on mortality and effect modifiers in four communities of Guangdong Province, China.

    Science.gov (United States)

    Zeng, Weilin; Lao, Xiangqian; Rutherford, Shannon; Xu, Yanjun; Xu, Xiaojun; Lin, Hualiang; Liu, Tao; Luo, Yuan; Xiao, Jianpeng; Hu, Mengjue; Chu, Cordia; Ma, Wenjun

    2014-06-01

    Heat waves have been reported to be associated with increased mortality; however, fewer studies have examined the effect modification by heat wave characteristics, individual characteristics and community characteristics. This study investigated the effect of extreme heat on mortality in 2 urban and 2 rural communities in Guangdong Province, China during 2006-2010. The effect of extreme heat was divided into two parts: main effect due to high temperature and added effect due to prolonged heat for several consecutive days. A distributed lag non-linear model was used to calculate the relative risk with consideration of lag days and potential confounding factors. Separate models were further fit by individual characteristics (cause of death, age and gender) and heat wave characteristics (intensity, duration and timing), and potential effect modification of community characteristics was examined using a meta-regression, such as educational levels, percentage of the elderly, Gross Regional Domestic Product (GDP). The overall main effects (ER=8.2%, 95% CI: 3.4%, 13.2%) were greater than the added effects (ER=0.0%, 95% CI: -3.8%, 4.0%) on the current day. The main effect peaked at lag0-2, and was higher for the two rural areas compared to the two cities, for respiratory compared to cardiovascular mortality, for those ≥75 years old and for females. The modifying effects of heat wave characteristics and community characteristics on mortality were not statistically significant. This study suggests the effects of extreme heat were mainly driven by high temperature, which can be modified by some individual characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Dynamic Model of Heat Inactivation Kinetics for Bacterial Adaptation▿

    Science.gov (United States)

    Corradini, Maria G.; Peleg, Micha

    2009-01-01

    The Weibullian-log logistic (WeLL) inactivation model was modified to account for heat adaptation by introducing a logistic adaptation factor, which rendered its “rate parameter” a function of both temperature and heating rate. The resulting model is consistent with the observation that adaptation is primarily noticeable in slow heat processes in which the cells are exposed to sublethal temperatures for a sufficiently long time. Dynamic survival patterns generated with the proposed model were in general agreement with those of Escherichia coli and Listeria monocytogenes as reported in the literature. Although the modified model's rate equation has a cumbersome appearance, especially for thermal processes having a variable heating rate, it can be solved numerically with commercial mathematical software. The dynamic model has five survival/adaptation parameters whose determination will require a large experimental database. However, with assumed or estimated parameter values, the model can simulate survival patterns of adapting pathogens in cooked foods that can be used in risk assessment and the establishment of safe preparation conditions. PMID:19201963

  6. Dynamic Heat Transfer Model of Refrigerated Foodstuff

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...

  7. Wintertime urban heat island modified by global climate change over Japan

    Science.gov (United States)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  8. Modeling and simulation of heat sinks for computer processors in COMSOL Multiphysics

    OpenAIRE

    2012-01-01

    In this study, the heat transfer of three desktop- computer heat sinks was analyzed. The objective of using these heat sinks is to avoid overheating of the computer’s processing unit and in turn reduce the corresponding loss in the unit’s service time. The heat sinks were modeled using COMSOL Multiphysics with the actual dimensions of the devices, and heat generation was modeled with a point source. In the next step, the heat sink designs were modified to achieve a lower temperature in the hi...

  9. Test of modified BCS model at finite temperature

    CERN Document Server

    Ponomarev, V Yu

    2005-01-01

    A recently suggested modified BCS (MBCS) model has been studied at finite temperature. We show that this approach does not allow the existence of the normal (non-superfluid) phase at any finite temperature. Other MBCS predictions such as a negative pairing gap, pairing induced by heating in closed-shell nuclei, and ``superfluid -- super-superfluid'' phase transition are discussed also. The MBCS model is tested by comparing with exact solutions for the picket fence model. Here, severe violation of the internal symmetry of the problem is detected. The MBCS equations are found to be inconsistent. The limit of the MBCS applicability has been determined to be far below the ``superfluid -- normal'' phase transition of the conventional FT-BCS, where the model performs worse than the FT-BCS.

  10. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  11. Modelling of Ammonia Heat Pump Desuperheaters

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2015-01-01

    This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method...... is that the specific heat is constant throughout the temperature glide of the refrigerant in the heat exchanger. However, considering ammonia as refrigerant, the LMTD method does not give accurate results due to significant variations of the specific heat. By comparing the actual temperature profiles from a one....... The area of the heat exchanger can be increased or the condensation temperature can be raised to achieve the same temperature difference for the discretized model as for the LMTD. This would affect the compressor work, hence the COP of the system. Furthermore, for higher condenser pressure, and thus higher...

  12. Numerical studies on sizing/ rating of plate fin heat exchangers for a modified Claude cycle based helium liquefier/ refrigerator

    Science.gov (United States)

    Goyal, M.; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.

  13. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist

    2013-01-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are b...

  14. Matrix Models, Monopoles and Modified Moduli

    CERN Document Server

    Erlich, J; Unsal, M; Erlich, Joshua; Hong, Sungho; Unsal, Mithat

    2004-01-01

    Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of N=1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an N=2 nonrenormalization theorem which is inherited by these N=1 theories. Specializing to the case Nf=Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.

  15. Matrix Models, Monopoles and Modified Moduli

    Science.gov (United States)

    Erlich, Joshua; Hong, Sungho; Unsal, Mithat

    2004-09-01

    Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of Script N = 1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an Script N = 2 nonrenormalization theorem which is inherited by these Script N = 1 theories. Specializing to the case Nf = Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.

  16. Homogeneous heating of a sample space by a modified heating assembly in a belt-type high-pressure apparatus.

    Science.gov (United States)

    Miyakawa, M; Taniguchi, T

    2015-02-01

    To create homogeneous heating in the sample space in a belt-type high-pressure apparatus, modified heating assemblies under pressure of 2.5 GPa and temperature up to 1700 °C were examined. Counterbores (with several diameters) were made at both ends of a cylindrical graphite heater to suppress the temperature gradient along the cylindrical axis of the heater. Temperature distributions within the heaters were measured by thermocouples and geothermometers. Both sets of measurements revealed that the temperature distribution in the sample space (6.9 mm outside diameter/12 mm length) was homogenized (i.e., variation of less than 10 °C under heating at 1700 °C) by optimizing the heater shape.

  17. Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment.

    Science.gov (United States)

    Sun, Qingjie; Han, Zhongjie; Wang, Li; Xiong, Liu

    2014-02-15

    Sorghum starch and sorghum flour were modified by heat-moisture treatment (HMT) at two different moisture contents, 20% and 25%. The result showed that solubility and swelling power of modified samples decreased. In addition, the pasting viscosities of most modified samples were lower than that of native samples. The onset, peak and conclusion temperatures of gelatinization, and the enthalpy of samples modified by HMT increased. The crystallinity of the modified samples was higher than that of control samples. HMT had a far greater effect on the solubility, swelling power, setback viscosity, through viscosity, enthalpy and crystallinity of sorghum flour than of sorghum starch. On the granules surface there were more holes for the HMT starches than for HMT flours. The microstructure of HMT sorghum starch gel had a more orderly and smaller holey structure. The sorghum flour gel had originally a crackled structure, but after the HMT treatment, it had many ordered and small holes.

  18. The short-term effect of heat waves on mortality and its modifiers in China: an analysis from 66 communities.

    Science.gov (United States)

    Ma, Wenjun; Zeng, Weilin; Zhou, Maigeng; Wang, Lijun; Rutherford, Shannon; Lin, Hualiang; Liu, Tao; Zhang, Yonghui; Xiao, Jianpeng; Zhang, Yewu; Wang, Xiaofeng; Gu, Xin; Chu, Cordia

    2015-02-01

    Many studies have reported increased mortality risk associated with heat waves. However, few have assessed the health impacts at a nation scale in a developing country. This study examines the mortality effects of heat waves in China and explores whether the effects are modified by individual-level and community-level characteristics. Daily mortality and meteorological variables from 66 Chinese communities were collected for the period 2006-2011. Heat waves were defined as ≥2 consecutive days with mean temperature ≥95th percentile of the year-round community-specific distribution. The community-specific mortality effects of heat waves were first estimated using a Distributed Lag Non-linear Model (DLNM), adjusting for potential confounders. To investigate effect modification by individual characteristics (age, gender, cause of death, education level or place of death), separate DLNM models were further fitted. Potential effect modification by community characteristics was examined using a meta-regression analysis. A total of 5.0% (95% confidence intervals (CI): 2.9%-7.2%) excess deaths were associated with heat waves in 66 Chinese communities, with the highest excess deaths in north China (6.0%, 95% CI: 1%-11.3%), followed by east China (5.2%, 95% CI: 0.4%-10.2%) and south China (4.5%, 95% CI: 1.4%-7.6%). Our results indicate that individual characteristics significantly modified heat waves effects in China, with greater effects on cardiovascular mortality, cerebrovascular mortality, respiratory mortality, the elderly, females, the population dying outside of a hospital and those with a higher education attainment. Heat wave mortality effects were also more pronounced for those living in urban cities or densely populated communities. Heat waves significantly increased mortality risk in China with apparent spatial heterogeneity, which was modified by some individual-level and community-level factors. Our findings suggest adaptation plans that target vulnerable

  19. Heating, ventilation and air conditioning system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Whalley, R.; Abdul-Ameer, A. [British University in Dubai (United Arab Emirates)

    2011-03-15

    Heating, ventilation and air conditioning modelling methods, for large scale, spatially dispersed systems are considered. Existing techniques are discussed and proposals for the application of novel analysis approaches are outlined. The use of distributed-lumped parameter procedures enabling the incorporation of the relatively concentrated and significantly dispersed, system element characteristics, is advocated. A dynamic model for a heating, ventilation and air conditioning system comprising inlet and exhaust fans, with air recirculation, heating/cooling and filtration units is presented. Pressure, airflow and temperature predictions within the system are computed following input, disturbance changes and purging operations. The generalised modelling advancements adopted and the applicability of the model for heating, ventilation and air conditioning system simulation, re-configuration and diagnostics is emphasised. The employment of the model for automatic, multivariable controller design purposes is commented upon. (author)

  20. Simplified models for heat transfer in rooms

    Science.gov (United States)

    Graca, Guilherme C. C. Carrilho Da

    Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

  1. A Modified Model Predictive Control Scheme

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bing Hu; Wen-Hua Chen

    2005-01-01

    In implementations of MPC (Model Predictive Control) schemes, two issues need to be addressed. One is how to enlarge the stability region as much as possible. The other is how to guarantee stability when a computational time limitation exists. In this paper, a modified MPC scheme for constrained linear systems is described. An offline LMI-based iteration process is introduced to expand the stability region. At the same time, a database of feasible control sequences is generated offline so that stability can still be guaranteed in the case of computational time limitations. Simulation results illustrate the effectiveness of this new approach.

  2. Modeling of heat explosion with convection.

    Science.gov (United States)

    Belk, Michael; Volpert, Vitaly

    2004-06-01

    The work is devoted to numerical simulations of the interaction of heat explosion with natural convection. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Navier-Stokes equations under the Boussinesq approximation. We show how complex regimes appear through successive bifurcations leading from a stable stationary temperature distribution without convection to a stationary symmetric convective solution, stationary asymmetric convection, periodic in time oscillations, and finally aperiodic oscillations. A simplified model problem is suggested. It describes the main features of solutions of the complete problem.

  3. Modified-Entropy Models for the Intracluster Medium

    CERN Document Server

    Voit, G M; Balogh, M L; Bower, R G; Bryan, Greg L.; Balogh, Michael L.; Bower, Richard G.

    2002-01-01

    We present a set of cluster models that link the present-day properties of clusters to the processes that govern galaxy formation. These models treat the entropy distribution of the intracluster medium as its most fundamental property. Because convection strives to establish an entropy gradient that rises with radius, the observable properties of a relaxed cluster depend entirely on its dark-matter potential and the entropy distribution of its uncondensed gas. Guided by simulations, we compute the intracluster entropy distribution that arises in the absence of radiative cooling and supernova heating by assuming that the gas-density distribution would be identical to that of the dark matter. The lowest-entropy gas would then fall below a critical entropy threshold at which the cooling time equals a Hubble time. Radiative cooling and whatever feedback is associated with it must modify the entropy of that low-entropy gas, changing the overall entropy distribution function and thereby altering the observable prop...

  4. Modified Nonlinear Model of Arcsin-Electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2016-07-01

    A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.

  5. Modified nonlinear model of arcsin-electrodynamics

    CERN Document Server

    Kruglov, S I

    2015-01-01

    A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter $\\gamma$ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested.

  6. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  7. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  8. Coupled Seepage and Heat Transfer Intake Model

    Institute of Scientific and Technical Information of China (English)

    WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan

    2009-01-01

    In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.

  9. Computational model of miniature pulsating heat pipes.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  10. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  11. Mathematical Modeling of Spiral Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Probal Guha , Vaishnavi Unde

    2014-04-01

    Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model

  12. Modeling Classical Heat Conduction in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendon, Raymond Cori [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-12

    The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.

  13. Non-local model analysis of heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Takuya [Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masatoshi

    1998-10-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  14. New models for conventional and heat exchangers enhanced with tube inserts for heat exchanger network retrofit

    OpenAIRE

    Jiang, N; Shelley, J D; Smith, Robin

    2014-01-01

    The retrofit of heat exchanger networks requires detailed models of the heat exchangers for the detailed assessment of network performance. Network retrofit options include heat transfer enhancement. There is thus a requirement for detailed models of heat exchanger performance, including heat transfer enhancement, suitable for inclusion in network retrofit optimization algorithms. Such models must be robust, computationally efficient and accurate enough to reflect the heat transfer and pressu...

  15. Modelling Heat Exchangers for Domestic Boilers

    Directory of Open Access Journals (Sweden)

    S. F. C. F. Teixeira

    2000-01-01

    Full Text Available In the present paper the thermal behaviour of fin-tube heat exchangers is modeled. Particular attention has been given to the plate fins. The heat fluxes in the fins are described using a finite volume technique to discretize the energy equation. The thermal interactions with the water in the tubes and the surrounding air are treated as external boundaries, using appropriate relationships for forced convection in pipes and flat plates. The numerical results are presented in terms of dimensionless numbers (Fourier, Biot and geometric ratios which are found to be representative for this particular geometry. Furthermore, the effect of thermal gradients along the fin surface upon the fin efficiency is investigated. Based on a differential model for the heat balances, design charts have been developed for the thermal analysis of heat exchangers.

  16. Model-Free Adaptive Heating Process Control

    OpenAIRE

    Ivana LUKÁČOVÁ; Piteľ, Ján

    2009-01-01

    The aim of this paper is to analyze the dynamic behaviour of a Model-Free Adaptive (MFA) heating process control. The MFA controller is designed as three layer neural network with proportional element. The method of backward propagation of errors was used for neural network training. Visualization and training of the artificial neural network was executed by Netlab in Matlab environment. Simulation of the MFA heating process control with outdoor temperature compensation has proved better resu...

  17. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  18. 46 CFR 54.15-15 - Relief devices for unfired steam boilers, evaporators, and heat exchangers (modifies UG-126).

    Science.gov (United States)

    2010-10-01

    ... requirement of § 54.15-5. (g)(1) A heat exchanger with steam in the shell and liquid in the tubes or coils at... more than 6 percent above the safety valve setting. (f) A heat exchanger with liquid in the shell and..., and heat exchangers (modifies UG-126). 54.15-15 Section 54.15-15 Shipping COAST GUARD, DEPARTMENT...

  19. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  20. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

    Science.gov (United States)

    Khan, Masood; Rahman, Masood ur; Manzur, Mehwish

    In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0) in contrast with the power-law fluid (k = 0). For some special cases, comparisons are made with previously reported results and an excellent agreement is established.

  1. In-Cylinder Heat Transfer Modelling

    Directory of Open Access Journals (Sweden)

    Žák Zdeněk

    2016-12-01

    Full Text Available The goal of the paper is to discuss specific features of the in-cylinder heat transfer calculation based on widely used empirical formulas. The potential of in-house codes compared with commercially available software packages is presented. The principles of user models in the GT-SUITE environment are also explained. The results of calibrated models are briefly discussed.

  2. The Effect of Using Modified Flask on the Porosity of Processed Heat- Cure Acrylic Resin

    OpenAIRE

    Mohammed T. Al-Khafagy; Rajaa M. Al-Musawi; Abbas Taher Alaboudy

    2013-01-01

    Porosity is an important property of acrylic resin material because it affect other properties like strength, esthetic and cause bacterial or fungal growth lead to unhealthy dentures. This paper Study the possibility of reducing the porosity of heat- cure acrylic resin by making a modification in the flask of processing .The processing flask was modified by constructing a tongue like projection fixed to the upper half of the flask in order to spread the high temperature occurred in the cente...

  3. Heat Pump Clothes Dryer Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL

    2016-01-01

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model to simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.

  4. Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models

    CERN Document Server

    Henning, Wade G; Sasselov, Dimitar D; 10.1088/0004-637X/707/2/1000

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale parti...

  5. Induction heating for surface triggering styrene polymerization on titanium modified with ATRP initiator.

    Science.gov (United States)

    Barthélémy, Bastien; Devillers, Sébastien; Minet, Isabelle; Delhalle, Joseph; Mekhalif, Zineb

    2011-02-15

    Titanium and its alloys present high interests for technological applications due to their high corrosion resistance, mechanical properties and biocompatibility. In combination with these remarkable characteristics, some Ti applications require specific surface properties that can be imparted with suitable surface functionalizations of the TiO(2) oxide layer. The present work aims to study the surface-initiated ATR polymerization of styrene on titanium substrates, using grafted 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid as initiator and to compare the impact of two different heating ways on the efficiency of this polymerization: induction vs. conventional heating. The ability of the initiator to bind titanium substrates and act as an initiator for ATRP of styrene is investigated: both heating conditions led to the polymerization of styrene on modified titanium substrates. However, induction heating appeared to be much more efficient than conventional heating, leading to the formation of a thicker, much denser polystyrene layer than conventional heating after only 1h of polymerization.

  6. Imperfect fluid cosmological model in modified gravity

    CERN Document Server

    Samanta, G C

    2016-01-01

    In this article, we considered the bulk viscous fluid in the formalism of modified gravity in which the general form of a gravitational action is $f(R, T)$ function, where $R$ is the curvature scalar and $T$ is the trace of the energy momentum tensor within the frame of flat FRW space time. The cosmological model dominated by bulk viscous matter with total bulk viscous coefficient expressed as a linear combination of the velocity and acceleration of the expansion of the universe in such a way that $\\xi=\\xi_0+\\xi_1\\frac{\\dot{a}}{a}+\\xi_2\\frac{\\ddot{a}}{\\dot{a}}$, where $\\xi_0$, $\\xi_1$ and $\\xi_2$ are constants. We take $p=(\\gamma-1)\\rho$, where $0\\le\\gamma\\le2$ as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are obtained by assuming a particular model of the form of $f(R, T)=R+2f(T)$, where $f(T)=\\lambda T$, $\\lambda$ is constant. We studied the four possible scenarios for different values of $\\gamma$, such as $\\gamma=0$, $\\gamma=\\frac{2}{3}$, $\\gamma=1$ and...

  7. Heat Resistance of Epoxy-modified Silicone/Al-Sm2O3 Composite Coatings

    Directory of Open Access Journals (Sweden)

    ZHANG Weigang

    2017-04-01

    Full Text Available Epoxy-modified silicone/Al-Sm2O3 composite coatings with epoxy-modified silicone and Al & Sm2O3 as adhesives and pigments were prepared through spraying method. The effect of heat treatment temperature and heat treatment time on the appearance, microstructure, near-infrared reflectivity, infrared emissivity and mechanical properties of the coating were systematically investigated. The results indicate that after heat treatment at 300 ℃ with 5 h, the appearance and microstructure of the coatings remain unchanged, and the emissivity and near-infrared reflectivity at 1.06 μm are as low as 0.607 and 64.7% respectively; hardness, adhesion strength, and impact strength are maintained at 4 H, 1 grade and 50 kg·cm respectively. After heat treatment at 250 ℃ with 100 h, the appearance and microstructure of the coatings remain unchanged, and the emissivity and near-infrared reflectivity at 1.06 μm are as low as 0.624 and 67.1% respectively; hardness, adhesion strength and impact strength are maintained at 4 H, 1 grade and 50 kg·cm respectively.

  8. Modeling of Unsteady Heat Transfer in Flame-Wall Interaction

    Science.gov (United States)

    Wu, Hao; Ihme, Matthias

    2013-11-01

    An extension of the flamelet/progress variable model is developed to include wall-heat loss effects due to convective heat-transfer. The model introduces a source term in the unsteady flamelet equations, which is modeled based on a modified temperature boundary condition of the counter-flow diffusion flame configuration. The thermochemical composition of the resulting non-adiabatic flamelet structure forms a three-dimensional manifold, which is parameterized in terms of mixture fraction, temperature, and scalar dissipation rate. The performance of the model is evaluated in an a priori study of a H2/O2 diffusion flame that is stabilized at an inert isothermal wall. Comparisons with DNS-data show that the developed non-adiabatic flamelet model accurately represents conditional and unconditional results for temperature, chemical composition, and wall heat transfer. Following this a priori investigation, the model is applied in LES of a coaxial H2/O2 rocket injector, and simulation results from this a posteriori analysis will be compared with experimental data.

  9. Heat treatment modelling using strongly continuous semigroups.

    Science.gov (United States)

    Malek, Alaeddin; Abbasi, Ghasem

    2015-07-01

    In this paper, mathematical simulation of bioheat transfer phenomenon within the living tissue is studied using the thermal wave model. Three different sources that have therapeutic applications in laser surgery, cornea laser heating and cancer hyperthermia are used. Spatial and transient heating source, on the skin surface and inside biological body, are considered by using step heating, sinusoidal and constant heating. Mathematical simulations describe a non-Fourier process. Exact solution for the corresponding non-Fourier bioheat transfer model that has time lag in its heat flux is proposed using strongly continuous semigroup theory in conjunction with variational methods. The abstract differential equation, infinitesimal generator and corresponding strongly continuous semigroup are proposed. It is proved that related semigroup is a contraction semigroup and is exponentially stable. Mathematical simulations are done for skin burning and thermal therapy in 10 different models and the related solutions are depicted. Unlike numerical solutions, which suffer from uncertain physical results, proposed analytical solutions do not have unwanted numerical oscillations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  11. Viscoelastic Models of Tidally Heated Exomoons

    CERN Document Server

    Dobos, Vera

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...

  12. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  13. Cosmological Constraints on the Modified Entropic Force Model

    OpenAIRE

    Wei, Hao

    2010-01-01

    Very recently, Verlinde considered a theory in which space is emergent through a holographic scenario, and proposed that gravity can be explained as an entropic force caused by changes in the information associated with the positions of material bodies. Then, motivated by the Debye model in thermodynamics which is very successful in very low temperatures, Gao modified the entropic force scenario. The modified entropic force (MEF) model is in fact a modified gravity model, and the universe can...

  14. Genetically modified mouse models addressing gonadotropin function.

    Science.gov (United States)

    Ratner, Laura D; Rulli, Susana B; Huhtaniemi, Ilpo T

    2014-03-01

    The development of genetically modified animals has been useful to understand the mechanisms involved in the regulation of the gonadotropin function. It is well known that alterations in the secretion of a single hormone is capable of producing profound reproductive abnormalities. Human chorionic gonadotropin (hCG) is a glycoprotein hormone normally secreted by the human placenta, and structurally and functionally it is related to pituitary LH. LH and hCG bind to the same LH/hCG receptor, and hCG is often used as an analog of LH to boost gonadotropin action. There are many physiological and pathological conditions where LH/hCG levels and actions are elevated. In order to understand how elevated LH/hCG levels may impact on the hypothalamic-pituitary-gonadal axis we have developed a transgenic mouse model with chronic hCG hypersecretion. Female mice develop many gonadal and extragonadal phenotypes including obesity, infertility, hyperprolactinemia, and pituitary and mammary gland tumors. This article summarizes recent findings on the mechanisms involved in pituitary gland tumorigenesis and hyperprolactinemia in the female mice hypersecreting hCG, in particular the relationship of progesterone with the hyperprolactinemic condition of the model. In addition, we describe the role of hyperprolactinemia as the main cause of infertility and the phenotypic abnormalities in these mice, and the use of dopamine agonists bromocriptine and cabergoline to normalize these conditions. Copyright © 2014 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Characterization and modeling of the heat source

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1993-10-01

    A description of the input energy source is basic to any numerical modeling formulation designed to predict the outcome of the welding process. The source is fundamental and unique to each joining process. The resultant output of any numerical model will be affected by the initial description of both the magnitude and distribution of the input energy of the heat source. Thus, calculated weld shape, residual stresses, weld distortion, cooling rates, metallurgical structure, material changes due to excessive temperatures and potential weld defects are all influenced by the initial characterization of the heat source. Understandings of both the physics and the mathematical formulation of these sources are essential for describing the input energy distribution. This section provides a brief review of the physical phenomena that influence the input energy distributions and discusses several different models of heat sources that have been used in simulating arc welding, high energy density welding and resistance welding processes. Both simplified and detailed models of the heat source are discussed.

  16. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.

    Science.gov (United States)

    Sayer, Robert A; Piekos, Edward S; Phinney, Leslie M

    2012-12-01

    Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.

  17. MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei

    2004-01-01

    The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.

  18. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Megahed, A.; Hassan, I. [Concordia University, Montreal, QC (Canada). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  19. Modelling heating effects in cryocooled protein crystals

    CERN Document Server

    Nicholson, J; Fayz, K; Fell, B; Garman, E

    2001-01-01

    With the application of intense X-ray beams from third generation synchrotron sources, damage to cryocooled macromolecular crystals is being observed more commonly . In order to fully utilize synchrotron facilities now available for studying biological crystals, it is essential to understand the processes involved in radiation damage and beam heating so that, if possible, action can be taken to slow the rate of damage. Finite Element Analysis (FEA) has been applied to model the heating effects of X-rays on cryocooled protein crystals, and to compare the relative cooling efficiencies of nitrogen and helium.

  20. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  1. Heat flux modulation in domino dynamo model

    CERN Document Server

    Reshetnyak, Maxim

    2012-01-01

    Using domino dynamo model we show how variations of the heat flux at the core-mantle boundary change frequency of geomagnetic field reversals. In fact, we are able to demonstrate effect known from the modern 3D planetary dynamo models using ensemble of the interacting spins, which obey equations of the Langevin-type with a random force. We also consider applications to the giant- planets and offer explanations of some specific episodes of the geomagnetic field in the past.

  2. The Effect of Using Modified Flask on the Porosity of Processed Heat- Cure Acrylic Resin

    Directory of Open Access Journals (Sweden)

    Mohammed T. Al-Khafagy

    2013-04-01

    Full Text Available Porosity is an important property of acrylic resin material because it affect other properties like strength, esthetic and cause bacterial or fungal growth lead to unhealthy dentures. This paper Study the possibility of reducing the porosity of heat- cure acrylic resin by making a modification in the flask of processing .The processing flask was modified by constructing a tongue like projection fixed to the upper half of the flask in order to spread the high temperature occurred in the center of the muffle. In the this research; forty lower denture base with bite rim samples were prepared from heat-cure acrylic resin denture base. The study include 4 testing groups depending on the type of curing cycle and using of ordinary traditional and modified flask in curing process, each group contain 10 samples. One way ANOVA with Tukey's test between tested groups in regarding the type of flasking and curing cycle are indicated, the results revealed a significant difference at (P=0.05 when compare between group 2(I.I.O.Fand 3(S.C.M.F and between group2and 4(S.C.O.F, and also between group 3and 4. While there was a non significant differences between group 1,2 and1,3 and finally between group1and4. Less Porosity was observed in the group of samples that cured with slow curing cycle in modified flask when compare with other groups.

  3. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  4. A simplified heat pump model for use in solar plus heat pump system simulation studies

    OpenAIRE

    Perers, Bengt; Anderssen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the he...

  5. The Heat Is On! Using Particle Models to Change Students' Conceptions of Heat and Temperature

    Science.gov (United States)

    Hitt, Austin Manning; Townsend, J. Scott

    2015-01-01

    Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…

  6. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  7. Heat transfer modeling an inductive approach

    CERN Document Server

    Sidebotham, George

    2015-01-01

    This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...

  8. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    Science.gov (United States)

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Anti-cancer activities of pH- or heat-modified pectin

    Directory of Open Access Journals (Sweden)

    Lionel eLeclere

    2013-10-01

    Full Text Available Despite enormous efforts that have been made in the search for novel drugs and treatments, cancer continues to be a major public health problem. Moreover, the emergence of resistance to cancer chemotherapy often prevents complete remission. Researchers have thus turned to natural products mainly from plant origin to circumvent resistance. Pectin and pH- or heat-modified pectin have demonstrated chemopreventive and antitumoral activities against some aggressive and recurrent cancers. The focus of this review is to describe how pectin and modified pectin display these activities and what are the possible underlying mechanisms. The failure of conventional chemotherapy to reduce mortality as well as serious side effects makes natural products, such as pectin-derived products, ideal candidates for exerting synergism in combination with conventional anticancer drugs.

  10. Uniform staining of Cyclospora oocysts in fecal smears by a modified safranin technique with microwave heating.

    Science.gov (United States)

    Visvesvara, G S; Moura, H; Kovacs-Nace, E; Wallace, S; Eberhard, M L

    1997-03-01

    Cyclospora, a coccidian protist, is increasingly being identified as an important, newly emerging parasite that causes diarrhea, flatulence, fatigue, and abdominal pain leading to weight loss in immunocompetent persons with or without a recent travel history as well as in patients with AIDS. Modified Kinyoun's acid-fast stain is the most commonly used stain to identify the oocyst of this parasite in fecal smears. Oocysts of Cyclospora stain variably by the modified acid-fast procedure, resulting in the possible misidentification of this parasite. We examined fecal smears stained by six different procedures that included Giemsa, trichrome, chromotrope, Gram-chromotrope, acid-fast, and safranin stains. We report on safranin-based stain that uniformly stains oocysts of Cyclospora a brilliant reddish orange, provided that the fecal smears are heated in a microwave oven prior to staining. This staining procedure, besides being superior to acid-fast staining, is fast, reliable, and easy to perform in most clinical laboratories.

  11. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  12. A modified Bowen ratio method to determine sensible and latent heat fluxes

    Directory of Open Access Journals (Sweden)

    Heping Liu

    2001-03-01

    Full Text Available The sensible heat flux (H and the latent heat flux (λE were measured above a grassland during June, 1997 (LINEX-97/1 Experiment, using the eddy covariance method (EC and the Bowen ratio/Energy balance method (BREB. The results indicate that HBREB is about (30 ± 20 Wm-2 higher than HEC, and λEBREB is about (180 ± 40 Wm-2 higher than λEEC during the daytime, and this is mainly caused by an imbalance in the closure of the surface energy balance in the BREB. In order to avoid the inaccuracies associated with the surface energy balance method, we propose a modified Bowen ratio method (MBR to determine sensible and latent heat fluxes without using the surface energy balance equation. The results and error analysis show that MBR can give more accurate results than BREB. For the MBR, a measurement system using a sonic anemometer together with temperature and humidity measurements at two levels is being recommended to obtain sensible and latent heat fluxes.

  13. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and UHT-82). 54.25-20 Section 54.25... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature...

  14. Borehole model for simulation transport geothermal heat with heat pipe system and with forced circulation of heat carrier

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2012-04-01

    Full Text Available In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057, whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3.

  15. A MODIFIED NONLINEAR DIFFUSION MODEL AND ITS APPLICATION TO IMAGE SMOOTHING AND EDGE DETECTION

    Institute of Scientific and Technical Information of China (English)

    Xu Deliang; Wang Yaguang; Zhou Chuqin; Shen Haiping

    2001-01-01

    A modified version of the Cotte, Lions, Morel and Coil theory for image selective smoothing and edge detection is proposed. Comparing with their model, the most important advantage of this modification is that the convolution with Gaussian processes in the filtering process is replaced by solving an initial-boundary value problem for the heat equation, which simplifies the numerical scheme to some extent. Numerical experiments on natural images are presented for this model.

  16. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    U L VISAKH KUMAR; BILIN SUSAN VARGHESE; P J KURIAN

    2017-02-01

    The problem of coronal heating remains one of the greatest unresolved problems in space science. Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present paper deals with a model for reconnection occurring in the solar corona under steady state in collisionless regime. The model predicts that reconnection time in the solar corona varies inversely with the cube of magnetic field and varies directly with the Lindquist number. Our analysis shows that reconnections are occurring within a time interval of600 s in the solar corona, producing nanoflares in the energy range $10^{21}–10^{23}$ erg/s which matches with Yohkoh X-ray observations.

  17. Nanoflare heating model for collisionless solar corona

    Science.gov (United States)

    Visakh Kumar, U. L.; Varghese, Bilin Susan; Kurian, P. J.

    2017-02-01

    The problem of coronal heating remains one of the greatest unresolved problems in space science. Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present paper deals with a model for reconnection occurring in the solar corona under steady state in collisionless regime. The model predicts that reconnection time in the solar corona varies inversely with the cube of magnetic field and varies directly with the Lindquist number. Our analysis shows that reconnections are occurring within a time interval of 600 s in the solar corona, producing nanoflares in the energy range 10 21-10 23 erg /s which matches with Yohkoh X-ray observations.

  18. Multilinear Model of Heat Exchanger with Hammerstein Structure

    Directory of Open Access Journals (Sweden)

    Dragan Pršić

    2016-01-01

    Full Text Available The multilinear model control design approach is based on the approximation of the nonlinear model of the system by a set of linear models. The paper presents the method of creation of a bank of linear models of the two-pass shell and tube heat exchanger. The nonlinear model is assumed to have a Hammerstein structure. The set of linear models is formed by decomposition of the nonlinear steady-state characteristic by using the modified Included Angle Dividing method. Two modifications of this method are proposed. The first one refers to the addition to the algorithm for decomposition, which reduces the number of linear segments. The second one refers to determination of the threshold value. The dependence between decomposition of the nonlinear characteristic and the linear dynamics of the closed-loop system is established. The decoupling process is more formal and it can be easily implemented by using software tools. Due to its simplicity, the method is particularly suitable in complex systems, such as heat exchanger networks.

  19. Vertical eddy heat fluxes from model simulations

    Science.gov (United States)

    Stone, Peter H.; Yao, Mao-Sung

    1991-01-01

    Vertical eddy fluxes of heat are calculated from simulations with a variety of climate models, ranging from three-dimensional GCMs to a one-dimensional radiative-convective model. The models' total eddy flux in the lower troposphere is found to agree well with Hantel's analysis from observations, but in the mid and upper troposphere the models' values are systematically 30 percent to 50 percent smaller than Hantel's. The models nevertheless give very good results for the global temperature profile, and the reason for the discrepancy is unclear. The model results show that the manner in which the vertical eddy flux is carried is very sensitive to the parameterization of moist convection. When a moist adiabatic adjustment scheme with a critical value for the relative humidity of 100 percent is used, the vertical transports by large-scale eddies and small-scale convection on a global basis are equal: but when a penetrative convection scheme is used, the large-scale flux on a global basis is only about one-fifth to one-fourth the small-scale flux. Comparison of the model results with observations indicates that the results with the latter scheme are more realistic. However, even in this case, in mid and high latitudes the large and small-scale vertical eddy fluxes of heat are comparable in magnitude above the planetary boundary layer.

  20. Turing patterns in a modified Lotka-Volterra model

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Edward A. [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States); Peacock-Lopez, Enrique [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States)]. E-mail: epeacock@williams.edu

    2005-07-04

    In this Letter we consider a modified Lotka-Volterra model widely known as the Bazykin model, which is the MacArthur-Rosenzweig (MR) model that includes a prey-dependent response function and is modified with the inclusion of intraspecies interactions. We show that a quadratic intra-prey interaction term, which is the most realistic nonlinearity, yields sufficient conditions for Turing patterns. For the Bazykin model we find the Turing region in parameter space and Turing patterns in one dimension.

  1. The heat resistance of a polyurethane coating filled with modified nano-CaCO3

    Science.gov (United States)

    Li, Bin; Li, Song-Mei; Liu, Jian-Hua; Yu, Mei

    2014-10-01

    The modification of polyurethane coating by adding surface-modified CaCO3 nanoparticles (nano-CaCO3) was investigated in this paper. To improve interfacial interaction between the nano-CaCO3 and the polyurethane (PU) matrix, a silane coupling agent (KH560) was used to modify the nano-CaCO3. The grafting of KH560 on the nano-CaCO3 surfaces was characterized by the TEM, FTIR and TGA techniques. The modification of the nano-CaCO3 surfaces with KH560 was demonstrated to improve the dispersity of nano-CaCO3. FTIR, SEM and AFM were used to characterize the polyurethane coating. The FTIR spectrum indicated that the modification of nano-CaCO3 does not influence the chemical structure of the PU matrix. The roughness and gloss of the nanocomposite coatings containing various amount of nano-CaCO3 were evaluated using a roughness tester and a brightness meter. The heat resistance of the polyurethane coating containing various amounts of nano-CaCO3 was evaluated using the TGA technique. The results revealed that nano-CaCO3 treatment with KH560 improves the nanoparticle dispersion and heat-resistance of polyurethane coating.

  2. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  3. Exact Solutions in Modified Gravity Models

    Directory of Open Access Journals (Sweden)

    Valery V. Obukhov

    2012-06-01

    Full Text Available We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.

  4. Exact Solutions in Modified Gravity Models

    CERN Document Server

    Makarenko, Andrey N

    2012-01-01

    We review the exact solutions in modified gravity. It is one of the main problems of mathematical physics for the gravity theory. One can obtain an exact solution if the field equations reduce to a system of ordinary differential equations. In this paper we consider a number of exact solutions obtained by the method of separation of variables. Some applications to Cosmology and BH entropy are briefly mentioned.

  5. Modeling a Cold Crucible Induction Heated Melter

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes

    2003-06-01

    FIDAP has been used to simulate melting of radioactive waste glass in a cold crucible induction heated melter. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melting process. This magnetic field is coupled to the mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities, and magnetic vector potential. A power controller is implemented that controls the primary coil current and power.

  6. Modeling a Cold Crucible Induction Heated Melter

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, G.L.

    2003-05-09

    FIDAP has been used to simulate melting of radioactive waste glass in a cold crucible induction heated melter. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melting process. This magnetic field is coupled with mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities, and magnetic vector potential. A power controller is implemented that controls the primary coil current and power.

  7. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  8. Heat-pump-assisted dryer: Pt. 1; Mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, V.R.; Devotta, S.; Patwardhan, V.S. (National Chemical Lab., Poona (India))

    1990-07-01

    A mathematical model for an integrated heat-pump-assisted dryer has been developed. The dryer has been modelled considering the heat transfer and simultaneous heat and mass transfer zones. The heat-pump heat exchangers have been modelled by writing the enthalpy balance for differential lengths considering the various zones on the air and working-fluid sides. The compressor has been described by the polytropic compression equation. The model has been used for simulating an existing system using R11 to study the effect of approach velocity of air to the evaporator and of the suction superheat on the specific energy consumption of the heat pump assisted dryer. (author).

  9. A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Sugrue, R., E-mail: rsugrue@mit.edu; Buongiorno, J.

    2016-08-15

    Highlights: • Existing bubble departure models were tested against various experimental databases. • General experimental trends were captured correctly but give large average errors. • A modified bubble departure model is proposed and tested against these databases. - Abstract: Experimental data by Sugrue et al., Klausner et al., Zeng et al., Prodanovic et al., and Situ et al. for bubble departure diameter in subcooled flow boiling in a wide range of orientation angle, subcooling, heat flux, mass flux, and pressure conditions were used to assess the predictive accuracy of the mechanistic force-balance models of Klausner et al. and Yun et al. The results suggested that both models capture the experimental trends correctly, but exhibit large average errors and standard deviations, i.e. 85.5% (σ = 49.7%) and 43.9% (σ = 23.1%) for Klausner’s and Yun’s models, respectively. Since the cube of the bubble departure diameter is used in subcooled flow boiling heat transfer models, such errors are unacceptable, and underscore the need for greater accuracy in predictions. Therefore, the databases were used to (i) identify the dominant forces determining bubble departure at various operating conditions, and (ii) optimize the empirical coefficients describing those forces in Klausner’s model. The modified model considerably lowers prediction error to 22.4% (σ = 19.9%) for all data considered. Application of the modified model is demonstrated for the subcooled flow boiling conditions present in the hot channel of a typical Pressurized Water Reactor (PWR).

  10. Solution heat-treatment of Nb-modified MAR-M247 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Soares Azevedo e Silva, Paulo Ricardo, E-mail: paulori@alunos.eel.usp.br [Universidade de Sao Paulo (USP), Escola de Engenharia de Lorena (EEL), Departamento de Engenharia de Materiais DEMAR, Polo Urbo-Industrial Gleba AI-6, Caixa Postal 116, 12600-970, Lorena, Sao Paulo (Brazil); Baldan, Renato, E-mail: renato@ppgem.eel.usp.br [Universidade de Sao Paulo (USP), Escola de Engenharia de Lorena (EEL), Departamento de Engenharia de Materiais DEMAR, Polo Urbo-Industrial Gleba AI-6, Caixa Postal 116, 12600-970, Lorena, Sao Paulo (Brazil); Nunes, Carlos Angelo, E-mail: cnunes@demar.eel.usp.br [Universidade de Sao Paulo (USP), Escola de Engenharia de Lorena (EEL), Departamento de Engenharia de Materiais DEMAR, Polo Urbo-Industrial Gleba AI-6, Caixa Postal 116, 12600-970, Lorena, Sao Paulo (Brazil); Carvalho Coelho, Gilberto, E-mail: coelho@demar.eel.usp.br [Universidade de Sao Paulo (USP), Escola de Engenharia de Lorena (EEL), Departamento de Engenharia de Materiais DEMAR, Polo Urbo-Industrial Gleba AI-6, Caixa Postal 116, 12600-970, Lorena, Sao Paulo (Brazil); UniFoa, Centro Universitario de Volta Redonda, Nucleo de Pesquisa, Campus Tres Pocos, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Tres Pocos, 27240-560, Volta Redonda, Rio de Janeiro (Brazil); and others

    2013-01-15

    MAR-M247 superalloy has excellent mechanical properties and good oxidation resistance at elevated temperatures. Niobium is an element known as {gamma} Prime phase hardener in nickel-based superalloys, besides promoting homogeneous distribution of MC carbides. This work is inserted in a project that aims to evaluate the total replacement of tantalum by niobium atoms in MAR-M247 superalloy (10.2 Co, 10.2 W, 8.5Cr, 5.6 Al, 1.6 Nb, 1.4 Hf, 1.1 Ti, 0.7 Mo, 0.15 C, 0.06 Zr, 0.015 B, Ni balance-wt.%). Based on microstructural characterizations (SEM and FEG-SEM, both with EDS) of the as-cast material and heat-treated materials as well as utilizing Thermocalc simulations and experiments of differential thermal analysis (DTA), heat-treatment at 1260 Degree-Sign C for 8 h was chosen as an ideal condition for the solution of Nb-modified MAR-M247 superalloy. The hardness of as-cast and ideally solution treated materials was 390 {+-} 14 HV and 415 {+-} 6 HV, respectively. - Highlights: Black-Right-Pointing-Pointer DTA and microstructure of MAR-M247(Nb) showed a good agreement with Thermocalc. Black-Right-Pointing-Pointer An ideal condition for solution heat-treatment of MAR-M247(Nb) is 1260 Degree-Sign C for 8 h. Black-Right-Pointing-Pointer It was an observed evidence of incipient melting in samples heat-treated at 1280 Degree-Sign C.

  11. Hydraulic Model Tests on Modified Wave Dragon

    DEFF Research Database (Denmark)

    Hald, Tue; Lynggaard, Jakob

    A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University and in the following...... are found in Hald and Lynggaard (2001). Model tests and reconstruction are carried out during the phase 3 project: ”Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequentiel tests of changes to the model geometry and mass distribution parameters” sponsored by the Danish Energy Agency...

  12. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  13. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  14. Verification of Conjugate Heat Transfer Models in a Closed Volume with Radiative Heat Source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2016-01-01

    Full Text Available The results of verification of mathematical model of convective-conductive heat transfer in a closed volume with a thermally conductive enclosing structures are presented. Experiments were carried out to determine the temperature of floor premises in the working conditions of radiant heating systems. Comparison of mathematical modelling of temperature fields and experiments showed their good agreement. It is concluded that the mathematical model of conjugate heat transfers in the air cavity with a heat-conducting and heat-retaining walls correspond to the real process of formation of temperature fields in premises with gas infrared heaters system.

  15. Local business models for district heat production; Kaukolaemmoen paikalliset liiketoimintamallit

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, L.; Pesola, A.; Vanhanen, J.

    2012-12-15

    Local district heating business, outside large urban centers, is a profitable business in Finland, which can be practiced with several different business models. In addition to the traditional, local district heating business, local district heat production can be also based on franchising business model, on integrated service model or on different types of cooperation models, either between a local district heat producer and industrial site providing surplus heat or between a local district heat producer and a larger district heating company. Locally available wood energy is currently utilized effectively in the traditional district heating business model, in which a local entrepreneur produces heat to consumers in the local area. The franchising model is a more advanced version of the traditional district heating entrepreneurship. In this model, franchisor funds part of the investments, as well as offers centralized maintenance and fuel supply, for example. In the integrated service model, the local district heat producer offers also energy efficiency services and other value-added services, which are based on either the local district heat suppliers or his partner's expertise. In the cooperation model with industrial site, the local district heating business is based on the utilization of the surplus heat from the industrial site. In some cases, profitable operating model approach may be a district heating company outsourcing operations of one or more heating plants to a local entrepreneur. It can be concluded that all business models for district heat production (traditional district heat business model, franchising, integrated service model, cooperative model) discussed in this report can be profitable in Finnish conditions, as well for the local heat producer as for the municipality - and, above all, they produce cost-competitive heat for the end-user. All the models were seen as viable and interesting and having possibilities for expansion Finland

  16. Developing and modelling of ohmic heating for solid food products

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Frosch, Stina

    such as meat and seafood is not industrially utilized yet. Therefore, the aim of the current work is to model and develop the ohmic heating technology for heating of solid meat and seafood. A 3D mathematical model of coupled heat transfer and electric field during ohmic heating of meat products has been......Heating of solid foods using the conventional technologies is time-consuming due to the fact that heat transfer is limited by internal conduction within the product. This is a big challenge to food manufactures who wish to heat the product faster to the desired core temperature and to ensure more...... uniform quality across the product. Ohmic heating is one of the novel technologies potentially solving this problem by allowing volumetric heating of the product and thereby reducing or eliminating temperature gradients within the product. However, the application of ohmic heating for solid food products...

  17. Dynamical Algebraic Approach to the Modified Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    许晶波; 邹旭波

    2001-01-01

    The modified Jaynes-Cummings model of a single two-level atom placed in the common domain of two cavities or interacting with two quantized modes is studied by a dynamical algebraic method. With the help of an SU(2) algebraic structure, we then obtain the eigenvalues, eigenstates, time evolution operator and atomic inversion operator for the system. We proceed to investigate the modified Jaynes-Cummings model governed by the Milburn equation and present the exact solution of the Milburn equation.

  18. Modified Spatial Channel Model for MIMO Wireless Systems

    Directory of Open Access Journals (Sweden)

    Pekka Kyösti

    2007-12-01

    Full Text Available The third generation partnership Project's (3GPP spatial channel model (SCM is a stochastic channel model for MIMO systems. Due to fixed subpath power levels and angular directions, the SCM model does not show the degree of variation which is encountered in real channels. In this paper, we propose a modified SCM model which has random subpath powers and directions and still produces Laplace shape angular power spectrum. Simulation results on outage MIMO capacity with basic and modified SCM models show that the modified SCM model gives constantly smaller capacity values. Accordingly, it seems that the basic SCM gives too small correlation between MIMO antennas. Moreover, the variance in capacity values is larger using the proposed SCM model. Simulation results were supported by the outage capacity results from a measurement campaign conducted in the city centre of Oulu, Finland.

  19. The Cosmology of Generalized Modified Gravity Models

    CERN Document Server

    Carroll, S M; Duvvuri, V; Easson, D A; Trodden, M; Turner, M S; Carroll, Sean M.; Felice, Antonio De; Duvvuri, Vikram; Easson, Damien A.; Trodden, Mark; Turner, Michael S.

    2005-01-01

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.

  20. Cosmology of generalized modified gravity models

    Science.gov (United States)

    Carroll, Sean M.; de Felice, Antonio; Duvvuri, Vikram; Easson, Damien A.; Trodden, Mark; Turner, Michael S.

    2005-03-01

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.

  1. Plural Governance: A Modified Transaction Cost Model

    DEFF Research Database (Denmark)

    Mols, Niels Peter; Menard, Claude

    2014-01-01

    a model relating transaction cost and resource-based variables to the cost of the plural form. The model is then used to analyze when the plural form is efficient compared to alternative governance structures. We also use the model to discuss the strength of three plural form synergies.......Plural governance is a form of governance where a firm both makes and buys similar goods or services. Despite a widespread use of plural governance there are no transaction cost models of how plural governance affects performance. This paper reviews the literature about plural forms and proposes...

  2. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...

  3. What do they know about Heat and Heat Conduction? A case study to excavate Pre-service Physics Teachers’ Mental Model in Heat and Heat Conduction

    Science.gov (United States)

    Sari, I. M.

    2017-02-01

    Teacher plays a crucial role in Education. Helping students construct scientifically mental model is one of obligation of Physics Education Department of Teacher Education Institute that produce physics teacher. Excavating students’ mental model is necessary to be done in physics education. This research was first to identify 23 physics students’ mental model of heat and heat conduction. A series of semi-structured interviews was conducted to excavate the students’ understanding of heat and mental models on heat conduction. The students who involved in this study come from different level from sophomore to master degree in Physics Education Department. This study adopted a constant comparison method to obtain the patterns of the participants’ responses through the students’ writing, drawing and verbal utterances. The framework for assessing mental model and the instruments were adopted and adapted from Chiou and Anderson (2010). We also compared the students’ understanding of heat and mental models on heat conduction. The result shows that Heat is treated as Intrinsic property, material substances, and caloric flow. None of students expressed heat as transfer of thermal energy. Moreover, there are two kinds of students’ fundamental component of mental model in heat conduction were found: medium and molecules. Students understanding of heat and fundamental components of mental model in heat conduction are not resulted from running mental model.

  4. Modified eCDP model on Internet

    Directory of Open Access Journals (Sweden)

    Yu.V. Loginova

    2012-09-01

    Full Text Available In article analysis of consumer behavior model, considering specificity of Internet trade is carried out. Price effects influencing behavior of consumers are considered. Effect of ecash is described. New model of Internet consumers behavior taking into account effect of ecash non-uniform value is resulted.

  5. Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders

    Science.gov (United States)

    Falakzaadeh, F.; Mehryar, R.

    2017-01-01

    To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.

  6. Moderate summer heat stress does not modify immunological parameters of Holstein dairy cows

    Science.gov (United States)

    Lacetera, Nicola; Bernabucci, Umberto; Ronchi, Bruno; Scalia, Daniela; Nardone, Alessandro

    2002-02-01

    The study was undertaken during spring and summer months in a territory representative of the Mediterranean climate to assess the effects of season on some immunological parameters of dairy cows. Twenty Holstein cows were used. Eleven of those cows gave birth during spring; the remaining nine cows gave birth in summer. The two groups of cows were homogeneous for parity. Values of air temperatures and relative humidity were recorded both during spring and summer, and were utilized to calculate the temperature humidity index (THI). One week before the expected calving, rectal temperatures and respiratory rates of the cows were recorded (1500 hours), and cell-mediated immunity was assessed by measuring the proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMC). Within 3 h of calving, one colostrum sample was taken from each cow and analysed to determine content of immunoglobulin (Ig) G1, IgG2, IgM and IgA. At 48 h after birth, passive immunization of the calves was assessed by measuring total serum IgG. During summer, daytime (0900-2000 hours) THI values were above the upper critical value of 72 [75.2, (SD 2.6)] indicating conditions that could represent moderate heat stress. That THI values were able to predict heat stress was confirmed by the values of rectal temperatures and respiratory rates, which were higher ( P heat stress due to the hot Mediterranean summer does not modify cell-mediated immunity, the protective value of colostrum and passive immunization of the offspring in dairy cows.

  7. Mouse models for atherosclerosis and pharmaceutical modifiers

    NARCIS (Netherlands)

    Zadelaar, A.S.M.; Kleemann, R.; Verschuren, L.; Vries-van der Weij, J. de; Hoorn, J. van der; Princen, H.M.; Kooistra, T.

    2007-01-01

    Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically

  8. Mouse models for atherosclerosis and pharmaceutical modifiers

    NARCIS (Netherlands)

    Zadelaar, A.S.M.; Kleemann, R.; Verschuren, L.; Vries-van der Weij, J. de; Hoorn, J. van der; Princen, H.M.; Kooistra, T.

    2007-01-01

    Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically

  9. The structure and amphipathy characteristics of modified γ-zeins by SDS or alkali in conjunction with heating treatment.

    Science.gov (United States)

    Dong, Shi-Rong; Xu, Hong-Hua; Tan, Jun-Yan; Xie, Ming-Ming; Yu, Guo-Ping

    2017-10-15

    γ-Zein was modified by SDS or alkali combined with heating treatments in water and in 70% ethanol to change its amphipathic properties and explore the relationship between amphipathic characteristic and structure. γ-Zein water-dispersibility was dramatically increased via alkali or SDS combined with heating treatments, but their ethanol-dispersibilities were significantly different during ethanol evaporation. High both water-dispersibility and ethanol-dispersibility were found from alkali modified γ-zein while high water-dispersibility but low ethanol-dispersibility were obtained from SDS modified γ-zein, indicating that alkali modified γ-zein had better amphipathic characteristic compared with SDS modified γ-zein. Alkali modified γ-zein with higher amphipathic characteristic possessed higher structural inversion ability since it was easy to recover its native state as solvent changing from water to ethanol, contrary to SDS modified γ-zeins whose amphipathic characteristic was not improved. Moreover, the higher structural inversion ability of alkali modified γ-zein depended on the recovery capability of α-helix structure as solvent altering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. QUALITY IMPROVEMENT OF SECONDARY SILUMINS BY USING REFINING-MODIFYING, HEAT AND LASER TREATMENTS

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2014-10-01

    Full Text Available Purpose. As a rule secondary silumins are characterized by lower quality than their primary analogues. During manufacture of alloys a large quantity of intermetallides, first of all on the basis of iron, in their structure is ignored. To achieve the optimum level of properties it is necessary to search for ways to adapt refining-modifying, heat and laser treatments to peculiarities of the structure of secondary Al-Si alloys. Methodology. The research was carried out by using standard methods of metallographic analysis, determination of foundry, mechanical and service properties of alloys according to rotatable plans of multifactor experiments. Findings. It was established, that refiningmodifying treatment is a required procedure during manufacture of secondary silumins as it permits to effectively influence the iron-containing phases' segregations by changing their morphology, size and distribution and to increase the effectiveness of further treatment in solid state. It was found that standard modes of heat treatment are not optimal for secondary silumins. Laser treatment has shown high effectiveness in increasing of strength, wear resistance, corrosion and cavitation resistance of secondary Al-Si alloys, and the increased iron content contributed to additional solid solution hardening. Originality. It was established, that after refining-modifying treatment the phase Al5SiFe, which crystallizes in the shape of long stretched plates transformed into phase Al15(FeMn3Si2 in skeletal or polyhedral shape. The relationship between iron content in secondary silumins and holding time during heat treatment that ensures optimum of mechanical properties was obtained. It was proved that the presence of ironcontaining intermetallides Al5SiFe results in the decrease of hardened layer's depth during laser treatment. It was established, that with increasing of iron concentration the corrosion rate of secondary silumins in 3 % NaCl + 0.1 % H2O2 and 10 % HCl

  11. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  12. Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model.

    Science.gov (United States)

    Kumar, Ajay; Kumar, Sushil; Katiyar, V K; Telles, Shirley

    2017-05-01

    The paper reports a numerical study of phase change heat transfer process in lung cancer undergoing cryosurgery. A two dimensional hyperbolic bio-heat model with non-ideal property of tissue, blood perfusion and metabolism is used to analyze the problem. The governing equations are solved by finite difference method based on enthalpy formulation. Effects of relaxation time of heat flux in hyperbolic model on freezing process have been examined. A comparative investigation of two different models (hyperbolic and parabolic bio-heat models) is also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modeling of Heating During Food Processing

    Science.gov (United States)

    Zheleva, Ivanka; Kamburova, Veselka

    Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.

  14. Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies

    Science.gov (United States)

    Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne

    2016-07-01

    Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.

  15. The Kolb Model Modified for Classroom Activities.

    Science.gov (United States)

    Svinicki, Marilla D.; Dixon, Nancy M.

    1987-01-01

    The experiential learning model of Kolb provides a framework for examining the selection of a broader range of classroom activities than is in current use. Experiential learning cycle, experiential learning as instructional design, and student as actor versus student as receiver are discussed. (MLW)

  16. Modified perturbation theory for the Yukawa model

    CERN Document Server

    Poluektov, Yu M

    2016-01-01

    A new formulation of perturbation theory for a description of the Dirac and scalar fields (the Yukawa model) is suggested. As the main approximation the self-consistent field model is chosen, which allows in a certain degree to account for the effects caused by the interaction of fields. Such choice of the main approximation leads to a normally ordered form of the interaction Hamiltonian. Generation of the fermion mass due to the interaction with exchange of the scalar boson is investigated. It is demonstrated that, for zero bare mass, the fermion can acquire mass only if the coupling constant exceeds the critical value determined by the boson mass. In this connection, the problem of the neutrino mass is discussed.

  17. Modified Invasion Percolation Models for Multiphase Processes

    Energy Technology Data Exchange (ETDEWEB)

    Karpyn, Zuleima [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  18. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  19. Mathematical Modeling of Spiral Heat Exchanger

    OpenAIRE

    Probal Guha , Vaishnavi Unde

    2014-01-01

    Compact Heat Exchangers (CHEs) are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat ...

  20. A diffusion model for drying of a heat sensitive solid under multiple heat input modes.

    Science.gov (United States)

    Sun, Lan; Islam, Md Raisul; Ho, J C; Mujumdar, A S

    2005-09-01

    To obtain optimal drying kinetics as well as quality of the dried product in a batch dryer, the energy required may be supplied by combining different modes of heat transfer. In this work, using potato slice as a model heat sensitive drying object, experimental studies were conducted using a batch heat pump dryer designed to permit simultaneous application of conduction and radiation heat. Four heat input schemes were compared: pure convection, radiation-coupled convection, conduction-coupled convection and radiation-conduction-coupled convection. A two-dimensional drying model was developed assuming the drying rate to be controlled by liquid water diffusion. Both drying rates and temperatures within the slab during drying under all these four heat input schemes showed good accord with measurements. Radiation-coupled convection is the recommended heat transfer scheme from the viewpoint of high drying rate and low energy consumption.

  1. A simplified model of heat transfer in heat exchangers and stack plates of thermoacoustic refrigerators

    Science.gov (United States)

    Herman, Cila; Chen, Yuwen

    2006-08-01

    A simplified model of heat transfer was developed to investigate the thermal behavior of heat exchangers and stack plates of thermoacoustic devices. The model took advantage of previous results describing the thermal behavior of the thermoacoustic core and heat transfer in oscillating flow to study the performance of heat exchangers attached to the core. The configuration considered is a flat tube (with a working fluid flowing in the tube) of the thickness of the stack plate attached to both ends of the stack plate. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, transport fluids in the heat exchangers, stack plate and the thermoacoustic working fluid were organized into dimensionless groups that allowed accounting for their impact on the performance of the heat exchangers. Two types of thermal boundary conditions were considered: constant temperature and constant heat flux along the heat exchanger tubes. Numerical simulations were carried out with the model introduced in the paper. The temperature distributions and heat fluxes near the edge of the stack plate were found to be nonlinear. The influence of system parameters on the thermal performance of the heat exchangers was analyzed.

  2. Periodicity and chaos on a modified Samuelson model

    OpenAIRE

    2003-01-01

    Several discrete time nonlinear growth models with complicated dynamical behavior have been introduced in the literature. In this paper we propuse a modified Samuelson model and we study its dynamical behavior depending on several parameters, which turn out to be the same as the logistic family. Moreover in the base situation the dynamical behavior only depends on the initial values of supply and demand.

  3. Modified Critical State Two-Surface Plasticity Model for Sands

    DEFF Research Database (Denmark)

    Sørensen, Kris Wessel; Nielsen, Søren Kjær; Shajarati, Amir

    This article describes the outline of a numerical integration scheme for a critical state two-surface plasticity model for sands. The model is slightly modified by LeBlanc (2008) compared to the original formulation presented by Manzari and Dafalias (1997) and has the ability to correctly model...... calculations can be performed with the Forward Euler integration scheme. Furthermore, the model is formulated for a single point....

  4. Mathematical modeling of heat transfer in production premises heated by gas infrared emitters

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2017-01-01

    Full Text Available The results of numerical modeling of the process of free convective heat transfer in the regime of turbulent convection in a closed rectangular region heated by an infrared radiator are presented. The system of Navier-Stokes equations in the Boussinesq approximation is solved, the energy equation for the gas and the heat conduction equations for the enclosing vertical and horizontal walls. A comparative analysis of the heat transfer regimes in the considered region for different Grashof numbers is carried out. The features of the formation of heated air flows relative to the infrared emitter located at some distance from the upper horizontal boundary of the region are singled out.

  5. Modeling and simulating the drying of grass seeds (Brachiaria brizantha in fluidized beds: evaluation of heat transfer coefficients

    Directory of Open Access Journals (Sweden)

    A. C. Rizzi Jr.

    2009-09-01

    Full Text Available This work is aimed at modeling the heat transfer mechanism in a fluidized bed of grass seeds (Brachiaria brizantha for supporting further works on simulating the drying of these seeds in such a bed. The three-phase heat transfer model, developed by Vitor et al. (2004, is the one used for this proposal. This model is modified to uncouple one of the four adjusted model parameters from the gas temperature. Using the first set of experiments, carried out in a laboratory scale batch fluidized bed, the four adjusted model parameters are determined, generating the heat transfer coefficient between particles and gas phase, as well as the heat transfer coefficient between the column wall and ambient air. The second set of experiments, performed in the same unit at different conditions, validates the modified model.

  6. Fractional model for heat conduction in polar bear hairs

    Directory of Open Access Journals (Sweden)

    Wang Qing-Li

    2012-01-01

    Full Text Available Time-fractional differential equations can accurately describe heat conduction in fractal media, such as wool fibers, goose down and polar bear hair. The fractional complex transform is used to convert time-fractional heat conduction equations with the modified Riemann-Liouville derivative into ordinary differential equations, and exact solutions can be easily obtained. The solution process is straightforward and concise.

  7. Modeling terahertz heating effects on water

    DEFF Research Database (Denmark)

    Kristensen, Torben T.L.; Withayachumnankul, Withawat; Jepsen, Peter Uhd;

    2010-01-01

    We apply Kirchhoff’s heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused...... down to a spot with a diameter of 0.5 mm, we find that the steadystate temperature increase per milliwatt of transmitted power is 1.8◦C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample...... temperature. For THz time domain systems, we indicate how to use our model as a worst-case approximation based on the beam average power. It turns out that THz pulses created from photoconductive antennas give a negligible increase in temperature. As biotissue contains a high water content, this leads...

  8. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    Science.gov (United States)

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.

  9. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  10. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...

  11. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  12. A heterogeneous model for heat transfer in packed beds

    NARCIS (Netherlands)

    Wijngaarden, R.J.; Westerterp, K.R.

    1993-01-01

    If transient heat transfer occurs in a packed bed or a reaction is carried out on the pellets, the heterogeneity of the bed is essential because of the heat flow between pellets and gas. Global heat parameters for the packed bed, such as λeff and αw, are usually derived from homogeneous models. Ther

  13. A heat dissipating model for water cooling garments

    Directory of Open Access Journals (Sweden)

    Yang Kai

    2013-01-01

    Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.

  14. Heat source models in simulation of heat flow in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    . The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in the literature allow the heat to flow through the probe volume, and the majority neglects the influence of the contact condition as the sliding condition is assumed. In this work, a number......The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in friction stir welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms...... of cases is established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models, the heat flow is forced around the probe volume by prescribing a velocity field in shear layers...

  15. Heat Source Models in Simulation of Heat Flow in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    . The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in literature allow the heat to flow through the probe volume, and the majority of them neglect the influence of the contact condition as the sliding condition is assumed. In the present work......The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in Friction Stir Welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms......, a number of cases are established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models the heat flow is forced around the probe volume by prescribing a velocity field in shear...

  16. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency......In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  17. Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

    Science.gov (United States)

    Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.

    2008-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.

  18. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  19. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    OpenAIRE

    Chongdu Cho; Mohd Zahid Ansari

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The c...

  20. Agent-based modelling of heating system adoption in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.

    2010-07-01

    Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)

  1. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  2. Present-day heat flow model of Mars

    Science.gov (United States)

    Parro, Laura M.; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier

    2017-04-01

    Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m-2, with an average value of 19 mW m-2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7-0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.

  3. Present-day heat flow model of Mars.

    Science.gov (United States)

    Parro, Laura M; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier

    2017-04-03

    Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m(-2), with an average value of 19 mW m(-2). Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7-0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.

  4. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... on an actual heat pump located at a larger district heating plant. The model is implemented in Modelica and is based on energy and mass balances, together with thermodynamic property functions for LiBr and water and staggered grid representations for heat exchangers. Model parameters have been fitted...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  5. Effect of T6 heat treatment on tensile strength of EN AB-48000 alloy modified with strontium

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2011-07-01

    Full Text Available Among alloys of non-ferrous metals, aluminum alloys have found their broadest application in foundry industry. Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron. The silumins can be characterized by high mechanical properties. To upgrade mechanical properties of a castings made from silumins one makes use of heat treatment, what leads to change of their structure and advantageously affects on mechanical properties of the silumins. In the paper are presented test results concerning effect of dispersion hardening on change of tensile strength of EN AB-48000 silumin modified with strontium. Investigated alloy was melted in electric resistance furnace. Temperature ranges of solution heat treatment and ageing heat treatment were selected on base of curves from ATD method, recorded for refined alloy and for modified alloy. The heat treatment resulted in change of Rm tensile strength, while performed investigations have enabled determination of temperatures and durations of solution heat treatment and ageing heat treatment, which precondition obtainment of the best tensile strength Rm of the investigated alloy.

  6. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi

    2012-01-01

    of complementing this reasoning methodology. Domestic heating systems, as the main resource to meet the thermal requirements of end-users, have different implementations in Europe in order to achieve various degrees of controllability and heating efficiencies. As all the heating systems serve the same basic needs...... i.e. supplying and transferring thermal energy, it is off interest to use MFM to investigate similarities and differences between different implementations. In this paper, three typical domestic European heating systems, which differ from each other in the number of temperature sensors and auxiliary...

  7. A Modified Cellular Automaton Model for Traffic Flow

    Institute of Scientific and Technical Information of China (English)

    葛红霞; 董力耘; 雷丽; 戴世强

    2004-01-01

    A modified cellular automaton model for traffic flow was proposed. A novel concept about the changeable security gap was introduced and a parameter related to the variable security gap was determined. The fundamental diagram obtained by simulation shows that the maximum flow more approaches to the observed data than that of the NaSch model, indicating that the presented model is more reasonable and realistic.

  8. Assessment of scaling factor in modified dendrite growth model

    Institute of Scientific and Technical Information of China (English)

    张瑞丰; 沈宁福; 曹文博

    2002-01-01

    A model for dendrite growth during rapid solidification was established on the basis of BCT model and marginal stability criterion through modified Peclet numbers. Taking into account the interaction of diffusion fields, including solute diffusion field and thermal diffusion field around the dendrite tip, the model obtain a satisfactory results to predict the dendrite velocity and the tip radius, which agrees well with the experimental data from references in Cu-Ni alloy.

  9. Structure formation in a nonlocally modified gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sohyun; Dodelson, Scott

    2013-01-01

    We study a nonlocally modified gravity model proposed by Deser and Woodard which gives an explanation for current cosmic acceleration. By deriving and solving the equations governing the evolution of the structure in the Universe, we show that this model predicts a pattern of growth that differs from standard general relativity (+dark energy) at the 10-30% level. These differences will be easily probed by the next generation of galaxy surveys, so the model should be tested shortly.

  10. MODELLING OF KINETICS OF FLUORINE ADSORPTION ONTO MODIFIED DIATOMITE

    Directory of Open Access Journals (Sweden)

    VEACESLAV ZELENTSOV

    2017-03-01

    Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.

  11. Numerical model to predict microstructure of the heat treated of steel elements

    Directory of Open Access Journals (Sweden)

    T. Domański

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account thermal phenomena and phase transformations. Numerical algorithm of thermal phenomena was based on the Finite Elements Methods of the heat transfer equations. In the model of phase transformations, in simulations heating process continuous heating (CHT was applied, whereas in cooling process continuous cooling (CCT of the steel at issue. The phase fraction transformed (austenite during heating and fractions during cooling of ferrite, pearlite or bainite are determined by Johnson-Mehl-Avrami formulas. The nescent fraction of martensite is determined by Koistinen and Marburger formula or modified Koistinen and Marburger formula. In the simulations of hardening was subject the fang lathe of cone (axisymmetrical object made of tool steel.

  12. Experimental investigation and modelling of heat capacity, heat of fusion and melting interval of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Leth-Miller, R.; Jensen, A.D.; Glarborg, P.; Jensen, L.M.; Hansen, P.B.; Joergensen, S.B

    2003-11-28

    The heat capacity and heat of fusion were measured for a number of minerals using differential scanning calorimetry (DSC). The DSC measurements showed that the heat of fusion for the minerals is very low compared to the heat of fusion for pure crystalline phases reported elsewhere. A model for the melting behaviour of mineral materials in terms of melting interval, heat capacities and heat of fusion has been developed. The only model input is the chemical composition of the mineral material. The model was developed to be implemented in a detailed model of a cupola furnace, thus the focus for the development was not only precision but also to obtain a model that was continuous and differentiable. The model is based on several different submodels that each covers a part of the heating and melting of rocks. Each submodel is based on large amounts of empirical data. Comparison of the model and the DSC measurements showed reasonable agreement for the model to be used when a fast estimate is needed and experimental data is not available.

  13. Percolation Model of Graphite-modified Asphalt Concrete

    Institute of Scientific and Technical Information of China (English)

    MO Liantong; WU Shaopeng; LIU Xiaoming; CHEN Zheng

    2005-01-01

    The addition of graphite powder in conventional asphalt mixture can produced asphalt concrete with excellent electrical performance. Percolation theory was employed to discuss the relation between the conductivity and graphite content of graphite-modified asphalt concrete. It was found that the results of percolation model are consistent with experimental values. The percolation threshold of graphite-modified asphalt concrete is 10.94% graphite content account for the total volume of the binder phase consisting of asphalt and graphite. The critical exponent is 3.16, beyond the range of 1.6-2.1 for the standard lattice continuous percolation problem. Its reason is that the tunnel conduction mechanism originates near the critical percent content, which causes this system to be not universal. Tunnel mechanism is demonstrated by the nonlinear voltage-current characteristic near percolation threshold.The percolation model is able to well predict the formation and development of conductive network in graphite-modified asphalt concrete.

  14. Modeling of Strip Heating Process in Vertical Continuous Annealing Furnace

    Institute of Scientific and Technical Information of China (English)

    WAN Fei; WANG Yong-qin; QIN Shu-ren

    2012-01-01

    The mechanism for heat transfer of radiation is usually adopted to heat strip in vertical continuous annealing furnace. The rate of heat transfer among strip and other objects can be hugely affected by the parameters of strip speed, geometry factors and radiating characteristic of surfaces of strip, radiating tubes and walls of furnace. A model including all parameters is proposed for calculating the heat transfer coefficient, predicting the strip tempera- ture and boundary temperature of strip through analyzing these parameters. The boundary temperature is a important datum and different from average arithmetic value of temperature of strip and temperature in furnace. Also, the model can be used to analyze the relation for temperature of strip and heat transfer coefficient, total heat transfer quantity and heating time. The model is built by using the radiating heat transfer rate, the Newtonrs law of cooling, and lumped system analysis. The results of calculation are compared to the data from production line. The comparisons indicate that the model can well predict the heating process. The model is already applied for process control in pro- duction line. Also, this research will provide a new method for analyzing the radiation heat transfer.

  15. Numerical Modelling of Indution Heating - Fundamentals

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid a...

  16. Numerical Modelling of Indution Heating - Fundamentals

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid a...

  17. Effect of T6 heat treatment on mechanical properties and microstructure of EN AB-42000 alloy modified with strontium

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2011-04-01

    Full Text Available Process of silumin properties perfection in scope of classic (simple and cheap methods is connected with change of morphology ofsilumin precipitations through: process of alloy modification, maintaining suitable temperature of superheating treatment and pouring into moulds, as well as perfection of heat treatment operations. In the paper are presented results of a tests aimed at investigation of an effects of performed heat treatment operations on change of tensile strength of EN AC-42000 silumin modified with strontium. Investigated alloy was melted in electric resistance furnace. Course of crystallization process was recorded with use of thermal-derivative analysis (ATD, and on base of this analysis one determined temperatures range of heat treatment operations of the alloy. Performed heat treatment operation resulted in change of mechanical properties (Rm, A5 of the investigated alloy, whereas performed tests enabled determination of temperature and duration of solutioning and ageing treatments, which condition improvement of its mechanical properties.

  18. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Sona Benesova

    2013-05-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  19. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Soňa Benešová

    2013-09-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  20. Computer modeling of heat treating austenitic and nickel based alloys

    Science.gov (United States)

    Glickstein, S. S.; Friedman, E.; Berman, R. M.

    1982-05-01

    The adequacy of the heat treating process depends upon the thermal cycle experienced by the material during heat treating in the furnace and quenching. While thermocouples placed at the surface of the material during heat treating can assure the adequacy of the process for the material at the surface, assurance that inner regions of the material are experiencing the proper temperature transient is not guaranteed. To assess present process standards for heat treating 17-4 PH stainless steel and air quenching Inoconel X after solution treatment, computer models of the heat transfer within the material were developed. Sensitivity studies were conducted to determine the effects of material bar diameter, peak temperature, material properties, heat transfer coefficients, and neighboring bar stock. The computer modeling provided an easy and inexpensive technique for determining the adequacy of present heat treating process standards and for ensuring that future standards will provide the desired requirements. Details of these sensitivity studies are presented.

  1. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    Science.gov (United States)

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time.

  2. Mathematical Model of Moving Heat-Transfer Agents

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2010-01-01

    Full Text Available A mathematical model of moving heat-transfer agents which is applied in power systems and plants has been developed in the paper. A paper presents the mathematical model as a closed system of differential convective heat-transfer equations that includes a continuity equation, a motion equation, an energy equation.Various variants of boundary conditions on the surfaces of calculation flow and heat exchange zone are considered in the paper.

  3. Anterior EEG Asymmetry and the Modifier Model of Autism

    Science.gov (United States)

    Burnette, Courtney P.; Henderson, Heather A.; Inge, Anne Pradella; Zahka, Nicole E.; Schwartz, Caley B.; Mundy, Peter C.

    2011-01-01

    Individual differences in the expression of autism complicate research on the nature and treatment of this disorder. In the Modifier Model of Autism (Mundy et al. 2007), we proposed that individual differences in autism may result not only from syndrome specific causal processes, but also from variability in generic, non-syndrome specific…

  4. Renewable energy for passive house heating - Part II. Model

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Candida Oancea Institute of Solar Energy, Faculty of Mechanical Engineering, Polytechnic University of Bucharest, Bucharest (Romania); Sicre, B. [Computational Physics, Technical University of Chemnitz, Institute of Physics, Chemnitz (Germany)

    2003-07-01

    The evaluation of renewable energy used to increase the environmental friendliness of passive houses (PH) is the topic of this paper. A time-dependent model of passive house thermal behavior is developed. The heat transfer through the high thermal inertia elements is analyzed by using a one-dimensional time-dependent conduction heat-transfer equation that is solved numerically by using a standard Netlib solver (PDECHEB). Appropriate models for the conduction through the low thermal inertia elements are used, as well as a simple approach of the solar radiation transmission through the windows. The model takes into account in a detailed fashion the internal heat sources. Also, the operation of ventilation/heating system is described and common-practice control strategies are implemented. Three renewable energy sources are considered. First, there is the passive solar heating due to the large window on the facade oriented south. Second, the active solar collector system provides thermal energy for space heating or domestic hot water preparation. Third, a ground heat exchanger (GHE) increases the fresh air temperature during the cold season. The model was applied to the Pirmasens Passive House (Rhineland Palatinate, Germany). The passive solar heating system provides most part of the heating energy during November, December, February and March while in January the ground heat exchanger is the most important renewable energy source. January and February require use of additional conventional energy sources. A clever use of the active solar heating system could avoid consuming classical fuels during November, December and March. The ground heat exchanger is a reliable renewable source of energy. It provides heat during all the day and its (rather small) heat flux is increasing when the weather becomes colder. The air temperature at heater exit is normally lower than 46 {sup o}C. This is a good reason for the use of renewable energy to replace the classical fuel or the

  5. Renewable energy for passive house heating. Part 2. Model

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Polytechnic Univ., Bucharest (Romania). Faculty of Mechanical Engineering; Sicre, B. [Technical Univ., Chemnitz (Germany). Computational Physics

    2003-12-01

    The evaluation of renewable energy used to increase the environmental friendliness of passive houses (PH) is the topic of this paper. A time-dependent model of passive house thermal behavior is developed. The heat-transfer through the high thermal inertia elements is analyzed by using a 1D time-dependent conduction heat-transfer equation that is solved numerically by using a standard Netlib solver (PDECHEB). Appropriate models for the conduction through the low thermal inertia elements are used, as well as a simple approach of the solar radiation transmission through the windows. The model takes into account in a detailed fashion the internal heat sources. Also, the operation of ventilation/heating system is described and common practice control strategies are implemented. Three renewable energy sources are considered. First, there is the passive solar heating due to the large window on the facade oriented south. Second, the active solar collectors system provides thermal energy for space heating or hot domestic water preparation. Third, a ground heat exchanger (GHE) increases the fresh air temperature during the cold season. The model was applied to the Pirmasens Passive House (Rhineland Palatinate, Germany). The passive solar heating system provides most part of the heating energy during November, December, February and March while in January the ground heat exchanger is the most important renewable energy source. January and February require use of additional conventional energy sources. A clever use of the active solar heating system could avoid consuming classical fuels during November, December and March. The ground heat exchanger is a reliable renewable source of energy. It provides heat during all the day and its (rather small) heat flux is increasing when the weather becomes colder. The air temperature at heater exit is normally lower than 46 {sup o}C. This is a good reason for the use of renewable energy to replace the classical fuel or the wood to be

  6. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    ). For the purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....

  7. Io Volcanism: Modeling Vapor And Heat Transport

    Science.gov (United States)

    Allen, Daniel R.; Howell, R. R.

    2010-10-01

    Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.

  8. Comments on "Modified wind chill temperatures determined by a whole body thermoregulation model and human-based convective coefficients" by Ben Shabat, Shitzer and Fiala (2013) and "Facial convective heat exchange coefficients in cold and windy environments estimated from human experiments" by Ben Shabat and Shitzer (2012).

    Science.gov (United States)

    Osczevski, Randall J

    2014-08-01

    Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) present revised charts for wind chill equivalent temperatures (WCET) and facial skin temperatures (FST) that differ significantly from currently accepted charts. They credit these differences to their more sophisticated calculation model and to the human-based equation that it used for finding the convective heat transfer coefficient (Ben Shabat and Shitzer, Int J Biometeorol 56:639-651, 2012). Because a version of the simple model that was used to create the current charts accurately reproduces their results when it uses the human-based equation, the differences that they found must be entirely due to this equation. In deriving it, Ben Shabat and Shitzer assumed that all of the heat transfer from the surface of their cylindrical model was due to forced convection alone. Because several modes of heat transfer were occurring in the human experiments they were attempting to simulate, notably radiation, their coefficients are actually total external heat transfer coefficients, not purely convective ones, as the calculation models assume. Data from the one human experiment that used heat flux sensors supports this conclusion and exposes the hazard of using a numerical model with several adjustable parameters that cannot be measured. Because the human-based equation is faulty, the values in the proposed charts are not correct. The equation that Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) propose to calculate WCET should not be used.

  9. Comments on "Modified wind chill temperatures determined by a whole body thermoregulation model and human-based convective coefficients" by Ben Shabat, Shitzer and Fiala (2013) and "Facial convective heat exchange coefficients in cold and windy environments estimated from human experiments" by Ben Shabat and Shitzer (2012)

    Science.gov (United States)

    Osczevski, Randall J.

    2014-08-01

    Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) present revised charts for wind chill equivalent temperatures (WCET) and facial skin temperatures (FST) that differ significantly from currently accepted charts. They credit these differences to their more sophisticated calculation model and to the human-based equation that it used for finding the convective heat transfer coefficient (Ben Shabat and Shitzer, Int J Biometeorol 56:639-651, 2012). Because a version of the simple model that was used to create the current charts accurately reproduces their results when it uses the human-based equation, the differences that they found must be entirely due to this equation. In deriving it, Ben Shabat and Shitzer assumed that all of the heat transfer from the surface of their cylindrical model was due to forced convection alone. Because several modes of heat transfer were occurring in the human experiments they were attempting to simulate, notably radiation, their coefficients are actually total external heat transfer coefficients, not purely convective ones, as the calculation models assume. Data from the one human experiment that used heat flux sensors supports this conclusion and exposes the hazard of using a numerical model with several adjustable parameters that cannot be measured. Because the human-based equation is faulty, the values in the proposed charts are not correct. The equation that Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) propose to calculate WCET should not be used.

  10. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  11. Modeling and Simulation of a Modified Quadruple Tank System

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah; Jørgensen, John Bagterp

    2015-01-01

    Quadruple tank process is a non-linear system, have multiple manipulated and controlled variables and have significant cross binding parameters. Furthermore, the modified system is affected by some unknown measurement noise and stochastic disturbance variables which make it more complicated...... to model and control. In this paper, a modified quadruple-tank system has been described, all the important variables has been outlined and a mathematical model has been presented. We developed deterministic and stochastic models using differential equations and simulate the models using Matlab....... Subsequently, steady state analysis is included to determine the operating window for the set points. The purpose to have an operating window for the system is to distinguish the range of feasible region to select the set points for optimum operations. Therefore, in this paper a virtual process plant...

  12. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-09-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials.

  13. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  14. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids.

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-09-08

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials.

  15. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Directory of Open Access Journals (Sweden)

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  16. Temperature fields in machining processes and heat transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Palazzo, G.; Pasquino, R. [University of Salerno Via Ponte Donmelillo, Fisciano (Italy). Department of Mechanical Engineering; Bellomo, N. [Politecnico Torino Corso Duca degli Abruzzi, Torino (Italy). Department of Mathematics

    2002-07-01

    This paper deals with the modelling of the heat transfer process with special attention to the characterization of the thermal field during turning processes. Specifically, the measurement of the thermal field and the selection of the proper heat transfer models are dealt with. The analysis is developed in view of the solution of direct and inverse problems. (author)

  17. Health Externalities and Heat savings in Energy System Modelling

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    from the rest of the energy system. This PhD study contributes to the development in energy system modelling, by including heat saving options – insulation of walls, roofs and floors, replacing of windows and installing ventilation system with heat recovery – in the Danish heat and power sector...... and included in an energy system optimisation model. The performed analysis of the Danish heat and power sector concludes that accounting for spatial variation of health damage costs in heat and power system optimisation model has an effect on the optimal technology mix and distribution of energy plants among...... and are popular as secondary heating technologies in Denmark, can cause indoor and outdoor air pollution locally. Hence, consumers can be exposed to their own air pollution, which can cause damage to their health. Such damage costs should be internalised in consumer decision making. The PhD study demonstrates...

  18. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    OpenAIRE

    Fu-Zhi Dai; Yanchun Zhou

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, wh...

  19. Modeling and Simulation of Heat Transfer in Loaded Continuous Heat Treatment Furnace

    Institute of Scientific and Technical Information of China (English)

    KANG Jin-wu; HUANG Tian-you; PURUSHOTHAMAN Radhakrishnan; WANG Wei-wei; RONG Yi-ming

    2004-01-01

    Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the continuous furnace is formulated firstly. The heat balance in each zone is discussed and equations are given. Coupled with the model for heat transfer between workpieces and furnace and the heat transfer in the workload as well presented in the former developed CHT-bf for batch furnaces, a program CHT-cf for continuous furnaces was developed. The model deals with two typical movements of parts: continuous or step by step. The moving speed of parts and load pattern can be optimized based on the calculated temperature distributions and curves, especially, the fastest heated and slowest-heated temperature-distance profiles. A case study is carried out for the heat treatment of a kind of hook-shaped part. The calculated results are analyzed and in good agreement with the measured ones.

  20. Fractal model for evaluating heat transfer of high temperature porous corundum shell in vacuum investment casting

    Directory of Open Access Journals (Sweden)

    WAN Xin

    2006-02-01

    Full Text Available Under vacuum, heat transfer in porous corundum shell of investment casting depends on the characteristics of the solid materials and the spatial arrangement of solids and pores. In this study, we present a modified fractal approach to model the pore structure of corundum shell and to describe its influence on the thermal conductivity. We assumed that there is no heat convection in the shell. A sectioned view of porous corundum shell was studied and used to describe the geometric structure and to calculate the fractal dimension d. Based on the fractal dimension d, we obtained the relationship between volumetric solid content and pore arrangement in different measure scales. A heat transfer model was thus established using a network of resistors in which we applied an equivalent approach to calculate the effective thermal conductivity of real porous corundum shell that include the effects of heat conduction and heat radiation of solid. From the obtained results we discuss these effects on the effective thermal conductivity including the scale of measurement, the structure of pore and the temperature. At last these results were compared with other empirical model, which computed by assuming even porosity in which effect of pore structure was not being considered. Though the thermal conductivity calculated essentially in agreement with that obtained from empirical model, model used in this study is more close to the real heat transfer process.

  1. A modified discrete element model for sea ice dynamics

    Institute of Scientific and Technical Information of China (English)

    LI Baohui; LI Hai; LIU Yu; WANG Anliang; JI Shunying

    2014-01-01

    Considering the discontinuous characteristics of sea ice on various scales, a modified discrete element mod-el (DEM) for sea ice dynamics is developed based on the granular material rheology. In this modified DEM, a soft sea ice particle element is introduced as a self-adjustive particle size function. Each ice particle can be treated as an assembly of ice floes, with its concentration and thickness changing to variable sizes un-der the conservation of mass. In this model, the contact forces among ice particles are calculated using a viscous-elastic-plastic model, while the maximum shear forces are described with the Mohr-Coulomb fric-tion law. With this modified DEM, the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths. The thicknesses, concentrations and velocities of ice particles are obtained, and then reasonable dynamic process is analyzed. The sea ice dynamic process is also simulated in a vortex wind field. Taking the influence of thermodynamics into account, this modified DEM will be improved in the future work.

  2. Development of Solar Wind Model Driven by Empirical Heat Flux and Pressure Terms

    Science.gov (United States)

    Sittler, Edward C., Jr.; Ofman, L.; Selwa, M.; Kramar, M.

    2008-01-01

    We are developing a time stationary self-consistent 2D MHD model of the solar corona and solar wind as suggested by Sittler et al. (2003). Sittler & Guhathakurta (1999) developed a semiempirical steady state model (SG model) of the solar wind in a multipole 3-streamer structure, with the model constrained by Skylab observations. Guhathakurta et al. (2006) presented a more recent version of their initial work. Sittler et al. (2003) modified the SG model by investigating time dependent MHD, ad hoc heating term with heat conduction and empirical heating solutions. Next step of development of 2D MHD models was performed by Sittler & Ofman (2006). They derived effective temperature and effective heat flux from the data-driven SG model and fit smooth analytical functions to be used in MHD calculations. Improvements of the Sittler & Ofman (2006) results now show a convergence of the 3-streamer topology into a single equatorial streamer at altitudes > 2 R(sub S). This is a new result and shows we are now able to reproduce observations of an equatorially confined streamer belt. In order to allow our solutions to be applied to more general applications, we extend that model by using magnetogram data and PFSS model as a boundary condition. Initial results were presented by Selwa et al. (2008). We choose solar minimum magnetogram data since during solar maximum the boundary conditions are more complex and the coronal magnetic field may not be described correctly by PFSS model. As the first step we studied the simplest 2D MHD case with variable heat conduction, and with empirical heat input combined with empirical momentum addition for the fast solar wind. We use realistic magnetic field data based on NSO/GONG data, and plan to extend the study to 3D. This study represents the first attempt of fully self-consistent realistic model based on real data and including semi-empirical heat flux and semi-empirical effective pressure terms.

  3. Modelling the heat dynamics of buildings using stochastic

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae; Madsen, Henrik

    2000-01-01

    This paper describes the continuous time modelling of the heat dynamics of a building. The considered building is a residential like test house divided into two test rooms with a water based central heating. Each test room is divided into thermal zones in order to describe both short and long term...... variations. Besides modelling the heat transfer between thermal zones, attention is put on modelling the heat input from radiators and solar radiation. The applied modelling procedure is based on collected building performance data and statistical methods. The statistical methods are used in parameter...... estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...

  4. Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons

    Directory of Open Access Journals (Sweden)

    A. V. Оvsiannik

    2007-01-01

    Full Text Available The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating conditions, thermal and physical properties of liquid, internal characteristics of boiling processes and geometrical characteristics of a tenon.

  5. Modeling the Heating of Biological Tissue based on the Hyperbolic Heat Transfer Equation

    CERN Document Server

    Tung, M M; Molina, J A Lopez; Rivera, M J; Berjano, E J

    2008-01-01

    In modern surgery, a multitude of minimally intrusive operational techniques are used which are based on the punctual heating of target zones of human tissue via laser or radio-frequency currents. Traditionally, these processes are modeled by the bioheat equation introduced by Pennes, who considers Fourier's theory of heat conduction. We present an alternative and more realistic model established by the hyperbolic equation of heat transfer. To demonstrate some features and advantages of our proposed method, we apply the obtained results to different types of tissue heating with high energy fluxes, in particular radiofrequency heating and pulsed laser treatment of the cornea to correct refractive errors. Hopefully, the results of our approach help to refine surgical interventions in this novel field of medical treatment.

  6. Thermal Indices and Thermophysiological Modeling for Heat Stress.

    Science.gov (United States)

    Havenith, George; Fiala, Dusan

    2015-12-15

    The assessment of the risk of human exposure to heat is a topic as relevant today as a century ago. The introduction and use of heat stress indices and models to predict and quantify heat stress and heat strain has helped to reduce morbidity and mortality in industrial, military, sports, and leisure activities dramatically. Models used range from simple instruments that attempt to mimic the human-environment heat exchange to complex thermophysiological models that simulate both internal and external heat and mass transfer, including related processes through (protective) clothing. This article discusses the most commonly used indices and models and looks at how these are deployed in the different contexts of industrial, military, and biometeorological applications, with focus on use to predict related thermal sensations, acute risk of heat illness, and epidemiological analysis of morbidity and mortality. A critical assessment is made of tendencies to use simple indices such as WBGT in more complex conditions (e.g., while wearing protective clothing), or when employed in conjunction with inappropriate sensors. Regarding the more complex thermophysiological models, the article discusses more recent developments including model individualization approaches and advanced systems that combine simulation models with (body worn) sensors to provide real-time risk assessment. The models discussed in the article range from historical indices to recent developments in using thermophysiological models in (bio) meteorological applications as an indicator of the combined effect of outdoor weather settings on humans.

  7. Three-dimensional transient mathematical model to predict the heat transfer rate of a heat pipe

    Directory of Open Access Journals (Sweden)

    S Boothaisong

    2015-02-01

    Full Text Available A three-dimensional model was developed to simulate the heat transfer rate on a heat pipe in a transient condition. This article presents the details of a calculation domain consisting of a wall, a wick, and a vapor core. The governing equation based on the shape of the pipe was numerically simulated using the finite element method. The developed three-dimensional model attempted to predict the transient temperature, the velocity, and the heat transfer rate profiles at any domain. The values obtained from the model calculation were then compared with the actual results from the experiments. The experiment showed that the time required to attain a steady state (where transient temperature is constant was reasonably consistent with the model. The working fluid r134a (tetrafluoroethane was the quickest to reach the steady state and transferred the greatest amount of heat.

  8. The Second Law of Thermodynamics in a Quantum Heat Engine Model

    Science.gov (United States)

    Zhang, Ting; Cai, Li-Feng; Chen, Ping-Xing; Li, Cheng-Zu

    2006-03-01

    The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.

  9. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process.

    Science.gov (United States)

    Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens

    2013-04-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online.

  10. The Second Law of Thermodynamics in a Quantum Heat Engine Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.

  11. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-05-01

    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in 

  12. Finite size scaling and first-order phase transition in a modified XY model

    Science.gov (United States)

    Sinha, Suman; Roy, Soumen Kumar

    2010-02-01

    Monte Carlo simulation has been performed in a two-dimensional modified XY -model first proposed by Domany [Phys. Rev. Lett. 52, 1535 (1984)] The cluster algorithm of Wolff has been used and multiple histogram reweighting is performed. The first-order scaling behavior of the quantities such as specific heat and free-energy barrier are found to be obeyed accurately. While the lowest-order correlation function was found to decay to zero at long distance just above the transition, the next-higher-order correlation function shows a nonzero plateau.

  13. Model-based control of district heating supply temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Linn

    2010-11-15

    A model-based control strategy for the supply temperature to a district heating network was tested during three weeks at Idbaecken's CHP plant. The aim was to increase the electricity efficiency by a lower supply temperature, without risking the delivery reliability of heat to the district heating customers. Simulations and tests showed that at high loads, the mean supply temperature could be reduced by 4 deg C and the electricity production could be increased by 2.5%

  14. Effects of Dufour and Modified Forchhemier for Hydromagnetic Free Convective Heat and Mass Transfer Flow along a Permeable Inclined porous Plate with Heat Generation and Thermophoresis

    Directory of Open Access Journals (Sweden)

    M. Enamul Karim

    2013-06-01

    Full Text Available This study presents the numerical simulations to investigate the effects of the magnetic field parameter, Modified Forchhemier number, Prandtl number, Modified Darcy number, the Local Grashof number, the Dufour number and the Schmidt number on steady two-dimensional, laminar, hydromagnetic flow with heat and mass transfer over a semi-infinite, permeable inclined plate in the presence of thermophoresis and heat generation is carefully considered and equipped numerically. A similarity transformation is used to shrink the governing non-linear partial differential equations into ordinary differential equations. The obtained locally similar equations are then solved numerically by applying Nachtsheim-Swigert shooting iteration technique with sixth-order Runge-Kutta integration scheme. Comparisons with previously published study are performed and the results are found to be in very good agreement. Numerical results for the dimensionless velocity, temperature and concentration profiles are reported graphically as well as for the skin-friction coefficient, wall heat transfer and particle deposition rates are investigated for an assortment of values of the parameters inflowing into the problem.

  15. Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions

    Science.gov (United States)

    Kaniowski, Robert; Poniewski, Mieczysław

    2013-12-01

    Heat exchangers of different types find application in power systems based on solid oxide fuel cells (SOFC). Compact plate fin heat exchangers are typically found to perfectly fit systems with power output under 5 kWel. Micro-combined heat and power (micro-CHP) units with solid oxide fuel cells can exhibit high electrical and overall efficiencies, exceeding 85%, respectively. These values can be achieved only when high thermal integration of a system is assured. Selection and sizing of heat exchangers play a crucial role and should be done with caution. Moreover, performance of heat exchangers under variable operating conditions can strongly influence efficiency of the complete system. For that reason, it becomes important to develop high fidelity mathematical models allowing evaluation of heat exchangers under modified operating conditions, in high temperature regimes. Prediction of pressure and temperatures drops at the exit of cold and hot sides are important for system-level studies. Paper presents dedicated mathematical model used for evaluation of a plate fin heat exchanger, operating as a part of micro-CHP unit with solid oxide fuel cells.

  16. Structure formation in modified gravity models alternative to dark energy

    CERN Document Server

    Koyama, K

    2006-01-01

    We study structure formation in phenomenological models in which the Friedmann equation receives a correction of the form $H^{\\alpha}/r_c^{2-\\alpha}$, which realize an accelerated expansion without dark energy. In order to address structure formation in these model, we construct simple covariant gravitational equations which give the modified Friedmann equation with $\\alpha=2/n$ where $n$ is an integer. For $n=2$, the underlying theory is known as a 5D braneworld model (the DGP model). Thus the models interpolate between the DGP model ($n=2, \\alpha=1$) and the LCDM model in general relativity ($n \\to \\infty, \\alpha \\to 0$). Using the covariant equations, cosmological perturbations are analyzed. It is shown that in order to satisfy the Bianchi identity at a perturbative level, we need to introduce a correction term $E_{\\mu \

  17. Description of Muzzle Blast by Modified Ideal Scaling Models

    Directory of Open Access Journals (Sweden)

    Kevin S. Fansler

    1998-01-01

    Full Text Available Gun blast data from a large variety of weapons are scaled and presented for both the instantaneous energy release and the constant energy deposition rate models. For both ideal explosion models, similar amounts of data scatter occur for the peak overpressure but the instantaneous energy release model correlated the impulse data significantly better, particularly for the region in front of the gun. Two parameters that characterize gun blast are used in conjunction with the ideal scaling models to improve the data correlation. The gun-emptying parameter works particularly well with the instantaneous energy release model to improve data correlation. In particular, the impulse, especially in the forward direction of the gun, is correlated significantly better using the instantaneous energy release model coupled with the use of the gun-emptying parameter. The use of the Mach disc location parameter improves the correlation only marginally. A predictive model is obtained from the modified instantaneous energy release correlation.

  18. Hydrodynamic modeling of granular flows in a modified Couette cell.

    Science.gov (United States)

    Jop, Pierre

    2008-03-01

    We present simulations of granular flows in a modified Couette cell, using a continuum model recently proposed for dense granular flows. Based on a friction coefficient, which depends on an inertial number, the model captures the positions of the wide shear bands. We show that a smooth transition in velocity-profile shape occurs when the height of the granular material is increased, leading to a differential rotation of the central part close to the surface. The numerical predictions are in qualitative agreement with previous experimental results. The model provides predictions for the increase of the shear band width when the rotation rate is increased.

  19. Bouc–Wen hysteresis model identification using Modified Firefly Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Mohammad Asif, E-mail: zaman@stanford.edu [Department of Electrical Engineering, Stanford University (United States); Sikder, Urmita [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (United States)

    2015-12-01

    The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found.

  20. Modeling of a heat sink and high heat flux vapor chamber

    Science.gov (United States)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  1. Suppression of Spiral Wave in Modified Orengonator Model

    Institute of Scientific and Technical Information of China (English)

    MA Jun; JIN Wu-Yin; YI Ming; WANG Chun-Ni

    2008-01-01

    In this paper, a spatial perturbation scheme is proposed to suppress the spiral wave in the modified Orengonator model, which is used to describe the chemical reaction in the light-sensitive media. The controllable external illumination Φ is perturbed with a spatial linear function. In our numerical simulation, the scheme is investigated by imposing the external controllable illumination on the space continuously and/or intermittently. The numerical simulation results confirm that the stable rotating spiral wave still can be removed with the scheme proposed in this paper even if the controllable Φ changed vs. time and space synchronously. Then the scheme is also used to control the spiral wave and turbulence in the modified Fitzhugh-Nagumo model It is found that the scheme is effective to remove the sable rotating and meandering spiral wave but it costs long transient period and intensity of the gradient parameter to eliminate the spiral turbulence.

  2. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.;

    1987-01-01

    The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically i...

  3. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  4. Improving Air-Conditioner and Heat Pump Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-03-02

    This presentation describes a new approach to modeling residential air conditioners and heat pumps, which allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted “behind-the-scenes” without negatively impacting the reliability of energy simulations.

  5. A new model for heating of the Solar North Polar Coronal Hole

    Science.gov (United States)

    Devlen, E.; Zengin Çamurdan, D.; Yardımcı, M.; Pekünlü, E. R.

    2017-05-01

    This article presents a new model of the North Polar Coronal Hole (NPCH) with the aim of revealing the dissipative/propagative characteristics of magnetohydrodynamic (MHD) waves. We investigate the effects of isotropic viscosity and anisotropic heat conduction on the propagation characteristics of MHD waves in the NPCH. We first model the NPCH by considering differences in the radial direction as well as in the direction perpendicular to the line of sight (los) in temperature, particle number density and non-thermal velocities between plumes and interplume lanes, for the specific case of O vi ions. This model includes parallel and perpendicular (to the magnetic field) heat conduction and viscous dissipation. Next, we derive the dispersion relations for MHD waves in cases of the absence and presence of parallel heat conduction. In the case of the absence of parallel heat conduction, we find that MHD wave dissipation depends strongly on viscosity for modified acoustic and Alfvén waves. The energy flux densities of acoustic waves vary between 104.7 and 107 erg cm-2 s-1, while the energy flux densities of Alfvén waves turn out to be between 106 and 108.6 erg cm-2 s-1. When there is parallel heat conduction, we calculate the damping length-scales and the energy flux densities of magnetoacoustic waves. Our results suggest that modified magnetoacoustic waves may provide a significant source for the observed preferential acceleration and heating of O vi ions, thus coronal plasma heating, and an extra accelerating agent for the fast solar wind in the NPCH, depending on the values of the transport coefficients.

  6. Black Hole Entropy Calculation in a Modified Thin Film Model

    Indian Academy of Sciences (India)

    Jingyi Zhang

    2011-03-01

    The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the area, then the emission energy of the particles will satisfy = /360.

  7. Modeling evolution of insect resistance to genetically modified crops

    OpenAIRE

    2015-01-01

    Genetically modified crops producing insecticidal proteins from Bacillus thuringiensis (Bt) for insect control have been planted on more than 200 million ha worldwide since 1996 [1]. Evolution of resistance by insect pests threatens the continued success of Bt crops [2, 3]. To delay pest resistance, refuges of non-Bt crops are planted near Bt crops to allow survival of susceptible pests [4, 5]. We used computer simulations of a population genetic model to determine if predictions from the the...

  8. Coupled modified baker's transformations for the Ising model.

    Science.gov (United States)

    Sakaguchi, H

    1999-12-01

    An invertible coupled map lattice is proposed for the Ising model. Each elemental map is a modified baker's transformation, which is a two-dimensional map of X and Y. The time evolution of the spin variable is memorized in the binary representation of the Y variable. The temporal entropy and time correlation of the spin variable are calculated from the snapshot configuration of the Y variables.

  9. A review on the application of modified continuum models in modeling and simulation of nanostructures

    Science.gov (United States)

    Wang, K. F.; Wang, B. L.; Kitamura, T.

    2016-02-01

    Analysis of the mechanical behavior of nanostructures has been very challenging. Surface energy and nonlocal elasticity of materials have been incorporated into the traditional continuum analysis to create modified continuum mechanics models. This paper reviews recent advancements in the applications of such modified continuum models in nanostructures such as nanotubes, nanowires, nanobeams, graphenes, and nanoplates. A variety of models for these nanostructures under static and dynamic loadings are mentioned and reviewed. Applications of surface energy and nonlocal elasticity in analysis of piezoelectric nanomaterials are also mentioned. This paper provides a comprehensive introduction of the development of this area and inspires further applications of modified continuum models in modeling nanomaterials and nanostructures.

  10. An enhanced Brinson model with modified kinetics for martensite transformation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Jin; Lee, Jung Ju [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Ju-Won [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Lim, Jae Hyuk [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-03-15

    We propose an enhanced Brinson model with modified kinetics for martensite transformation. Two additional material constants are considered to follow the stress-temperature diagram above austenite start temperature (As) along with treatment to keep the continuity of the martensite volume fraction and the path dependency of the phase transformation. To demonstrate the performance of the proposed model, we implement this algorithm into ABAQUS user subroutine, then conduct several numerical simulations and compare their results with SMA wire experiments as well as those of three-dimensional SMA constitutive models. From the results, it turns out that the proposed model is as accurate as the three-dimensional models and shows better accuracy over original Brinson model in terms of recovery stress.

  11. Guided crowd dynamics via modified social force model

    Science.gov (United States)

    Yang, Xiaoxia; Dong, Hairong; Wang, Qianling; Chen, Yao; Hu, Xiaoming

    2014-10-01

    Pedestrian dynamics is of great theoretical significance for strategy design of emergency evacuation. Modification of pedestrian dynamics based on the social force model is presented to better reflect pedestrians' behavioral characteristics in emergency. Specifically, the modified model can be used for guided crowd dynamics in large-scale public places such as subway stations and stadiums. This guided crowd model is validated by explicitly comparing its density-speed and density-flow diagrams with fundamental diagrams. Some social phenomena such as gathering, balance and conflicts are clearly observed in simulation, which further illustrate the effectiveness of the proposed modeling method. Also, time delay for pedestrians with time-dependent desired velocities is observed and explained using the established model in this paper. Furthermore, this guided crowd model is applied to the simulation system of Beijing South Railway Station for predictive evacuation experiments.

  12. Stochastic modelling of central heating systems

    DEFF Research Database (Denmark)

    Hansen, Lars Henrik

    1997-01-01

    and the degree Erhvervsforsker (a special Danish degree, equivalent to ``Industrial Ph.D.''). The thesis is mainly concerned with experimental design and system identification for individual components in water based central heating systems. The main contribution to this field is on the nonlinear dynamic...

  13. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  14. Temperature dependence of electronic heat capacity in Holstein model

    CERN Document Server

    Fialko, N S; Lakhno, V D

    2015-01-01

    The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T~0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.

  15. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  16. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  17. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    Directory of Open Access Journals (Sweden)

    Chongdu Cho

    2010-11-01

    Full Text Available The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  18. An analytical model of joule heating in piezoresistive microcantilevers.

    Science.gov (United States)

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  19. Induction and direct resistance heating theory and numerical modeling

    CERN Document Server

    Lupi, Sergio; Aliferov, Aleksandr

    2015-01-01

    This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.

  20. Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers

    NARCIS (Netherlands)

    Tuzovskaya, I.; Pacheco Benito, S.; Chinthaginjala, J.K.; Reed, C.P.; Lefferts, L.; Meer, van der T.H.

    2012-01-01

    Carbon nanofibers (CNF), with fishbone and parallel wall structures, were grown by catalytic chemical vapor deposition on the surface of carbon foam and stainless steel foam, in order to improve their heat exchange performance. Enhancement in heat transfer efficiency between 30% and 75% was achieved

  1. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  2. Modeling of waste heat recovery by looped water-in-steel heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Lamfon, N.J.; Najjar, Y.S.H.; Habeebullah, M.H.; Alp, T.Y. [King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering

    1995-08-01

    Modeling and simulation of a water-in-steel heat pipe heat recovery system is undertaken in this paper. The heat recovery system consists of a looped two-phase thermosyphon that receives heat from the stack of a gas turbine engine and delivers it to the generator of an NH{sub 3}-H{sub 2}O absorption chiller. Variations in the operating temperature as well as evaporator geometry are investigated, and the consequences on system effectiveness are studied. It is concluded that the model for the water-in-steel looped thermosyphon overcomes drawbacks of the water-in-copper thermosyphon, and that the steel system is simpler in design, lower in cost, and more competent in performance. (author)

  3. A user-friendly modified pore-solid fractal model

    OpenAIRE

    Dian-yuan Ding; Ying Zhao; Hao Feng; Bing-cheng Si; Robert Lee Hill

    2016-01-01

    The primary objective of this study was to evaluate a range of calculation points on water retention curves (WRC) instead of the singularity point at air-entry suction in the pore-solid fractal (PSF) model, which additionally considered the hysteresis effect based on the PSF theory. The modified pore-solid fractal (M-PSF) model was tested using 26 soil samples from Yangling on the Loess Plateau in China and 54 soil samples from the Unsaturated Soil Hydraulic Database. The derivation results s...

  4. Prediction of heat transfer to supercritical fluids by the use of Algebraic Heat Flux Models

    Energy Technology Data Exchange (ETDEWEB)

    Pucciarelli, Andrea, E-mail: andrea.pucciarelli@yahoo.it [Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Largo Lucio Lazzarino 2, 56126 Pisa (Italy); Sharabi, Medhat, E-mail: Medhat.Sharabi@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI, Switzerland and Mechanical Power Engineering Department, Mansoura University, 35516 Mansoura (Egypt); Ambrosini, Walter, E-mail: walter.ambrosini@ing.unipi.it [Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Largo Lucio Lazzarino 2, 56126 Pisa (Italy)

    2016-02-15

    Highlights: • The Algebraic Heat Flux Model is considered for modelling the turbulence heat flux. • A relation based on AHFM for determining Pr{sub tur} is proposed. • Results are compared with heat transfer to supercritical fluids experimental data. - Abstract: The paper discusses capabilities and limitations of Algebraic Heat Flux Models in predicting heat transfer to supercritical fluids. The model was implemented in a commercial code and used as a basis for obtaining an advanced definition of the turbulent Prandtl number and an improved estimate of the buoyancy production of turbulence kinetic energy. A comparison between the obtained results and experimental data available in literature is performed highlighting promising features, in particular when dealing with trans-pseudo-critical conditions. Experimental conditions using different fluids where analysed showing improvements with respect to two-equation turbulence models; a reference DNS calculation is considered as well for comparison. Calculated wall temperature values are in general well reproduced by the methodology and sensitivity analyses show that improvements may be obtained in future works by selecting case-specific AHFM parameters in association with different turbulence models.

  5. Modelling heat transport through completely positive maps

    CERN Document Server

    Wichterich, H; Gemmer, J; Henrich, M J; Michel, M; Breuer, Heinz-Peter; Gemmer, Jochen; Henrich, Markus J.; Michel, Mathias; Wichterich, Hannu

    2007-01-01

    We investigate heat transport in a spin-1/2 Heisenberg chain, coupled locally to independent thermal baths of different temperature. The analysis is carried out within the framework of the theory of open systems by means of appropriate quantum master equations. The standard microscopic derivation of the weak-coupling Lindblad equation in the secular approximation is considered, and shown to be inadequate for the description of stationary nonequilibrium properties like a non-vanishing energy current. Furthermore, we derive an alternative master equation that is capable to describe a stationary energy current and, at the same time, leads to a completely positive dynamical map. This paves the way for efficient numerical investigations of heat transport in larger systems based on Monte Carlo wave function techniques.

  6. Microscale Heat Conduction Models and Doppler Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Hawari, Ayman I. [North Carolina State Univ., Raleigh, NC (United States); Ougouag, Abderrafi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  7. Finite time exergoeconomic performance optimization for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model

    Directory of Open Access Journals (Sweden)

    Huijun Feng, Lingen Chen, Fengrui Sun

    2010-11-01

    Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.

  8. Modeling Io's Heat Flow: Constraints from Galileo PPR Data

    Science.gov (United States)

    Rathbun, J. A.; Spencer, J. R.; Tamppari, L. K.

    2000-01-01

    We attempt to improve on previous Io heat flow estimates by using higher resolution data from Galileo Photopolarimeter Radiometer (PPR) and improved thermophysical models of the surface, including finite thermal inertia, the pedestal effect, and disk-resolved radiance.

  9. The optimization model of the heat conduction structure

    Institute of Scientific and Technical Information of China (English)

    Yongcun Zhang; Shutian Liu

    2008-01-01

    An optimization model considering a novel thermal performance index to be the objective function is proposed for minimizing the highest temperature in this paper. Firstly, the performance of the conventional heat conduction optimization model, with the dissipation of heat transport potential capacity as the objective function, is evaluated by a one-dimensional heat conduction problem in a planar plate exchanger. Then, a new thermal performance index, named the geometric average temperature, is introduced. The new heat conduction optimization model, with the geometric average temperature as the objective function, is developed and the corresponding finite element formula is presented. The results show that the geometric average temperature is an ideal thermal performance index and the solution of the new model is close to the theoretical optimal solution.

  10. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat reco

  11. Optimization of heat saving in buildings using unsteady heat transfer model

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandra

    2015-01-01

    Full Text Available Reducing the energy consumption growth rate is increasingly becoming one of the main challenges for ensuring sustainable development, particularly in the buildings as the largest end-use sector in many countries. Along this line, the aim of this paper is to analyse the possibilities for energy savings in the construction of new buildings and reconstruction of the existing ones developing a tool that, in terms of the available heating technologies and insulation, provides answer to the problem of optimal cost effective energy consumption. The tool is composed of an unsteady heat transfer model which is incorporated into a cost-effective energy saving optimization. The unsteady heat transfer model uses annual hourly meteorological data, chosen as typical for the last ten-year period, as well as thermo physical features of the layers of the building walls. The model is tested for the typical conditions in the city of Skopje, Macedonia. The results show that the most cost effective heating technology for the given conditions is the wood fired stove, followed by the inverter air-conditioner. The centralized district heating and the pellet fired stoves are the next options. The least cost effective option is the panel that uses electricity. In this paper, the optimal insulation thickness is presented for each type of heating technology.

  12. Enthalpy model for heating, melting, and vaporization in laser ablation

    OpenAIRE

    Vasilios Alexiades; David Autrique

    2010-01-01

    Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model th...

  13. Orion MPCV Continuum RCS Heating Augmentation Model Development

    Science.gov (United States)

    Hyatt, Andrew J.; White, Molly E.

    2014-01-01

    The reaction control system jets of the Orion Multi Purpose Crew Vehicle can have a significant impact on the magnitude and distribution of the surface heat flux on the leeside of the aft-body, when they are fired. Changes in surface heating are expressed in terms of augmentation factor over the baseline smooth body heating. Wind tunnel tests revealed heating augmentation factors as high as 13.0, 7.6, 2.8, and 5.8 for the roll, pitch down, pitch up, and yaw jets respectively. Heating augmentation factor models, based almost exclusively on data from a series of wind tunnel tests have been developed, for the purposes of thermal protection system design. The wind tunnel tests investigated several potential jet-to-freestream similarity parameters, and heating augmentation factors derived from the data showed correlation with the jet-to-freestream momentum ratio. However, this correlation was not utilized in the developed models. Instead augmentation factors were held constant throughout the potential trajectory space. This simplification was driven by the fact that ground to flight traceability and sting effects are not well understood. Given the sensitivity of the reaction control system jet heating augmentation to configuration, geometry, and orientation the focus in the present paper is on the methodology used to develop the models and the lessons learned from the data. The models that are outlined in the present work are specific to the aerothermal database used to design the thermal protection system for the Exploration Flight Test 1 vehicle.

  14. Modeling of Methods to Control Heat-Consumption Efficiency

    Science.gov (United States)

    Tsynaeva, E. A.; Tsynaeva, A. A.

    2016-11-01

    In this work, consideration has been given to thermophysical processes in automated heat consumption control systems (AHCCSs) of buildings, flow diagrams of these systems, and mathematical models describing the thermophysical processes during the systems' operation; an analysis of adequacy of the mathematical models has been presented. A comparison has been made of the operating efficiency of the systems and the methods to control the efficiency. It has been determined that the operating efficiency of an AHCCS depends on its diagram and the temperature chart of central quality control (CQC) and also on the temperature of a low-grade heat source for the system with a heat pump.

  15. A modified weighted probabilistic cellular automaton traffic flow model

    Institute of Scientific and Technical Information of China (English)

    Zhuang Qian; Jia Bin; Li Xin-Gang

    2009-01-01

    This paper modifies the weighted probabilistic cellular automaton model (Li X L,Kuang H,Song T,et al 2008Chin.Phys.B 17 2366) which considered a diversity of traffic behaviors under real traffic situations induced by various driving characters and habits.In the new model,the effects of the velocity at the last time step and drivers' desire for acceleration are taken into account.The fundamental diagram,spatial-temporal diagram,and the time series of one-minute data axe analyzed.The results show that this model reproduces synchronized flow.Finally,it simulates the on-ramp system with the proposed model.Some characteristics including the phase diagram are studied.

  16. Modified binary encounter Bethe model for electron-impact ionization

    CERN Document Server

    Guerra, M; Indelicato, P; Santos, J P

    2013-01-01

    Theoretical expressions for ionization cross sections by electron impact based on the binary encounter Bethe (BEB) model, valid from ionization threshold up to relativistic energies, are proposed. The new modified BEB (MBEB) and its relativistic counterpart (MRBEB) expressions are simpler than the BEB (nonrelativistic and relativistic) expressions because they require only one atomic parameter, namely the binding energy of the electrons to be ionized, and use only one scaling term for the ionization of all sub-shells. The new models are used to calculate the K-, L- and M-shell ionization cross sections by electron impact for several atoms with Z from 6 to 83. Comparisons with all, to the best of our knowledge, available experimental data show that this model is as good or better than other models, with less complexity.

  17. Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence.

    Science.gov (United States)

    Nigro, Giuseppina; Carbone, Vincenzo

    2010-07-01

    The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process.

  18. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  19. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    are assumed to be self created by local materials flow. The strength sigma_CR predictid by the Dugdale model is sigma_CR =(E Gamma_CR/phi1)^½ where E and 1 are Young’s modulus and crack half-length respectively of the material considered. The so-called critical strain energy rate is Gamma_CR = sigma......_Ldelta_CR where sigma_L is strength, and at the same time constant flow stress, of the uncracked material while delta_CR is flow limit (displacement).Obviously predictions by the Dugdale model are most reliable for materials with stress-strain relations where flow can actually be described (or well approximated......) by a constant flow stress (sigma_L). A number of materials, however, do not at all exhibit this kind of flow. Such materials are considered in this paper by Modified Dugdale crack models which apply for any cohesive stress distribution in crack front areas. Formally modified Dugdale crack models exhibit...

  20. Gauss-Bonnet modified gravity models with bouncing behavior

    CERN Document Server

    Escofet, Anna

    2015-01-01

    After a short review of the state of the art in Gauss-Bonnet modified gravity, several illustrative examples are introduced and a few original dark energy models with quite interesting properties are discussed which exhibit, in a unified way, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence, and ordinary matter, respectively. A model, in which the equation of state parameter, $w$, is a function of time is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with $w=-1$. Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are found and tested for the validity and stability of the corresponding solutions. They allow for a unified description of a bouncing behavior at early times and the accelerated expansion at present which, as a consequence, may be explained by means of a dark energy model inspired by fundamental physics (string theory) a...

  1. Calibrated Heat Flow Model for Determining the Heat Conduction Losses in Laser Cutting of CFRP

    Science.gov (United States)

    Mucha, P.; Weber, R.; Speker, N.; Berger, P.; Sommer, B.; Graf, T.

    Laser machining has great potential regarding automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts, due to the nearly force and tool-wear free processing at high process speeds. The high vaporization temperatures and the large heat conductivity of the carbon fibers lead to a large heat transport into the sample. This causes the formation of a heat-affected zone and a decrease of the process speed. In the present paper,an analytical heat flow model was adapted in order to understand and investigate the heat conduction losses. Thermal sensors were embedded in samples at different distances from the kerf to fit the calculated to the measured temperatures. Heat conduction losses of up to 30% of the laser power were determined. Furthermore, the energy not absorbed by the sample, the energy for sublimating the composite material in the kerf, the energy for the formation of the HAZ, and the residual heat in the sample are compared in an energy balance.

  2. Lattice Boltzmann Scheme associated with flexible Prandtl number and specific heat ratio based on the polyatomic ES-BGK model

    CERN Document Server

    Hu, Kainan; Zhang, Hongwu

    2016-01-01

    A lattice Boltzmann scheme associated with flexible Prandtl number and specific heat ratio is proposed, which is based on the polyatomic ellipsoidal statistics model(ES-BGK). The Prandtl number can be modified by a parameter of the Gaussian distribution and the specific heat ratio can be modified by additional free degrees. For the sake of constructing the scheme proposed, the Gaussian distribution is expanded on the Hermite polynomials and the general term formula for the Hermite coefficients of the Gaussian distribution is deduced. Benchmarks are carried out to verify the scheme proposed. The numerical results are in good agreement with the the analytical solutions.

  3. Fractional Heat Conduction Models and Thermal Diffusivity Determination

    Directory of Open Access Journals (Sweden)

    Monika Žecová

    2015-01-01

    Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.

  4. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  5. MATHEMATICAL MODELLING OF OPERATION HEAT NETWORKS IN VIEW OF HEAT LOSS

    Directory of Open Access Journals (Sweden)

    ZBARAZ L. I.

    2016-08-01

    Full Text Available Goal. In recent years, due to a significant rise in price of energy, the reduction of direct costs for heating becomes a priority. In the utilities especially important to optimization of energy heating system equipment. During transport of thermal energy in the distribution networks thermal losses occur along the length of the hydraulic pipes and the coolant pumping losses. These loss-dependence of the particular distribution network. Changing temperature and the hydraulic regime at the source necessary to achieve the minimum cost of transport for today acting tariffs for energy. Scientific novelty. The studies received law changes head to the source at the qualitative and quantitative methods of regulation. Results. A mathematical model of an extensive network of decentralized heat source heating, which are analyzed using different methods of regulating and found the best.

  6. Patchable, flexible heat-sensing hybrid ionic gate nanochannel modified with a wax-composite

    Science.gov (United States)

    Chun, Kyoung-Yong; Choi, Wook; Roh, Sung-Cheoul; Han, Chang-Soo

    2015-07-01

    Heat-driven ionic gate nanochannels have been recently demonstrated, which exploit temperature-responsive polymer brushes based on wettability. These heat-sensing artificial nanochannels operate in a broad temperature-response boundary and fixed liquid cell environment, thereby experiencing limited system operation in the flat and solid state. Here we have developed a patchable and flexible heat-sensing artificial ionic gate nanochannel, which can operate in the range of the human body temperature. A wax-elastic copolymer, coated onto a commercial nanopore membrane by a controlled-vacuum filtration method, was used for the construction of temperature-responsive nanopores. The robust and flexible nanochannel heat sensor, which is combined with an agarose gel electrolyte, can sustain reversible thermo-responsive ionic gating based on the volumetric work of the wax-composite layers in a selective temperature range. The ionic current is also effectively distinguished in the patchable bandage-type nanochannel for human heat-sensing.Heat-driven ionic gate nanochannels have been recently demonstrated, which exploit temperature-responsive polymer brushes based on wettability. These heat-sensing artificial nanochannels operate in a broad temperature-response boundary and fixed liquid cell environment, thereby experiencing limited system operation in the flat and solid state. Here we have developed a patchable and flexible heat-sensing artificial ionic gate nanochannel, which can operate in the range of the human body temperature. A wax-elastic copolymer, coated onto a commercial nanopore membrane by a controlled-vacuum filtration method, was used for the construction of temperature-responsive nanopores. The robust and flexible nanochannel heat sensor, which is combined with an agarose gel electrolyte, can sustain reversible thermo-responsive ionic gating based on the volumetric work of the wax-composite layers in a selective temperature range. The ionic current is also

  7. EnergyPlus Air Source Integrated Heat Pump Model

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; Adams, Mark B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  8. Numerical Modeling of Electroacoustic Logging Including Joule Heating

    Science.gov (United States)

    Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.

    It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.

  9. Modified Mean Field approximation for the Ising Model

    CERN Document Server

    Di Bartolo, Cayetano

    2009-01-01

    We study a modified mean-field approximation for the Ising Model in arbitrary dimension. Instead of taking a "central" spin, or a small "drop" of fluctuating spins coupled to the effective field of their nearest neighbors as in the Mean-Field or the Bethe-Peierls-Weiss methods, we take an infinite chain of fluctuating spins coupled to the mean field of the rest of the lattice. This results in a significative improvement of the Mean-Field approximation with a small extra effort.

  10. Ghost dark energy models in specific modified gravity

    Science.gov (United States)

    Jawad, Abdul; Salako, Ines G.; Sohail, Ayesha

    2016-09-01

    The paper is devoted to the study of the cosmic acceleration through ghost dark energy models (its simple and generalized form) in the dynamical Chern-Simons modified gravity. In order to check the reliability of this scenario, we explore different cosmological parameters, such as deceleration, equation of state parameters and squared speed of sound. The cosmological planes ωD - 'D and r- s are also investigated in this framework. The obtained results are consistent with observational data of various schemes (WMAP+eCAMB+BAO+H0).

  11. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  12. Formaldehyde Adsorption into Clinoptilolite Zeolite Modified with the Addition of Rich Materials and Desorption Performance Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Amin Kalantarifard

    2016-01-01

    Full Text Available Granite, bentonite, and starch were mixed with clinoptilolite zeolite to produce a modified zeolite. The modified zeolite was tested for its ability to absorb formaldehyde from air. The modified sample formaldehyde adsorption capacity was then compared with those of commercially available clinoptilolite, faujasite (Y, mordenite, and zeolite type A. Studies were focused on the relationships between the physical characteristics of the selected zeolites (crystal structure, surface porosity, pore volume, pore size and their formaldehyde adsorption capacity. The removal of starch at high temperature (1100°C and addition of bentonite during modified clinoptilolite zeolite (M-CLZ preparation generated large pores and a higher pore distribution on the sample surface, which resulted in higher adsorption capacity. The formaldehyde adsorption capacities of M-CLZ, clinoptilolite, faujasite (Y, zeolite type A, and mordenite were determined to be 300.5, 194.5, 123.7, 106.7, and 70 mg per gram of zeolite, respectively. The M-CLZ, clinoptilolite, and faujasite (Y crystals contained both mesoporous and microporous structures, which resulted in greater adsorption, while the zeolite type A crystal showed a layered structure and lower surface porosity, which was less advantageous for formaldehyde adsorption. Furthermore, zeolite regeneration using microwave heating was investigated focusing on formaldehyde removal by desorption from the zeolite samples. XRD, XRF, N2 adsorption/desorption, and FE-SEM experiments were performed to characterize the surface structure and textural properties the zeolites selected in this study.

  13. Turbulent Rayleigh-Bénard convection with polymers: Understanding how heat flux is modified

    Science.gov (United States)

    Benzi, Roberto; Ching, Emily S. C.; De Angelis, Elisabetta

    2016-12-01

    We study how polymers affect the heat flux in turbulent Rayleigh-Bénard convection at moderate Rayleigh numbers using direct numerical simulations with polymers of different relaxation times. We find that heat flux is enhanced by polymers and the amount of heat enhancement first increases and then decreases with the Weissenberg number, which is the ratio of the polymer relaxation time to the typical time scale of the flow. We show that this nonmonotonic behavior of the heat flux enhancement is the combined effect of the decrease in the viscous energy dissipation rate due to the viscosity of the Newtonian fluid and the increase in the energy dissipation rate due to polymers when Weissenberg number is increased. We explain why the viscous energy dissipation rate decreases with the Weissenberg number. Then by carrying out a generalized boundary layer analysis supplemented by a space-dependent effective viscosity from the numerical simulations, we provide a theoretical understanding of the change of the heat flux when the viscous energy dissipation rate is held constant. Our analysis thus provides a physical way to understand the numerical results.

  14. INFLUENCE OF HEAT TRANSFERRING MEDIA ON DURABILITY OF THERMALLY MODIFIED WOOD

    Directory of Open Access Journals (Sweden)

    Olov Karlsson

    2011-02-01

    Full Text Available Studies on the durability and dimensional stability of a series of hardwoods and softwoods after thermal modification in vegetable oils and in steam atmospheres have been performed. Mass loss after exposure to Coniophora puteana (BAM Ebw.15 for 16 weeks was very low for European birch, European aspen, Norway spruce, and Scots pine thermally modified in a linseed oil product with preservative (for 1 hour at 200 oC. Fairly low mass losses were obtained for wood thermally modified in linseed-, tung- and rapeseed oil, and losses were related to the wood species. Low mass loss during rot test was also found for Norway spruce and Scots pine modified in saturated steam at 180 oC. Water absorption of pine and aspen was reduced by the thermal treatments and the extent of reduction was dependent on wood species and thermal modification method. Thermally modified aspen was stable during cycling climate tests, whereas pine showed considerable cracking when modified under superheated steam conditions (Thermo D. At lower modification temperature (180 oC an increase in mass after modification in rapeseed oil of spruce, aspen and sapwood as well as heartwood of pine was observed, whereas at high temperature (240 oC a mass loss could be found. Oil absorption in room tempered oil after thermal modification in oil was high for the more permeable aspen and pine (sapwood.

  15. Pitfalls in modeling mantle convection with internal heat production

    Science.gov (United States)

    Korenaga, Jun

    2017-05-01

    The mantle of the Earth, and probably of other terrestrial planets as well, is heated from below and within. The heating mode of mantle convection is thus mixed heating, and it is also time dependent because the amount of heat-producing isotopes in the mantle is steadily decreasing by radioactive decay and because the basal heat flux originating in the cooling of the core can vary with time. This mode of transient mixed heating presents its own challenges to the study of mantle convection, but such difficulties are not always appreciated in the recent literature. The purpose of this tutorial is to clarify the issue of heating mode by explaining relevant concepts in a coherent manner, including the internal heating ratio, the Urey ratio, secular cooling, and the connection between the thermal budget of the Earth and the geochemical models of the Earth. The importance of such basic concepts will be explained with some illustrative examples in the context of the thermal evolution of the Earth, and a summary of common pitfalls will be provided, with a possible strategy for how to avoid them.

  16. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  17. Effect of heat treatment on the corrosion resistance of modified aluminum-magnesium alloys in seawater

    Science.gov (United States)

    Ahmad, Z.; Aleem, A.

    1993-10-01

    Study of modified Al-2.5Mg alloys containing chromium, silica, iron, and manganese in various tempers (O, H-18, T-4, T-6, T-18, and H-34) has shown that their corrosion resistance is significantly altered by thermomechanical treatment and the beneficial effect of chromium on microstructural changes. Modified binary Al-2.5Mg alloys in the T-6 and T-4 tempers exhibit a higher resistance to corrosion in Arabian Gulf water than H-34 tempers due to the beneficial effect of chromium on microstructural changes.

  18. Modelling of heat and mass transfer processes in neonatology

    Energy Technology Data Exchange (ETDEWEB)

    Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk

    2008-09-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.

  19. Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes

    CERN Document Server

    Yang, Xin-She; Luan, Tao; Koziel, Slawomir

    2014-01-01

    Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furthermore, by considering parameter estimation as a nonlinear constrained optimization problem, we have used the firefly algorithm to find parameter estimates efficiently. We have also demonstrated that it is possible to obtain good estimates of key parameters using very limited experimental data.

  20. Particle model for nonlocal heat transport in fusion plasmas.

    Science.gov (United States)

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  1. Modelling of heat and mass transfer processes in neonatology.

    Science.gov (United States)

    Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C

    2008-09-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.

  2. An Energy Savings Model for the Heat Treatment of Castings

    Energy Technology Data Exchange (ETDEWEB)

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  3. Model of Carbon Wire Heating in Accelerator Beam

    CERN Document Server

    Sapinski, M

    2008-01-01

    A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.

  4. Modelling floor heating systems using a validated two-dimensional ground coupled numerical model

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Roots, Peter

    2005-01-01

    the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... and foundation on the performance of the floor heating sys-tem. The ground coupled floor heating model is validated against measurements from a single-family house. The simulation model is coupled to a whole-building energy simu-lation model with inclusion of heat losses and heat supply to the room above...

  5. Development of a thermal resistance model to evaluate wellbore heat exchange efficiency

    Directory of Open Access Journals (Sweden)

    Albert A. Koenig, Martin F. Helmke

    2014-01-01

    Full Text Available A new model is proposed to simulate conduction of heat between a pipe loop in a geoexchange system and the ground. The approach employs the thermal resistor technique coupled with a conduction shape factor modified by an occultation factor. The model is compared to available data and demonstrates suitable agreement with previous studies. The model facilitates a parametric study of borehole resistance as a function of geometry and thermal conductivity of the components. By spacing the legs of the loop against the borehole and increasing the pipe size, the study shows that one can maximize the wellbore heat transfer using a moderate (1.2 W/mK thermal conductivity grout. This study further demonstrates that improved well construction techniques could increase the efficiency of most closed-loop geothermal systems by 10 percent.

  6. MATHEMATICAL MODELING OF THERMOPHYSICAL PARAMETERS OF VORTEX HEAT EXCHANGER OF HEATING SYSTEMS OF GAS DISTRIBUTION POINTS PREMISES

    Directory of Open Access Journals (Sweden)

    V. A. Lapin

    2009-09-01

    Full Text Available The mathematical model of heat transfer in vortex heat exchanger using natural gas energy which is released under decompression in gas-main pipe-lines for consumers of gas supply systems (dwellings, public and industrial buildings.

  7. Self-Organization of Aging in a Modified Penna Model

    Science.gov (United States)

    Kim, Gi Ok; Shim, Sugie

    The Penna model for biological aging is modified so that the fertility of each individual is determined by means of the number of activated mutations at that time. A new concept of "good" mutation, which makes an individual to mature enough to reproduce, is introduced. It is assumed that each individual can reproduce only during adulthood, which is determined by the number of activated mutations. The results of Monte Carlo calculations using the modified model show that the ranges of the reproductive age are broadened as time goes by, thus showing self-organization in the biological aging to the direction of the maximum self-conservation. In addition, the population, the survival rate, and the average life span were calculated and analyzed by changing the number of new mutations at birth. It is observed that the higher is the considered number of new mutations at birth, the shorter is the obtained average life span. The mortality functions are also calculated and they showed the exponential increase in adulthood, satisfying the Gompertz law.

  8. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  9. Integrated modeling and heat treatment simulation of austempered ductile iron

    Science.gov (United States)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  10. A user-friendly modified pore-solid fractal model

    Science.gov (United States)

    Ding, Dian-Yuan; Zhao, Ying; Feng, Hao; Si, Bing-Cheng; Hill, Robert Lee

    2016-12-01

    The primary objective of this study was to evaluate a range of calculation points on water retention curves (WRC) instead of the singularity point at air-entry suction in the pore-solid fractal (PSF) model, which additionally considered the hysteresis effect based on the PSF theory. The modified pore-solid fractal (M-PSF) model was tested using 26 soil samples from Yangling on the Loess Plateau in China and 54 soil samples from the Unsaturated Soil Hydraulic Database. The derivation results showed that the M-PSF model is user-friendly and flexible for a wide range of calculation point options. This model theoretically describes the primary differences between the soil moisture desorption and the adsorption processes by the fractal dimensions. The M-PSF model demonstrated good performance particularly at the calculation points corresponding to the suctions from 100 cm to 1000 cm. Furthermore, the M-PSF model, used the fractal dimension of the particle size distribution, exhibited an accepted performance of WRC predictions for different textured soils when the suction values were ≥100 cm. To fully understand the function of hysteresis in the PSF theory, the role of allowable and accessible pores must be examined.

  11. A modified two-lane traffic model considering drivers' personality

    Science.gov (United States)

    Zhu, H. B.; Zhang, N. X.; Wu, W. J.

    2015-06-01

    Based on the two-lane traffic model proposed by Chowdhury et al., a modified traffic model (R-STCA model, for short) is presented, in which the new symmetric lane changing rules are introduced by considering driving behavioral difference and dynamic headway. After the numerical simulation, a broad scattering of simulated points is exhibited in the moderate density region on the flow-density plane. The synchronized flow phase accompanied with the wide moving jam phase is reproduced. The spatial-temporal profiles indicate that the vehicles move according to the R-STCA model can change lane more easily and more realistically. Then vehicles are convenient to get rid of the slow vehicles that turn into plugs ahead, and hence the capacity increases. Furthermore the phenomenon of the high speed car-following is discovered by using the R-STCA model, which has been already observed in the traffic measured data. All these results indicate that the presented model is reasonable and more realistic.

  12. Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations

    Directory of Open Access Journals (Sweden)

    Yan Li-Mei

    2013-01-01

    Full Text Available The purpose of this paper is to extend the homotopy perturbation method to fractional heat transfer and porous media equations with the help of the Laplace transform. The fractional derivatives described in this paper are in the Caputo sense. The algorithm is demonstrated to be direct and straightforward, and can be used for many other non-linear fractional differential equations.

  13. Metals uptake by live yeast and heat-modified yeast residue

    Directory of Open Access Journals (Sweden)

    Geórgia Labuto

    2015-07-01

    Full Text Available This study evaluated the biosorption of Cd2+, Cr3+, Pb2+ and Cu2+ at pHs 3, 4, 5 and 6 for Saccharomyces cerevisiae both alive and biologically inactivated by different heating procedures (oven, autoclave or spray dry technique originated from alcohol industry. The material inactivated by autoclave (IA, at 120°C, 30 min had the best performance for metals uptake: 1.88 ± 0.07 (Cu2+, 2.22 ± 0.02 (Cr3+ and 1.57 ± 0.08 g kg-1 (Pb2+. For Cd2+; while the material inactivated by spray dry (RY presented the higher sorption capacity, 2.30 ± 0.08 g kg-1. The sorption studies showed that the biosorbent materials presented different sorption capacities and an ideal sorption pH. The sorption sites were investigated by potentiometric titration and FT-IR and showed that different heating processes used to inactivate biological samples produce materials with different characteristics and with a diverse sorption capacity due to modification of the available sorption sites. This suggests that inactivation by heating can be an alternative to improve the performance of biosorbents. The main sorption sites for each material were phenolic for live yeast (LY and carboxylic for yeast inactivated by heating in an autoclave (IA.

  14. The Wave Dragon: tests on a modified model

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, Luca; Frigaard, Peter

    1999-09-01

    A modified floating model of the Wave Dragon was tested for movements, overtopping and forces on critical positions. The modifications and consequent testing of the model are part of a R and D programme. 18 tests (repetitions included) were carried out during May 1999. Forces in 7 different positions and movements for three degrees of freedom (heave, pitch and surge) were recorded for 7 wave situations. Total overtopping was measured for 5 different wave situations. Furthermore influence of crest freeboard was tested. Sensitivity to the energy spreading in multidirectional seas was investigated. A typical exponential equation describing overtopping was fitted to the data in case of frequent wave conditions. The formula is compared to the present tests. (au)

  15. Modified DM Models for Aging Networks Based on Neighborhood Connectivity

    Institute of Scientific and Technical Information of China (English)

    WEI Du-Qu; LIN Min; LUO Xiao-Shu; WANG Gang; ZOU Yan-Li; CHEN Tian-Lun

    2008-01-01

    Two modified Dorogovtsev-Mendes (DM) models of aging networks based on the dynamics of connecting nearest-neighbors are introduced. One edge of the new site is connected to the old site with probabilityekt-αas in the DM's model, where the degree and age of the old site are k and t, respectively. We consider two eases, I.e. The other edges of the new site attaching to the nearest-neighbors of the old site with uniform and degree connectivity probability, respectively. The network structure changes with an increase of aging exponent α. It is found that the networks can produce scale-free degree distributions with small-world properties. And the different connectivity probabilities lead to the different properties of the networks.

  16. Modified pendulum model for mean step length estimation.

    Science.gov (United States)

    González, Rafael C; Alvarez, Diego; López, Antonio M; Alvarez, Juan C

    2007-01-01

    Step length estimation is an important issue in areas such as gait analysis, sport training or pedestrian localization. It has been shown that the mean step length can be computed by means of a triaxial accelerometer placed near the center of gravity of the human body. Estimations based on the inverted pendulum model are prone to underestimate the step length, and must be corrected by calibration. In this paper we present a modified pendulum model in which all the parameters correspond to anthropometric data of the individual. The method has been tested with a set of volunteers, both males and females. Experimental results show that this method provides an unbiased estimation of the actual displacement with a standard deviation lower than 2.1%.

  17. Modified Chaplygin gas inspired inflationary model in braneworld scenario

    Science.gov (United States)

    Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra

    2016-05-01

    We investigate the modified Chaplygin gas inspired inflationary regime in the brane-world framework in the presence of standard and tachyon scalar fields. We consider the intermediate inflationary scenario and construct the slow-roll parameters, e-folding numbers, spectral index, scalar and tensor power spectra, tensor to scalar ratio for both scalar field models. We develop the ns - N and r - N planes and concluded that ns˜eq96^{+0.5}_{-0.5} and r≤0.0016 for N˜eq60^{+5}_{-5} in both cases of scalar field models as well as for all values of m. These constraints are consistent with observational data such as WMAP7, WMAP9 and Planck data.

  18. Critical review of wind tunnel modeling of atmospheric heat dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-05-01

    There is increasing concern by scientists that future proposed energy or power parks may significantly affect the environment by releasing large quantities of heat and water vapor to the atmosphere. A critical review is presented of the potential application of physical modeling (wind tunnels) to assess possible atmospheric effects from heat dissipation systems such as cooling towers. A short inventory of low-speed wind tunnel facilities is included in the review. The useful roles of wind tunnels are assessed and the state-of-the-art of physical modeling is briefly reviewed. Similarity criteria are summarized and present limitations in satisfying these criteria are considered. Current physical models are defined and limitations are discussed. Three experimental problems are discussed in which physical modeling may be able to provide data. These are: defining the critical atmospheric heat load; topographic and local circulation effects on thermal plumes; and plume rise and downstream effects.

  19. Towards a Multi-Model Subseasonal Excessive Heat Outlook System

    Science.gov (United States)

    Vintzileos, A.

    2015-12-01

    We developed an experimental realtime subseasonal excessive heat outlook and monitoring system (SEHOMS) based on the detection of heat events in dynamical forecasts and reanalyses. Our definition of a heat event takes into account both the challenges of subseasonal forecasting and the effects of heat stress on human physiology e.g., the dependence of heat impacts on duration, geographical location and timing of the heat event. The prototype outlook system focuses on forecast lead time week-2 and uses the Global Ensemble Forecast System (GEFS) reforecast conducted at ESRL and the NCEP-GEFS operational realtime ensemble forecasts. The prototype monitoring system, on which we base forecast verification, provides a dual output. The first product uses the NCAR/NCEP reanalysis; the second monitoring product is based on the day-1 forecast from the GEFS reforecast and from the operational GEFS realtime forecast. In this presentation we first show results from the prototype forecasting and monitoring system. We then compare these results with forecasts from the SEHOMS in which we gradually add reforecasts obtained from the S2S database (NCEP - Climate forecast System and ECMWF models). Finally we discuss the possibility of expanding the SEHOMS to week-3 and week-4 based on results from the CFS, ECMWF model, and the North American Multi-Model Ensemble system (NMME).

  20. Modelling the heat stress and the recovery of bacterial spores.

    Science.gov (United States)

    Mafart, P; Leguérinel, I

    1997-07-22

    After heat treatment, the temperature incubation and the medium composition, (pH and sodium chloride content) influence the capacity of injured spores to repair heat damage. The concept of heat resistance D- (decimal reduction time) and z-values (temperature increase which results in a ten fold reduction of the D value) is not sufficient and the ratio of spore recovery after incubation should be considered in calculations used in thermal processing of food. This paper aims to derive a model describing the recovery of injured spores as a function of both the heat treatment intensity and the environmental conditions. According to data from numerous investigators, when spores are incubated in unfavorable conditions, the ratio of cell recovery and the apparent D-value are reduced. Moreover the ratio of the apparent D-value and the estimated in optimal incubation D-value is constant and independent of the heat treatment conditions. Beyond these observations it is shown that the ratio of cell recovery with respect to the heat treatment F-value (exposure time, in minutes, at 121.1 degrees C which results in the same destruction ratio that the considered heat treatment does) is linear and can be quantified by using two factors independent of the heat treatment: the gamma-factor reflects the degree of precariousness due to the heat stress while the epsilon-factor reflects more intrinsically the incubation conditions without previous heat treatment. The gamma-factor varies as a function of the incubation temperature according to an Arrhenius law.

  1. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In generalMATLAB has proved to be very stable for these DAE systems. Experimental verication has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...

  2. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these DAE systems. Experimental verification has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  3. A modified social force model for crowd dynamics

    Science.gov (United States)

    Hassan, Ummi Nurmasyitah; Zainuddin, Zarita; Abu-Sulyman, Ibtesam M.

    2017-08-01

    The Social Force Model (SFM) is one of the most successful models in microscopic pedestrian studies that is used to study the movement of pedestrians. Many modifications have been done to improvise the SFM by earlier researchers such as the incorporation of a constant respect factor into the self-stopping mechanism. Before the new mechanism is introduced, the researchers found out that a pedestrian will immediately come to a halt if other pedestrians are near to him, which seems to be an unrealistic behavior. Therefore, researchers introduce a self-slowing mechanism to gradually stop a pedestrian when he is approaching other pedestrians. Subsequently, the dynamic respect factor is introduced into the self-slowing mechanism based on the density of the pedestrians to make the model even more realistic. In real life situations, the respect factor of the pedestrians should be dynamic values instead of a constant value. However, when we reproduce the simulation of the dynamic respect factor, we found that the movement of the pedestrians are unrealistic because the pedestrians are lacking perception of the pedestrians in front of him. In this paper, we adopted both dynamic respect factor and dynamic angular parameter, called modified dynamic respect factor, which is dependent on the density of the pedestrians. Simulations are performed in a normal unidirectional walkway to compare the simulated pedestrians' movements produced by both models. The results obtained showed that the modified dynamic respect factor produces more realistic movement of the pedestrians which conform to the real situation. Moreover, we also found that the simulations endow the pedestrian with a self-slowing mechanism and a perception of other pedestrians in front of him.

  4. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    Science.gov (United States)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  5. A control model for district heating networks with storage

    NARCIS (Netherlands)

    Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro

    2014-01-01

    In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and tem

  6. A control model for district heating networks with storage

    NARCIS (Netherlands)

    Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro

    2014-01-01

    In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and tem

  7. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    Science.gov (United States)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  8. Model for electrical conductivity of muscle meat during Ohmic heating

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2017-01-01

    A model is presented for predicting the electrical conductivity of muscle meat, which can be used for the evaluation of Ohmic heating. The model computes the conductivity as a function of composition, temperature and microstructure. The muscle meat is thought to be composed of protein, water, salt.

  9. Study on modeling of resist heating effect correction in EB mask writer EBM-9000

    Science.gov (United States)

    Nomura, Haruyuki; Kamikubo, Takashi; Suganuma, Mizuna; Kato, Yasuo; Yashima, Jun; Nakayamada, Noriaki; Anze, Hirohito; Ogasawara, Munehiro

    2015-07-01

    Resist heating effect which is caused in electron beam lithography by rise in substrate temperature of a few tens or hundreds of degrees changes resist sensitivity and leads to degradation of local critical dimension uniformity (LCDU). Increasing writing pass count and reducing dose per pass is one way to avoid the resist heating effect, but it worsens writing throughput. As an alternative way, NuFlare Technology is developing a heating effect correction system which corrects CD deviation induced by resist heating effect and mitigates LCDU degradation even in high dose per pass conditions. Our developing correction model is based on a dose modulation method. Therefore, a kind of conversion equation to modify the dose corresponding to CD change by temperature rise is necessary. For this purpose, a CD variation model depending on local pattern density was introduced and its validity was confirmed by experiments and temperature simulations. And then the dose modulation rate which is a parameter to be used in the heating effect correction system was defined as ideally irrelevant to the local pattern density, and the actual values were also determined with the experimental results for several resist types. The accuracy of the heating effect correction was also discussed. Even when deviations depending on the pattern density slightly remains in the dose modulation rates (i.e., not ideal in actual), the estimated residual errors in the correction are sufficiently small and acceptable for practical 2 pass writing with the constant dose modulation rates. In these results, it is demonstrated that the CD variation model is effective for the heating effect correction system.

  10. Computational Model of Heat Transfer on the ISS

    Science.gov (United States)

    Torian, John G.; Rischar, Michael L.

    2008-01-01

    SCRAM Lite (SCRAM signifies Station Compact Radiator Analysis Model) is a computer program for analyzing convective and radiative heat-transfer and heat-rejection performance of coolant loops and radiators, respectively, in the active thermal-control systems of the International Space Station (ISS). SCRAM Lite is a derivative of prior versions of SCRAM but is more robust. SCRAM Lite computes thermal operating characteristics of active heat-transport and heat-rejection subsystems for the major ISS configurations from Flight 5A through completion of assembly. The program performs integrated analysis of both internal and external coolant loops of the various ISS modules and of an external active thermal control system, which includes radiators and the coolant loops that transfer heat to the radiators. The SCRAM Lite run time is of the order of one minute per day of mission time. The overall objective of the SCRAM Lite simulation is to process input profiles of equipment-rack, crew-metabolic, and other heat loads to determine flow rates, coolant supply temperatures, and available radiator heat-rejection capabilities. Analyses are performed for timelines of activities, orbital parameters, and attitudes for mission times ranging from a few hours to several months.

  11. Osseointegration of biochemically modified implants in an osteoporosis rodent model

    Directory of Open Access Journals (Sweden)

    B Stadlinger

    2013-07-01

    Full Text Available The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX osteoporotic rats (n = 32/group. In addition, aged oestrogen competent animals received either control or NaOH conditioned implants. Animals were sacrificed 2 and 4 weeks post-implantation. The excised tibiae were utilised for biomechanical and morphometric readouts (n = 8/group/readout. Biomechanical testing revealed at both time points dramatically reduced osseointegration in the tibia of oestrogen deprived osteoporotic animals compared to intact controls irrespective of NaOH exposure. Consistently, histomorphometric and microCT analyses demonstrated diminished bone-implant contact (BIC, peri-implant bone area (BA, bone volume/tissue volume (BV/TV and bone-mineral density (BMD in OVX animals. Surface coating with collagen/chondroitin sulphate had no detectable impact on osseointegration. Interestingly, statin coating resulted in a transient increase in BIC 2 weeks post-implantation; which, however, did not correspond to improvement of biomechanical readouts. Local exposure to zoledronic acid increased BIC, BA, BV/TV and BMD at 4 weeks. Yet this translated only into a non-significant improvement of biomechanical properties. In conclusion, this study presents a rodent model mimicking severely osteoporotic bone. Contrary to the other bioactive agents, locally released zoledronic acid had a positive impact on osseointegration albeit to a lesser extent than reported in less challenging models.

  12. Facile synthesis of graphene oxide-modified lithium hydroxide for low-temperature chemical heat storage

    Science.gov (United States)

    Yang, Xixian; Huang, Hongyu; Wang, Zhihui; Kubota, Mitsuhiro; He, Zhaohong; Kobayashi, Noriyuki

    2016-01-01

    LiOH·H2O nanoparticles supported on graphene oxide (GO) were facilely synthesized by a hydrothermal process. The mean diameter of nanoparticles on the integrated graphene sheet was about 5-10 nm showed by SEM and TEM results. XRD results suggested that the nanoparticles are in good agreement with the data of LiOH·H2O. The as-prepared sample showed a greatly enhanced thermal energy storage density and exhibit higher rate of heat release than pure lithium hydroxide, and thermal conductivity of composites increased due to the introduction of nano carbon. LiOH·H2O/GO nanocomposites are novel chemical heat storage materials for potential highly efficient energy system.

  13. A heat transfer model for slug flow boiling within microchannels

    Science.gov (United States)

    Magnini, Mirco; Thome, John

    2016-11-01

    We propose a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels, to update the widely used three-zone model for the design of multi-microchannel evaporators. The flow is modelled as the cyclic passage of a liquid slug, an elongated bubble which traps a thin liquid film against the channel wall, and a dry vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method considering bubble proximity effects, which may limit the radial extension of the film, is included. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies: 833 slug flow boiling data points covering R134a, R245fa and R236fa and channel diameters from 0.4 mm to 1 mm. The new model predicts more than 80% of the database to within +/- 30 % and it represents an important step toward a complete physics-based modelling of bubble dynamics and heat transfer within microchannels under evaporating flow conditions.

  14. A modified symplectic PRK scheme for seismic wave modeling

    Science.gov (United States)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  15. Modelling occupants’ heating set-point prefferences

    DEFF Research Database (Denmark)

    Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn

    2011-01-01

    consumption. Simultaneous measurement of the set-point of thermostatic radiator valves (trv), and indoor and outdoor environment characteristics was carried out in 15 dwellings in Denmark in 2008. Linear regression was used to infer a model of occupants’ interactions with trvs. This model could easily......Discrepancies between simulated and actual occupant behaviour can offset the actual energy consumption by several orders of magnitude compared to simulation results. Thus, there is a need to set up guidelines to increase the reliability of forecasts of environmental conditions and energy...

  16. Heat transport modelling in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2009-02-01

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

  17. Analysing polystyrene-modified asphalt and its incidence in a heat-dense asphalt mixture

    Directory of Open Access Journals (Sweden)

    Ana Sofía Figueroa Infante

    2010-04-01

    Full Text Available This article presents some results obtained with an MDC-2 asphalt/polystyrene-modified asphalt mixture as a result of crushing waste glass. The stone, asphalt and polystyrene materials’ were characterised for drawing up the design. The Marshal method was used for obtaining the best asphalt- stone-polystyrene percentages. The Superpave method was used for analysing the asphalt; the mixture’s dynamic behaviour was analysed using a test involving 20ºC and 30ºC trapezoidal fatigue for 90x10-6, 150x10-6 and 220x10-6m deformation. The truck-wheel test was analysed for a 13-ton load, similar to that of the heaviest axle on a Transmilenio (articulated bus. The dynamic module test was analysed for 15ºC, 20ºC and 30ºC and 2.5, 5 and 10 Hz frequencies. Conventional asphalt mixture and modified asphalt results were contrasted, interesting behaviour being observed regarding plastic deformation of the modified mixture in service

  18. Mathematical modeling of heat transfer in plant community

    Directory of Open Access Journals (Sweden)

    Finnikov K.A.

    2011-12-01

    Full Text Available The conductive, convective and radiation heat exchange process in a natural system including plants aggregation, air lower layer and ground upper layer, is examined. The mathematical model of process is formulated in 1d unsteady approach. The numerical simulation of plants aggregation cooling is performed for the case of a radiation frost. It is found up that mutual influence of plants in an aggregation on the heat exchange with environment grows with the increase of plants size and plants number per ground area. The influence leads to that lower parts of plants are cooled slower, while upper parts are cooled faster. The estimations are made for the quantity of heat emitted in a thermogenic plant that is enough to prevent the plant cold stress. It is shown that in presence of enforced air flow the rate of plants cooling is noticeably lower, as well as the quantity of heat enough to prevent the plant cold stress.

  19. Heat and Mass Transfer Model in Freeze-Dried Medium

    Science.gov (United States)

    Alfat, Sayahdin; Purqon, Acep

    2017-07-01

    There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.

  20. Modified Chaos Particle Swarm Optimization-Based Optimized Operation Model for Stand-Alone CCHP Microgrid

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-07-01

    Full Text Available The optimized dispatch of different distributed generations (DGs in stand-alone microgrid (MG is of great significance to the operation’s reliability and economy, especially for energy crisis and environmental pollution. Based on controllable load (CL and combined cooling-heating-power (CCHP model of micro-gas turbine (MT, a multi-objective optimization model with relevant constraints to optimize the generation cost, load cut compensation and environmental benefit is proposed in this paper. The MG studied in this paper consists of photovoltaic (PV, wind turbine (WT, fuel cell (FC, diesel engine (DE, MT and energy storage (ES. Four typical scenarios were designed according to different day types (work day or weekend and weather conditions (sunny or rainy in view of the uncertainty of renewable energy in variable situations and load fluctuation. A modified dispatch strategy for CCHP is presented to further improve the operation economy without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy are introduced into basic particle swarm optimization (PSO to propose modified chaos particle swarm optimization (MCPSO whose search capability and convergence speed are improved greatly. Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO algorithm in the optimized operation application of stand-alone MG.

  1. Radiative heating in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.; Arsky, N.; Rocque, K. [Univ. of Maryland, College Park, MD (United States)

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  2. Modified Chaplygin gas as an interacting holographic dark energy model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The modified Chaplygin gas (MCG) as an interacting model of holographic dark energy in which dark energy and dark matter are coupled together is investigated in this paper. Concretely, by studying the evolutions of related cosmological quantities such as density parameter Ω, equation of state w, deceleration parameter q and transition redshift zT, we find the evolution of the universe is from deceleration to acceleration, their present values are consistent with the latest observations, and the equation of state of holographic dark energy can cross the phantom divide w = -1. Furthermore, we put emphasis upon the geometrical diagnostics for our model, i.e., the statefinder and Om diagnostics. By illustrating the evolutionary trajectories in r - s, r - q, w -w and Om planes, we find that the holographic constant c and the coupling constant b play very important roles in the holographic dark energy (HDE) model. In addition, we also plot the LCDM horizontal lines in Om diagrams, and show the discrimination between the HDE and LCDM models.

  3. The Effect of Random Voids in the Modified Gurson Model

    Science.gov (United States)

    Fei, Huiyang; Yazzie, Kyle; Chawla, Nikhilesh; Jiang, Hanqing

    2012-02-01

    The porous plasticity model (usually referred to as the Gurson-Tvergaard-Needleman model or modified Gurson model) has been widely used in the study of microvoid-induced ductile fracture. In this paper, we studied the effects of random voids on the porous plasticity model. Finite-element simulations were conducted to study a copper/tin/copper joint bar under uniaxial tension using the commercial finite-element package ABAQUS. A randomly distributed initial void volume fraction with different types of distribution was introduced, and the effects of this randomness on the crack path and macroscopic stress-strain behavior were studied. It was found that consideration of the random voids is able to capture more detailed and localized deformation features, such as different crack paths and different ultimate tensile strengths, and meanwhile does not change the macroscopic stress-strain behavior. It seems that the random voids are able to qualitatively explain the scattered observations in experiments while keeping the macroscopic measurements consistent.

  4. Gauss-Bonnet modified gravity models with bouncing behavior

    Science.gov (United States)

    Escofet, Anna; Elizalde, Emilio

    2016-06-01

    The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = -1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.

  5. Application of modified vector fitting to grounding system modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, D.; Camargo, M.; Herrera, J.; Torres, H. [National University of Colombia (Colombia). Research Program on Acquisition and Analysis of Signals - PAAS], Emails: dyjimeneza@unal.edu.co, mpcamargom@unal.edu.co; Vargas, M. [Siemens S.A. - Power Transmission and Distribution - Energy Services (Colombia)

    2007-07-01

    The transient behavior of grounding systems (GS) influences greatly the performance of electrical networks under fault conditions. This fact has led the authors to present an application of the Modified Vector Fitting (MVF)1 methodology based upon the frequency response of the system, in order to find a rational function approximation and an equivalent electrical network whose transient behavior is similar to the original one of the GS. The obtained network can be introduced into the EMTP/ATP program for simulating the transient behavior of the GS. The MVF technique, which is a modification of the Vector Fitting (VF) technique, allows identifying state space models from the Frequency Domain Response for both single and multiple input-output systems. In this work, the methodology is used to fit the frequency response of a grounding grid, which is computed by means of the Hybrid Electromagnetic Model (HEM), finding the relation between voltages and input currents in two points of the grid in frequency domain. The model obtained with the MVF shows a good agreement with the frequency response of the GS. Besides, the model is tested in EMTP/ATP finding a good fitting with the calculated data, which demonstrates the validity and usefulness of the MVF. (author)

  6. Analysis of Urban Heat Island Effect Using an Improved CTTC and STTC Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yufeng; WANG Zhigang; SUN Yuexia

    2009-01-01

    An improved cluster thermal time constant (CTTC) and surface thermal time constant (STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longwave radiation of the canyon layer.In the case study the model was used to calculate the air temperature variation at downtown of Tianjin City.The relative error between the calculated and measured air temperatures was less than 3%.The tendency of air temperature variation was predicted when the building aspect ratio,vegetation rate,and wind speed changed respectively.It is demonstrated that when the aspect ratio of a building with south-north orientation increased,the heat island intensity at day time was mitigated; however,it became worse after sunset.The vegetation coverage rate and wind speed both had negative relationship with the urban heat island intensity.

  7. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

    Science.gov (United States)

    Kloutse, A. F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M.

    2015-12-01

    Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric-volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin-Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal-organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models' prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg-1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.

  8. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    Directory of Open Access Journals (Sweden)

    Lionel Leclere

    Full Text Available Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3 protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.

  9. Heat-Modified Citrus Pectin Induces Apoptosis-Like Cell Death and Autophagy in HepG2 and A549 Cancer Cells

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments. PMID:25794149

  10. Enthalpy model for heating, melting, and vaporization in laser ablation

    Directory of Open Access Journals (Sweden)

    Vasilios Alexiades

    2010-09-01

    Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.

  11. Nuclear symmetry energy in a modified quark meson coupling model

    CERN Document Server

    Mishra, R N; Panda, P K; Barik, N; Frederico, T

    2015-01-01

    We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.

  12. Character and stability of axisymmetric thermal convection in spheres and spherical shells. [model for heat transfer in planetary interiors

    Science.gov (United States)

    Zebib, A.; Schubert, G.; Dein, J. L.; Paliwal, R. C.

    1983-01-01

    The influence of shell size and mode of heating on the behavior and stability of axisymmetric, infinite Prandtl number convection in a spherical geometry is studied. Heating from within and below features convection onset governed by a self-adjoint system of equations and boundary conditions. For heating only from within or from below, linearized equations and boundary conditions are non-self-adjoint. Identification of the parameter which initiates the departure from self-adjointness, together with the properties of the self-adjoint solution, provide a basis for calculating the heat transfer characteristics of the non-self-adjoint situations. The investigations are an effort to develop a model for heat transfer in planetary interiors. Further development of the technique by modifying the Galerkin method by the introduction of diagonal mode truncation is suggested to permit the consideration of higher values of the Rayleigh numbers, i.e., those more commensurate with terrestrial planet mantles.

  13. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    QUAN ZhenHua; CHEN YongChang; MA ChongFang

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface.The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su-persaturated solution.Based on experimental results of the fouling process,the deposition and removal rates of the mixing fouling were expressed.Furthermore,the coupling effect of temperature with the fouling process was considered in the physics model.As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions.The results showed that the present model could give a good prediction of fouling process,and the deviation was less than 15% of the experimental data in most cases.The new model is credible to predict the fouling process.

  14. Geographically Isolated Wetlands and Catchment Hydrology: A Modified Model Analyses

    Science.gov (United States)

    Evenson, G.; Golden, H. E.; Lane, C.; D'Amico, E.

    2014-12-01

    Geographically isolated wetlands (GIWs), typically defined as depressional wetlands surrounded by uplands, support an array of hydrological and ecological processes. However, key research questions concerning the hydrological connectivity of GIWs and their impacts on downgradient surface waters remain unanswered. This is particularly important for regulation and management of these systems. For example, in the past decade United States Supreme Court decisions suggest that GIWs can be afforded protection if significant connectivity exists between these waters and traditional navigable waters. Here we developed a simulation procedure to quantify the effects of various spatial distributions of GIWs across the landscape on the downgradient hydrograph using a refined version of the Soil and Water Assessment Tool (SWAT), a catchment-scale hydrological simulation model. We modified the SWAT FORTRAN source code and employed an alternative hydrologic response unit (HRU) definition to facilitate an improved representation of GIW hydrologic processes and connectivity relationships to other surface waters, and to quantify their downgradient hydrological effects. We applied the modified SWAT model to an ~ 202 km2 catchment in the Coastal Plain of North Carolina, USA, exhibiting a substantial population of mapped GIWs. Results from our series of GIW distribution scenarios suggest that: (1) Our representation of GIWs within SWAT conforms to field-based characterizations of regional GIWs in most respects; (2) GIWs exhibit substantial seasonally-dependent effects upon downgradient base flow; (3) GIWs mitigate peak flows, particularly following high rainfall events; and (4) The presence of GIWs on the landscape impacts the catchment water balance (e.g., by increasing groundwater outflows). Our outcomes support the hypothesis that GIWs have an important catchment-scale effect on downgradient streamflow.

  15. A new model for heating of Solar North Polar Coronal Hole

    CERN Document Server

    Devlen, E; Yardımcı, M; Pekünlü, E R

    2015-01-01

    This paper presents a new model of North Polar Coronal Hole (NPCH) to study dissipation/propagation of MHD waves. We investigate the effects of the isotropic viscosity and heat conduction on the propagation characteristics of the MHD waves in NPCH. We first model NPCH by considering the differences in radial as well as in the direction perpendicular to the line of sight (\\textit{los}) in temperature, particle number density and non-thermal velocities between plumes and interplume lanes for the specific case of \\ion{O}{VI} ions. This model includes parallel and perpendicular (to the magnetic field) heat conduction and viscous dissipation. Next, we derive the dispersion relations for the MHD waves in the case of absence and presence of parallel heat conduction. In the case of absence of parallel heat conduction, we find that MHD wave dissipation strongly depends on the viscosity for modified acoustic and Alfven waves. The energy flux density of acoustic waves varies between $10^{4.7}$ and $10^7 \\,erg\\,cm^{-2}\\,...

  16. Modification method of numerical calculation of heat flux over dome based on turbulence models

    Science.gov (United States)

    Zhang, Daijun; Luo, Haibo; Zhang, Junchao; Zhang, Xiangyue

    2016-10-01

    For the optical guidance system flying at low altitude and high speed, the calculation of turbulent convection heat transfer over its dome is the key to designing this kind of aircraft. RANS equations-based turbulence models are of high computation efficiency and their calculation accuracy can satisfy the engineering requirement. But for the calculation of the flow in the shock layer of strong entropy and pressure disturbances existence, especially of aerodynamic heat, some parameters in the RANS energy equation are necessary to be modified. In this paper, we applied turbulence models on the calculation of the heat flux over the dome of sphere-cone body at zero attack. Based on Billig's results, the shape and position of detached shock were extracted in flow field using multi-block structured grid. The thermal conductivity of the inflow was set to kinetic theory model with respect to temperature. When compared with Klein's engineering formula at the stagnation point, we found that the results of turbulent models were larger. By analysis, we found that the main reason of larger values was the interference from entropy layer to boundary layer. Then thermal conductivity of inflow was assigned a fixed value as equivalent thermal conductivity in order to compensate the overestimate of the turbulent kinetic energy. Based on the SST model, numerical experiments showed that the value of equivalent thermal conductivity was only related with the Mach number. The proposed modification approach of equivalent thermal conductivity for inflow in this paper could also be applied to other turbulence models.

  17. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    Science.gov (United States)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  18. A heat transfer model for biological wastewater treatment system

    Science.gov (United States)

    Lin, S. H.

    A heat transfer model for predicting the water temperature of aeration tank in a biological wastewater treatment plant is presented. The heat transfer mechanisms involved in the development of the heat transfer model include heat gains from solar radiation and biochemical reaction and heat losses from evaporation, aeration, wind blowing and conduction through tank walls. Several empirical correlations were adopted and appropriate assumptions made to facilitate the model development. Experiments were conducted in the biological wastewater treatment plant of a chemical fiber company over a year's period. The operational, weather and temperature data were registered. The daily water temperature data were averaged over a month period and compared with the theoretical prediction. Excellent agreement has been obtained between the predicted and measured temperatures, verifying the proposed heat transfer model. Zusammenfassung Es wird ein Wärmeübergangsmodell zur Berechnung der Wassertemperatur im Belüftungstank einer Anlage zur biologischen Abwasserbehandlung vorgestellt. Die in das Modell eingehenden Wärmeübergangsmechanismen umfassen: solare Wärmeeinstrahlung, biochemische Reaktion, Wärmeverluste durch Verdampfung, Belüftung, Windeinfluß und Leitung durch die Behälterwände. Mehrere empirische Beziehungen sowie vertretbare Annahmen tragen zur Modellvereinfachung bei. An der biologischen Abwasser-Kläranlage einer Chemiefaserfirma wurden ein Jahr lang Experimente durchgeführt und dabei Betriebs-, Wetter- und Temperaturdaten aufgezeichnet. Die täglichen Wassertemperaturen, gemittelt über einen Monat, zeigten ausgezeichnete Übereinstimmung mit den theoretischen Vorausberechnungen und bestätigten so die Brauchbarkeit des vorgeschlagenen Wärmeübergangsmodells.

  19. Spatial and temporal-controlled tissue heating on a modified clinical ultrasound scanner for generating mild hyperthermia in tumors.

    Science.gov (United States)

    Kruse, Dustin E; Lai, Chun-Yen; Stephens, Douglas N; Sutcliffe, Patrick; Paoli, Eric E; Barnes, Stephen H; Ferrara, Katherine W

    2010-01-01

    A new system is presented for generating controlled tissue heating with a clinical ultrasound scanner, and initial in vitro and in vivo results are presented that demonstrate both transient and sustained heating in the mild-hyperthermia range of 37 ( degrees )C-42 ( degrees )C. The system consists of a Siemens Antares ultrasound scanner, a custom dual-frequency three-row transducer array and an external temperature feedback control system. The transducer has two outer rows that operate at 1.5 MHz for tissue heating and a center row that operates at 5 MHz for B-mode imaging to guide the therapy. We compare the field maps obtained using a hydrophone against calculations of the ultrasound beam based on monochromatic and linear assumptions. Using the finite-difference time-domain (FDTD) method, we compare predicted time-dependent thermal profiles to measured profiles for soy tofu as a tissue-mimicking phantom. In vitro results show differential heating of 6 ( degrees )C for chicken breast and tofu. In vivo tests of the system were performed on three mice bearing Met-1 tumors, which is a model of aggressive, metastatic, and highly vascular breast cancer. In superficially implanted tumors, we demonstrate controlled heating to 42 ( degrees )C. We show that the system is able to maintain the temperature to within 0.1 ( degrees )C of the desired temperature both in vitro and in vivo.

  20. Assessment of Modified Wall Condensation Models of MARS-KS and SPACE Codes using Reflux Condensation Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Cheong, Ae Ju; Suh, Duk SUH [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The wall condensation models of MARS-KS and SPACE codes adopt the Colburn-Hougen diffusion method to solve for the liquid-gas interface temperature in the presence of noncondensable (NC) gases. Recent studies reported that there was an error in the vapor mass flux term when the models were implemented in the codes. This error causes the codes to underestimate the steam condensation rate. This tendency becomes more noticeable with the increase in the mole fraction of NC gases. In this study, we assess the modified condensation model of MARS-KS and SPACE codes. The calculation results of modified version of the codes (MARS-KS 1.3r1 and SPACE 2.16r1) are compared to those of the original version (MARS-KS 1.3 and SPACE 2.14) and the experimental data. The modified model predicts higher heat fluxes and HTCs than the original model due to the increase in the steam condensation rate. At relatively high air mass fraction, the modified model increases the discrepancy between the measured data and calculated values.

  1. Test of a modified BCS theory performance in the Picket Fence Model

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V.Yu. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)], E-mail: ponomare@crunch.ikp.physik.tu-darmstadt.de; Vdovin, A.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2009-06-01

    Analyses of a modified BCS (MBCS) theory performance at finite temperatures in the Picket Fence Model (PFM) for light and heavy systems are presented. Both symmetric, {omega}=N (N particles on {omega} doubly-degenerate levels), and asymmetric, {omega}{ne}N, versions of the PFM are considered. Quantities determined exactly from particle-hole symmetry of the symmetric PFM are calculated in the MBCS. They are found in significant deviation from the exact values starting from far below the critical temperatures of the conventional BCS. Consequences of the MBCS prediction that heating generates a thermal constituent of the pairing gap, are discussed. The question of thermodynamical consistency of the MBCS is also addressed.

  2. A probabilistic model of a porous heat exchanger

    Science.gov (United States)

    Agrawal, O. P.; Lin, X. A.

    1995-01-01

    This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.

  3. Full Eulerian lattice Boltzmann model for conjugate heat transfer.

    Science.gov (United States)

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2015-12-01

    In this paper a full Eulerian lattice Boltzmann model is proposed for conjugate heat transfer. A unified governing equation with a source term for the temperature field is derived. By introducing the source term, we prove that the continuity of temperature and its normal flux at the interface is satisfied automatically. The curved interface is assumed to be zigzag lines. All physical quantities are recorded and updated on a Cartesian grid. As a result, any complicated treatment near the interface is avoided, which makes the proposed model suitable to simulate the conjugate heat transfer with complex interfaces efficiently. The present conjugate interface treatment is validated by several steady and unsteady numerical tests, including pure heat conduction, forced convection, and natural convection problems. Both flat and curved interfaces are also involved. The obtained results show good agreement with the analytical and/or finite volume results.

  4. Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer

    Directory of Open Access Journals (Sweden)

    Michael Z. Podowski

    2009-01-01

    Full Text Available Due to the importance of boiling heat transfer in general, and boiling crisis in particular, for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems, extensive efforts have been made in the past to develop a variety of methods and tools to evaluate the boiling heat transfer coefficient and to assess the onset of temperature excursion and critical heat flux (CHF at various operating conditions of boiling channels. The objective of this paper is to present mathematical modeling concepts behind the development of mechanistic multidimensional models of low-quality forced convection boiling, including the mechanisms leading to temperature excursion and the onset of CHF.

  5. Model for heat-up of structures in VICTORIA

    Energy Technology Data Exchange (ETDEWEB)

    Bixler, N.E.

    1993-12-01

    VICTORIA is a mechanistic computer code that treats fission product behavior in the reactor coolant system during a severe accident. During an accident, fission products that deposit on structural surfaces produce heat loads that can cause fission products to revaporize and possibly cause structures, such as a pipe, to fail. This mechanism had been lacking from the VICTORIA model. This report describes the structural heat-up model that has recently been implemented in the code. A sample problem shows that revaporization of fission products can occur as structures heat up due to radioactive decay. In the sample problem, the mass of deposited fission products reaches a maximum, then diminishes. Similarly, temperatures of the deposited film and adjoining structure reach a maximum, then diminish.

  6. Heat string model of bi-dimensional dc Glidarc

    Science.gov (United States)

    Pellerin, S.; Richard, F.; Chapelle, J.; Cormier, J.-M.; Musiol, K.

    2000-10-01

    The gliding arc discharge (`Glidarc') is the subject of renewed interest in application to a variety of chemical reactions. The gliding arc creates a weakly ionized gas `string' between two horn-shaped electrodes. In this paper, we present a simple model for a bi-dimensional dc Glidarc working in air, in which the conducting zone of the discharge that is heated by the Joule effect is considered as a hot wire cooled by an air flow. Inside this wire, the heat transfer results from thermal conduction. The exchange of heat between the hot wire and the air flow is assured by convection and depends on the wire radius and the relative velocity of the arc with respect to the gas flow. The model correctly describes experimental results and allows us to predict the working parameters of the Glidarc in different experimental situations.

  7. Heating model for metals irradiated by a subpicosecond laser pulse

    Science.gov (United States)

    Chimier, B.; Tikhonchuk, V. T.; Hallo, L.

    2007-05-01

    We propose a model describing the heating and ablation of a metallic target irradiated by a subpicosecond laser pulse. It takes into account the temperature equilibration between the electrons and ions and the density variation of the target material during the heating process. A simple analytical equation of state is developed, which allows one to calculate the total pressure in the heated layer for different electron and ion temperatures. The thermodynamic behavior of a nonequilibrium system is discussed, and nonequilibrium spinodals and cohesion limits are introduced. The model is applied for a description of the thermal ablation process driven by a sub-ps laser pulse. Aluminum and copper targets are considered, and it is shown that the dominant ablation process is due to breaking the nonequilibrium cohesion limit. The numerical results are in good agreement with recent experimental data.

  8. About the possible options for models of convective heat transfer in closed volumes with local heating source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2015-01-01

    Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.

  9. Induction Heating Process: 3D Modeling and Optimisation

    Science.gov (United States)

    Naar, R.; Bay, F.

    2011-05-01

    An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First

  10. Modeling heat and mass transfer in the heat treatment step of yerba maté processing

    Directory of Open Access Journals (Sweden)

    J. M. Peralta

    2007-03-01

    Full Text Available The aim of this research was to estimate the leaf and twig temperature and moisture content of yerba maté branches (Ilex paraguariensis Saint Hilaire during heat treatment, carried out in a rotary kiln dryer. These variables had to be estimated (modeling the heat and mass transfer due to the difficulty of experimental measurement in the dryer. For modeling, the equipment was divided into two zones: the flame or heat treatment zone and the drying zone. The model developed fit well with the experimental data when water loss took place only in leaves. In the first zone, leaf temperature increased until it reached 135°C and then it slowly decreased to 88°C at the exit, despite the gas temperature, which varied in this zone from 460°C to 120°C. Twig temperature increased in the two zones from its inlet temperature (25°C up to 75°C. A model error of about 3% was estimated based on theoretical and experimental data on leaf moisture content.

  11. TOUGH2. Unsaturated Groundwater and Heat Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

    1991-05-01

    TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.

  12. Heat conduction and energy diffusion in momentum-conserving one-dimensional full-lattice ding-a-ling model

    Science.gov (United States)

    Gao, Zhibin; Li, Nianbei; Li, Baowen

    2016-02-01

    The ding-a-ling model is a kind of half lattice and half hard-point-gas (HPG) model. The original ding-a-ling model proposed by Casati et al. does not conserve total momentum and has been found to exhibit normal heat conduction behavior. Recently, a modified ding-a-ling model which conserves total momentum has been studied and normal heat conduction has also been claimed. In this work, we propose a full-lattice ding-a-ling model without hard point collisions where total momentum is also conserved. We investigate the heat conduction and energy diffusion of this full-lattice ding-a-ling model with three different nonlinear inter-particle potential forms. For symmetrical potential lattices, the thermal conductivities diverges with lattice length and their energy diffusions are superdiffusive signaturing anomalous heat conduction. For asymmetrical potential lattices, although the thermal conductivity seems to converge as the length increases, the energy diffusion is definitely deviating from normal diffusion behavior indicating anomalous heat conduction as well. No normal heat conduction behavior can be found for the full-lattice ding-a-ling model.

  13. Physical and numerical modeling of Joule-heated melters

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

  14. Modeling of well drilling heating on crude oil using microwave

    Science.gov (United States)

    Muntini, Melania Suweni; Pramono, Yono Hadi; Yustiana

    2016-03-01

    As the world's oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted into heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.

  15. Explicit Numerical Modeling of Heat Transfer in Glacial Channels

    Science.gov (United States)

    Jarosch, A. H.; Zwinger, T.

    2015-12-01

    Turbulent flow and heat transfer of water in englacial channels is explicitly modelelled and the numerical results are compared to the most commonly used heat transfer parameterization in glaciology, i.e. the Dittus-Boelter equation. The three-dimensional flow is simulated by solving the incompressible Navier-Stokes equations utilizing a variational multiscale method (VMS) turbulence model and the finite-element method (i.e. Elmer-FEM software), which also solves the heat equation. By studying a wide range of key parameters of the system, e.g. channel diameter, Reynolds number, water flux, water temperature and Darcy-Weisbach wall roughness (which is explicitly represented on the wall geometry), it is found that the Dittus-Boelter equation is inadequate for glaciological applications and a new, highly suitable heat transfer parameterization for englacial/subglacial channels will be presented. This new parameterization utilizes a standard combination of dimensionless numbers describing the flow and channel (i.e. Reynolds number, Prandtl number and Darcy-Weisbach roughness) to predict a suitable Nusselt number describing the effective heat transfer and thus can be readily used in existing englacial/subglacial hydrology models.

  16. Modeling of well drilling heating on crude oil using microwave

    Energy Technology Data Exchange (ETDEWEB)

    Muntini, Melania Suweni, E-mail: melania@physics.its.ac.id; Pramono, Yono Hadi; Yustiana [Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya Kampus ITS, Sukolilo, Surabaya 60111 (Indonesia)

    2016-03-11

    As the world’s oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted into heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.

  17. Heat Transfer Modeling of Phase Change Materials in Multiple Plates Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Alipanah

    2013-12-01

    Full Text Available Nowadays, given the increasing importance of energy sources, the possibility of energy storage in the heat exchangers through the Phase Change Materials (PCM and releasing it when needed have been extremely essential. This study seeks to model the domestic water heat system in which the paraffin is as the phase change material and it stores the solar energy. The behavior of a PCM plate was studied by writing the governing equations and solving them as the one-dimensional, implicit method and through numerical calculation of the method equations. Given the confirmed accuracy of performed modeling by the results of similar studies for the complete melting and solidification of PCM, the application of this system seems appropriate for the solar domestic water heaters.

  18. Modified k-ωmodel using kinematic vorticity for corner separation in compressor cascades

    Institute of Scientific and Technical Information of China (English)

    LIU YangWei; YAN Hao; FANG Le; LU LiPeng; LI QiuShi; SHAO Liang

    2016-01-01

    A new method of modifying the conventional k-ω turbulence model for comer separation is proposed in this paper.The production term in the ω equation is modified using kinematic vorticity considering fluid rotation and deformation in complex geometric boundary conditions.The comer separation flow in linear compressor cascades is calculated using the original k-ω model,the modified k-ωmodel and the Reynolds stress model (RSM).The numerical results of the modified model are compared with the available experimental data,as well as the corresponding results of the original k-comodel and RSM.In terms of accuracy,the modified model,which significantly improves the performance of the original k-ω model for predicting comer separation,is quite competitive with the RSM.However,the modified model,which has considerably lower computational cost,is more robust than the RSM.

  19. Modelization of coupled heat transfer inside a cylindrical glass block

    Energy Technology Data Exchange (ETDEWEB)

    Tanguier, J.L.; Kheiri, A.; Kleinclauss, J. [Faculte des Sciences, 54 - Vandoeuvre-les-Nancy (France)

    1995-01-01

    Modelization of coupled heat transfer inside a cylindrical glass block. In crystal industry, the furnaces used to warm up glass before forming are supplied with 4 bar pressure gas. They are noisy, polluting and high consumers of energy. To limit these effects and improve the energetic performances, an electrical infrared furnace is studied. To perfect it, it is necessary to identify the mechanisms of heat transfer which govern the evolution of the temperature into a cylindrical semitransparent media. After a long and thorough bibliography relative to the thermo-optical properties of crystal, the measurement of the field of temperature into the cylindrical block during the phases of working is led into the factory. To do this, it was necessary to adapt a reliable technical measurement device adjusted to industrial surrounding. A fundamental analysis of the results allows us to propose a model of the coupled heat transfer (radiation, conduction and convection) inside glass and between glass and its surroundings. The model is built on brightness and it is based on a triple discretization: temporal, spectral and zonal. This model provides the spectral distribution of the infrared radiation and the electrical power necessary to obtain a good heating of the crystal according to the manufactory charges. The first tests made with the experimental furnace, built by us, show that it is possible to warm up glass with infrared radiation and that this proceeding reduces the energy consumption and the nuisances. (authors). 19 refs., 7 figs.

  20. A Modeling Framework for Conventional and Heat Integrated Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    In this paper, a generic, modular model framework for describing fluid separation by distillation is presented. At present, the framework is able to describe a conventional distillation column and a heat-integrated distillation column, but due to a modular structure the database can be further ex...

  1. Specific heat of the simple-cubic Ising model

    NARCIS (Netherlands)

    Feng, X.; Blöte, H.W.J.

    2010-01-01

    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions

  2. Model-based analysis and simulation of regenerative heat wheel

    DEFF Research Database (Denmark)

    Wu, Zhuang; Melnik, Roderick V. N.; Borup, F.

    2006-01-01

    of mathematical models for the thermal analysis of the fluid and wheel matrix. The effect of heat conduction in the direction of the fluid flow is taken into account and the influence of variations in rotating speed of the wheel as well as other characteristics (ambient temperature, airflow and geometric size...

  3. Modeling Heat and Mass Transfer from Fabric-Covered Cylinders

    Directory of Open Access Journals (Sweden)

    Phillip Gibson

    2009-03-01

    Full Text Available Fabric-covered cylinders are convenient analogs forclothing systems. The geometry is well defined andincludes many of the effects that are important ingarments. Fabric-covered cylinder models are usedin conjunction with laboratory measurements ofmaterial properties to calculate heat and mass transferproperties of clothing under specific conditions ofenvironmental wind speed, temperature, and relativehumidity.

  4. A Revised CFB Wall-to-suspension Heat Transfer Model

    Institute of Scientific and Technical Information of China (English)

    SU Ya-xin

    2005-01-01

    Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. This model divides the heat transfer into two parts, which are due to the transient heat conduction by the covered clusters and the convection between the uncovered wall and the dispersed phase. Radiation at high temperature is regarded as being additive. The fraction of the covered wall by clusters is revised by a new formula, which is a function of the operating condition and the particle properties. The radiation between the dispersed phase and the uncovered wall includes not only the direct radiation to the uncovered wall, but also the radiation to the clusters and then reflected to the uncovered wall. Calculation was carried out for the CFB heat transfer model. The results were compared with the published typical experimental data of other researchers and showed a good agreement between them.

  5. Large scale solar district heating. Evaluation, modelling and designing - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)

  6. Arthroscopic knee surgery does not modify hyperalgesic responses to heat injury

    DEFF Research Database (Denmark)

    Werner, Mads U; Duun, Preben; Kraemer, Otto

    2003-01-01

    thresholds were higher during the second burn injury in patients (P 0.8), secondary hyperalgesia areas (P > 0.1), mechanical and thermal pain perception (P > 0.1), or mechanical and thermal pain......BACKGROUND: Experimental studies suggest that surgical injury may up- or down-regulate nociceptive function. Therefore, the aim of this clinical study was to evaluate the effect of elective arthroscopically assisted knee surgery on nociceptive responses to a heat injury. METHODS: Seventeen patients...... scheduled to undergo repair of the anterior cruciate ligament and 16 healthy controls were studied. The first burn injury was induced 6 days before surgery, and the second burn was induced 1 day after surgery with a contact thermode (12.5 cm2, 47 degrees C for 7 min) placed on the medial aspect of the calf...

  7. STUDY ON DISCHARGE HEAT UTILIZATION OF 250 MWe PCMSR TURBINE SYSTEM FOR DESALINATION USING MODIFIED MED

    Directory of Open Access Journals (Sweden)

    Andang Widiharto

    2015-03-01

    Full Text Available PCMSR (Passive Compact Molten Salt Reactor is one type of Advanced Nuclear Reactors. The PCMSR has benefit charasteristics of very efficient fuel use, high safety charecteristic as well as high thermodinamics efficiency. This is due to its breeding capability, inherently safe characteristic and totally passive safety system. The PCMSR design consists of three module, i.e. reactor module, turbine module and fuel management module. Analysis in performed by parametric calculation of the turbine system to calculate the turbine system efficiency and the hat available for desalination. After that the mass and energi balance of desalination process are calculated to calculate the amount of distillate produced and the amount of feed sea water needed. The turbine module is designed to be operated at maximum temperature cycle of 1373 K (1200 0C and minimum temperature cycle of 333 K (60 0K. The parametric calculation shows that the optimum turbine pressure ratio is 4.3 that gives the conversion efficiency of 56 % for 4 stages turbine and 4 stages compressor and equiped with recuperator. In this optimum condition, the 250 MWe PCMSR turbine system produces 196 MWth of waste heat with the temperature of cooling fluid in the range from 327 K (54 0C to 368 K (92 0C. This waste heat can be utilized for desalination. By using MMED desalination system, this waste heat can be used to produce fresh water (distillate from sea water feed. The amount of the destillate produced is 48663 ton per day by using 15 distillation effects. The performance ratio value is 2.8727 kg/MJ by using 15 distillation effects. Keywords: PCMSR, discharged heat, MMED desalination   PCMSR (Passive Compact Molten Salt Reactor merupakan salah satu tipe dari Reaktor Nuklir Maju. PCMSR memiliki keuntungan berupa penggunaan bahan bakar yang sangat efisisien, sifat keselamatan tinggi dan sekaligus efisiensi termodinamika yang tinggi. Hal ini disebabkan oleh kemampuan pembiakan bahan bakar, sifat

  8. On Heat Transfer - Stress Analysis of Modified Brick (Reed Filler) Upon Its Production Stage

    Science.gov (United States)

    Ornam, Kurniati; Kimsan, Masykur; Teguh Prakasa, Cadas; Ode Ngkoimani, La; Santi

    2017-05-01

    This paper aimed to scrutinize how burning process in modified brick’s production impinge on crack as a result of stress differentiation between two consecutive layers of the brick’s element. Diffusion engages in burning process of bricks, hence it generates thermal stress on element for different temperature between layers. This research focused on burning process in traditional production ward. Analytical of nonlinear equation and numerical solution, finite difference, were involved to obtain temperature value in each layer, followed by stress calculation. Based on the results, it can be concluded that crack occurs particularly on boundary area, since difussion tends to yield relatively more different value on it. Therefore, certain strategies, that may decrease this differentiation, are required to minimize number of cracks during brick’s production.

  9. Modified uterine allotransplantation and immunosuppression procedure in the sheep model.

    Directory of Open Access Journals (Sweden)

    Li Wei

    Full Text Available OBJECTIVE: To develop an orthotopic, allogeneic, uterine transplantation technique and an effective immunosuppressive protocol in the sheep model. METHODS: In this pilot study, 10 sexually mature ewes were subjected to laparotomy and total abdominal hysterectomy with oophorectomy to procure uterus allografts. The cold ischemic time was 60 min. End-to-end vascular anastomosis was performed using continuous, non-interlocking sutures. Complete tissue reperfusion was achieved in all animals within 30 s after the vascular re-anastomosis, without any evidence of arterial or venous thrombosis. The immunosuppressive protocol consisted of tacrolimus, mycophenolate mofetil and methylprednisolone tablets. Graft viability was assessed by transrectal ultrasonography and second-look laparotomy at 2 and 4 weeks, respectively. RESULTS: Viable uterine tissue and vascular patency were observed on transrectal ultrasonography and second-look laparotomy. Histological analysis of the graft tissue (performed in one ewe revealed normal tissue architecture with a very subtle inflammatory reaction but no edema or stasis. CONCLUSION: We have developed a modified procedure that allowed us to successfully perform orthotopic, allogeneic, uterine transplantation in sheep, whose uterine and vascular anatomy (apart from the bicornuate uterus is similar to the human anatomy, making the ovine model excellent for human uterine transplant research.

  10. Modeling flow for modified concentric cylinder rheometer geometry

    Science.gov (United States)

    Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz

    2016-11-01

    Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.

  11. A modified EM algorithm for estimation in generalized mixed models.

    Science.gov (United States)

    Steele, B M

    1996-12-01

    Application of the EM algorithm for estimation in the generalized mixed model has been largely unsuccessful because the E-step cannot be determined in most instances. The E-step computes the conditional expectation of the complete data log-likelihood and when the random effect distribution is normal, this expectation remains an intractable integral. The problem can be approached by numerical or analytic approximations; however, the computational burden imposed by numerical integration methods and the absence of an accurate analytic approximation have limited the use of the EM algorithm. In this paper, Laplace's method is adapted for analytic approximation within the E-step. The proposed algorithm is computationally straightforward and retains much of the conceptual simplicity of the conventional EM algorithm, although the usual convergence properties are not guaranteed. The proposed algorithm accommodates multiple random factors and random effect distributions besides the normal, e.g., the log-gamma distribution. Parameter estimates obtained for several data sets and through simulation show that this modified EM algorithm compares favorably with other generalized mixed model methods.

  12. Comparison of performance of simulation models for floor heating

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    only the floor construction, the differences can be directly compared. In this comparison, a two-dimensional model of a slab-on-grade floor including foundation is used as reference. The other models include a one-dimensional model and a thermal network model including the linear thermal transmittance......This paper describes the comparison of performance of simulation models for floor heating with different level of detail in the modelling process. The models are compared in an otherwise identical simulation model containing room model, walls, windows, ceiling and ventilation system. By exchanging...... of the foundation. The result can be also be found in the energy consumption of the building, since up to half the energy consumption is lost through the ground. Looking at the different implementations it is also found, that including a 1m ground volume below the floor construction under a one-dimensional model...

  13. Dynamic modeling and evaluation of solid oxide fuel cell - combined heat and power system operating strategies

    Science.gov (United States)

    Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott

    Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.

  14. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  15. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned......Dynamic models for simulating boiler performance have been developed. Models for the flue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....

  16. Modelling of Boiler Heating Surfaces and Evaporator Circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2002-01-01

    the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equation systems (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these relatively stiff equation systems. Experimental verication is planned......Dynamic models for simulating boiler performance have been developed. Models for the ue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....

  17. A solidification model for unmodified, Na-modified and Sr-modified Al-Si alloys

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Hattel, Jesper Henri; Taylor, J. A.

    2012-01-01

    An addition of small amounts of Na and Sr is commonly used in the industry to modify the eutectic in Al-Si alloys. Both Na and Sr suppress nucleation of the eutectic forcing nucleation and growth to take place at higher undercooling than in the unmodified material. Thus the scale of the eutectic...

  18. New shear-free relativistic models with heat flow

    CERN Document Server

    Msomi, A M; Maharaj, S D

    2013-01-01

    We study shear-free spherically symmetric relativistic models with heat flow. Our analysis is based on Lie's theory of extended groups applied to the governing field equations. In particular, we generate a five-parameter family of transformations which enables us to map existing solutions to new solutions. All known solutions of Einstein equations with heat flow can therefore produce infinite families of new solutions. In addition, we provide two new classes of solutions utilising the Lie infinitesimal generators. These solutions generate an infinite class of solutions given any one of the two unknown metric functions.

  19. Specific heat of a non-local attractive Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Calegari, E.J., E-mail: eleonir@ufsm.br [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Lobo, C.O. [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Magalhaes, S.G. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea s/n, 24210, 346, Niterói, Rio de Janeiro (Brazil); Chaves, C.M.; Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

    2013-10-01

    The specific heat C(T) of an attractive (interaction G<0) non-local Hubbard model is investigated within a two-pole approximation that leads to a set of correlation functions, which play an important role as a source of anomalies as the pseudogap. For a giving range of G and n{sub T} (where n{sub T}=n{sub ↑}+n{sub ↓}), the specific heat as a function of the temperature presents a two peak structure. Nevertehelesss, the presence of a pseudogap eliminates the two peak structure. The effects of the second nearest-neighbor hopping on C(T) are also investigated.

  20. Thermal Behavior and Heat Generation Modeling of Lithium Sulfur Batteries

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence of the tempe...... of the temperature on the performance parameters of a 3.4 Ah Lithium-Sulfur battery cell. Furthermore, the values of the internal resistance and entropic heat coefficient, which are necessary for the parametrization of a heat generation model, are determined experimentally....

  1. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    Science.gov (United States)

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation.

  2. Rotochemical heating of millisecond and classical pulsars with anisotropic and density-dependent superfluid gap models

    CERN Document Server

    González-Jiménez, Nicolás; Reisenegger, Andreas

    2014-01-01

    When a rotating neutron star loses angular momentum, the progressive reduction of the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium, inducing reactions that release heat (rotochemical heating). This effect has previously been studied by Fern\\'andez & Reisenegger (2005) for non-superfluid neutron stars and by Petrovich & Reisenegger (2010) for superfluid millisecond pulsars. Both studies found that pulsars reach a quasi-steady state in which the compression driving the matter out of beta equilibrium is balanced by the reactions trying to restore the equilibrium. We extend previous studies by considering the effect of density-dependence and anisotropy of the superfluid energy gaps, for the case in which the dominant reactions are the modified Urca processes, the protons are non-superconducting, and the neutron superfluidity is parametrized by models proposed in the literature. By comparing our prediction...

  3. Direct containment heating models in the CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.

  4. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  5. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2015-03-01

    Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous

  6. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...

  7. Distortion of genetically modified organism quantification in processed foods: influence of particle size compositions and heat-induced DNA degradation.

    Science.gov (United States)

    Moreano, Francisco; Busch, Ulrich; Engel, Karl-Heinz

    2005-12-28

    Milling fractions from conventional and transgenic corn were prepared at laboratory scale and used to study the influence of sample composition and heat-induced DNA degradation on the relative quantification of genetically modified organisms (GMO) in food products. Particle size distributions of the obtained fractions (coarse grits, regular grits, meal, and flour) were characterized using a laser diffraction system. The application of two DNA isolation protocols revealed a strong correlation between the degree of comminution of the milling fractions and the DNA yield in the extracts. Mixtures of milling fractions from conventional and transgenic material (1%) were prepared and analyzed via real-time polymerase chain reaction. Accurate quantification of the adjusted GMO content was only possible in mixtures containing conventional and transgenic material in the form of analogous milling fractions, whereas mixtures of fractions exhibiting different particle size distributions delivered significantly over- and underestimated GMO contents depending on their compositions. The process of heat-induced nucleic acid degradation was followed by applying two established quantitative assays showing differences between the lengths of the recombinant and reference target sequences (A, deltal(A) = -25 bp; B, deltal(B) = +16 bp; values related to the amplicon length of the reference gene). Data obtained by the application of method A resulted in underestimated recoveries of GMO contents in the samples of heat-treated products, reflecting the favored degradation of the longer target sequence used for the detection of the transgene. In contrast, data yielded by the application of method B resulted in increasingly overestimated recoveries of GMO contents. The results show how commonly used food technological processes may lead to distortions in the results of quantitative GMO analyses.

  8. Negative specific heat in a thermodynamic model of multifragmentation

    CERN Document Server

    Das, C B; Mekjian, A Z

    2003-01-01

    We consider a soluble model of multifragmentation which is similar in spirit to many models which have been used to fit intermediate energy heavy ion collision data. In this model $c_v$ is always positive but for finite nuclei $c_p$ can be negative for some temperatures and pressures. Furthermore, negative values of $c_p$ can be obtained in canonical treatment. One does not need to use the microcanonical ensemble. Negative values for $c_p$ can persist for systems as large as 200 paticles but this depends upon parameters used in the model calculation. As expected, negative specific heats are absent in the thermodynamic limit.

  9. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT).

    Science.gov (United States)

    Ozen, Sükrü; Helhel, Selçuk; Cerezci, Osman

    2008-02-01

    Thermal analyses of biological tissues exposed to microwaves were studied by using thermal wave model of bio-heat transfer (TWMBT). As a model, skin stratified as three layers with various thermal physical properties were simulated and thermal wave model of bio-heat transfer equations were solved by using finite difference method. Finally, the thermal variations were simulated in the cross section of the model. Comparative studies on the traditional Pennes' equations and thermal wave model of bio-heat transfer were performed and evaluated. Furthermore, temperature variations in the skin exposed to microwave were predicted depending on blood perfusion rate, thermal conductivity, frequency and power density of microwave, and exposure time. Thermal wave model of bio-heat transfer gives lower heat rise predictions than that of Pennes' equation, initially. When it approaches to steady state, it overlaps with the Pennes' equation.

  10. Descriptive and discourse-referential modifiers in a layered model of the noun phrase

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2008-01-01

    This article argues that adnominal modifiers in a layered model of the noun phrase can be divided into two major subcategories: descriptive modifiers and discourse-referential modifiers. Whereas descriptive modifiers can be subdivided into classifying, qualifying, quantifying and localizing......), (ii) the special relationship between localizing and discourse-referential modifiers (section 5), and (iii) semantic and morpho-syntactic parallels between modifier categories in the noun phrase and the clause (section 6). In addition this sample-based typological study shows (contra Hawkins...

  11. Nanoparticle synergies in modifying thermal conductivity for heat exchanger in condensing boilers

    Science.gov (United States)

    Yang, Kai; He, Shan; Butcher, Thomas; Trojanowski, Rebecca; Sun, Ning; Gersappe, Dilip; Rafailovich, Miriam

    2013-03-01

    The heat exchanger we are using for condensing boilers is mainly made from aluminum alloys and stainless steel. However, the metal is relatively expensive and corrosion together with maintenance is also a big problem. Therefore, we have developed a new design and material which contain carbon black, carbon nanotube, aluminum oxide and graphene as additives in polypropylene. When multiple types of particles can be melt blended simultaneously and synergies can be achieved, imparting particles to the nanocomposite, achieved much higher thermal conductivity rather than single additive. Here we show the flame retardant nanocomposite which can pass the UL-94-V0 vertical burning test, perform nice in Cone Calorimetry Test and has relatively good mechanical properties. SEM images of the blend show that the Carbon nanobute and other additives well dispersed within the polymer matrix which match our computational calculation for getting the percolation to achieve thermal conductivity around 1.5W/m .K rather than 0.23W/m .K as pure polypropylene. Haydale/Cheap Tubes

  12. Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin

    Science.gov (United States)

    Wang, Huiqin; Li, Jinze; Ma, Changchang; Guan, Qingfeng; Lu, Ziyang; Huo, Pengwei; Yan, Yongsheng

    2015-02-01

    The graphitic carbon nitride (g-C3N4), as one photocatalyst which possess the suitable band gap, is better for modified TiO2 and enhanced photocatalytic degradation of organic pollutants. In this work, the g-C3N4/TiO2 were successfully prepared via directly calcined the mixture of melamine and P25. The as-prepared g-C3N4/TiO2 photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution electron microscopy (HRTEM), Raman and Fourier transform-infrared spectroscopy (FT-IR). The photocatalytic performances of g-C3N4/TiO2 composites were investigated by degradation of ciprofloxacin. The results showed that the g-C3N4 and P25 were successfully composited, and the bond of C-N was well formed, the calcined temperature for as-prepared photocatalysts and the ratio of melamine and P25 were important to the degradation rate of ciprofloxacin. When the mixture of melamine and P25 with 1:2, and calcined temperature at 600 °C, the degradation rate of ciprofloxacin could reach 95% in 60 min. The enhanced photocatalytic performances could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. Finally, the possible transferred processes of photoelectrons and photoholes were proposed.

  13. Antitumor Properties of Modified Detonation Nanodiamonds and Sorbed Doxorubicin on the Model of Ehrlich Ascites Carcinoma.

    Science.gov (United States)

    Medvedeva, N N; Zhukov, E L; Inzhevatkin, E V; Bezzabotnov, V E

    2016-01-01

    We studied antitumor properties of modified detonation nanodiamonds loaded with doxorubicin on in vivo model of Ehrlich ascites carcinoma. The type of tumor development and morphological characteristics of the liver, kidneys, and spleen were evaluated in experimental animals. Modified nanodiamonds injected intraperitoneally produced no antitumor effect on Ehrlich carcinoma. However, doxorubicin did not lose antitumor activity after sorption on modified nanodiamonds.

  14. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  15. Hyperon stars in a modified quark meson coupling model

    Science.gov (United States)

    Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.

    2016-09-01

    We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a modified quark meson coupling model where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. The effect of a nonlinear ω -ρ term on the EOS is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of 2 M⊙ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear ω -ρ term in the context of obtaining the star mass constraint in the present set of parametrizations.

  16. Hyperon star in a modified quark meson coupling model

    CERN Document Server

    Mishra, R N; Panda, P K; Barik, N; Frederico, T

    2016-01-01

    We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a Modified Quark Meson Coupling Model (MQMC) where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. The effect of a nonlinear $\\omega$-$\\rho$ term on the equation of state is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of $2$~M$_{\\odot}$ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear $\\omega$-$\\rho$ term in the context of obtaining the star mass constraint in the present...

  17. A Kinetic Model for Predicting the Relative Humidity in Modified Atmosphere Packaging and Its Application in Lentinula edodes Packages

    Directory of Open Access Journals (Sweden)

    Li-xin Lu

    2013-01-01

    Full Text Available Adjusting and controlling the relative humidity (RH inside package is crucial for ensuring the quality of modified atmosphere packaging (MAP of fresh produce. In this paper, an improved kinetic model for predicting the RH in MAP was developed. The model was based on heat exchange and gases mass transport phenomena across the package, gases heat convection inside the package, and mass and heat balances accounting for the respiration and transpiration behavior of fresh produce. Then the model was applied to predict the RH in MAP of fresh Lentinula edodes (one kind of Chinese mushroom. The model equations were solved numerically using Adams-Moulton method to predict the RH in model packages. In general, the model predictions agreed well with the experimental data, except that the model predictions were slightly high in the initial period. The effect of the initial gas composition on the RH in packages was notable. In MAP of lower oxygen and higher carbon dioxide concentrations, the ascending rate of the RH was reduced, and the RH inside packages was saturated slowly during storage. The influence of the initial gas composition on the temperature inside package was not much notable.

  18. Optimisasi Suhu Pemanasan dan Kadar Air pada Produksi Pati Talas Kimpul Termodifikasi dengan Teknik Heat Moisture Treatment (HMT (Optimization of Heating Temperature and Moisture Content on the Production of Modified Cocoyam Starch Using Heat Moisture Treatment (HMT Technique

    Directory of Open Access Journals (Sweden)

    I Nengah Kencana Putra

    2016-12-01

    Full Text Available One of the physically starch modification technique is heat-moisture treatment (HMT. This technique can increase the resistance of starch to heat, mechanical treatment, and acid during processing.  This research aimed to find out the influence of heating temperature and moisture content in the modification process of cocoyam starch  with HMT techniques on the characteristic of product, and then to determine the optimum heating temperature and moisture content in the process. The research was designed with a complete randomized design (CRD with two factors factorial experiment.  The first factor was temperature of the heating consists of 3 levels namely 100 °C, 110 °C, and 120 °C. The second factor was the moisture content of starch which consists of 4 levels, namely 15 %, 20 %, 25 %, and 30 %. The results showed that the heating temperature and moisture content significantly affected water content, amylose content and swelling power of modified cocoyam starch product, but the treatment had no significant effect on the solubility of the product. HMT process was able to change the type of cocoyam starch from type B to type C. The optimum heating temperature and water content on modified cocoyam starch production process was 110 °C and 30 % respectively. Such treatment resulted in a modified cocoyam starch with moisture content of 6.50 %, 50,14 % amylose content, swelling power of 7.90, 0.0009% solubility, paste clarity of 96.310 % T, and was classified as a type C starch.   ABSTRAK Salah satu teknik modifikasi pati secara fisik adalah teknik Heat Moisture Treatment (HMT. Teknik ini dapat meningkatkan ketahanan pati terhadap panas, perlakuan mekanik, dan asam selama pengolahan. Penelitian ini bertujuan untuk mengetahui pengaruh suhu dan kadar air pada proses modifikasi pati talas kimpul dengan teknik HMT terhadap karakteristik produk, dan selanjutnya menentukan suhu dan kadar air yang optimal dalam proses tersebut. Penelitian ini dirancang

  19. Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pakharukova, V.P., E-mail: verapakh@catalysis.ru [Boreskov Institute of Catalysis, SB RAS, Pr. Lavrentieva 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Shalygin, A.S.; Gerasimov, E. Yu.; Tsybulya, S.V.; Martyanov, O.N. [Boreskov Institute of Catalysis, SB RAS, Pr. Lavrentieva 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-01-15

    Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol–gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, including anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor. - Graphical abstract: Pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. - Highlights: • Silica-doped boehmites were prepared by sol–gel method with supercritical drying. • Ultrathin two-dimensional crystallites of pseudoboehmite were obtained. • Changes in structure and morphology upon calcination were studied. • Simulation of XRD patterns was performed with use of the Debye Scattering Equation. • Thermal stability of alumina depended on morphology inherited from pseudoboehmite.

  20. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Florent Chaffotte; Linda L(e)fevre; Didier Domergue; Aymeric Goldsteinas; Xavier Doussot; Qingfei Zhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  1. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  2. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    FiorentChaffotte; LindaLefevre; DidierDomergue; AymericGoidsteinas; XavierDoussot; QingfeiZhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. ThE configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  3. Prediction of Group Delay Distribution Around Receiving Point Using Modified IRI Model and IGRF Model

    Institute of Scientific and Technical Information of China (English)

    YAN Zhaowen; WANG Gang; LI Weimin; YU Dapeng; Toyobur RAHMAN

    2011-01-01

    The international reference ionosphere (IRI) model is generally accepted standard ionosphere model.It describes the ionosphere environment in quiet state and predicts the ionosphere parameters within a certain precision.In this paper,we have made a breakthrough in the application of the IRI model by modifying the model for regions of China.The main objectives of this modification are to construct the ionosphere parameters foF2 and M (3000) F2 by using the Chinese reference ionosphere (CRI)coefficients,appropriately increase hmE and hmF2 height,reduce the thickness of F layer,validate the parameter by the measured values,and solve the electron concentration distribution with quasi-parabolic segment (QPS).In this paper,3D ray tracing algorithm is constructed based on the modified IRI model and international geomagnetic reference field (IGRF) model.In short-wave propagation,it can be used to predict the electromagnetic parameters of the receiving point,such as the receiving area,maximum useable frequency (MUF) and the distribution of the group delay etc.,which can help to determine the suitability of the communication.As an example,we estimate the group delay distributions around Changchun in the detection from Qingdao to Changchun using the modified IRI model and IGRF model,and provide technical support for the short-wave communication between the two cities.

  4. Evaluation of FSK models for radiative heat transfer under oxyfuel conditions

    Science.gov (United States)

    Clements, Alastair G.; Porter, Rachael; Pranzitelli, Alessandro; Pourkashanian, Mohamed

    2015-01-01

    Oxyfuel is a promising technology for carbon capture and storage (CCS) applied to combustion processes. It would be highly advantageous in the deployment of CCS to be able to model and optimise oxyfuel combustion, however the increased concentrations of CO2 and H2O under oxyfuel conditions modify several fundamental processes of combustion, including radiative heat transfer. This study uses benchmark narrow band radiation models to evaluate the influence of assumptions in global full-spectrum k-distribution (FSK) models, and whether they are suitable for modelling radiation in computational fluid dynamics (CFD) calculations of oxyfuel combustion. The statistical narrow band (SNB) and correlated-k (CK) models are used to calculate benchmark data for the radiative source term and heat flux, which are then compared to the results calculated from FSK models. Both the full-spectrum correlated k (FSCK) and the full-spectrum scaled k (FSSK) models are applied using up-to-date spectral data. The results show that the FSCK and FSSK methods achieve good agreement in the test cases. The FSCK method using a five-point Gauss quadrature scheme is recommended for CFD calculations in oxyfuel conditions, however there are still potential inaccuracies in cases with very wide variations in the ratio between CO2 and H2O concentrations.

  5. Modeling the Daly Gap: The Influence of Latent Heat Production in Controlling Magma Extraction and Eruption

    Science.gov (United States)

    Nelson, B. K.; Ghiorso, M. S.; Bachmann, O.; Dufek, J.

    2011-12-01

    A century-old issue in volcanology is the origin of the gap in chemical compositions observed in magmatic series on ocean islands and arcs - the "Daly Gap". If the gap forms during differentiation from a mafic parent, models that predict the dynamics of magma extraction as a function of chemical composition must simulate a process that results in volumetrically biased, bimodal compositions of erupted magmas. The probability of magma extraction is controlled by magma dynamical processes, which have a complex response to magmatic heat evolution. Heat loss from the magmatic system is far from a simple, monotonic function of time. It is modified by the crystallization sequence, chamber margin heat flux, and is buffered by latent heat production. We use chemical and thermal calculations of MELTS (Ghiorso & Sack, 1995) as input to the physical model of QUANTUM (Dufek & Bachmann, 2010) to predict crystallinity windows of most probable magma extraction. We modeled two case studies: volcanism on Tenerife, Canary Islands, and the Campanian Ignimbrite (CI) of Campi Flegrei, Italy. Both preserve a basanitic to phonolitic lineage and have comparable total alkali concentrations; however, CI has high and Tenerife has low K2O/Na2O. Modeled thermal histories of differentiation for the two sequences contrast strongly. In Tenerife, the rate of latent heat production is almost always greater than sensible heat production, with spikes in the ratio of latent to sensible heats of up to 40 associated with the appearance of Fe-Ti oxides at near 50% crystallization. This punctuated heat production must cause magma temperature change to stall or slow in time. The extended time spent at ≈50% crystallinity, associated with dynamical processes that enhance melt extraction near 50% crystallinity, suggests the magma composition at this interval should be common. In Tenerife, the modeled composition coincides with that of the first peak in the bimodal frequency-composition distribution. In our

  6. Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean

    Science.gov (United States)

    Gong, Dao-Yi; Guo, Dong; Li, Sang; Kim, Seong-Joong

    2017-02-01

    This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979-2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S-5°N and descending over 15°-25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.

  7. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  8. The modified nodal analysis method applied to the modeling of the thermal circuit of an asynchronous machine

    Science.gov (United States)

    Nedelcu, O.; Salisteanu, C. I.; Popa, F.; Salisteanu, B.; Oprescu, C. V.; Dogaru, V.

    2017-01-01

    The complexity of electrical circuits or of equivalent thermal circuits that were considered to be analyzed and solved requires taking into account the method that is used for their solving. Choosing the method of solving determines the amount of calculation necessary for applying one of the methods. The heating and ventilation systems of electrical machines that have to be modeled result in complex equivalent electrical circuits of large dimensions, which requires the use of the most efficient methods of solving them. The purpose of the thermal calculation of electrical machines is to establish the heating, the overruns of temperatures or over-temperatures in some parts of the machine compared to the temperature of the ambient, in a given operating mode of the machine. The paper presents the application of the modified nodal analysis method for the modeling of the thermal circuit of an asynchronous machine.

  9. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Emilian L [ORNL; Yoder Jr, Graydon L [ORNL; Kim, Seokho H [ORNL

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  10. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    Science.gov (United States)

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  11. Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqin [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Jinze; Ma, Changchang [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng [School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China); Lu, Ziyang [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng [School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-02-28

    Highlights: • We demonstrated the as-prepared photocatalyst of g-C{sub 3}N{sub 4}-TiO{sub 2} with the commercial TiO{sub 2} (P25) composited melamine under ball milling and calcined. • The enhanced photocatalytic performance could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. • The possible photocatalytic mechanism of g-C{sub 3}N{sub 4}/P25 under visible light irradiation is proposed. - Abstract: The graphitic carbon nitride (g-C{sub 3}N{sub 4}), as one photocatalyst which possess the suitable band gap, is better for modified TiO{sub 2} and enhanced photocatalytic degradation of organic pollutants. In this work, the g-C{sub 3}N{sub 4}/TiO{sub 2} were successfully prepared via directly calcined the mixture of melamine and P25. The as-prepared g-C{sub 3}N{sub 4}/TiO{sub 2} photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution electron microscopy (HRTEM), Raman and Fourier transform-infrared spectroscopy (FT-IR). The photocatalytic performances of g-C{sub 3}N{sub 4}/TiO{sub 2} composites were investigated by degradation of ciprofloxacin. The results showed that the g-C{sub 3}N{sub 4} and P25 were successfully composited, and the bond of C–N was well formed, the calcined temperature for as-prepared photocatalysts and the ratio of melamine and P25 were important to the degradation rate of ciprofloxacin. When the mixture of melamine and P25 with 1:2, and calcined temperature at 600 °C, the degradation rate of ciprofloxacin could reach 95% in 60 min. The enhanced photocatalytic performances could be mainly attributed to the suitable band gap structure with heterojunction of CN-P25. Finally, the possible transferred processes of photoelectrons and photoholes were proposed.

  12. A discrete impulsive model for random heating and Brownian motion

    Science.gov (United States)

    Ramshaw, John D.

    2010-01-01

    The energy of a mechanical system subjected to a random force with zero mean increases irreversibly and diverges with time in the absence of friction or dissipation. This random heating effect is usually encountered in phenomenological theories formulated in terms of stochastic differential equations, the epitome of which is the Langevin equation of Brownian motion. We discuss a simple discrete impulsive model that captures the essence of random heating and Brownian motion. The model may be regarded as a discrete analog of the Langevin equation, although it is developed ab initio. Its analysis requires only simple algebraic manipulations and elementary averaging concepts, but no stochastic differential equations (or even calculus). The irreversibility in the model is shown to be a consequence of a natural causal stochastic condition that is closely analogous to Boltzmann's molecular chaos hypothesis in the kinetic theory of gases. The model provides a simple introduction to several ostensibly more advanced topics, including random heating, molecular chaos, irreversibility, Brownian motion, the Langevin equation, and fluctuation-dissipation theorems.

  13. On the Einstein-Stern model of rotational heat capacities

    DEFF Research Database (Denmark)

    Dahl, Jens Peder

    1998-01-01

    The Einstein-Stern model for the rotational contribution to the heat capacity of a diatomic gas has recently been resuscitated. In this communication, we show that the apparent success of the model is illusory, because it is based on what has turned out to be an unfortunate comparison with experi...... with experiment. We also take exception to the possibility of assigning any meaning to the rotational zero-point energy introduced by the model. (C) 1998 American Institute of Physics. [S0021-9606(98)02448-9]....

  14. Asymptotic heat transfer model in thin liquid films

    CERN Document Server

    Chhay, Marx; Gisclon, Marguerite; Ruyer-Quil, Christian

    2015-01-01

    In this article, we present a modelling of heat transfer occuring through a liquid film flowing down a vertical wall. This model is formally derived thanks to asymptotic developpment, by considering the physical ratio of typical length scales of the study. A new Nusselt thermal solution is proposed, taking into account the hydrodynamic free surface variations and the contributions of the higher order terms in the asymptotic model are numerically pointed out. The comparisons are provided against the resolution of the full Fourier equations in a steady state frame.

  15. A modified Lee-Carter model for analysing short-base-period data.

    Science.gov (United States)

    Zhao, Bojuan Barbara

    2012-03-01

    This paper introduces a new modified Lee-Carter model for analysing short-base-period mortality data, for which the original Lee-Carter model produces severely fluctuating predicted age-specific mortality. Approximating the unknown parameters in the modified model by linearized cubic splines and other additive functions, the model can be simplified into a logistic regression when fitted to binomial data. The expected death rate estimated from the modified model is smooth, not only over ages but also over years. The analysis of mortality data in China (2000-08) demonstrates the advantages of the new model over existing models.

  16. Multivariate Statistical Modelling of Drought and Heat Wave Events

    Science.gov (United States)

    Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele

    2016-04-01

    Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A

  17. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    Science.gov (United States)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  18. Evaluating Performance of the DGM(2,1 Model and Its Modified Models

    Directory of Open Access Journals (Sweden)

    Ying-Fang Huang

    2016-03-01

    Full Text Available The direct grey model (DGM(2,1 is considered for fluctuation characteristics of the sampling data in Grey system theory. However, its applications are quite uncommon in the past literature. The improvement of the precision of the DGM(2,1 is only presented in few previous researches. Moreover, the evaluation of forecasted performance of the DGM(2,1 model and its applications was not conducted in previous studies. As the results, this study aims to evaluate forecasted performance of the DGM(2,1 and its three modified models, including the Markov direct grey model MDGM(2,1, the Fourier direct grey model FDGM(2,1, and the Fourier Markov direct grey model FMDGM(2,1 in order to determine the application of the DGM(2,1 model in practical applications and academic research. The results demonstrate that the DGM(2,1 model has lower precision than its modified models, while the forecasted precision of the FDGM(2,1 is better than that of MDGM(2,1. Additionally, the FMDGM(2,1 model presents the best performance among all of the modified models of DGM(2,1, which can effectively overcome the fluctuating of the data sample and minimize the predicted error of the DGM(2,1 model. The finding indicated that the FMDGM(2,1 model does not only have advantages with regard to the sample size requirement, but can also be flexibly applied to the large fluctuation and random sequences with a high quality of estimation.

  19. Modelling of Heat Loss in Closed Vessels during propellant Burning

    Directory of Open Access Journals (Sweden)

    U.P. KulKarni

    2000-10-01

    Full Text Available Closed vessel technique is essentially used to determine the force constant, vivacity and the burning rate of gun propellants. In fact, it is the only method to find out these three parameters experimentally. It is a well-known fact that however small the propellant burning time may be, there will be heat loss to the walls of the vessel due to conduction, convection, radiation and also due to the expansion of the vessel. This fact necessitates applying correction to the observed maximum pressure in the experiment. An analysis is presented in this paper as to how this heat loss can be modelled along with discussion about other models reported in this field.

  20. Research Spotlight: Improved model reproduces the 2003 European heat wave

    Science.gov (United States)

    Schultz, Colin

    2011-04-01

    In August 2003, record-breaking temperatures raged across much of Europe. In France, maximum temperatures of 37°C (99°F) persisted for 9 days straight, the longest such stretch since 1873. About 40,000 deaths (14,000 in France alone) were attributed to the extreme heat and low humidity. Various climate conditions must come into alignment to produce extreme weather like the 2003 heat wave, and despite a concerted effort, forecasting models have so far been unable to accurately reproduce the event—including the modern European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble modeling system for seasonal forecasts, which went into operation in 2007. (Geophysical Research Letters, doi:10.1029/2010GL046455, 2011)

  1. Tool Steel Heat Treatment Optimization Using Neural Network Modeling

    Science.gov (United States)

    Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz

    2016-11-01

    Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.

  2. Physical and Theoretical Models of Heat Pollution Applied to Cramped Conditions Welding Taking into Account the Different Types of Heat

    Science.gov (United States)

    Bulygin, Y. I.; Koronchik, D. A.; Legkonogikh, A. N.; Zharkova, M. G.; Azimova, N. N.

    2017-05-01

    The standard k-epsilon turbulence model, adapted for welding workshops, equipped with fixed workstations with sources of pollution took into account only the convective component of heat transfer, which is quite reasonable for large-volume rooms (with low density distribution of sources of pollution) especially the results of model calculations taking into account only the convective component correlated well with experimental data. For the purposes of this study, when we are dealing with a small confined space where necessary to take account of the body heated to a high temperature (for welding), located next to each other as additional sources of heat, it can no longer be neglected radiative heat exchange. In the task - to experimentally investigate the various types of heat transfer in a limited closed space for welding and behavior of a mathematical model, describing the contribution of the various components of the heat exchange, including radiation, influencing the formation of fields of concentration, temperature, air movement and thermal stress in the test environment. Conducted field experiments to model cubic body, allowing you to configure and debug the model of heat and mass transfer processes with the help of the developed approaches, comparing the measurement results of air flow velocity and temperature with the calculated data showed qualitative and quantitative agreement between process parameters, that is an indicator of the adequacy of heat and mass transfer model.

  3. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    Science.gov (United States)

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  4. Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation

    OpenAIRE

    Bolonina Alona; Bolonins Genadijs; Blumberga Dagnija

    2014-01-01

    District heating systems are widely used to supply heat to different groups of heat consumers. The district heating system offers great opportunities for combined heat and power production. In this paper decreasing district heating supply temperature is analysed in the context of combined heat and power plant operation. A mathematical model of a CHP plant is developed using both empirical and theoretical equations. The model is used for analysis of modified CHP plant operation modes with redu...

  5. Mathematical Modeling of Moisture Sorption Isotherms and Determination of Isosteric Heats of Sorption of Ziziphus Leaves

    Directory of Open Access Journals (Sweden)

    Amel Saad

    2014-01-01

    Full Text Available Desorption and adsorption equilibrium moisture isotherms of Ziziphus spina-christi leaves were determined using the gravimetric-static method at 30, 40, and 50°C for water activity (aw ranging from 0.057 to 0.898. At a given aw, the results show that the moisture content decreases with increasing temperature. A hysteresis effect was observed. The experimental data of sorption were fitted by eight models (GAB, BET, Henderson-Thompson, modified-Chung Pfost, Halsey, Oswin, Peleg, and Adam and Shove. After evaluating the models according to several criteria, the Peleg and Oswin models were found to be the most suitable for describing the sorption curves. The net isosteric heats of desorption and adsorption of Ziziphus spina-christi leaves were calculated by applying the Clausius-Clapeyron equation to the sorption isotherms and an expression for predicting these thermodynamic properties was given.

  6. The new RETScreen model for combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, U. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Diversification Laboratory

    2004-07-01

    RETScreen{sup R} is unique renewable energy awareness, decision-support and capacity building computer program designed to evaluate the energy performance, cost and viability of potential renewable energy technologies (RETs). The program has recently included a combined heat and power (CHP) model which includes the energy analysis for reciprocating engines, gas turbines, gas turbine combined cycle, fuel cells, steam turbines, microturbines, and geothermal energy. It was developed at the RETScreen International Renewable Energy Decision Support Centre at CANMET (Canada Centre for Mineral and Energy Technology). The tool consists of a standardised and integrated renewable energy analysis software that can be used worldwide to evaluate the energy production, life-cycle costs and greenhouse gas emission reductions for various types of RETs, and then compare them with those of conventional energy sources. Global climate change mitigation depends on widespread use of RETs around the world to meet the commitments of the Kyoto Protocol for cleaner air. The use of this computer program can help reduce the cost of pre-feasibility studies by providing information to help make better decisions about the technical and economic viability of potential projects. The CHP model considers landfill gas, biomass, bagasse, biodiesel, hydrogen, natural gas, petroleum, coal and municipal wastes. The model can be used for heating only, power only, cooling only, combined heat and power, single or multiple buildings, district energy or industrial processes. 22 figs.

  7. Modeling operation mode of pellet boilers for residential heating

    Science.gov (United States)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  8. Mathematical Model of ComputerHeat Treatment and Its Simulation

    Institute of Scientific and Technical Information of China (English)

    PanJiansheng; ZhangWeimin; TianDong; GuJianfeng; HuMingjuan

    2004-01-01

    Computer simulation on heat treatment is the foundation of intelligent heat treatment. The simulations of temperature field,phase transformation, stress/strain complicate quenching operation were realized by using the model of three dimensional non-linear finite element method and the treatment methods of abruptly changing interface conditions. The simulation results basically fit those measured in experiments. The intelligent sealed multipurpose furnace production line has been developed based on the combination of computer simulation on gaseous carburizing and computer control technology. More than 3000 batches of workpieces have been processed on this production line, and all are up to standard. The application of computer simulation technology can significantly improve the loading ability and reliability of nitriding and carburizing workpieces, reduce heat treatment distortion, and shorten carburizing duration. It is recommended that the reliable product design without redundancy should be performed with the combination of the CAD of mechanical products, the CAE of materials selection and heat treatment, and the dynamic evaluation technology of product reliability.

  9. Validation of intermediate heat and decay heat exchanger model in MARS-LMR with STELLA-1 and JOYO tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: hyjeong@sejong.ac.kr [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2016-11-15

    Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained

  10. Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated buildings

    DEFF Research Database (Denmark)

    Gao, Jie; Wang, Yi; Wargocki, Pawel

    2015-01-01

    In this paper, a comparative analysis was performed on the human thermal sensation estimated by modified predicted mean vote (PMV) models and modified standard effective temperature (SET) models in naturally ventilated buildings; the data were collected in field study. These prediction models were...... between the measured and predicted values using the modified PMV models exceeded 25%, while the difference between the measured thermal sensation and the predicted thermal sensation using modified SET models was approximately less than 25%. It is concluded that the modified SET models can predict human...... developed on the basis of the original PMV/SET models and consider the influence of occupants' expectations and human adaptive functions, including the extended PMV/SET models and the adaptive PMV/SET models. The results showed that when the indoor air velocity ranged from 0 to 0.2m/s and from 0.2 to 0.8m...

  11. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  12. Modelling Eutectic Growth in Unmodified and Modified Near-Eutectic Al-Si Alloy

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Hattel, Jesper Henri; Taylor, John A.

    2013-01-01

    growth parameters from the literature that depend on the type of modification (unmodified, Na-modified or Sr-modified) are used to describe differences in growth of the alloys. Modelling results are compared with solidification experiments where an Al-12.5wt%Si alloy was cast in unmodified, Na modified...... and Sr modified forms. The model confirms experimental observations of how modification and alloy composition influence nucleation, growth and finally the size of eutectic cells in the alloys. Modelling results are used to explain how cooling conditions in the casting act together with the nuclei density...

  13. Specific Aspects Regarding Coupled Numerical Modeling of Inverter and Load Equipments in an Induction Heating Installation

    Directory of Open Access Journals (Sweden)

    Claudiu MICH-VANCEA

    2008-05-01

    Full Text Available The most propitious projection of inductiveelectrothermic installation requires a deep study ofcoupled electrothermic and circuits problems; thereforethe present paper follows the same line. Research inspecific literature have emphasized that induction heatinghas a much higher efficiency if the supply of the charge(inductor – piece is done at frequencies other thatindustrial one. [1]. Due to material alter depending ontemperature and, implicitly, the variation of the electricalparameters of the heating installation it is necessary totackle the projection of these inductive electrothermicinstallation projected through coupled numericalmodeling of the inverter circuit and of the heatingthrough induction process. The paper presents thenumerical modeling of the continuous current –alternating current conversion bridge (inverter withelements of static switch – over, the type of commandsignal (PWM of elements of static switch of power, thenumerical modeling of the heating throughelectromagnetic induction process and aspects ofcorrelation regarding the functioning/ working of theinstallation depending on the parameters of the load. Theparameters get modified due to material alter dependingon temperature during the heating process.

  14. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2015-01-01

    In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed that the ......In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed...... that the maximum differences between the calculated surface temperature and heat transfer using the proposed model and the measured data were 0.8 ºC and 8.1 W/m2 for radiant floor heating system when average water temperature between 40 ºC and 60 ºC. For the corresponding values were 0.3 ºC and 2.0 W/m2...... for radiant floor cooling systems when average water temperature between 10 ºC and 20 ºC. Numerically simulated data in this study were also used to validate the proposed model. The results showed that the surface temperature and heat transfer of radiant floor calculated by the proposed model agreed very well...

  15. Novel approach to analytical modelling of steady-state heat transfer from the exterior of TEFC induction motors

    Directory of Open Access Journals (Sweden)

    Klimenta Dardan O.

    2017-01-01

    Full Text Available The purpose of this paper is to propose a novel approach to analytical modelling of steady-state heat transfer from the exterior of totally enclosed fan-cooled induction motors. The proposed approach is based on the geometry simplification methods, energy balance equation, modified correlations for forced convection, the Stefan-Boltzmann law, air-flow velocity profiles, and turbulence factor models. To apply modified correlations for forced convection, the motor exterior is presented with surfaces of elementary 3-D shapes as well as the air-flow velocity profiles and turbulence factor models are introduced. The existing correlations for forced convection from a short horizontal cylinder and correlations for heat transfer from straight fins (as well as inter-fin surfaces in axial air-flows are modified by introducing the Prandtl number to the appropriate power. The correlations for forced convection from straight fins and inter-fin surfaces are derived from the existing ones for combined heat transfer (due to forced convection and radiation by using the forced-convection correlations for a single flat plate. Employing the proposed analytical approach, satisfactory agreement is obtained with experimental data from other studies.

  16. A Summary of Interfacial Heat Transfer Models and Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Won; Cho, Hyung Kyu; Lee, Young Jin; Kim, Hee Chul; Jung, Young Jong; Kim, K. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    A long term project has been launched in October 2006 to develop a plant safety analysis code. 5 organizations are joining together for the harmonious coworking to build up the code. In this project, KAERI takes the charge of the building up the physical models and correlations about the transport phenomena. The momentum and energy transfer terms as well as the mass are surveyed from the RELAP5/MOD3, RELAP5-3D, CATHARE, and TRAC-M does. Also the recent papers are surveyed. Among these resources, most of the CATHARE models are based on their own experiment and test results. Thus, the CATHARE models are only used as the comparison purposes. In this paper, a summary of the models and the correlations about the interfacial heat transfer are represented. These surveyed models and correlations will be tested numerically and one correlation is selected finally.

  17. Analytical Heat Transfer Modeling of a New Radiation Calorimeter

    CERN Document Server

    Ndong, Elysée Obame; Aitken, Frédéric

    2016-01-01

    This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from -50 {\\deg}C to 150 {\\deg}C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ~1 mW. From these results the calorimeter has been successfully implemented and patented.

  18. A meshless method for modeling convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David B [Los Alamos National Laboratory

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  19. A propagating heat wave model of skin electroporation.

    Science.gov (United States)

    Pliquett, Uwe; Gusbeth, Ch; Nuccitelli, Richard

    2008-03-21

    The main barrier to transdermal drug delivery in human skin is the stratum corneum. Pulsed electric fields (PEFs) of sufficient amplitude can create new aqueous pathways across this barrier and enhance drug delivery through the skin. Here, we describe a model of pore formation between adjacent corneocytes that predicts the following sequence of events: (1) the PEF rapidly charges the stratum corneum near the electrode until the transepidermal potential difference is large enough to drive water into a small region of the stratum corneum, creating new aqueous pathways. (2) PEFs then drive a high current density through this newly created electropore to generate Joule heating that warms the pore perimeter. (3) This temperature rise at the perimeter increases the probability of further electroporation there as the local sphingolipids reach their phase transition temperature. (4) This heat-generated wave of further electroporation propagates outward until the surface area of the pore becomes so large that the reduced current density no longer generates sufficient heat to reach the phase transition temperature of the sphingolipids. (5) Cooling and partial recovery occurs after the field pulse. This process yields large, high permeability regions in the stratum corneum at which molecules can more readily cross this skin barrier. We present a model for this process that predicts that the initial radius of the first aqueous pathway is approximately 5nm for a transdermal voltage of 60V at room temperature.

  20. DEVELOPMENT OF MATHEMATICAL MODEL OF THE HEATING SYSTEM OF THE MULTI-STORIED HOUSE

    Directory of Open Access Journals (Sweden)

    Postolatii V.M.

    2009-08-01

    Full Text Available The mathematical model of a heating system of the multi-storied house is developed, allowing solving a problem of distribution between apartments of heat of the centralized heat supply. It is taken into account own independently developed heat, which is determinate by means of individual counters of gas and the electric power. Basic feature of model is the opportunity of the account of mutual heat exchange between apartments.

  1. A modified exponential model for reported death toll during earthquakes

    Institute of Scientific and Technical Information of China (English)

    Xinyan Wu; Jianhua Gu

    2009-01-01

    Reliable earthquake death toll estimate can provide valuable references for disaster relief headquarters and civil administration departments to make arrangement and deployment plan during post-earthquake relief work, thus increasing the efficiency of the relief work to a certain extent. In this study, we acquired the death toll data of Wenchuan earthquake, fitted the data using modified exponential curve and compared the result with that of the exponential function. Experimental verification with Chi-Chi earthquake and Kobe earthquake data shows that the fitted result by modified exponential curve is more satisfactory. The final death toll resulting from future destructive earthquakes can be estimated by the acquired fitting function.

  2. A review of animal models used to evaluate potential allergenicity of genetically modified organisms (GMOs)

    DEFF Research Database (Denmark)

    Marsteller, Nathan; Bøgh, Katrine Lindholm; Goodman, Richard E.

    2017-01-01

    Food safety regulators request prediction of allergenicity for newly expressed proteins in genetically modified (GM) crops and in novel foods. Some have suggested using animal models to assess potential allergenicity. A variety of animal models have been used in research to evaluate sensitisation...... of genetically modified organisms (GMOs)....

  3. MODELING OF THE HEAT PUMP STATION CONTROLABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2011-08-01

    Full Text Available It is studied the model of the heat pump station controllable loop of an intermediate heat-transfer agent for the use in wineries. There are demonstrated transients after the disturbing action of the temperature on the input of cooling jacket of the fermentation stirred tank. There are compared different control laws of the object.

  4. Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets

    Science.gov (United States)

    Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.

    2007-01-01

    Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.

  5. Large scale solar district heating. Evaluation, modelling and designing

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the tool for design studies and on a local energy planning case. The evaluation of the central solar heating technology is based on measurements on the case plant in Marstal, Denmark, and on published and unpublished data for other, mainly Danish, CSDHP plants. Evaluations on the thermal, economical and environmental performances are reported, based on the experiences from the last decade. The measurements from the Marstal case are analysed, experiences extracted and minor improvements to the plant design proposed. For the detailed designing and energy planning of CSDHPs, a computer simulation model is developed and validated on the measurements from the Marstal case. The final model is then generalised to a 'generic' model for CSDHPs in general. The meteorological reference data, Danish Reference Year, is applied to find the mean performance for the plant designs. To find the expectable variety of the thermal performance of such plants, a method is proposed where data from a year with poor solar irradiation and a year with strong solar irradiation are applied. Equipped with a simulation tool design studies are carried out spreading from parameter analysis over energy planning for a new settlement to a proposal for the combination of plane solar collectors with high performance solar collectors, exemplified by a trough solar collector. The methodology of utilising computer simulation proved to be a cheap and relevant tool in the design of future solar heating plants. The thesis also exposed the demand for developing computer models for the more advanced solar collector designs and especially for the control operation of CSHPs. In the final chapter the CSHP technology is put into perspective with respect to other possible technologies to find the relevance of the application

  6. Transient heat conduction in a pebble fuel applying fractional model

    Energy Technology Data Exchange (ETDEWEB)

    Gomez A, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: gepe@xanum.uam.mx

    2009-10-15

    In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)

  7. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    Science.gov (United States)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  8. Minor hysteresis loops model based on exponential parameters scaling of the modified Jiles-Atherton model

    Energy Technology Data Exchange (ETDEWEB)

    Hamimid, M., E-mail: Hamimid_mourad@hotmail.com [Laboratoire de modelisation des systemes energetiques LMSE, Universite de Biskra, BP 145, 07000 Biskra (Algeria); Mimoune, S.M., E-mail: s.m.mimoune@mselab.org [Laboratoire de modelisation des systemes energetiques LMSE, Universite de Biskra, BP 145, 07000 Biskra (Algeria); Feliachi, M., E-mail: mouloud.feliachi@univ-nantes.fr [IREENA-IUT, CRTT, 37 Boulevard de l' Universite, BP 406, 44602 Saint Nazaire Cedex (France)

    2012-07-01

    In this present work, the minor hysteresis loops model based on parameters scaling of the modified Jiles-Atherton model is evaluated by using judicious expressions. These expressions give the minor hysteresis loops parameters as a function of the major hysteresis loop ones. They have exponential form and are obtained by parameters identification using the stochastic optimization method 'simulated annealing'. The main parameters influencing the data fitting are three parameters, the pinning parameter k, the mean filed parameter {alpha} and the parameter which characterizes the shape of anhysteretic magnetization curve a. To validate this model, calculated minor hysteresis loops are compared with measured ones and good agreements are obtained.

  9. Modelling of Split Condenser Heat Pump with Limited Set of Plate Heat Exchanger Dimensions

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a numerical study of optimal plate dimensions in a split condenser heat pump (SCHP), using ammonia as refrigerant. The SCHP setup differs from a traditional heat pump (THP) setup in the way that two separate water streams on the secondary side of the condenser are heated...... in parallel to different temperature levels, whereas only one stream is heated in a THP. The length/width ratio of the plate heat exchangers on the high pressure side of a SCHP was investigated to find the optimal plate dimensions with respect to minimum area of the heat exchangers. The total heat exchanger...... area was found to decrease with an increasing length/width ratio of the plates. The marginal change in heat exchanger area was shown to be less significant for heat exchangers with high length/width ratios. In practice only a limited number of plate dimensions are available and feasible...

  10. Biotic modifiers, environmental modulation and species distribution models

    NARCIS (Netherlands)

    Linder, H. Peter; Bykova, Olga; Dyke, James; Etienne, Rampal S.; Hickler, Thomas; Kuehn, Ingolf; Marion, Glenn; Ohlemueller, Ralf; Schymanski, Stanislaus J.; Singer, Alexander

    2012-01-01

    The ability of species to modulate environmental conditions and resources has long been of interest. In the past three decades the impacts of these biotic modifiers have been investigated as ecosystem engineers, niche constructors, facilitators and keystone species. This environmental modulation can

  11. Biotic modifiers, environmental modulation and species distribution models

    NARCIS (Netherlands)

    Linder, H. Peter; Bykova, Olga; Dyke, James; Etienne, Rampal S.; Hickler, Thomas; Kuehn, Ingolf; Marion, Glenn; Ohlemueller, Ralf; Schymanski, Stanislaus J.; Singer, Alexander

    2012-01-01

    The ability of species to modulate environmental conditions and resources has long been of interest. In the past three decades the impacts of these biotic modifiers have been investigated as ecosystem engineers, niche constructors, facilitators and keystone species. This environmental modulation can

  12. Alfven Wave Solar Model: Part 1, Coronal Heating

    CERN Document Server

    van der Holst, Bart; Meng, Xing; Jin, Meng; Manchester, Ward B; Toth, Gabor; Gombosi, Tamas I

    2013-01-01

    We present the new Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. The injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagat...

  13. Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling

    Science.gov (United States)

    Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.

    2012-12-01

    We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples

  14. Modeling the Effect of Wider Canyons on Urban Heating

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-04-01

    Full Text Available The k-? turbulence model is adopted in this study to simulate the impact of street canyon AR (Aspect Ratios on heating within street canyon. The two-dimensional model was validated for RANS (Reynolds Averaged Navier Stokes and energy transport equations. The validation process confirms that the results of the model for airtemperature and wind speed could be trusted. The application of the said model is carried out to ideal street canyons of ARs (ratio of building-height-to-street-width from 0.4 to 2 with the same boundary conditions. Notably, street canyon aspect ratio was calculated by varying the street width while keeping the building height constant. Results show that the weighted-average-air-temperature within AR 0.4 was around 0.8% (i.e. 2.4K higher than that within AR 2.0. Conversely, there was strong correlation (i.e., R2>0.9 between air temperature within the street canyon and street canyon AR. Results demonstrate stronger influence of vertical velocity on heating within street canyon. Evidently, increased vertical velocity decreased the temperatures. Conversely, temperatures were higher along the leeward side of the canyon in lower ARs.

  15. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    OpenAIRE

    Nee Alexander

    2016-01-01

    Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary....

  16. Computation of Turbulent Heat Transfer on the Walls of a 180 Degree Turn Channel With a Low Reynolds Number Reynolds Stress Model

    Science.gov (United States)

    Ameri, A. A.; Rigby, D. L.; Steinthorsson, E.; Gaugler, Raymond (Technical Monitor)

    2002-01-01

    The Low Reynolds number version of the Stress-omega model and the two equation k-omega model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-omega model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-omega two equation model. This improvement however required a finer grid and commensurately more CPU time.

  17. Heat transfer modeling of double-side arc welding

    CERN Document Server

    Sun Jun Sheng; Zhang Yan Ming

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  18. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    Increasing the building energy efficiency in recent years results in noticeably reduction in their heating demand. Combined with the current trend for utilizing low temperature heat sources, it raises the necessity of introducing a new generation of district heating [DH] systems with lowered...

  19. A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation

    Science.gov (United States)

    Lee, C. K.

    2014-01-01

    This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…

  20. Hybrid fluid/kinetic model for parallel heat conduction

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J.D.; Hegna, C.C.; Held, E.D. [Univ. of Wisconsin, Madison, WI (United States)

    1998-12-31

    It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

  1. Heat propagation models for superconducting nanobridges at millikelvin temperatures

    Science.gov (United States)

    Blois, A.; Rozhko, S.; Hao, L.; Gallop, J. C.; Romans, E. J.

    2017-01-01

    Nanoscale superconducting quantum interference devices (nanoSQUIDs) most commonly use Dayem bridges as Josephson elements to reduce the loop size and achieve high spin sensitivity. Except at temperatures close to the critical temperature T c, the electrical characteristics of these bridges exhibit undesirable thermal hysteresis which complicates device operation. This makes proper thermal analysis an essential design consideration for optimising nanoSQUID performance at ultralow temperatures. However the existing theoretical models for this hysteresis were developed for micron-scale devices operating close to liquid helium temperatures, and are not fully applicable to a new generation of much smaller devices operating at significantly lower temperatures. We have therefore developed a new analytic heat model which enables a more accurate prediction of the thermal behaviour in such circumstances. We demonstrate that this model is in good agreement with experimental results measured down to 100 mK and discuss its validity for different nanoSQUID geometries.

  2. Comparison of QuadrapolarTM radiofrequency lesions produced by standard versus modified technique: an experimental model

    Directory of Open Access Journals (Sweden)

    Safakish R

    2017-06-01

    Full Text Available Ramin Safakish Allevio Pain Management Clinic, Toronto, ON, Canada Abstract: Lower back pain (LBP is a global public health issue and is associated with substantial financial costs and loss of quality of life. Over the years, different literature has provided different statistics regarding the causes of the back pain. The following statistic is the closest estimation regarding our patient population. The sacroiliac (SI joint pain is responsible for LBP in 18%–30% of individuals with LBP. Quadrapolar™ radiofrequency ablation, which involves ablation of the nerves of the SI joint using heat, is a commonly used treatment for SI joint pain. However, the standard Quadrapolar radiofrequency procedure is not always effective at ablating all the sensory nerves that cause the pain in the SI joint. One of the major limitations of the standard Quadrapolar radiofrequency procedure is that it produces small lesions of ~4 mm in diameter. Smaller lesions increase the likelihood of failure to ablate all nociceptive input. In this study, we compare the standard Quadrapolar radiofrequency ablation technique to a modified Quadrapolar ablation technique that has produced improved patient outcomes in our clinic. The methodology of the two techniques are compared. In addition, we compare results from an experimental model comparing the lesion sizes produced by the two techniques. Taken together, the findings from this study suggest that the modified Quadrapolar technique provides longer lasting relief for the back pain that is caused by SI joint dysfunction. A randomized controlled clinical trial is the next step required to quantify the difference in symptom relief and quality of life produced by the two techniques. Keywords: lower back pain, radiofrequency ablation, sacroiliac joint, Quadrapolar radiofrequency ablation

  3. Comparison of a Modified and Classic Fama-French Model for the Polish Market

    Directory of Open Access Journals (Sweden)

    Urbański Stanisław

    2017-06-01

    Full Text Available This paper shows a comparison of the results of return, risk, and risk price simulation by a modified and classic Fama-French model. The modified model defines the new ICAPM state variable as a function of the structure of a company’s past financial results. The model tests are run on the basis of stocks listed on the Warsaw Stock Exchange. In light of the classic model the risk price, on the tested market, turned out univariate due to HML, however, in light of the modified model, risk price turned out to be threedimensional due to the proposed factors, and market portfolio. The factors of the modified model, compared with the HML and SMB, are widely perceived by portfolio managers, and the simulation results indicate a greater possibility to use this pricing application by large institutional investors.

  4. Establishment of Heat Treatment Process for Modified 440A Martensitic Stainless Steel Using Differential Scanning Calorimetry and Thermo-Calc Calculation

    Directory of Open Access Journals (Sweden)

    Huei-Sen Wang

    2015-12-01

    Full Text Available To provide a suitable microstructure and mechanical properties for modified Grade 440A martensitic stainless steel (MSS, which could facilitate the further cold deformation process (e.g., cold rolling, this work used differential scanning calorimetry (DSC and Thermo-Calc software to determine three soaking temperatures for annealing heat treatment processes (HT1, HT2 and HT3. To verify the feasibility of the proposed annealing heat treatment processes, the as-received samples were initially heated to 1050 °C (similar to the on-line working temperature for 30 min and air quenched to form a martensitic structure. The air-quenched samples were then subjected to three developed annealing heat treatment conditions. The microstructure and mechanical properties of the heat-treated samples were then investigated. Test results showed that considering the effects of the microstructure and the hardness, the HT1, the HT2 or the soaking temperatures between the HT1 and HT2 were the most recommended processes to modified Grade 440A MSS. When using the recommended processes, their carbides were fine and more evenly distributed, and the microhardness was as low as 210 Hv, which can be applied to the actual production process.

  5. EXTERNALITIES AND THE SIX FACETS MODEL OF TECHNOLOGY MANAGEMENT: GENETICALLY MODIFIED ORGANISMS IN AGRIBUSINESS

    OpenAIRE

    STEPHEN R. LUXMORE; CLYDE EIRÍKUR HULL

    2010-01-01

    The Six Facets Model of technology management has previously only been applied to process innovation at the firm and the industry level. In this article, the model is applied to product innovation for the first time. In the context of genetically-modified organisms in the agribusiness industry, we examine radical product innovation through the Six Facets Model. We propose, based on the history of genetically-modified organisms in agribusiness, that when applied to product innovation the Six F...

  6. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain

    Science.gov (United States)

    Zhang, Jianbo; Ge, Hao; Li, Zhe; Ding, Zhanming

    2015-01-01

    This study develops a method to internally preheat lithium-ion batteries at low temperatures with sinusoidal alternating current (AC). A heat generation rate model in frequency domain is developed based on the equivalent electrical circuit. Using this model as the source term, a lumped energy conservation model is adopted to predict the temperature rise. These models are validated against the experimental results of preheating an 18650 cell at different thermal insulation conditions. The effects of current amplitude and frequency on the heating rate are illustrated with a series of simulated contours of heating time. These contours indicate that the heating rate increases with higher amplitude, lower frequency and better thermal insulation. The cell subjected to an alternating current with an amplitude of 7 A (2.25 C) and a frequency of 1 Hz, under a calibrated heat transfer coefficient of 15.9 W m-2 K-1, can be heated from -20 °C to 5 °C within 15 min and the temperature distribution remains essentially uniform. No capacity loss is found after repeated AC preheating tests, indicating this method incurs little damage to the battery health. These models are computationally-efficient and can be used in real time to control the preheating devices in electric vehicles.

  7. Modeling effects of urban heat island mitigation strategies on heat-related morbidity: a case study for Phoenix, Arizona, USA.

    Science.gov (United States)

    Silva, Humberto R; Phelan, Patrick E; Golden, Jay S

    2010-01-01

    A zero-dimensional energy balance model was previously developed to serve as a user-friendly mitigation tool for practitioners seeking to study the urban heat island (UHI) effect. Accordingly, this established model is applied here to show the relative effects of four common mitigation strategies: increasing the overall (1) emissivity, (2) percentage of vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of percentage increases by 5, 10, 15, and 20% from baseline values. In addition to modeling mitigation strategies, we present how the model can be utilized to evaluate human health vulnerability from excessive heat-related events, based on heat-related emergency service data from 2002 to 2006. The 24-h average heat index is shown to have the greatest correlation to heat-related emergency calls in the Phoenix (Arizona, USA) metropolitan region. The four modeled UHI mitigation strategies, taken in combination, would lead to a 48% reduction in annual heat-related emergency service calls, where increasing the albedo is the single most effective UHI mitigation strategy.

  8. Accurate Critical Parameters for the Modified Lennard-Jones Model

    Science.gov (United States)

    Okamoto, Kazuma; Fuchizaki, Kazuhiro

    2017-03-01

    The critical parameters of the modified Lennard-Jones system were examined. The isothermal-isochoric ensemble was generated by conducting a molecular dynamics simulation for the system consisting of 6912, 8788, 10976, and 13500 particles. The equilibrium between the liquid and vapor phases was judged from the chemical potential of both phases upon establishing the coexistence envelope, from which the critical temperature and density were obtained invoking the renormalization group theory. The finite-size scaling enabled us to finally determine the critical temperature, pressure, and density as Tc = 1.0762(2), pc = 0.09394(17), and ρc = 0.331(3), respectively.

  9. The Mathematical Modelling of Heat Transfer in Electrical Cables

    Directory of Open Access Journals (Sweden)

    Bugajev Andrej

    2014-05-01

    Full Text Available This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes were applied in two-dimensional domain to eliminate this error. Adaptive mesh is also tried. For calculations OpenFOAM open source software which uses Finite Volume Method is applied. To generate acute triangles meshes aCute library is used. The efficiency of the proposed approach is analyzed. The results show that the second order of convergence or close to that is achieved (in terms of sizes of finite volumes. Also it is shown that standard strategy, used by OpenFOAM is less efficient than the proposed approach. Finally it is concluded that for solving real problem a spatial adaptive mesh is essential and adaptive time steps also may be needed.

  10. The Einstein specific heat model for finite systems

    Science.gov (United States)

    Boscheto, E.; de Souza, M.; López-Castillo, A.

    2016-06-01

    The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists of the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit N → ∞) non-interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einstein model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying N.

  11. Heat Redistribution and Misaligned Orbit Models in PHOEBE

    Science.gov (United States)

    Horvat, Martin; Prsa, Andrej; Conroy, Kyle E.

    2017-01-01

    Reflection and aligned Roche geometry have been long supported in modeling codes that synthesize light and radial velocity curves of eclipsing binary stars. However, recent advances in observational data, mostly in terms of precision and temporal baseline, demonstrated that the assumptions of these two effects are frequently violated. Reflection treatment neglected the energy absorbed by the irradiated star, and Roche geometry assumed aligned vectors of spin and orbital angular momentum. Observations of night- and day-side brightness variation of cooler stellar and substellar companions point to a clear deficiency in treating heat redistribution, and the break in symmetry of the Rossiter-McLaughlin effect points to misaligned stellar spins w.r.t. orbital plane. The framework of existing codes did not allow for revising these effects while keeping the rest of the logic intact, which prompted a complete rewrite of the modeling code PHOEBE (PHysics Of Eclipsing BinariEs). Here we present the basic considerations and proof-of-concept examples of the revised reflection effect and misaligned spin-orbit support. Reflection has been extended with heat absorption and consequent redistribution, which can be local, longitudinal or global. Misaligned spin-orbit vectors are supported by deriving the equation of the Roche potential that allows misaligned rotational axes and are provided by the corresponding Euler angles. This research is supported by the NSF grant #1517474.

  12. Inverse modeling for heat conduction problem in human abdominal phantom.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2011-01-01

    Noninvasive methods for deep body temperature measurement are based on the principle of heat equilibrium between the thermal sensor and the target location theoretically. However, the measurement position is not able to be definitely determined. In this study, a 2-dimensional mathematical model was built based upon some assumptions for the physiological condition of the human abdomen phantom. We evaluated the feasibility in estimating the internal organs temperature distribution from the readings of the temperature sensors arranged on the skin surface. It is a typical inverse heat conduction problem (IHCP), and is usually mathematically ill-posed. In this study, by integrating some physical and physiological a-priori information, we invoked the quasi-linear (QL) method to reconstruct the internal temperature distribution. The solutions of this method were improved by increasing the accuracy of the sensors and adjusting their arrangement on the outer surface, and eventually reached the state of converging at the best state accurately. This study suggests that QL method is able to reconstruct the internal temperature distribution in this phantom and might be worthy of a further study in an anatomical based model.

  13. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    CERN Document Server

    White, M J; Brueck, H D; 10.1063/1.4706965

    2012-01-01

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world, however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. The XFEL (X-Ray Free Electron Laser) magnets are operated at 2 K, which makes vapor-cooled current leads impractical due to the sub-atmospheric bath pressure. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal inte...

  14. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

    Science.gov (United States)

    Kumar, Manish; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Venugopal Rao, A.; Kumar, Vikas

    2016-09-01

    In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.

  15. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2010-01-01

    For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict...... void nucleation and very limited void growth. Void coalescence would therefore be largely postponed. However, using the shear modification of the Gurson model, recently introduced by Nahshon and Hutchinson (2008) [1], failure prediction is possible at zero or even negative mean stress. Since......, this shear modification has too large effect in some cases where the stress triaxiality is rather high, an extension is proposed in the present study to better represent the damage development at moderate to high stress triaxiality, which is known to be well described by the Gurson model. Failure prediction...

  16. Results on a Binding Neuron Model and Their Implications for Modified Hourglass Model for Neuronal Network

    Directory of Open Access Journals (Sweden)

    Viswanathan Arunachalam

    2013-01-01

    Full Text Available The classical models of single neuron like Hodgkin-Huxley point neuron or leaky integrate and fire neuron assume the influence of postsynaptic potentials to last till the neuron fires. Vidybida (2008 in a refreshing departure has proposed models for binding neurons in which the trace of an input is remembered only for a finite fixed period of time after which it is forgotten. The binding neurons conform to the behaviour of real neurons and are applicable in constructing fast recurrent networks for computer modeling. This paper develops explicitly several useful results for a binding neuron like the firing time distribution and other statistical characteristics. We also discuss the applicability of the developed results in constructing a modified hourglass network model in which there are interconnected neurons with excitatory as well as inhibitory inputs. Limited simulation results of the hourglass network are presented.

  17. A combined gray neural network model of seasonal heating load forecast

    Institute of Scientific and Technical Information of China (English)

    QIAOXiaozhuang; YANGChangzhi

    2003-01-01

    Seasonal heating load time sequence has the double trends of increasing and fluctuating, so it''s difficult to select a model to forecast it. In this paper, a combined model of gray model and artificial neural network model was presented to forecast seasonal heating load. A concrete model was established and was verified through actual examples.

  18. Comparison of moving boundary and finite-volume heat exchanger models in the modelica language

    OpenAIRE

    Adriano Desideri; Bertrand Dechesne; Jorrit Wronski; Martijn van den Broek; Sergei Gusev; Vincent Lemort; Sylvain Quoilin

    2016-01-01

    When modeling low capacity energy systems, such as a small size (5–150 kWel) organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, th...

  19. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  20. Three dimensional heat transport modeling in Vossoroca reservoir

    Science.gov (United States)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to