WorldWideScience

Sample records for model metal adsorption

  1. Modeling adsorption and reactions of organic molecules at metal surfaces.

    Science.gov (United States)

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  2. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  3. Impact of metal ionic characteristics on adsorption potential of Ficus carica leaves using QSPR modeling.

    Science.gov (United States)

    Batool, Fozia; Iqbal, Shahid; Akbar, Jamshed

    2018-04-03

    The present study describes Quantitative Structure Property Relationship (QSPR) modeling to relate metal ions characteristics with adsorption potential of Ficus carica leaves for 13 selected metal ions (Ca +2 , Cr +3 , Co +2 , Cu +2 , Cd +2 , K +1 , Mg +2 , Mn +2 , Na +1 , Ni +2 , Pb +2 , Zn +2 , and Fe +2 ) to generate QSPR model. A set of 21 characteristic descriptors were selected and relationship of these metal characteristics with adsorptive behavior of metal ions was investigated. Stepwise Multiple Linear Regression (SMLR) analysis and Artificial Neural Network (ANN) were applied for descriptors selection and model generation. Langmuir and Freundlich isotherms were also applied on adsorption data to generate proper correlation for experimental findings. Model generated indicated covalent index as the most significant descriptor, which is responsible for more than 90% predictive adsorption (α = 0.05). Internal validation of model was performed by measuring [Formula: see text] (0.98). The results indicate that present model is a useful tool for prediction of adsorptive behavior of different metal ions based on their ionic characteristics.

  4. Modeling Adsorption Based Filters (Bio-remediation of Heavy Metal Contaminated Water)

    Science.gov (United States)

    McCarthy, Chris

    I will discuss kinetic models of adsorption, as well as models of filters based on those mechanisms. These mathematical models have been developed in support of our interdisciplinary lab group, which is centered at BMCC/CUNY (City University of New York). Our group conducts research into bio-remediation of heavy metal contaminated water via filtration. The filters are constructed out of biomass, such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). The models involve differential equations, stochastic methods, and recursive functions. I will compare the models' predictions to data obtained from computer simulations and experimentally by our lab group. Funding: CUNY Collaborative Incentive Research Grant (Round 12); CUNY Research Scholars Program.

  5. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    Science.gov (United States)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  6. Microwave-Assisted Adsorptive Desulfurization of Model Diesel Fuel Using Synthesized Microporous Rare Earth Metal-Doped Zeolite Y

    Directory of Open Access Journals (Sweden)

    N. Salahudeen

    2015-06-01

    Full Text Available The microwave-assisted adsorptive desulfurization of model fuel (thiophene in n-heptane was investigated using a synthesized rare earth metal-doped zeolite Y (RE Y. Crystallinity of the synthesized zeolite was 89.5%, the silicon/aluminium (Si/Al molar ratio was 5.2, the Brunauer–Emmett–Teller (BET surface area was 980.9 m2/g, and the pore volume and diameter was 0.3494 cm3/g and 1.425 nm, respectively. The results showed that the microwave reactor could be used to enhance the adsorptive desulfurization process with best efficiency of 75% at reaction conditions of 100 °C and 15 minutes. The high desulfurization effect was likely due to the higher efficiency impact of microwave energy in the interaction between sulfur in thiophene and HO-La(OSiAl.

  7. Acid Gas Adsorption on Metal-Organic Framework Nanosheets as a Model of an "All-Surface" Material.

    Science.gov (United States)

    Howe, Joshua D; Liu, Yang; Flores, Luis; Dixon, David A; Sholl, David S

    2017-03-14

    To establish a model of metal-organic framework (MOF) surfaces and build an understanding of surface-specific ligand adsorption phenomena in MOFs, we present a computational study exploring multiple models of a series of MOF-2 nanosheet materials, "M-BDCs", with M = Zn, Cu, and Co and BDC = benzene-1,4-dicarboxylate. We study and assess the appropriateness of a series of models ranging from small clusters (18 atoms) to fully periodic sheet models. We additionally study the interactions of these models with acid gases and energy-relevant small molecules (CO, CO 2 , H 2 O, SO 2 , NO 2 , and H 2 S). We employ computational methods ranging from DFT with various exchange-correlation functionals to perturbative and coupled-cluster methods. For these systems, we present binding energies and enthalpies with the various ligands studied as well as IR frequency shifts for the normal modes of these ligands upon complexation with the open-metal sites of these materials. Our calculations lead to an understanding of phenomena unique to MOF surfaces and the importance of the periodicity in these materials in capturing surface-specific adsorption behaviors.

  8. Adsorption of a metalorganic complex at a metal surface: A density functional theory study vs. model description

    Energy Technology Data Exchange (ETDEWEB)

    Kostyrko, T., E-mail: tkos@amu.edu.pl; Ślusarski, T. [Faculty of Physics, A. Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland)

    2015-01-21

    A modification of the electronic and magnetic structure of a metalorganic complex by chemisorption at a metallic surface is addressed. The density functional theory (DFT) is applied to investigate a simplified form of a copper-dioxolene complex in a free state and connected to Au(111) surface with alkanethiol linkers. A systematic study of the dependence of the system electronic structure on the linker length is performed. It is found that the electronic structure of the complex is well preserved during the adsorption process. The magnetic moment of the Cu-dioxolene functional group is shown to be strictly correlated with the amount of the charge residing at the complex. On the basis of the DFT results, a model Hamiltonian of the adsorbed metalorganic system is proposed. The model is an extension of the Sandorfy's model of the alkanes and includes explicitly Coulomb interaction between electrons both within the alkane's backbone and the end group. We show that the latter feature is necessary to understand the evolution of the system's properties with the length of the linkers. The advantage of this approach is that it not only reproduces the main results of our DFT analysis but also provides a simple common basis to analyse a wide class of metal complexes bound to metal surfaces with alkanethiol linkers.

  9. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models

    Directory of Open Access Journals (Sweden)

    Md. Sayedur Rahman

    2015-01-01

    Full Text Available Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb2+, Cu2+, Fe2+, and Zn2+ onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.

  10. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models.

    Science.gov (United States)

    Rahman, Md Sayedur; Sathasivam, Kathiresan V

    2015-01-01

    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb(2+), Cu(2+), Fe(2+), and Zn(2+) onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.

  11. Adsorption of heavy metal ions by sawdust of deciduous trees.

    Science.gov (United States)

    Bozić, D; Stanković, V; Gorgievski, M; Bogdanović, G; Kovacević, R

    2009-11-15

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g(-1) of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu(2+) ions but it is very low for Fe(2+) ions, not exceeding 10%.

  12. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  13. Adsorption of humic acids and trace metals in natural waters

    Science.gov (United States)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  14. Metal ion adsorption characteristics of tea leaves

    OpenAIRE

    Takao, Hiromitsu; Kawahigashi, Tatsuo

    2016-01-01

    [Abstract] For effective use of tea leaves, this study experimentally evaluated metal ion adsorption by tea leaves. The experiment described herein was conducted by measuring the ionic solution at a constant density using a fluorescence X-ray device. The metallic ion concentration in the solution and the fluorescence X-ray output intensity showed good correlation. Tea leaves were put into solution adjusted with density of an already-known metallic ion. Then the decrease of the metal ion was m...

  15. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures.

    Science.gov (United States)

    Sadeek, Sadeek A; Negm, Nabel A; Hefni, Hassan H H; Wahab, Mostafa M Abdel

    2015-11-01

    Biosorption of Cu(II), Co(II) and Fe(III) ions from aqueous solutions by rice husk, palm leaf and water hyacinth was investigated as a function of initial pH, initial heavy metal ions concentration and treatment time. The adsorption process was examined by two adsorption isotherms: Langmuir and Freundlich isotherms. The experimental data of biosorption process were analyzed using pseudo-first order, pseudo-second order kinetic models. The equilibrium biosorption isotherms showed that the three studied biosorbents possess high affinity and sorption capacity for Cu(II), Co(II) and Fe(III) ions. Rice husk showed more efficiency than palm leaf and water hyacinth. Adsorption of Cu(II) and Co(II) was more efficient in alkaline medium (pH 9) than neutral medium due to the high solubility of metal ion complexes. The metal removal efficiency of each biosorbent was correlated to its chemical structure. DTA studies showed formation of metal complex between the biosorbents and the metal ions. The obtained results showed that the tested biosorbents are efficient and alternate low-cost biosorbent for removal of heavy metal ions from aqueous media. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. MATHEMATICAL MODELING OF BATCH ADSORPTION OF MANGANESE ONTO BONE CHAR

    OpenAIRE

    Maria, M. E.; Mansur, M. B.

    2016-01-01

    Abstract The present study investigated the dynamics of batch adsorption of manganese onto bone char by using two distinct mathematical formulations: the diffusion model and the shrinking core model. Both models assumed spherical particles and adequately described the transient behavior of metal adsorption under changing operating conditions. Comparatively, the diffusion model described the manganese adsorption better at distinct particle sizes even when small particles were used (dp ≤ 0.147 ...

  17. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    Batch equilibration studies were conducted to determine the nature of adsorption of Zn (II) and Cu (II) onto dyed coconut pollens. The nature of adsorption of metal ions was explained using the Langmuir equation. The calculated values of equilibrium parameter indicated favourable adsorption by the adsorbents. Also the ...

  18. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... Batch equilibration studies were conducted to determine the nature of adsorption of Zn (II) and Cu (II) onto dyed coconut pollens. The nature of adsorption of metal ions was explained using the Langmuir equation. The calculated values of equilibrium parameter indicated favourable adsorption by the.

  19. Heavy metal ions adsorption from mine waters by sawdust

    Directory of Open Access Journals (Sweden)

    G. Bogdanović

    2009-10-01

    Full Text Available In this work the results on the batch and column adsorption of copper and some associated ions by employing linden and poplar sawdust as a low-cost adsorbent are presented. The mine water from a local abandoned copper mine, as well as synthetic solutions of those ions which are the main constituents of the mine water were both used as a model-system in this study. The adsorption ability of the chosen sawdust to adsorb heavy metal ions is considered as a function of the initial pH of the solution and kind of metal ions. At lower pH of solutions the adsorption percentage (AD % decreases leading to a zero AD % at pH < 1.1. Maximum AD % is achieved at 3.5 < pH < 5. It was found that poplar and linden sawdust have both almost equal adsorption capacities against copper ions. The highest AD % ( ≈80% was achieved for Cu2+, while for Fe2+ it was slightly above 10%. The other considered ions (Zn2+ and Mn2+ were within this interval. The results obtained in the batch mode were verified through the column test by using the real mine water originating from an acid mine drainage (AMD of the copper mine „Cerovo“, RTB Bor. The breakthrough curves are presented as a function of the aqueous phase volume passed through the column allowing having an insight into the column adsorption features. Breakthrough points were determined for copper, manganese and zinc ions. A very high adsorption degree – higher than 99% was achieved in these experiments for all mentioned ions. After completing the adsorption, instead of desorption, the loaded sawdust was drained, dried and burned; the copper bearing ash was then leached with a controlled volume of sulphuric acid solution to concentrate copper therein. The obtained leach solution had the concentration of copper higher than 15 g dm-3 and the amount of H2SO4 high enough to serve as a supporting electrolyte suitable to be treated by the electrowinning for recovery of copper. The technology process based on the column

  20. Effects of Organics on the Adsorption and Mobility of Metal Cations in Clay Systems: Computational Molecular Modeling Approach

    International Nuclear Information System (INIS)

    Kalinichev, Andrey G.; Ngouana Wakou, Brice F.; Loganathan, Narasimhan

    2013-01-01

    Understanding and prediction of many natural and anthropogenic environmental processes ultimately depend on a fundamental understanding of the chemistry occurring at the mineral-fluid inter-faces. Clay-related minerals and natural organic matter (NOM) are ubiquitous in the environment, and metal-NOM complexation induces strong correlations between the NOM concentration in water and the capacity of clay particles to bind metals, thus affecting their speciation, solubility and toxicity in the environment. Despite significant geochemical, environmental and technological interest, the molecular-level mechanisms and dynamics of the physical and chemical processes involving NOM are not yet well understood. In this presentation we compare three different molecular dynamics (MD) computer simulations of metal-NOM complexation in aqueous solutions. The simulation results indicate that despite some obvious quantitative variations in the computed values depending on the size of the simulated system and on the parameters of the force field models used, all three simulations are quite robust and consistent. In particular, approximately 35-50% of Ca 2+ ions in all simulations are associated with the carboxylic groups of NOM at near-neutral pH. The stability of bidentate-coordinated contact ion pair complexes is also always strongly preferred. Easy association of metal cations with negatively charged NOM functional groups and negatively charged clay surfaces allows us to predict that cationic bridging could be the most probable mechanism of NOM association with clays in natural environments. New MD simulations are currently in progress to quantitatively assess these predictions on a molecular scale for nuclear waste disposal applications. New larger-scale clay models incorporate a more realistic representation of the structural and compositional disorder of natural illites and smectites and employ CLAYFF - a fully flexible general force field suitable for the molecular simulations

  1. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  2. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Mehmet Emin [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey)]. E-mail: argun@selcuk.edu.tr; Dursun, Sukru [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey); Ozdemir, Celalettin [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey); Karatas, Mustafa [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey)

    2007-03-06

    This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100 mg L{sup -1}. The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3.

  3. Model surface studies of metal oxides: Adsorption of water and methanol on ultrathin MgO films on Mo(100)

    International Nuclear Information System (INIS)

    Wu, M.; Estrada, C.A.; Corneille, J.S.; Goodman, D.W.

    1992-01-01

    Model surface studies of magnesium oxide have been carried out using surface sensitive techniques. Ultrathin MgO films have been synthesized under ultrahigh vacuum (UHV) conditions by thermally evaporating Mg onto Mo(100) in the presence of oxygen. Low-energy electron diffraction (LEED) studies indicate that the MgO films grow epitaxially with the (100) face of MgO oriented parallel to Mo(100). The MgO films, prepared under optimum synthesis conditions, have essentially one-to-one stoichiometry, are nearly free from pointlike surface defects, and have properties essentially identical to those of bulk, single-crystal MgO. Adsorption of water and methanol onto the MgO films has been studied using high-resolution electron energy-loss spectroscopy (HREELS) and temperature programmed desorption (TPD). In order to circumvent the difficulty associated with intense multiple surface optical phonon (Fuchs--Kliewer modes) losses, a new approach to acquisition of HREELS data has been demonstrated. This new approach enables the direct observation of weak loss features due to excitation of the adsorbates without serious interference from multiple phonon losses. Our HREELS studies show that water and methanol undergo heterolytic dissociation, leading to the formation of hydroxyl and methoxy species, respectively

  4. Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces

    DEFF Research Database (Denmark)

    Jones, Glenn; Studt, Felix; Abild-Pedersen, Frank

    2011-01-01

    Using density functional theory calculations we show that the adsorption energies for C2Hx-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws...

  5. Effects of heavy metal adsorption on silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-06-02

    Based on first-principles calculations, we study the effects of heavy metal atoms (Au, Hg, Tl, and Pb) adsorbed on silicene. We find that the hollow site is energetically favorable in each case. We particulary address the question how the adsorption modifies the band structure in the vicinity of the Fermi energy. Our results demonstrate that the heavy metal adatoms result in substantial energy gaps and band splittings in the silicene sheet as long as the binding is strong, which, however, is not always the case. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) Carbon nanotube flexible sponge was manufactured as high performance electromagnetic shielding material. Chemical vapour deposition (CVD) synthesized sponges with extreme light weight show an electromagnetic shielding above 20 dB and a specific electromagnetic shielding as high as 1100 dB cm3g-1 in the whole 1-18 GHz range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Methods of producing adsorption media including a metal oxide

    Science.gov (United States)

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  7. Enhanced selective metal adsorption on optimised agroforestry waste mixtures.

    Science.gov (United States)

    Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta

    2015-04-01

    The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Adsorption of heavy metals by agroforestry waste derived activated ...

    African Journals Online (AJOL)

    Adsorption of heavy metals by agroforestry waste derived activated carbons applied to aqueous solutions. Jane M Misihairabgwi, Abisha Kasiyamhuru, Peter Anderson, Colin J Cunningham, Tanya A Peshkur, Ignatious Ncube ...

  9. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chia-Hsin [Institute of Environmental Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan (China); Lien, Hsing-Lung, E-mail: lien.sam@nuk.edu.tw [Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan (China); Chung, Jung-Shing [Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan (China); Yeh, Hund-Der [Institute of Environmental Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan (China)

    2017-01-15

    Highlights: • A reusable magnetic nano-adsorbent is prepared for precious metal adsorption. • The nano-adsorbent (MNP-G3) is synthesized by magnetic nanoparticles and dendrimer. • Higher valent ions show higher adsorption capacity by MNP-G3 suggesting complexation involved. • The pseudo second-order model best describe the adsorption kinetics. • MNP-G3 modified by EDTA significantly improve its adsorption ability for Ag(I). - Abstract: Magnetic nanoparticles modified by third-generation dendrimers (MNP-G3) and MNP-G3 further modified by ethylenediaminetetraacetic acid (EDTA) (MNP-G3-EDTA) were conducted to investigate their ability for recovery of precious metals (Pd(IV), Au(III), Pd(II) and Ag(I)) in water. Experiments were carried out using batch reactors for the studies of adsorption kinetics, adsorption isotherms, competitive adsorption and regeneration. The pseudo second-order model is the best-fit model among others suggesting that the adsorption of precious metals by MNP-G3 in water is a chemisorption process. Three adsorption isotherms namely Langmuir, Freundlich and Dubinin-Radushkevich isotherm were examined and the results showed the similarities and consistency of both linear and nonlinear analyses. Pd(IV) and Au(III) with higher valence exhibited relatively better adsorption efficiency than Pd(II) and Ag(I) with lower valence suggesting that the adsorption of precious metals by MNP-G3 is a function of valence. In the presence of the competing ion Zn(II), the adsorption efficiency of MNP-G3 for all four precious metals was declined significantly. The use of MNP-G3-EDTA revealed an increase in the adsorption efficiency for all four precious metals. However, the low selectivity of MNP-G3 towards precious metals was not enhanced by the modification of EDTA onto the MNP-G3. The regeneration of metal-laden MNP-G3 can be readily performed by using 1.0% HCl solution as a desorbent solution.

  10. Adsorption of Metallic Ions onto Chitosan : Equilibrium and Kinetic Studies

    OpenAIRE

    Benavente, Martha

    2008-01-01

    Equilibrium isotherms and the adsorption kinetics of heavy metals onto chitosan were studied experimentally. Chitosan, a biopolymer produced from crustacean shells, has applications in various areas, particularly in drinking water and wastewater treatment due to its ability to remove metallic ions from solutions. The adsorption capacity of chitosan depends on a number of parameters: deacetylation degree, molecular weight, particle size and crystallinity. The purpose of this work was to study ...

  11. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  12. Adsorption of strontium (II) metal ions using phosphonate ...

    Indian Academy of Sciences (India)

    analysis and solubility. The synthesized polymer was used for sequestering strontium metal from the aqueous solu- tion. The metal binding was examined by the energy dispersive spectroscopy and scanning electron microscopy for the adsorbed Sr(II). Batch adsorption studies were performed by varying three parameters, ...

  13. Adsorption of strontium (II) metal ions using phosphonate ...

    Indian Academy of Sciences (India)

    The synthesized polymer was used for sequestering strontium metal from the aqueous solu- tion. The metal binding was examined by the energy dispersive spectroscopy and scanning electron microscopy for the adsorbed Sr(II). Batch adsorption studies were performed by varying three parameters, namely initial pH, adsor-.

  14. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  15. Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble

    Science.gov (United States)

    Dunne, Lawrence J.; Manos, George

    2018-03-01

    Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO2 and CH4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO2 and CH4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes. This article is part of the theme issue `Modern theoretical chemistry'.

  16. Metal adsorption on monolayer blue phosphorene: A first principles study

    Science.gov (United States)

    Khan, Imran; Son, Jicheol; Hong, Jisang

    2018-01-01

    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  17. Adsorption of Bio accumulated Heavy Metals Using Activated ...

    African Journals Online (AJOL)

    ... minutes using metal ion concentration range of 100 - 500mg/L. The adsorption of copper and lead ions from aqueous solutions by 0.2 mole MgCl2 activated palm kennel shell was investigated. The results show that maximum adsorption occurred at 80.0 mg/g for Cu2+ and 114.0 mg/g for Pb2+ with raw palm kernel shell.

  18. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    Science.gov (United States)

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Adsorption of metals by immobilized tannins

    International Nuclear Information System (INIS)

    Santana, J.L.; Olivares, S.; De La Rosa, D.; Martinez, F.; Vargas, L.M.

    1996-01-01

    Simultaneous adsorption of thorium, europium, cerium, and neodymium by immobilized tannic was studied at different ph values. Tannic materials have excellent ability to adsorb selectively thorium at pH 5. The rest of the elements could be isolated in group at pH 7

  20. Gas adsorption on metal-organic frameworks

    Science.gov (United States)

    Willis, Richard R [Cary, IL; Low, John J. , Faheem, Syed A.; Benin, Annabelle I [Oak Forest, IL; Snurr, Randall Q [Evanston, IL; Yazaydin, Ahmet Ozgur [Evanston, IL

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  1. Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lasheen, M.R., E-mail: ragaei24@link.net [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Sherif, Iman Y., E-mail: iman57us@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); Tawfik, Magda E., E-mail: magdaemileta@yahoo.com [Polymers and Pigments Department, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Wakeel, S.T., E-mail: shaimaa_tw@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Shahat, M.F., E-mail: elshahatmf@hotmail.com [Faculty of Science, Ain Shams University, Khalifa El-Maamon St., Abbasiya Sq., 11566, Cairo (Egypt)

    2016-08-15

    Highlights: • Nano magnetite–chitosan films were prepared by casting method. • The efficiency of the prepared films for removing heavy metals was investigated. • The adsorption mechanism was studied using different isotherm and kinetic models. • Films reuse and metals recovery were studied. - Abstract: Nano magnetite chitosan (NMag–CS) film was prepared and characterized with different analytical methods. X-ray diffraction (XRD) patterns confirmed the formation of a pure magnetite structure and NMag–CS nanocomposite. TEM image of the film, revealed the uniform dispersion of magnetite nanoparticles inside chitosan matrix. The adsorption properties of the prepared film for copper, lead, cadmium, chromium and nickel metal ions were evaluated. Different factors affecting the uptake behavior by the composite films such as time, initial pH and film dose were investigated. The adsorption equilibrium attained using 2 g/L of the film after 120 min of reaction. The equilibrium data were analyzed using Langmuir and Freundlich models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all metals. The metals regenerated from films with an efficiency greater than 95% using 0.1 M ethylene diamine tetra acetic acid (EDTA) and films were successfully reused for adsorption.

  2. Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yu Li Huang

    2014-03-01

    Full Text Available Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc and Zn-phthalocyanine (ZnPc on Au(111 and Ag(111 surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111 are exclusively due to Pauli pushback. On Ag(111, we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states.

  3. CO adsorption on transition metal clusters: Trends from density functional theory

    Science.gov (United States)

    Zeinalipour-Yazdi, Constantinos D.; Cooksy, Andrew L.; Efstathiou, Angelos M.

    2008-05-01

    This work reports for the first time the trends for carbon monoxide (CO) chemisorption on transition metal clusters present in supported metal catalysts. In particular, the energetic, structural and infrared adsorption characteristics of linearly (atop) CO adsorbed on transition metal nano-clusters of less than 10 Å in size were explored. Spin-unrestricted density functional theory (DFT) calculations were employed to explore the trends of CO adsorption energy (AM-CO) and C-O vibrational frequency (νCO) for clusters composed of Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au. The effects of the transition metal electronic structure onto the adsorption energy of CO and the vibrational stretching frequency of C-O, and how these chemical parameters can be correlated to the catalytic activity of transition supported metal catalysts that involve the adsorption, surface diffusion, and C-O bond dissociation elementary steps in heterogeneous catalytic surface reactions, are discussed. Our findings show that an increase of the electronic d-shell occupancy and the principal quantum number (n) in transition metals causes an increase in the vibrational stretching frequency of the C-O bond. This trend is inconsistent with the classical Blyholder model for the metal-carbonyl bond.

  4. SEPARATION OF METAL SALTS BY ADSORPTION

    Science.gov (United States)

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  5. Adsorption of heavy metals on modified snail ( Archachatina ...

    African Journals Online (AJOL)

    Adsorption of heavy metals on modified snail (Archachatina marginata) shell. EU Ikhuoria, C Uyammadu. Abstract. No Abstract Available Ghana J. Sci, Vol.41 2001: 29-33. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjs.v41i1.15882.

  6. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    GREGORY

    2012-01-10

    Jan 10, 2012 ... 7000, and 11000 mg/l, increased the samples of river water; and then they are mixed in JAR TEST apparatus twice for one and ... Key words: Chalus River, adsorption, heavy metal, suspended particle, sediment. INTRODUCTION .... concentrations using the conventional method of flame atomic absorption ...

  7. Adsorption of strontium (II) metal ions using phosphonate ...

    Indian Academy of Sciences (India)

    The metal binding was examined by the energy dispersive spectroscopy and scanning electron microscopy for the adsorbed Sr(II). Batch adsorption studies were performed by varying three parameters, namely initial pH, adsorbentdose and the contact time. The reaction kinetics was determined by the Langmuir, Freundlich, ...

  8. Lead (II) and nickel (II) adsorption kinetics from aqueous metal ...

    African Journals Online (AJOL)

    This paper discusses the kinetics of lead (II) and Nickel (II) ions adsorption from aqueous solutions using chemically modified and unmodified agricultural adsorbents at 28°C, pH 6.2 and 0.01M NaCl ionic strength. The removal of the two metals were found to increase with increase in chemical modification, the sequence ...

  9. Adsorptive Removal of Metal Ions from Water using Functionalized Biomaterials.

    Science.gov (United States)

    Deshpande, Kanchanmala

    2017-01-01

    Synthesis and modification of cost-effective sorbents for removing heavy metals from water resources is an area of significance. It had been reported that materials with biological origins, such as agricultural and animal waste, are excellent alternatives to conventional adsorbents due to their higher affinity, capacity and selectivity towards metal ions. These properties of biomaterials help to reduce or detoxify metal ions concentration in contaminated water to acceptable regulatory standards. Synthesis of novel, efficient, cost effective, eco-friendly biomaterials for heavy metal adsorption from water is still an area of challenge. In this comprehensive review, acompilation of patents as well as published articles is carried out to outline the properties of different biomaterials based on their precursors along withdetailed description of biomaterial morphology and various surface modification approaches. A detailed study of the performance of adsorbents and the role of physical and chemical modification in terms of enhancing their potential for metal adsorption from water is compiled here. The factors affecting adsorption behavior i.e., capacity and affinity of e biomaterials is also compiled. This paper presents a concise review of reported studies on the synthesis and modification of biomaterials, their use for heavy metal removal from waters and future prospects of this technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Investigating the Heavy Metal Adsorption of Mesoporous Silica Materials Prepared by Microwave Synthesis.

    Science.gov (United States)

    Zhu, Wenjie; Wang, Jingxuan; Wu, Di; Li, Xitong; Luo, Yongming; Han, Caiyun; Ma, Wenhui; He, Sufang

    2017-12-01

    Mesoporous silica materials (MSMs) of the MCM-41 type were rapidly synthesized by microwave heating using silica fume as silica source and evaluated as adsorbents for the removal of Cu 2+ , Pb 2+ , and Cd 2+ from aqueous solutions. The effects of microwave heating times on the pore structure of the resulting MSMs were investigated as well as the effects of different acids which were employed to adjust the solution pH during the synthesis. The obtained MCM-41 samples were characterized by nitrogen adsorption-desorption analyses, X-ray powder diffraction, and transmission electron microscopy. The results indicated that microwave heating method can significantly reduce the synthesis time of MCM-41 to 40 min. The MCM-41 prepared using citric acid (c-MCM-41(40)) possessed more ordered hexagonal mesostructure, higher pore volume, and pore diameter. We also explored the ability of c-MCM-41(40) for removing heavy metal ions (Cu 2+ , Pb 2+ , and Cd 2+ ) from aqueous solution and evaluated the influence of pH on its adsorption capacity. In addition, the adsorption isotherms were fitted by Langmuir and Freundlich models, and the adsorption kinetics were assessed using pseudo-first-order and pseudo-second-order models. The intraparticle diffusion model was studied to understand the adsorption process and mechanism. The results confirmed that the as-synthesized adsorbent could efficiently remove the heavy metal ions from aqueous solution at pH range of 5-7. The adsorption isotherms obeyed the Langmuir model, and the maximum adsorption capacities of the adsorbent for Cu 2+ , Pb 2+ , and Cd 2+ were 36.3, 58.5, and 32.3 mg/g, respectively. The kinetic data were well fitted to the pseudo-second-order model, and the results of intraparticle diffusion model showed complex chemical reaction might be involved during adsorption process.

  11. From Electronic Structure to Catalytic Activity: A Single Descriptor for Adsorption and Reactivity on Transition-Metal Carbides

    DEFF Research Database (Denmark)

    Vojvodic, A.; Hellman, Anders; Ruberto, C.

    2009-01-01

    Adsorption and catalytic properties of the polar (111) surface of transition-metal carbides (TMC's) are investigated by density-functional theory. Atomic and molecular adsorption are rationalized with the concerted-coupling model, in which two types of TMC surface resonances (SR's) play key roles...

  12. Adsorption of metal adatoms on single-layer phosphorene.

    Science.gov (United States)

    Kulish, Vadym V; Malyi, Oleksandr I; Persson, Clas; Wu, Ping

    2015-01-14

    Single- or few-layer phosphorene is a novel two-dimensional direct-bandgap nanomaterial. Based on first-principles calculations, we present a systematic study on the binding energy, geometry, magnetic moment and electronic structure of 20 different adatoms adsorbed on phosphorene. The adatoms cover a wide range of valences, including s and p valence metals, 3d transition metals, noble metals, semiconductors, hydrogen and oxygen. We find that adsorbed adatoms produce a rich diversity of structural, electronic and magnetic properties. Our work demonstrates that phosphorene forms strong bonds with all studied adatoms while still preserving its structural integrity. The adsorption energies of adatoms on phosphorene are more than twice higher than on graphene, while the largest distortions of phosphorene are only ∼0.1-0.2 Å. The charge carrier type in phosphorene can be widely tuned by adatom adsorption. The unique combination of high reactivity with good structural stability is very promising for potential applications of phosphorene.

  13. Gel bead composition for metal adsorption

    Science.gov (United States)

    Scott, Charles D.; Woodward, Charlene A.; Byers, Charles H.

    1990-01-01

    The invention is a gel bead comprising propylene glycol alginate and bone gelatin and is capable of removing metals such as Sr and Cs from solution without adding other adsorbents. The invention could have application to the nuclear industry's waste removal activities.

  14. Removal of heavy metals and pollutants by membrane adsorption techniques

    Science.gov (United States)

    Khulbe, K. C.; Matsuura, T.

    2018-03-01

    Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.

  15. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    Science.gov (United States)

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  16. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    Science.gov (United States)

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  17. Adsorption of heavy metals in waste water using biological materials

    Directory of Open Access Journals (Sweden)

    Candelaria Tejada-Tovar

    2015-01-01

    Full Text Available Biosorption is a process that allows active or passive uptake of metal ions due to the property that different living or dead biomass have to bind and accumulate these pollutants by different mechanisms. The application of low-cost materials obtained from different biomass from microbial flora, agro-industrial waste and algae has been investigated to replace the use of conventional methods for the removal of contaminants such as heavy metals. Some of the metals of greatest impact to the environment due to its high toxicity and difficult to remove are chromium, nickel, cadmium, lead, and mercury. In this paper, an overview of adsorption as an alternative process for the removal of contaminants in solution and biomass commonly used in these processes, as well as some of the modifications made to improve the efficiency of adsorption of these materials is presented. It was concluded that the use of adsorption in the removal of pollutants in aqueous solution using waste biomass is applicable to these decontamination processes avoiding subsequent problems such as the generation of chemical sludge, and generating an alternative to use materials considered as waste. It is further identified that such factors as the pH of the solution, particle size, temperature, and concentration of metal effect on the process.

  18. A computational study of adsorption of divalent metal ions on graphene oxide

    Directory of Open Access Journals (Sweden)

    Somphob Thompho

    2017-12-01

    Full Text Available Adsorption of divalent metal ions (Pb2+,Cd2+, Zn2+,Cu2+ on graphene oxide (GO was studied using density functional theory (DFT. Adsorption geometries and energies, as well as the nature of the binding energy, were calculated for the interaction of divalent metal ions with oxygen-containing groups on the surface of GO. The configurations of the complexes were modeled by placing the divalent metal ions above the center and perpendicular to the surface. Binding of Cu2+ to the GO sheet was predicted to be much stronger than that for other divalent metal ions. Calculated results show good agreement with experimental observations and provide useful information for environmental pollution cleanup.

  19. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate.

    Science.gov (United States)

    Hakumai, Yuichi; Oike, Shota; Shibata, Yuka; Ashiuchi, Makoto

    2016-06-01

    Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials.

  20. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces.

    Science.gov (United States)

    Rudrake, Amit; Karan, Kunal; Horton, J Hugh

    2009-04-01

    To investigate asphaltene-metal interactions, a combined quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS) study of asphaltene adsorption on a gold surface was conducted. Adsorption experiments were conducted at 25 degrees C with solutions of asphaltenes in toluene at concentrations ranging from 50 to 1500 ppm. QCM measurements yielded information on the kinetics of adsorption and further assessment of the data allowed the estimation of equilibrium adsorption levels. XPS analysis of adsorbed and bulk asphaltene demonstrated the presence of carboxylic, thiophenic, sulfide, pyridinic and pyrrolic type functional groups. The intensity of the main carbon (C-H) peak was related to surface coverage of adsorbed asphaltene as a function of asphaltene concentration by a simple mathematical model. The mass adsorption data from the QCM experiments also allowed estimation of the surface coverage, which was compared to those from XPS analyses. Surface coverage estimates as a function of asphaltene concentration could be described by a Langmuir (type-I) isotherm. The free energy of asphaltene adsorption was estimated to be -26.8+/-0.1 and -27.3+/-0.1 kJ/mol from QCM and XPS data, respectively assuming asphaltene molar mass of 750 g/gmol. QCM and XPS data was also analyzed to estimate adsorbed layer thickness after accounting for surface coverage. The thickness of the adsorbed asphaltene estimated from both XPS and QCM data analyses ranged from 6-8 nm over the entire range of adsorption concentrations investigated.

  1. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  2. COMPARATIVE STUDY ON METAL IONS ADSORPTION ON A LOW COST CARBONACEOUS ADSORBENT KINETIC EQUILIBRIUM AND MECHANISTIC STUDIES

    Directory of Open Access Journals (Sweden)

    S. Arivoli, M. Hema, C. Barathiraja

    2008-01-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste and treated by acid was tested for its efficiency in removing metal ions of Fe(II, Co(II and Ni(II. The process parameters studied included agitation time, initial metal ion concentration, carbon dosage, pH, other ions and temperature. The kinetics of adsorption followed first order reaction equation and the rate was mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity obtained from the Langmuir isotherm plots was found around 28mg/g for all selected metal ions at an initial pH of 6. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying pH of the metal ion solutions. The type I and II isotherms obtained, positive H0 values, pH dependent results and desorption of metal ions in mineral acid suggests that the adsorption of metal ions on this type of adsorbent involves both chemisorption and physical adsorption mechanisms.

  3. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1992-01-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes. 86 refs., 1 fig., 1 tab

  4. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  5. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  6. MATHEMATICAL MODELING OF BATCH ADSORPTION OF MANGANESE ONTO BONE CHAR

    Directory of Open Access Journals (Sweden)

    M. E. Maria

    Full Text Available Abstract The present study investigated the dynamics of batch adsorption of manganese onto bone char by using two distinct mathematical formulations: the diffusion model and the shrinking core model. Both models assumed spherical particles and adequately described the transient behavior of metal adsorption under changing operating conditions. Comparatively, the diffusion model described the manganese adsorption better at distinct particle sizes even when small particles were used (dp ≤ 0.147 mm; the shrinking core model proved to be more reliable when larger adsorbent particles were used (dp > 0.147 mm, and it described experimental data better at changing solid-liquid ratios. Manganese adsorption was favored when: (i smaller adsorbing particles were used due to the increase in the contact area and easier access to reacting sites of the char; however, such an effect proved to be limited to dp ≤ 0.147 mm, and (ii higher solid-liquid ratios were used due to the increase in the available reacting sites. External and intraparticle mass transfer dependences on particle size and solid-liquid ratio were also investigated, and results corroborated with prior investigations found in the literature.

  7. Adsorption of Heavy Metals on Biologically Activated Brown Coal Sludge

    Directory of Open Access Journals (Sweden)

    Mária Praščáková

    2005-11-01

    Full Text Available Adsorption of cooper (II and zinc (II ions from aqueous solutions on a biologically activated brown coal sludge was investigated. Four families of adsorbents were prepared from the brown coal sludge bya microorganism’s activity. There were used microscopic fungi such as Aspergillus niger, Aspergillus clavatus, Penicillium glabrum and Trichoderma viride. Prepared sorbents were capable of removing Cu (II and Zn (II. The sorption isotherm has been constructed and the specific metal uptake and the maximum capacity of the adsorbent have been determined.

  8. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1).

    Science.gov (United States)

    Conde-González, J E; Peña-Méndez, E M; Rybáková, S; Pasán, J; Ruiz-Pérez, C; Havel, J

    2016-05-01

    Silver nanoparticles (AgNP) are emerging pollutants. The use of novel materials such as Cu-(benzene 1,3,5-tricarboxylate, BTC) Metal-Organic Framework (MOFs), for AgNP adsorption and their removal from aqueous solutions has been studied. The effect of different parameters was followed and isotherm model was suggested. MOFs adsorbed fast and efficiently AgNP in the range C0 < 10 mg L(-1), being Freundlich isotherm (R = 0.993) these data fitted to. Among studied parameters a remarkable effect of chloride on sorption was found, thus their possible interactions were considered. The high adsorption efficiency of AgNP was achieved and it was found to be very fast. The feasibility of adsorption on Cu-(BTC) was proved in spiked waters. The results showed the potential interest of new material as adsorbent for removing AgNP from environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption.

    Science.gov (United States)

    Mungondori, Henry H; Mtetwa, Sandile; Tichagwa, Lilian; Katwire, David M; Nyamukamba, Pardon

    2017-05-01

    The adsorption of a multi-component system of ferrous, chromium, copper, nickel and lead on single, binary and ternary composites was studied. The aim of the study was to investigate whether a ternary composite of clay, peanut husks (PH) and saw-dust (SD) exhibited a higher adsorption capacity than that of a binary system of clay and SD as well as a single component adsorbent of PH alone. The materials were used in their raw state without any chemical modifications. This was done to retain the cost effective aspect of the naturally occurring adsorbents. The adsorption capacities of the ternary composite for the heavy metals Fe 2+ , Cr 3+ , Cu 2+ , Ni 2+ and Pb 2+ were 41.7 mg/g, 40.0 mg/g, 25.5 mg/g, 41.5 mg/g and 39.0 mg/g, respectively. It was found that the ternary composite exhibited excellent and enhanced adsorption capacity compared with both a binary and single adsorbent for the heavy metals Fe 2+ , Ni 2+ and Cr 3+ . Characterization of the ternary composites was done using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Kinetic models and adsorption isotherms were also studied. The pseudo second order kinetic model and the Langmuir adsorption isotherm best described the adsorption mechanisms for the ternary composite towards each of the heavy metal ions.

  10. Research of Adsorption on PCBs: Isotherm Modeling and Influencing Factors

    Directory of Open Access Journals (Sweden)

    Liang Peiyu

    2016-01-01

    Full Text Available PCBs are a group of persistent organic pollutants (POPs in the environment. Adsorption behavior of PCBs has obtained great attention affecting the degradation, mobility activities. In this paper, adsorption process was studied systematically to figure out the model of adsorption, adsorption mechanism and the influencing factors, which will provides the theoretical basis for further research.

  11. Research of Adsorption on PCBs: Isotherm Modeling and Influencing Factors

    OpenAIRE

    Liang Peiyu; Xing Luping; Xuan Hui; Xue Wen

    2016-01-01

    PCBs are a group of persistent organic pollutants (POPs) in the environment. Adsorption behavior of PCBs has obtained great attention affecting the degradation, mobility activities. In this paper, adsorption process was studied systematically to figure out the model of adsorption, adsorption mechanism and the influencing factors, which will provides the theoretical basis for further research.

  12. Modified silicates applied in adsorption of heavy metal; Silicatos modificados aplicados na adsorcao de metal pesado

    Energy Technology Data Exchange (ETDEWEB)

    Farias, M.C.M. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Raposo, C.M.O., E-mail: raposo@dmg.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Mineracao e Geologia

    2010-07-01

    The levels of heavy metals in the environment has increased considerably in recent decades due to various human activities, which cause serious pollution problems, both in aquatic systems and in soil. The clay minerals present himself as amenable to the adsorption of metal ions and, sometimes, taking the advantage of being abundant and inexpensive. Vermiculite has intrinsic characteristics which favor its use as adsorbent. In this work, we investigate the adsorption of lead (II) from aqueous solutions by vermiculite fractions in commercial, fine to medium in molar concentration between 1-4 mmol (s). The samples provided by the Uniao Brasileira de Mineracao/Paraiba/Brazil were modified thermal and organically. The results of X-ray diffraction associated with the results of X-ray fluorescence showed that the average fraction vermiculite exfoliated organically modified responded most significantly to the adsorption process when compared to vermiculite fine fraction under the same conditions. (author)

  13. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  14. Modeling the Adsorption of Oxalate onto Montmorillonite.

    Science.gov (United States)

    Ramos, M Elena; Emiroglu, Caglayan; García, David; Sainz-Díaz, C Ignacio; Huertas, F Javier

    2015-11-03

    In this work, a multiscale modeling of the interaction of oxalate with clay mineral surfaces from macroscale thermodynamic equilibria simulations to atomistic calculations is presented. Previous results from macroscopic adsorption data of oxalate on montmorillonite in 0.01 M KNO3 media at 25 °C within the pH range from 2.5 to 9 have been used to develop a surface complexation model. The experimental adsorption edge data were fitted using the triple-layer model (TLM) with the aid of the FITEQL 4.0 computer program. Surface complexation of oxalate is described by two reactions: >AlOH + Ox(2-) + 2H(+) = >AlOxH + H2O (log K = 14.39) and >AlOH + Ox(2-) + H(+) = >AlOx(-) + H2O (log K = 10.39). The monodentate complex >AlOxH dominated adsorption below pH 4, and the bidentate complex >AlOx(-) was predominant at higher pH values. Both of the proposed inner-sphere oxalate species are qualitatively consistent with previously published diffuse reflectance FTIR spectroscopic results for oxalate on montmorillonite edge surface (Chem. Geol. 2014, 363, 283-292). Atomistic computational studies have been performed to understand the interactions at the molecular level between adsorbates and mineral surface, showing the atomic structures and IR frequency shifts of the adsorption complexes of oxalate with the edge surface of a periodic montmorillonite model.

  15. The role of metal ion-ligand interactions during divalent metal ion adsorption.

    Science.gov (United States)

    Eldridge, Daniel S; Crawford, Russell J; Harding, Ian H

    2015-09-15

    A suite of seven different divalent metal ions (Ca(II), Cd(II), Cu(II), Mg(II), Ni(II), Pb(II), Zn(II)) was adsorbed from solution onto two Fe2O3 samples, quartz SiO2 and three different amphoteric polystyrene latices (containing amine and carboxyl functional groups). For the metal oxides, a high correlation was observed between the pH at which 50% of the metal was removed from solution (pH50) and the first hydrolysis constant for the metal ion (pK1). For the polystyrene latices, a much higher correlation was observed between the pH50 and pKc (equilibrium constant describing metal-carboxyl affinity) as opposed to pK1. These observations provide evidence of a strong relationship that exists between a metal's affinity for a particular ligand in solution and for that metal ion's affinity for the same ligand present as part of an adsorbing surface. The isoelectric point of the amphoteric latex surface can be increased by decreasing the carboxyl content of the latex surface. For all 7 metal ions, this resulted in a substantial decrease, for any given pH, in adsorption. We suggest that this may be partly due to the decreased carboxyl content, but is dominantly attributable to the presence of less favorable electrostatic conditions. This, in turn, demonstrates that electrostatics play a controlling role in metal ion adsorption onto amphoteric latex surfaces and, in addition to the nature of the metal ion, also controls the pH at which adsorption takes place. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  16. Computational studies of adsorption in metal organic frameworks and interaction of nanoparticles in condensed phases

    Energy Technology Data Exchange (ETDEWEB)

    Annapureddy, HVR; Motkuri, RK; Nguyen, PTM; Truong, TB; Thallapally, PK; McGrail, BP; Dang, LX

    2014-02-05

    In this review, we describe recent efforts to systematically study nano-structured metal organic frameworks (MOFs), also known as metal organic heat carriers, with particular emphasis on their application in heating and cooling processes. We used both molecular dynamics and grand canonical Monte Carlo simulation techniques to gain a molecular-level understanding of the adsorption mechanism of gases in these porous materials. We investigated the uptake of various gases such as refrigerants R12 and R143a. We also evaluated the effects of temperature and pressure on the uptake mechanism. Our computed results compared reasonably well with available measurements from experiments, thus validating our potential models and approaches. In addition, we investigated the structural, diffusive and adsorption properties of different hydrocarbons in Ni-2(dhtp). Finally, to elucidate the mechanism of nanoparticle dispersion in condensed phases, we studied the interactions among nanoparticles in various liquids, such as n-hexane, water and methanol.

  17. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent.

    Science.gov (United States)

    Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining

    2017-10-01

    A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.

    Science.gov (United States)

    Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara

    2014-01-01

    In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.

  19. Adsorption and Self-Assembly of Surfactants on Metal-Water Interfaces.

    Science.gov (United States)

    Ko, Xueying; Sharma, Sumit

    2017-11-16

    Modifying properties of metal-water interfaces via adsorption of surfactants has applications in electrochemistry and catalysis. We report molecular simulations of adsorption of surfactant molecules on metal surfaces wherein we systematically vary the strength of hydrophobic interaction between surfactant tails, as well as the size of the surfactants' polar head group. A surfactant molecule is represented by a linear, bead-spring model with a polar "head" bead and a chain of hydrophobic "tail" beads. A smooth surface, strongly attractive to the polar beads, represents the metal surface. Our main findings are that (1) hydrophobic interactions between adsorbed molecules promote adsorption and self-assembly and (2) the morphology of the adsorbed layer is governed by the geometry of the molecules. When the size of the polar bead is the same as that of the hydrophobic beads, an adsorbed self-assembled monolayer (SAM) is formed. When the polar bead is larger than the hydrophobic beads, cylindrical micelles are formed in the bulk and the adsorbed phase. For the adsorbed SAM, the layer is patchy, with a significant fraction of the molecules adsorbed with their polar beads pointing away from the surface. These results corroborate with experimental observations and provide new insights into the molecular nature of adsorbed layers.

  20. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  1. Optimization of Continuous Flow Adsorption of Heavy Metal Ions on Continuous System Column by Peganum Harmala Seeds

    Directory of Open Access Journals (Sweden)

    Elhameh Mohammadpour

    2017-01-01

    Full Text Available Background & Aims of the Study: Heavy metals discharge to environment is a worldwide problem growing in scale. When they accumulate in the environment and in food chains, they can profoundly disrupt biological processes. Peganum Harmala Seeds (PHS was used as a bio-sorbent, using a continuous system for removing Pb2+, Co2+, Ni2+ and Cu2+ ions from aqueous solutions. Materials and Methods: PHS was used as adsorbent in adsorption of heavy metals from aqueous solutions. A stock solution of Pb(II, Co(II, Cu (II and Ni (II was prepared and experiments were down in a column as a reactor. The concentration was determined by atomic adsorption spectroscopy. The effect of various parameters such as pH, contact time, heavy metal concentration, ionic strength, particle size and adsorbent dosage on the process was investigated. Langmuir, Frundlich and Temkin isotherms were studied to evaluate of adsorption isotherms. Results: The adsorption efficiency was found to be pH dependent and enhanced by increasing the solution pH. Maximum removal of ions were obtained at pH=4-8. The equilibrium time was attained after 30 min and desorption studies were performed, using diluted HNO3, H2SO4 and HCl solution (1M on adsorbed metal ions from PHS. Results illustrated that adsorbed metal ions could be recovered under acidic conditions. Investigation of the process kinetic was best fitted with pseudo second-order model. Langmuir, Freundlich and Temkin models were tested for describing the equilibrium data. The Langmuir isotherm illustrated the best description of the cobalt and copper adsorption mechanism and Freundlich model describes lead and nickel ions adsorption on PHS. Conclusion: It was found that PHS would be a good adsorbent for removal of heavy metals.

  2. Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from ...

    African Journals Online (AJOL)

    cinthia

    This study was carried out to evaluate the efficiency of metals (Cu, Fe, Pb, Cr and Cd) removal from mixed metal ions solution using coconut husk as adsorbent. The effects of varying contact time, initial metal ion concentration, adsorbent dose and pH on adsorption process of these metals were studied using synthetically ...

  3. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: comparison with microfibers.

    Science.gov (United States)

    Neghlani, Parvin Karimi; Rafizadeh, Mehdi; Taromi, Faramarz Afshar

    2011-02-15

    Polyacrylonitrile nanofibers (PAN-nFs) were produced using the electrospinning method. Subsequently, the electrospun fibers were modified by diethylenetriamine to produce aminated polyacrylonitrile (APAN) nanofibers. Finally, the adsorbability of copper ions on the surface of the nanofibers was examined in an aqueous solution. Attenuated total internal reflection (ATIR) analysis confirmed the surface amination of the produced PAN-nFs. The grafting yield was calculated by the gravimetric method. The optimum condition was determined to yield the maximum grafting of amine groups to PAN with no losses in sample flexibility. Atomic absorption spectroscopy (AAS) was used to measure the copper ion concentration in the solution. Results indicate that the adsorption process in nanofibers is three times faster in comparison with microfibers. Moreover, the pH effect was studied based on the adsorption behavior of copper ions on the APAN nanofibers. In addition, thermodynamic parameters were calculated, revealing that the process was endothermic and demonstrating that randomness increased at the solid-solution interface during the process. The obtained enthalpy value indicates that the chelation of copper ions among the aminated polyacrylonitrile can be regarded as a chemical adsorption process. The adsorption data fit well with the Langmuir isotherm. The saturation adsorption capacity obtained from the Langmuir model for Cu(II) ions was 116.522 mg/g which is five times more than the reported value for APAN microfibers [S. Deng, R. Bai, J.P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal, Langmuir,19 (2003)5058-5064]. Analysis using atomic force microscopy (AFM) showed that the surface roughness increased upon adsorption of the metal ion. Scanning electron microscopy (SEM) examination demonstrated that there were no cracks or sign of degradation on the surface after amination. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers

    International Nuclear Information System (INIS)

    Neghlani, Parvin Karimi; Rafizadeh, Mehdi; Taromi, Faramarz Afshar

    2011-01-01

    Polyacrylonitrile nanofibers (PAN-nFs) were produced using the electrospinning method. Subsequently, the electrospun fibers were modified by diethylenetriamine to produce aminated polyacrylonitrile (APAN) nanofibers. Finally, the adsorbability of copper ions on the surface of the nanofibers was examined in an aqueous solution. Attenuated total internal reflection (ATIR) analysis confirmed the surface amination of the produced PAN-nFs. The grafting yield was calculated by the gravimetric method. The optimum condition was determined to yield the maximum grafting of amine groups to PAN with no losses in sample flexibility. Atomic absorption spectroscopy (AAS) was used to measure the copper ion concentration in the solution. Results indicate that the adsorption process in nanofibers is three times faster in comparison with microfibers. Moreover, the pH effect was studied based on the adsorption behavior of copper ions on the APAN nanofibers. In addition, thermodynamic parameters were calculated, revealing that the process was endothermic and demonstrating that randomness increased at the solid-solution interface during the process. The obtained enthalpy value indicates that the chelation of copper ions among the aminated polyacrylonitrile can be regarded as a chemical adsorption process. The adsorption data fit well with the Langmuir isotherm. The saturation adsorption capacity obtained from the Langmuir model for Cu(II) ions was 116.522 mg/g which is five times more than the reported value for APAN microfibers [S. Deng, R. Bai, J.P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal, Langmuir,19 (2003)5058-5064]. Analysis using atomic force microscopy (AFM) showed that the surface roughness increased upon adsorption of the metal ion. Scanning electron microscopy (SEM) examination demonstrated that there were no cracks or sign of degradation on the surface after amination.

  5. Modeling adsorption of liquid mixtures on porous materials

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2009-01-01

    The multicomponent potential theory of adsorption (MPTA), which was previously applied to adsorption from gases, is extended onto adsorption of liquid mixtures on porous materials. In the MPTA, the adsorbed fluid is considered as an inhomogeneous liquid with thermodynamic properties that depend...... of the MPTA onto liquids has been tested on experimental binary and ternary adsorption data. We show that, for the set of experimental data considered in this work, the MPTA model is capable of correlating binary adsorption equilibria. Based on binary adsorption data, the theory can then predict ternary...

  6. Preparation of a novel Zr(4+)-immobilized metal affinity membrane for selective adsorption of phosphoprotein.

    Science.gov (United States)

    He, Maofang; Wang, Chaozhan; Wei, Yinmao

    2016-09-01

    In this study, a novel phosphate-Zr(4+) immobilized metal affinity membrane (IMAM) was prepared based on the surface initiated-atom transfer radical polymerization technique for the selective adsorption of phosphoprotein. The adsorption capacity and selectivity of the phosphate-Zr(4+) IMAM were evaluated by using the mixture of standard phosphoproteins (β-casein, ovalbumin) and nonphosphoproteins (bovine serum albumin and lysozyme) as model samples. The adsorption isotherms and competitive adsorption results demonstrated that the phosphate-Zr(4+) IMAM had higher binding capacity and selectivity for phosphoproteins over nonphosphoproteins. Moreover, the phosphate-Zr(4+) IMAM exhibited good re-usability and re-productivity. Finally, the phosphate-Zr(4+) IMAM was applied to separate phosphoprotein from real samples with high purity. Therefore, the as-prepared phosphate-Zr(4+) IMAM could be a promising affinity material for the efficient enrichment of phosphoprotein from complex bio-samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of charging on silicene with alkali metal atom adsorption

    Science.gov (United States)

    Li, Manman; Li, Zhongyao; Gong, Shi-Jing

    2018-02-01

    Based on first-principles calculations, we studied the effects of charging on the structure, binding energy and electronic properties of silicene with alkali metal (AM) atom (Li, Na or K) adsorption. In AMSi2, electron doping enlarges the lattice constant of silicene, while the influence of hole doping is non-monotonic. In AMSi8, the lattice constant increases/decreases almost linearly with the increase in electron/hole doping. In addition, the AM-Si vertical distance can be greatly enlarged by excessive hole doping in both AMSi2 and AMSi8 systems. When the hole doping is as large as  +e per unit cell, both AMSi2 and AMSi8 can be transformed from metal to semiconductor. However, the binding energy would be negative in the AM+ Si2 semiconductor. It suggests AM+ Si2 is unstable in this case. In addition, the electron doping and the AM-Si vertical distance would greatly influence the band gap of silicene in LiSi8 and NaSi8, while the band gap in KSi8 is relatively stable. Therefore, KSi8 may be a more practicable material in nanotechnology.

  8. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma La “Sapienza,” 00185 Roma (Italy); Montoro, Silvia [IFIS Litoral, CONICET-UNL, Laboratorio de Fisica de Superficies e Interfaces, Güemes 3450, Santa Fe (Argentina); Mariani, Carlo, E-mail: carlo.mariani@uniroma1.it [Dipartimento di Fisica, CNISM, Università di Roma La “Sapienza,” 00185 Roma (Italy)

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.

  9. Tuning the electronic and magnetic properties of borophene by 3d transition-metal atom adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Lv, H.Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Lu, W.J., E-mail: wjlu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Shao, D.F. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xiao, R.C. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Sun, Y.P. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031 (China)

    2016-12-01

    Highlights: • Electronic and magnetic properties of borophene can be effectively tuned by the adsorption of 3d transition metal atoms. • The borophene tends to be ferromagnetic when Ti, V, Cr, Mn, and Fe atoms are adsorbed. • The origin of the ferromagnetism is analyzed based on the Stoner itinerant ferromagnetic model. - Abstract: The electronic and magnetic properties of borophene functionalized by 3d transition metal (TM) atom adsorption are investigated by using first-principles calculations. The results show that the 3d TM atoms can be adsorbed on borophene with high binding energies ranging between 5.9 and 8.3 eV. Interestingly, the originally nonmagnetic borophene tends to be ferromagnetic when Ti, V, Cr, Mn, and Fe atoms are adsorbed, and the magnetic moments are dominated by the TM atoms. The origin of the ferromagnetism is discussed based on the Stoner criterion. Our results indicate that the magnetic properties of borophene can be effectively tuned through the adsorption of 3d TM atoms, which could have promising applications in spintronics and nanoelectronics.

  10. COMPARATIVE STUDY ON METAL IONS ADSORPTION ON A LOW COST CARBONACEOUS ADSORBENT KINETIC EQUILIBRIUM AND MECHANISTIC STUDIES

    OpenAIRE

    S. Arivoli, M. Hema, C. Barathiraja

    2008-01-01

    A carbonaceous adsorbent prepared from an indigenous waste and treated by acid was tested for its efficiency in removing metal ions of Fe(II), Co(II) and Ni(II). The process parameters studied included agitation time, initial metal ion concentration, carbon dosage, pH, other ions and temperature. The kinetics of adsorption followed first order reaction equation and the rate was mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibriu...

  11. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  12. Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Lentini, C.J.; Waychunas, G.A.

    2008-09-15

    The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.

  13. The removal of heavy metals from aqueous solution by adsorption on weathered coal

    Energy Technology Data Exchange (ETDEWEB)

    Meena, A.K.; Gupta, M.D.; Mishra, G.K.; Rajagopal, C.; Nagar, P.N. [Central Research Institute (Ayurveda), Gwalior (India)

    2009-07-01

    The adsorption followed first-order kinetics. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed. On the basis of experimental results, it can be inferred that the adsorbent weathered coal may be useful in developing an adsorptive technology for the removal of heavy metals. 25 refs., 8 figs., 4 tabs.

  14. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Science.gov (United States)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  15. Adsorption of Cd(II) Metal Ion on Adsorbent beads from Biomass Saccharomycess cereviceae - Chitosan

    Science.gov (United States)

    Hasri; Mudasir

    2018-01-01

    The adsorbent beads that was preparation from Saccharomycess cereviceae culture strain FN CC 3012 and shrimp shells waste and its application for adsorption of Cd (II) metal ion has been studied. The study start with combination of Saccharomycess cereviceae biomass to chitosan (Sc-Chi), contact time, pH of solution and initial concentration of cations. Total Cd(II) metal ion adsorbed was calculated from the difference of metal ion concentration before and after adsorption by AAS. The results showed that optimum condition for adsorption of Cd(II) ions by Sc-Chi beads was achieved with solution pH of 4, contact time of 60 minutes and initial concentration adsorption 100mg/L. The hydroxyl (-OH) and amino (-NH2) functional groups were believed to be responsible for the adsorption of Cd(II) ions.

  16. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification.

    Science.gov (United States)

    Jun, Jong Won; Tong, Minman; Jung, Beom K; Hasan, Zubair; Zhong, Chongli; Jhung, Sung Hwa

    2015-01-02

    The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL-100-Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL-100-Fe is also much more rapid than that over activated carbon. Moreover, the used MIL-100-Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL-100-Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL-100 species (MIL-100-Fe, rather than MIL-100-Al or MIL-100-Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL-100-Fe, different from other analogous MIL-100 species, can be explained (through calculations) by the facile desorption of water from MIL-100-Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL-100-Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Adsorption of Cd(II on Manganese Oxide Investigated by Batch and Modeling Techniques

    Directory of Open Access Journals (Sweden)

    Xiaoming Huang

    2017-09-01

    Full Text Available Manganese (Mn oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999. The adsorption of Cd(II on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd at low pH and inner-sphere surface complexation sites (SOCd+ and (SO2CdOH− species at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface.

  18. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  19. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

    DEFF Research Database (Denmark)

    Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan

    2013-01-01

    The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains...

  20. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    Science.gov (United States)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  1. Untapped conversion of plastic waste char into carbon-metal LDOs for the adsorption of Congo red.

    Science.gov (United States)

    Miandad, R; Kumar, Rajeev; Barakat, M A; Basheer, C; Aburiazaiza, A S; Nizami, A S; Rehan, M

    2018-02-01

    A low-cost novel carbon-metal double layered oxides (C/MnCuAl-LDOs) nano-adsorbent was synthesized by co-precipitation, for the adsorption of Congo red (CR), using modified carbon derived from pyrolysis of polystyrene (PS) plastic waste. The synthesized C/MnCuAl-LDOs has a crystalline structure with a high surface area of 60.43m 2 /g and pore size of 99.85Å. Adsorption of CR using all prepared adsorbents from aqueous solution under equilibrium and kinetic conditions were evaluated against different values of the pH (4-10), initial CR concentrations (25-250mg/g), contact time (0-310min) and temperature (30-50°C). The obtained results revealed that C/MnCuAl-LDOs showed maximum adsorption capacity for CR among all the used adsorbents. The optimum equilibrium time was 180min, whereas acidic medium (pH 4.5) favored the maximum adsorption of CR up to 317.2mg/g on C/MnCuAl-LDOs. The adsorption kinetics followed the pseudo-second-order model, whereas Freundlich adsorption isotherm fitted best to obtained data in comparison to Langmuir adsorption isotherm. The results suggested that C/MnCuAl-LDOs is an efficient material for the removal of organic pollutants from the wastewater. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil.

    Science.gov (United States)

    Bogusz, Aleksandra; Oleszczuk, Patryk; Dobrowolski, Ryszard

    2017-11-07

    The goal of the study was to evaluate the application of biochar (BC) to the sewage sludge (SL) on the adsorption and desorption capacity of Cd(II), Cu(II), Ni(II) and Zn(II). The effect of biochar contribution in the sewage sludge (2.5, 5 and 10%) was investigated. The isotherms data were fitted to the Langmiur (LM), Freundlich (FM) and Temkin (TM) models. The best fitting for kinetic study was obtained for the pseudo-second-order equation. The best fitting of the experimental data was observed for the LM in the case of SL and BC, and for the FM in the case of SL- and SL/BC-amended soil. SL was characterized by even four-order higher sorption capacity than BC. The addition of the BC to the SL and next to the soil increased the adsorption capacity of the soil and the SL-amended soil. In the case of all investigated potentially toxic elements (PTEs), the highest adsorption capacity was achieved for SL-amended soil in comparison with the control soil. In the case of other experimental variants, the adsorption capacity of metal ions was as follows: 2.5% BC > 5.0% BC > 10% BC. The negative correlation between hydrated radius of metal ions and the kinetics of sorption was observed. However, the desorption of PTEs from BC/SL-amended soil was significantly lower than for SL-amended soil (except of Cd) and non-amended soil. It can be concluded that the addition of the biochar enhanced the immobilization of PTEs and reduced their bioavailability and mobility in the soil amended by the sewage sludge.

  3. The kinetics and thermodynamics of adsorption of heavy metal ions ...

    African Journals Online (AJOL)

    Titanium-Pillared and Un-Pillared bentonite clays were studied in order to evaluate the thermodynamics and kinetics of heavy metal ion removal from aqueous solutions. The results showed that the maximum sorption of Cu, Cd, Hg and Pb ions occurred within 30 minutes. A pseudo-second order kinetic model was used to ...

  4. Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons.

    Science.gov (United States)

    Zaini, Muhammad Abbas Ahmad; Okayama, Reiko; Machida, Motoi

    2009-10-30

    The objective of this study is to examine the suitability and performance of cattle-manure-compost (CMC) based activated carbons in removing heavy metal ions from aqueous solution. The influence of ZnCl(2) activation ratios and solution pH on the removal of Cu(II) and Pb(II) were studied. Pore texture, available surface functional groups, pH of point zero charge (pH(PZC)), thermogravimetric analysis and elemental compositions were obtained to characterize the activated carbons. Batch adsorption technique was used to determine the metal-binding ability of activated carbons. The equilibrium data were characterized using Langmuir, Freundlich and Redlich-Peterson models. It was found that the uptake of aqueous metal ions by activated carbons could be well described by Langmuir equation. It is suggested that the increase of surface area and mesopore ratio as a result of increasing activation ratios favored the removal of Cu(II), while activated carbon rich in acidic groups showed selective adsorption towards Pb(II). The preferable removal of Cu(II) over Pb(II) could be due to the rich nitrogen content as well as the higher mesoporous surface area in the CMC activated carbons. The impregnated CMC activated carbons also showed a better performance for Cu(II) removal at varying solution pH than Filtrasorb 400 (F400), while a similar performance was observed for Pb(II) removal.

  5. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review.

    Science.gov (United States)

    Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2013-01-15

    Efficient removal of hazardous materials from the environment has become an important issue from a biological and environmental standpoint. Adsorptive removal of toxic components from fuel, waste-water or air is one of the most attractive approaches for cleaning technologies. Recently, porous metal-organic framework (MOF) materials have been very promising in the adsorption/separation of various liquids and gases due to their unique characteristics. This review summarizes the recent literatures on the adsorptive removal of various hazardous compounds mainly from fuel, water, and air by virgin or modified MOF materials. Possible interactions between the adsorbates and active adsorption sites of the MOFs will be also discussed to understand the adsorption mechanism. Most of the observed results can be explained with the following mechanisms: (1) adsorption onto a coordinatively unsaturated site, (2) adsorption via acid-base interaction, (3) adsorption via π-complex formation, (4) adsorption via hydrogen bonding, (5) adsorption via electrostatic interaction, and (6) adsorption based on the breathing properties of some MOFs and so on. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    Science.gov (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes. PMID:26796523

  7. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  8. Numerical evaluation of Cs adsorption in PB column by extended Langmuir formula and one-dimensional adsorption model

    International Nuclear Information System (INIS)

    Hiroshi Ogawa; Akiko Kitajima; Hisashi Tanaka; Tohru Kawamoto

    2015-01-01

    Adsorption property of granulated Prussian blue adsorbent on radioactive cesium was evaluated for efficient decontamination in Fukushima area. The adsorbent was found to show an inflective adsorption isotherm, which was expressed by extended Langmuir formula with three adsorption sites. Adsorption speeds of each site were evaluated by time-dependent batch experiment. The simulation using derived parameters and one-dimensional adsorption model successfully reproduced the experimental data of cesium decontamination by small and large columns. (author)

  9. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    Science.gov (United States)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-10-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  10. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  11. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.

    Science.gov (United States)

    Burakov, Alexander E; Galunin, Evgeny V; Burakova, Irina V; Kucherova, Anastassia E; Agarwal, Shilpi; Tkachev, Alexey G; Gupta, Vinod K

    2018-02-01

    The problem of water pollution is of a great concern. Adsorption is one of the most efficient techniques for removing noxious heavy metals from the solvent phase. This paper presents a detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes). In addition to this, the efficiency of developed materials for adsorption of the heavy metals is discussed in detail along with the comparison of their maximum adsorption capacity in tabular form. A special focus is made on the perspectives of further wider applications of nanostructured adsorbents (especially, carbon nanotubes and graphenes) in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Metal inhibition on the reactivity of manganese dioxide toward organic contaminant oxidation in relation to metal adsorption and ionic potential.

    Science.gov (United States)

    Jiang, Jing; Wang, Zhuopu; Chen, Yang; He, Anfei; Li, Jianliang; Sheng, G Daniel

    2017-03-01

    Coexisting metal ions may significantly inhibit the oxidative reactivity of manganese oxides toward organic contaminants in metal-organic multi-pollutant waters. While the metal inhibition on the oxidation of organic contaminants by manganese oxides has previously been reported, the extent of the inhibition in relation to metal properties has not been established. Six alkali, alkaline, and transition metals, as well as two testing metals were evaluated for their abilities to inhibit the reactivity of birnessite. Regardless of the pathways of phenol and diuron oxidation (polymerization vs. breakdown), the extent of metal inhibition depended mainly on the metal itself and its concentration. The observed metal inhibition efficiency followed the order of Mn 2+  > Co 2+  > Cu 2+  > Al 3+  > Mg 2+  > K + , consistent with metal adsorption on birnessite. The first-order organic oxidation rate constant (k obs ) was linearly negatively correlated with metal adsorption (q e ) on birnessite. These observations demonstrated that the metal inhibition efficiency was determined by metal adsorption on birnessite. The slopes of the k obs -q e varied among metals and followed the order of K +  > Ca 2+  > Mg 2+  > Mn 2+  > Cd 2+  > Co 2+  > Cu 2+  > Al 3+ . These slopes defined intrinsic inhibitory abilities of metals. As metals were adsorbed hydrated on birnessite, the intrinsic inhibitory ability was significantly linearly correlated with ionic potentials of metals, leading to a single straight line. Metals with multiple d electrons in the outermost orbit with polarizing energy that promotes hydrolysis sat slightly below the line, and vice versa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gas adsorption in active carbons and the slit-pore model 1: Pure gas adsorption.

    Science.gov (United States)

    Sweatman, M B; Quirke, N

    2005-05-26

    We describe procedures based on the polydisperse independent ideal slit-pore model, Monte Carlo simulation and density functional theory (a 'slab-DFT') for predicting gas adsorption and adsorption heats in active carbons. A novel feature of this work is the calibration of gas-surface interactions to a high surface area carbon, rather than to a low surface area carbon as in all previous work. Our models are used to predict the adsorption of carbon dioxide, methane, nitrogen, and hydrogen up to 50 bar in several active carbons at a range of near-ambient temperatures based on an analysis of a single 293 K carbon dioxide adsorption isotherm. The results demonstrate that these models are useful for relatively simple gases at near-critical or supercritical temperatures.

  14. Surface Adsorption in Nonpolarizable Atomic Models.

    Science.gov (United States)

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  15. The Efficiency of Bio-adsorption of Heavy Metals from Pharmaceutical Effluent by Rumex crispus L. Seed

    Directory of Open Access Journals (Sweden)

    Parisa Ziarati

    2017-12-01

    Full Text Available The programs of managing waste materials in developing countries are often unsatisfactory and the unreasonable disposal of waste is a major issue in the worldwide. The main aim of the current study is to: Assess the applicability of Rumex crispus L. in removing heavy metals from the contaminated wastewater effluent form Pharmaceutical laboratories by bio-adsorption method. The dried R. crispus L. seeds were purchased from recognized herbal plant markets randomly in Tehran in May 2016 in order to investigate the influence of R. crispus seeds as an amendment to remove or decrease chemical forms of Co, Pb, Cu, Zn and Ni. Experimental parameter were as follows: pH, temperature, dose of bio-adsorbent R. crispus L. seeds, contact time, particle size mesh were studied. Results revealed that bio-adsorption capacity of Lead, Zinc, Copper, Cobalt and Nickel increases with increasing initial adsorbent concentration and reaches at maximum after a 2% initial concentration of S. incisa seeds concentration value. Heavy metals adsorption ranged from 83.5 -91 % after agitation for 1 week (equilibration time, and there was no significant further increase in % sorption of them after the equilibration time (P ≥ 0.05. This research area of using models for resolving nature of heavy metals complexation and sequestrations mechanism at heavy metals-bio-adsorption interface have been less explored . The results represents a critically important mechanism in the scientific ability which should be investigated in future research to unravel complex surface heavy metal sorption mechanism on the bio-sorbent’s surface by using various chemical modeling approaches. Current research is suggested for the characterization of novel bio-adsorbents from other waste of herbal plants, agriculture/food-industry with maximum heavy metals sorption capacities to promote large-scale use of bio-adsorbents.

  16. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  17. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810.

    Science.gov (United States)

    Zhang, Zilian; Cai, Ruanhong; Zhang, Wenhui; Fu, Yingnan; Jiao, Nianzhi

    2017-06-12

    Most marine bacteria can produce exopolysaccharides (EPS). However, very few structures of EPS produced by marine bacteria have been determined. The characterization of EPS structure is important for the elucidation of their biological functions and ecological roles. In this study, the structure of EPS produced by a marine bacterium, Alteromonas sp. JL2810, was characterized, and the biosorption of the EPS for heavy metals Cu 2+ , Ni 2+ , and Cr 6+ was also investigated. Nuclear magnetic resonance (NMR) analysis indicated that the JL2810 EPS have a novel structure consisting of the repeating unit of [-3)-α-Rha p -(1→3)-α-Man p -(1→4)-α-3OAc-GalA p -(1→]. The biosorption of the EPS for heavy metals was affected by a medium pH; the maximum biosorption capacities for Cu 2+ and Ni 2+ were 140.8 ± 8.2 mg/g and 226.3 ± 3.3 mg/g at pH 5.0; however, for Cr 6+ it was 215.2 ± 5.1 mg/g at pH 5.5. Infrared spectrometry analysis demonstrated that the groups of O-H, C=O, and C-O-C were the main function groups for the adsorption of JL2810 EPS with the heavy metals. The adsorption equilibrium of JL2810 EPS for Ni 2+ was further analyzed, and the equilibrium data could be better represented by the Langmuir isotherm model. The novel EPS could be potentially used in industrial applications as a novel bio-resource for the removal of heavy metals.

  18. Polyphenols and β-glucan interactions through linear adsorption models

    Directory of Open Access Journals (Sweden)

    Š. Ukić

    2016-01-01

    Full Text Available The aim of this work was to obtain information about interactions between polyphenols and β-glucan through linear adsorption equilibrium models. Polyphenolic compounds can interact with various food ingredients such as carbohydrates, proteins and lipids and these interactions can affect polyphenol bioactivities. Interactions can be studied through the adsorption process at a constant temperature and adsorption isotherms can be obtained. In this work the interactions between polyphenols like gallic acid, cyanidin-3-galactoside and cyanidin-3-glucoside and β-glucan as a natural dietary fiber were studied through the Freundlich's, Langmuir's, Dubinin-Radushkevich's, Tempkin's and Hill's models. The adsorption was carried out through model solutions of different concentrations of polyphenols and β-glucan for 16 hours at 25 °C. After the adsorption, the unadsorbed polyphenols were separated from the adsorbed ones by ultrafiltration. Concentrations of the unadsorbed polyphenols were determined by the spectrophotometric Folin-Ciocalteu method for gallic acid, and the pH differential method for cyanidin-3-galactoside and cyanidin-3-glucoside. The results of adsorption isotherm parameters showed that adsorption between all polyphenols and β-glucan were physical, and all interactions were favorized. Gallic acid showed the highest maximum adsorption capacity onto β-glucan. This study showed that information about interactions between polyphenols and dietary fibers can be obtained through the linear adsorption equilibrium isotherms.

  19. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    Science.gov (United States)

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  20. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  1. STERIC MASS ACTION MODEL FOR LACTOFERRIN ADSORPTION IN CRYOGEL WITH IMMOBILIZED COPPER IONS

    Directory of Open Access Journals (Sweden)

    B. M. A. Carvalho

    Full Text Available Abstract Parameters of equilibrium adsorption obtained from experiments using immobilized metal affinity chromatography (IMAC were used to evaluate the applicability of the steric mass-action (SMA model to describe the adsorption of lactoferrin to cryogel resin under different conditions. The adsorption of lactoferrin on continuous supermacroporous cryogel with immobilized Cu2+ ions was evaluated in batch adsorption experiments at different pH (6-8 and temperature (293-313 K values. Estimated values of the equilibrium constant (K and characteristic number of binding sites (n showed that these parameters decreased with increasing ionic strength, pH and temperature, while the nonlinear parameter, the steric factor (σ, increased with increasing ionic strength and temperature. Expressions correlating these parameters with pH, ionic strength and temperature were then derived.

  2. Modeling adsorption of binary and ternary mixtures on microporous media

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2007-01-01

    The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes...... it possible using the same equation of state to describe the thermodynamic properties of the segregated and the bulk phases. For comparison, we also used the ideal adsorbed solution theory (IAST) to describe adsorption equilibria. The main advantage of these two models is their capabilities to predict...... multicomponent adsorption equilibria on the basis of single-component adsorption data. We compare the MPTA and IAST models to a large set of experimental data, obtaining reasonable good agreement with experimental data and high degree of predictability. Some limitations of both models are also discussed....

  3. Simulation models for food separation by adsorption process

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  4. Simulation models for food separation by adsorption process | Aoyi ...

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  5. Disposal of heavy metal cations in aqueous media by adsorption on coal to Ghazni

    Directory of Open Access Journals (Sweden)

    О.М. Заславський

    2008-03-01

    Full Text Available  Adsorption of Pb and Cu cations and their mixture on the surface of modified and non-modified anti-gas coal trough different time intervals have been studied. The maximum adsorption capacity of coal relative to each cations have been determined. Absence  of concurrence between cations of Pb and Cu during adsorption from mixture is explained by difference of  types of their interaction with coal surface. The high effectiveness and perspectivities of application of anti-gas coal for neutralization of heavy metal cations in aqueous solution was shown.

  6. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    Science.gov (United States)

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Particle concentration effect: adsorption of divalent metal ions on coffee grounds.

    Science.gov (United States)

    Utomo, Handojo Djati; Hunter, Keith A

    2010-03-01

    The adsorption of divalent metal ions Cu2+, Pb2+, Zn2+, and Cd2+ on coffee grounds as a function of coffee grounds concentration was studied in which adsorption density decreased as the concentration of coffee grounds (C(s)) increased. Adsorption studies were conducted by equilibrating aqueous solutions of each metal ion at concentrations in the range 19-291 micromol L(-1) with coffee suspensions in the concentration range 0.971-8.738 g L(-1), with the initial pH adjusted to 5.0+/-0.1 using NaOH or HNO3. Metastable Equilibrium Adsorption theory did not adequately explain the adsorption phenomenon, except at low concentrations of coffee grounds and trace metal ions. Instead the results indicated that flocculation might reduce the surface availability thus reducing the adsorption density. The flocculation theory was confirmed after a further experiment adding dispersant sodium hexa-meta-phosphate (NaHMP) to the suspension. 2009 Elsevier Ltd. All rights reserved.

  8. Adsorption of thiophene on transition metal surfaces with the inclusion of van der Waals effects

    Science.gov (United States)

    Malone, Walter; Matos, Jeronimo; Kara, Abdelkader

    2018-03-01

    We use density functional theory with the inclusion of the van der Waals interaction to study the adsorption of thiophene, C4H4S, on Pt, Rh, Pd, Au, and Ag (100) surfaces. The five van der Waals (vdW) inclusive functionals we employ are optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, and rPW86-vdW2. For comparison we also run calculations with the GGA- Perdew Burke and Ernzerhof (PBE) functional. We examine several adsorption sites with the plane of the molecule parallel or perpendicular to the surface. The most stable configuration on all metals was the site where the center of the thiophene lies over a 4-fold hollow site with the sulfur atom lying close to a top site. Furthermore, we examine several electronic and geometric properties of the adsorbate including charge transfer, modification of the d-band, adsorption energy, tilt angle, and adsorption height. For the coinage metals PBE gives the lowest adsorption energy. For reactive transition metal substrates, revPBE-vdW and rPW86-vdW2 give lower adsorption energies than PBE.

  9. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling.

    Science.gov (United States)

    Weng, Liping; Vega, Flora Alonso; Van Riemsdijk, Willem H

    2011-10-01

    The pH dependency of soluble phosphate in soil was measured for six agricultural soils over a pH range of 3-10. A mechanistic model, the LCD (ligand charge distribution) model, was used to simulate this change, which considers phosphate adsorption to metal (hydr)oxides in soils under the influence of natural organic matter (NOM) and polyvalent cations (Ca(2+), Al(3+), and Fe(3+)). For all soils except one, the description in the normal pH range 5-8 is good. For some soils at more extreme pH values (for low P-loading soils at low pH and for high P-loading soils at high pH), the model over predicts soluble P. The calculation shows that adsorption is the major mechanism controlling phosphate solubility in soils, except at high pH in high P-loading soils where precipitation of calcium phosphate may take place. NOM and polyvalent cations have a very strong effect on the concentration level of P. The pattern of pH dependency of soluble P in soils differs greatly from the pH effects on phosphate adsorption to synthetic metal (hydr)oxides in a monocomponent system. According to the LCD model, the pH dependency in soil is mainly caused by the synergistic effects of Ca(2+) adsorption to oxides. Adsorption of Al(3+) to NOM adsorbed plays an important role only at a pH < 4.5. Presence of NOM coating strongly competes with phosphate for the adsorption and is an important factor to consider in modeling phosphate adsorption in natural samples.

  10. A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption.

    Science.gov (United States)

    Dong, Xiaoqing; Li, Chaolin; Li, Ji; Wang, Jiaxin; Liu, Suting; Ye, Bin

    2010-03-15

    Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10(-3) for Shaoguan and 1.28 x 10(-3) for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control. (c) 2009 Elsevier B.V. All rights reserved.

  11. Adsorption of heavy metal from landfill leachate by wasted biosolids ...

    African Journals Online (AJOL)

    However, the concentration of Cd, Cu and Zn was not detected in the leachate but Fe was found to be in high concentration (184 mg/L) in raw leachate collected from a municipal landfill site. Therefore, the effects of biomass dosage, contact time, pH and agitation speed were observed for optimal adsorption of iron from ...

  12. Destructive Adsorption of Carbon Tetrachloride on Alkaline Earth Metal Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Mestl, Gerhard; Rosynek, Michael P.; Krawietz, Thomas R.; Haw, James F.; Lunsford, Jack H.

    1998-01-01

    The destructive adsorption of CCl4 on MgO, CaO, SrO, and BaO has been studied as a function of the reaction temperature and the amount of CCl4 injected. The reaction was followed using in situ Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 13 C

  13. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-11-01

    In this dissertation, the metathesis route of metal chalcogenide aerogel synthesis was expanded by conducting systematic studies between polysulfide building blocks and the 1st-row transition metal linkers. Resulting materials were screened as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated. The effect of the presence of different counter-ion within chalcogel frameworks on the adsorption capacity of the chalcogels was studied on AFe3Zn3S17 (A= K, Na, and Rb) chalcogels. The highest adsorption capacity toward hydrocarbons and gases was observed on Rb based chalcogels. Adopting a new building block [BiTe3]3- with the 1st-row transition metal ions results in the formation of three high BET surface area chalcogels, KCrBiTe3, KZnBiTe3, and KFeBiTe3. The resulting chalcogels showed preferential adsorption of toluene vapor, and remarkable selectivity of CO2, indicating the potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. The synthesis and characterization of the rare earth chalcogels NaYSnS4, NaGdSnS4, and NaTbSnS4 are also reported. Rare earth metal ions react with the thiostannate clusters in formamide solution forming extended polymeric networks by gelation. Obtained chalcogels have high BET surface areas, and showed notable adsorption capacity toward CO2 and toluene vapor. These chalcogels have also been engaged in the absorption of different organic molecules. The results reveal the ability of the chalcogels to distinguish among organic molecules on their electronic structures; hence, they could be used as sensors. Furthermore, the synthesis of metal chalcogenide aerogels Co0.5Sb0.33MoS4 and Co0.5Y0.33MoS4 by the sol-gel method is reported. In this system, the building blocks [MoS4]2- chelated with Co2+ and (Sb3

  14. Equilibrium modeling and pH-dependence of the adsorption ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-04

    Feb 4, 2009 ... This study involved the examination of biomass, Vitex doniana leaf powder, in the adsorption of heavy metals from water. The water samples were obtained from two sources in Nasarawa town in Nasarawa. State, Nigeria; River Tammah (one of the two major river sources of water for drinking, domestic,.

  15. Adsorption of Heavy Metal from Palm Oil Mill Effluent on the Mixed Media Used For the Preparation of Composite Adsorbent

    Directory of Open Access Journals (Sweden)

    Oyekanmi Adeleke Abdulrahman

    2017-01-01

    Full Text Available The adsorption of lead ion from palm oil mill effluent produced directly from the mill was investigated using mixed adsorbents that were used to prepare the composite. Experiments were carried out under predetermined conditions of pH, shaking speed, contact time and particle size. Equilibrium study was carried out to determine the adsorption capacity of the mixed media. The reduction of the lead ion was effective on the adsorbent materials. The Temkin and Freundlich models were applied to describe the adsorption pattern on the mixed media. The experimental data fitted well to the Temkin isotherm with a correlation coefficient of 1, this was used to indicate the level of interaction of the adsorbent-adsorbate and also the energy utilized in the adsorption process. The hydrophobic behaviour of the activated coconutshell and cow bone carbons was observed for average contact angle of 105° and 95° for the coconut shell and cow bone respectively. The influence of the hydrophobic materials in the mixed media and the zeolite assisted in the ion exchange and in the adsorption of the heavy metal.

  16. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions.

    Science.gov (United States)

    Baccar, R; Bouzid, J; Feki, M; Montiel, A

    2009-03-15

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO(4) as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu(2+) ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO(4) into insoluble manganese (IV) oxide (MnO(2)) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  17. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Baccar, R. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: rym.baccar@tunet.tn; Bouzid, J. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: jalel.bouzid@tunet.tn; Feki, M. [Unite de Recherche de Chimie Industrielle et Materiaux, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: mongi.feki@yahoo.fr; Montiel, A. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: montiel.antoine@free.fr

    2009-03-15

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO{sub 4} as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu{sup 2+} ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO{sub 4} into insoluble manganese (IV) oxide (MnO{sub 2}) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  18. Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant.

    Science.gov (United States)

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad; Persin, Michel

    2011-02-01

    A low-cost adsorbent and environmentally friendly adsorbent from Carpobrotus edulis plant was used for the removal of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions from single, binary and multi-component systems. The efficiency of the adsorbent was studied using batch adsorption technique under different experimental conditions by varying parameters such as pH, initial concentration and contact time. In single component systems, the dried C. edulis has the highest affinity for Pb(2+), followed by NO(3)(-), Cd(2+) and H(2)PO(4)(-), with adsorption capacities of 175mg/g, 125mg/g, 28mg/g and 26mg/g, respectively. These results showed that the adsorption of NO(3)(-) and H(2)PO(4)(-) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. Freundlich adsorption model, showed the best fit to the single and binary experimental adsorption data. These results also indicated that the adsorption yield of Pb(2+) ion was reduced by the presence of Cd(2+) ion in binary metal mixture. The competitive adsorption of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions on dried C. edulis plant shows that NO(3)(-) and H(2)PO(4)(-) anions are able to adsorb on different free binding sites and Pb(2+) and Cd(2+) cations are able to adsorb on the same active sites of C. edulis particles. The dried C. edulis was found to be efficient in removing nitrate, phosphate, cadmium and lead from aqueous solution as compared to other adsorbents already used for the removal of these ions. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Studies of Adsorption of Heavy Metals onto Spent Coffee Ground: Equilibrium, Regeneration, and Dynamic Performance in a Fixed-Bed Column

    Directory of Open Access Journals (Sweden)

    N. E. Davila-Guzman

    2016-01-01

    Full Text Available Equilibrium and dynamic adsorption of heavy metals onto spent coffee ground (SCG were studied. The equilibrium adsorption of Cd2+, Cu2+, and Pb2+ in a batch system was modeled by an ion-exchange model (IEM based on an ion-exchange of heavy metals with calcium and protons bonded to active sites on SCG surface. The maximum amount of adsorbed metal ions obtained using the IEM was 0.12, 0.21, and 0.32 mmol/g of Cd2+, Cu2+, and Pb2+, respectively. Regeneration of SCG was evaluated using citric acid, calcium chloride, and nitric acid. The observed trend of desorption efficiency through four adsorption-desorption cycles was HNO3 > CaCl2 > C6H8O7. The effect of process variables such as flow rate and bed height during the dynamic adsorption was evaluated. Moreover, the applicability of a mass transfer model based on external mass transfer resistance, axial dispersion, and ion-exchange isotherm was evaluated, and the results were in good agreement with the experimental data for the adsorption in SCG packed column. The sensitivity analysis of the model parameters showed that axial dispersion coefficient is the most significant parameter in the dynamic simulation. The results obtained showed the potential of SCG as a low-cost material for wastewater metal removal in continuous systems.

  20. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism.

    Science.gov (United States)

    Xu, Jiang; Cao, Zhen; Zhang, Yilin; Yuan, Zilin; Lou, Zimo; Xu, Xinhua; Wang, Xiangke

    2018-03-01

    Carbon-based nanomaterials, especially carbon nanotubes and graphene, have drawn wide attention in recent years as novel materials for environmental applications. Notably, the functionalized derivatives of carbon nanotubes and graphene with high surface area and adsorption sites are proposed to remove heavy metals via adsorption, addressing the pressing pollution of heavy metal. This critical revies assesses the recent development of various functionalized carbon nanotubes and graphene that are used to remove heavy metals from contaminated water, including the preparation and characterization methods of functionalized carbon nanotubes and graphene, their applications for heavy metal adsorption, effects of water chemistry on the adsorption capacity, and decontamination mechanism. Future research directions have also been proposed with the goal of further improving their adsorption performance, the feasibility of industrial applications, and better simulating adsorption mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cross-linked graphene oxide sheets via modified extracted cellulose with high metal adsorption.

    Science.gov (United States)

    Yakout, Amr A; El-Sokkary, Ramadan H; Shreadah, Mohamed A; Abdel Hamid, Omnia G

    2017-09-15

    We have studied the extraction of Cu(II) and Pb(II) ions from different types of aqueous solution by novel cross-linked graphene oxide sheets by modified extracted cellulose. The novel sorbent cellulose was extracted from the mangrove trees (Avicennia marina) and it was then grafted with acrylamide and immobilized by ethylenediamine for cross-linking process. The cross-linked graphene oxide sheets were identified by means of FT-IR, SEM and XRD. The adsorption studies of synthesized sorbent was optimized. Langmuir and Freundlich models were used for establish sorption equilibria. The cross-linked graphene oxide sheets showed maximum adsorption capacity 46.39 and 186.48mgg -1 for Cu(II) and Pb(II), respectively. The potential applications of this sorbent was applied to remove Cu(II) and Pb(II) metal ions from hard water samples by using a multi-stage micro-column technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent.

    Science.gov (United States)

    Dong, Cuihua; Zhang, Fulong; Pang, Zhiqiang; Yang, Guihua

    2016-10-20

    Contamination of heavy metal in wastewater has caused great concerns on human life and health. Developing an efficient material to eliminate the heavy metal ions has been a popular topic in recent years. In this work, sulfonated cellulose (SC) was explored as efficient adsorbent for metal ions in solution. Thermo gravimetric analyzer (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectrometer (FTIR) first analyzed the characterizations of SC. Subsequently, effects of solution pH, adsorbent loading, temperature and initial metal ion concentration on adsorption performance were investigated. The results showed that sulfonated modification of cellulose could decrease the crystallinity and thermostability of cellulose. Due to its excellent performance of adsorption to metal ions, SC could reach adsorption equilibrium status within as short as 2min. In multi-component solution, SC can orderly removes Fe(3+), Pb(2+) and Cu(2+) with excellent selectivity and high efficiency. In addition, SC is a kind of green and renewable adsorbent because it can be easily regenerated by treatment with acid or chelating liquors. The mechanism study shows that the sulfonic group play a major role in the adsorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects.

    Science.gov (United States)

    Zhao, Yanping; Geng, Jinju; Wang, Xiaorong; Gu, Xueyuan; Gao, Shixiang

    2011-07-01

    Contamination of environmental matrixes by human and animal wastes containing antibiotics is a growing health concern. Because tetracycline is one of the most widely-used antibiotics in the world, it is important to understand the factors that influence its mobility in soils. This study investigated the effects of pH, background electrolyte cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), heavy metal Cu(2+) and humic acid (HA) on tetracycline adsorption onto kaolinite. Results showed that tetracycline was greatly adsorbed by kaolinite over pH 3-6, then decreased with the increase of pH, indicating that tetracycline adsorption mainly through ion exchange of cations species and complexation of zwitterions species. In the presence of five types of cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), tetracycline adsorption decreased in accordance with the increasing of atomic radius and valence of metal cations, which suggested that outer-sphere complexes formed between tetracycline and kaolinite, and the existence of competitor ions lead to the decreasing adsorption. The presence of Cu(2+) greatly enhanced the adsorption probably by acting as a bridge ion between tetracycline species and the edge sites of kaolinite. HA also showed a major effect on the adsorption: at pH kaolinite and need to be considered when assessing the environmental toxicity of tetracycline.

  5. Protein adsorption on nanoparticles: model development using computer simulation.

    Science.gov (United States)

    Shao, Qing; Hall, Carol K

    2016-10-19

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles.

  6. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    International Nuclear Information System (INIS)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

    2015-01-01

    Graphical abstract: - Highlights: • Several superhydrophobic metallic surfaces were fabricated by fast electrodeposition. • Both micro/nanostructures and adsorption of airborne hydrocarbons make contributions. • XPS analyses confirm presence of airborne hydrocarbons on these metallic surfaces. • The adsorption of airborne hydrocarbons on the clean metal Au surface was very quick. • UV-O 3 treatment oxidized the hydrocarbons to hydrophilic oxygen-containing organics. - Abstract: Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar + -etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O 3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films

  7. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  8. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li; Al-Saidi, W A; Johnson, J Karl

    2012-10-03

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  9. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue.

    Science.gov (United States)

    Kırbıyık, Çisem; Pütün, Ayşe Eren; Pütün, Ersan

    2016-01-01

    In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform-infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.

  10. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism.

    Science.gov (United States)

    Wang, Pan; Du, Mingliang; Zhu, Han; Bao, Shiyong; Yang, Tingting; Zou, Meiling

    2015-04-09

    Silica nanotubes (SNTs) with controlled nanotubular structure were synthesized via an electrospinning and calcination process. In this regard, SNTs were found to be ideal adsorbents for Pb(II) removal with a higher adsorption capacity, and surface modification of the SNTs by sym-diphenylcarbazide (SD-SNTs) markedly enhanced the adsorption ability due to the chelating interaction between imino groups and Pb(II). The pH effect, kinetics, isotherms and adsorption mechanism of SNTs and SD-SNTs on Pb(II) adsorption were investigated and discussed detailedly. The adsorption capacity for Pb(II) removal was found to be significantly improved with the decrease of pH value. The Langmuir adsorption model agreed well with the experimental data. As for kinetic study, the adsorption onto SNTs and SD-SNTs could be fitted to pseudo-first-order and pseudo-second-order model, respectively. In addition, the as-prepared SNTs and SD-SNTs also exhibit high adsorption ability for Cd(II) and Co(II). The experimental results demonstrate that the SNTs and SD-SNTs are potential adsorbents and can be used effectively for the treatment of heavy-metal-ions-containing wastewater. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthesis of tentacle-type magnetic beads as immobilized metal-chelate affinity support for cytochrome c adsorption.

    Science.gov (United States)

    Türkmen, Deniz; Yavuz, Handan; Denizli, Adil

    2006-03-30

    Magnetic poly(2-hydroxyethylmethacrylate) (mPHEMA) beads with an average diameter of 100-140 microm were produced by suspension polymerization in the presence of magnetite particles (i.e. Fe3O4). Specific surface area and average pore size of the magnetic beads was found to be 50 m2/g and 819 nm, respectively. Ester groups in the mPHEMA structure were converted to imine groups by reacting with poly(ethyleneimine) (PEI) in the presence of NaH. Amino (-NH2) content of PEI-attached mPHEMA beads was determined as 102 mg PEI/g. Then, Cu2+ ions were chelated on the magnetic beads in the range of 20-793 micromol Cu2+/g. Cytochrome c (cyt c) adsorption was performed on the metal chelating beads from aqueous solutions containing different amounts of cyt c at different pHs, Cu2+ loadings and temperatures. Cyt c adsorption on the mPHEMA/PEI beads was 4.6 mg/g. Cu2+ chelation increased the cyt c adsorption significantly (40.1 mg/g). Adsorption capacity increased with Cu2+ loading and then reached a saturation value. Cyt c adsorption decreased with increasing temperature. Cyt c molecules could be reversibly adsorbed and eluted ten times with the magnetic adsorbents without noticeable loss in their cyt c adsorption capacity. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity and correlation coefficients. Results suggest that chemisorption processes could be the rate-limiting step in the adsorption process. In the last part of this article, cyt c adsorption experiments were performed in a magnetically stabilized fluidized bed (MSFB) system at optimum conditions determined from the batch experiments. The adsorption capacity decreased significantly from 46.8 to 15.4 mg/g polymer with the increase of the flow-rate from 0.5 to 4.0 ml/min. The resulting magnetic chelator beads possessed excellent long-term storage stability.

  12. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils

    Science.gov (United States)

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-01-01

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation. PMID:28644399

  13. Theoretical study of adsorption of water vapor on surface of metallic uranium

    CERN Document Server

    Xiong Bi Tao; Xue Wei Dong; Zhu Zheng He; Jiang Gang; Wang Hong Yan; Gao Tao

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH sub 2 witch C sub 2 subupsilon configuration is obtained in the state of sup 5 A sub 1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.4747 kJ centre dot mol sup - sup 1 , which indicates a typical chemical adsorption

  14. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry

    2017-08-29

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.

  15. A coordination chemistry approach for modeling trace element adsorption

    International Nuclear Information System (INIS)

    Bourg, A.C.M.

    1986-01-01

    The traditional distribution coefficient, Kd, is highly dependent on the water chemistry and the surface properties of the geological system being studied and is therefore quite inappropriate for use in predictive models. Adsorption, one of the many processes included in Kd values, is described here using a coordination chemistry approach. The concept of adsorption of cationic trace elements by solid hydrous oxides can be applied to natural solids. The adsorption process is thus understood in terms of a classical complexation leading to the formation of surface (heterogeneous) ligands. Applications of this concept to some freshwater, estuarine and marine environments are discussed. (author)

  16. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    Science.gov (United States)

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  17. Adsorption status of some transition metal ions on pretreated fish scales

    International Nuclear Information System (INIS)

    Iqbal, J.; Mirza, M.L.

    2005-01-01

    Chitin present in fish scales was 52% deacetylated into chitosan by treating with 4% Sodium Hydroxide. The cation exchange properties of this chistosan for some first row divalent transition metal ions at different molarities of Sulphuric Acid. The distribution coefficient and the apparent adsorption capacity have been determined. Following selectivity order has been established: Cu2+ > Ni2+ > Co2+ > Fe2+. (author)

  18. Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash

    International Nuclear Information System (INIS)

    Visa, Maria; Bogatu, Cristina; Duta, Anca

    2010-01-01

    In wastewaters originating from dye industry there are amounts of dyes (very common methyl orange, methylene blue-MB) and heavy metals (cadmium, copper, nickel mainly from the organo-metallic dyes). They tend to adsorb in a competitive process and modify the substrate. Advanced removal is usually proposed via adsorption and the use of modified fly ash as a substrate is sustainable solution. The main constituents of fly ash (silica, alumina, iron oxide and un-burned carbon), are the priority compounds which favour the heavy metal adsorption and are active sites in dyes' adsorption processes. The paper studies the effect of MB adsorbed on the fly ash surface on the removal efficiency of cadmium, copper and nickel ionic species from complex, multi-cationic dye solutions. The adsorption efficiency and kinetics are evaluated from the complex, multicomponent systems and possible influences are discussed. High efficiencies are obtained at low heavy metal concentrations (as it is the real case for the dyes industry) whereas at medium values, competitive processes lower the individual efficiencies of copper, nickel or cadmium from mixtures.

  19. Removal of Some Heavy Metals from Wastewater using Radiation- Adsorption Method

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Hegazy, E.A.; El-Kelesh, N.A.

    2000-01-01

    Wastewater containing toxic materials poses a serious environmental problem. Many of the pollutants are not readily biodegradable and complete removal in many cases is a relatively expensive process. On the other hand, incomplete removal is a serious health hazard. In the present study, a try was made to explain the degradation kinetics due to gamma-irradiation and adsorption of some heavy metals: Uranium, Molybdenum, Zirconium, and Vanadium. Factors affecting the process such as concentration, irradiation dose and ph of the solution was studied. Gamma-radiation doses up to 50 kGy did not result in the degradation of the heavy metals. However, as expected gamma radiation resulted in a change in the valency of these heavy metal ions to other oxidation states which may have resulted in less toxicity. Adsorption and ion-exchange purification of the heavy metals onto GAC,Merck Ion Exchangers I, and IV and polymeric membranes showed that GAC has the highest adsorption capacity for all pollutants compared with the ion-exchangers and polymeric membranes which may be due to its very high surface area and high porous nature which causes internal and external distribution within the carbon particle more than it dose in the case of polymeric membranes and ion-exchangers. GAC was followed by the cation exchanger with different percent adsorption according to the type of pollutant and the least removal percent was shown by the polymeric membranes. Also, a study of the affinity of the pollutants towards the different adsorbents was carried out

  20. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.

    Science.gov (United States)

    Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang

    2017-10-01

    Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. SEPARATION OF Ca AND Fe METAL ION IN SOURCE WATER BY ADSORPTION COLUMN TECHNIC WITH LOCAL ZEOLITE AND ACTIVE CARBON

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2016-04-01

    Full Text Available This research aims are to separate of Ca and Fe metal ion in source water, with local zeolite and active carbon by adsorption column technic. Efficiency of separation are control by adsorption time and size of zeolite. Method that used was column adsorption with a flow system in which sample is applied to the filtration tube containing zeolite and active carbon. Initial and final concentrations of the samples were analyzed using Atomic Adsorption Spectrophotometer instrument. The results obtained shows that ability adsorption of zeolite to Ca and Fe metal ion are a good. Zeolite 1 (10 mesh can reduce iron concentration until 93.98 % and zeolite 2 (5mesh until 98.88% for 1 – 4 week range time. Whereas reducing of calcium concentration is not good, until 2 week period time adsorption of calcium ion is about 50%.   Keywords: adsorption, zeolite, source water

  2. The use of new chemically modified cellulose for heavy metal ion adsorption.

    Science.gov (United States)

    Fakhre, Nabil A; Ibrahim, Bnar M

    2018-02-05

    We have developed a simple one-step method to synthesize novel supramolecular polysaccharide composite from cellulose (CEL) and dibenzo-18-crown 6 using ceric ammonium nitrate as initiator. The [CEL+DB18C6] composites obtained retain properties of their components, namely superior mechanical strength (from CEL), excellent adsorption capability for heavy metal ions from DB18C6. More importantly, the [CEL+DB18C6] composites exhibit truly supramolecular properties. By itself CEL and DB18C6 can adsorb heavy metals. However, adsorption capability of the composite was substantially and synergistically enhanced by adding DB18C6 to CEL. That is, the removal percentage value for Cd 2+ , Zn 2+ , Ni 2+ , Pb 2+ and Cu 2+ by [CEL+DB18C6] composites are much higher than removal percentage values of individual CEL and DB18C6 composites. It seems that DB18C6 synergistically interact with CEL to form more stable complexes with heavy metals, and as a consequence, the [CEL+DB18C6] composite can adsorb relatively larger amount heavy metals. The adsorption parameters, such as pH, adsorbent dose, contact time, initial metal ion concentration and temperature were optimized. Desorption studies revealed that the regeneration of modified cellulose saturated with these metallic ions depends on the type and concentration of the regenerating solution (NH 4 Cl, HNO 3 , NaCl and CaCl 2 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-04-01

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Adsorption of heavy metals ions on portulaca oleracea plants

    International Nuclear Information System (INIS)

    Naqvi, R.R.

    2005-01-01

    The aim of this study is to report the ability of portulaca oleracea (Fershi in Urdu) biomass grown in uncontaminated soils to adsorb or uptake lead, cadmium, arsenic, cobalt and copper from aqueous solutions. In order to help understand the metal binding mechanism, laboratory experiments performance to determine optimal binding, and binding capacity for each of the above mentioned metals. These experiments were carried out for the mass of crushed portulaca stems. Portulaca is a plant that grows abundantly in temperature climate in the area of Quetta Balochistan. It has reddish stem and thick succulent leaves. This plant has been found to be good adsorbent for heavy metals ions. (author)

  5. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    Science.gov (United States)

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  6. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology.

    Science.gov (United States)

    Hosseinpour, Negahdar; Khodadadi, Abbas Ali; Bahramian, Alireza; Mortazavi, Yadollah

    2013-11-19

    The effects of surface acidity and basicity of metal oxide nanoparticles on the thermodynamics of asphaltene adsorption were studied. Three different categories of metal oxides/salts with acidic (WO3 and NiO), amphoteric (Fe2O3 and ZrO2), and basic (MgO and CaCO3) surfaces were synthesized, and their textural, structural, and acid-base properties were characterized. Asphaltenes were extracted from a dead oil sample and characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy. The acid and base numbers of the asphaltenes were measured. The nanoparticles were added to the asphaltene-toluene solutions, and the amount of adsorbed asphaltene was obtained through centrifugation followed by UV-vis spectroscopy of the supernatant liquid and temperature-programmed oxidation analysis of the precipitated solid. The concentrations of organic acid and base groups in the asphaltenes are 2.75 and 12.34 mg of KOH/g, respectively, indicating that the asphaltenes are more basic in nature. Isotherms of the asphaltene adsorption onto the six metal oxides/salts fit the Langmuir model closely. The asphaltene adsorption capacity of the nanoparticles is 1.23-3.67 mg/m(2) and decreases in the order of NiO > Fe2O3 > WO3 > MgO > CaCO3 > ZrO2, concomitant with the synergetic effects of acidity and the net charge of the surfaces. High-resolution transmission electron microscopy illustrates that the asphaltenes are spread out over the surfaces with no short-range/long-range order. The adsorption of the asphaltenes onto the six samples is exothermic and spontaneous with the Gibbs energy change of -27.80 to -28.79 kJ/mol at 25 °C. The absolute value of the enthalpy change of the adsorption is calculated to be within the range of 5-20 kJ/mol. Acid-base interaction and electrostatic attraction seem to be the dominant forces contributing to the adsorption of the asphaltenes onto the metal oxide/salt surfaces.

  7. Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinliang [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li, Yanfeng, E-mail: liyf@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Cui; Ma, Yingxia; Yang, Liuqing; Hu, Huaiyuan [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Novel hybrid materials were synthesized and employed in the absorption of heavy metal and organic pollutants. Black-Right-Pointing-Pointer A novel method for amphiphilic adsorbent material synthesis was first reported in this paper. Black-Right-Pointing-Pointer The adsorbent material showed excellent adsorption capacity to Pb(II) and phenol. - Abstract: In this paper, atom transfer radical polymerization (ATRP) and radical grafting polymerization were combined to synthesize a novel amphiphilic hybrid material, meanwhile, the amphiphilic hybrid material was employed in the absorption of heavy metal and organic pollutants. After the formation of attapulgite (ATP) ATRP initiator, ATRP block copolymers of styrene (St) and divinylbenzene (DVB) were grafted from it as ATP-P(S-b-DVB). Then radical polymerization of acrylonitrile (AN) was carried out with pendent double bonds in the DVD units successfully, finally we got the inorganic-organic hybrid materials ATP-P(S-b-DVB-g-AN). A novel amphiphilic hybrid material ATP-P(S-b-DVB-g-AO) (ASDO) was obtained after transforming acrylonitrile (AN) units into acrylamide oxime (AO) as hydrophilic segment. The adsorption capacity of ASDO for Pb(II) could achieve 131.6 mg/g, and the maximum removal capacity of ASDO towards phenol was found to be 18.18 mg/g in the case of monolayer adsorption at 30 Degree-Sign C. The optimum pH was 5 for both lead and phenol adsorption. The adsorption kinetic suited pseudo-second-order equation and the equilibrium fitted the Freundlich model very well under optimal conditions. At the same time FT-IR, TEM and TGA were also used to study its structure and property.

  8. Effect of local metal microstructure on adsorption on bimetallic surfaces: Atomic nitrogen on Ni/Pt(111)

    Science.gov (United States)

    Guo, Wei; Vlachos, Dionisios G.

    2013-05-01

    The adsorption of atomic nitrogen on Ni/Pt(111) surface bimetallics has been investigated as a function of the local microstructure of Ni and Pt atoms via density functional theory (DFT) calculations. Microstructures include surface and subsurface Ni atoms on Pt(111) as limiting cases, and also small clusters of Ni in the first and/or second layer of Pt. It is shown that the binding energy of N can be approximated as a perturbation from that on the host metal (Pt) with a linear short-ranged correction from the guest metal (Ni) that accounts for the coordination environment of nitrogen up to the 3rd nearest Ni neighbor. This model is rationalized with the d-band center theory. Coverage effects are also included. The model can be parameterized with a limited number of DFT calculations and applied to other bimetallic catalysts to estimate the coverage dependent binding energy on complex metal microstructures.

  9. Adsorption of phthalocyanines on noble metal surfaces; Adsorption von Phthalocyaninen auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Ingo

    2011-05-20

    In this thesis the adsorbate systems CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc and TiOPc/Ag(111) were investigated and characterized in great detail using complementary methods. The focus of the experiments was the determination of lateral geometric structures with spot-profile-analysis low energy electron diffraction (SPA-LEED) and scanning tunneling microscopy (STM), as well as the measurement of adsorption heights using the method of normal incidence X-ray standing waves (NIXSW). High resolution electron energy loss spectroscopy (HREELS) was used to characterize the vibronic properties of the molecule and the interface dynamical charge transfer (IDCT). The electronic structure and the charge transfer into the molecule were investigated with ultraviolet photoelectron spectroscopy (UPS). The most important results of this work are related with the interplay between adsorbate-substrate and adsorbate-adsorbate interaction of Phthalocyanines in the submonolayer regime. (orig.)

  10. Renewable Modified Cellulose Bearing Chelating Schiff Base for Adsorptive Removal of Heavy Metal Ions and Antibacterial Action.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2017-07-01

      A novel approach toward chemically modified cellulose bearing active chelating Schiff base with hydroxyl group (Cell-Hy) was synthesized. The modified cellulose was examined for its heavy metal ion uptake potential from aqueous solution. The chemical and structural features of the adsorbent were characterized by Fourier transform infrared spectroscopy (FT-IR), solid state 13C-NMR, Scanning Electron Microscopy (SEM), and energy dispersive analysis of X-ray (EDAX) observations. The experimental conditions and adsorption parameters, including pH, initial metal ion concentration, adsorbent dosage, temperature, and contact time were optimized for the removal of Cu(II) and Pb(II) ions. Kinetic parameters, equilibrium adsorption capacities, and correlation coefficients for pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were carried out. The data obtained from the adsorption of Cu(II) and Pb(II) onto Cell-Hy were subjected to Langmuir and Freundlich isotherm models. Thermodynamic parameters have also been evaluated. The antibacterial activity of modified cellulose was tested toward specific bacterial species.

  11. Preparation and properties of chitosan-metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution.

    Science.gov (United States)

    Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing

    2018-04-01

    Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.

  12. Lithium Adsorption on Graphene: From Isolated Adatoms to Metallic Sheets.

    Science.gov (United States)

    Garay-Tapia, A M; Romero, Aldo H; Barone, Veronica

    2012-03-13

    We have studied Li adsorption on graphene for Li concentrations ranging from about 1% to 50% by means of density functional theory calculations. At low adsorbant densities, we observe a strong ionic interaction characterized by a substantial charge transfer from the adatoms to the substrate. In this low concentration regime, the electronic density around the Li adatoms is well localized and does not contribute to the electronic behavior in the vicinity of the Fermi level. For larger concentrations, we observe the formation of a chemically bound Li layer characterized by a stronger binding energy as well as a significant density of states above the Fermi level coming from both graphene and the two-dimensional Li sheet.

  13. Synthesis of diethylaminoethyl dextran hydrogel and its heavy metal ion adsorption characteristics.

    Science.gov (United States)

    Demirbilek, Celile; Dinç, Cemile Özdemir

    2012-10-01

    Epichlorohydrin-crosslinked diethylaminoethyl dextran (DEAE-D/ECH) hydrogel was synthesized by intermolecular side-chain reaction of DEAE-D hydroxyl groups with monomeric crosslinking agent, ECH. Swelling ability, adsorption capacity and metal removal of the hydrogel were profoundly determined and some structural parameters for the hydrogel such as volume of non-swollen gel, percentages of gellation, swelling ratio and equilibrium water content were evaluated in this study. The ability of removing heavy metal ions from Orontes River by the synthesized hydrogel, thoroughly characterized by photometric spectrometer and the adsorption characteristics of metal ions, was investigated as well as surface morphologies of the hydrogel before and after metal adsorption were examined by SEM. Structure of DEAE-D/ECH gel was analyzed by FTIR, TGA, and DSC. Gellation point of binary system reaction between DEAE-D and ECH was determined via monitoring viscosity changes during reaction. The order of affinity based on amount of metal ion uptake was found as follows: Zn(2+)>Mn(2+)>Pb(2+)>Cd(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review.

    Science.gov (United States)

    Muya, Francis Ntumba; Sunday, Christopher Edoze; Baker, Priscilla; Iwuoha, Emmanuel

    2016-01-01

    Heavy metal ions such as Cd(2+), Pb(2+), Cu(2+), Mg(2+), and Hg(2+) from industrial waste water constitute a major cause of pollution for ground water sources. These ions are toxic to man and aquatic life as well, and should be removed from wastewater before disposal. Various treatment technologies have been reported to remediate the potential toxic elements from aqueous media, such as adsorption, precipitation and coagulation. Most of these technologies are associated with some shortcomings, and challenges in terms of applicability, effectiveness and cost. However, adsorption techniques have the capability of effectively removing heavy metals at very low concentration (1-100 mg/L). Various adsorbents have been reported in the literature for this purpose, including, to a lesser extent, the use of hydrogel adsorbents for heavy metal removal in aqueous phase. Here, we provide an in-depth perspective on the design, application and efficiency of hydrogel systems as adsorbents.

  15. First-principles study of the alkali earth metal atoms adsorption on graphene

    International Nuclear Information System (INIS)

    Sun, Minglei; Tang, Wencheng; Ren, Qingqiang; Wang, Sake; JinYu; Du, Yanhui; Zhang, Yajun

    2015-01-01

    Graphical abstract: - Highlights: • The adsorption of Be and Mg adatoms on graphene is physisorption. • Ca, Sr, and Ba adatoms bond ionically to graphene and the most stable adsorption site for them is hollow site. • The zero band gap semiconductor graphene becomes metallic and magnetic after the adsorption of Ca, Sr, and Ba adatoms. - Abstract: Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  16. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  17. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Science.gov (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  18. Adsorption of heavy metals by agroforestry waste derived activated ...

    African Journals Online (AJOL)

    SAM

    2014-04-02

    Apr 2, 2014 ... harmful effect on human physiology causing various diseases and disorders among which are nervous and renal breakdown, brain damage and convulsions (Kula et al., 2008; Kazemipour et al., 2008; Farooq et al., 2010). Conventional techniques used for the removal of metals from wastewater include ...

  19. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    Nowadays, it is important to evaluate the self-purifying capacity of rivers because of the different kinds of pollutants discharged into them. Important kind of pollutants and heavy metals exist in wastewaters industries. When the Sorb Dona mine is placed in Upper Chalus River, in the west of Mazandaran, products of mine ...

  20. Graphene on metal surfaces and its hydrogen adsorption

    DEFF Research Database (Denmark)

    Andersen, Mie; Hornekær, L.; Hammer, B.

    2012-01-01

    The interaction of graphene with various metal surfaces is investigated using density functional theory and the meta-generalized gradient approximation (MGGA) M06-L functional. We demonstrate that this method is of comparable accuracy to the random-phase approximation (RPA). With M06-L we study l...

  1. Atomistic Modeling of Gas Adsorption in Nanocarbons

    Directory of Open Access Journals (Sweden)

    G. Zollo

    2012-01-01

    Full Text Available Carbon nanostructures are currently under investigation as possible ideal media for gas storage and mesoporous materials for gas sensors. The recent scientific literature concerning gas adsorption in nanocarbons, however, is affected by a significant variation in the experimental data, mainly due to the different characteristics of the investigated samples arising from the variety of the synthesis techniques used and their reproducibility. Atomistic simulations have turned out to be sometimes crucial to study the properties of these systems in order to support the experiments, to indicate the physical limits inherent in the investigated structures, and to suggest possible new routes for application purposes. In consideration of the extent of the theme, we have chosen to treat in this paper the results obtained within some of the most popular atomistic theoretical frameworks without any purpose of completeness. A significant part of this paper is dedicated to the hydrogen adsorption on C-based nanostructures for its obvious importance and the exceptional efforts devoted to it by the scientific community.

  2. Adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO surface

    KAUST Repository

    Yadav, Manoj Kumar

    2016-06-16

    The adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO(100) surface has been studied employing density functional theory. It is found that all these transition metals (TM) on MgO(100) surface are capable of adsorbing dinitrogen (N2), however there is no dissociative adsorption of N2 on single transition metal dopant. When two TM atoms are doped on MgO(100) surface, dissociative adsorption of dinitrogen occurs in all the three cases. Whether the dissociation is spontaneous or is it associated with activation barrier depends on the orientation of N2 molecule approaching the dopant site.

  3. Light Hydrocarbons Adsorption Mechanisms in Two Calcium-based Microporous Metal Organic Frameworks

    KAUST Repository

    Plonka, Anna M.

    2016-01-25

    The adsorption mechanism of ethane, ethylene and acetylene (C2Hn; n=2, 4, 6) on two microporous metal organic frameworks (MOFs) is described here that is consistent with observations from single crystal and powder X-ray diffraction, calorimetric measurments and gas adsorption isotherm measurements. Two calcium-based MOFs, designated as SBMOF-1 and SBMOF-2 (SB: Stony Brook), form three-dimensional frameworks with one-dimensional open channels. As determined form single crystal diffraction experiments channel geometries of both SBMOF-1 and SBMOF-2 provide multiple adsorption sites for hydrocarbon molecules trough C-H…π and C-H…O interactions, similarly to interactions in the molecular and protein crystals. Both materials selectively adsorb C2 hydrocarbon gases over methane as determined with IAST and breakthrough calculations, with C2H6/CH4 selectivity as high as 74 in SBMOF-1.

  4. Heavy metal ion removal by adsorption on to biological materials

    International Nuclear Information System (INIS)

    Jansson-Charrier, M.; Guibal, E.; Le Cloirec, P.; Surjous, R.

    1994-01-01

    The development of regulations constraints in the industrial waste-waters management leads to the study of new treatment processes, using raw or functionalized biological materials. These processes show competitive performances in metal ion sorption efficiency for the low metal content effluents. Uptake capacities of Uranium as high as 400 mg.g -1 chitosan, equivalent to the double of the uptake capacity of fungal origin biomass, can be reached. The application of these processes to real mine wastewaters gives efficiency coefficient upper to 90%, the residual concentrations are compatible to a direct injection into the environment. The grafting of functional groups onto the chitosan scales up the sorption performances to uptake capacity upper than 600 mg.g -1 polymer. pH, metal concentration are cited as major parameters, particle size influences both uptake kinetics and sorption equilibrium, in the case of the uranium accumulation by chitosan. The desorption of uranium from the sorbent allows the valorization of uranium and the re-use of the sorbent. (authors). 21 refs., 10 figs

  5. Off-Gas Adsorption Model Capabilities and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently

  6. Some models for the adsorption kinetics of pesticides in soil

    NARCIS (Netherlands)

    Leistra, M.; Dekkers, W.A.

    1977-01-01

    Three models describing adsorption‐desorption kinetics of pesticides in soil, that could be incorporated into computer programs on pesticide movement in soil, were discussed, the first model involved single first‐order rate equations for adsorption and desorption. Results from an analytical and a

  7. Modeling the physisorption of graphene on metals

    Science.gov (United States)

    Tao, Jianmin; Tang, Hong; Patra, Abhirup; Bhattarai, Puskar; Perdew, John P.

    2018-04-01

    Many processes of technological and fundamental importance occur on surfaces. Adsorption is one of these phenomena that has received the most attention. However, it presents a great challenge to conventional density functional theory. Starting with the Lifshitz-Zaremba-Kohn second-order perturbation theory, here we develop a long-range van der Waals (vdW) correction for physisorption of graphene on metals. The model importantly includes quadrupole-surface interaction and screening effects. The results show that, when the vdW correction is combined with the Perdew-Burke-Enzerhof functional, it yields adsorption energies in good agreement with the random-phase approximation, significantly improving upon other vdW methods. We also find that, compared with the leading-order interaction, the higher-order quadrupole-surface correction accounts for about 25 % of the total vdW correction, suggesting the importance of the higher-order term.

  8. Investigation of iron adsorption on composite transition metal carbides in steel by first-principles calculation

    Science.gov (United States)

    Xiong, Hui-Hui; Gan, Lei; Tong, Zhi-Fang; Zhang, Heng-Hua; Zhou, Yang

    2018-05-01

    The nucleation potential of transition metal (TM) carbides formed in steel can be predicted by the behavior of iron adsorption on their surface. Therefore, Fe adsorption on the (001) surface of (A1-xmx)C (A = Nb, Ti, m = Mo, V) was investigated by the first-principles method to reveal the initialization of Fe nucleation. The Mulliken population and partial density of state (PDOS) were also calculated and analyzed in this work. The results show that Fe adsorption depends on the composition and configuration of the composite carbides. The adsorption energy (Wads) of Fe on most of (A1-xmx)C is larger than that of Fe on pure TiC or NbC. The maximum Wads is found for Fe on (Nb0.5Mo0.5)C complex carbide, indicating that this carbide has the high nucleation capacity at early stage. The Fe adsorption could be improved by the segregation of Cr and Mn atoms on the surfaces of (Nb0.5Mo0.5)C and (Ti0.5Mo0.5)C. The PDOS analysis of (Cr, Mn)-doped systems further explains the strong interactions between Fe and Cr or Mn atoms.

  9. Density functional theory for adsorption of gas mixtures in metal-organic frameworks.

    Science.gov (United States)

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2010-03-04

    In this work, a recently developed density functional theory in three-dimensional space was extended to the adsorption of gas mixtures. Weighted density approximations to the excess free energy with different weighting functions were adopted for both repulsive and attractive contributions. An equation of state for hard-sphere mixtures and a modified Benedict-Webb-Rubin equation for Lennard-Jones mixtures were used to estimate the excess free energy of a uniform fluid. The theory was applied to the adsorption of CO(2)/CH(4) and CO(2)/N(2) mixtures in two metal-organic frameworks: ZIF-8 and Zn(2)(BDC)(2)(ted). To validate the theoretical predictions, grand canonical Monte Carlo simulations were also conducted. The predicted adsorption and selectivity from DFT were found to agree well with the simulation results. CO(2) has stronger adsorption than CH(4) and N(2), particularly in Zn(2)(BDC)(2)(ted). The selectivity of CO(2) over CH(4) or N(2) increases with increasing pressure as attributed to the cooperative interactions of adsorbed CO(2) molecules. The composition of the gas mixture exhibits a significant effect on adsorption but not on selectivity.

  10. Modelling the adsorption of mercury onto natural and aluminium pillared clays.

    Science.gov (United States)

    Eloussaief, Mabrouk; Sdiri, Ali; Benzina, Mourad

    2013-01-01

    The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system. Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms. Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g(-1) for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (∆G°, ∆H° and ∆S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J mol(-1) K(-1), and those of enthalpy ranged from 16.31 to 30.77 kJ mol(-1). The equilibrium parameter (R (L)) indicated that the adsorption of Hg(II) on Tunisian smectitic

  11. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework.

    Science.gov (United States)

    Wu, Di; Gassensmith, Jeremiah J; Gouvêa, Douglas; Ushakov, Sergey; Stoddart, J Fraser; Navrotsky, Alexandra

    2013-05-08

    The enthalpy of adsorption of CO2 on an environmentally friendly metal-organic framework, CD-MOF-2, has been determined directly for the first time using adsorption calorimetry at 25 °C. This calorimetric methodology provides a much more accurate and model-independent measurement of adsorption enthalpy than that obtained by calculation from the adsorption isotherms, especially for systems showing complex and strongly exothermic adsorption behavior. The differential enthalpy of CO2 adsorption shows enthalpy values in line with chemisorption behavior. At near-zero coverage, an irreversible binding event with an enthalpy of -113.5 kJ/mol CO2 is observed, which is followed by a reversible -65.4 kJ/mol binding event. These enthalpies are assigned to adsorption on more and less reactive hydroxyl groups, respectively. Further, a second plateau shows an enthalpy of -40.1 kJ/mol and is indicative of physisorbed CO2. The calorimetric data confirm the presence of at least two energetically distinct binding sites for chemisorbed CO2 on CD-MOF-2.

  12. Modeling of CO2 Adsorption on Activated Carbon and 13X Zeolite via Vacuum Swing Adsorption

    Science.gov (United States)

    Zarghampoor, M. H.; Mozaffarian, M.; Soleimani, M.; Takht Ravanchi, M.

    2017-06-01

    Due to carbon dioxide role in global warming, low CO2 emission limits have been established in recent years. This has led to a variety of studies on CO2 removal approaches. In this study, a VSA cycle consisting of two packed beds is considered for CO2 removal from flue gas. An atmospheric stream containing 20 CO2 and 80 N2 is fed to the beds at 50°C. Two adsorbents, namely Zeolite 13X and activated carbon were selected to compare their performance. Due to the monolayer adsorption of CO2 and N2 on these adsorbents, the Toth isotherm was used for equilibrium adsorption estimation. A quasi-second order model was considered for the mass transfer rate prediction due to low CO2 concentration. The modeling results showed that the average absolute deviation for equilibrium adsorption capacity prediction was 2, and the CO2 breakthrough time curve was predicted with less than 2.5 deviation. Based on the results, the VSA cycle time for zeolite 13X bed will be 3.5 times of the activated carbon bed. Another advantage of Zeolite 13X is that in each process cycle, 80 of adsorbent will be used, while only 74 of activated carbon in beds is used. The advantage of activated carbon bed is its better regeneration capability, since the activated carbon will be regenerated 5 more than zeolite 13X at a vacuum pressure of 0.02bar.

  13. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water

    Science.gov (United States)

    Miyoung Oh; Mandla A. Tshabalala

    2007-01-01

    Bark flour from ponderosa pine (Pinus ponderosa) was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(ll), Zn(ll), Cd(ll). and Ni(ll) under both equilibrium...

  14. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    Science.gov (United States)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  15. A DFT study of volatile organic compounds adsorption on transition metal deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kunaseth, Manaschai, E-mail: manaschai@nanotec.or.th [Nanoscale Simulation Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120 (Thailand); Poldorn, Preeyaporn [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Junkeaw, Anchalee; Meeprasert, Jittima; Rungnim, Chompoonut; Namuangruk, Supawadee [Nanoscale Simulation Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120 (Thailand); Kungwan, Nawee [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inntam, Chan [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Jungsuttiwong, Siriporn, E-mail: siriporn.j@ubu.ac.th [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand)

    2017-02-28

    Highlights: • VOCs removal via modified carbon-based adsorbent using density functional theory. • The single-vacancy defective graphene (SDG) with metal-deposited significantly increase the adsorption efficiency. • TM-doped SDG is a suitable adsorbent material for VOC removal. • Electron in hybridized sp{sup 2}-orbitals of heteroatoms has an effect on mode of adsorption. - Abstract: Recently, elevated global emission of volatile organic compounds (VOCs) was associated to the acceleration and increasing severity of climate change worldwide. In this work, we investigated the performance of VOCs removal via modified carbon-based adsorbent using density functional theory. Here, four transition metals (TMs) including Pd, Pt, Ag, and Au were deposited onto single-vacancy defective graphene (SDG) surface to increase the adsorption efficiency. Five prototypical VOCs including benzene, furan, pyrrole, pyridine, and thiophene were used to study the adsorption capability of metal-deposited graphene adsorbent. Calculation results revealed that Pd, Pt, Au, and Ag atoms and nanoclusters bind strongly onto the SDG surface. In this study, benzene, furan and pyrrole bind in the π-interaction mode using delocalized π-electron in aromatic ring, while pyridine and thiophene favor X- interaction mode, donating lone pair electron from heteroatom. In terms of adsorption, pyridine VOC adsorption strengths to the TM-cluster doped SDG surfaces are Pt{sub 4} (−2.11 eV) > Pd{sub 4} (−2.05 eV) > Ag{sub 4} (−1.53 eV) > Au{sub 4} (−1.87 eV). Our findings indicate that TM-doped SDG is a suitable adsorbent material for VOC removal. In addition, partial density of states analysis suggests that benzene, furan, and pyrrole interactions with TM cluster are based on p-orbitals of carbon atoms, while pyridine and thiophene interactions are facilitated by hybridized sp{sup 2}-orbitals of heteroatoms. This work provides a key insight into the fundamentals of VOCs adsorption on carbon

  16. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse

    2005-09-01

    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  17. Chlorobenzene, chloroform, and carbon tetrachloride adsorption on undoped and metal-doped sol-gel substrates (SiO2, Ag/SiO2, Cu/SiO2 and Fe/SiO2)

    International Nuclear Information System (INIS)

    Hernandez, M.A.; Gonzalez, A.I.; Corona, L.; Hernandez, F.; Rojas, F.; Asomoza, M.; Solis, S.; Portillo, R.; Salgado, M.A.

    2009-01-01

    Adsorption isotherms of chlorobenzene, chloroform and carbon tetrachloride vapors on undoped SiO 2 , and metal-doped Ag/SiO 2 , Cu/SiO 2 and Fe/SiO 2 substrates were measured in the temperature range of 398-593 K. These substrates were prepared from a typical sol-gel technique in the presence of metal dopants that rendered an assortment of microporous-mesoporous solids. The relevant characteristic of these materials was the different porosities and micropore to mesopore volume ratios that were displayed; this was due to the effect that the cationic metal valence exerts on the size of the sol-gel globules that compose the porous solid. The texture of these SiO 2 materials was analyzed by X-ray diffraction (XRD), FTIR, and diverse adsorption methods. The pore-size distributions of the adsorbents confirmed the existence of mesopores and supermicropores, while ultramicropores were absent. The Freundlich adsorption model approximately fitted the chlorinated compounds adsorption data on the silica substrates by reason of a heterogeneous energy distribution of adsorption sites. The intensity of the interaction between these organic vapors and the surface of the SiO 2 samples was analyzed through evaluation of the isosteric heat of adsorption and standard adsorption energy; from these last results it was evident that the presence of metal species within the silica structure greatly affected the values of both the amounts adsorbed as well as of the isosteric heats of adsorption

  18. Review of heavy metal bio-remediation in contaminated freeway facilitated by adsorption

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Toxicity around biological systems is a significant issue for environmental health in a long term. Recent biotechnological approaches for bio-remediation of heavy metals in freeway frequently include mineralization, bio-adsorption or even remediation. Thus, adequate restoration in freeway requiring cooperation, integration and assimilation of such biotechnological advances along with traditional and ethical wisdom to unravel the mystery of nature in the emerging field of bio-remediation was reviewed with highlights to better understand problems associated with toxicity of heavy metals and eco-friendly technologies.

  19. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Zhao Long; Mitomo, H.; Yoshii, F.

    2006-01-01

    Introduction: Removing metal ions and humic acid from water in water treatment has attracted much environment and health interests. Adsorbents, derived from a nature polymer, are desired in the viewpoints of environment-conscious technologies. Recently, some nature materials such as chitin, chitosan and their derivatives have been identified as an attractive option due to their distinctive properties. For an insoluble adsorbent based on these polymers to be obtained over a broad pH range, modification through crosslinking is required. Crosslinking agents such as glutaric dialdehyde and ethylene glycol diglycidyl ether are frequently used for modification. However, these crosslinking agents are not preferred because of their physiological toxicity. Radiation-crosslinking without any additive in the fabrication process results in a high-purity product. In a previous work, we applied ionizing radiation to induce the crosslinking of carboxymethylchitosan under highly concentrated paste-like conditions. The aim of this study is to investigate the adsorption behavior of metal ions, humic acid on irradiation-crosslinked carboxymethylchitosan. Experimental: Irradiation of chitosan samples at paste-like state was done with an electron beam. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, and some organic solvents. Swelling and charged characteristic analyses demonstrated typically pH-sensitive properties of these crosslinked materials. Scanning electron microscopic images showed that the crosslinked samples possessed porous morphological structure. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu 2+ , Cd 2+ ) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Also, isothermal adsorption data revealed that Cu 2

  20. Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump

    Science.gov (United States)

    Kowalska, Kinga; Ambrożek, Bogdan

    2017-12-01

    The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling

  1. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.

    Science.gov (United States)

    Cui, Yanshan; Weng, Liping

    2013-07-02

    The pH dependent solid-solution distribution of arsenate and phosphate in five Dutch agricultural soil samples was measured in the pH range 4-8, and the results were interpreted using the LCD (ligand and charge distribution) adsorption modeling. The pH dependency is similar for both oxyanions, with a minimum soluble concentration observed around pH 6-8. This pH dependency can be successfully described with the LCD model and it is attributed mainly to the synergistic effects from Ca adsorption. The solubility of phosphate is much lower than that of arsenate. This big difference cannot be sufficiently explained by the reduction of small amount of As(V) into As(III), neither by slow desorption/adsorption. The difference between phosphate and arsenate in their solid-solution distribution becomes larger with the increase of aluminum (hydr)oxides (Al-oxides) contribution to the total amount of metal (Al and Fe) (hydr)oxides. The influence of Al-oxides is much larger than its relative amount extracted from the soils. When Al-oxides account for >40% of the soil oxides, the whole adsorbents behave apparently similarly to that of pure Al-oxides. These results indicated that surface coating and substitution may have modified significantly oxyanion adsorption to Fe-oxides in soils, and how to account for this complexity is a challenge for geochemical modeling.

  2. Influence of metal doping of a MOF-74 framework on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Botas, J.A.; Calleja, G.; Orcajo, M.G. [Rey Juan Carlos Univ., Madrid (Spain). Dept. of Chemical and Energy Technology; Sanchez-Sanchez, M. [CSIC, Madrid (Spain). Inst. de Catalisis y Petroleoquimica

    2010-07-01

    Microporous Metal-Organic Framework (MOF) adsorbents are considered an interesting option for hydrogen storage. Due to their porous nature and unusually high surface areas, these materials show an exceptional H{sub 2} uptake. Unfortunately, their interaction with H{sub 2} molecules is weak, so cryogenic temperatures are required to reach competitive H{sub 2} storage capacities. In this sense, the presence of coordinatively unsaturated and exposed metal centers in some MOF frameworks could increase the affinity for H{sub 2} through stronger metal-H{sub 2} interactions. In this preliminary work, the effect of doping a Zn{sup 2+}-MOF-74 framework with Co{sup 2+}, Cu{sup 2+} and Mg{sup 2+} on its adsorption properties for H{sub 2} has been studied. Characterization studies suggest that the samples prepared have actually the MOF-74 structure, in which the different tested heteroatom ions have been successfully incorporated. The differences in H{sub 2} adsorption at 77 K and 87 K between the MOF-74 samples doped with the mentioned divalent metal ions were discussed as a function of their free pore volume and amount of metal incorporation. (orig.)

  3. Ordering kinetics in model systems with inhibited interfacial adsorption

    DEFF Research Database (Denmark)

    Willart, J.-F.; Mouritsen, Ole G.; Naudts, J.

    1992-01-01

    . The results are related to experimental work on ordering processes in orientational glasses. It is suggested that the experimental observation of very slow ordering kinetics in, e.g., glassy crystals of cyanoadamantane may be a consequence of low-temperature activated processes which ultimately lead......The ordering kinetics in two-dimensional Ising-like spin moels with inhibited interfacial adsorption are studied by computer-simulation calculations. The inhibited interfacial adsorption is modeled by a particular interfacial adsorption condition on the structure of the domain wall between......, of the algebraic growth law, R(t)∼Atn, whereas the growth exponent, n, remains close to the value n=1/2 predicted by the classical Lifshitz-Allen-Cahn growth law for systems with nonconserved order parameter. At very low temperatures there is, however, an effective crossover to a much slower algebraic growth...

  4. Adsorption of Different Fractions of Organic Matter on the Surface of Metal Oxide

    KAUST Repository

    Zaouri, Noor A

    2013-05-18

    The adsorption of different fractions of organic matter on the surface of Al2O3 and ZrO2 were investigated. The aim was to study the affinity of these fractions on the surface of metal oxide and the effect of several factors. Batch adsorption experiments were conducted with Low molecular weight oxygenated compounds. These chemical compound have been chosen to investigate:1) the aliphatic and aromatic structurer;2)contribution of hydroxyl group and; 3) the number of carboxyl group. HPLC and IC analysis used for determent the concentration of these chemical in the working solution. ATR-FTIR used to distinguish the type of coordination structure with the surface of metal oxide. The results fitted with Langmuir equation. The results showed that the chemical structure and the type and number of attached functional have an impact on the adsorption. Which it was proved via ATR-FTIR where the result showed that each chemical have different coordination structure on the surface of ZrO2 and Al2O3. Different fractions and sources of NOM were used (hydrophobic fraction of Suwannee and Colorado River, biopolymers extracted for the exuded of 2 species of algae, and low molecular acids that do not adsorb in XAD-8 resin). Results showed that these different fractions have different affinity with the surface of Al2O3 and ZrO2. These adsorption behaviors were varying according to the difference in the component of each NOM. Biopolymers showed significant adsorption at acidic pH. These biopolymers are mainly comprised of polysaccharides and this result proved that polysaccharide adsorb on the surface of ZrO2 more than Al2O3.

  5. Surface-complexation modelling for describing adsorption of ...

    African Journals Online (AJOL)

    2013-06-08

    Jun 8, 2013 ... Adsorption of dissolved phosphate onto synthetic hydrous ferric oxide (HFO) was measured in the laboratory as a function of pH, ionic strength, and phosphate relative concentration. Experimental data were used to constrain optimal values of surface complexation reactions using a geochemical modeling ...

  6. Extended Langmuir model fitting to the filter column adsorption data ...

    African Journals Online (AJOL)

    Leachate samples collected at different depths of WQD column were analyzed for concentrations of zinc and copper ions using atomic absorption spectrometer. The removal efficiency was around 94% and 92% for zinc and copper respectively using column depth of 1 M at a flow rate of 12 ml/min. The adsorption model ...

  7. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  8. Surface complexation modeling of Cu(II adsorption on mixtures of hydrous ferric oxide and kaolinite

    Directory of Open Access Journals (Sweden)

    Schaller Melinda S

    2008-09-01

    Full Text Available Abstract Background The application of surface complexation models (SCMs to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO, pure kaolinite (from two sources and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples.

  9. One-Step Carbon Coating and Polyacrylamide Functionalization of Fe₃O₄ Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals.

    Science.gov (United States)

    Habila, Mohamed A; ALOthman, Zeid A; El-Toni, Ahmed Mohamed; Labis, Joselito Puzon; Khan, Aslam; Al-Marghany, Adel; Elafifi, Hussein Elsayed

    2017-11-27

    Magnetic nanoparticles are used in adsorptive removal of heavy metals from polluted wastewater. However, their poor stability in an acidic medium necessitates their protection with a coating layer. Coating magnetic nanoparticles with carbon showed proper protection but the heavy metal removal efficiency was slightly weak. However, to boost the removal efficiencies of surface functionalization, polyacrylamide was applied to carbon-coated Fe₃O₄ nanoparticles. In this paper, to facilitate the synthesis process, one-step carbon coating and polyacrylamide functionalization were conducted using the hydrothermal technique with the aim of enhancing the adsorptive removal capacity of Fe₃O₄ nanoparticles towards some heavy metals such as Cu(II), Ni(II), Co(II), and Cd(II). The results showed that the one-step process succeeded in developing a carbon coating layer and polyacrylamide functionality on Fe₃O₄ nanoparticles. The stability of the magnetic Fe₃O₄ nanoparticles as an adsorbent in an acidic medium was improved due to its resistance to the dissolution that was gained during carbon coating and surface functionalization with polyacrylamide. The adsorptive removal process was investigated in relation to various parameters such as pH, time of contact, metal ion concentrations, adsorbent dose, and temperature. The polyacrylamide functionalized Fe₃O₄ showed an improvement in the adsorption capacity as compared with the unfunctionalized one. The conditions for superior adsorption were obtained at pH 6; time of contact, 90 min; metal solution concentration, 200 mg/L; adsorbent dose, 0.3 g/L. The modeling of the adsorption data was found to be consistent with the pseudo-second-order kinetic model, which suggests a fast adsorption process. However, the equilibrium data modeling was consistent with both the Langmuir and Freundlich isotherms. Furthermore, the thermodynamic parameters of the adsorptive removal process, including Δ G °, Δ H °, and Δ S

  10. One-Step Carbon Coating and Polyacrylamide Functionalization of Fe3O4 Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Mohamed A. Habila

    2017-11-01

    Full Text Available Magnetic nanoparticles are used in adsorptive removal of heavy metals from polluted wastewater. However, their poor stability in an acidic medium necessitates their protection with a coating layer. Coating magnetic nanoparticles with carbon showed proper protection but the heavy metal removal efficiency was slightly weak. However, to boost the removal efficiencies of surface functionalization, polyacrylamide was applied to carbon-coated Fe3O4 nanoparticles. In this paper, to facilitate the synthesis process, one-step carbon coating and polyacrylamide functionalization were conducted using the hydrothermal technique with the aim of enhancing the adsorptive removal capacity of Fe3O4 nanoparticles towards some heavy metals such as Cu(II, Ni(II, Co(II, and Cd(II. The results showed that the one-step process succeeded in developing a carbon coating layer and polyacrylamide functionality on Fe3O4 nanoparticles. The stability of the magnetic Fe3O4 nanoparticles as an adsorbent in an acidic medium was improved due to its resistance to the dissolution that was gained during carbon coating and surface functionalization with polyacrylamide. The adsorptive removal process was investigated in relation to various parameters such as pH, time of contact, metal ion concentrations, adsorbent dose, and temperature. The polyacrylamide functionalized Fe3O4 showed an improvement in the adsorption capacity as compared with the unfunctionalized one. The conditions for superior adsorption were obtained at pH 6; time of contact, 90 min; metal solution concentration, 200 mg/L; adsorbent dose, 0.3 g/L. The modeling of the adsorption data was found to be consistent with the pseudo-second-order kinetic model, which suggests a fast adsorption process. However, the equilibrium data modeling was consistent with both the Langmuir and Freundlich isotherms. Furthermore, the thermodynamic parameters of the adsorptive removal process, including ΔG°, ΔH°, and ΔS°, indicated a

  11. Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study

    Science.gov (United States)

    Chen, Guo-Xiang; Li, Han-Fei; Yang, Xu; Wen, Jun-Qing; Pang, Qing; Zhang, Jian-Min

    2018-03-01

    We study the structural, electronic and magnetic properties of 3d transition metal (TM) atoms (Cr, Mn, Fe, Co, Ni and Cu) adsorbed GaN monolayer (GaN-ML) using first-principles calculations. The results show that, for 6 different TM adatoms, the most stable adsorption sites are the same. The adsorption of TM atoms results in significant lattice distortions. A covalent chemical bonding character between TM adatom and GaN-ML is found in TM adsorbed systems. Except for Ni adsorbed system, all TM adsorbed systems show spin polarization implying that the adsorption of TM induces magnetization. The magnetic moments of the adsorbed systems are concentrated on the TM adatoms and the nearest-neighbor N atoms of the adsorption site contributed slightly. Our analysis shows that the GaN-ML properties can be effectively modulated by TM adsorption, and exhibit various electronic and magnetic properties, such as magnetic metals (Fe adsorption), half-metal (Co adsorption), and spin gapless semiconductor (Cu adsorption). These present properties of TM adsorbed GaN-ML may be of value in electronics and spintronics applications.

  12. Arsenic Removal from Aqueous Solution Using Pure and Metal-Doped Titania Nanoparticles Coated on Glass Beads: Adsorption and Column Studies

    Directory of Open Access Journals (Sweden)

    M. Ihsan Danish

    2013-01-01

    Full Text Available Nanosized metal oxide, Titania, provides high surface area and specific affinity for the adsorption of heavy metals, including arsenic (As, which is posing a great threat to the world population due to its carcinogenic nature. In this study, As(III adsorption was studied on pure and metal- (Ag- and Fe- doped Titania nanoparticles. The nanoparticles were synthesized by liquid impregnation method with some modifications, with crystallite size in the range of 30 to 40 nm. Band gap analysis, using Kubelka-Munk function showed a shift of absorption band from UV to visible region for the metal-doped Titania. Effect of operational parameters like dose of nanoparticles, initial As(III concentration, and pH was evaluated at 25°C. The data obtained gave a good fit with Langmuir and Freundlich isotherms and the adsorption was found to conform to pseudo-second-order kinetics. In batch studies, over 90% of arsenic removal was observed for both types of metal-doped Titania nanoparticles from a solution containing up to 2 ppm of the heavy metal. Fixed bed columns of nanoparticles, coated on glass beads, were used for As(III removal under different operating conditions. Thomas and Yoon-Nelson models were applied to predict the breakthrough curves and to find the characteristic column parameters useful for process design. The columns were regenerated using 10% NaOH solution.

  13. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Studt, Felix

    2007-01-01

    with the adsorption energy of the central, C, N, O, or S atom, the scaling constant depending only on x. A model is proposed to understand this behavior. The scaling model is developed into a general framework for estimating the reaction energies for hydrogenation and dehydrogenation reactions....

  14. Hybrid empirical--theoretical approach to modeling uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Larry C.; Grossman, Christopher; Fjeld, Robert A.; Coates, John T.; Elzerman, Alan W

    2004-05-01

    An estimated 330 metric tons of U are buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of U transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of U fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms were measured for 14 sediment samples collected from sedimentary interbeds underlying the SDA. The adsorption data were fit with a Freundlich isotherm. The Freundlich n parameter is statistically identical for all 14 sediment samples and the Freundlich K{sub f} parameter is correlated to sediment surface area (r{sup 2}=0.80). These findings suggest an efficient approach to material characterization and implementation of a spatially variable reactive transport model that requires only the measurement of sediment surface area. To expand the potential applicability of the measured isotherms, a model is derived from the empirical observations by incorporating concepts from surface complexation theory to account for the effects of solution chemistry. The resulting model is then used to predict the range of adsorption conditions to be expected in the vadose zone at the SDA based on the range in measured pore water chemistry. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  15. Hybrid empirical--theoretical approach to modeling uranium adsorption

    International Nuclear Information System (INIS)

    Hull, Larry C.; Grossman, Christopher; Fjeld, Robert A.; Coates, John T.; Elzerman, Alan W.

    2004-01-01

    An estimated 330 metric tons of U are buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of U transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of U fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms were measured for 14 sediment samples collected from sedimentary interbeds underlying the SDA. The adsorption data were fit with a Freundlich isotherm. The Freundlich n parameter is statistically identical for all 14 sediment samples and the Freundlich K f parameter is correlated to sediment surface area (r 2 =0.80). These findings suggest an efficient approach to material characterization and implementation of a spatially variable reactive transport model that requires only the measurement of sediment surface area. To expand the potential applicability of the measured isotherms, a model is derived from the empirical observations by incorporating concepts from surface complexation theory to account for the effects of solution chemistry. The resulting model is then used to predict the range of adsorption conditions to be expected in the vadose zone at the SDA based on the range in measured pore water chemistry. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  16. Off-gas Adsorption Model and Simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  17. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys.

    Science.gov (United States)

    Greeley, Jeff; Mavrikakis, Manos

    2005-03-03

    Periodic, self-consistent DFT-GGA calculations are used to study the thermochemical properties of both surface and subsurface atomic hydrogen on a variety of pure metals and near-surface alloys (NSAs). For surface hydrogen on pure metals, calculated site preferences, adsorption geometries, vibrational frequencies, and binding energies are reported and are found to be in good agreement with available experimental data. On NSAs, defined as alloys wherein a solute is present near the surface of a host metal in a composition different from the bulk composition, surface hydrogen generally binds more weakly than it binds to the pure-metal components composing the alloys. Some of the NSAs even possess the unusual property of binding hydrogen as weakly as the noble metals while, at the same time, dissociating H(2) much more easily. On both NSAs and pure metals, formation of surface hydrogen is generally exothermic with respect to H(2)(g). In contrast, formation of subsurface hydrogen is typically endothermic with respect to gas-phase H(2) (the only exception to this general statement is found for pure Pd). As with surface H, subsurface H typically binds more weakly to NSAs than to the corresponding pure-metal components of the alloys. The diffusion barrier for hydrogen from surface to subsurface sites, however, is usually lower on NSAs compared to the pure-metal components, suggesting that population of subsurface sites may occur more rapidly on NSAs.

  18. Surface Complexation Modelling in Metal-Mineral-Bacteria Systems

    Science.gov (United States)

    Johnson, K. J.; Fein, J. B.

    2002-12-01

    The reactive surfaces of bacteria and minerals can determine the fate, transport, and bioavailability of aqueous heavy metal cations. Geochemical models are instrumental in accurately accounting for the partitioning of the metals between mineral surfaces and bacteria cell walls. Previous research has shown that surface complexation modelling (SCM) is accurate in two-component systems (metal:mineral and metal:bacteria); however, the ability of SCMs to account for metal distribution in mixed metal-mineral-bacteria systems has not been tested. In this study, we measure aqueous Cd distributions in water-bacteria-mineral systems, and compare these observations with predicted distributions based on a surface complexation modelling approach. We measured Cd adsorption in 2- and 3-component batch adsorption experiments. In the 2-component experiments, we measured the extent of adsorption of 10 ppm aqueous Cd onto either a bacterial or hydrous ferric oxide sorbent. The metal:bacteria experiments contained 1 g/L (wet wt.) of B. subtilis, and were conducted as a function of pH; the metal:mineral experiments were conducted as a function of both pH and HFO content. Two types of 3-component Cd adsorption experiments were also conducted in which both mineral powder and bacteria were present as sorbents: 1) one in which the HFO was physically but not chemically isolated from the system using sealed dialysis tubing, and 2) others where the HFO, Cd and B. subtilis were all in physical contact. The dialysis tubing approach enabled the direct determination of the concentration of Cd on each sorbing surface, after separation and acidification of each sorbent. The experiments indicate that both bacteria and mineral surfaces can dominate adsorption in the system, depending on pH and bacteria:mineral ratio. The stability constants, determined using the data from the 2-component systems, along with those for other surface and aqueous species in the systems, were used with FITEQL to

  19. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhao, Jian; He, Man-Chao

    2014-01-01

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail

  20. Off-gas adsorption model and simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, V.J. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID (United States)

    2013-07-01

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  1. Lignin: A sustainable biosorbent for heavy metal adsorption from wastewater, a review

    Science.gov (United States)

    Nasrullah, Asma; Bhat, A. H.; Isa, Mohamed Hasnain

    2016-11-01

    With the recent advancements in science and technology, environmental pollution is a challenging problem due to increased activities in domestic, industrial, and agricultural sector. These activities have led to the release of various types of micropollutants such as heavy metal ions, organic and inorganic ions (detergents, and dye) etc into ground water which badly affects the ecosystem. Among various types of pollutants, heavy metals are the most reported in the recent decade. Water pollution is the most challenging problem, and needs to be controlled for better and healthy ecosystem which requires a healthy, eco-friendly and cheaper technology. In this context. lignin is abundantly available, cheaper and environmentally friendly. For efficient removal of heavy metals, lignin can be modified chemically or thermally to increased its biosorption capacity. In this review merits of adsorption and demerits of other separation technologies are compared. This paper presents the recent state of research on the efficient utilization of lignin, its modification and its adsorption efficiency for heavy metal removal from wastewater.

  2. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    Science.gov (United States)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  3. Adsorption of heavy metal ions from aqueous solution by fly ash

    Energy Technology Data Exchange (ETDEWEB)

    I.J. Alinnora [Federal University of Technology, Owerri (Nigeria). Department of Pure and Industrial Chemistry

    2007-03-15

    The removal characteristics of lead and copper ions from aqueous solution by fly ash were investigated under various conditions of contact time, pH and temperature. The influence of pH of the metal ion solutions on the uptake levels of the metal ions by fly ash were carried out between pH 4 and 12. The level of uptake of Pb{sup 2+} and Cu{sup 2+} ions by the fly ash generally increased, but not in a progressive manner, at higher pH values. The effect of temperature on the uptake of Pb{sup 2+} and Cu{sup 2+} ions was investigated between 30{sup o}C and 60{sup o}C, the adsorption of being enhanced at the lowest temperature. Rate constants were evaluated in terms of a first-order kinetics. The rate constant, k for uptake of Pb{sup 2+} and Cu{sup 2+} ions were 1.77 10{sup -2}s{sup -1} and 2.11 10{sup -2}s{sup -1}, respectively. The experimental results underline the potential of coal fly ash for the recovery of metal ions from waste water. The main mechanisms involved in the removal of heavy metal ions from solution were adsorption at the surface of the fly ash and precipitation. 43 refs., 4 figs., 1 tab.

  4. Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption.

    Science.gov (United States)

    Zhang, Yongli; Yan, Weiwei; Sun, Zhiming; Pan, Cheng; Mi, Xue; Zhao, Gang; Gao, Jianping

    2015-03-06

    Ordered porous zeolite/chitosan (Zel/Chi) monoliths were prepared by a unidirectional freeze-drying method, and their properties and structures were characterized by various instrumental methods. The metal ion adsorption and the drug release performance of the porous Zel/Chi monoliths were also studied. The release rate of cefalexin from drug-loaded Zel/Chi monoliths depended on the composition and porous structure of the monoliths. The metal ion adsorption capacity of the Zel/Chi monoliths was related to the concentration of the metal ions, the adsorption time and the Zel/Chi ratio. An experimentally maximum adsorption of 89 mg/g was achieved for Cu(2+) ions. The Zel/Chi monoliths with adsorbed Cu(2+) ions effectively catalyzed the reduction of 4-nitrophenol to 4-aminophenol and had good recyclability. They were easily recovered by simply removing them from the reaction system and rinsing them with water. Copyright © 2014. Published by Elsevier Ltd.

  5. PAR immobilized colorimetric fiber for heavy metal ion detection and adsorption.

    Science.gov (United States)

    Li, Guowei; Zhang, Lianhai; Li, Zhiwei; Zhang, Wenqin

    2010-05-15

    A new wearable colorimetric fiber for heavy metal ion detection and adsorption has been synthesized by first aminating a commercially available polyacrylonitrile fiber with ethylenediamine and then covalently immobilizing 4-(2-pyridylazo)-1,3-benzenediol (PAR) on the modified fiber through a Mannich reaction. The fiber was characterized by X-ray powder diffraction spectra (XRD), scanning electron microscope (SEM), FTIR and UV-vis spectroscopy, and its acid exchange capacity, colorimetric properties, response speed, selectivity, reusability, photostability and adsorption capacity were investigated. In neutral aqueous solutions, the PAR immobilized fiber responds selectively to heavy metal ions, such as Hg(2+), Pb(2+), Cd(2+), Zn(2+), Ni(2+) and Cu(2+) with a color change from red-orange to dark-brown. Its visual detection limit for Pb(2+) is 1 x 10(-6)mol/L. Moreover, the selectivity increases with a decrease in pH, i.e. at pH 3.0, it shows a color change only for Hg(2+) and Cu(2+). This fiber also shows excellent reusability (>50 times), high photostability (>30 days under direct exposure to sunlight) and high adsorption capacity for Hg(2+) (0.74 mmol/g). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Cesium adsorption ability and stability of metal hexacyanoferrate irradiated with gamma-rays

    International Nuclear Information System (INIS)

    Arisaka, Makoto; Watanabe, Masayuki; Ishizaki, Manabu; Kurihara, Masato; Chen, Rongzhi; Tanaka, Hisashi

    2013-01-01

    The influence of irradiation with gamma-rays to metal hexacyanoferrate (MHCF: M = Fe, Cu or Ni), which is known as an adsorbent for selective adsorption of cesium (Cs) ion in solution, on Cs adsorption ability and stability was investigated in HNO 3 solutions. Under the adsorbed dose conditions (50 - 300 kGy), it was found that the MHCF is fully stable although the radiolytic decomposition of MHCF was slightly observed with an increase of the total adsorbed dose, which was confirmed by an increment of Fe, Cu or Ni concentration in HNO 3 solution after the irradiation. The weight percent of the metal in the solution to initial weight of MHCF was less than unity. Moreover, no change in composition of carbon, hydrogen and nitrogen in MHCF was observed. On the other hand, the distribution coefficients of Cs to the irradiated MHCF were independent of the total adsorbed dose. This indicates that the Cs adsorption ability was maintained under gamma-ray irradiation. (author)

  7. Controlling Cooperative CO2Adsorption in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks.

    Science.gov (United States)

    Siegelman, Rebecca L; McDonald, Thomas M; Gonzalez, Miguel I; Martell, Jeffrey D; Milner, Phillip J; Mason, Jarad A; Berger, Adam H; Bhown, Abhoyjit S; Long, Jeffrey R

    2017-08-02

    In the transition to a clean-energy future, CO 2 separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO 2 adsorption, large CO 2 removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO 2 adsorption isotherms resulting from cooperative and reversible insertion of CO 2 into metal-amine bonds to form ammonium carbamate chains. Small modifications to the diamine structure are found to shift the threshold pressure for cooperative CO 2 adsorption by over 4 orders of magnitude at a given temperature, and the observed trends are rationalized on the basis of crystal structures of the isostructural zinc frameworks obtained from in situ single-crystal X-ray diffraction experiments. The structure-activity relationships derived from these results can be leveraged to tailor adsorbents to the conditions of a given CO 2 separation process. The unparalleled versatility of these materials, coupled with their high CO 2 capacities and low projected energy costs, highlights their potential as next-generation adsorbents for a wide array of CO 2 separations.

  8. PAR immobilized colorimetric fiber for heavy metal ion detection and adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Li Guowei; Zhang Lianhai; Li Zhiwei [Department of Chemistry, School of Sciences, Tianjin University, No. 92 Weijin Road, Tianjin 300072 (China); Zhang Wenqin, E-mail: wqzhang@tju.edu.cn [Department of Chemistry, School of Sciences, Tianjin University, No. 92 Weijin Road, Tianjin 300072 (China)

    2010-05-15

    A new wearable colorimetric fiber for heavy metal ion detection and adsorption has been synthesized by first aminating a commercially available polyacrylonitrile fiber with ethylenediamine and then covalently immobilizing 4-(2-pyridylazo)-1,3-benzenediol (PAR) on the modified fiber through a Mannich reaction. The fiber was characterized by X-ray powder diffraction spectra (XRD), scanning electron microscope (SEM), FTIR and UV-vis spectroscopy, and its acid exchange capacity, colorimetric properties, response speed, selectivity, reusability, photostability and adsorption capacity were investigated. In neutral aqueous solutions, the PAR immobilized fiber responds selectively to heavy metal ions, such as Hg{sup 2+}, Pb{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Ni{sup 2+} and Cu{sup 2+} with a color change from red-orange to dark-brown. Its visual detection limit for Pb{sup 2+} is 1 x 10{sup -6} mol/L. Moreover, the selectivity increases with a decrease in pH, i.e. at pH 3.0, it shows a color change only for Hg{sup 2+} and Cu{sup 2+}. This fiber also shows excellent reusability (>50 times), high photostability (>30 days under direct exposure to sunlight) and high adsorption capacity for Hg{sup 2+} (0.74 mmol/g).

  9. Modeling the mass-action expression for bidentate adsorption.

    Science.gov (United States)

    Benjamin, Mark M

    2002-02-01

    The number of bidentate binding sites on a pristine surface (i.e., sites comprising two adjacent monodentate sites plus the space between them) can be substantially larger than the maximum number of bidentate molecules that can adsorb to the surface. When bidentate sorption occurs, the number of available bidentate sites decreases in response to direct occupation of some sites, but an even more significant loss results from the fact that several unoccupied sites immediately surrounding each adsorbed molecule can also become unavailable. Recognition of this phenomenon allows development of a model for the adsorption process that matches simulated data from Monte Carlo (MC) modeling extremely well. The model also explains the observation that, on a given surface with a given fractional occupation, the number of available bidentate sites depends on whether the occupied sites are populated by monodentate or bidentate adsorbed species. A model developed more than 60 years ago but not widely recognized by modern adsorption modelers also fits the MC simulations very well. The simulated data are also reasonably approximated by assuming that the number of available bidentate sites on a surface is proportional to the square of the number of available monodentate sites, although the fit is not as good as with the models mentioned above. By contrast, approximating the number of available sites as proportional to the number of monodentate sites to the first power yields predictions that do not match the simulations. The results have implications for modeling of both multidentate adsorption reactions and monovalent-divalent ion exchange.

  10. Tritium Specific Adsorption Simulation Utilizing the OSPREY Model

    Energy Technology Data Exchange (ETDEWEB)

    Veronica Rutledge; Lawrence Tavlarides; Ronghong Lin; Austin Ladshaw

    2013-09-01

    During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University, and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. This report is discusses the development of a tritium specific adsorption model. Using the OSPREY model and integrating it with a fundamental level isotherm model developed under and experimental data provided by the NEUP grant, the tritium specific adsorption model was developed.

  11. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    International Nuclear Information System (INIS)

    Cotten, G.B.; Eldredge, H.B.; Navratil, J.D.

    1999-01-01

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics

  12. Adsorption of Atoms of 3 d Metals on the Surfaces of Aluminum and Magnesium Oxide Films

    Science.gov (United States)

    Ramonova, A. G.; Kibizov, D. D.; Kozyrev, E. N.; Zaalishvili, V. B.; Grigorkina, G. S.; Fukutani, K.; Magkoev, T. T.

    2018-01-01

    The adsorption and formation of submonolayer structures of Ti, Cr, Fe, Ni, Cu on the surfaces of aluminum and magnesium oxide films formed on Mo(110) under ultrahigh vacuum conditions are studied via X-ray, ultraviolet photo-, and Auger electron spectroscopy (XPS, UVES, AES); spectroscopy of energy losses of high-resolution electrons (SELHRE); spectroscopy of the backscattering of low-energy ions (SBSLEI); infrared absorption spectroscopy (IAS); and the diffraction of slow electrons (DSE). Individual atoms and small clusters of all the investigated metals deposited on oxides acquire a positive charge, due presumably to interaction with surface defects. As the concentration of adatoms increases when the adsorption centers caused by defects are filled, charge transfer from adatoms to substrates is reduced. This is accompanied by further depolarization caused by the lateral interaction of adatoms.

  13. Enthalpy-entropy compensation for n-hexane adsorption on Y zeolite containing transition metal cations

    Directory of Open Access Journals (Sweden)

    Hercigonja R.

    2015-01-01

    Full Text Available In this work, the values of entropy changes related to n-hexane adsorption onto cation exchanged Y zeolite were calculated from differential heats. Various transition metal cations (Co2+, Ni2+, Zn2+ and Cd2+ were introduced into the lattice of the parent NaY, and the existence of enthalpy-entropy compensation effect related to n-hexane adsorption, id. est, the linearity of -ΔH vs. -ΔS plots was examined. The compensation effect was confirmed for all investigated zeolites. The compensation effect can be comprehended as governed by ion-induced dipole interaction between highly polarizing cationic centers in zeolite and nonopolar n-hexane molecules. Finally, the compensation effect and so the compensation temperature were found to depend on the type of charge-balancing cation (charge, size and electronic configuration. [Projekat Ministarstva nauke Republike Srbije, br. 172018

  14. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Cotten (Parsons); J. D. Navratil (INEEL); H. B. Eldredge (U of Idaho)

    1999-03-01

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.

  15. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel.

    Science.gov (United States)

    Ren, Xiaohua; Guo, Huanhuan; Feng, Jinkui; Si, Pengchao; Zhang, Lin; Ci, Lijie

    2018-01-01

    3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m 2 /g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min -1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO 4 · - ) by transferring electrons to N-rGO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Town, R.M.; Unsworth, E.R.; Riemsdijk, van W.H.

    2008-01-01

    Received for publication October 12, 2007. The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total

  17. The use of waste mussel shells for the adsorption of dyes and heavy metals

    Science.gov (United States)

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris

    2016-04-01

    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  18. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    Science.gov (United States)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2017-09-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  19. Adsorption performances and mechanisms of the newly synthesized N,N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media.

    Science.gov (United States)

    Jing, XiaoSheng; Liu, FuQiang; Yang, Xin; Ling, PanPan; Li, LanJuan; Long, Chao; Li, AiMin

    2009-08-15

    N,N'-di (carboxymethyl) dithiocarbamate chelating resin (PSDC) was synthesized by anchoring the chelating agent of N,N'-di (carboxymethyl) dithiocarbamate to the chloromethylated PS-DVB (Cl-PS-DVB) matrix, as a new adsorbent for removing divalent heavy metal ions from waste-stream. The physicochemical structures of Cl-PS-DVB and PSDC were elaborately characterized using Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), and were further morphologically characterized using BET and BJH methods. The adsorption performances of PSDC towards heavy metals such as Cu(II), Pb(II) and Ni(II) were systematically investigated, based upon which the adsorption mechanisms were deeply exploited. For the above target, the classic batch adsorption experiments were conducted to explore the kinetics and isotherms of the removal processes with pH-value, initial concentration, temperature, and contact time as the controlling parameters. The kinetic and isotherm data could be well elucidated with Lagergren-second-order equation and Langmuir model respectively. The strong affinity of PSDC toward these target soft acids could be well demonstrated with the electrostatic attraction and chelating interaction caused by IDA moiety and sulphur which were namely soft bases on the concept of hard and soft acids and bases (HASB). Thermodynamic parameters, involving DeltaH(o), DeltaS(o) and DeltaG(o) were also calculated from graphical interpretation of the experimental data. The standard heats of adsorption (DeltaH(o)) were found to be endothermic and the entropy change values (DeltaS(o)) were calculated to be positive for the adsorption of Cu(II), Pb(II) and Ni(II) ions onto the tested adsorbents. Negative values of DeltaG(o) indicated that adsorption processes for all tested metal ions onto PSDC were spontaneous.

  20. A pre-burial adsorption model for the genesis of gold in the Witwatersrand

    International Nuclear Information System (INIS)

    Davidson, R.J.

    1990-01-01

    The chemistry related to the adsorption of gold and uranium onto algal biomass (activated carbon) is related to the genesis of the Witwatersrand. Detrital gold, together with cyanide solubilized as the stable aurocyanide complex. With the subsequent decomposition of the algal deposits, it is surmized that carbon-rich layers having adsorptive properties formed in the conglomerates. Under these conditions, gold (silver) in solution would be adsorbed selectively as the cyanide complex, together with uranium as the carbonate complex. The subsequent burial and compression of the gold-rich conglomerate with temperatures rising to about 400 degrees C would then have reduced the adsorbed gold to the metal in a single segregated gold-silver metal phase. An adsorption model would explain the very consistent trends in the gold-to-silver ratios of individual reefs in the Witwatersrand, which suggest an extensive hydrothermal system approaching isothermal equilibrium. Also, as gold grades increase, so silver grades generally decrease, indicating the sequential displacement of silver by gold as classically obtained with activated carbon. 11 refs., 2 figs., 1 tab

  1. Adsorption on metal oxides Studies with the metastable impact electron spectroscopy

    CERN Document Server

    Krischok, S; Kempter, V

    2002-01-01

    An overview is given on the application of metastable impact electron spectroscopy, in combination with UPS, to the study of clean magnesia and titania surfaces and their interaction with metal atoms and small molecules. The mechanisms for metal adsorption on reducible (titania) and non-reducible (magnesia) substrates are different: while on titania the metal atom often bonds by electron transfer to Ti3d states, it is hybridization of the adsorbate and anion wavefunctions which accounts for the bonding on MgO. In the case of H sub 2 O, molecular adsorption takes place both on MgO and TiO sub 2; on the other hand, water-alkali coadsorption leads to hydroxide formation. In the case of CO sub 2 , chemisorption takes place in form of carbonate (CO sub 3) species. These originate from the CO sub 2 interaction with O sup 2 sup - surface anions. While for CaO chemisorption takes place at regular oxygen sites, for MgO this occurs at low-coordinated oxygen ions only; for TiO sub 2 chemisorption requires alkali coadsor...

  2. Experimental investigations of adsorption characteristics and porosity of activated metal hydride powders

    Science.gov (United States)

    Kazakov, A. N.; Romanov, I. A.; Kuleshov, V. N.; Dunikov, D. O.

    2017-11-01

    In the present work non-uniformities of microstructure, porosity and adsorption characteristics of La0.9Ce0.1Ni5 metal hydride by the height of the bed are investigated. A 500 g metal hydride bed was cycled inside a vertical metal hydride reactor and three samples was taken from top, middle and bottom of the bed. Non-uniform particle distributions and bed densification were observed, the bed porosity is around 0.58-0.67 at the top and middle parts of the bed and 0.46-0.54 at the bottom, where a dense and robust agglomerate was formed during the cycling. Specific surface area measured by nitrogen adsorption methods is 1.8-2.1 m2/g at the top of the bed, 4.2-5.4 m2/g in the middle and 1.1-1.5 m2/g at the bottom. The maximum is connected with higher degree of particle dispersion without effects from particle agglomeration.

  3. Adsorption on metal oxides: Studies with the metastable impact electron spectroscopy

    International Nuclear Information System (INIS)

    Krischok, S.; Hoefft, O.; Kempter, V.

    2002-01-01

    An overview is given on the application of metastable impact electron spectroscopy, in combination with UPS, to the study of clean magnesia and titania surfaces and their interaction with metal atoms and small molecules. The mechanisms for metal adsorption on reducible (titania) and non-reducible (magnesia) substrates are different: while on titania the metal atom often bonds by electron transfer to Ti3d states, it is hybridization of the adsorbate and anion wavefunctions which accounts for the bonding on MgO. In the case of H 2 O, molecular adsorption takes place both on MgO and TiO 2 ; on the other hand, water-alkali coadsorption leads to hydroxide formation. In the case of CO 2 , chemisorption takes place in form of carbonate (CO 3 ) species. These originate from the CO 2 interaction with O 2- surface anions. While for CaO chemisorption takes place at regular oxygen sites, for MgO this occurs at low-coordinated oxygen ions only; for TiO 2 chemisorption requires alkali coadsorption

  4. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  5. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil.

    Science.gov (United States)

    Wang, Xin; Jia, Youngfeng

    2010-08-01

    Field experiments at the Shenyang Experimental Station of Ecology were conducted to study the adsorption, accumulation, and remediation of heavy metals by poplar and larch grown in artificially contaminated soil. The soil was spiked with a combination of Cd, Cu, and Zn at concentrations of 1.5, 100, and 200 mg.kg(-1), respectively. The results showed that the biomass of poplar (Populus canadensis Moench) was lower by 26.0% in the soil spiked with a mixture of Cd, Cu, and Zn, compared with the control. Concentrations of Cd in poplar leaf and Cu in poplar roots in the treated soil were 4.11 and 14.55 mg kg(-1), respectively, which are much greater than in corresponding controls. The migration of heavy metals in woody plant body was in the order Cd > Zn > Cu. Poplar had higher metal concentrations in aboveground tissues and a higher biomass compared with larch of the same age and therefore is potentially more suitable for remediation. In the heavy metal-polluted soil of this study, phytoremediation by poplar may take 56 and 245 years for Cd and Cu, respectively, for meeting the soil standards of heavy metals, and the corresponding phytoremediation times by larch would take 211 and 438 years. The research findings could be used as a basis to develop ecological engineering technologies for environmental control and remediation of pollution caused by heavy metals in soils.

  6. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses.

    Science.gov (United States)

    Gonzalez, Aridane G; Pokrovsky, Oleg S; Beike, Anna K; Reski, Ralf; Di Palma, Anna; Adamo, Paola; Giordano, Simonetta; Angel Fernandez, J

    2016-01-01

    Terrestrial mosses are commonly used as bioindicators of atmospheric pollution. However, there is a lack of standardization of the biomonitoring preparation technique and the efficiency of metal adsorption by various moss species is poorly known. This is especially true for in vitro-cultivated moss clones, which are promising candidates for a standardized moss-bag technique. We studied the adsorption of copper and zinc on naturally grown Sphagnum peat moss in comparison with in vitro-cultivated Sphagnum palustre samples in order to provide their physico-chemical characterization and to test the possibility of using cloned peat mosses as bioindicators within the protocol of moss-bag technique. We demonstrate that in vitro-grown clones of S. palustre exhibit acid-base properties similar to those of naturally grown Sphagnum samples, whereas the zinc adsorption capacity of the clones is approx. twice higher than that of the samples from the field. At the same time, the field samples adsorbed 30-50% higher amount of Cu(2+) compared to that of the clones. This contrast may be related to fine differences in the bulk chemical composition, specific surface area, morphological features, type and abundance of binding sites at the cell surfaces and in the aqueous solution of natural and cloned Sphagnum. The clones exhibited much lower concentration of most metal pollutants in their tissues relative to the natural samples thus making the former better indicators of low metal loading. Overall, in vitro-produced clones of S. palustre can be considered as an adequate, environmentally benign substitution for protected natural Sphagnum sp. samples to be used in moss-bags for atmospheric monitoring. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effect of biomolecules adsorption on oxide layers developed on metallic materials used in cooling water systems

    International Nuclear Information System (INIS)

    Torres-Bautista, Blanca-Estela

    2014-01-01

    This thesis was carried out in the frame of the BIOCOR ITN European project, in collaboration with the industrial partner RSE S.p.A. (Italy). Metallic materials commonly used in cooling systems of power plants may be affected by bio-corrosion induced by biofilm formation. The objective of this work was to study the influence of biomolecules adsorption, which is the initial stage of biofilm formation, on the electrochemical behaviour and the surface chemical composition of three metallic materials (70Cu-30Ni alloy, 304L stainless steel and titanium) in seawater environments. In a first step, the interactions between a model protein, the bovine serum albumin (BSA), and the surface of these materials were investigated. Secondly, tightly bound (TB) and loosely bound (LB) extracellular polymeric substances (EPS), that play a fundamental role in the different stages of biofilm formation, maturation and maintenance, were extracted from Pseudomonas NCIMB 2021 marine strain, and their effects on oxide layers were also evaluated. For that purpose, electrochemical measurements (corrosion potential E(corr) vs time, polarization curves and electrochemical impedance spectroscopy (EIS)) performed during the very first steps of oxide layers formation (1 h immersion time) were combined to surface analysis by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS). Compared to 70Cu-30Ni alloy in static artificial seawater (ASW) without biomolecules, for which a thick duplex oxide layer (outer redeposited Cu 2 O layer and inner oxidized nickel layer) is shown, the presence of BSA, TB EPS and LB EPS leads to a mixed oxide layer (oxidized copper and nickel) with a lower thickness. In the biomolecules-containing solutions, this oxide layer is covered by an adsorbed organic layer, mainly composed of proteins. A model is proposed to analyse impedance data obtained at E(corr). The results show a slow-down of the anodic reaction in the presence

  8. Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations

    Czech Academy of Sciences Publication Activity Database

    Pawlesa, Justyna; Zukal, Arnošt; Čejka, Jiří

    2007-01-01

    Roč. 13, 3-4 (2007), s. 257-265 ISSN 0929-5607 Grant - others:DeSSANS(XE) SES6-CT-2005-020133; INDENS(XE) MRTN-CT-2004-005503 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : MCM-22 zeolite * MCM-49 zeolite * alkali metal cation exchange * N2 and CO2 adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.880, year: 2007

  9. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in bot...

  10. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs.

    Science.gov (United States)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya; Chuang, Yu-Chun; Chen, Yu-Sheng; Jacobson, Allan J; Miljanić, Ognjen Š

    2015-11-16

    Two mesoporous fluorinated metal-organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m(2) g(-1), the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)-the latter two being ozone-depleting substances and potent greenhouse species-with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    Science.gov (United States)

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  12. Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology

    Science.gov (United States)

    Kalantari, Katayoon; Ahmad, Mansor B.; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak

    2014-01-01

    Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions. PMID:25050784

  13. Probing adsorption sites of carbon dioxide in metal organic framework of [Zn(bdc)(dpds)]n: A molecular simulation study

    Science.gov (United States)

    Lu, Shih-I.; Liao, Jian-Min; Huang, Xiao-Zhuang; Lin, Chia-Hsun; Ke, Szu-Yu; Wang, Chih-Chieh

    2017-11-01

    We used force-field based grand-canonical Monte Carlo simulation method and density functional theory to study adsorption characteristics of carbon dioxide (CO2) molecules in a metal-organic framework (MOF) compound, [Zn(bdc)(dpds)]n. The studied MOF include a metal ion (Zn(II)), an anion organic linker (dianion of benzene dicarboxylicacid, bdc2-) and a neutral organic linker (4,4‧-dipyridyldisulfide, dpds). Results from calculated adsorption isotherms and enthalpies of adsorption agree with the experimental data. The interactions between the adsorbed CO2 and the organic linkers were examined in simulations. Calculated results show available absorption sites are surrounded by two dpds ligands in which an S-S bond as an N-N‧ spacer connect two pyridines. In contrast, the bdc2- ligand does not give a significant contribution to the substantial adsorption amount even though it contains the carboxylate group that provides available bonding site to CO2.

  14. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    International Nuclear Information System (INIS)

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji; Machida, Motoi; Tatsumoto, Hideki

    2007-01-01

    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics

  15. Kinetic and steric differences in adsorption in two porous metal-organic frameworks

    Science.gov (United States)

    Lask, Kathleen; Krungleviciute, Vaiva; Bulut, Murat; Migone, Aldo; Lee, J.-Y.; Li, Jing

    2008-03-01

    Kinetic and steric differences are two of the three fundamental mechanisms underlying the use of adsorption in applications to gas mixture separations. We present experimental results on kinetics and equilibrium adsorption measurements of tetrafluoromethane and argon on two metal-organic framework (MOF) materials: RPM1-Co or [Co3(bpdc)3bpy].4DMF.H2O] (bpdc = biphenyldicarboxylate, bpy = 4,4'-bipyridine, DMF = N,N- dimethylformamide) and Cu-BTC or Cu3(BTC)2(H2O)3 (BTC = benzene-1,3,5-tricarboxylate). The adsorbates display significant differences in their kinetics on RPM1-Co (i.e., there are sizable differences in the time required for each gas to reach equilibrium after it is allowed access to the substrate). Our equilibrium measurements show that CF4 is sterically precluded from adsorbing in the small tetrahedral-shaped side pockets present in Cu-BTC. We will compare our experimental results with predictions for how adsorption kinetics depends on the size of the adsorbate and on those of the pores present in the substrate.

  16. Study of the influence of magnetite preparation parameters in the metals adsorption efficiency in the effluents treatment

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Wada, Luciana Yukie; Hauy Junior, Eduardo

    2002-01-01

    Ferrites have been used to remove and concentrate heavy metals of aqueous waste. This work describes the obtaining of the magnetite (Fe 3 O 4 ) varying the pH, the temperature and the drying time. The performance of magnetite was evaluated by values of distribution coefficient of Eu 3+ from nitric solution. The kinetic reaction, the adsorption isotherm of Eu 3+ and the adsorption capacity of the synthetic magnetite were studied. (author)

  17. Model pseudopotential in simple metals

    International Nuclear Information System (INIS)

    Khanna, K.N.; Sharma, P.K.

    1980-01-01

    The model potential proposed by Sharma and Srivastava has been used to study the various properties of simple metals. New core radii have also been reported corresponding to three dielectric functions. For most metals, the model potential successfully describes the atomic properties. (author)

  18. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks.

    Science.gov (United States)

    Gómez-Gualdrón, Diego A; Wang, Timothy C; García-Holley, Paula; Sawelewa, Ruth M; Argueta, Edwin; Snurr, Randall Q; Hupp, Joseph T; Yildirim, Taner; Farha, Omar K

    2017-10-04

    Metal-organic frameworks (MOFs) are porous crystalline materials that are promising for adsorption-based, on-board storage of hydrogen in fuel-cell vehicles. Volumetric and gravimetric hydrogen capacities are the key factors that determine the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor too heavy. Because the goals of maximizing MOF volumetric and gravimetric hydrogen adsorption loadings individually are incompatible, an in-depth understanding of the trade-off between MOF volumetric and gravimetric loadings is necessary to achieve the best compromise between these properties. Here we study, both experimentally and computationally, the trade-off between volumetric and gravimetric cryo-adsorbed hydrogen deliverable capacity by taking an isoreticular series of highly stable zirconium MOFs, NU-1101, NU-1102, and NU-1103 as a case study. These MOFs were studied under recently proposed operating conditions: 77 K/100 bar →160 K/5 bar. We found the difference between highest and lowest measured deliverable capacity in the MOF series to be ca. 40% gravimetrically, but only ca. 10% volumetrically. From our molecular simulation results, we found hydrogen "monolayer" adsorption to be proportional to the surface area, whereas hydrogen "pore filling" adsorption is proportional to the pore volume. Thus, we found that the higher variability in gravimetric deliverable capacity in contrast to the volumetric capacity, occurs due to the proportional relation between gravimetric surface area and pore volume in the NU-110x series in contrast to the inverse relation between volumetric surface area and void fraction. Additionally, we find better correlations with geometric surface areas than with BET areas. NU-1101 presents the highest measured volumetric performance with 46.6 g/L (9.1 wt %), whereas NU-1103 presents the highest gravimetric one

  19. First-principles study of the alkali earth metal atoms adsorption on graphene

    Science.gov (United States)

    Sun, Minglei; Tang, Wencheng; Ren, Qingqiang; Wang, Sake; JinYu; Du, Yanhui; Zhang, Yajun

    2015-11-01

    Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  20. Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption

    Science.gov (United States)

    Mattila, Pipsa; Heinonen, Hanna; Loimula, Kalle; Forsman, Johanna; Johansson, Leena-Sisko; Tapper, Unto; Mahlberg, Riitta; Hentze, Hans-Peter; Auvinen, Ari; Jokiniemi, Jorma; Milani, Roberto

    2014-09-01

    Magnetic cobalt nanoparticles coated with a thin carbon shell were produced by means of a scalable method based on hydrogen reduction synthesis. The presence of oxidized groups on the surface of the carbon shell enabled the reaction with alkoxysilanes bearing amino and thiol reactive functions under mild conditions, and therefore the formation of a thin functional silane layer which holds the potential for further modification in consideration of specific applications, e.g., in the separation and catalysis fields. The magnetic nanoparticles bearing surface thiol groups were also used in metal adsorption tests. These nanoparticles could efficiently adsorb not only gold from a chloride salt aqueous solution, but also several other metals when incubated in a thiocyanate-leached solution obtained from crushed printed circuit boards. The combination of a scalable production method with a simple and versatile surface modification strategy opens up a wide array of potential industrial applications in the fields of separation, sensing, and biomedical devices.

  1. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory

    NARCIS (Netherlands)

    Heinen, J.; Burtch, N.; Walton, K.; Fonseca Guerra, C.; Dubbeldam, D.

    2016-01-01

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor–acceptor interactions. Using a

  2. Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption

    International Nuclear Information System (INIS)

    Stephen, Musyoka; Catherine, Ngila; Brenda, Moodley; Andrew, Kindness; Leslie, Petrik; Corrine, Greyling

    2011-01-01

    Highlights: → Electrospun and modified cellulose nanofibers have high surface area. → Modified nanofibers showed improved adsorption of Cd and Pb from water. → Regenerated modified nanofibers had high adsorption capacity hence recyclable. - Abstract: Functionalized cellulose nanofibers have been obtained through electrospinning and modification with oxolane-2,5-dione. The application of the nanofibers for adsorption of cadmium and lead ions from model wastewater samples is presented for the first time. Physical and chemical properties of the nanofibers were characterized. Surface chemistry during preparation and functionalization was monitored using Fourier transform-infrared spectroscopy, scanning electron microscopy, carbon-13 solid state nuclear magnetic resonance spectroscopy and Brunauer Emmett and Teller. Enhanced surface area of 13.68 m 2 g -1 was recorded for the nanofibers as compared to the cellulose fibers with a surface area of 3.22 m 2 g -1 . Freundlich isotherm was found to describe the interactions better than Langmuir: K f = 1.0 and 2.91 mmol g -1 (r 2 = 0.997 and 0.988) for lead and cadmium, respectively. Regenerability of the fiber mats was investigated and the results obtained indicate sustainability in adsorption efficacy of the material.

  3. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions.

    Science.gov (United States)

    Hasan, Zubair; Jhung, Sung Hwa

    2015-01-01

    Provision of clean water is one of the most important issues worldwide because of continuing economic development and the steady increase in the global population. However, clean water resources are decreasing everyday, because of contamination with various pollutants including organic chemicals. Pharmaceutical and personal care products, herbicides/pesticides, dyes, phenolics, and aromatics (from sources such as spilled oil) are typical organics that should be removed from water. Because of their huge porosities, designable pore structures, and facile modification, metal-organic frameworks (MOFs) are used in various adsorption, separation, storage, and delivery applications. In this review, the adsorptive purifications of contaminated water with MOFs are discussed, in order to understand possible applications of MOFs in clean water provision. More importantly, plausible adsorption or interaction mechanisms and selective adsorptions are summarized. The mechanisms of interactions such as electrostatic interaction, acid-base interaction, hydrogen bonding, π-π stacking/interaction, and hydrophobic interaction are discussed for the selective adsorption of organics over MOFs. The adsorption mechanisms will be very helpful not only for understanding adsorptions but also for applications of adsorptions in selective removal, storage, delivery and so on. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    Directory of Open Access Journals (Sweden)

    Xiaoli Sun

    2017-12-01

    Full Text Available Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te. The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS2 and 2H-WSe2, which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  5. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo

    2017-01-01

    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX 2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX 2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX 2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS 2 and 2H-WSe 2 , which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX 2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX 2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  6. Isolation of Renewable Phenolics by Adsorption on Ultrastable Hydrophobic MIL-140 Metal-Organic Frameworks.

    Science.gov (United States)

    Van de Voorde, Ben; Damasceno Borges, Daiane; Vermoortele, Frederik; Wouters, Robin; Bozbiyik, Belgin; Denayer, Joeri; Taulelle, Francis; Martineau, Charlotte; Serre, Christian; Maurin, Guillaume; De Vos, Dirk

    2015-09-21

    The isolation and separation of phenolic compounds from aqueous backgrounds is challenging and will gain in importance as we become more dependent on phenolics from lignocellulose-derived bio-oil to meet our needs for aromatic compounds. Herein, we show that highly stable and hydrophobic Zr metal-organic frameworks of the MIL-140 type are effective adsorbent materials for the separation of different phenolics and far outperform other classes of porous solids (silica, zeolites, carbons). The mechanism of the hydroquinone-catechol separation on MIL-140C was studied in detail by combining experimental results with computational techniques. Although the differences in adsorption enthalpy between catechol and hydroquinone are negligible, the selective uptake of catechol in MIL-140C is explained by its dense π-π stacking in the pores. The interplay of enthalpic and entropic effects allowed separation of a complex, five-compound phenol mixture through breakthrough over a MIL-140C column. Unlike many other metal-organic frameworks, MIL-140C is remarkably stable and maintained structure, porosity and performance after five adsorption-desorption cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Modulation of the work function of fullerenes C60 and C70 by alkali-metal adsorption: A theoretical study

    International Nuclear Information System (INIS)

    Liang, Hong; Xu, Shunfu; Liu, Weihui; Sun, Yueqiang; Liu, Xiangfa; Zheng, Xinqing; Li, Sen; Zhang, Qiang; Zhu, Ziliang; Zhang, Xiaochun; Dong, Chengguo; Li, Chun; Yuan, Guang; Mimura, Hitenori

    2013-01-01

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C 60 and C 70 was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C 60 and C 70 decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C 60 and C 70 . The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C 60 and C 70 .

  8. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    Science.gov (United States)

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2017-11-01

    Full Text Available Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM and transmission electron microscopy (TEM micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM. The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes.

  10. Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide.

    Science.gov (United States)

    Chen, Chi; Xu, Kui; Ji, Xiao; Miao, Ling; Jiang, Jianjun

    2014-06-14

    The adsorption of several acidic gases (CO2, NO2 and SO2) on light metal (Li, Al) decorated graphene oxide (GO) is theoretically studied, based on the first-principles calculations. Configuration relaxation, binding energy and charge transfer are carried out to discuss the acidic gas adsorption ability of light metal decorated GO. It is found out that Li, Al could be anchored stably by hydroxyl and epoxy groups on GO, and then a strong adsorption of CO2, NO2 and SO2 will occur above these light metals. In contrast to Ti, Li decorated GO exhibits a comparable adsorption ability of acidic gases, but a much smaller interaction with O2 about 2.85-3.98 eV lower in binding energy; and Al decorated GO displays much higher binding energy of all acidic gases with an enhancement of about 0.59-2.29 eV. The results of enhanced acidic gas adsorption ability and a reduced interference by O2 imply that Li, Al decorated GO may be useful and promising for collection and filtration of exhaust gases.

  11. Morphology and adsorption of chromium ion on uranium 1,2,4,5-benzenetetracarboxylic acid metal organic framework (MOF

    Directory of Open Access Journals (Sweden)

    Vala Remy M.K.

    2016-01-01

    Full Text Available In this paper, we report the synthesis of metal organic framework of uranium 1,2,4,5-benzene tetracarboxylic acid (U-H4btec MOF by solvothermal method. The obtained MOF was characterized by Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray diffraction spectroscopy (XRD, Energy dispersive spectroscopy (EDS, thermogravimetric and differential thermogravimetric analysis (TGA/DTA. The morphology of the uranium 1,2,4,5-benzene tetracarboxylic acid MOF observed by SEM, revealed the presence of flaky porous structure. Adsorption of Cr3+ from aqueous solution onto the uranium 1,2,4,5-benzene tetracarboxylic acid MOF was systematically studied. Langmuir and Freundlich adsorption isotherms were applied to determine the adsorption capacity of the MOF to form a monolayer. Kinetic determination of the adsorption of Cr3+ suggested both chemisorption and physisorption probably due to the presence of carbonyl groups within the MOF and its porous structure.

  12. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface

    International Nuclear Information System (INIS)

    Nolan, Michael

    2012-01-01

    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce 3+ , while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  13. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface

    Science.gov (United States)

    Nolan, Michael

    2012-04-01

    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce3+, while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  14. Adsorption of formaldehyde molecule on the pristine and transition metal doped graphene: First-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); Xu, Lei [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); College of Physics, Jilin University, Changchun, 130012 (China); Liu, Lin-Lin; Zhao, Lu-Si; Chen, Chun-Ping [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun, 130012 (China); Zhang, Yong [Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Wang, Xiao-Chun, E-mail: wangxiaochun@jlu.edu.cn [Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012 (China); Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun, 130012 (China)

    2017-02-28

    Highlights: • Formaldehyde molecule (H{sub 2}CO) is a common environmental pollutant with strong toxicity. • Total 36 different initial configurations of H{sub 2}CO molecule adsorbing onto three types of substrates have been investigated. • The Ti-doped graphene has the enough binding energy, significant changes in electronic structure, and reasonable short recovery time 10{sup −3} s. • The Ti-doped graphene is a promising candidate for detecting formaldehyde gas. - Abstract: The adsorption of H{sub 2}CO molecule on pristine and transition metal (Ti and V) doped graphene samples were investigated via a first-principles approach based on density functional theory. The most stable adsorption geometry, energy and charge transfer of H{sub 2}CO molecule on pristine and doped graphene are discussed respectively. We have found that Ti and V dopant atoms can significantly enhance the interaction between H{sub 2}CO molecule and graphene. The calculated net electron transfers, electronic density difference images and densities of states give the evidence that the H{sub 2}CO molecules stay on Ti (or V) – doped graphene by chemisorption. After H{sub 2}CO adsorption, there are significant changes in electronic structure near the Fermi level, for both two systems of Ti and V doped graphene. This indicates distinct changes of electron transport properties. We have also found that H{sub 2}CO molecule has a larger absorption energy on V-doped graphene (1.939 eV) compared with Ti-doped graphene (1.120 eV). It is shown that the Ti-doped graphene has enough binding energy, adequate changes in electronic structure and reasonable short recovery time 10{sup −3} s, making it a promising candidate for detecting formaldehyde gas.

  15. Mesoporous Metal-Organic Frameworks with Exceptionally High Working Capacities for Adsorption Heat Transformation.

    Science.gov (United States)

    Mo, Zong-Wen; Zhou, Hao-Long; Zhou, Dong-Dong; Lin, Rui-Biao; Liao, Pei-Qin; He, Chun-Ting; Zhang, Wei-Xiong; Chen, Xiao-Ming; Zhang, Jie-Peng

    2018-01-01

    Pore size is one of the most important parameters of adsorbents, and mesoporous materials have received intense attention for large guests. Here, a series of mesoporous coordination polymers underlying a new framework prototype for fast expansion of pore size is reported and the profound effect of pore size on adsorption heat transformation is demonstrated. Three isostructural honeycomb-like frameworks are designed and synthesized by combining ditopic linear metal oxalate chains and triangular tris-pyridine ligands. Changing the ligand bridging length from 5.5 to 8.6 and 9.9 Å gives rise to effective pore diameter from 20 to 33 and 37 Å, surface area from 2096 to 2630 and 2749 m 2 g -1 , and pore volume from 1.19 to 1.93 and 2.36 cm 3 g -1 , respectively. By virtue of the unique and tunable isotherm shape of mesopores, exceptionally large working capacity up to 1.19 g g -1 or 0.38 g cm -3 for adsorption heat transformation can be achieved using R-134a (1,1,1,2-tetrafluroethane) as a working fluid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DETERMINATION OF RATE CONSTANT AND STABILITY OF ADSORPTION IN COMPETITIVE ADSORPTION OF Cr(III AND Cd(II ON HUMIC ACID BY USING THE NEW MODEL OF KINETIC FORMULATION

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2010-06-01

    Full Text Available Determination of rate and stability constants of adsorption in competitive adsorption of Cr(III and Cd(II on humic acid by using the new model of kinetic formulation has been done. The new model based on assumption that those adsorption was first order adsorption rearched equilibrium. Humic acid was isolated from Peat moss of Silaut- West Sumatra by modificated Schnitzer method. Humic acid characterization was conducted by using infrared spectrophotometer with KBR pellet method. The experiment of kinetic adsorption was conducted in batch system reactor using erlenmeyer at 25 ± 0.01 oC of water steam bath and in a series of sampling procedure. Initial concentration of both Cr(III and Cd(II was 4x10-4 M. Thirty milligrams of humic acid was added to 200 mL of metal solution, and then stirred continuously. At the fixed periode of time, 10 mL of sample was taken using a syringe, then filterd with 0.45 µm filter paper. Concentration of Cr(III and Cd(II in the filtrate was determinated by AAS, while that was adsorbed by humic acid was equal to difference between initial and equilibrium concentration. It was concluded that competitive adsorption of Cr(III and Cd(II on humic acid was first order adsorption rearched equilibrium as proposed in this research. Adsorption rate constant of Cr(III on humic acid  at competitive condition was greater than of Cd(II, but on the contrary for stability constant (K. Competition between Cr(III and Cd(II to interact with the active side of humic acid was dominated by Cr(III.   Keywords: rate constant, stability and competitive adsorption

  17. Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber.

    Science.gov (United States)

    Zaini, Muhammad Abbas Ahmad; Amano, Yoshimasa; Machida, Motoi

    2010-08-15

    The aim of this research is to produce activated carbons derived from polyacrylonitrile (PAN) fiber and to examine their feasibility of removing heavy metals from aqueous solution. Thermogravimetric analysis was used to identify the suitable conditions for preparing oxidized fiber and coke as activated carbon precursors. Steam and CO(2) were used to activate the precursors. Activated carbons were characterized by their pore texture, elemental compositions and surface functionalities. Batch adsorption and desorption studies were carried out to determine the metal-binding ability of activated carbons. Two commercial activated carbon fibers (ACFs), i.e., A-20 and W10-W, were employed to compare the removal performance of PAN derived activated carbons. Influence of oxidation treatment of PAN fiber prior to steam activation was also explored and discussed. Results indicated that steam produced a higher surface area but a lower resultant yield as compared to CO(2). Also, precursors activated by steam showed a greater removal performance. For both activation methods, fiber displayed a better metal-binding ability than coke. A small nitrogen loss from PAN fiber as a result of oxidation treatment assisted a greater removal of Cu(II) and Pb(II), but the interaction to Cu(II) was found stronger. It is proposed that the formation of cyclized structure by oxidation treatment minimized the nitrogen loss during steam activation, hence increased the uptake performance. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Optimization of Continuous Flow Adsorption of Heavy Metal Ions on Continuous System Column by Peganum Harmala Seeds

    OpenAIRE

    Elhameh Mohammadpour; Mohammad Reza Yaftian; Abasali Zamani; Parvin Gharbani

    2017-01-01

    Background & Aims of the Study: Heavy metals discharge to environment is a worldwide problem growing in scale. When they accumulate in the environment and in food chains, they can profoundly disrupt biological processes. Peganum Harmala Seeds (PHS) was used as a bio-sorbent, using a continuous system for removing Pb2+, Co2+, Ni2+ and Cu2+ ions from aqueous solutions. Materials and Methods: PHS was used as adsorbent in adsorption of heavy metals from aqueous solutions....

  19. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation

    Science.gov (United States)

    Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong

    2014-07-01

    The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.

  20. Membranes prepared by radiation grafting of binary monomers for adsorption of heavy metals from industrial wastes

    Science.gov (United States)

    Hegazy, El-Sayed A.; Kamal, H.; Maziad, N.; Dessouki, A. M.

    1999-05-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) as individually and in binary monomer mixture onto low density polyethylene (LDPE) has been carried out. The effect of preparation conditions such as irradiation dose, monomer concentration, comonomer composition, and solvent on the grafting yield was investigated. Characterization and some properties of the prepared membranes using different analytical techniques are studied, accordingly the possibility of its practical use in industrial waste treatment is determined. The swelling behavior, electrical conductivity, thermal stability, and mechanical properties of the membranes were investigated as a function of the grafting degree. The prepared cation-exchange membranes possessed good electrical and mechanical properties, high thermal stability and possess good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ and Pb 2+ ions either in mixture containing other metals or if exists alone in the waste solution.

  1. Probing the Adsorption of Carbon Monoxide on Transition Metal Clusters Using IR Action Spectroscopy

    Science.gov (United States)

    Lapoutre, Vivike J. F.; Oomens, Jos; Bakker, Joost M.

    2012-06-01

    The discovery of enhanced catalytic activity of small gold clusters has led to a great interest in size-dependent catalytic properties of metal clusters. To obtain a better understanding of the catalytic mechanisms it is essential to know the structures of these clusters and the nature of their interaction with reactant molecules. We have studied the structure of gas-phase niobium clusters with a carbon monoxide adsorbed using IR action spectroscopy. We present size-selective IR spectra obtained via IR multiple photon spectroscopy monitoring either photodetachment or photodissociation depending on the charge state. The combination of these spectra with DFT calculations allows for the structural determination of the adsorption product. M. Haruta et al., Journal of Catalysis 115 301-309 (1989). M. Haertelt et al., The Journal of Physical Chemistry Letters 2 1720-1724 (2011)

  2. Adsorptive kinetic mechanism of heavy metal cations on the surface of graphite oxide and its SiO2 composite

    Science.gov (United States)

    Sheet, Imtithal; Kabbani, Ahmad; Holail, Hanafy

    2017-02-01

    Nanomaterials have gained great attention because of their novel size- and shape-dependent properties, large specific surface area and high reaction activity. Moreover, nanomaterials have a wide range of applications, as in the technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatments. In the present study, nanostructured graphite oxide, silica/graphite oxide composites and silica nanoparticles were used for the removal of the heavy metal ions from aqueous solutions by a batch adsorption method and the adsorptive kinetic mechanism of heavy metal cations on the surface of graphite oxide and its SiO2 composite was evaluated. The experimental results revealed a strong adsorption of the metal cations on the surface of graphite oxide, this is reflected in the shifts in wave numbers after adsorption with nanostructured graphite oxide and the big shift in wave numbers (Δv¯) for nickel ions reflects chemosorption type of adsorption. This is confirmed by the coherence between Δv¯, removal percentage and crystal field stabilization energy (CFSE). Silica/ GO (2:3) composite showed the greatest removal percentage at different concentrations compared to pure graphite oxide and silica nanoparticles. The higher removal percentage of nickel ions by silica /GO composite (2:3) was observed at 180 min contact time and basic pH. The kinetic studies showed that silica/ GO (2:3) composite had rapid adsorption rate and efficiency and it was found to follow first order rate expression or an exponential decay of the metal cations from water study.

  3. Adsorption of CO and H2 on Transition Metal Clusters : insights from Vibrational Spectroscopy and Density Functional Theory

    NARCIS (Netherlands)

    Swart, I.

    2008-01-01

    Adsorption of hydrogen (H2) and carbon monoxide (CO) molecules on transition metals is of paramount importance for several (catalytic) processes. These include the purification of H2 streams and the Fischer-Tropsch reaction, in which a mixture of H2 and CO is converted to synthetic fuels. As a

  4. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    Science.gov (United States)

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  5. Effect of CO and H adsorption on the compositional structure of binary nanoalloys via DFT modeling

    Science.gov (United States)

    West, Paul S.; Johnston, Roy L.; Barcaro, Giovanni; Fortunelli, Alessandro

    2013-08-01

    A theoretical approach to investigate the influence of CO and H adsorption on the compositional structure or chemical ordering of binary metal nanoclusters is applied to selected representative pairs: AuPd, PdPt, CuPt and PdRh. The truncated octahedral (TO) 38-atom cluster is chosen as a model of small fcc nanoclusters because its high-symmetry allows a simpler analysis and a reduced computational effort. A number of CO and H ligands (ranging from 1 to 8) are adsorbed on atop sites at the centre of (111) facets of the cluster, and the corresponding energetics are analyzed in detail. A strong tendency to segregation inversion from AuPd shell/core to core/shell is found upon CO adsorption, qualitatively very similar even though more pronounced than that found for the PdRh pair (where Pd plays the role of Au and Rh that of Pd). This effect is still present, but quantitatively modest, in PdPt. The value of the CO binding energy decreases in the sequence: Rh > Pt > Pd > Au, and is scarcely affected by the presence of neighbouring hetero-species (minor electronic effect). A clear electronic effect is instead found in the CuPt case, in which the strengthening of Pt-CO bonds when Cu neighbours surround the interacting Pt atom brings Cu from the centres to the edges of (111) facets in Pt-rich clusters upon CO adsorption. H adsorption brings about qualitatively similar effects, although to a much smaller degree, so that a definite segregation inversion is only predicted for the AuPd pair. The predicted trends are found to be in good agreement with available experimental results.

  6. Facile and cost-effective preparation of PVA/modified calcium carbonate nanocomposites via ultrasonic irradiation: Application in adsorption of heavy metal and oxygen permeation property.

    Science.gov (United States)

    Mallakpour, Shadpour; Khadem, Elham

    2017-11-01

    This work is focused on the fabrication and determination of physicochemical behaviors of new poly(vinyl alcohol) (PVA) nanocomposites (NCs) containing various contents of calcium carbonate (CC) nanoparticles modified with γ-aminopropyl triethoxy silane (ATS) (henceforth designated as CC-ATS) which could be a crucial treatment for their application as gas barrier to O 2 gas and uptake of metal ions in waste waters. Samples were produced through the solution casting method under ultrasound irradiation. Thermal and mechanical performances were also evaluated for all ultrasonically synthesized nanocomposites and the results indicated that thermal and mechanical stability are dramatically enhanced by addition of a small amount of modified CC-ATS within PVA up to 5wt% and higher amounts has low effect on the composite properties. The result of oxygen gas permeability of PVA showed a 25.44% reduction by adding of 5wt% of CC-ATS into polymer matrix. Experimental adsorption isotherm data indicated that PVA NC has more efficiency for Cu(II) adsorption relative to pure PVA and well simulated by Langmuir model with maximum adsorption capacity of 45.45mgg -1 . Moreover, study of sorption kinetic indicated that the solute adsorption on PVA/CC-ATS NC 5wt% was well modeled using the pseudo-second-order. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models.

    Science.gov (United States)

    Mittal, Hemant; Maity, Arjun; Sinha Ray, Suprakas

    2015-02-05

    A biodegradable hydrogel polymer of gum ghatti (Gg) with a copolymer mixture of acrylamide (AAm) and acrylonitrile (AN) was synthesized using the free-radical graft copolymerization technique. The effect of graft copolymerization on the surface area of Gg was studied using BET analyses. The graft copolymerization of Gg with poly(AAm-co-AN) was characterized using Fourier transform infrared spectroscopy, CHN analysis, thermogravimetric analysis, atomic force microscopy, and scanning electron microscopy. The adsorption of Pb(2+) and Cu(2+) from aqueous solution using the Gg-cl-P(AAm-co-AN) hydrogel polymer was studied in batch mode. The adsorption process was found to be highly pH dependent, and the maximum adsorption efficiency was observed at pH 5.0 for both metal ions. The adsorption isotherm data were analyzed by applying five different isotherm models, namely, the Langmuir, Freundlich, Temkin, Flory-Huggins, and Dubinin-Kaganer-Radushkevich isothermal models. The Langmuir model was found to fit well with the experimental isotherm data, with a maximum adsorption capacity of 384.6 and 203.7 mg/g for Pb(2+) and Cu(2+), respectively. The metal ion-adsorption process was found to be controlled by the pseudo-second-order rate model. The Gg-cl-P(AAm-co-AN) hydrogel polymer retained its original adsorption capacity for three successive cycles of adsorption-desorption. In summary, the potential for remediating industrial wastewater polluted by metal ions using the biodegradable Gg-cl-P(AAm-co-AN) hydrogel polymer has been demonstrated.

  8. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks.

    Science.gov (United States)

    Rowsell, Jesse L C; Yaghi, Omar M

    2006-02-01

    The dihydrogen adsorption isotherms of eight metal-organic frameworks (MOFs), measured at 77 K up to a pressure of 1 atm, have been examined for correlations with their structural features. All materials display approximately Type I isotherms with no hysteresis, and saturation was not reached for any of the materials under these conditions. Among the six isoreticular MOFs (IRMOFs) studied, the catenated materials exhibit the largest capacities on a molar basis, up to 9.8 H(2) per formula unit. The addition of functional groups (-Br, -NH(2), -C(2)H(4)-) to the phenylene links of IRMOF-1 (MOF-5), or their replacement with thieno[3,2-b]thiophene moieties in IRMOF-20, altered the adsorption behavior by a minor amount despite large variations in the pore volumes of the resulting materials. In contrast, replacement of the metal oxide units with those containing coordinatively unsaturated metal sites resulted in greater H(2) uptake. The enhanced affinities of these materials, MOF-74 and HKUST-1, were further demonstrated by calculation of the isosteric heats of adsorption, which were larger across much of the range of coverage examined, compared to those of representative IRMOFs. The results suggest that under low-loading conditions, the H(2) adsorption behavior of MOFs can be improved by imparting larger charge gradients on the metal oxide units and adjusting the link metrics to constrict the pore dimensions; however, a large pore volume is still a prerequisite feature.

  9. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  10. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution.

    Science.gov (United States)

    Yu, Wenchao; Lian, Fei; Cui, Guannan; Liu, Zhongqi

    2018-02-01

    N-doping was successfully employed to improve the adsorption capacity of biochar (BC) for Cu 2+ and Cd 2+ by direct annealing of crop straws in NH 3 . The surface N content of BC increased more than 20 times by N-doping; meanwhile the content of oxidized-N was gradually diminished but graphitic-N was formed and increased with increasing annealing temperature and duration time. After N-doping, a high graphitic-N percentage (46.4%) and S BET (418.7 m 2 /g) can be achieved for BC. As a result, the N-doped BC exhibited an excellent adsorption capacity for Cu 2+ (1.63 mmol g -1 ) and Cd 2+ (1.76 mmol g -1 ), which was up to 4.0 times higher than that of the original BC. Furthermore, the adsorption performance of the N-doped BC remained stable even at acidic conditions. A positive correlation can be found between adsorption capacity with the graphitic N content on BC surface. The surface chemistry of N-doped BC before and after the heavy metal ions adsorption was carefully examined by XPS and FTIR techniques, which indicated that the adsorption mechanisms mainly included cation-π bonding and complexation with graphitic-N and hydroxyl groups of carbon surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    Science.gov (United States)

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  12. Preparation and evaluation adsorption capacity of cellulose xanthate of sugarcane bagasse for removal heavy metal ion from aqueous solutions

    Science.gov (United States)

    Iryani, D. A.; Risthy, N. M.; Resagian, D. A.; Yuwono, S. D.; Hasanudin, U.

    2017-05-01

    The discharge of heavy metals from industrial effluents into aquatic system in surrounding area of Lampung bay become a serious problem today. The data shows that the concentrations of heavy metals in this area are above allowable limits for the discharge of toxic heavy metals in the aquatic systems. The most common of heavy metal pollutant is divalent metal ions. Cellulose xanthate is one of the selective adsorbent to solve this problem, since xanthate contains two negative sulfur atoms that is capable to catch divalent metal ions. Preparation of cellulose xanthate was conducted by reacting carbon disulfide (CS2) and cellulose from sugarcane bagasse. The morphological characteristics of cellulose xanthate were visualized via Scanning Electron Microscope (SEM) and the presence of sulfur groups on sugarcane bagasse xanthate were identified by FTIR spectroscopic study. The degree of substitution (DS), degree of polymerization (DP), and adsorption capacities of cellulose xanthate for Cu2+ and Pb2+ metal were studied. The results of study reveals that the maximum adsorption capacities of Cu2+ and Pb2+ metal on cellulose xanthate are 54.226 mg Cu2+/g, and 51.776 mg Pb2+/g, respectively. This study reveals that cellulose xanthate could be a solution to reduce environmental pollution caused by industrial wastewater.

  13. Utilization of poplar wood sawdust for heavy metals removal from model solutions

    Directory of Open Access Journals (Sweden)

    Demcak Stefan

    2017-06-01

    Full Text Available Some kinds of natural organic materials have a potential for removal of heavy metal ions from wastewater. It is well known that cellulosic waste materials or by-products can be used as cheap adsorbents in chemical treatment process. In this paper, poplar wood sawdust were used for removal of Cu(II, Zn(II and Fe(II ions from model solutions with using the static and dynamic adsorption experiments. Infrared spectrometry of poplar wood sawdust confirmed the presence of the functional groups which correspond with hemicelluloses, cellulose and lignin. At static adsorption was achieved approximately of 80 % efficiency for all treated model solutions. Similar efficiency of the adsorption processes was reached after 5 min at dynamic condition. The highest efficiency of Cu(II removal (98 % was observed after 30 min of dynamic adsorption. Changes of pH values confirmed a mechanism of ion exchange on the beginning of the adsorption process.

  14. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society......The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...

  15. Chemo-thermal Treatment of Tribulus tresstris to Enhance Its Sequestering Potential for Adsorption of Some Heavy Metals from Aqueous Media: Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Shaheen

    2016-12-01

    Full Text Available The plant based renewable biosorbents have extensively been investigated for removing water pollutants. The present study describes the sequestering of metal ions by exploiting a low cost biomaterial derived from Tribulus tresstris as sorbent. The batch equilibrium studies have been carried out both with raw and chemically/thermally treated biomaterial as a function of pH, contact time, shaking speed and shaking time to decide the effectiveness of biosorbent. The sorbent was activated chemically by utilizing 0.1M HCl and 0.1M K2CO3. A close muffle furnace was used for thermal treatment of the sorbent. The adsorption capacity was enhanced to 25% by thermal treatment and 54% by chemical treatment because of increase in pore volume and surface area. The greatest sorption was found for particle size of 200 µm with a 0.5 g dosage at pH 6 for 20 min at shaking speed 100 rpm. The FT-IR and SEM study was performed to discover the adsorption capacity of various functional groups and their binding mechanism. The adsorption data demonstrates that Langmuir, Freundlich and Dubinin-Radushkevich isotherm models were very much fitted to describe the adsorption behavior

  16. Investigation of adsorption of polymers on metallic nanowires: A molecular dynamics study

    Science.gov (United States)

    Mirabbaszadeh, Kavoos; Zaminpayma, Esmaeil

    2012-11-01

    Composite of polymer with a small content of strong material, such as carbon nanotube (CNT) and metallic nanowire (NW) has interesting mechanical, thermal, optical and electrical properties. For the first time, we used molecular dynamics simulations (MD) with polymer consistent force field (PCFF) to study adsorption of polymers involving Poly(3-hexythiophene) (P3HT) and Poly[[[(2ethylhexyl)oxy]methoxy-1,4-phenylene]-1,2-ethenediyl] (MEH-PPV) on metallic NW including silver and gold. The influence of main factors such as NW radius and temperature on the interfacial adhesion of NW-polymer and radius of gyration of polymers (Rg) were studied. We showed that the interaction energy decreases slowly with increasing temperature, thus the temperature influence is very weak. Our results showed that P3HT-Au has the strongest interaction energy, then MEH-PPV-Au, P3HT-Ag, and finally MEH-PPV-Ag. In addition, the interaction energy increased with increasing NW radius, thus the NW with large radius is the best type for reinforcement. We studied the influence of NW radius and temperature on the radius of gyration (Rg). We found that Rg oscillated slowly and no obvious trend was seen. In other words, NW radius and temperature had no influence on Rg value. We showed that the Rg value for P3HT was higher than MEH-PPV, thus P3HT expanded more than MEH-PPV on NW surface.

  17. Density Functional Theory Modeling of Ferrihydrite Nanoparticle Adsorption Behavior

    Science.gov (United States)

    Kubicki, J.

    2016-12-01

    Ferrihydrite is a critical substrate for adsorption of oxyanion species in the environment1. The nanoparticulate nature of ferrihydrite is inherent to its formation, and hence it has been called a "nano-mineral"2. The nano-scale size and unusual composition of ferrihydrite has made structural determination of this phase problematic. Michel et al.3 have proposed an atomic structure for ferrihydrite, but this model has been controversial4,5. Recent work has shown that the Michel et al.3 model structure may be reasonably accurate despite some deficiencies6-8. An alternative model has been proposed by Manceau9. This work utilizes density functional theory (DFT) calculations to model both the structure of ferrihydrite nanoparticles based on the Michel et al. 3 model as refined in Hiemstra8 and the modified akdalaite model of Manceau9. Adsorption energies of carbonate, phosphate, sulfate, chromate, arsenite and arsenate are calculated. Periodic projector-augmented planewave calculations were performed with the Vienna Ab-initio Simulation Package (VASP10) on an approximately 1.7 nm diameter Michel nanoparticle (Fe38O112H110) and on a 2 nm Manceau nanoparticle (Fe38O95H76). After energy minimization of the surface H and O atoms. The model will be used to assess the possible configurations of adsorbed oxyanions on the model nanoparticles. Brown G.E. Jr. and Calas G. (2012) Geochemical Perspectives, 1, 483-742. Hochella M.F. and Madden A.S. (2005) Elements, 1, 199-203. Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., and Parise, J.B., 2007, Science, 316, 1726-1729. Rancourt, D.G., and Meunier, J.F., 2008, American Mineralogist, 93, 1412-1417. Manceau, A., 2011, American Mineralogist, 96, 521-533. Maillot, F., Morin, G., Wang, Y., Bonnin, D., Ildefonse, P., Chaneac, C., Calas, G., 2011, Geochimica et Cosmochimica Acta, 75, 2708-2720. Pinney, N., Kubicki, J.D., Middlemiss, D.S., Grey, C.P., and Morgan, D

  18. Parameterization and evaluation of sulfate adsorption in a dynamic soil chemistry model

    International Nuclear Information System (INIS)

    Martinson, Liisa; Alveteg, Mattias; Warfvinge, Per

    2003-01-01

    Including sulfate adsorption improves the dynamic behavior of the SAFE model. - Sulfate adsorption was implemented in the dynamic, multi-layer soil chemistry model SAFE. The process is modeled by an isotherm in which sulfate adsorption is considered to be fully reversible and dependent on sulfate concentration as well as pH in soil solution. The isotherm was parameterized by a site-specific series of simple batch experiments at different pH (3.8-5.0) and sulfate concentration (10-260 μmol l -1 ) levels. Application of the model to the Lake Gaardsjoen roof covered site shows that including sulfate adsorption improves the dynamic behavior of the model and sulfate adsorption and desorption delay acidification and recovery of the soil. The modeled adsorbed pool of sulfate at the site reached a maximum level of 700 mmol/m 2 in the late 1980s, well in line with experimental data

  19. Distribution And Metal Adsorption of Lead (Pb In Estuary Banyuasin, South Sumatra (Distribusi dan Adsorpsi Logam Timbal (Pb di Muara Sungai Banyuasin, Sumatera Selatan

    Directory of Open Access Journals (Sweden)

    Anna Ida Sunaryo Purwiyanto

    2015-09-01

    Full Text Available Muara Sungai Banyuasin merupakan wilayah penting bagi masyarakat Sumatera Selatan. Tingginya aktivitas yang terjadi, mengakibatkan muara ini menjadi rentan pencemaran, terutama logam Pb, baik pada biota maupun perairan. Penelitian ini bertujuan untuk menganalisis kandungan logam berat Pb dan memprediksi terjadinya adsorpsi logam Pb pada kolom perairan dan sedimen seluruh sisi dan bagian Muara Sungai Banyuasin menggunakan pendekatan pemodelan. Penelitian ini menggunakan 3 stasiun yang mewakili 3 daerah muara, yaitu bagian luar muara, tengah muara, dan bagian dalam muara, dimana pada tiap stasiun diambil 3 sampel air (permukaan air, kolom air, dan dasar perairan dan 1 sampel sedimen. Logam Pb pada sampel air dan sedimen dianalisis menggunakan AAS. Data divisualisasikan dalam bentuk peta distribusi persebaran dengan bantuan software ODV, sedangkan adsorpsi logam Pb pada perairan dimodelkan dengan menggunakan model partisi, Freundlich dan Langmuir. Hasil penelitian menunjukkan bahwa logam Pb di Muara Sungai Banyuasin merupakan akumulasi dari aktivitas manusia pada hulu sungai dengan konsentrasi yang telah melebihi ambang batas yang ditetapkan Menteri Lingkungan Hidup. Konsentrasi logam Pb lebih tinggi pada bagian sedimen sehingga mengindikasikan bahwa memang terjadi adsorpsi logam Pb oleh sedimen. Hasil pemodelan menunjukkan bahwa proses adsorpsi logam Pb tersebut berlangsung sesuai dengan asumsi Langmuir dengan dominasi fisiosorpsi. Kata kunci: distribusi, logam Pb, adsorpsi, pemodelan, Muara Sungai Banyuasin   Banyuasin River estuary is an important area for the people of South Sumatra. The high activity that occurs in this estuary resulted susceptible of pollution, especially Pb, both on water and aquatic organism. This research aims to analyze the content of heavy metals Pb and predict the occurrence of adsorption of Pb in the water column and sediments around the sides and the estuary Banyuasin using modeling approaches. This study used three

  20. Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling.

    Science.gov (United States)

    Melo, Diego de Quadros; Vidal, Carla Bastos; Medeiros, Thiago Coutinho; Raulino, Giselle Santiago Cabral; Dervanoski, Adriana; Pinheiro, Márcio do Carmo; Nascimento, Ronaldo Ferreira do

    2016-09-01

    Buriti fibers were subjected to an alkaline pre-treatment and tested as an adsorbent to investigate the adsorption of copper, cadmium, lead and nickel in mono- and multi-element aqueous solutions, the results showed an increase in the adsorption capacity compared to the unmodified Buriti fiber. The effects of pH, adsorbent mass, agitation rate and initial metal ions concentration on the efficiency of the adsorption process were studied using a fractional 2(4-1) factorial design, and the results showed that all four parameters influenced metal adsorption differently. Fourier transform infrared spectrometry and X-ray fluorescence analysis were used to identify the groups that participated in the adsorption process and suggest its mechanisms and they indicated the probable mechanisms involved in the adsorption process are mainly ion exchange. Kinetic and thermodynamic equilibrium parameters were determined. The adsorption kinetics were adjusted to the homogeneous diffusion model. The adsorption equilibrium was reached in 30 min for Cu(2+) and Pb(2+), 20 min for Ni(2+) and instantaneously for Cd(2+). The results showed a significant difference was found in the competitiveness for the adsorption sites. A mathematical model was used to simulate the breakthrough curves in multi-element column adsorption considering the influences of external mass transfer and intraparticle diffusion resistance.

  1. Equilibrium Isotherm, Kinetic Modeling, Optimization, and Characterization Studies of Cadmium Adsorption by Surface-Engineered Escherichia coli

    Science.gov (United States)

    Tafakori, Vida; Zadmard, Reza; Tabandeh, Fatemeh; Amoozegar, Mohammad Ali; Ahmadian, Gholamreza

    2017-11-01

    Amongst the methods that remove heavy metals from environment, biosorption approaches have received increased attention because of their environmentally friendly and cost-effective feature, as well as their superior performances. In the present study, we investigated the ability of a surface-engineered Escherichia coli, carrying the cyanobacterial metallothionein on the cell surface, in the removal of Ca (II) from solution under different experimental conditions. The biosorption process was optimized using central composite design. In parallel, the kinetics of metal biosorption was studied, and the rate constants of different kinetic models were calculated. Cadmium biosorption is followed by the second-order kinetics. Freundlich and Langmuir equations were used to analyze sorption data; characteristic parameters were determined for each adsorption isotherm. The biosorption process was optimized using the central composite design. The optimal cadmium sorption capacity (284.69 nmol/mg biomass) was obtained at 40°C (pH 8) and a biomass dosage of 10 mg. The influence of two elutants, EDTA and CaCl2, was also assessed on metal recovery. Approximately, 68.58% and 56.54% of the adsorbed cadmium were removed by EDTA and CaCl2 during desorption, respectively. The Fourier transform infrared spectrophotometer (FTIR) analysis indicated that carboxyl, amino, phosphoryl, thiol, and hydroxyl are the main chemical groups involved in the cadmium bioadsorption process. Results from this study implied that chemical adsorption on the heterogeneous surface of E. coli E and optimization of adsorption parameters provides a highly efficient bioadsorbent.

  2. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage.

    Science.gov (United States)

    Yang, Chi; Kaipa, Ushasree; Mather, Qian Zhang; Wang, Xiaoping; Nesterov, Vladimir; Venero, Augustin F; Omary, Mohammad A

    2011-11-16

    We demonstrate that fluorous metal-organic frameworks (FMOFs) are highly hydrophobic porous materials with a high capacity and affinity to C(6)-C(8) hydrocarbons of oil components. FMOF-1 exhibits reversible adsorption with a high capacity for n-hexane, cyclohexane, benzene, toluene, and p-xylene, with no detectable water adsorption even at near 100% relative humidity, drastically outperforming activated carbon and zeolite porous materials. FMOF-2, obtained from annealing FMOF-1, shows enlarged cages and channels with double toluene adsorption vs FMOF-1 based on crystal structures. The results suggest great promise for FMOFs in applications such as removal of organic pollutants from oil spills or ambient humid air, hydrocarbon storage and transportation, water purification, etc. under practical working conditions.

  3. Kinetic study of liquid-phase adsorptive removal of heavy metal ions by almond tree (Terminalia catappa L. leaves waste

    Directory of Open Access Journals (Sweden)

    Michael Horsfall Jnr

    2007-04-01

    Full Text Available The kinetic sorption of five metal ions – Al3+, Cr6+, Zn2+, Ag+ and Mn2+- from aqueous solution onto almond tree leaves (ATL waste in single component system has been studied. The experimental data was analyzed in terms of intraparticle diffusion and rate of adsorption, thus comparing transport mechanism and chemical sorption processes. The sorption rates based on the pseudo-second order rate constants for the five metal ions are 0.018 (Al3+, 0.016 (Cr6+, 0.023 (Zn2+, 0.021 (Ag+ and 0.022 (Mn2+ g/mg.min. The adsorption rates are rapid and within 180 min of agitation more than 85 percent of these metal ions has been removed from solution by the ATL waste biomass. The kinetic data suggest that the overall adsorption process is endothermic, and that the rate-limiting step is a surface diffusion controlled process. The results from this study have revealed that the ATL waste, which is hitherto an environmental nuisance, has the ability to adsorb metal ions from solution and the data are relevant for optimal design of wastewater treatment plants. The low cost and easy availability of ATL waste make potential industrial application a strong possibility.

  4. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  5. Adsorption Behavior of Vanadium in Presence of alumina with Emphasize on Triple Layer Model Simulation

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    2006-01-01

    Adsorption behavior of vanadium in alumina colloidal solution as simulation for soil-water and/or sediment - water system was investigated. factors affecting this behavior including Ph, humic acid and alumina concentrations were studied. Three stages of vanadium adsorption on alumina were approved due to Ph changes. The first is increasing adsorption with increasing Ph, in the range 1-3. the second is decreasing adsorption with increasing Ph in the range 6-10. the third is constant adsorption at 100% adsorption in Ph range 3-8 at 10 g/l concentration of alumina. However, at 0.2 g/l, the maximum adsorption of vanadium became less than 100%.The effect of humic acid on the adsorption behavior of vanadium (V) was studied and compared with that of vanadium (IV) . Adsorption behaviors were studied at concentration 4.1 E-4 M for vanadium at 0.1 M ionic strength. Triple layer model was used for simulation of vanadium adsorption behavior in presence of alumina under the same working conditions. the results showed good validation and verification to the data practically found. speciation of vanadium in both homogenous and heterogeneous systems was also studied theoretically so as to verify the most abundant elemental species and its impact on the environment

  6. Water in Metal-Organic Frameworks: A Computational Study of Adsorption in Porous Materials in the Presence of Ambient Humidity

    Science.gov (United States)

    Ghosh, Pritha

    Metal-organic frameworks, or MOFs, are a class of porous crystalline materials renowned for their chemically tunable nature. In this work, molecular-level modeling is used to assess MOFs as potential adsorbents for a variety of applications where ambient humidity is present, such as toxic gas capture, nerve agent decomposition, and sensing via changes in proton conductivity. The concept of hydrophobicity in MOFs is explored from a number of angles. Classical simulation methods and quantum chemistry calculations are used to predict adsorption behavior and to shed light on experimentally observed phenomena. Hydrophobic MOFs are attractive candidates for selective gas capture under ambient conditions, and in this work hydrophobic MOFs are examined for two particular applications: ammonia capture and CO2 capture. In the first study, GCMC simulations are used to evaluate a set of three hydrophobic MOFs for ammonia capture at three humidity conditions: 0% relative humdity (RH), 36% RH, and 80% RH. In the second study, GCMC simulations predict the CO2 loading in a hydrophobic fluorinated MOF at 80% RH, which is the humidity of flue gas. In both of these studies, results demonstrate that hydrophobic MOFs are equally capable of capturing the target adsorbate under humid or dry conditions. In related work, water adsorption behavior is investigated for a fairly hydrophilic Zr MOF, and it is revealed that missing linker defects engender hydrophilicity in this framework. An ideal, defect-free version of this Zr MOF demonstrates hydrophobic behavior. Additionally, perfluoroalkane adsorption is predicted in a related material, a faujasite-type zeolite, and the results suggest the presence of co-adsorbed water molecules. MOFs with coordinated solvent molecules can be used as catalysts and novel chemical sensors. In this work, quantum chemistry calculations are used to study the interaction of a nerve agent simulant with a Zr MOF node. Results indicate that it is favorable for a

  7. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions

    International Nuclear Information System (INIS)

    Wu, Chunlin; Wang, Heyun; Wei, Zhong; Li, Chuan; Luo, Zhidong

    2015-01-01

    Graphical abstract: - Highlights: • A simple and versatile approach to produce PEI-functionalized nanofibers. • Novel PEI-functionalized PVC nanofibrous membrane was prepared. • Adsorption of PVC@PDA and PVC@PDA-PEI nanofibrous membranes for Cu 2+ was tested. • Isotherms, kinetic model and thermodynamic parameters were investigated. • Adsorption mechanism of Cu 2+ on modified membranes was inferred. - Abstract: In this paper, a simple and versatile approach for the fabrication of a polyethyleneimine (PEI)-functionalized nanofibrous membrane utilizing polydopamine (PDA) as a mediator is proposed. The morphology and structure of the PDA-coated and PEI-grafted nanofibrous membranes were confirmed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Due to a large specific surface area and long fibrous morphology, the synthesized membranes were used as novel adsorbents for copper ion (Cu 2+ ) removal from aqueous solutions. The adsorption of Cu 2+ was investigated on the synthesized membranes regarding the membrane dosages, initial solution pH values, initial solution concentrations, contact times and temperatures. In addition, the adsorption equilibrium data of PEI-grafted membranes were well fitted with the Langmuir adsorption isotherm, and a maximum adsorption capacity value of 33.59 mg g −1 was determined (while it was 21.94 mg g −1 for the PDA-coated membranes). The thermodynamic parameters indicated that Cu 2+ absorption was a spontaneous and exothermic adsorption process. In addition, XPS peak differentiation imitating analysis permitted the proposal of a copper-amine coordination adsorption mechanism that can be used to explain changes in the adsorption properties compared to PDA coating nanofibrous membranes

  8. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials.

    Science.gov (United States)

    Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira

    2018-04-18

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.

  9. Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4porous hollow microsphere.

    Science.gov (United States)

    Liu, Xueyan; Liu, Mingyang; Zhang, Lei

    2018-02-01

    Functionalized magnetic microsphere NiFe 2 O 4 (MS-NiFe 2 O 4 ) with a 3D hierarchical porous hollow structure was fabricated using urea as the modifier and soft templates by a simple one-pot solvothermal method. The constructed MS-NiFe 2 O 4 shows excellent dual functions which can not only undergo simultaneous rapid removal of the co-existence metal ions (Cu 2+ , Cd 2+ , Cr 3+ and Zn 2+ ions), but also availably adsorb fluoroquinolone (FQs) (ciprofloxacin (CIP), enrofloxacin (ENR) and norfloxacin (NOR)), and is easily recycled using an external magnetic field. The removal efficiency of eight targets could all reach up to 80% within 60min at pH 5. The independent adsorption of single contaminants, the competitive adsorption of multiple heavy metal ions/organic contaminants, the simultaneous and sequential adsorption of the co-existence of inorganic and organic contaminants onto MS-NiFe 2 O 4 were explored in detail. Competition adsorption occurred between the same type of contaminants. For different types of contaminants, four metal ions did not affect the adsorption of the other three FQs in the sequential and simultaneously adsorption system, and vice versa. The possible adsorption mechanism between targets and MS-NiFe 2 O 4 was revealed. Copyright © 2017. Published by Elsevier Inc.

  10. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling.

    Science.gov (United States)

    Zhao, Yanping; Gu, Xueyuan; Li, Shiyin; Han, Ruiming; Wang, Guoxiang

    2015-11-01

    Adsorption of tetracycline (TC) on kaolinite and montmorillonite was investigated using batch adsorption experiments with different pH, ionic strength, and surface coverage. As a result, pH and ionic strength-dependent adsorption of TC was observed for the two clay minerals. The adsorption of TC decreased with the increase of pH and ionic strength, and high initial TC concentration had high adsorption. In addition, a triple-layer model was used to predict the adsorption and surface speciation of TC on the two minerals. As a result, four complex species on kaolinite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), ≡SOH(0)∙H2TC(±), and ≡SOH(0)∙HTC(-)) and three species on montmorillonite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), and ≡SOH(0)∙HTC(-)) were structurally constrained by spectroscopy, and these species were also successfully fitted to the adsorption edges of TC. Three functional groups of TC were involved in these adsorption reactions, including the positively charged dimethylamino group, the C=O amide I group, and the C=O group at the C ring. Combining adsorption experiments and model in this study, the adsorption of TC on kaolinite and montmorillonite was mainly attributed to cation exchange on the surface sites (≡X(-)) compared to surface complexation on the edge sites (≡SOH) at natural soil pH condition. Moreover, the surface adsorption species, the corresponding adsorption modes, and the binding constants for the surface reactions were also estimated.

  11. A New Simplified Local Density Model for Adsorption of Pure Gases and Binary Mixtures

    Science.gov (United States)

    Hasanzadeh, M.; Dehghani, M. R.; Feyzi, F.; Behzadi, B.

    2010-12-01

    Adsorption modeling is an important tool for process simulation and design. Many theoretical models have been developed to describe adsorption data for pure and multicomponent gases. The simplified local density (SLD) approach is a thermodynamic model that can be used with any equation of state and offers some predictive capability with adjustable parameters for modeling of slit-shaped pores. In previous studies, the SLD model has been utilized with the Lennard-Jones potential function for modeling of fluid-solid interactions. In this article, we have focused on application of the Sutherland potential function in an SLD-Peng-Robinson model. The advantages and disadvantages of using the new potential function for adsorption of methane, ethane, carbon dioxide, nitrogen, and three binary mixtures on two types of activated carbon are illustrated. The results have been compared with previous models. It is shown that the new SLD model can correlate adsorption data for different pressures and temperatures with minimum error.

  12. Equilibrium model for agglomeration phenomena in solid polydispersions subject to adsorption from liquid solution

    Science.gov (United States)

    Mezzasalma, Stefano A.

    1997-06-01

    A general thermodynamic-electrochemical model, supported by an experimental titration procedure, is proposed to determine the number of solid aggregates of a polydispersed (and/or colloidal) system in a liquid medium subject to simultaneous agglomeration phenomena and adsorption of H+ and/or OH- ions from solution and endowed with an interparticle potential which is not strongly attractive. In a previous work [D. Beruto, S. Mezzasalma, and D. Baldovino, J. Chem. Soc. Faraday Trans. 2 91, 323 (1995)] adsorptions of protons and/or oxidryles onto the solid surfaces of monomodal silicon nitride aqueous dispersions were obtained by titration measurements made with a metal-oxide-semiconductor ion-sensitive field-effect transistor pH-meter device and employed to obtain the number of solid aggregates from the thermodynamic equilibrium state of the slurries, derived from the total Gibbs function. More generally, to apply the same titration procedure to liquid dispersions involving many solid phases, it is shown here that a simple partition criterion can be defined to obtain the experimental adsorption data related to each solid phase of the polydispersed system. Theoretically, the equilibrium state is achieved from the total Gibbs free function of the slurries with respect to each single solid aggregate species and to the ``mixed'' aggregates, containing all solid phases. To this end, following the Derjaguin-Landau-Verwey-Overbeek theory, Coulombic charge-charge interactions and dispersion-force effects, other than general multipole contributions among mixed clusters, are considered as not too strong perturbations of the ideal Gibbs free energy. By inserting the titration data in the physico-chemical condition theoretically derived, it is possible to obtain all numbers of solid aggregates as a function of the electrolyte concentration (pH) in the liquid solution.

  13. Microstructure modeling in weld metal

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.

    1995-01-01

    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model's comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds

  14. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs for Gas Adsorption

    Directory of Open Access Journals (Sweden)

    Mays Alhamami

    2014-04-01

    Full Text Available Metal-organic frameworks (MOFs are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses.

  15. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Osifo, Peter O., E-mail: petero@vut.ac.za [Department of Chemical Engineering, Vaal University of Technology, P/Bag X021, Vanderbijlpark 1900 (South Africa); Neomagus, Hein W.J.P.; Everson, Raymond C. [School of Chemical and Minerals Engineering, North-West University, P/Bag X6001, Potchefstroom 2520 (South Africa); Webster, Athena [University of Utah, Chemistry Department, Salt Lake City, UT 84112 (United States); Gun, Marius A. vd [Sulzer Elbar B.V., Spikweien 36, NL-5943 AD Lomm (Netherlands)

    2009-08-15

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead.

  16. Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size

    Science.gov (United States)

    Sellaoui, Lotfi; Mechi, Nesrine; Lima, Éder Cláudio; Dotto, Guilherme Luiz; Ben Lamine, Abdelmottaleb

    2017-10-01

    Based on statistical physics elements, the equilibrium adsorption of diclofenac (DFC) and nimesulide (NM) on activated carbon was analyzed by a multilayer model with saturation. The paper aimed to describe experimentally and theoretically the adsorption process and study the effect of adsorbate size using the model parameters. From numerical simulation, the number of molecules per site showed that the adsorbate molecules (DFC and NM) were mostly anchored in both sides of the pore walls. The receptor sites density increase suggested that additional sites appeared during the process, to participate in DFC and NM adsorption. The description of the adsorption energy behavior indicated that the process was physisorption. Finally, by a model parameters correlation, the size effect of the adsorbate was deduced indicating that the molecule dimension has a negligible effect on the DFC and NM adsorption.

  17. Equilibrium models and kinetic for the adsorption of methylene blue on Co-hectorites

    International Nuclear Information System (INIS)

    Ma Jun; Jia Yongzhong; Jing Yan; Sun Jinhe; Yao Ying; Wang Xiaohua

    2010-01-01

    The adsorption of methylene blue (MB) onto the surface of cobalt doping hectorite (Co-hectorite) was systematically studied. The physical properties of Co-hectorites were investigated, where characterizations were carried out by X-ray diffraction (XRD) and Electron Diffraction Spectrum (EDS) techniques, and morphology was examined by nitrogen adsorption. The sample with a Co content 5% (m/m) had a higher specific surface area than other Co-hectorites. The pore diameters were distributed between 2.5 and 5.0 nm. The adsorption results revealed that Co-hectorite surfaces possessed effective interactions with MB and bases, and greatest adsorption capacity achieved with Co content 5%, where the best-fit isotherm model was the Langmuir adsorption model. Kinetic studies were fitted to the pseudo-second-order kinetic model. The intraparticle diffusion was not the rate-limiting step for the whole reaction.

  18. Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents.

    Science.gov (United States)

    Yan, Qiuju; Lin, Yichao; Kong, Chunlong; Chen, Liang

    2013-08-07

    Solid porous dual amine-decorated metal-organic framework (MOF) adsorbents with tunable porosity have been prepared. The adsorbents exhibit remarkable CO2/CH4 selectivity and CO2 adsorption capacity at low pressures.

  19. Influence of the pre-adsorption of group III metals on the growth of Ge nanostructures on vicinal Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz; Schmidt, Thomas; Flege, Jan Ingo; Heidmann, Inga; Hoecker, Jan; Wilkens, Torsten; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany)

    2010-07-01

    The employment of metals as surfactants (surface active agents) is a promising approach to influence the growth of Ge nanostructures on Si surfaces. Especially for group III and group V elements an enhanced or suppressed Stranski-Krastanov growth behaviour is found, respectively. For all group III metal on silicon systems presented in this study we observe a drastic change of the surface morphology after adsorption of a few monolayers. For the investigations we used a variety of surface sensitive techniques, e.g., scanning tunneling microscopy (STM), spot profile analysing low-energy electron diffraction (SPA-LEED), low-energy electron microscopy (LEEM), and X-ray standing waves (XSW). On the one hand, the adsorption of Ga and In leads to a smoothening of the intrinsically unstable Si(112) surface and the development of 1D metal chains. But on the other hand, the stable Si(113) is decomposed into a regular array of nanofacets after adsorption of Ga. For all cases shown here the possibility of growing highly anisotropic Ge Islands is demonstrated (Ga/Si(113),Ga/Si(112),In/Si(112)).

  20. Adsorption and desorption of hydrolyzed metal ions. 3. Scandium and chromium

    International Nuclear Information System (INIS)

    Gray, B.; Matijevic, E.; Clarkson Univ., Potsdam, NY

    1987-01-01

    Adsorption of scandium(III) and chromium(III) species on a PVC latex was measured using radioactive isotopes; the uptake increased with increasing pH. The data were interpreted by combining aspects of the models of James and Healy and also of Anderson and Bockris. The experimental and calculated results agree quite well for scandium, but not for chromium. The deviation in the latter case is believed to be due to polymerization of the hydrolyzed chromium cations and to the interaction of chromium with the anionic surface groups of the latex. Neither of these interactions occur with scandium. Hydrolyzed scandium species adsorbed on the latex were removed by acidifying the dispersion, while chromium complexes were not, substantiating the proposed difference in the chemical nature of chromium and scandium species at the solid/solution interface. 32 refs.; 8 figs.; 8 tabs

  1. The influence of adsorption coating on molecular heat transfer in the system `rarefied gas — metal'

    Science.gov (United States)

    Ukhov, A. I.; Borisov, S. F.; Porodnov, B. T.

    2010-03-01

    Based on the classical concept of atomic motion and the Goodman and Wachman lattice theory, we have developed a computer program to model the equilibrium and non-equilibrium scattering of helium atoms by 3D tungsten crystal lattice with allowance for adsorption surface coating. Within the concept of energy accommodation coefficient, we have calculated the rate of molecular heat transfer of helium to clean tungsten surface or to tungsten surface partially covered with an adsorbate. The calculations were performed for various surface temperatures. The calculated dependences were compared to test data obtained in experiments with surfaces controlled in terms of their chemical composition. Within the developed approach, the simulations proved capable of providing an adequate description to experimental data obtained for the equilibrium energy accommodation coefficient on the clean surface, and also for the non-equilibrium energy accommodation coefficient for the surface partially covered with adsorbate.

  2. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    International Nuclear Information System (INIS)

    Park, Sang-Won; Leckie, J.O.; Siegel, M.D.

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption

  3. Influence of Multi-Valency, Electrostatics and Molecular Recognition on the Adsorption of Transition Metal Complexes on Metal Oxides: A Molecular Approach to Catalyst Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Pennsylvania State Univ., University Park, PA (United States)

    2017-03-31

    In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and alumina materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.

  4. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis

    2000-01-01

    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent-adsorbate and ads......A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  5. Chemical modeling of boron adsorption by humic materials using the constant capacitance model

    Science.gov (United States)

    The constant capacitance surface complexation model was used to describe B adsorption behavior on reference Aldrich humic acid, humic acids from various soil environments, and dissolved organic matter extracted from sewage effluents. The reactive surface functional groups on the humic materials wer...

  6. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.

    Science.gov (United States)

    Karaca, S; Gürses, A; Ejder, M; Açikyildiz, M

    2004-09-15

    The adsorption of phosphate from aqueous solution on dolomite was investigated at 20 and 40 degrees C in terms of pseudo-second-order mechanism for chemical adsorption as well as an intraparticle diffusion mechanism process. Adsorption was changed with increased contact time, initial phosphate concentration, temperature, solution pH. A pseudo-second-order model and intraparticle diffusion model have been developed to predict the rate constants of adsorption and equilibrium capacities. The activation energy of adsorption can be evaluated using the pseudo-second-order rate constants. The adsorption of phosphate onto dolomite are an exothermically activated process. A relatively low activation energy and a model highly fitting to intraparticle diffusion suggest that the adsorption of phosphate by dolomite may involve not only physical but also chemisorption. This was likely due to its combined control of chemisorption and intraparticle diffusion. However, for phosphate/dolomite system chemical reaction is important and significant in the rate-controlling step, and for the adsorption of phosphate onto dolomite the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.

  7. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University

    2015-08-12

    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  8. Kinetic model of water vapour adsorption by gluten-free starch

    Science.gov (United States)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  9. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis.

    Science.gov (United States)

    Elhafez, S E Abd; Hamad, H A; Zaatout, A A; Malash, G F

    2017-01-01

    In the last decades, Egypt has been suffering from the phenomenon of black cloud resulting from burning rice husk and increasing the demand for water leading to the water crisis. An alternative, low-value and surplus agricultural byproduct (rice husk, RH) has an enormous potential for the removal of Cu(II) ions from water. The present study focuses on the chance of the use of rice husk as a bio-adsorbent without any chemical treatment instead of burning it and soiling the environment. The elemental, structural, morphological, surface functional, thermal, and textural characteristics of RH are determined by XRF, XRD, SEM, FT-IR, TGA, and BET surface area, respectively, and contributed to the understanding of the adsorption mechanism of Cu(II) ions in aqueous solution. Also, the performance analysis, adsorption mechanism, influencing factors, favorable conditions, etc. are discussed in this article. The results obtained from optimization by batch mode are achieved under the following conditions: initial concentration, 150 ppm; amount of rice husk, 1 g; average particle size, 0.25 mm; temperature, 25 °C; pH, 4; agitation rate, 180 rpm; and contact time, 60 min. RH exhibits a high degree of selectivity for Cu(II) adsorption. The adsorption isotherm is fitted well with Langmuir and Freundlich models with R 2 0.998 and 0.997, respectively. The adsorption is well governed by the pseudo-second-order kinetics. It is observed that the rate of adsorption improves with decreasing temperature, and the process is exothermic and non-spontaneous. Particular attention has being paid to factors as production processes, fixed/operational cost, production cost, and profit. The techno-economical analysis is presented in this study that provides precise demands on capital for a fixed investment, provisions for operational capital, and finally provisions for revenue. The social, economical, and environmental benefits by industrial point of view using low-cost adsorbent are also

  10. Adsorption of tetracycline on Fe (hydr)oxides: effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition in various molar ratios

    Science.gov (United States)

    Hsu, Liang-Ching; Liu, Yu-Ting; Syu, Chien-Hui; Huang, Mei-Hsia; Teah, Heng Yi

    2018-01-01

    Iron (Fe) (hydr)oxides control the mobility and bioavailability of tetracycline (TC) in waters and soils. Adsorption of TC on Fe (hydr)oxides is greatly affected by polyvalent metals; however, impacts of molar metal/TC ratios on TC adsorptive behaviours on Fe (hydr)oxides remain unclear. Results showed that maximum TC adsorption on ferrihydrite and goethite occurred at pH 5–6. Such TC adsorption was generally promoted by the addition of Cu2+, Zn2+ and Al3+. The greatest increase in TC adsorption was found in the system with molar Cu/TC ratio of 3 due to the formation of Fe hydr(oxide)–Cu–TC ternary complexes. Functional groups on TC that were responsible for the complexation with Cu2+shifted from phenolic diketone groups at Cu/TC molar ratio adsorption at a molar Al/TC ratio of 1. However, TC adsorption decreased for Al/TC molar ratio > 1 as excess Al3+ led to the competitive adsorption with Al/TC complexes. For the Zn2+ addition, no significant correlation was found between TC adsorption capacity and molar Zn/TC ratios. PMID:29657795

  11. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling

    Science.gov (United States)

    Zhao, Yi; Shen, Yanmei; Bai, Lu; Ni, Shiqing

    2012-11-01

    Polyacrylamide-impregnated silica gel was prepared to capture CO2 from flue gas. The polymerization of acrylamide was carried out in AN solvent using AIBN as initiator and EGDMA as crosslinker. The adsorbents were characterized by N2 adsorption, FTIR analysis, SEM analysis, and thermal gravimetric analysis. The results showed that the polymer was not only occupying the porosity of the silica, but necessarily surrounding silica particles, and the amide groups was successfully loaded on the support silica. The impregnated silica displayed good thermal-stability at 250 °C. The CO2 adsorption isotherms were measured to examine CO2 adsorption on adsorbents, and the results showed that the capacity was increased significantly after modification. The CO2 isosteric adsorption heats calculated from the isotherms showed that the adsorption interaction of CO2 with the functionalized material may be mainly an intermolecular force or hydrogen bond. Fixed-bed breakthrough model of CO2 adsorption on functionalized silica was successfully developed to describe the breakthrough curves under different adsorption temperature, CO2 concentration, and gas flow rate. The mass transfer coefficients of CO2 were calculated from the breakthrough model, the results showed that adsorption rate could be promoted by increasing temperature, flow rate and CO2 concentration, among which the effect of gas flow rate is the most obvious.

  12. First-principles study of H, O, and N adsorption on metal embedded carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000 (China); Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Luo, Haijun, E-mail: luohaijun@wzu.edu.cn [Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Cai, Jianqiu [Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000 (China); Shao, Xiji [Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Dong, Changkun, E-mail: dck@wzu.edu.cn [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000 (China); Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Wenzhou, Zhejiang 325035 (China)

    2017-05-01

    Highlights: • Ni or Fe embedment and high atomic adsorption coverage benefit applications like hydrogen storage and field emission. • Ni or Fe embedment could help tune the catalytic properties. • Ni or Fe embedment enhances the adatom-SWNT interaction significantly. - Abstract: The density functional theory calculation has been conducted to investigate the structural and electronic properties, including the adsorption energies, bond structures, work functions, charge transfer behaviors, and density of states for pristine, Ni-, and Fe-embedded capped (5, 5) single-walled carbon nanotubes (SWNTs) with different coverage of atomic hydrogen, oxygen, and nitrogen adsorptions. Ni or Fe embedment enhances the adatom-SWNT interactions significantly for three kinds of gas atoms with the increases of the adsorption energies. The SWNT work function drops with H adsorption, while Ni or Fe embedment assists further the reduction. When increasing the coverage, the adsorption energy decreases and the work function climbs for O adsorption, but the nitrogen adsorption energy increases. The Bader charge transfer analysis implies that the cap possesses higher oxygen reduction activities than the tube, and the density of states analysis shows that Ni or Fe embedment deepens the C-adatom hybridizations.

  13. First-principles study of H, O, and N adsorption on metal embedded carbon nanotubes

    International Nuclear Information System (INIS)

    Li, Detian; Luo, Haijun; Cai, Jianqiu; Cheng, Yongjun; Shao, Xiji; Dong, Changkun

    2017-01-01

    Highlights: • Ni or Fe embedment and high atomic adsorption coverage benefit applications like hydrogen storage and field emission. • Ni or Fe embedment could help tune the catalytic properties. • Ni or Fe embedment enhances the adatom-SWNT interaction significantly. - Abstract: The density functional theory calculation has been conducted to investigate the structural and electronic properties, including the adsorption energies, bond structures, work functions, charge transfer behaviors, and density of states for pristine, Ni-, and Fe-embedded capped (5, 5) single-walled carbon nanotubes (SWNTs) with different coverage of atomic hydrogen, oxygen, and nitrogen adsorptions. Ni or Fe embedment enhances the adatom-SWNT interactions significantly for three kinds of gas atoms with the increases of the adsorption energies. The SWNT work function drops with H adsorption, while Ni or Fe embedment assists further the reduction. When increasing the coverage, the adsorption energy decreases and the work function climbs for O adsorption, but the nitrogen adsorption energy increases. The Bader charge transfer analysis implies that the cap possesses higher oxygen reduction activities than the tube, and the density of states analysis shows that Ni or Fe embedment deepens the C-adatom hybridizations.

  14. Adsorption of heavy metals by bio-chars produced from pyrolysis of paper mulberry from simulated industrial wastewater

    International Nuclear Information System (INIS)

    Adil, S.; Asma, M.

    2014-01-01

    Paper mulberry bio-char (by-product of pyrolysis) was evaluated for the removal of heavy metals (Cd, Cr, Cu, Zn and Pb) from simulated industrial waste water. The surface properties and surface area of the bio-char was found suitable for metal adsorption. Batch sorption studies for adsorption potential of paper mulberry bio-char for Cd, Cr, Cu, Pb and Zn were investigated under different experimental conditions of pH, temperature and contact time. Maximum removal efficiency of Cd, Cu, Pb and Zn was 97.8, 76.8, 85.6, and 82.2 % respectively at pH 12 while maximum removal of Cr was recorded (98%) at pH 2. The removal efficiency showed different behaviour at different contact times. Maximum removal efficiency of Cd, Cr, Zn was 81, 86, 61.4% at contact time of 3 hr. The maximum removal of Cu was 64.2% observed at a contact time of 4 hours while the maximum removal of Pb and Zn was 85% at contact time of 2 hr. The values of the thermodynamic parameters, enthalpy delta H, Gibbs free energy delta G of sorption and entropy delta So were calculated to define endothermic or exothermic behavior of the sorbent used. Negative value of delta G for Cd, Cu, Cr and Pb indicated paper mulberry bio-char as a feasible sorbent for the efficient removal of Cd, Cu, Cr and Pb. Negative value of delta H was observed for Cd and Pb indicating that the adsorption process is exothermic while positive value of delta H was calculated for Cu, Cr and Zn showed that the adsorption is endothermic. The results obtained showed that plant residue bio-char can act as an effective sorbent for the removal of heavy metals from aqueous solutions. (author)

  15. Synthesis of carbon nanospheres using fallen willow leaves and adsorption of Rhodamine B and heavy metals by them.

    Science.gov (United States)

    Qu, Jiao; Zhang, Qian; Xia, Yunsheng; Cong, Qiao; Luo, Chunqiu

    2015-01-01

    This paper focuses on the synthesis of carbon nanospheres (CNSs) using fallen willow leaves as a low-cost precursor. The scanning electron microscopy (SEM) image and transmission electron microscopy (TEM) image demonstrated that the structure of synthesized CNSs was spherical, with a diameter of 100 nm. The crystal structure and chemical information were characterized by Raman spectrum and energy-dispersive spectrum (EDS), respectively. BET results showed that the CNSs had a larger specific surface area of 294.32 m(2) g(-1), which makes it a potentially superior adsorbent. Rh-B and heavy metal ions such as Cu(2+), Zn(2+), and Cr(6+) were used as targets to investigate the adsorption capacity of the CNSs. The effects of adsorption parameters such as adsorption equilibrium time, dose of CNSs, adsorption kinetics, and effect factors were also studied. These findings not only established a cost-effective method of synthesizing CNSs using fallen willow leaves but also broadened the potential application range of these CNSs.

  16. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane

    Science.gov (United States)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-01-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  17. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.

    Science.gov (United States)

    Chen, Ran; Riviere, Jim E

    2017-01-01

    Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  18. Modeling pH-Responsive Adsorption of Polyelectrolytes at Oil-Water Interfaces

    Science.gov (United States)

    Qin, Shiyi; Yong, Xin

    We use dissipative particle dynamics (DPD) to discover the interfacial adsorption of pH-responsive polyelectrolytes in oil-water binary systems under different pH values. The electrostatic interactions between charged beads and the dielectric discontinuity across the interface are modeled by exploiting a modified Particle-Particle-Particle-Mesh (PPPM) method, which uses an iterative method to solve the Poisson equation on a uniform grid. We first model the adsorption behavior of a single linear polyelectrolyte from the aqueous phase. The Henderson-Hasselbalch equation describes the relation between pH and the degree of ionization of the modeled polyelectrolytes. Through changing the degree of ionization, we explore the influence of pH on the adsorption behavior and show that the electrostatic interactions significantly modulate the adsorption. Time evolutions of the position and conformation of the polyelectrolytes and the variation in the oil-water surface tension will be measured to characterize the adsorption behavior. Furthermore, we model the pH-dependent adsorption behavior of polyelectrolytes with more complicated structures, namely, branched polyelectrolytes with hydrophobic backbones and hydrophilic side chains. We also find that the addition of salts in the medium and the lengths of the backbone and ionized side chain affect the adsorption. This research supported by the American Chemical Society Petroleum Research Fund (Award 56884-DNI9).

  19. Modelling of adsorption kinetics and calibration curves of gaseous volatile organic compounds with adsorptive solid-phase microextraction fibre: toluene and acetone for indoor air applications.

    Science.gov (United States)

    Mocho, Pierre; Nicolle, Jérôme; Desauziers, Valérie

    2008-09-01

    Solid-phase microextraction (SPME) with adsorptive Carboxen/PDMS fibre is a powerful sampling device for volatile organic compounds (VOCs) at trace levels in air. However, owing to competitive adsorption, quantification remains a challenging task. In this area, a theoretical model, based on Fick's laws and an extended Langmuir equation, is proposed to deal with the adsorption kinetics of acetone/toluene mixture on SPME fibre under various static extraction conditions. The semipredictive model is first used to determine the axial diffusion coefficients of analytes in the sampling device. The model is then tested with a complex VOC mixture, showing good agreement with experimental data.

  20. Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation.

    Science.gov (United States)

    Nagata, Takahiro; Fukushi, Keisuke; Takahashi, Yoshio

    2009-04-15

    A deficiency in environmental iodine can cause a number of health problems. Understanding how iodine is sequestered by materials is helpful for evaluating and developing methods for minimizing human health effects related to iodine. In addition, (129)I is considered to be strategically important for safety assessment of underground radioactive waste disposal. To assess the long-term stability of disposed radioactive waste, an understanding of (129)I adsorption on geologic materials is essential. Therefore, the adsorption of I(-) on naturally occurring oxides is of environmental concern. The surface charges of hydrous ferric oxide (HFO) in NaI electrolyte solutions were measured by potentiometric acid-base titration. The surface charge data were analyzed by means of an extended triple-layer model (ETLM) for surface complexation modeling to obtain the I(-) adsorption reaction and its equilibrium constant. The adsorption of I(-) was determined to be an outer-sphere process from ETLM analysis, which was consistent with independent X-ray absorption near-edge structure (XANES) observation of I(-) adsorbed on HFO. The adsorption equilibrium constants for I(-) on beta-TiO(2) and gamma-Al(2)O(3) were also evaluated by analyzing the surface charge data of these oxides in NaI solution as reported in the literature. Comparison of these adsorption equilibrium constants for HFO, beta-TiO(2), and gamma-Al(2)O(3) based on site-occupancy standard states permitted prediction of I(-) adsorption equilibrium constants for all oxides by means of the Born solvation theory. The batch adsorption data for I(-) on HFO and amorphous aluminum oxide were reasonably reproduced by ETLM with the predicted equilibrium constants, confirming the validity of the present approach. Using the predicted adsorption equilibrium constants, we calculated distribution coefficient (K(d)) values for I(-) adsorption on common soil minerals as a function of pH and ionic strength.

  1. Metal doped green zeolites for water treatment a sustainable remediation model

    International Nuclear Information System (INIS)

    Tabassum, N.; Rafique, U.

    2016-01-01

    The synthesis of zeolites from refused materials presents a greener model for environmental remediation. The present study offers a novel procedure to synthesize not only the basic framework but also Vanadium modified polymeric zeolites. The spent polythene bags, lunch boxes, and packaging are used as raw material for synthesis of zeolites. Characterization through EDX showed incorporation of vanadium is more than 35%, exhibiting FTIR frequencies in the range 601-995cm-1. Thermogravimetric (TG) analysis revealed a stabilizing effect of zeolites on addition of dopant upto 320 degree C as determined by higher residue percentage (> 98%). Vanadium doped synthesized zeolites (MP1, MP2, MP3) were applied in batch adsorption experiments for in-situ (synthetic metal salt solution) and ex-situ (industrial effluents) removal of metals (Pb, Cr, and Cd). Adsorption results indicated the successful metal removal of more than 90% in the sequence Pb > Cd > Cr. The sequence follows, higher is the ionic radius of the metal cation, more is the adsorption on zeolites. Application of adsorption isotherms demonstrated fitness of Freundlich and Temkin models, whereas pseudo first order kinetics depicts metal removal. The study concludes that synthesized zeolites are suitable candidates with improvised green economy for industrial sector to treat effectively industrial discharges. (author)

  2. Evaluation of natural organic matter adsorption on Fe-Al binary oxide: Comparison with single metal oxides.

    Science.gov (United States)

    Kim, Kyung-Jo; Jang, Am

    2017-10-01

    The adsorption characteristics of three types of standard natural organic matter (NOM) on iron-aluminum (Fe-Al) binary oxide (FAO) and heated aluminum oxide (HAO) under natural surface water condition were investigated using various adsorption isotherms and kinetic models. FAO was synthesized by Fe oxide and Al oxide, mixed using the sol-gel hydrothermal method, and aluminum sulfate was used to make HAO. The amount of adsorbed NOM was increased to 79.6 mg g -1 for humic acid (HA), 101.1 mg g -1 for sodium alginate (SA) in the FAO, but the maximum adsorption capacity of bovine serum albumin (BSA) (461.3 mg g -1 ) was identified on the HAO. The adsorption of HA, BSA, and SA dramatically increased (>70%) on FAO in 5 min and HA was significantly removed (90%) among the three NOM. Mutual interaction among the adsorbed NOM (BSA) occurred on the HAO surface during adsorption due to formation of monolayer by protein molecules at neutral pH. The pseudo second order clearly represented the adsorption kinetics for both adsorbents. The equilibrium isotherm data of FAO was better exhibited by the Langmuir isotherm model than by the Freundlich isotherm, but HAO was a slightly non-linear Langmuir type. Also, the free energy, enthalpy, and entropy of adsorption were determined from the thermodynamic experiments. Adsorption on FAO was spontaneous and an exothermic process. Fluorescence excitation-emission matrix (FEEM) spectra were used to elucidate the variation in organic components. The results obtained suggests that the significant changes in the surface property of the adsorbent (large surface area, increased crystalline intensity, and fine particle size) were effectively determined by the Fe-synthesized Al oxide mixed using the sol-gel hydrothermal method. The results also suggest that the changes enhanced the adsorption capacity, whereby three NOM were notably removed on FAO regardless of NOM characteristics (hydrophobic and hydrophilic). Copyright © 2017 Elsevier

  3. Modeling and Optimization for Production of Rice Husk Activated Carbon and Adsorption of Phenol

    OpenAIRE

    Mohammad, Y. S.; Shaibu-Imodagbe, E. M.; Igboro, S. B.; Giwa, A.; Okuofu, C. A.

    2014-01-01

    Modeling of adsorption process establishes mathematical relationship between the interacting process variables and process optimization is important in determining the values of factors for which the response is at maximum. In this paper, response surface methodology was employed for the modeling and optimization of adsorption of phenol onto rice husk activated carbon. Among the action variables considered are activated carbon pretreatment temperature, adsorbent dosage, and initial concentrat...

  4. Mathematical modeling and experimental breakthrough curves of cephalosporin C adsorption in a fixed-bed column

    OpenAIRE

    Burkert, Carlos André Veiga; Barbosa, Geraldo Nazareno de Oliveira; Mazutti, Marcio Antônio; Maugeri, Francisco

    2011-01-01

    This work presents the mathematical modeling of the cephalosporin C (CPC) adsorption process in a fixed-bed column. The application of Particle Swarm Optimization (PSO) algorithm for parameter estimation was first considered, which shows to be a useful tool for parameter estimation in adsorption processes. Modeling and simulation of CPC purification showed a good performance during both estimation and validation step. After this, a central composite rotational design (CCRD) was conceived taki...

  5. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area.

    Science.gov (United States)

    Horie, Masanori; Fujita, Katsuhide; Kato, Haruhisa; Endoh, Shigehisa; Nishio, Keiko; Komaba, Lilian Kaede; Nakamura, Ayako; Miyauchi, Arisa; Kinugasa, Shinichi; Hagihara, Yoshihisa; Niki, Etsuo; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2012-04-01

    Association of cellular influences and physical and chemical properties were examined for 24 kinds of industrial metal oxide nanoparticles: ZnO, CuO, NiO, Sb(2)O(3), CoO, MoO(3), Y(2)O(3), MgO, Gd(2)O(3), SnO(2), WO(3), ZrO(2), Fe(2)O(3), TiO(2), CeO(2), Al(2)O(3), Bi(2)O(3), La(2)O(3), ITO, and cobalt blue pigments. We prepared a stable medium dispersion for each nanoparticle and examined the influence on cell viability and oxidative stress together with physical and chemical characterizations. ZnO, CuO, NiO, MgO, and WO(3) showed a large amount of metal ion release in the culture medium. The cellular influences of these soluble nanoparticles were larger than insoluble nanoparticles. TiO(2), SnO(2), and CeO(2) nanoparticles showed strong protein adsorption ability; however, cellular influences of these nanoparticles were small. The primary particle size and the specific surface area seemed unrelated to cellular influences. Cellular influences of metal oxide nanoparticles depended on the kind and concentrations of released metals in the solution. For insoluble nanoparticles, the adsorption property was involved in cellular influences. The primary particle size and specific surface area of metal oxide nanoparticles did not affect directly cellular influences. In conclusion the most important cytotoxic factor of metal oxide nanoparticles was metal ion release. This journal is © The Royal Society of Chemistry 2012

  6. Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption

    Science.gov (United States)

    Wahiduzzaman; Khan, Mujibur R.; Harp, Spencer; Neumann, Jeffrey; Sultana, Quazi Nahida

    2016-04-01

    The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm-1 which

  7. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets.

    Science.gov (United States)

    Rostamian, Rahele; Behnejad, Hassan

    2018-01-01

    The adsorption behavior of tetracycline (TCN), doxycycline (DCN) as the most common antibiotics in veterinary and ciprofloxacin (CPN) onto graphene oxide nanosheets (GOS) in aqueous solution was evaluated. The four factors influencing the adsorption of antibiotics (initial concentration, pH, temperature and contact time) were studied. The results showed that initial pH ∼ 6 to 7 and contact time ∼ 100 - 200min are optimum for each drug. The monolayer adsorption capacity was reduced with the increasing temperature from 25°C to 45°C. Non-linear regressions were carried out in order to define the best fit model for every system. To do this, eight error functions were applied to predict the optimum model. Among various models, Hill and Toth isotherm models represented the equilibrium adsorption data of antibiotics while the kinetic data were well fitted by pseudo second-order (PSO) kinetic model (DCN and TCN) and Elovich (CPN) models. The maximum adsorption capacity (q max ) is found to be in the following order: CPN > DCN > TCN, obtained from sips equation at the same temperature. The GOS shows highest adsorption capacity towards CPN up to 173.4mgg -1 . The study showed that GOS can be removed more efficiently from water solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Site competition on metal surfaces: an electron spectroscopic study of sequential adsorption on W(110)

    International Nuclear Information System (INIS)

    Steinkilberg, M.; Menzel, D.

    1977-01-01

    Using UPS and XPS, the sequential adsorption of hydrogen + carbon monoxide, and of hydrogen + oxygen, on W(110) has been studied at room temperature. Adsorption of CO on a H-covered surface is rapid and leads to total displacement of hydrogen. The resulting CO layer however, is different from that formed on the clean surface under identical conditions, in that it consists of a higher percentage of virgin CO, while considerably more β-CO forms on the clean surface. Oxygen does not adsorb on a H-covered surface, nor displace hydrogen. It is concluded that hydrogen most probably occupies the same sites utilized by dissociative adsorption of CO and oxygen, while virgin CO can also occupy different sites; its adsorption can thus lead to interactional weakening of the H-surface bond. (Auth.)

  9. THE INFLUENCE OF pH TOWARDS MULTIPLE METAL ION ADSORPTION OF Cu(II, Zn(II, Mn(II, AND Fe(II ON HUMIC ACID

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2010-06-01

    Full Text Available Multiple metal ions adsorption of Cu(II, Zn(II, Mn(II and Fe(II on humic acid with a batch method has been carried out at pH interaction of 3, 5, and 6. Concentration of metal ions in solution before and after interaction was analyzed with Atomic Absorption Spectrophotometer (AAS. Result showed that adsorption multiple metal ions of Cu(II, Zn(II, Mn(II, and Fe(II on humic acid is optimum at pH 5. Adsorption energies of the multiple metal ions Cu(II, Zn(II, Mn(II, and Fe(II on humic acid at pH 3, 5, and 6 are around 35.0 - 37.6 kJ/mole. In general, capacity of competition adsorption of the multiple metal ions has an order as follows; Cu(II < Fe(II < Zn(II < Mn(II.   Keywords: Humic acid, adsorption, multiple metal

  10. Multicomponent Adsorption Model for Polar and Associating Mixtures

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Kontogeorgis, Georgios M.

    2015-01-01

    The multicomponent potential adsorption theory (MPTA) is revisited in this work for polar and associating systems. MPTA is used in combination with the CPA equation of state. Previous Studies have shown that both MPTA and other theories present difficulties for complex systems. Some of these prob...

  11. Comparison of different phosphorous adsorption models in acid ...

    African Journals Online (AJOL)

    This study was designed to compare the phosphorous fixation capacity of three soils series named Tyele, Minkonmingon and Mekoto in the south region of Cameroon and to determine the soil properties that are the main predictors of the P activity of those soils. Five adsorption equations viz. Linear, Langmuir, Van Huay, ...

  12. Dynamic Adsorption/Desorption Process Model of Capacitive Deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Limpt, van B.; Wal, van der A.

    2009-01-01

    In capacitive deionization (CDI), an electrical potential difference is applied across oppositely placed electrodes, resulting in the adsorption of ions from aqueous solution and a partially ion-depleted product stream. CDI is a dynamic process which operates in a sequential mode; i.e., after a

  13. Trends in the adsorption of volatile organic compounds in a large-pore metal-organic framework, IRMOF-1.

    Science.gov (United States)

    Luebbers, Matthew T; Wu, Tianjiao; Shen, Lingjuan; Masel, Richard I

    2010-07-06

    Metal-organic frameworks have been proposed as useful sorbents for the capture of a variety of compounds. In this work, inverse gas chromatography (IGC) utilizing micropacked capillary columns was used to probe the adsorption of more than 30 volatile organic compounds (VOCs) on IRMOF-1. In an attempt to study the effect of structural degradation upon VOC adsorption, multiple samples of IRMOF-1 with widely ranging properties were investigated. Trends in the differential enthalpies and equilibrium constants for the adsorption of VOCs were determined on the basis of the molecular properties of the adsorbate and the structural properties of the MOF sample. The results indicate that samples of IRMOF-1 that are affected by a moderate amount of structural degradation interact with adsorbed species more strongly than does a sample with fewer defects, resulting in higher heats of adsorption. Samples of IRMOF-1 with specific surface areas of around 1000 m(2)/g show heats of adsorption for alkanes that are higher than those estimated previously via Monte Carlo calculations. Although the data for nonpolar (and weakly polar) species showed many of the anticipated trends for the interactions with IRMOF-1, the equilibrium behavior of polar VOCs did not correlate well with the molecular properties of the adsorbate (i.e., vapor pressure and deformation polarizability), leaving some uncertainty about the nature of the interaction mechanism. The equilibrium data and the heats of adsorption were found to fit well to a small group of molecular descriptors through the application of the Abraham linear free-energy relationship, thus providing insight into the complex interactions between the MOF structure and the VOC compounds. Hydrogen bonding interactions were determined to be the primary contributors to specific interactions between adsorbates and the MOF surface. Size exclusion also seems to play a role in the adsorption of larger species. These results show that the interaction of

  14. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    Science.gov (United States)

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  15. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunjiang, E-mail: zhaocj_nercita@163.com [National Engineering Research Center for Information Technology in Agriculture, Beijing 100097 (China); Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097 (China); Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture, Beijing100097 (China); Wu, Huarui, E-mail: wuhrnercita@163.com [National Engineering Research Center for Information Technology in Agriculture, Beijing 100097 (China); Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097 (China); Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture, Beijing100097 (China)

    2017-03-31

    Highlights: • PNG can be acted as micro-sensor for monitoring heavy metal in agriculture. • The most favorable adsorption site of Pd atom or cluster on PNG is the vacancy site. • The Pd atom or cluster enhance the reactivity of PNG toward Hg and AsH{sub 3} adsorption. • The efficiency of a sorbent can be tuned by tailoring the ε{sub d} of adsorbed metals. - Abstract: Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pd{sub n} (n = 1–6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH{sub 3} adsorption on PNG. The adsorption ability of Hg on Pd{sub n} decorated PNG is found to be related to the d-band center (ε{sub d}) of the Pd{sub n}, in which the closer ε{sub d} of Pd{sub n} to the Fermi level, the higher adsorption strength for Hg on Pd{sub n} decorated PNG. Moreover, the charge transfer between Pd{sub n} and arsenic may constitute arsenic adsorption on Pd{sub n} decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring ε{sub d} of adsorbed metals.

  16. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    Science.gov (United States)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  17. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    International Nuclear Information System (INIS)

    Zhao, Chunjiang; Wu, Huarui

    2017-01-01

    Highlights: • PNG can be acted as micro-sensor for monitoring heavy metal in agriculture. • The most favorable adsorption site of Pd atom or cluster on PNG is the vacancy site. • The Pd atom or cluster enhance the reactivity of PNG toward Hg and AsH 3 adsorption. • The efficiency of a sorbent can be tuned by tailoring the ε d of adsorbed metals. - Abstract: Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pd n (n = 1–6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH 3 adsorption on PNG. The adsorption ability of Hg on Pd n decorated PNG is found to be related to the d-band center (ε d ) of the Pd n , in which the closer ε d of Pd n to the Fermi level, the higher adsorption strength for Hg on Pd n decorated PNG. Moreover, the charge transfer between Pd n and arsenic may constitute arsenic adsorption on Pd n decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring ε d of adsorbed metals.

  18. Reactivity of transition metal atoms supported or not on TiO2(110) toward CO and H adsorption

    KAUST Repository

    Helali, Zeineb

    2015-04-01

    Following our strategy to analyze the metal–support interaction, we present periodic DFT calculations for adsorption of metal atoms on a perfect rutile TiO2(110) surface (at low coverage, θ = 1/3) to investigate the interaction of an individual metal atom, M, with TiO2 and its consequence on the coadsorption of H and CO over M/TiO2. M under investigation varies in a systematic way from K to Zn. It is found that the presence of the support decreases or increases the strength of M–H or M–CO interaction according to the nature of M. The site of the adsorption for H and the formation of HCO/M also depend on M. From the left- to the right-hand side of the period, C and O both interact while O progressively detaches from M. On the contrary, for M = Fe–Cu, CO dissociation is more likely to happen. For CO and H coadsorption, two extreme cases emerge: For Ni, the hydrogen adsorbed should easily move on the support and CO dissociation is more likely. For Ti or Sc, H is easily coadsorbed with CO on the metal and CO hydrogenation could be the initial step. © 2015, Springer-Verlag Berlin Heidelberg.

  19. Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry.

    Science.gov (United States)

    Harvey, Omar R; Herbert, Bruce E; Rhue, Roy D; Kuo, Li-Jung

    2011-07-01

    Plant-derived biochars exhibit large physicochemical heterogeneity due to variations in biomass chemistry and combustion conditions. However, the influence of biochar heterogeneity on biochar-metal interaction mechanisms has not been systematically described. We used flow adsorption microcalorimetry to study structure-sorption relationships between twelve plant-derived biochars and two metals (K(+) and Cd(2+)) of different Lewis acidity. Irrespective of the biochar structure, sorption of K(+) (a hard Lewis acid) occurred predominantly on deprotonated functional groups via ion exchange with molar heats of adsorption (ΔH(ads)) of -4 kJ mol(-1) to -8 kJ mol(-1). By comparison, although ion exchange could not be completely ruled out, our data pointed to Cd(2+) (a soft Lewis acid) sorption occurring predominantly via two distinct cation-π bonding mechanisms, each with ΔH(ads) of +17 kJ mol(-1). The first, evident in low charge-low carbonized biochars, suggested Cd(2+)-π bonding to soft ligands such as -C ═ O; while the second, evident in low charge-highly carbonized biochars, pointed to Cd(2+)-π bonding with electron-rich domains on aromatic structures. Quantitative contributions of these mechanisms to Cd(2+) sorption can exceed 3 times that expected for ion exchange and therefore could have significant implications for the biogeochemical cycling of metals in fire-impacted or biochar-amended systems.

  20. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Amira M. Mahmoud

    2015-03-01

    Full Text Available Environmental pollution by heavy metal is arising as the most endangering tasks to both water sources and atmosphere quality today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. To limit the spread of the heavy metals within water sources, nickel oxide nanoparticles adsorbents were synthesized and characterized with the aim of removal of one of the aggressive heavy elements, namely; lead ions. Nano nickel oxide adsorbents were prepared using NaOH and oxalic acid dissolved in ethanol as precursors. The results indicated that adsorption capacity of Pb(II ion by NiO-org catalyst is favored than that prepared using NaOH as a precipitant. Nickel oxide nanoparticles prepared by the two methods were characterized structurally and chemically through XRD, DTA, TGA, BET and FT-IR. Affinity and efficiency sorption parameters of the solid nano NiO particles, such as; contact time, initial concentration of lead ions and the dosage of NiO nano catalyst and competitive adsorption behaviors were studied. The results showed that the first-order reaction law fit the reduction of lead ion, also showed good linear relationship with a correlation coefficient (R2 larger than 0.9.

  1. The influence of metal- and N-species addition in mesoporous carbons on the hydrogen adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J. [Université Lyon 1, CNRS UMR5256, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, 2 Av. Einstein, 69626 Villeurbanne (France); Bennici, S., E-mail: simona.bennici@ircelyon.univ-lyon1.fr [Université Lyon 1, CNRS UMR5256, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, 2 Av. Einstein, 69626 Villeurbanne (France); Shen, J. [Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Auroux, A. [Université Lyon 1, CNRS UMR5256, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, 2 Av. Einstein, 69626 Villeurbanne (France)

    2015-07-01

    Mesoporous carbon (MC) and two types of N-containing mesoporous carbons (N-MC and C{sub 3}N{sub 4}-MC) were prepared from cost-effective materials and used for hydrogen storage both at 77 K and room temperature (RT). The mesoporous structure was confirmed by N{sub 2} adsorption isotherm at 77 K, and the characterization of the bulk and surface properties performed by ICP analysis, TEM, XRD, and XPS. The maximum hydrogen uptakes were found on N-MC (1.1 wt% of hydrogen) at 100 bar and RT and on MC (3.07 wt% of hydrogen) at 40 bar and 77 K. Pt, Pd, and Ru noble-metal were also added to the three carbon based supports in order to verify the existence of any spillover effect due to the metals presence and evaluate the influence on hydrogen storage capacity. - Highlights: • Biomass derived mesoporous carbons were modified by N and noble metal addition. • N atoms enhance the H{sub 2} adsorption capacity of mesoporous carbon at room temperature. • Ru/N-MC reaches the maximum theoretical limit of H{sub 2} storage for carbon materials.

  2. Modeling and Optimization for Production of Rice Husk Activated Carbon and Adsorption of Phenol

    Directory of Open Access Journals (Sweden)

    Y. S. Mohammad

    2014-01-01

    Full Text Available Modeling of adsorption process establishes mathematical relationship between the interacting process variables and process optimization is important in determining the values of factors for which the response is at maximum. In this paper, response surface methodology was employed for the modeling and optimization of adsorption of phenol onto rice husk activated carbon. Among the action variables considered are activated carbon pretreatment temperature, adsorbent dosage, and initial concentration of phenol, while the response variables are removal efficiency and adsorption capacity. Regression analysis was used to analyze the models developed. The outcome of this research showed that 99.79% and 99.81% of the variations in removal efficiency and adsorption capacity, respectively, are attributed to the three process variables considered, that is, pretreatment temperature, adsorbent dosage, and initial phenol concentration. Therefore, the models can be used to predict the interaction of the process variables. Optimization tests showed that the optimum operating conditions for the adsorption process occurred at initial solute concentration of 40.61 mg/L, pretreatment temperature of 441.46°C, adsorbent dosage 4 g, adsorption capacity of 0.9595 mg/g, and removal efficiency of 97.16%. These optimum operating conditions were experimentally validated.

  3. An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles.

    Science.gov (United States)

    Rivas, Manuel; Casanovas, Jordi; del Valle, Luis J; Bertran, Oscar; Revilla-López, Guillermo; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2015-06-07

    The adsorption of orthophosphate, pyrophosphate, triphosphate and a trisphosphonate onto hydroxyapatite has been examined using experiments and quantum mechanical calculations. Adsorption studies with FTIR and X-ray photoelectron spectroscopies have been performed considering both crystalline hydroxyapatite (HAp) and amorphous calcium phosphate particles, which were specifically prepared and characterized for this purpose. Density functional theory (DFT) calculations have been carried out considering the (100) and (001) surfaces of HAp, which were represented using 1 × 2 × 2 and 3 × 3 × 1 slab models, respectively. The adsorption of phosphate onto the two crystallographic surfaces is very much favored from an energetic point of view, which is fully consistent with current interpretations of the HAp growing process. The structures calculated for the adsorption of pyrophosphate and triphosphate evidence that this process is easier for the latter than for the former. Thus, the adsorption of pyrophosphate is severely limited by the surface geometry while the flexibility of triphosphate allows transforming repulsive electrostatic interactions into molecular strain. On the other hand, calculations predict that the trisphosphonate only adsorbs onto the (001) surface of HAp. Theoretical predictions are fully consistent with experimental data. Thus, comparison of DFT results and spectroscopic data suggests that the experimental conditions used to prepare HAp particles promote the predominance of the (100) surface. Accordingly, experimental identification of the adsorption of trisphosphonate onto such crystalline particles is unclear while the adsorption of pyrophosphate and triphosphate is clearly observed.

  4. Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Koopal, L.K.; Hiemstra, T.

    2006-01-01

    The LCD model (Ligand and Charge Distribution) has recently been proposed to describe the adsorption of humic substances to oxides, in which the CD-MUSIC model and the NICA model for ion binding to respectively oxides and humic substances are integrated. In this paper, the LCD model is improved by

  5. Diffuse interface model of surfactant adsorption onto flat and droplet interfaces

    NARCIS (Netherlands)

    Sman, van der R.G.M.; Graaf, van der S.

    2006-01-01

    For applications where droplet breakup and surfactant adsorption are strongly coupled, a diffuse interface model is developed. The model is based on a free energy functional, partly adapted from the sharp interface model of [Diamant and Andelman 34(8):575-580, (1996)]. The model is implemented as a

  6. Adsorption mechanisms and the effect of oxytetracycline on activated sludge.

    Science.gov (United States)

    Song, Xiancai; Liu, Dongfang; Zhang, Guowei; Frigon, Matthew; Meng, Xianrong; Li, Kexun

    2014-01-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model had the best fit which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na(+), K(+), Ca(2+), Mg(2+) and Cd(2+) ions more or less inhibited the adsorption of OTC on activated sludge while Cu(2+) enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks.

    Science.gov (United States)

    Hodgson, E; Lewys-James, A; Rao Ravella, S; Thomas-Jones, S; Perkins, W; Gallagher, J

    2016-08-01

    The objective of this work was to identify biomass feedstocks and optimum pyrolysis process conditions to produce a biochar capable of adsorbing metals from polluted groundwater. Taguchi experimental design was used to determine the effects of slow-pyrolysis process conditions on char yield and zinc adsorption. Treatments were repeated using six candidate feedstocks (Lolium perenne, Lolium perenne fibre, Miscanthus x giganteus, Salix viminalis, Fraxinus excelsior and Picea sitchensis) and the resultant chars were tested for metal adsorption performance. Chars produced from L. perenne and its extracted fibre displayed the greatest zinc adsorption performance and removed 83.27-92.96% respectively. Optimum process conditions in terms of both char yield and zinc adsorption performance were achieved from slow-pyrolysis at 300°C for 2h using a feedstock with a particle size of less than 1mm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Removal of metals and phenols by adsorption/ion exchange process; Eliminacion conjunta de metales y fenoles por adsorcion/intercambio ionico

    Energy Technology Data Exchange (ETDEWEB)

    Maranon, E.; Castrillon, I.; Monster, T.; Sastre, H.

    2002-07-01

    The present work studies the possible interactions in the removal of metals and phenolic compounds that may be present in an industrial wastewater by means of an adsorption/ion exchange process. The resins employed were Amberlite 252-C for the removal of metals and Amberlite XAD-4 for the removal of phenol. Firstly, elimination was studied by means of assays with solutions that contained either 100 mg/l of copper, 100 mg/l of zinc or 1000 mg/l of phenol. Subsequently, assays were carried out using solutions containing a mixture of 100 mg/l of each metal, and finally, with solutions containing a mixture of 100 mg/l of each metal and 1000 mg/l of phenol. The saturation capacity of the Amberlite 252-C resin for metals decreased slightly in the presence of phenol, the decrease in working capacity being greater than that of saturation capacity. However, the presence of metallic cations increased the sorption of phenol by the Amberlite XAD-4 resin. (Author) 14 refs.

  9. Direct Structural Identification of Gas Induced Gate-Opening Coupled with Commensurate Adsorption in a Microporous Metal-Organic Framework.

    Science.gov (United States)

    Banerjee, Debasis; Wang, Hao; Plonka, Anna M; Emge, Thomas J; Parise, John B; Li, Jing

    2016-08-08

    Gate-opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate-opening that is induced by gas adsorption, the pore-opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas-selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas-induced gate-opening process of a microporous metal-organic framework, [Mn(ina)2 ] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X-ray diffraction, in situ powder X-ray diffraction coupled with differential scanning calorimetry (XRD-DSC), and gas adsorption-desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2 ] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101: a molecular simulation study

    Science.gov (United States)

    Gupta, Krishna M.; Zhang, Kang; Jiang, Jianwen

    2015-08-01

    A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery.

  11. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    Science.gov (United States)

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

  12. Modeling of the thermal effects of hydrogen adsorption on activated carbon

    International Nuclear Information System (INIS)

    Richard, M.-A.; Chahine, R.

    2006-01-01

    'Full text:' Heat management is one of the most critical issues for the design of efficient adsorption-based storage of hydrogen. We present simulations of mass and energy balance for hydrogen and nitrogen adsorption on activated carbon over wide temperature and pressure ranges. First, the Dubinin-Astakhov (DA) model is adapted to model excess hydrogen and nitrogen adsorption isotherms at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter modified D-A adsorption model is shown to fit the experimental data over the temperature range (35 K-293 K) for hydrogen and (93 K-298 K) for nitrogen and pressure range (0-6 MPa) within the experimental uncertainties of the measurement system. We derive the thermodynamic properties of the adsorbed phase from this analytical expression of the measured data. The mass and energy rate balance equations in a microporous adsorbent/adsorbate system are then presented and validated with nitrogen desorption experiments. Finally, simulations of adiabatic and isothermal filling of adsorption-based hydrogen storage are presented and discussed. (author)

  13. An experimental design approach for modeling As(V) adsorption from aqueous solution by activated carbon.

    Science.gov (United States)

    Bakkal Gula, C; Bilgin Simsek, E; Duranoglu, D; Beker, U

    2015-01-01

    The present paper discusses response surface methodology as an efficient approach for predictive model building and optimization of As(V) adsorption on activated carbon derived from a food industry waste: peach stones. The objectives of the study are application of a three-factor 2³ full factorial and central composite design technique for maximizing As(V) removal by produced activated carbon, and examination of the interactive effects of three independent variables (i.e., solution pH, temperature, and initial concentration) on As(V) adsorption capacity. Adsorption equilibrium was investigated by using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. First-order and second-order kinetic equations were used for modeling of adsorption kinetics. Thermodynamic parameters (ΔG °, ΔH °, and ΔS °) were calculated and used to explain the As(V) adsorption mechanism. The negative value of ΔH (-7.778 kJ mol⁻¹) supported the exothermic nature of the sorption process and the Gibbs free energy values (ΔG°) were found to be negative, which indicates that the As(V) adsorption is feasible and spontaneous.

  14. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq

    2017-02-01

    Full Text Available The present research work focuses on a novel ultraclean desulfurization process of model oil by the adsorption method using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. The parameters investigated are effect of contact time, adsorbent dose, initial dibenzothiophene (DBT concentration and temperature. Experimental tests were conducted in batch process. Pseudo first and second order kinetic equations were used to examine the experimental data. It was found that pseudo second order kinetic equation described the data of the DBT adsorption onto all types of adsorbents very well. The isotherm data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm model fits the data very well for the adsorption of DBT onto all three forms of adsorbents. The adsorption of DBT was also investigated at different adsorbent doses and was found that the percentage adsorption of DBT was increased with increasing the adsorbent dose, while the adsorption in mg/g was decreased with increasing the adsorbent dose. The prepared adsorbents were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX and X-ray diffraction (XRD.

  15. Ethanol mediated As(III) adsorption onto Zn-loaded pinecone biochar: Experimental investigation, modeling, and optimization using hybrid artificial neural network-genetic algorithm approach.

    Science.gov (United States)

    Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck

    2017-04-01

    Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.

  16. Adsorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead Avena fatua biomass and the effect of these metals on their growth.

    Science.gov (United States)

    Areco, María Mar; Saleh-Medina, Leila; Trinelli, María Alcira; Marco-Brown, Jose Luis; Dos Santos Afonso, María

    2013-10-01

    The biosorption of copper(II), zinc(II), cadmium(II) and lead(II) from aqueous solutions by dead Avena fatua biomass and the effect of these metals on the growth of this wild oat were investigated. Pseudo-first- and second-order and intra-particle diffusion models were applied to describe the kinetic data and to evaluate the rate constants. The adsorption kinetics of all the metals follows a pseudo-second-order model. The adsorption capacity was determined, and the Freundlich and Langmuir models were applied. The experimental data obtained for all the metals are best described by the Langmuir model. A. fatua was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and zeta potential. The results obtained evidence the presence of Zn(II), Cu(II), Cd(II) or Pb(II) on the surface of the weed. The growth of A. fatua was affected by the presence of all metals. The decrease in the growth rate with increasing metal concentration was more noticeable for zinc. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Synthesis of iminodi(methylphosphonic acid)-type chitosan resin and its adsorption behavior for trace metals

    International Nuclear Information System (INIS)

    Yamakawa, Satoko; Oshita, Koji; Sabarudin, Akhmad; Oshima, Mitsuko; Motomizu, Shoji

    2004-01-01

    A chitosan-based resin possessing the iminodi(methyphosphonic acid) moiety (IDP-type chitrosan resin) was synthesized by using cross-linked chitosan as a base material. The adsorption behavior of trace metal ions on the IDP-type chitosan resin was systematically investigated using a mini-column (1 ml of the resin) packed with the resin. The concentrations of metal ions in the effluents were measured by ICP-MS and ICP-AES. The resin could adsorb four metals, such as In(III), Sn(II), Th(IV), and U(VI), by almost 100% over a wide pH range (1-7). Uranium(VI) and thorium could not be eluted with nitric acid and hydrochloric acid (1-6 M); other metal ions were easily and readily eluted with 1 M nitric acid. The IDP-type chitosan resin synthesized in this work can be applied to the separation of U(VI) and Th(IV) from other metal ions. (author)

  18. Insight into chemoselectivity of nitroarene hydrogenation: A DFT-D3 study of nitroarene adsorption on metal surfaces under the realistic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lidong [Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); Cao, Xiao-Ming, E-mail: xmcao@ecust.edu.cn [Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); Hu, P., E-mail: p.hu@qub.ac.uk [Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast, BT9 5AG (United Kingdom)

    2017-01-15

    Highlights: • Comparing the chemical bonding strengths between different functional groups of nitroarenes and metal surfaces. • Obtaining the variation trends of adsorption configurations of nitrobenzene and 4-nitrostyrene against their coverage. • Identifying the coverage of nitroarene and hydrogen on Pt(111) and Au(111) under the realistic hydrogenation condition. • Proposing Gibbs free adsorption energy per surface area as a descriptor to roughly evaluate the hydrogenation selectivity. - Abstract: The adsorption of nitrobenzene and 4-nitrostyrene on the Pt(111) and the Au(111) surfaces under the general reaction condition of nitroarene catalytic hydrogenation is investigated utilizing periodic density functional theory calculations with the Grimme’s empirical three-body dispersion correction to understand the influence of adsorption configurations on chemoselectivity of nitroarene compound hydrogenation. It is found that at the low coverage both nitrobenzene and 4-nitrostyrene tend to adsorb paralleling to the Pt(111) and the Au(111) surfaces. Based on the crystal orbital Hamilton population analysis, it is found that the chemical bonding between nitro group and Pt(111) surface is weak. The adsorption configurations of nitrobenzene and 4-nitrostyrene are determined by the chemisorption strength of phenyl group and vinyl group. Under the reaction condition, the 1/9 ML nitrobenzene and 4/9 ML hydrogen atom can be coadsorbed while the 1/6 ML 4-nitrostyrene and 1/3 ML hydrogen atom can be coadsorbed on Pt(111). With the increase of the coverage, nitrobenzene still remains its paralleled adsorption configuration while the adsorption configuration of 4-nitrostyrene is switched to the tilted adsorption configuration through vinyl group without the chemisorption of phenyl and nitro group on Pt(111). In addition, the competitive adsorption with hydrogen will not change the adsorption configuration of nitrobenzene and 4-nitrostyrene under the reaction condition

  19. Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2

    Science.gov (United States)

    Jin, Cui; Dai, Ying; Wei, Wei; Ma, Xiangchao; Li, Mengmeng; Huang, Baibiao

    2017-12-01

    The effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2 are investigated by means of the first-principles calculations based on density functional theory (DFT). Our results show that the most stable adsorption site for single metal atom on anatase TiO2 (101) surface is the bridge site formed by two twofold coordinated oxygen (O2c) atoms at the step edge. Due to the charge transfer from metal atoms to anatase TiO2 (101) surface, the work function of adsorbed surface is significantly smaller than the clean one, indicating enhanced surface activity. Fukui functions are highly localized around the isolated metal atoms, indicating that single metal atoms on anatase TiO2 (101) surface serve as the active reduction and oxidation sites in the photocatalytic process. Photo-induced electrons in the electronically excited TiO2 photocatalyst can be transferred to target species through the deposited single atoms. The band structures of host TiO2 are almost unchanged upon the adsorption, and the metal induced states are located in the band gap of the host. Remarkably, due to the metal atoms adsorption, the upward shift of conduction band edge will improve the reducing capacity of anatase TiO2. Moreover, when single metal atoms are adsorbed, potential energy of topmost surface Ti atoms turns to get close to the vacuum level, which significantly facilitates the electron transfer for hydrogen evolution. Results in this work provide new insights into improving the photocatalytic performance by single metal atoms adsorption.

  20. Modeling the adsorption of dyes onto activated carbon by using experimental designs.

    Science.gov (United States)

    Gómez, Verónica; Callao, M Pilar

    2008-10-19

    We used experimental design methodologies to obtain the response surface of the adsorption process for three acid dyes used in the dyeing step of a tanning process. The dyes were Acid Red 97, Acid Orange 61 and Acid Brown 425. The adsorption process was evaluated determining the concentrations of individual and total dyes remaining in solution at the end of the process. These concentrations were determined simultaneously in a single step using sequential injection analysis with multivariate curve resolution alternating least squares (SIA-MCR-ALS). This method involves fractional factorial designs and the steepest ascent method to find a zone of efficient adsorption and a response surface-modeling step to fit the relevant adsorption factors for the response.

  1. Iodine Gas Adsorption in Nanoporous Materials: A Combined Experiment–Modeling Study

    Energy Technology Data Exchange (ETDEWEB)

    Sava Gallis, Dorina F.; Ermanoski, Ivan; Greathouse, Jeffrey A.; Chapman, Karena W.; Nenoff, Tina M.

    2017-02-13

    Here, we present a combined experimental and Grand Canonical Monte Carlo (GCMC) modeling study on the adsorption of iodine in three classes of nanoporous materials: activated charcoals, zeolites, and metal–organic frameworks (MOFs). Iodine adsorption profiles were measured for the first time in situ, with a uniquely designed sorption apparatus. It was determined that pore size and pore environment are responsible for a dynamic adsorption profile, correlated with distinct pressure ranges. At pressures below 0.3 atm, iodine adsorption is governed by a combination of small pores and extra-framework components (e.g., Ag+ ions in the zeolite mordenite). At regimes above 0.3 atm, the amount of iodine gas stored relates with an increase in pore size and specific surface area. GCMC results validate the trends noted experimentally and in addition provide a measure of the strength of the adsorbate–adsorbent interactions in these materials.

  2. An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal-Organic Frameworks CPO-27-M.

    Science.gov (United States)

    Pato-Doldán, Breogán; Rosnes, Mali H; Dietzel, Pascal D C

    2017-04-22

    The CO 2 adsorption process in the family of porous metal-organic framework materials CPO-27-M (M=Mg, Mn, Co, Ni, Cu, and Zn) was studied by variable-temperature powder synchrotron X-ray diffraction under isobaric conditions. The Rietveld analysis of the data provided a time-lapse view of the adsorption process on CPO-27-M. The results confirm the temperature-dependent order of occupation of the three adsorption sites in the pores of the CPO-27-M materials. In CPO-27-M (M=Mg, Mn, Co, Ni, and Zn), the adsorption sites are occupied in sequential order, primarily because of the high affinity of CO 2 for the open metal sites. CPO-27-Cu deviates from this stepwise mechanism, and the adsorption sites at the metal cation and the second site are occupied in parallel. The temperature dependence of the site occupancy of the individual CO 2 adsorption sites derived from the diffraction data is reflected in the shape of the volumetric sorption isotherms. The fast kinetics and high reversibility observed in these experiments support the suitability of these materials for use in temperature- or pressure-swing processes for carbon capture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  4. The Preparation of Porous Sol-Gel Silica with Metal Organic Framework MIL-101(Cr) by Microwave-Assisted Hydrothermal Method for Adsorption Chillers.

    Science.gov (United States)

    Uma, Kasimayan; Pan, Guan-Ting; Yang, Thomas C-K

    2017-06-02

    Abst r act: Metal organic framework (MOF) of MIL-101(Cr)-Silica (SiO₂) composites with highly mesoporous and uniform dispersions were synthesized by a microwave-assisted hydrothermal method followed by the sol-gel technique. Water vapor adsorption experiments were conducted on the MIL-101(Cr)-SiO₂ composites for industrial adsorption chiller applications. The effects of MIL-101(Cr)-SiO₂ mixing ratios (ranging from 0% to 52%), the surface area and amount of Lewis and Brønsted sites were comprehensively determined through water vapor adsorption experiments and the adsorption mechanism is also explained. The BET and Langmuir results indicate that the adsorption isotherms associated with the various MIL-101(Cr)-SiO₂ ratios demonstrated Type I and IV adsorption behavior, due to the mesoporous structure of the MIL-101(Cr)-SiO₂. It was observed that the increase in the amount of Lewis and Brønsted sites on the MIL-101(Cr)-SiO₂ composites significantly improves the water vapor adsorption efficiency, for greater stability during the water vapor adsorption experiments.

  5. Preparation of Calcined Zirconia-Carbon Composite from Metal Organic Frameworks and Its Application to Adsorption of Crystal Violet and Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Zubair Hasan

    2016-03-01

    Full Text Available Zirconia-carbon (ZC composites were prepared via calcination of Zr-based metal organic frameworks, UiO-66 and amino-functionalized UiO-66, under N2 atmosphere. The prepared composites were characterized using a series of instrumental analyses. The surface area of the ZC composites increased with the increase of calcination temperature, with the formation of a graphite oxide phase observed at 900 °C. The composites were used for adsorptive removal of a dye (crystal violet, CV and a pharmaceutical and personal care product (salicylic acid, SA. The increase of the calcination temperature resulted in enhanced adsorption capability of the composites toward CV. The composite calcined at 900 °C exhibited a maximum uptake of 243 mg·g−1, which was much greater than that by a commercial activated carbon. The composite was also effective in SA adsorption (102 mg·g−1, and N-functionalization of the composite further enhanced its adsorption capability (109 mg·g−1. CV adsorption was weakly influenced by solution pH, but was more dependent on the surface area and pore volume of the ZC composite. Meanwhile, SA adsorption showed strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. Base-base repulsion and hydrogen bonding are also suggested to influence the adsorption of CV and SA, especially for the N-functionalized composite.

  6. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jia Yunjie; Zhang Yuejuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Wang Runwei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Fan Faying [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Xu Qinghong, E-mail: xuqh@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China)

    2012-01-15

    A new adsorbent named zirconium glyphosate [Zr(O{sub 3}PCH{sub 2}NHCH{sub 2}COOH){sub 2}{center_dot}0.5H{sub 2}O, denoted as ZrGP] and its selective adsorptions to Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO{sub 4}){sub 2}], ZrGP exhibited highly selective adsorption to Pb{sup 2+} in solution which contained Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg{sup 2+} and Ca{sup 2+} were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  7. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst

    International Nuclear Information System (INIS)

    Chen Jiangyao; Li Guiying; He Zhigui; An Taicheng

    2011-01-01

    Highlights: → Adsorptive combined titania-montmorillonite-silica photocatalysts synthesized. → All catalysts had relatively high adsorption capacities of multinary VOCs. → All catalysts preferred to adsorb the VOCs with higher polarity. → CTMS80 can effectively photocatalytically remove VOCs of various components. - Abstract: A series of adsorptive photocatalysts, combined titania-montmorillonite-silica were synthesized. The resultant photocatalysts consisted of more and more spherically agglomerated TiO 2 particles with increasing of TiO 2 content, and anatase was the only crystalline phase with nano-scale TiO 2 particles. With increasing of the cation exchange capacity to TiO 2 molar ratio, specific surface area and pore volume increased very slightly. In a fluidized bed photocatalytic reactor by choosing toluene, ethyl acetate and ethanethiol as model pollutants, all catalysts had relatively high adsorption capacities and preferred to adsorb higher polarity pollutants. Langmuir isotherm model better described equilibrium data compared to Freundlich model. Competitive adsorptions were observed for the mixed pollutants on the catalysts, leading to decrease adsorption capacity for each pollutant. The combined titania-montmorillonite-silica photocatalyst exhibited excellent photocatalytic removal ability to model pollutants of various components. Almost 100% of degradation efficiency was achieved within 120 min for each pollutant with about 500 ppb initial concentration, though the efficiencies of multi-component compounds slightly decreased. All photocatalytic reactions followed the Langmuir-Hinshelwood model. Degradation rate constants of multi-component systems were lower than those for single systems, following the order of toluene < ethyl acetate < ethanethiol, and increased with the increase of adsorption capacities for different pollutants of various components.

  8. Modeling Adsorption Kinetics of Magnesium and Phosphate Ions on Goethite by Empirical Equations

    Directory of Open Access Journals (Sweden)

    Malihe Talebi Atouei

    2017-06-01

    Full Text Available Introduction: Natural environments, including soils and sediments, are open and complex systems in which physico-chemical reactions are in semi equilibrium state. In these systems, bioavailability of plant nutrients, like phosphate, is influenced by environmental conditions and concentrations of other ions such as calcium and magnesium. Magnesium is a dominant cation in irrigation water and in the soil solution of calcareous soils. Recent evidences show relative increase in the concentration of magnesium in irrigation water. Because of the importance of chemical kinetics in controlling concentrations of these ions in the soil solution and for understanding their effects of adsorption kinetics of magnesium and phosphate ions, in this research, adsorption kinetics of these two ions on goethite is investigated as function of time and pH in single ion and binary ion systems. The experimental data are described by using the adsorption kinetics equations. These data are of the great importance in better understanding adsorption interactions and ion adsorption mechanism.With respect to the importance of these interactions from both economical and environmental point of view, in this research, the kinetics and thermodynamics of phosphate and Mg2adsorption interactions were investigated as function of pH on soil model mineral goethite in both single and binary ion systems. Materials and Methods: Kinetics experiments were performed in the presence of 0.2 mM magnesium and 0.4 mM phosphate in 0.1 M NaCl background solution and 3 g L-1 goethite concentration as function of pH and time (1, 5, 14, 24, 48. 72 and 168 h in single ion and binary ion systems. After reaction time, the suspensions were centrifuged and a sample of supernatant was taken for measuring ions equilibrium concentrations.Phosphate concentration was measured calorimetrically with the ammonium molybdate blue method by spectrophotometer (Jenway-6505 UV/Vis. Magnesium concentration was

  9. Use of general purpose adsorption isotherms for heavy metal-clay mineral interactions

    Energy Technology Data Exchange (ETDEWEB)

    Altin, O.; Oezbelge, H.O.; Dogu, T. [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering

    1998-02-01

    General purpose adsorption isotherm equations were fitted to the sorption data of lead and cadmium on both unmodified and Ca-saturated kaolinite and montmorillonite. Langmuir-Freundlich, Redlich-Petersen, Toth, Dubinin-Radushkevich, competitive Langmuir, and some modified forms of these isotherms were fitted to experimental data, and their goodnesses of fit are compared. The adjustable parameters of the Langmuir- and Freundlich-based isotherms were estimated by nonlinear least-squares analysis. The application of these two isotherms which allow for the effect of surface heterogeneity for both multiple and single desorbing ions during the sorption process was also studied. It was concluded that Redlich-Petersen, Toth, and original and modified forms of Dubinin-Radushkevich isotherms perform superior to the others both in high and low concentration regions for both unmodified and Ca-saturated clays. Competitive Langmuir adsorption isotherm for Ca-saturated clays fitted well for Pb adsorption, while a change of slope was observed for Cd adsorption.

  10. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Mayerová, Jana; Čejka, Jiří

    2010-01-01

    Roč. 12, č. 20 (2010), s. 5240-5247 ISSN 1463-9076 R&D Projects: GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503 Keywords : mesoporous molecular sieve s * zeolites * CO2 adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  11. Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application for Adsorption of Metal Ions.

    Science.gov (United States)

    Huang, Fenglin; Xu, Yunfei; Liao, Shiqin; Yang, Dawei; Hsieh, You-Lo; Wei, Qufu

    2013-03-11

    Polyacrylonitrile (PAN) nanofibers were prepared by electrospinning and they were modified with hydroxylamine to synthesize amidoxime polyacrylonitrile (AOPAN) chelating nanofibers, which were applied to adsorb copper and iron ions. The conversion of the nitrile group in PAN was calculated by the gravimetric method. The structure and surface morphology of the AOPAN nanofiber were characterized by a Fourier transform infrared spectrometer (FT-IR) and a scanning electron microscope (SEM), respectively. The adsorption abilities of Cu 2+ and Fe 3+ ions onto the AOPAN nanofiber mats were evaluated. FT-IR spectra showed nitrile groups in the PAN were partly converted into amidoxime groups. SEM examination demonstrated that there were no serious cracks or sign of degradation on the surface of the PAN nanofibers after chemical modification. The adsorption capacities of both copper and iron ions onto the AOPAN nanofiber mats were higher than those into the raw PAN nanofiber mats. The adsorption data of Cu 2+ and Fe 3+ ions fitted particularly well with the Langmuir isotherm. The maximal adsorption capacities of Cu 2+ and Fe 3+ ions were 215.18 and 221.37 mg/g, respectively.

  12. Sytematic Study of the Adsorption of Thiol Molecules on Noble-Metal Nanoparticles

    Science.gov (United States)

    Barron, H.; Hidalgo, F.; Fernandez-Seivane, L.; Noguez, C.; Lopez-Lozano, X.

    2012-03-01

    The study of the interaction between nanoparticles and different types of ligands has been intensively investigated in the last years due to the potential contribution of their properties to the nanotechnology device design. These properties have opened new research fields like plasmonics, with interesting applications in optics, electronics, biophysics, medicine, pharmacology and materials science. Self-assembly monolayers have been thoroughly studied at experimental and theoretical level on extended (111) gold and silver surfaces. However, nanoparticle and molecule properties after the adsorption are still not well understood due to the different factors involved in this process such as the adsorption sites, size and element type of the nanoparticle. In this work we have performed a systematic study of the adsorption of methyl-thiol molecules on Au55 and Ag55 clusters through density functional theory calculations with the SIESTA code. Different adsorption modes of the methyl-thiol molecule on Au55 and Ag55 were considered. In general, for both type of nanoparticles, the methyl-thiol molecule prefers to be adsorbed on the Bridge sites. These results provide valuable information of the structural and electronic properties of methyl-thiol passivated Au and Ag nanoparticles.

  13. Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests

    Science.gov (United States)

    The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...

  14. Exploiting Framework Flexibility of a Metal-Organic Framework for Selective Adsorption of Styrene over Ethylbenzene

    NARCIS (Netherlands)

    Mukherjee, S.; Joarder, B.; Desai, A.V.; Manna, B.; Krishna, R.; Ghosh, S.K.

    2015-01-01

    The separation of styrene and ethylbenzene mixtures is industrially important and is currently performed in highly energy-intensive vacuum distillation columns. The primary objective of our investigation is to offer an energy-efficient alternative for selective adsorption of styrene by a flexible

  15. Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application for Adsorption of Metal Ions

    Directory of Open Access Journals (Sweden)

    You-Lo Hsieh

    2013-03-01

    Full Text Available Polyacrylonitrile (PAN nanofibers were prepared by electrospinning and they were modified with hydroxylamine to synthesize amidoxime polyacrylonitrile (AOPAN chelating nanofibers, which were applied to adsorb copper and iron ions. The conversion of the nitrile group in PAN was calculated by the gravimetric method. The structure and surface morphology of the AOPAN nanofiber were characterized by a Fourier transform infrared spectrometer (FT-IR and a scanning electron microscope (SEM, respectively. The adsorption abilities of Cu2+ and Fe3+ ions onto the AOPAN nanofiber mats were evaluated. FT-IR spectra showed nitrile groups in the PAN were partly converted into amidoxime groups. SEM examination demonstrated that there were no serious cracks or sign of degradation on the surface of the PAN nanofibers after chemical modification. The adsorption capacities of both copper and iron ions onto the AOPAN nanofiber mats were higher than those into the raw PAN nanofiber mats. The adsorption data of Cu2+ and Fe3+ ions fitted particularly well with the Langmuir isotherm. The maximal adsorption capacities of Cu2+ and Fe3+ ions were 215.18 and 221.37 mg/g, respectively.

  16. Adsorption of pentane isomers on metal-organic frameworks Cu-BTC and Fe-BTC

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Opanasenko, Maksym; Rubeš, M.; Nachtigall, P.; Jagiello, J.

    2015-01-01

    Roč. 243, APR 2014 (2015), s. 69-75 ISSN 0920-5861 R&D Projects: GA ČR GA14-07101S Institutional support: RVO:61388955 Keywords : Cu-BTC * Fe-BTC * adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.312, year: 2015

  17. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, Katarzyna; Levisson, M.; Stamatialis, Dimitrios

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 μm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  18. Adsorption behavior of magnetite nanoparticles into the DPPC model membranes

    International Nuclear Information System (INIS)

    Hao, Changchun; Li, Junhua; Mu, Wenning; Zhu, Lingqing; Yang, Jiaxiang; Liu, Hongwei; Li, Bin; Chen, Shi; Sun, Runguang

    2016-01-01

    Graphical abstract: A represents the state when DPPC was spread on air/water interface at 5 mN/m surface pressures. DPPC is in the liquid expanded state at the interface. B represents 15 mN/m surface pressures and DPPC monolayer is in the liquid condensed state at the interface. - Highlights: • The adsorption of Fe 3 O 4 nanoparticles on DPPC monolayer has been investigated. • The lifting area/molecule of DPPC monolayers increased with Fe 3 O 4 increasing. • The π–t curves were well fitted by single exponential association equation. • AFM images depended on surface pressure and concentration in subphase. - Abstract: In this report, we have studied the adsorption behavior of Fe 3 O 4 nanoparticles into dipalmitoylphosphatidylcholine (DPPC) monolayer. Adsorption kinetics (π–t) process as well as the surface pressure (π–A) isotherms were monitored by Langmuir Wilhelmy plate. The measurement data indicated the Fe 3 O 4 nanoparticles incorporated into the monolayer at the air–water interface. The lifting area/molecule isotherms of DPPC monolayers increased with the increasing concentration of Fe 3 O 4 in the subphase, however, the values of elasticity reduced. The curves of π–t were well fitted by single exponential association equation. Observation by atomic force microscopy (AFM) on monolayers extracted at 5 mN/m and 15 mN/m suggested that the different interaction of Fe 3 O 4 with DPPC monolayer depended on surface pressure of monolayers and concentration in the subphase. The results of observations were in agreement with the fitted results.

  19. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  20. Modeling of the Contact-Adsorption-Regeneration (CAR) activated sludge process.

    Science.gov (United States)

    Liu, Shao-Gen; Ni, Bing-jie; Li, Wen-Wei; Sheng, Guo-Ping; Tang, Yong; Yu, Han-Qing

    2011-02-01

    Contact-Adsorption-Regeneration (CAR) process is a cost-effective system for wastewater treatment and has a potential for application in less-developed regions. To offer a better understanding of this process, a mathematical model was established on the basis of Activated Sludge Model No. 1 (ASM1) and by incorporating the adsorption and different hydrolysis processes. The model predictions were compared with the measured data in terms of effluent concentrations and removals of both chemical oxygen demand (COD) and NH(4)(+)-N. A good agreement between the predicted and measured data was observed, indicating that the model was capable of predicting the rapid adsorption, COD removal and nitrification processes in the CAR system. This work provides an experimental and theoretical basis for the application of the CAR process in less-developed regions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling

    Science.gov (United States)

    Magdy, Yehia M.; Altaher, Hossam; ElQada, E.

    2018-03-01

    In this research, the removal of 2,4 dinitrophenol, 2 nitrophenol and 4 nitrophenol from aqueous solution using char ash from animal bones was investigated using batch technique. Three 2-parameter isotherms (Freundlich, Langmuir, and Temkin) were applied to analyze the experimental data. Both linear and nonlinear regression analyses were performed for these models to estimate the isotherm parameters. Three 3-parameter isotherms (Redlich-Peterson, Sips, Toth) were also tested. Moreover, the kinetic data were tested using pseudo-first order, pseudo-second order, Elovich, Intraparticle diffusion and Boyd methods. Langmuir adsorption isotherm provided the best fit for the experimental data indicating monolayer adsorption. The maximum adsorption capacity was 8.624, 7.55, 7.384 mg/g for 2 nitrophenol, 2,4 dinitrophenol, and 4 nitrophenol, respectively. The experimental data fitted well to pseudo-second order model suggested a chemical nature of the adsorption process. The R 2 values for this model were 0.973 up to 0.999. This result with supported by the Temkin model indicating heat of adsorption to be greater than 10 kJ/mol. The rate controlling step was intraparticle diffusion for 2 nitrophenol, and a combination of intraparticle diffusion and film diffusion for the other two phenols. The pH and temperature of solution were found to have a considerable effect, and the temperature indicated the exothermic nature of the adsorption process. The highest adsorption capacity was obtained at pH 9 and 25 °C.

  2. Adsorption mechanisms and impact factors of oxytetracycline on activated sludge

    Science.gov (United States)

    Xiancai, Song; Dongfang, Liu; Lejun, Zhao

    2017-03-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Pseudo-second-order kinetic model which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na+, K+, Ca2+, Mg2+ and Cd2+ ions more or less inhibited the adsorption of OTC on activated sludge while Cu2+ enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption.

  3. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Methane adsorption on the surface of a model of shale: A density functional theory study

    International Nuclear Information System (INIS)

    Zhu, Yuan-qiang; Su, Hong; Jing, Ya; Guo, Jianchun; Tang, Junlei

    2016-01-01

    Highlights: • The adsorption of methane on kerogen was investigated by DFT method with D3 dispersion correction. • Methane prefers to be adsorbed on the sites directly above the carbon atoms of the kerogen. • The interaction energy with BSSE corrections is around 14 kJ mol −1 . • RDG gradient isosurface depicted the van der Waals interactions between methane and kerogen. • The adsorption of methane on kerogen slightly depends upon the adsorption sites on kerogen as well as the orientations of methane. - Abstract: As a model of shale, one part of polycyclic aromatic ring was used to represent the kerogen surface with the structural heterogeneity. The adsorption mechanisms of methane on the surface of the kerogen were investigated by M06-2× functional with D3 dispersion correction. Nine stable adsorption sites and the orientations of methane (CH 4 ) on the surface of the kerogen were systematically considered. Information from different methods lead to the same conclusion that methane prefers to be adsorbed on the sites directly above the carbon atoms of the kerogen rather than above the center of the six-membered rings. The interactions between methane and the surface of the kerogen are the van der Waals interactions. The interaction energies with the basis set superposition error (BSSE) corrections are around 14 kJ mol −1 at the M06-2×-D3/Jun-cc-pVDZ level. The RDG scatter graphs and the RDG gradient isosurface further illustrate that the interactions between methane and the surface of the kerogen belong to the van der Waals interactions. The weak interactions indicate that the adsorption of methane on the surface of the kerogen is physical adsorption and it slightly depends upon the adsorption sites on kerogen as well as the orientations of methane. These results are helpful for the understanding of the microcosmic mechanism of methane–shale interactions and for the exploitation of shale gas.

  5. Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties

    Science.gov (United States)

    Braun, Efrem; Carraro, Carlo; Smit, Berend

    2017-01-01

    Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes. PMID:28049851

  6. Adsorption of some metal complexes derived from acetyl acetone on activated carbon and purolite S-930

    Directory of Open Access Journals (Sweden)

    Salam A.H. Al-Ameri

    2014-12-01

    Full Text Available A new Schiff base (HL derived from condensation of p-anisidine and acetyl acetone has been prepared and used as a chelating ligand to prepare Cr(III, Mn(II, Co(II, Ni(II and Cu(II complexes. The study of the nature of these complexes formed in ethanol solution following the mole ratio method (2:1, L:M gave results which were compared successfully with these obtained from isolated solid state studies. These studies revealed that the complexes having square planner geometry of the type (ML2, M = Co(II, Ni(II and Cu(II, and octahedral geometry of the type [CrIIIL2(H2O2]Cl and [MNIIL2(H2O2]. The adsorption studies of three complexes Cr(III, Mn(II, and Co(II on activated carbon, H and Na-forms of purolite S-930 resin show high adsorption percentage for Cr(III on purolite S-930 due to ion exchange interaction compared with high adsorption of neutral Mn(II, Co(II complexes on activated charcoal. Linear plot of log Qe versus log Ce showed that the adsorption isotherm of these three complexes on activated carbon, H and Na-forms of purolite S-930 surface obeys Freundlich isotherm and was similar to S-curve type according to Giles classification which investigates heterogeneous adsorption. The regression values indicate that the adsorption data for these complexes fitted well within the Freundlich isothermal plots for the concentration studied. The accuracy and precision of the concentration measurements of these complexes were determined by preparing standard laboratory samples, the results show relative error ranging from ±1.08 to 5.31, ±1.04 to 4.82 and ±0.28 to 3.09 and the relative standard deviation did not exceed ±6.23, ±2.77 and ±4.38% for A1, A2 and A3 complexes, respectively.

  7. Extended X-ray absorption fine structure investigation of adsorption and separation phenomena of metal ions in organic resin.

    Science.gov (United States)

    Ikeda, Atsushi; Yaita, Tsuyoshi; Okamoto, Yoshihiro; Shiwaku, Hideaki; Suzuki, Shinichi; Suzuki, Tatsuya; Fujii, Yasuhiko

    2007-11-01

    Analytical technique using organic resins has already been well-developed, and its applications are employed in various fields; nevertheless, the chemical phenomena occurring inside the resin remain unclear for the most part. In the present study, we apply EXAFS spectroscopy to elucidate the adsorption and separation phenomena of metal ions by organic resin. That is, the chemical species of trivalent lanthanides (Ln(III)) adsorbed in a tertiary pyridine resin from hydrochloric acid and nitric acid solutions have been determined by EXAFS. The results in HCl solutions suggest that Ln(III) ions are partly dehydrated in the resin phase, enabling the pyridine groups of the resin and chloride ions to coordinate to the Ln(III) ions in their primary coordination sphere. On the other hand, Ln(III) ions are tightly coordinated by several nitrate ions in HNO3 solutions and they keep forming the nitrate complex even in the resin phase. The lighter Ln of Nd tends to form an anionic nitrate complex, [Nd(NO3)4.nH2O]-, in the resin phase, while the middle Ln of Sm exists as a cationic nitrate complex, [Sm(NO3)2.nH2O]+, for the most part. On the basis of these EXAFS results, the adsorption and separation mechanisms of the pyridine resin in HCl solutions are interpreted as the direct coordination of pyridine groups to metal ions, while the mechanisms in HNO3 solutions are mainly dominated by the anion-exchange reaction between the protonated pyridine groups and the anionic nitrate complexes of Ln(III). The obtained results demonstrate that the hydration of metal ions weakens, and instead, other complexations are enhanced in the resin phase.

  8. Kinetic Adsorption Study of Silver Nanoparticles on Natural Zeolite: Experimental and Theoretical Models

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-12-01

    Full Text Available In this research, the adsorption capacity of Ag nanoparticles on natural zeolite from Oaxaca is presented. In order to describe the adsorption mechanism of silver nanoparticles on zeolite, experimental adsorption models for Ag ions and Ag nanoparticles were carried out. These experimental data obtained by the atomic absorption spectrophotometry technique were compared with theoretical models such as Lagergren first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Correlation factors R2 of the order of 0.99 were observed. Analysis by transmission electron microscopy describes the distribution of the silver nanoparticles on the zeolite outer surface. Additionally, a chemical characterization of the material was carried out through a dilution process with lithium metaborate. An average value of 9.3 in the Si/Al ratio was observed. Factors such as the adsorption behavior of the silver ions and the Si/Al ratio of the zeolite are very important to support the theoretical models and establish the adsorption mechanism of Ag nanoparticles on natural zeolite.

  9. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling.

    Science.gov (United States)

    Fu, Hao; Li, Xuebing; Wang, Jun; Lin, Pengfei; Chen, Chao; Zhang, Xiaojian; Suffet, I H Mel

    2017-06-01

    The extensive use of antibiotics has led to their presence in the aquatic environment, and introduces potential impacts on human and ecological health. The capability of powdered activated carbon (PAC) to remove six frequently used quinolone (QN) antibiotics during water treatment was evaluated to improve drinking water safety. The kinetics of QN adsorption by PAC was best described by a pseudo second-order equation, and the adsorption capacity was well described by the Freundlich isotherm equation. Isotherms measured at different pH showed that hydrophobic interaction, electrostatic interaction, and π-π dispersion force were the main mechanisms for adsorption of QNs by PAC. A pH-dependent isotherm model based on the Freundlich equation was developed to predict the adsorption capacity of QNs by PAC at different pH values. This model had excellent prediction capabilities under different laboratory scenarios. Small relative standard derivations (RSDs), i.e., 0.59%-0.92% for ciprofloxacin and 0.09%-3.89% for enrofloxacin, were observed for equilibrium concentrations above the 0.3mg/L level. The RSDs increased to 11.9% for ciprofloxacin and 32.1% for enrofloxacin at μg/L equilibrium levels, which is still acceptable. This model could be applied to predict the adsorption of other chemicals having different ionized forms. Copyright © 2016. Published by Elsevier B.V.

  10. Self-consistent field modeling of adsorption from polymer/surfactant mixtures

    NARCIS (Netherlands)

    Postmus, B.R.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2008-01-01

    We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the

  11. A surface structural model for ferrihydrite II: Adsorption of uranyl and carbonate

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.; Rossberg, A.; Ulrich, K.

    2009-01-01

    The adsorption of uranyl (UO22+) on ferrihydrite has been evaluated with the charge distribution (CD) model for systems covering a very large range of conditions, i.e. pH, ionic strength, CO2 pressure, U(VI) concentration, and loading. Modeling suggests that uranyl forms bidentate inner sphere

  12. Understanding the Adsorption Mechanism of Xe and Kr in a Metal-Organic Framework from X-ray Structural Analysis and First- Principles Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, Sanjit K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Yan [Brookhaven National Lab. (BNL), Upton, NY (United States); Yakovenko, Andrey [Argonne National Lab. (ANL), Argonne, IL (United States); Dooryhee, Eric [Brookhaven National Lab. (BNL), Upton, NY (United States); Ehm, Lars [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ecker, Lynne E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dippel, Ann-Christin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Halder, Gregory J. [Argonne National Lab. (ANL), Argonne, IL (United States); Strachan, Denis M. [DM Strachan, LLC., Bend, OR (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-16

    Enhancement of adsorption capacity and separation of radioactive Xe/Kr at room temperature and above is a challenging problem. Here, we report a detailed structural refinement and analysis of the synchrotron X-ray powder diffraction data of Ni-DODBC metal organic framework with in situ Xe and Kr adsorption at room temperature and above. Our results reveal that Xe and Kr adsorb at the open metal sites, with adsorption geometries well reproduced by DFT calculations. The measured temperature-dependent adsorption capacity of Xe is substantially larger than that for Kr, indicating the selectivity of Xe over Kr and is consistent with the more negative adsorption energy (dominated by van der Waals dispersion interactions) predicted from DFT. Our results reveal critical structural and energetic information about host–guest interactions that dictate the selective adsorption mechanism of these two inert gases, providing guidance for the design and synthesis of new MOF materials for the separation of environmentally hazardous gases from nuclear reprocessing applications.

  13. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  14. Thermodynamic Modeling of Surface Tension of Aqueous Electrolyte Solution by Competitive Adsorption Model

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Kamali

    2015-01-01

    Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.

  15. Radioactive metals disposal and recycling impact modelling

    International Nuclear Information System (INIS)

    Kemp, N.W.; Lunn, R.J.; Belton, V.; Kockar, I.

    2014-01-01

    Screening life cycle assessment models developed to investigate hypothetical disposal and recycling options for the Windscale Advanced Gas-cooled Reactor heat exchangers were used to generate more complex models addressing the main UK radioactive metals inventory. Both studies show there are significant environmental advantages in the metals recycling promoted by the current low level waste disposal policies, strategies and plans. Financial benefits from current metals treatment options are supported and offer even greater benefits when applied to the UK radioactive metals inventory as a whole. (authors)

  16. Metal-polymer interfaces studied with adsorption microcalorimetry and photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bebensee, Fabian

    2010-06-21

    The interface formation between calcium and two different semiconducting, ?-conjugated polymers, namely poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovilylene)phenylene] (CN-MEH-PPV), was investigated using adsorption microcalorimetry, low energy ion scattering spectroscopy (LEIS), atomic beam scattering and X-ray photoelectron spectroscopy. In addition to the interface formation on pristine, i.e., untreated polymer surfaces, the influence of electron irradiation prior to calcium deposition and the effect of dosing calcium at a low substrate temperature was studied. The reactive site for the interaction of calcium atoms impinging on a pristine P3HT surface appears to be the sulfur in the thiophene ring, as is concluded from a combination of XPS, adsorption calorimetry and theory results. The interaction, in fact, is strong enough that the sulfur atoms abstracted from the thiophene ring under formation of calcium sulfide with an overall reaction energy of this process of 405 kJ per mol. Quantitative evaluation of XPS data reveal that the depth up to which Ca atoms react with sulfur in the polymer is 3 nm, irrespective of increasing the amount of Ca dosed onto the substrate. A closed layer of Ca is only formed at a Ca coverage exceeding 11 ML, as suggested by LEIS. Irradiation of P3HT with electrons with a kinetic energy of 100 eV results in dehydrogenation of the hexyl side chains and formation of new C=C double bonds. This in turn results in a higher initial sticking probability of 0.63 for Ca, while no other significant changes could be observed: XPS indicates that the thiophene rings remain intact and the measured heat of adsorption is the same as observed for the deposition of Ca on pristine P3HT. Dosing Ca onto P3HT held at low temperature (130 K) is found to result in a very low saturation thickness of the reacted layer of approximately 0.3 nm. Upon warming the sample up to room temperature, the thickness of the reacted layer

  17. Oxygen Adsorption on β-Cristobalite Polymorph: Ab Initio Modeling and Semiclassical Time-Dependent Dynamics

    Science.gov (United States)

    Rutigliano, M.; Zazza, C.; Sanna, N.; Pieretti, A.; Mancini, G.; Barone, V.; Cacciatore, M.

    2009-10-01

    The adsorption dynamics of atomic oxygen on a model β-cristobalite silica surface has been studied by combining ab initio electronic structure calculations with a molecular dynamics semiclassical approach. We have evaluated the interaction potential of atomic and molecular oxygen interacting with an active Si site of a model β-cristobalite surface by performing DFT electronic structure calculations. As expected, O is strongly chemisorbed, Eb = 5.57 eV, whereas molecular oxygen can be weakly adsorbed with a high-energy barrier to the adsorption state of ˜2 eV. The binding energies calculated for silica clusters of different sizes have revealed the local nature of the O,O2-silica interaction. Semiclassical collision dynamic calculations show that O is mainly adsorbed in single-bounce collisions, with a smaller probability for adsorption via a multicollision mechanism. The probability for adsorption/desorption (reflected) collisions at the three impact energies is small but not negligible at the higher energy considered in the trajectory calculations, about Pr = 0.2 at Ekin = 0.8 eV. The calculations give evidence of a complex multiphonon excitation-deexcitation mechanism underlying the dynamics of stable adsorption and inelastic reflection collisions.

  18. Additive surface complexation modeling of uranium(VI) adsorption onto quartz-sand dominated sediments.

    Science.gov (United States)

    Dong, Wenming; Wan, Jiamin

    2014-06-17

    Many aquifers contaminated by U(VI)-containing acidic plumes are composed predominantly of quartz-sand sediments. The F-Area of the Savannah River Site (SRS) in South Carolina (USA) is an example. To predict U(VI) mobility and natural attenuation, we conducted U(VI) adsorption experiments using the F-Area plume sediments and reference quartz, goethite, and kaolinite. The sediments are composed of ∼96% quartz-sand and 3-4% fine fractions of kaolinite and goethite. We developed a new humic acid adsorption method for determining the relative surface area abundances of goethite and kaolinite in the fine fractions. This method is expected to be applicable to many other binary mineral pairs, and allows successful application of the component additivity (CA) approach based surface complexation modeling (SCM) at the SRS F-Area and other similar aquifers. Our experimental results indicate that quartz has stronger U(VI) adsorption ability per unit surface area than goethite and kaolinite at pH ≤ 4.0. Our modeling results indicate that the binary (goethite/kaolinite) CA-SCM under-predicts U(VI) adsorption to the quartz-sand dominated sediments at pH ≤ 4.0. The new ternary (quartz/goethite/kaolinite) CA-SCM provides excellent predictions. The contributions of quartz-sand, kaolinite, and goethite to U(VI) adsorption and the potential influences of dissolved Al, Si, and Fe are also discussed.

  19. A facile, versatile approach to hydroxyl-anchored metal oxides with high Cr(VI) adsorption performance in water treatment

    Science.gov (United States)

    Ma, Ji; Zuo-Jiang, SiZhi; He, Yunhao; Sun, Qinglei; Wang, Yunguo; Liu, Wei; Sun, Shuangshuang; Chen, Kezheng

    2016-11-01

    In this study, a facile and versatile urea-assisted approach was proposed to synthesize Chinese rose-like NiO, pinecone-like ZnO and sponge-like CoO adsorbents. The presence of urea during syntheses endowed these adsorbents with high concentration of surface hydroxyl groups, which was estimated as 1.83, 1.32 and 4.19 mmol [OH-] g-1 for NiO, ZnO and CoO adsorbents, respectively. These surface hydroxyl groups would facilitate the adsorption of Cr(vi) species (e.g. HCrO4-, Cr2O72- and CrO42-) from wastewater by exchanging with hydroxyl protons or hydroxide ions, and hence result in extremely high maximum adsorbed amounts of Cr(vi), being 2974, 14 256 and 408 mg g-1 for NiO, ZnO and CoO adsorbents in the pH range of 5.02-5.66 at 298 K, respectively. More strikingly, the maximum adsorbed amounts of Cr(vi) would be greatly enhanced as the adsorbing temperature is increased, and even amount to 23 411 mg g-1 for ZnO adsorbents at 323 K. Based on the kinetics and equilibrium studies of adsorptive removal of Cr(vi) from wastewater, our synthetic route will greatly improve the adsorptivity of the as-synthesized metal-oxide adsorbents, and hence it will shed new light on the development of high-performance adsorbents.

  20. Detailed characterization and preliminary adsorption model for materials for an intermediate-scale reactive-transport experiment

    International Nuclear Information System (INIS)

    Ward, D.B.; Bryan, C.R.; Siegel, M.D.

    1994-01-01

    An intermediate-scale transport-model experiment, involving the migration of fluid and tracers (Li, Br, Ni) through a 6-m-high x 3-m-diameter caisson filled with Wedron 510 sand, is being carried out for the Yucca Mountain Site Characterization Project. The surface chemistry of the sand has been studied and a preliminary surface-complexation model of Ni adsorption has been formulated for use in transport calculations. XPS and leaching studies suggest that the surface of the quartz sand is partially covered by thin layers of Fe-oxyhydroxide and Ca-Mg carbonate and by flakes of kaolinite. Ni adsorption by the sand is strongly pH-dependent, showing no adsorption at pH 5 and near-total adsorption at pH 7. Ni adsorption edges for goethite and quartz, two components of the sand were also measured. Ni adsorption on pure quartz is only moderately pH-dependent and differs in shape and location from that of the sand, whereas Ni adsorption by goethite is strongly pH-dependent. A triple-layer surface-complexation model developed for goethite provides a good fit to the Ni-adsorption curve of the sand. Based on this model, the apparent surface area of the Fe-oxyhydroxide coating is estimated to be ∼560 m 2 /g, compatible with its occurrence as amorphous Fe-oxyhydroxide. Potentiometric titrations on the sand also differ from those of pure quartz and suggest that the effective surface area of the sand may be significantly greater than that measured by N 2 -BET gas adsorption. Attempts to model the adsorption characteristics of the bulk sand in terms of the properties of pure end member components suggest that much of the sand surface is inert. Although the exact mechanisms of Ni adsorption remain ambiguous, this preliminary adsorption model provides an initial set of parameters that can be used in transport calculations

  1. Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution.

    Science.gov (United States)

    Ling, Li-Li; Liu, Wu-Jun; Zhang, Shun; Jiang, Hong

    2017-09-05

    Lead (Pb) pollution in natural water bodies is an environmental concern due to toxic effects on aquatic ecosystems and human health, while adsorption is an effective approach to remove Pb from the water. Surface interactions between adsorbents and adsorbates play a dominant role in the adsorption process, and properly engineering a material's surface property is critical to the improvement of adsorption performance. In this study, the magnesium oxide (MgO) nanoparticles stabilized on the N-doped biochar (MgO@N-biochar) were synthesized by one-pot fast pyrolysis of an MgCl 2 -loaded N-enriched hydrophyte biomass as a way to increase the exchangeable ions and N-containing functional groups and facilitate the adsorption of Pb 2+ . The as-synthesized MgO@N-biochar has a high performance with Pb in an aqueous solution with a large adsorption capacity (893 mg/g), a very short equilibrium time (<10 min), and a large throughput (∼4450 BV). Results show that this excellent adsorption performance can be maintained with various environmentally relevant interferences including pH, natural organic matter, and other metal ions, suggesting that the material may be suitable for the treatment of wastewater, natural bodies of water, and even drinking water. In addition, MgO@N-biochar quickly and efficiently removed Cd 2+ and tetracycline. Multiple characterizations and comparative tests have been performed to demonstrate the surface adsorption and ion exchange contributed to partial Pb adsorption, and it can be inferred from these results that the high performance of MgO@N-biochar is mainly due to the surface coordination of Pb 2+ and C═O or O═C-O, pyridinic, pyridonic, and pyrrolic N. This work suggests that engineering surface functional groups of biochar may be crucial for the development of high performance heavy metal adsorbents.

  2. Adsorption characteristics of 14C-labeled alanine, aspartic acid and adenosine triphosphate by metal-chelating resins

    International Nuclear Information System (INIS)

    Ishiyama, Toshio; Matsunami, Tadao; Shibata, Setsuko; Honda, Yoshihide.

    1987-01-01

    (1) Adsorption properties of 14 C-alanine, 14 C-ATP (adenosine triphosphate) and 14 C-aspartic acid on the metal-chelating resins were determined and found that the Cu(II)-Chelex 100 and Fe(III)-Unicellex UR10, Fe(III)-Chelex 100 chelating resins were highly effective for the adsorption of 14 C-alanine and 14 C-ATP, respectively. (2) Desorption rate of 14 C-ATP from the Fe(III)-Unicellex UR10 and Fe(III)-Chelex 100 resins was somewhat higher than the case of 14 C-alanine, probably because the coordination bonds of Cu-alanine might be stronger than those of Fe-ATP. Thus, 14 C-labeled organic compounds such as 14 C-alanine and 14 C-ATP of a low activity concentration (3.7 mBq/ml) (1 x 10 -7 μCi/ml) in aqueous solution may be measured with liquid scintillation counter after pre-concentration by use of the Fe(III)- and Cu(II)-chelating resin columns. (author)

  3. Heavy metal pollution in sediment from Sisimiut, Greenland. Adsorption to organic matter and fine particles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Villumsen, Arne

    2006-01-01

    . The pollution could be linked to human activities in Sisimiut, a link that have not been investigated previously in Greenland. Except from the most polluted samples there was good correlation between heavy metal concentration and organic matter. Also some relation between fine fraction and heavy metal...

  4. Metal-organic frameworks for adsorption and separation of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  5. Modeling the adsorption of weak organic acids on goethite : the ligand and charge distribution model

    NARCIS (Netherlands)

    Filius, J.D.

    2001-01-01

    A detailed study is presented in which the CD-MUSIC modeling approach is used in a new modeling approach that can describe the binding of large organic molecules by metal (hydr)oxides taking the full speciation of the adsorbed molecule into account. Batch equilibration experiments were

  6. A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4

    Science.gov (United States)

    Zhu, Chunlan

    2017-05-01

    Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).

  7. Adsorption of hexavalent chromium by graphite–chitosan binary ...

    Indian Academy of Sciences (India)

    fitted Langmuir isotherm model suggested monolayer adsorption with an adsorption capacity (qm) of 105.6 mg g−1 and R2 = 0.945. Sorption mechanisms based on metal ionic interactions, intrusion/diffusion and chemisorptions onto composite. This graphite chitosan binary composite improve sorbent capacity for Cr(VI).

  8. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Singh, Arun K; Sinha, Sarita

    2011-02-28

    A magnetic nanocomposite was developed and characterized. Adsorption of crystal violet (CV) dye from water was studied using the nanocomposite. A four-factor central composite design (CCD) combined with response surface modeling (RSM) was employed for maximizing CV removal from aqueous solution by the nanocomposite based on 30 different experimental data obtained in a batch study. Four independent variables, viz. temperature (10-50°C), pH of solution (2-10), dye concentration (240-400 mg/l), and adsorbent dose (1-5 g/l) were transformed to coded values and a second-order quadratic model was built to predict the responses. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. Optimization of the process variables for maximum adsorption of CV by nanocomposite was performed using the quadratic model. The Langmuir adsorption capacity of the adsorbent was determined as 81.70 mg/g. The model predicted maximum adsorption of 113.31 mg/g under the optimum conditions of variables (concentration 240 mg/l; temperature 50°C; pH 8.50; dose 1g/l), which was very close to the experimental value (111.80 mg/g) determined in batch experiment. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Application of Zr/Ti-Pic in the adsorption process of Cu(II), Co(II) and Ni(II) using adsorption physico-chemical models and thermodynamics of the process; Aplicacao de Zr/Ti-PILC no processo de adsorcao de Cu(II), Co(II) e Ni(II) utilizando modelos fisico-quimicos de adsorcao e termodinamica do processo

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis Lima; Airoldi, Claudio [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica]. E-mail: dlguerra@iqm.unicamp.br; Lemos, Vanda Porpino; Angelica, Romulo Simoes [Universidade Federal do Para (UFPa), Belem (Brazil); Viana, Rubia Ribeiro [Universidade Federal do Mato Grosso (UFMT), Cuiaba (Brazil). Inst. de Ciencias Exatas e da Terra. Dept. de Recursos Minerais

    2008-07-01

    The aim of this investigation is to study how Zr/Ti-Pic adsorbs metals. The physico-chemical proprieties of Zr/Ti-Pic have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x-1 mmol g{sup -1}, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant. (author)

  10. Investigating cluster formation in adsorption of CO2, CH4, and Ar in zeolites and metal organic frameworks at subcritical temperatures

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2010-01-01

    The critical temperatures, T-c, of CO2, CH4, and Ar are 304 K, 191 K, and 151 K, respectively. This paper highlights some unusual characteristics of adsorption and diffusion of these molecules in microporous structures such as zeolites and metal organic frameworks at temperatures T < T-c. Published

  11. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya; Chuang, Yu-Chun; Chen, Yu-Sheng; Jacobson, Allan J.; Miljani,; #263; Ognjen, Š. [NSRRC; (UC); (Houston)

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m2g-1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  12. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  13. Chromium (VI) ion adsorption by grafted cross-linked chitosan beads in aqueous solution - a mathematical and statistical modeling study.

    Science.gov (United States)

    Igberase, E; Osifo, P; Ofomaja, A

    2017-12-01

    Chitosan outstanding qualities and efficient way of binding metal ions even to near zero concentration is the major reason for special attention. Modification of chitosan allows the polymer to be applied in numerous field of research. Depending on the modification techniques, chitosan possesses increased adsorption capacity. In this study chitosan beads (CS) were formulated from chitosan flakes, the beads were cross-linked with glutaraldehyde and thereafter grafted with ethyldiaminetetraacetic acid. The stability and amine concentration of the beads were determined. The chemical functionalities of the beads were obtained by Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis (TGA). However, in the adsorption studies with Cr(VI), the number of runs in the experiment was obtained by response surface methodology (RSM), and the maximum adsorption capacity (Q m ) from each run was determined from the Langmuir model. The results of the experiment showed that the non-modified beads were soluble at pH 1-4 and insoluble at pH 5, while the modified beads were insoluble at pH 1-6. The amine concentration of CS, CCS and grafted cross-linked chitosan beads (GCCS) were 4.4, 3.8 and 5.0 mmol/g, respectively. The point of zero charge (pH PZC ) of GCCS was found to be 4.4. The quadratic model was significant and adequate in describing the experimental data. The difference between experimental and predicted Q m was negligible. From the design matrix and results, increased Q m was achieved at pH 5, contact time 70 min, temperature 45°C, adsorbent dosage 5 g and initial concentration 70 mg/l. The desorption of the beads loaded with Cr(VI) was successful with 0.5 M HCl eluant and contact time of 180 min, leading to cost minimization.

  14. Modelling Adsorption of Foam-Forming Surfactants Modélisation de l'adsorption des produits tensio-actifs moussants

    Directory of Open Access Journals (Sweden)

    Mannhardt K.

    2006-11-01

    Full Text Available There is considerable interest in the use of foam-forming surfactants for mobility control in gas flooding enhanced oil recovery processes. The success of any such process is strongly affected by the rate of propagation of the surfactant through the reservoir. A sound understanding of surfactant adsorption on rock surfaces at reservoir conditions is therefore essential. This paper describes a model for the evaluation of adsorption during flow of surfactant solutions through porous media. The adsorption term in the flow equation is expressed in terms of the surface excess which proves to be more generally applicable than, for example, the Langmuir adsorption isotherm. Adsorption isotherms of three types of commercially available foam-forming surfactants are determined from core flooding data at different temperatures and brine salinities. L'utilisation de produits tensio-actifs moussants pour le contrôle de mobilité dans les procédés de récupération assistée du pétrole par injection de gaz suscite actuellement un grand intérêt. Mais le succès d'un tel procédé dépend largement de la vitesse de propagation du tensioactif dans le réservoir. Il est donc indispensable d'avoir une bonne connaissance de l'adsorption du tensio-actif sur les surfaces de la roche, dans les conditions de réservoir. Cet article décrit un modèle qui permet d'évaluer l'adsorption pendant l'écoulement de solutions tensio-actives en milieu poreux. Le terme qui représente l'adsorption dans l'équation de l'écoulement est exprimé en fonction de l'excédent de surface, concept qui s'est révélé d'une application plus générale que, par exemple, l'isotherme d'adsorption de Langmuir. Les isothermes d'adsorption de trois types de tensio-actifs moussants disponibles sur le marché sont déterminées à partir de données obtenues lors d'essais de déplacement dans des carottes, à différentes températures et avec des saumures de différentes salinités.

  15. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modelling

    NARCIS (Netherlands)

    Cui, Y.; Weng, L.

    2013-01-01

    The pH dependent solid-solution distribution of arsenate and phosphate in five Dutch agricultural soil samples was measured in the pH range 4–8, and the results were interpreted using the LCD (ligand and charge distribution) adsorption modeling. The pH dependency is similar for both oxyanions, with

  16. A Particle-Level Model of Irreversible Protein Adsorption with a Postadsorption Transition.

    Science.gov (United States)

    Van Tassel PR; Guemouri; Ramsden; Tarjus; Viot; Talbot

    1998-11-15

    Modeling the kinetics of protein adsorption at solid surfaces is needed to predict protein separations, design biosensors, and determine the body's initial response to foreign objects. We develop, at the particle level, a kinetic model that accounts geometrically for the surface blockage due to adsorption and postadsorption conformational (or orientational) transitions. Proteins are modeled as disk-shaped particles of diameter final sigmaalpha that adsorb irreversibly at random positions onto a surface at a rate kac (c is the concentration of protein in the bulk solution). Adsorption occurs only where the surface is empty. Following adsorption, a particle attempts to spread (symmetrically) to a larger diameter final sigmabeta at a rate ks. Spreading only occurs if no overlap with any previously placed particle would result. A set of equations is developed for determining the time evolution of the adsorbed protein density. These predictions are compared to new experimental data for fibronectin onto silica-titania obtained using optical waveguide lightmode spectroscopy (OWLS). We also discuss the general application of this model to experimental data. Copyright 1998 Academic Press.

  17. A Robust Metal-Organic Framework for Dynamic Light-Induced Swing Adsorption of Carbon Dioxide.

    Science.gov (United States)

    Li, Haiqing; Martinez, Marta Rubio; Perry, Zachary; Zhou, Hong-Cai; Falcaro, Paolo; Doblin, Christian; Lim, Seng; Hill, Anita J; Halstead, Barry; Hill, Matthew R

    2016-08-01

    Adsorbents for CO2 capture need to demonstrate efficient release. Light-induced swing adsorption (LISA) is an attractive new method to release captured CO2 that utilizes solar energy rather than electricity. MOFs, which can be tailored for use in LISA owing to their chemical functionality, are often unstable in moist atmospheres, precluding their use. A MOF is used that can release large quantities of CO2 via LISA and is resistant to moisture across a large pH range. PCN-250 undergoes LISA, with UV flux regulating the CO2 desorption capacity. Furthermore, under UV light, the azo residues within PCN-250 have constrained, local, structural flexibility. This is dynamic, rapidly switching back to the native state. Reusability tests demonstrate a 7.3 % and 4.9 % loss in both adsorption and LISA capacity after exposure to water for five cycles. These minimal changes confirm the structural robustness of PCN-250 and its great potential for triggered release applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metal-organic Materials (moms) For Co2 Adsorption And Methods Of Using Moms

    KAUST Repository

    Eddaoudi, Mohamed

    2015-06-11

    Embodiments of the present disclosure provide for metal-organic materials (MOMs), systems that exhibit permanent porosity and using hydrophobic MOMs to separate components in a gas, methods of separating CO.sub.2 from a gas, and the like.

  19. Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs

    Science.gov (United States)

    Zaworotko, Michael; Mohamed, Mona H.; Elsaidi, Sameh

    2017-06-14

    Embodiments of the present disclosure provide for multi-component metal-organic materials (MOMs), systems including the MOM, systems for separating components in a gas, methods of separating polarizable gases from a gas mixture, and the like.

  20. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon

    Science.gov (United States)

    Ojedokun, Adedamola Titi; Bello, Olugbenga Solomon

    2017-07-01

    Guava leaf, a waste material, was treated and activated to prepare adsorbent. The adsorbent was characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR) and Energy-Dispersive X-ray (EDX) techniques. The carbonaceous adsorbent prepared from guava leaf had appreciable carbon content (86.84 %). The adsorption of Congo red dye onto guava leaf-based activated carbon (GLAC) was studied in this research. Experimental data were analyzed by four different model equations: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms and it was found to fit Freundlich equation most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model equations. The results clearly showed that the adsorption of CR dye onto GLAC followed pseudo-second-order kinetic model. Intraparticle diffusion was involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of CR dye onto GLAC was an exothermic and spontaneous process at the temperatures under investigation. The maximum adsorption of CR dye by GLAC was found to be 47.62 mg/g. The study shows that GLAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.

  1. Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models.

    Science.gov (United States)

    Sellaoui, Lotfi; Dotto, Guilherme L; Lamine, Abdelmottaleb Ben; Erto, Alessandro

    2017-08-01

    In this work, a modeling analysis based on experimental tests of cadmium/zinc adsorption, in both single-compound and binary systems, was carried out. All the experimental tests were conducted at constant pH (around neutrality) and temperature (20 °C). The experimental results showed that the zinc adsorption capacity was higher than that of cadmium and it does not depend on cadmium presence in binary system. Conversely, cadmium adsorption is affected by zinc presence. In order to provide good understanding of the adsorption process, two statistical physics models were proposed. A monolayer and exclusive extended monolayer models were applied to interpret the single-compound and binary adsorption isotherms of zinc and cadmium on activated carbon. Based on these models, the modeling analysis demonstrated that zinc is dominant in solution and more favorably adsorbed on activated carbon surface. For instance, in single-compound systems, the number of ions bound per each receptor site was n (Zn 2+ ) = 2.12 > n (Cd 2+ ) = 0.98. Thus, the receptor sites of activated carbon are more selective for Zn 2+ than for Cd 2+ . Moreover, the determination of adsorption energy through the adopted models confirmed that zinc is more favored for adsorption in single-compound system (adsorption energies equal to 12.12 and 7.12 kJ/mol for Zn and Cd, respectively) and its adsorption energy does not depend on the cadmium presence in binary system. Finally, the adsorption energy values suggested that single-compound and binary adsorption of zinc and cadmium is a physisorption.

  2. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    Science.gov (United States)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus; Larsen, Flemming

    2012-09-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7-8.3) and covered a wide span in the activity of Ca2+ and CO32-. The results show that the adsorption of arsenate onto calcite is strongly reduced by the presence of phosphate, whereas phosphate adsorption is only slightly reduced by arsenate addition. Simultaneous and sequential addition (3 h apart) yields the same reduction in adsorption, underlining the high reversibility of the system. The reduction in adsorption of both arsenate and phosphate is most likely due to competition for the same sorption sites at the calcite surface, considering the similarity in sorption edges, pKa's and geometry of the two anions. The strong reduction in arsenate adsorption by competition with phosphate suggests that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately. By combining the models for single sorbate systems the competitive adsorption of phosphate and arsenate onto calcite in the binary system could be predicted. This is in contrast to the constant capacitance model (CCM) which under-predicted the competition when combining the models for single sorbate systems. This study clearly shows the importance of performing competitive adsorption studies for validation of multi-component models and for estimating the mobility of an ion in the environment.

  3. The use of laboratory adsorption data and models to predict radionuclide releases from a geological repository: A brief history

    International Nuclear Information System (INIS)

    Langmuir, D.

    1997-01-01

    Radionuclide (RN) adsorption has long been recognized as important to assure the isolation of nuclear wastes in a geological repository. Laboratory measured RN adsorption data have generally been expressed as distribution coefficient (K d ) values or adsorption isotherms. The surface complexation (SC) adsorption models were introduced in the late 1970''s. The best known of these models incorporate electrical double layer (EDL) theory. Their use requires that the water chemistry and surface properties of adsorbing rocks and minerals be fully characterized. Because the SC models are relatively mechanistic, they may allow extrapolation of adsorption results to repository conditions that lie outside the limited experimental range used to parameterize a given model. Turner has shown that the diffuse layer model (the simplest SC model) fits a wide range of RN adsorption data as well as the more complex models. Others have suggested ways to generalize and estimate SC model parameters for a variety of minerals, rocks and engineered materials. Degueldre and Werlni and Degueldre et al. have proposed a simplified SC model for RN adsorption that avoids EDL theory, in which the adsorption of RN species is estimated from linear free energy relationships. It is appropriate to ask how accurately RN adsorption behavior must be known or understood for total system performance analysis (TSPA). In most geological settings now being considered for repository development globally, it may suffice to select bounding K d values for the different rock types. Use of the SC models to describe RN adsorption can provide one with increased confidence that minimum K d ''s and the distribution of K d values the author might propose for TSPA are in fact conservative. 68 refs., 5 figs., 1 tab

  4. Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution.

    Science.gov (United States)

    Kumar, Shashi; Zafar, Mohd; Prajapati, Jitendra K; Kumar, Surendra; Kannepalli, Sivaram

    2011-01-15

    The modelling study on simultaneous adsorption of phenol and resorcinol onto granular activated carbon (GAC) in multicomponent solution was carried out at 303K by conducting batch experiments at initial concentration range of 100-1000 mg/l. Three equilibrium isotherm models for multicomponent adsorption studies were considered. In order to determine the parameters of multicomponent adsorption isotherms, individual adsorption studies of phenol and resorcinol on GAC were also carried out. The experimental data of single and multicomponent adsorption were fitted to these models. The parameters of multicomponent models were estimated using error minimization technique on MATLAB R2007a. It has been observed that for low initial concentration of adsorbate (100-200mg/l), modified Langmuir model represents the data very well with the adsorption constant (Q(0)), 216.1, 0.032 and average relative error (ARE) of 8.34, 8.31 for phenol and resorcinol respectively. Whereas, for high initial concentration of adsorbate (400-1000 mg/l), extended Freundlich model represents the data very well with adsorption constant (K(F)) of 25.41, 24.25 and ARE of 7.0, 6.46 for phenol and resorcinol respectively. The effect of pH of solution, adsorbent dose and initial concentrations of phenol and resorcinol on adsorption behaviour was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium.

    Science.gov (United States)

    Sharma, Gaurav; Naushad, Mu; Al-Muhtaseb, Ala'a H; Kumar, Amit; Khan, Mohammad Rizwan; Kalia, Susheel; Shweta; Bala, Manju; Sharma, Arush

    2017-02-01

    In this study, chitosan-crosslinked-poly (alginic acid) nanohydrogel (CN-cl-PL(AA)NHG) was synthesized by co-polymerization method. It was used an effective adsorbent for the exclusion of Cr(VI) metal ion from aqueous medium. The synthesized nanohydrogel was characterized by FTIR, SEM and TEM. The TEM images clearly indicated the appearance of smooth surface with average size of particles ranging from 30 to 80nm. The effect of different adsorption parameters like agitation time, temperature, initial metal ion concentration and adsorbent dosage was studied and optimized. The results demonstrated that the prepared chitosan-crosslinked-poly (alginic acid) nanohydrogel had high adsorption tendency for the removal of Cr(VI) from the aqueous solution. The pseudo-second-order equation represented the better adsorption kinetics for the adsorption process. The thermodynamic studies showed the adsorption of Cr(VI) onto CN-cl-PL(AA)NHG was spontaneous and chemical in nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  7. Model protein BSA adsorption onto novel magnetic chitosan/PVA/laponite RD hydrogel nanocomposite beads.

    Science.gov (United States)

    Mahdavinia, Gholam Reza; Soleymani, Moslem; Etemadi, Hossein; Sabzi, Mohammad; Atlasi, Ziba

    2018-02-01

    Chitosan-based magnetic beads were developed by solution-mixing method. Firstly, the Fe 3 O 4 nanoparticles were in situ immobilized on laponite RD sheets. The magnetic laponite RD was then dispersed in PVA and mixed with chitosan solution. PVA was aimed to prevent the disintegration of chitosan under acidic media due to its ability to form hydrogel network through freezing-thawing method. The manufactured magnetic chitosan/PVA/laponite RD beads were utilized for adsorption study of a model protein, bovine serum albumin (BSA). The adsorption of BSA on beads was pH-dependent where smaller mass of protein was adsorbed at pH values lower than isoelectric point of BSA. Moreover, it was discovered that introduction of magnetic laponite RD can improve the adsorption capacity of magnetic beads for BSA in which hydrogel with the highest content of magnetic laponite RD demonstrated the maximum adsorption capacity for BSA (q m =240.5mg/g). Langmuir model described the isotherm data better than Freundlich model. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Modeling of the adsorption kinetics of zinc onto granular activated carbon and natural zeolite

    Directory of Open Access Journals (Sweden)

    VERA D. MESHKO

    2006-09-01

    Full Text Available The isotherms and kinetics of zinc adsorption from aqueous solution onto granular activated carbon (GAC and natural zeolite were studied using an agitated batch adsorber. The maximum adsorption capacities of GAC and natural zeolite towards zinc(II from Langmuir adsorption isotherms were determined using experimental adsorption equilibrium data. The homogeneous solid diffusion model (HSD-model combined with external mass transfer resistance was applied to fit the experimental kinetic data. The kinetics simulation study was performed using a computer program based on the proposed mathematical model and developed using gPROMS. As the two-mass transfer resistance approach was applied, twomodel parameters were fitted during the simulation study. External mass transfer and solid phase diffusion coefficients were obtained to predict the kinetic curves for varying initial Zn(II concentration at constant agitation speed and constant adsorbent mass. For any particular Zn(II – adsorbent system, kf was constant, except for the lowest initial concentration, while Ds was found to increase with increasing initial Zn(II concentration.

  9. Model Based Metal Transfer Control

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2006-01-01

    In pulsed gas metal arc welding (pulsed GMAW) current pulses are used for detaching drops at the tip of the electrode. To obtain a high weld quality one drop should be detached for every pulse, and moreover, the amount of energy used for detachment should be kept at a minimum. Thus, each pulse mu...

  10. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding

    International Nuclear Information System (INIS)

    Ahmed, Imteaz; Jhung, Sung Hwa

    2016-01-01

    Highlights: • Metal-organic frameworks (MIL-101) were composed with graphene oxide (GnO). • GnO/MIL-101 showed the highest adsorption capacity for indole and quinoline. • Adsorption mechanism was clearly shown based on adsorption results and FTIR. • GnO/MIL-101 might be applied commercially considering capacity and reusability. - Abstract: A composite was prepared by combining a highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), and graphene oxide (GnO). The porosity of the composite increased appreciably by the addition of GnO up to a specific amount in the MOF, though further increases in the quantity of GnO was detrimental to porosity. The improved porosity of the GnO/MIL-101 composite was utilized for adsorptive denitrogenation (ADN) of a model fuel where indole (IND) and quinoline (QUI) were used as nitrogen-containing compounds (NCCs). It was found that both IND and QUI showed improved adsorption on the composite compared with pristine MIL-101 or GnO due to the improved porosity of the composite. Interestingly, the improvement in adsorption of IND was much higher than the quantity estimated for the porosity. Importantly, GnO/MIL-101 showed the highest adsorption capacities for NCCs. Irrespective of the studied solvents and co-presence of IND and QUI, the composite adsorbent performed ADN most effectively. This remarkable improvement is explained by the additional mechanism of hydrogen bonding between the surface functional groups of GnO and the hydrogen attached to the nitrogen atom of IND. This hydrogen bonding mechanism is also supported by the results of the adsorption of pyrrole and methylpyrrole. On the other hand, QUI does not show hydrogen-bonding capability, and therefore, its enhanced adsorption originates from only the increased porosity of the adsorbents.

  11. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Imteaz; Jhung, Sung Hwa, E-mail: sung@knu.ac.kr

    2016-08-15

    Highlights: • Metal-organic frameworks (MIL-101) were composed with graphene oxide (GnO). • GnO/MIL-101 showed the highest adsorption capacity for indole and quinoline. • Adsorption mechanism was clearly shown based on adsorption results and FTIR. • GnO/MIL-101 might be applied commercially considering capacity and reusability. - Abstract: A composite was prepared by combining a highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), and graphene oxide (GnO). The porosity of the composite increased appreciably by the addition of GnO up to a specific amount in the MOF, though further increases in the quantity of GnO was detrimental to porosity. The improved porosity of the GnO/MIL-101 composite was utilized for adsorptive denitrogenation (ADN) of a model fuel where indole (IND) and quinoline (QUI) were used as nitrogen-containing compounds (NCCs). It was found that both IND and QUI showed improved adsorption on the composite compared with pristine MIL-101 or GnO due to the improved porosity of the composite. Interestingly, the improvement in adsorption of IND was much higher than the quantity estimated for the porosity. Importantly, GnO/MIL-101 showed the highest adsorption capacities for NCCs. Irrespective of the studied solvents and co-presence of IND and QUI, the composite adsorbent performed ADN most effectively. This remarkable improvement is explained by the additional mechanism of hydrogen bonding between the surface functional groups of GnO and the hydrogen attached to the nitrogen atom of IND. This hydrogen bonding mechanism is also supported by the results of the adsorption of pyrrole and methylpyrrole. On the other hand, QUI does not show hydrogen-bonding capability, and therefore, its enhanced adsorption originates from only the increased porosity of the adsorbents.

  12. Adsorption of Heavy Metals From Industrial Wastes Using Membranes Prepared by Radiation Grafting

    International Nuclear Information System (INIS)

    Hegazy, E. A.; Kamal, H.; Maziad, N.; Dessouki, A.M.; Aly, H.F.

    1999-01-01

    Preparation of synthetic membranes using simultaneous radiation grafting of acrylic acid (AAc) and styrene (Sty) individually and in a binary monomers mixture onto polypropylene (PP) has been carried out. The effect of preparation conditions such as irradiation dose, monomer and inhibitor concentration, comonomer composition on the grafting yield was investigated. The thermal stability and mechanical properties were also investigated as a function of degree of grafting. Accordingly the possibility of its practical use in industrial waste treatment is determined. The prepared cation-exchange membranes possess good mechanical properties, high thermal stability and good characteristics for separation processes. These membranes have also good affinity toward the adsorption or chelation with Fe 3+ , Pb 2+ , and Cd 2+ ions either in a mixture or exists alone in the solution

  13. Kinetics Modeling and Isotherms for Adsorption of Phosphate from Aqueous Solution by Modified Clinoptilolit

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2012-01-01

    Full Text Available The Phosphorous discharge into the surface water led to excessive growth of algae and eutrophication in lakes and rivers. Therefore the phosphorus removal is important due to negative effect on water resources. The aim of this study was to investigat the modification of clinoptilolite and application of modified clinoptilolite for phosphorous adsorption from aqueous solution and isotherms and kinetics modeling. Hexadecyl Trimethyl Ammonium bromide (HDTMA-Br, Hexadecyl trimethyl Ammonium Chloride (HDTMA-Cl, Sodium Decyl Sulphate (SDS and Cetrimide-C were used for modification of clinoptilolite. Experiments were conducted using jar apparatus and batch system. The effect of pH, adsorbent doses, contact time, phosphate initial concentration and particle size were studied surveyed on phosphate adsorption by modified clinoptilolite. The most common isotherms and the kinetics adsorption equations were used for determination of adsorption rate and dynamic reaction. The results showed that maximum phosphate adsorption was obtained in the pH of 7 and contact time 90min. Also it was found with the increasing of phosphate initial concentration, phosphate removal efficiency decreased significantly. Langmuir No 2 showed a good correlation compared to other isotherms (R2=0.997. Maximum adsorption capacity was obtained in 20g/L adsorbent dose (22.73mg/g. Also Interaparticle diffusion kinetics well fits with experimental data (R2=0.999 with constant rate of 3.84mg/g min0.5. The result showed that modified clinoptilolite can be used successfully as low cost and effective absorbent for phosphate removal.

  14. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  15. Morphological transformation of the silicon(112) surface through metal adsorption. Faceting vs. stabilization; Morphologische Transformation der Silizium(112) Oberflaeche durch Metalladsorption. Facettierung vs. Stabilisierung

    Energy Technology Data Exchange (ETDEWEB)

    Wiethoff, Christian

    2010-06-21

    Semiconductor nanowires lately attracted immense attention in worldwide research. Lots of possible applications were discussed and partially realized. Gold is the most commonly used metal in catalyzed nanowire growth, but exhibits poor electronic properties for building integrated circuits. Recently, aluminium was achieved to work as a catalyst and the nanowires grown this way showed extremely smooth surfaces. This is in contrast to surfaces grown with other metals. In this work the modification of the silicon (112) surface by metal adsorption is studied. Since nanowires with [111] growth direction have [112]-like sidewalls, this way a virtually endless nanowire surface is used to study the interaction of gold, silver and aluminium with the silicon surface. Spot Profile Analysis Low Energy Electron Diffraction (SPA-LEED) is used to analyze the surfaces. This high resolution diffraction method allows for detailed characterization of the surface structures and facets. Gold adsorption leads to eight different surface phases, the most stable one exhibits 111- and 113-facets and is shown to occur on nanowire surfaces if they were grown with gold as a catalyst. Silver adsorption pushes the surface to form 111- and 115-facets. The facet size distribution is quite narrow, so the finite size effect creates intensity minima in the vicinity of the bragg points in diffraction patterns. Aluminium adsorption finally leads to a stabilization of the silicon (112) surface, no facets are formed. This atomic flat surface was seen on nanowire sidewalls, grown with aluminium as catalyst. (orig.)

  16. X-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide

    International Nuclear Information System (INIS)

    Dillard, J.G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H.J.

    1984-01-01

    The adsorption of molecular iodine on uranium metal and on uranium dioxide has been investigated at 25 0 C. Clean surfaces were prepared in an ultrahigh vacuum apparatus and were characterized by X-ray photoelectron (XPS) and X-ray and electron-induced Auger electron spectroscopies (AES). Adsorption of I 2 was studied for exposures up to 100 langmuirs (1 langmuir = 10 -6 torr s) on uranium metal and to 75 langmuirs on uranium dioxide. Above about 2-langmuir I 2 exposure on uranium, spectroscopic evidence is obtained to indicate the beginning of UI 3 formation. Saturation coverage for I 2 adsorption on uranium dioxide occurs at approximately 10-15 langmuirs. Analysis of the XPS and AES results as well as studies of spectra as a function of temperature lead to the conclusions that a dissociative chemisorption/reaction process occurs on uranium metal while nondissociative adsorption occurs on uranium dioxide. Variations in the iodine Auger kinetic energy and in the Auger parameter are interpreted in light of extra-atomic relaxation processes. 42 references, 10 figures, 1 table

  17. Metal adsorption capabilities of clinoptilolite and selected strains of bacteria from mine water

    Science.gov (United States)

    Mamba, B. B.; Dlamini, N. P.; Nyembe, D. W.; Mulaba-Bafubiandi, A. F.

    Small-scale mining has socio-economic advantages such as the reduction of unemployment and the general improvement of the economy. However, these operations if not properly managed or controlled have a potential to cause environmental damage, particularly with respect to the contamination of groundwater and water supplies that are not distant from where these mining activities take place. This paper focuses on metal removal from water contaminated by heavy metals emanating from small-scale mining operations using clinoptilolite and bacteria. Removal of As, Ni, Mn, Au, Co, Cu and Fe was carried out on mine water samples using original and HCl-activated (in 0.02 M and 0.04 M) natural clinoptilolite and bacterial strains (a mixed consortia of Bacillus strains ( Bacillus subtilis, Bacillus cereus, Bacillus firmus, Bacillus fusiformis, Bacillus macroides and Bacillus licheniformis), Pseudomonas spp., Shewanella spp. and a mixed consortia of Acidithiobcillus caldus, Leptospirillum spp., Ferroplasma spp. and Sulphobacillus spp.). The purpose of the study was to compare the removal efficiencies of the bacterial strains versus natural clinoptilolite adsorbents for metal cations. The Bacillus consortia removed most of the metals up to 98% metal removal efficiency with the exception of nickel where clinoptilolite showed good removal efficiency. The 0.02 M HCl-activated clinoptilolite also demonstrated excellent removal capabilities with Cu, Co and Fe removal efficiency of up to 98%. Both clinoptilolite and bacteria demonstrated capabilities of removing Cu 2+, Co 2+, Fe 2+, Mn 2+, As 3+ and Au from solution which augurs well for metal recovery from mining and mineral processing solutions, as well as in water decontamination.

  18. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  19. Fibrinogen adsorption mechanisms at the gold substrate revealed by QCM-D measurements and RSA modeling.

    Science.gov (United States)

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Cieśla, Michał

    2016-03-01

    Adsorption kinetics of fibrinogen at a gold substrate at various pHs was thoroughly studied using the QCM-D method. The experimental were interpreted in terms of theoretical calculations performed according to the random sequential adsorption model (RSA). In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated at various pHs. It was revealed that for the lower range of fibrinogen coverage the hydration function were considerably lower than previously obtained for the silica sensor [33]. The lower hydration of fibrinogen monolayers on the gold sensor was attributed to its higher roughness. However, for higher fibrinogen coverage the hydration functions for both sensors became identical exhibiting an universal behavior. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γd vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.6mgm(-2) at pH 3.5 and 4.5mgm(-2) at pH 7.4 (for ionic strength of 0.15M). These results agree with theoretical eRSA modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data. These results allow one to develop a method for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Surface complexation models for uranium adsorption in the sub-surface environment

    International Nuclear Information System (INIS)

    Payne, T.E.

    2007-01-01

    Adsorption experiments with soil component minerals under a range of conditions are being used to develop models of uranium(VI) uptake in the sub-surface environment. The results show that adsorption of U on iron oxides and clay minerals is influenced by chemical factors including the pH, partial pressure of CO 2 , and the presence of ligands such as phosphate. Surface complexation models (SCMs) can be used to simulate U adsorption on these minerals. The SCMs are based on plausible mechanistic assumptions and describe the experimental data more adequately than Kd values or sorption isotherms. It is conceptually possible to simulate U sorption data on complex natural samples by combining SCMs for individual component minerals. This approach was used to develop a SCM for U adsorption to mineral assemblages from Koongarra (Australia), and produced a reasonable description of U uptake. In order to assess the applicability of experimental data to the field situation, in-situ measurements of U distributions between solid and liquid phases were undertaken at the Koongarra U deposit. This field partitioning data showed a satisfactory agreement with laboratory sorption data obtained under comparable conditions. (author)

  1. An initial research on solute migration model coupled with adsorption of surface complexation in groundwater

    International Nuclear Information System (INIS)

    Qian Tianwei; Chen Fanrong

    2003-01-01

    The influence of solution chemical action in groundwater on solute migration has attracted increasing public attention, especially adsorption action occurring on surface of solid phase and liquid phase, which has play a great role in solute migration. There are various interpretations on adsorption mechanism, in which surface complexion is one of successful hypothesis. This paper first establishes a geochemical model based on surface complexion and then coupled it with traditional advection-dispersion model to constitute a solute migration model, which can deal with surface complexion action. The simulated results fit very well with those obtained by the precursors, as compared with a published famous example, which indicates that the model set up by this paper is successful. (authors)

  2. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.

    Science.gov (United States)

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Methane adsorption on the surface of a model of shale: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuan-qiang, E-mail: zhuline518@163.com [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); Su, Hong; Jing, Ya [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Guo, Jianchun [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); Tang, Junlei [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China)

    2016-11-30

    Highlights: • The adsorption of methane on kerogen was investigated by DFT method with D3 dispersion correction. • Methane prefers to be adsorbed on the sites directly above the carbon atoms of the kerogen. • The interaction energy with BSSE corrections is around 14 kJ mol{sup −1}. • RDG gradient isosurface depicted the van der Waals interactions between methane and kerogen. • The adsorption of methane on kerogen slightly depends upon the adsorption sites on kerogen as well as the orientations of methane. - Abstract: As a model of shale, one part of polycyclic aromatic ring was used to represent the kerogen surface with the structural heterogeneity. The adsorption mechanisms of methane on the surface of the kerogen were investigated by M06-2× functional with D3 dispersion correction. Nine stable adsorption sites and the orientations of methane (CH{sub 4}) on the surface of the kerogen were systematically considered. Information from different methods lead to the same conclusion that methane prefers to be adsorbed on the sites directly above the carbon atoms of the kerogen rather than above the center of the six-membered rings. The interactions between methane and the surface of the kerogen are the van der Waals interactions. The interaction energies with the basis set superposition error (BSSE) corrections are around 14 kJ mol{sup −1} at the M06-2×-D3/Jun-cc-pVDZ level. The RDG scatter graphs and the RDG gradient isosurface further illustrate that the interactions between methane and the surface of the kerogen belong to the van der Waals interactions. The weak interactions indicate that the adsorption of methane on the surface of the kerogen is physical adsorption and it slightly depends upon the adsorption sites on kerogen as well as the orientations of methane. These results are helpful for the understanding of the microcosmic mechanism of methane–shale interactions and for the exploitation of shale gas.

  4. Analytic nearest neighbour model for FCC metals

    International Nuclear Information System (INIS)

    Idiodi, J.O.A.; Garba, E.J.D.; Akinlade, O.

    1991-06-01

    A recently proposed analytic nearest-neighbour model for fcc metals is criticised and two alternative nearest-neighbour models derived from the separable potential method (SPM) are recommended. Results for copper and aluminium illustrate the utility of the recommended models. (author). 20 refs, 5 tabs

  5. Adsorption Studies of Heavy Metals by Low-Cost Adsorbents | Okoli ...

    African Journals Online (AJOL)

    In this study, removal of toxic metals Cr(VI) from artificially contaminated water has been investigated with the aim of detoxifying industrial effluents before their safe disposal onto land or into the river. Two low-cost natural adsorbents, Palm Kernel fiber and Coconut husks, were used to remove Cr(VI) ion from synthesized ...

  6. Metal-Organic Frameworks For Adsorption Driven Energy Transformation : From Fundamentals To Applications

    NARCIS (Netherlands)

    De Lange, M.F.

    2015-01-01

    A novel class of materials, i.e. Metal-Organic Frameworks (MOFs), has successfully been developed that is extremely suited for application in heat pumps and chillers. They have a superior performance over commercial sorbents and may potentially contribute to considerable energy savings worldwide.

  7. Adsorption of Cashew Allergens to Acid-Etched Zinc Metal Particles

    Science.gov (United States)

    Galvanized metal surfaces are approved by the FDA for use in many food processing steps. Food allergens can cause severe reactions even in very small amounts, and surfaces contaminated with allergens could pose a serious threat. The binding of cashew allergens to zinc particles was evaluated. Whi...

  8. Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption

    Science.gov (United States)

    Polyphenols are a rapidly increasing portion of the nutraceutical and functional food marketplace. Peanut skins are a waste product which have potential as a low-cost source of polyphenols. Extraction and concentration of peanut skin extracts can cause normally innocuous levels of the heavy metal co...

  9. Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions

    Science.gov (United States)

    Xu, Minghan; Chai, Jing; Hu, Nantao; Huang, Da; Wang, Yuxi; Huang, Xiaolu; Wei, Hao; Yang, Zhi; Zhang, Yafei

    2014-09-01

    The synthesis of graphene (GR) from graphene oxide (GO) typically involves harmful chemical reducing agents that are undesirable for most practical applications. Here we report a green and facile synthesis method for the synthesis of GR that is soluble in water and organic solvents and that includes the additional benefit of adsorption of heavy metal ions. Acetylacetone, as both a reducing agent and a stabilizer, was used to prepare soluble GR from GO. Transmission electron microscopy and atomic force microscopy provide clear evidence for the formation of few-layer GR. The results from Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy show that reduction of GO to GR has occurred. Raman spectroscopy and X-ray photoelectron spectroscopy also indicate the removal of oxygen-containing functional groups from GO, resulting in the formation of GR. The results of dispersion experiments show that GR can be highly dispersed in water and N,N-Dimethylformamide. The reaction mechanism for acetylacetone reduction of exfoliated GO was also proposed. This method is a facile and environmentally friendly approach to the synthesis of GR and opens up new possibilities for preparing GR and GR-based nanomaterials for large-scale applications. Of even greater interest is that inductively coupled plasma atomic emission spectroscopy suggests that synthesized GR may be applied in the absorption of Cd2+ and Co2+ due to the strong coordination capacity of acetylacetone on the surfaces and edges of GR and the large surface area of GR in aqueous solutions. The maximum adsorptions are 49.28 mg g-1 for Cd2+, which is 4.5 times higher than that of carbon nanotubes, and 27.78 mg g-1 for Co2+, which is 3.6 times higher than that of titania beans.

  10. Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions

    International Nuclear Information System (INIS)

    Xu, Minghan; Chai, Jing; Hu, Nantao; Huang, Da; Wang, Yuxi; Huang, Xiaolu; Wei, Hao; Yang, Zhi; Zhang, Yafei

    2014-01-01

    The synthesis of graphene (GR) from graphene oxide (GO) typically involves harmful chemical reducing agents that are undesirable for most practical applications. Here we report a green and facile synthesis method for the synthesis of GR that is soluble in water and organic solvents and that includes the additional benefit of adsorption of heavy metal ions. Acetylacetone, as both a reducing agent and a stabilizer, was used to prepare soluble GR from GO. Transmission electron microscopy and atomic force microscopy provide clear evidence for the formation of few-layer GR. The results from Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy show that reduction of GO to GR has occurred. Raman spectroscopy and X-ray photoelectron spectroscopy also indicate the removal of oxygen-containing functional groups from GO, resulting in the formation of GR. The results of dispersion experiments show that GR can be highly dispersed in water and N,N-Dimethylformamide. The reaction mechanism for acetylacetone reduction of exfoliated GO was also proposed. This method is a facile and environmentally friendly approach to the synthesis of GR and opens up new possibilities for preparing GR and GR-based nanomaterials for large-scale applications. Of even greater interest is that inductively coupled plasma atomic emission spectroscopy suggests that synthesized GR may be applied in the absorption of Cd 2+ and Co 2+ due to the strong coordination capacity of acetylacetone on the surfaces and edges of GR and the large surface area of GR in aqueous solutions. The maximum adsorptions are 49.28 mg g −1 for Cd 2+ , which is 4.5 times higher than that of carbon nanotubes, and 27.78 mg g −1 for Co 2+ , which is 3.6 times higher than that of titania beans. (paper)

  11. Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions.

    Science.gov (United States)

    Xu, Minghan; Chai, Jing; Hu, Nantao; Huang, Da; Wang, Yuxi; Huang, Xiaolu; Wei, Hao; Yang, Zhi; Zhang, Yafei

    2014-10-03

    The synthesis of graphene (GR) from graphene oxide (GO) typically involves harmful chemical reducing agents that are undesirable for most practical applications. Here we report a green and facile synthesis method for the synthesis of GR that is soluble in water and organic solvents and that includes the additional benefit of adsorption of heavy metal ions. Acetylacetone, as both a reducing agent and a stabilizer, was used to prepare soluble GR from GO. Transmission electron microscopy and atomic force microscopy provide clear evidence for the formation of few-layer GR. The results from Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy show that reduction of GO to GR has occurred. Raman spectroscopy and X-ray photoelectron spectroscopy also indicate the removal of oxygen-containing functional groups from GO, resulting in the formation of GR. The results of dispersion experiments show that GR can be highly dispersed in water and N,N-Dimethylformamide. The reaction mechanism for acetylacetone reduction of exfoliated GO was also proposed. This method is a facile and environmentally friendly approach to the synthesis of GR and opens up new possibilities for preparing GR and GR-based nanomaterials for large-scale applications. Of even greater interest is that inductively coupled plasma atomic emission spectroscopy suggests that synthesized GR may be applied in the absorption of Cd(2+) and Co(2+) due to the strong coordination capacity of acetylacetone on the surfaces and edges of GR and the large surface area of GR in aqueous solutions. The maximum adsorptions are 49.28 mg g(-1) for Cd(2+), which is 4.5 times higher than that of carbon nanotubes, and 27.78 mg g(-1) for Co(2+), which is 3.6 times higher than that of titania beans.

  12. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  13. Adsorption of trace elements on a bentonite sample: experimental study and modelling

    International Nuclear Information System (INIS)

    Hurel, Ch.

    2002-12-01

    Radioactive waste storage in deep underground is studied in France. The alteration of the radioactive waste can mobilize the elements that can migrate to the geosphere. Clays (bentonite) are investigated as major materials constituting the barriers because of their low permeability and high retention capacity. A thermodynamic surface complexation model, based on the component additivity principle was investigated, in order to predict the adsorption behaviour of pollutants in contact with clay. This principle allows an independent determination of each parameter of the model, limiting the fitting procedure of correlated data, and it allows the use of an adsorption thermodynamic database for a solid. The predictions obtained were in good accordance with experimental data. The model could then be applied successfully in performance assessment. (author)

  14. Langmuir-Blodgett Films of the Metal-Organic Framework MIL-101(Cr): Preparation, Characterization, and CO2 Adsorption Study Using a QCM-Based Setup.

    Science.gov (United States)

    Benito, Javier; Sorribas, Sara; Lucas, Irene; Coronas, Joaquin; Gascon, Ignacio

    2016-06-29

    This work reports the fabrication and characterization of Langmuir-Blodgett films of nanoparticles (size 51 ± 10 nm) of the metal organic framework MIL-101(Cr). LB film characterization by SEM, UV-vis, GIXRD, and QCM has shown that the addition of 1 wt % of behenic acid to MOF dispersion allows obtaining dense monolayers at the air-water interface that can be deposited onto solid substrates of different nature with transfer ratios close to 1. Moreover, a QCM-based setup has been built and used for the first time to measure CO2 adsorption isotherms at 303 K on MOF LB films, proving that LB films with MOF masses between 1.2 (1 layer) and 2.3 (2 layers) μg can be used to obtain accurate adsorption values at 100 kPa, similar to those obtained by conventional adsorption methods that require much larger MOF quantities (tens of milligrams).

  15. The Precious metals (Au, Ag, Pt, Pd, Rh) adsorption on the Silicon – organic sorbents

    OpenAIRE

    G Burmaa; S Alen; Yu Ganchimeg; I Sukhbaatar

    2014-01-01

    Sorption activity of two types of Silicon-organic sorbents for the previous metals has been studied. A polymer – poly (3- silsesquioxanilpropylthiocarbamate) - 3- silsesquioxanilpropylammonium which was obtained by the hydrolytic poly-condensation reaction and has been determined its physical, chemical characteristics and its sorption activity for the Ag(I), Au(III), Pt(IV), Pd(II), Rh(III). It has been found out that the sorbent shows high static sorption of Gold (III), Mercury (II) at acidi...

  16. Model for trace metal exposure in filter-feeding flamingos at alkaline Rift Valley Lake, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Y.M.; DiSante, C.J.; Lion, L.W. [Cornell Univ., Ithaca, NY (United States). School of Civil and Environmental Engineering; Thampy, R.J.; Raini, J.A. [Worldwide Fund for Nature, Nakuru (Kenya). Lake Nakuru Conservation and Development Project; Motelin, G.K. [Egerton Univ., Njoro (Kenya). Dept. of Animal Health

    1998-11-01

    Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predict metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.

  17. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    Science.gov (United States)

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Detailed characterization and preliminary adsorption model for materials for an intermediate-scale reactive-transport experiment

    International Nuclear Information System (INIS)

    Ward, D.B.; Bryan, C.R.

    1994-01-01

    An experiment involving migration of fluid and tracers (Li, Br, Ni) through a 6-m-high x 3-m-dia caisson Wedron 510 sand, is being carried out for Yucca Mountain Site Characterization Project. Sand's surface chemistry of the sand was studied and a preliminary surface-complexation model of Ni adsorption formulated for transport calculations. XPS and leaching suggest that surface of the quartz sand is partially covered by thin layers of Fe-oxyhydroxide and Ca-Mg carbonate and by flakes of kaolinite. Ni adsorption by the sand is strongly pH-dependent, showing no adsorption at pH 5 and near-total adsorption at pH 7. Location of adsorption edge is independent of ionic strength and dissolved Ni concentration; it is shifted to slightly lower pH with higher pCO2 and to slightly higher pH by competition with Li. Diminished adsorption at alkiline pH with higher pCO2 implies formation of dissolved Ni-carbonato complexes. Ni adsorption edges for goethite and quartz, two components of the sand were also measured. Ni adsorption on pure quartz is only moderately pH-dependent and differs in shape and location from that of the sand, whereas Ni adsorption by goethite is strongly pH-dependent. A triple-layer surface-complexation model developed for goethite provides a good fit to the Ni-adsorption curve of the sand. Based on this model, the apparent surface area of the Fe-oxyhydroxide coating is estimated to be 560 m 2 /g, compatible with its occurrence as amorphous Fe-oxyhydroxide. Potentiometric titrations on sand also differ from pure quartz and suggest that effective surface area of sand may be much greater than that measured by N 2 -BET gas adsorption. Attempts to model the adsorption of bulk sand in terms of properties of pure end member components suggest that much of the sand surface is inert. Although the exact Ni adsorption mechanisms remain ambiguous, this preliminary adsorption model provides an initial set of parameters that can be used in transport calculations

  19. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  20. Functionalized Nanoporous Silica for Removal of Heavy Metals from Biological Systems; Adsorption and Application

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana; Rutledge, Ryan D.; Chouyyok, Wilaiwan; Sukwarotwat, Vichaya; Orr, Galya; Warner, Cynthia L.; Warner, Marvin G.; Fryxell, Glen E.; Wiacek, Robert J.; Timchalk, Charles; Addleman, Raymond S.

    2010-10-01

    Functionalized nanoporous silica, often referred to as self-assembled monolayers on mesoporous supports (SAMMS) have previously demonstrated the ability to serve as very effective heavy metal sorbents in a range of aquatic and environmental systems suggesting they may be advantageously utilized for biomedical applications such as chelation therapy. Herein we evaluate surface chemistries for heavy metal capture from biological fluids, various facets of the materials biocompatibility and the suitability of these materials as potential therapeutics. Of the materials tested, thiol-functionalized SAMMS proved most capable of removing selected heavy metals from biological solutions (i.e. blood, urine, etc.) As a result, thiol SAMMS was further analyzed to assess the material’s performance under a number of different biologically relevant conditions (i.e. variable pH and ionic strength) as well to gauge any potentially negative cellular effects resulting from interaction with the sorbent, such as cellular toxicity or possible chelation of essential minerals. Additionally, cellular uptake studies demonstrated no cell membrane permeation by the silica-based materials generally highlighting their ability to remain cellularly inert and thus non-toxic. As a result, it has been determined that organic ligand-functionalized nanoporous silica materials could be a valuable material for detoxification therapeutics and potentially other biomedical applications as needed.

  1. Reactivity of surface of metal oxide particles: from adsorption of ions to deposition of colloidal particles

    International Nuclear Information System (INIS)

    Lefevre, Gregory

    2010-01-01

    In this Accreditation to supervise research (HDR), the author proposes an overview of his research works in the field of chemistry. These works more particularly addressed the understanding of the surface reactivity of metal oxide particles and its implication on sorption and adherence processes. In a first part, he addresses the study of surface acidity-alkalinity: measurement of surface reactivity by acid-base titration, stability of metal oxides in suspension, effect of morphology on oxide-hydroxide reactivity. The second part addresses the study of sorption: reactivity of iron oxides with selenium species, sorption of sulphate ions on magnetite, attenuated total reflection infrared spectroscopy (ATR-IR). Adherence effects are addressed in the third part: development of an experimental device to study adherence in massive substrates, deposition of particles under turbulent flow. The last part presents a research project on the effect of temperature on ion sorption at solids/solutions interfaces, and on the adherence of metal oxide particles. The author gives his detailed curriculum, and indicates his various publications, teaching activities, research and administrative responsibilities

  2. Using surrogate modeling in the prediction of fibrinogen adsorption onto polymer surfaces.

    Science.gov (United States)

    Smith, Jack R; Knight, Doyle; Kohn, Joachim; Rasheed, Khaled; Weber, Norbert; Kholodovych, Vladyslav; Welsh, William J

    2004-01-01

    We present a Surrogate (semiempirical) Model for prediction of protein adsorption onto the surfaces of biodegradable polymers that have been designed for tissue engineering applications. The protein used in these studies, fibrinogen, is known to play a key role in blood clotting. Therefore, fibrinogen adsorption dictates the performance of implants exposed to blood. The Surrogate Model combines molecular modeling, machine learning and an Artificial Neural Network. This novel approach includes an accounting for experimental error using a Monte Carlo analysis. Briefly, measurements of human fibrinogen adsorption were obtained for 45 polymers. A total of 106 molecular descriptors were generated for each polymer. Of these, 102 descriptors were computed using the Molecular Operating Environment (MOE) software based upon the polymer chemical structures, two represented different monomer types, and two were measured experimentally. The Surrogate Model was developed in two stages. In the first stage, the three descriptors with the highest correlation to adsorption were determined by calculating the information gain of each descriptor. Here a Monte Carlo approach enabled a direct assessment of the effect of the experimental uncertainty on the results. The three highest-ranking descriptors, defined as those with the highest information gain for the sample set, were then selected as the input variables for the second stage, an Artificial Neural Network (ANN) to predict fibrinogen adsorption. The ANN was trained using one-half of the experimental data set (the training set) selected at random. The effect of experimental error on predictive capability was again explored using a Monte Carlo analysis. The accuracy of the ANN was assessed by comparison of the predicted values for fibrinogen adsorption with the experimental data for the remaining polymers (the validation set). The mean value of the Pearson correlation coefficient for the validation data sets was 0.54 +/- 0.12. The