Sample records for model metal adsorption

  1. Modeling adsorption and reactions of organic molecules at metal surfaces. (United States)

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias


    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  2. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis. (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu


    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  3. A New Competitive Adsorption Isothermal Model of Heavy Metals in Soils

    Institute of Scientific and Technical Information of China (English)

    XUE Wen-Bo; YI Ai-Hua; ZHANG Zeng-Qiang; TANG Ci-Lai; ZHANG Xing-Chang; GAO Jin-Ming


    A new competitive adsorption isothermal model (CAIM) was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions,and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal (Zn and Cd) competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.

  4. A generalized adsorption-phase transition model to describe adsorption rates in flexible metal organic framework RPM3-Zn. (United States)

    Lueking, Angela D; Wang, Cheng-Yu; Sircar, Sarmishtha; Malencia, Christopher; Wang, Hao; Li, Jing


    Flexible gate-opening metal organic frameworks (GO-MOFs) expand or contract to minimize the overall free energy of the system upon accommodation of an adsorbate. The thermodynamics of the GO process are well described by a number of models, but the kinetics of the process are relatively unexplored. A flexible GO-MOF, RPM3-Zn, exhibits a significant induction period for opening by N2 and Ar at low temperatures, both above and below the GO pressure. A similar induction period is not observed for H2 or O2 at comparable pressures and temperatures, suggesting the rate of opening is strongly influenced by the gas-surface interaction rather than an external stress. The induction period leads to severe mass transfer limitations for adsorption and over-prediction of the gate-opening pressure. After review of a number of existing adsorption rate models, we find that none adequately describe the experimental rate data and similar timescales for diffusion and opening invalidate prior reaction-diffusion models. Statistically, the rate data are best described by a compressed exponential function. The resulting fitted parameters exceed the expectations for adsorption but fall within those expected for phase transition. By treating adsorption as a phase transition, we generalize the Avrami theory of phase transition kinetics to describe adsorption in both rigid and flexible hosts. The generalized theory is consistent with observed experimental trends relating to induction period, temperature, pressure, and gas-substrate interaction.

  5. DFT modeling of adsorption of formaldehyde and methanediol anion on the (111) face of IB metals (United States)

    Starodubov, S. S.; Nechaev, I. V.; Vvedenskii, A. V.


    Gas-phase adsorption of formaldehyde and gas- and liquid-phase adsorption of the methanediol anion on the (111) face of copper, silver, and gold was modeled in terms of the density functional theory and the cluster model of the metal single-crystal surface. In the gas phase, formaldehyde was found to be physically adsorbed on the metals, while the methanediol anion was found to be chemisorbed. It exists on the surface in two different stable states. In aqueous solution, the H3CO 2 - anion can spontaneously dissociate into the formate ion and two hydrogen atoms.

  6. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water) (United States)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  7. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks (United States)

    Cheng, Peifu; Hu, Yun Hang


    Acetylene (C2H2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C2H2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C2H2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C2H2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C2H2 adsorption on those MOFs.

  8. 重金属生物吸附的吸附模型%Adsorption models for heavy metal biosorption

    Institute of Scientific and Technical Information of China (English)

    郑成; 虞启明; 尹平和


    Heavy metal biosorption is an effective process for the removal and recovery of heavy metal ions.Equilibrium isotherms obtained experimentally are usually correlated empirically with commonly used adsorption models, without considering the underlying mechanisms of biosorption.Commonly used models for correlating biosorption isotherm data are briefly reviewed and the use of the adsorption models in correlating the desorption processes is analysed.A set of biosorption/desorption experiments for a marine alga derived biosorbent are carried out to test the use of the adsorption models in the desorption process.Experimental data indicate that the amount of the heavy metal ions desorbed from the biomass could not be calculated with the adsorption models.This suggests that the empirical use of adsorption models in the correlation may not be valid when the reversibility of the biosorption equlibrium in the desorption process needs to be considered.Therefore, mechanism based biosorption models are needed for better correlation of equilibrium isotherm data.

  9. Adsorption of metal atoms at a buckled graphene grain boundary using model potentials

    Energy Technology Data Exchange (ETDEWEB)

    Helgee, Edit E.; Isacsson, Andreas [Department of Applied Physics, Chalmers University of Technology, SE-412 96, Göteborg (Sweden)


    Two model potentials have been evaluated with regard to their ability to model adsorption of single metal atoms on a buckled graphene grain boundary. One of the potentials is a Lennard-Jones potential parametrized for gold and carbon, while the other is a bond-order potential parametrized for the interaction between carbon and platinum. Metals are expected to adsorb more strongly to grain boundaries than to pristine graphene due to their enhanced adsorption at point defects resembling those that constitute the grain boundary. Of the two potentials considered here, only the bond-order potential reproduces this behavior and predicts the energy of the adsorbate to be about 0.8 eV lower at the grain boundary than on pristine graphene. The Lennard-Jones potential predicts no significant difference in energy between adsorbates at the boundary and on pristine graphene. These results indicate that the Lennard-Jones potential is not suitable for studies of metal adsorption on defects in graphene, and that bond-order potentials are preferable.

  10. Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks (United States)

    Dunne, Lawrence J.; Manos, George


    Here we present a statistical mechanical lattice model which is exactly solvable using a matrix method and allows treatment of adsorption induced gate opening structural transformations of metal-organic frameworks which are nanoporous materials with exceptional adsorption properties. Modelling of these structural changes presents a serious theoretical challenge when the solid and gas species are treated in an even handed way. This exactly solvable model complements other simulation based approaches. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms.

  11. Adsorption and Wetting in Model Mesoporous Silicas and in Complex Metal Oxide Catalysts (United States)

    Jayaraman, Karthik

    The surface of most metal oxides is covered by hydroxyl groups which influence many surface phenomena such as adsorption and wetting, catalysis and surface reactions. Surface chemistry of silica is a subject of exhaustive studies owing to a wide variety of practical applications of silica. In Chapter 1, a brief review of classification, synthesis and characterization of silica is provided. The hydroxylation of silica surface i.e the number of hydroxyl (-OH) groups on the surface is of utmost importance for its practical applications. In Chapter 2, a brief introduction to surface hydration of silica is provided followed by the gas adsorption measurements and characterization. Pore wetting is critical to many applications of mesoporous adsorbents, catalysts, and separation materials. In the work presented in Chapter 3, we employed the combined vapor adsorption study using nitrogen (77K) and water (293K) isotherms to evaluate the water contact angles for a series of ordered mesoporous silicas (ex:SBA-15). The proposed method of contact angle relies on the statistical film thickness (t-curve) of the adsorbed water. There were no t-curves for water for dehydroxylated or hydrophobic surfaces in literature and we addressed this issue by measuring t-curves for a series of model surfaces with known and varying silanol coverage. Using the radius of menisci ((H2O)), statistical film thickness t(H2O) from water isotherm, and the true radius of pores (rp(N 2)), from nitrogen isotherms, the water contact angle inside pores were calculated. As it was anticipated, the results obtained showed that the silica pore contact angles were strongly influenced by the number of the surface silanol groups and, therefore, by the thermal and hydration treatments of silicas. Phthalocyanines (Pcs) present an interesting class of catalytically active of molecules with unique spectroscopic, photoelectric, and sometimes magnetic properties. In the work presented in Chapter 4, we have undertaken a

  12. Modeling adsorption properties of structurally deformed metal-organic frameworks using structure-property map. (United States)

    Jeong, WooSeok; Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan


    Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure-property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure-property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure-property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure-property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost.

  13. [Application of classical isothermal adsorption models in heavy metal ions/ diatomite system and related problems]. (United States)

    Zhu, Jian; Wu, Qing-Ding; Wang, Ping; Li, Ke-Lin; Lei, Ming-Jing; Zhang, Wei-Li


    In order to fully understand adsorption nature of Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Fe3+ onto natural diatomite, and to find problems of classical isothermal adsorption models' application in liquid/solid system, a series of isothermal adsorption tests were conducted. As results indicate, the most suitable isotherm models for describing adsorption of Pb2+, Cd2+, Cu2+, Zn2+, Mn2+, Fe3+ onto natural diatomite are Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively, the adsorption of each ion onto natural diatomite is mainly a physical process, and the adsorption reaction is favorable. It also can be found that, when using classical isothermal adsorption models to fit the experimental data in liquid/solid system, the equilibrium adsorption amount q(e) is not a single function of ion equilibrium concentration c(e), while is a function of two variables, namely c(e) and the adsorbent concentration W0, q(e) only depends on c(e)/W(0). Results also show that the classical isothermal adsorption models have a significant adsorbent effect, and their parameter values are unstable, the simulation values of parameter differ greatly from the measured values, which is unhelpful for practical use. The tests prove that four-adsorption-components model can be used for describing adsorption behavior of single ion in nature diatomite-liquid system, its parameters k and q(m) have constant values, which is favorable for practical quantitative calculation in a given system.

  14. Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks. (United States)

    Dunne, Lawrence J; Manos, George


    Here we present an exactly treated quasi-one dimensional statistical mechanical osmotic ensemble model of pressure and adsorption induced breathing structural transformations of metal-organic frameworks (MOFs). The treatment uses a transfer matrix method. The model successfully reproduces the gas and pressure induced structural changes which are observed experimentally in MOFs. The model treatment presented here is a significant step towards analytical statistical mechanical treatments of flexible metal-organic frameworks.

  15. [Mechanism study of fluoride adsorption by hydrous metal oxides]. (United States)

    Guo, Hui-Chao; Li, Wen-Jun; Chang, Zhi-Dong; Wang, Huan-Ying; Zhou, Yue


    Hydrous oxides of cerium, aluminum, nickel and copper were prepared by alkaline precipitation method. Langmuir adsorption isotherm was studied and specific surface area was measured by BET method through N2 adsorption-desorption process. IR characterization of hydrous metal oxides before and after fluoride adsorption was also studied. Results show that different hydrous metal oxides have different specific surface areas and their pore size distributions also are not all the same. Adsorption capacity is not directly dependent on the specific surface area. Isotherm study indicates that the adsorption follows Langmuir model and shows the feature of monolayer adsorption. IR study before and after fluoride adsorption shows that different hydrous metal oxides have similar adsorption sites in the same IR region as well as adsorption sites in the different IR region. The comprehensive interaction of these adsorption sites with fluoride ions results in the different adsorption capacity of different hydrous metal oxides.

  16. Graphite oxide/metal-organic framework (MIL-101): remarkable performance in the adsorptive denitrogenation of model fuels. (United States)

    Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa


    A highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), was synthesized in the presence of graphite oxide (GO) to produce GO/MIL-101 composites. The porosity of the composites increased remarkably in the presence of a small amount of GO (adsorptions. The adsorptive removal of nitrogen-containing compounds (NCCs) and sulfur-containing compounds (SCCs) from model fuels demonstrated the potential applications of the composites in adsorptions, and the adsorption capacity was dependent on the surface area and pore volume of the composites. Most importantly, the GO/MIL-101 composite has the highest adsorption capacity for NCCs among reported adsorbents so far, partly because of the increased porosity of the composite. Finally, the results suggest that GO could be used in the synthesis of highly porous MOF composites, and the obtained materials could be used in various adsorptions in both liquid and gas/vapor phase (such as H2, CH4, and CO2 storage) adsorptions, because of the high porosity and functional GO.

  17. Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)



    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model Ⅱ provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  18. Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel. (United States)

    Khan, Nazmul Abedin; Jhung, Sung Hwa


    Liquid phase adsorption of benzothiophene (BT) has been studied over CuCl₂-loaded analogous metal-organic frameworks (MOFs), metal-benzenedicarboxylates (Me-BDCs, Me: Al, Cr and V), to understand the effect of central metal ions on the adsorptive removal of BT from a model fuel. Among the central metal ions (Al(3+), Cr(3+) and V(3+)) of the Me-BDCs only V(3+) was oxidized by the loaded CuCl₂ (or Cu(2+)) at ambient condition resulting in V(4+) and Cu(+) species. Different from the CuCl₂-loaded Al- and Cr-BDCs, the CuCl₂/V-BDC adsorbed BT remarkably well compared to the virgin V-BDCs which suggests a specific favorable interaction (π-complexation) between the obtained Cu(+) in the CuCl₂/V-BDC and BT.

  19. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations (United States)

    Mulder, F. M.; Dingemans, T. J.; Schimmel, H. G.; Ramirez-Cuesta, A. J.; Kearley, G. J.


    Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF's) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (˜550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].

  20. A kinetic Monte Carlo/UBI-QEP model of O 2 adsorption on fcc (1 1 1) metal surfaces (United States)

    Abramova, Ludmila A.; Zeigarnik, Andrew V.; Baranov, Sergey P.; Shustorovich, Evgeny


    The previously developed kinetic Monte Carlo model of molecular oxygen adsorption on fcc (1 0 0) metal surfaces has been extended to fcc (1 1 1) surfaces. The model treats uniformly all elementary steps of the process—O 2 adsorption, dissociation, recombination, desorption, and atomic oxygen hopping—at various coverages and temperatures. The model employs the unity bond index—quadratic exponential potential (UBI-QEP) formalism to calculate coverage-dependent energetics (atomic and molecular binding energies and activation barriers of elementary steps) and a Metropolis-type algorithm including the Arrhenius-type reaction rates to calculate coverage- and temperature-dependent features, particularly the adsorbate distribution over the surface. Optimal values of non-energetic model parameters (the spatial constraint, a travel distance of "hot" atoms, attempt frequencies of elementary steps) have been chosen. Proper modifications of the fcc (1 0 0) model have been made to reflect structural differences in the fcc (1 1 1) surface, in particular the presence of two different hollow sites (fcc and hcp). Detailed simulations were performed for molecular oxygen adsorption on Ni(1 1 1). We found that at very low coverages, only O 2 adsorption and dissociation were effective, while O 2 desorption and O 2 and O diffusion practically did not occur. At a certain O + O 2 coverage, the O 2 dissociation becomes the fastest process with a rate one-two orders of magnitude higher than adsorption. Dissociation continuously slows down due to an increase in the activation energy of dissociation and due to the exhaustion of free sites. The binding energies of both molecular and atomic oxygen decrease with coverage, and this leads to greater mobility of atomic oxygen and more pronounced desorption of molecular oxygen. Saturation is observed when the number of adsorbed molecules becomes approximately equal to the number of desorbed molecules. Simulated coverage dependences of the

  1. Acid Gas Adsorption on Metal-Organic Framework Nanosheets as a Model of an "All-Surface" Material. (United States)

    Howe, Joshua D; Liu, Yang; Flores, Luis; Dixon, David A; Sholl, David S


    To establish a model of metal-organic framework (MOF) surfaces and build an understanding of surface-specific ligand adsorption phenomena in MOFs, we present a computational study exploring multiple models of a series of MOF-2 nanosheet materials, "M-BDCs", with M = Zn, Cu, and Co and BDC = benzene-1,4-dicarboxylate. We study and assess the appropriateness of a series of models ranging from small clusters (18 atoms) to fully periodic sheet models. We additionally study the interactions of these models with acid gases and energy-relevant small molecules (CO, CO2, H2O, SO2, NO2, and H2S). We employ computational methods ranging from DFT with various exchange-correlation functionals to perturbative and coupled-cluster methods. For these systems, we present binding energies and enthalpies with the various ligands studied as well as IR frequency shifts for the normal modes of these ligands upon complexation with the open-metal sites of these materials. Our calculations lead to an understanding of phenomena unique to MOF surfaces and the importance of the periodicity in these materials in capturing surface-specific adsorption behaviors.

  2. Competitive adsorption of heavy metal ions on peat

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-rong; ZHOU Li-min; WEI Peng; ZENG Kai; WEN Chuan-xi; LAN Hui-hua


    The uptake capacities, and the adsorption kinetics, of copper, Cu(Ⅱ), nickel, Ni(Ⅱ), and cadmium, Cd(Ⅱ), on peat have been studied under static conditions. The results show that the adsorption rates are rapid: equilibrium is reached in twenty minutes. The adsorption of copper, nickel and cadmium is pH dependent over the pH range from 2 to 6. The adsorption kinetics can be excellently described by the Elovich kinetic equation. The adsorption isotherm fits a Langmuir model very well. The adsorption capacifies follow the order Cu2+>Ni2+>Cd2+ in single-component systems and the competitive adsorption capacities fall in the decreasing order Cu2+> Ni2+>Cd2+ in multi-component systems. The adsorption capacities of these three heavy metal ions on peat are consistent with their observed competitive adsorption capacities.

  3. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models

    Directory of Open Access Journals (Sweden)

    Md. Sayedur Rahman


    Full Text Available Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb2+, Cu2+, Fe2+, and Zn2+ onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.

  4. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models. (United States)

    Rahman, Md Sayedur; Sathasivam, Kathiresan V


    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb(2+), Cu(2+), Fe(2+), and Zn(2+) onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.

  5. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol


    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments.

  6. Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: effect of acid site inclusion. (United States)

    Ahmed, Imteaz; Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa


    A metal-organic framework (MOF) MIL-101 was impregnated with phosphotungstic acid (PWA) and used as an adsorbent in liquid phase adsorption of nitrogen-containing compounds (NCCs) from a model fuel. The model fuel contained one sulfur-containing compound (SCC), benzothiophene (BT); one basic NCC, quinoline (QUI); and one neutral NCC, indole (IND). In both MIL-101 and PWA-impregnated MIL-101s, NCC adsorption selectivity was very high compared to the SCC selectivity. Additionally, the adsorption capacity of basic QUI increased by 20% with only 1% PWA impregnation in MIL-101. The adsorption of a neutral compound, IND, was slightly reduced with PWA impregnation in the MOF. The adsorption capacity/selectivity can be remarkably improved by a slight modification of MOFs, for example, to impart acidity. The MOF impregnated with PWA may be very interesting in commercial denitrogenation, especially for coal-derived fuels which contain mainly basic NCCs, by adsorption since the selectivity for NCCs (compared to SCCs) over the adsorbent is very high and the adsorbent can be reused many times. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A review of heavy metal adsorption by marine algae (United States)

    Pan, Jin-Fen; Lin, Rong-Gen; Ma, Li


    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.


    Institute of Scientific and Technical Information of China (English)


    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  9. Removal of heavy metals from aqueous solution by sawdust adsorption

    Institute of Scientific and Technical Information of China (English)

    BULUT Yasemin; TEZ Zeki


    The adsorption of lead, cadmium and nicel from aqueous solution by sawdust of walnut was investigated. The effect of contact time,initial metal ion concentration and temperature on metal ions removal has been studied. The equilibrium time was found to be of the order of 60 min. Kinetics fit pseudo first-order, second-order and intraparticle diffusion models, hence adsorption rate constants were calculated. The adsorption data of metal ions at temperatures of 25, 45 and 60C have been described by the Freundlich and Langmuir isotherm models. The thermodynamic parameters such as energy, entropy and enthalpy changes for the adsorption of heavy metal ions have also been computed and discussed. Ion exchange is probably one of the major adsorption mechanisms for binding divalent metal ions to the walnut sawdust. The selectivity order of the adsorbent is Pb(Ⅱ)≈Cd(Ⅱ)>Ni(Ⅱ). From these results, it can be concluded that the sawdust of walnut could be a good adsorbent for the metal ions from aqueous solutions.

  10. Adsorption and desorption of bivalent metals to hematite nanoparticles. (United States)

    Grover, Valerie A; Hu, Jinxuan; Engates, Karen E; Shipley, Heather J


    The use of commercially prepared hematite nanoparticles (37.0 nm) was studied as an adsorbent in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) from aqueous solutions. Single-metal adsorption was studied as a function of metal and adsorbent concentrations, whereas binary metal competition was found to be dependent on the molar ratio between the competing metals. Competitive effects indicated that Pb had strong homogenous affinity to the nanohematite surface, and decreased adsorption of Cd, Cu, and Zn occurred when Pb was present in a binary system. Metal adsorption strength to nanohematite at pH 6.0 increased with metal electronegativity: Pb > Cu > Zn ∼ Cd. Equilibrium modeling revealed that the Langmuir-Freundlich composite isotherm adequately described the adsorption and competitive effects of metals to nanohematite, whereas desorption was best described by the Langmuir isotherm. The desorption of metals from nanohematite was found to be pH dependent, with pH 4.0 > pH 6.0 > pH 8.0, and results showed that greater than 65% desorption was achieved at pH 4.0 within three 24-h cycles for all metals.

  11. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. (United States)

    Mills, J N; McCrum, I T; Janik, M J


    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  12. Heavy Metal Removal from Water by Adsorption Using Pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Yun; WU Pingxiao; DANG Zhi; YE Daiqi


    Removal of Cu2+, Cr3+ and Cd2+ from aqueous solutions by adsorption on montmorillonite modified by sodium dodecylsulfate (SDS) and hydroxy-alumino-silicate (HAS) was investigated.Experiments were carried out as a function of solution pH, solute concentration, and time. The Langmuir model was adopted to describe the single-solute adsorption isotherm, in which the Langmuir parameters were directly taken from those obtained in single-solute systems. The kinetics of metal ions adsorption was examined and the pseudo-first-order rate constant was finally evaluated.

  13. Adsorption behavior of heavy metals on biomaterials. (United States)

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu


    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples.

  14. Novel modified pectin for heavy metal adsorption

    Institute of Scientific and Technical Information of China (English)

    Feng Ting Li; Hong Yang; Yan Zhao; Ran Xu


    Modified pectin cross-linked with adipic acid, was synthesized and used for heavy metal removal from wastewater. SEM and FrIR were used to investigate its structure and morphology. The modified pectin had a rough, porous phase covered with carboxy groups, resulting a high adsorption capacity. And at the room temperature, the saturated loading capacity for Pb2+, Cu2+ and Zn2+ reached 1.82 mmol/g, 1.794 mmol/g and 0.964 mmol/g, respectively. The results proved its potential application to remove of the heavy metal.

  15. Heavy Metal Removal from Aqueous Solution by Adsorption on Modified Banana Shell

    Directory of Open Access Journals (Sweden)

    MR Mehrasbi


    Full Text Available Background and Objectives: Heavy Metals in Water resources is one of the most important environmental problems of countries. Up to now various methods of removing of these metals is considered, which is including using of low prices materials. In this study the potential of banana shells was assessed for adsorption of heavy metal ions such as Pb and Cd from aqueous solution. "nMaterials and Methods: Banana shells were pretreated separately with 0.4 mol/L NaOH, 0.4 mol/L HNO and distilled water and their adsorption ability were compared. Batch adsorption experiments were carried out as a function of the initial ion concentration, pH and adsorbent dosage. Adsorption isotherms of metal ions on adsorbents were determined and correlated with common isotherm equations such as Lungmuir, Freundlich and BET models."nResults: The maximum adsorption capacities were achieved by alkali modified banana shells (36 mg/g for Pb and by acidic modified banana shells (16 mg/g for Cd. Experimental results showed that the best pH for adsorption was 6 and the adsorption values decreased with lowering pH. Isotherm models indicated best fit for Freundlich model for modified banana shells."nConclusion: In comparing the parameters of models, it was observed that the capacity of banana shells for adsorption of lead is higher  than for adsorption of cadmium, but the adsorption of  cadmium is stronger than the adsorption of lead.

  16. Site characteristics in metal organic frameworks for gas adsorption (United States)

    Uzun, Alper; Keskin, Seda


    Metal organic frameworks (MOFs) are a new class of nanoporous materials that have many potential advantages over traditional nanoporous materials for several chemical technologies including gas adsorption, catalysis, membrane-based gas separation, sensing, and biomedical devices. Knowledge on the interaction of guest molecules with the MOF surface is required to design and develop these MOF-based processes. In this review, we examine the importance of identification of gas adsorption sites in MOFs using the current state-of-the-art in experiments and computational modeling. This review provides guidelines to design new MOFs with useful surface properties that exhibit desired performances, such as high gas storage capacity, and high gas selectivity.

  17. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics. (United States)

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong


    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants.

  18. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics

    Institute of Scientific and Technical Information of China (English)

    Qinghai Hu; Zhongjin Xiao; Xinmei Xiong; Gongming Zhou; Xiaohong Guan


    Although surface complexation models have been widely used to describe the adsorption of heavy metals,few studies have verified the feasibility of modeling the adsorption kinetics,edge,and isotherm data with one pH-independent parameter.A close inspection of the derivation process of Langrnuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model,Ks-kinetic,is theoretically equivalent to the adsorption constant in Langrnuir isotherm,Ks-Langmuir.The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed.The MLK model was employed to simulate the adsorption kinetics of Cu(Ⅱ),Co(Ⅱ),Cd(Ⅱ),Zn(Ⅱ) and Ni(Ⅱ) on MnO2 at pH 3.2 or 3.3 to get the values of Ks-kinetic.The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model),and the values of Ks-Langrnuir were obtained.The values of Ks-kinetic and Ks-Langrnuir are very close to each other,validating that the constants obtained by these two methods are basically the same.The MMP model with Ks-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations.Moreover,the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the Ks-kinetic constants.

  19. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid. (United States)

    Shaker, Medhat A; albishri, Hassan M


    Humic acids, HA represent a large portion of natural organic matter in soils, sediments and waters. They are environmentally important materials due to their extensive ubiquity and strong complexation ability, which can influence heavy metal removal and transportation in waters. The thermodynamics and kinetics of the adsorption of Cd(II) and Cr(VI) onto solid soil-derived HA have been investigated at optimum conditions of pH (5.5±0.1), metal concentration (10-100mmolL(-1)) and different temperatures (293-323K). The suitability of adsorption models such as Freundlich and Langmuir to equilibrium data was investigated. The adsorption was well described by Langmuir isotherm model in multi-detectable steps. Adsorption sites, i (i=A, B, C) with different capacities, νi are characterized. The stoichiometric site capacity is independent of temperature and equilibrium constant, Ki. Adsorption sites A and B are selectively occupied by Cr(VI) cations while sites A and C are selectively occupied by Cd(II) cations. The thermodynamic parameters of adsorption systems are correlated for each adsorption step. The adsorption is endothermic, spontaneous and favorable. Different kinetic models are applied and the adsorption of these heavy metals onto HA follows pseudo-second-order kinetics and equilibrium is achieved within 24h. The adsorption reaction is controlled by diffusion processes and the type of the adsorption is physical.

  20. Adsorption of Gases on Graphene and Metal Organic Frameworks (United States)

    Maiga, Sidi Mohamed

    Separation and adsorption of harmful gases from the environment are of great importance to industry and society. For this purpose, several materials are being explored. A large active surface area in the solid state candidates is an important requirement for efficient removal of gases. Owing to their large surface areas, Metal organic frameworks ( 2900 m2/g) and graphene ( 2600 m2/g), have emerged as two promising candidates for gas adsorption, separation and storage. The goal of this research is to investigate the capability of Metal Organic Frameworks and graphene for gas adsorption and separation; also to understand the properties of the molecules adsorbed on these two materials. We explore the adsorption of noble gases on graphene using Grand Canonical Monte Carlo simulations and also investigate the behavior of the monolayers on graphene. We obtain the phase diagrams of argon, krypton and xenon. We study the adsorption of carbon dioxide and methane molecules on graphene. Using Monte Carlo simulations and the Ideal Adsorb Solution Theory, we explore the selectivity of a binary mixture of CO2 and CH4 on graphene and estimate how the selectivity varies with temperature. We found high selectivity for CO2 at low temperature. At room temperature however the selectivity is low. We investigate the adsorption of CO2 and CH4 on a simplified model of the MOF-5 with systematic variations in the charge distribution, size and Lennard Jones parameters. We then test the selectivity of CO2 over CH4 and how it varies when we insert dipoles or quadrupole moments at the corners of the MOF-5. Our finding shows that the selectivity can be improved with adding dipoles or compressing the cell of the MOFs.

  1. Monte Carlo modeling of O 2 adsorption kinetics on unreconstructed fcc(1 0 0) surfaces of metals using UBI-QEP coverage-dependent energetics (United States)

    Baranov, Sergey P.; Abramova, Ludmila A.; Zeigarnik, Andrew V.; Shustorovich, Evgeny


    We have developed a Monte Carlo (MC) model of dissociative molecular oxygen adsorption on unreconstructed fcc(1 0 0) metal surfaces. The model explicitly and uniformly considers elementary steps/events including adsorption (trapping), dissociation, diffusion (hopping), recombination, and desorption. The unity bond index-quadratic exponential potential (UBI-QEP) formalism was used to calculate the energetics (atomic O and molecular O 2 binding energies, enthalpies and activation barriers), and the kinetic formalism of the MC modeling makes use of Arrhenius-type reaction rates and the Metropolis-type algorithm. The coverage-dependent UBI-QEP formalism was substantially refined, which included the use of (a) hollow sites for atomic oxygen as the only stable ones, (b) rescaling the atomic binding energies due to metal sharing A-M-A, (c) the spatial constraint k, and (d) hot atom traveling distance v. In the kinetic simulations, the preexponential factors were assumed to be proportional to the attempt frequency of the events. The explored coverage range was from 0 to 0.30 ML (monolayer), and the temperature range was from 100 to 700 K. The model makes it possible to calculate a multitude of coverage-dependent parameters of the process, in particular binding energies of molecular and atomic oxygen, the normalized O 2 sticking probability, and the amount and mutual arrangement of neighbors in an overlayer. With inclusion of very weak (0.25 ML) appears to be due to the formation of the NiO phase. The trends for the binding energies were also modeled for unreconstructed fcc(1 0 0) surfaces of Cu, Ag, and Pd. Because relevant experimental data are scarce, the model results are mostly projections to be verified by experiment.

  2. Adsorption characteristics of construction waste for heavy metals from urban stormwater runoff☆

    Institute of Scientific and Technical Information of China (English)

    Jianlong Wang; Pingping Zhang; Liqiong Yang; Tao Huang


    Stormwater runoff has become an important source of surface water pollution. Bioretention, a low impact devel-opment measure in urban stormwater management, has been proven to be effective in the removal of pol utants from stormwater runoff, with appropriate bioretention media. In this study, construction wastes were selected as bioretention media to remove heavy metals from stormwater runoff. Static and dynamic adsorption batch exper-iments were carried out to investigate the adsorption of heavy metals in simulated stormwater runoff system with construction wastes in different particle sizes. The experimental results show that the pseudo-second-order kinetic model characterizes the adsorption process and the adsorption equilibrium data are wel described by Freundlich isotherm model. The construction wastes used can remove heavy metals from stormwater runoff effectively, with their average removal rates al more than 90%. The particle size of construction wastes greatly influences the equilibrium time, rate and adsorption capacity for heavy metals.

  3. Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance. (United States)

    Xiang, Bo; Fan, Wen; Yi, Xiaowei; Wang, Zuohua; Gao, Feng; Li, Yijiu; Gu, Hongbo


    In this work, three types of dithiocarbamate (DTC)-modified starch derivatives including DTC starch (DTCS), DTC enzymolysis starch (DTCES) and DTC mesoporous starch (DTCMS) were developed, which showed the significant heavy metal adsorption performance. The adsorption ability of these three DTC modified starch derivatives followed the sequences: DTCMS>DTCES>DTCS. In single metal aqueous solutions, the uptake amount of heavy metal ions onto the modified starches obeyed the orders: Cu(II)>Ni(II)>Cr(VI)>Zn(II)>Pb(II). The adsorption mechanism was proved by the chelating between DTC groups and heavy metal ions through the pH effect measurements. A monolayer adsorption of Langmuir isotherm model for the adsorption of Cu(II) onto DTCMS was well fitted rather than the multilayer adsorption of Freundlich isotherm model. The adsorption kinetics of Cu(II) onto starch derivatives was found to be fit well with the pseudo-second-order model. Additionally, in the presence of EDTA, the adsorption ability and uptake amount of heavy metal ions onto these three DTC modified starch derivatives is identical with the results obtained in the absence of EDTA.

  4. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    Directory of Open Access Journals (Sweden)

    Jin Hur


    Full Text Available Competitive adsorption isotherms of Cu(II, Pb(II, and Cd(II were examined on a magnetic graphene oxide (GO, multiwalled carbon nanotubes (MWCNTs, and powered activated carbon (PAC. A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II > Cu(II > Cd(II, which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

  5. Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents. (United States)

    Hur, Jin; Shin, Jaewon; Yoo, Jeseung; Seo, Young-Soo


    Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II)>Cu(II)>Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO>MWCNT>PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

  6. Adsorption of heavy metal in freeway by asphalt block (United States)

    Zheng, Chaocheng


    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  7. Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces

    DEFF Research Database (Denmark)

    Jones, Glenn; Studt, Felix; Abild-Pedersen, Frank;


    Using density functional theory calculations we show that the adsorption energies for C2Hx-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws f...

  8. A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation (United States)

    Davis, J.A.; Fuller, C.C.; Cook, A.D.


    The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer. A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution. ?? 1987.

  9. Heavy metal adsorption of Streptomyces chromofuscus K101

    Institute of Scientific and Technical Information of China (English)

    Said Mohamed Daboor; Amany Mohamed Haroon; Neven Abd Elfatah Esmael; Slah Ibrahem Hanona


    Objective:To find the best actinomycete that has potential application value in the heavy metal remediation due to its special morphological and physiological metabolism. Methods: In some areas of River Nile, Egypt, a total of 67 actinomycete isolates (17 isolates from surface water and 50 from sediment) were identified. In addition, the studied area was characterized by a large amount of submerged macrophyte species Ceratophyllum demersum, one free floating species Eichhornia crassipes and two emergent species Polygonum tomentosum and Saccharum spontaneum with the highest biomass production values. Many methods are used in this research like qualitative evaluation of heavy metals, minimum inhibitory concentration of heavy metal determination, metal binding assay, heavy metal assessment, etc. Results: Many actinomycetes isolates were isolated from River Nile, Egypt, the absorbent efficiency of one isolate Streptomyces chromofuscusK101 showed the most efficient metal binding activity. The adsorption process of Zn2+, Pb2+and Fe2+single or mixture metal ions was investigated, where the order of adsorption potential ( Zn2+>Pb2+>Fe2+ ) was observed in single metal reaction. The adsorption in mixed metal reactions was the same order as in single-metal ion with a significant decrease in Fe2+and Pb2+adsorption. Conclusions: In conclusion the metal adsorption reactions were very fast, pH dependent and culture age-independent, suggestive of a physicochemical reaction between cell wall components and heavy metal ions. The absorbent removal efficiency was determined as a function of ion concentration, pH and temperature.

  10. Methods of producing adsorption media including a metal oxide (United States)

    Mann, Nicholas R; Tranter, Troy J


    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  11. Effects of heavy metal adsorption on silicene

    KAUST Repository

    Kaloni, Thaneshwor P.


    Based on first-principles calculations, we study the effects of heavy metal atoms (Au, Hg, Tl, and Pb) adsorbed on silicene. We find that the hollow site is energetically favorable in each case. We particulary address the question how the adsorption modifies the band structure in the vicinity of the Fermi energy. Our results demonstrate that the heavy metal adatoms result in substantial energy gaps and band splittings in the silicene sheet as long as the binding is strong, which, however, is not always the case. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) Carbon nanotube flexible sponge was manufactured as high performance electromagnetic shielding material. Chemical vapour deposition (CVD) synthesized sponges with extreme light weight show an electromagnetic shielding above 20 dB and a specific electromagnetic shielding as high as 1100 dB cm3g-1 in the whole 1-18 GHz range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhanced selective metal adsorption on optimised agroforestry waste mixtures. (United States)

    Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta


    The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used.

  13. Studies of gas adsorption in flexible Metal-Organic frameworks (United States)

    Sircar, Sarmishtha

    Flexible Metal-Organic frameworks that exhibit a gate-opening (GO) adsorption mechanism have potential for gas separations and gas storage. The GO phenomenon occurs when molecular gates in the structure expand/contract in response to the activation/de-activation of a system variable e.g. temperature, pressure or gas. Sharp discontinuities in the isotherm leading to S-shapes and large adsorption-desorption hysteresis are typical of this phenomenon. This study investigates the kinetics and thermodynamics of the GO behavior by combining adsorption measurements and analytical modeling of adsorption kinetics and capacity as a function of adsorbate, GO pressure, and temperature. Basic understanding of GO mechanism will help harness GO-MOF's as adsorbents for gas separations and storage. Experiments were performed on two precharacterized MOFs with verified GO behavior. These are (1) Zn2(bpdc)2(bpee), which expands from a relative amorphous to crystalline structure and (2) Cu[(dhbc) 2(4,4f-bpy)]H2O, a mutually interdigitated 2-D structure (bpdc = biphenyldicarboxylate, bpee = 1,2]bipyridylethene; DMF = N,N-dimethyl formamide, dhbc= 2,5-dihydroxybenzoic acid, bpy=bipyridine). Both sub- and super-critical adsorption data were collected using three adsorption units: a standard low-pressure volumetric adsorption unit, a commercial high-pressure gravimetric analyzer and a custom-built high-pressure differential volumetric unit. Collected laboratory data were combined with published adsorption rate and isotherm data for analysis to broaden the range of data collection. The accuracy of the high-pressure differential unit was improved by over 300-fold by changing analytical methods of processing data to establish a reliable null correction. A pronounced effect of the allowed experimental time was found at cryogenic temperatures on (1). Tightening the stability criteria used by the adsorption equipment to determine equilibration increased the experimental time from the order of


    Institute of Scientific and Technical Information of China (English)


    The interactions between metal ions such as Zn2+, Pb2+, Mn2+, Hg2+, Cd2+, Ni2+ and chitosan have been investigated using the model cluster model method and density functional method. Full optimization and frequency analysis of all cluster models have been performed employing B3LYP hybrid method at 3-21G basis set level except metal ions which were invoked to use effective core potential (ECP) method. The energy changes, and the main structural parameters have been obtained during the theoretical study of the adsorption of metal ions on the chitosan. The calculations showed that the coordination modes of metal ions with chitosan models were different, the geometries of Mn2+, Zn2+, Cd2+, Hg2+, Pb2+ ions coordinated with two nitrogen atoms and two oxygen atoms were distorted tetrahedral, while the square planar structure of Ni2+ coordinated two nitrogen atoms and two oxygen atoms was observed. The heat of reaction between six metal ions and chitosan models showed the order: Mn2+ >Ni2+ >Zn2+ >Pb2+ >Hg2+ >Cd2+, this suggested that the coordination strength of Mn2+ >Ni2+ >Zn2+ >Pb2+ >Hg2+ >Cd2+.

  15. Description of adsorption of hydrophobic organic compounds on sediment using multi-component adsorption model

    Institute of Scientific and Technical Information of China (English)


    A chemical sequential separation procedure for sediment bas been developed for the adsorptive investigation of hydrophobic organic compounds(HOCs) including four fractions: carbonate, hydrous metallic oxide(ferric oxide, manganese oxide and alumina), clay and organic matter. Adsorption isotherms of these hydrophobic solute probes, such as hexachloroethane, lindane and 1,2,4,5-tetrachlorobenzene were measured for model sorbents, model and natural sediment, and the latter of which was pretreated with the simplified sequential separation method. The linear and Langmuir models are applied to correlate the experimental data of humic substance and other model sorbents respectively. Multi-component Adsorptive Model (MCAM) was used to simulate adsorption isotherms of model and natural sediment. The results reveal that( 1 ) the separation efficiencies of carbonate, organic matter, ferric oxide, manganese oxide and alumina are 98. 1 % , 72.5% ,82.6%, 93.5% and 83.3%, respectively; (2) except for removing metallic oxide, the external structure of sediment is not changed greatly after separation; (3) the MCAM correlates the data of adsorption isotherm rather well with the maximal relative deviations of 9.76 % , 6.78 %and 9.53% for hexachloroethane, lindane and 1,2,4,5-tetrachlorobenaze in model sediment, respectively. The MCAM can clearly give expression to the different adsorptive mechanisms for HOCs in organic and inorganic matter, though the experimental data in each component are not very accurate due to the sequential separation efficiency.

  16. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles. (United States)

    Yen, Chia-Hsin; Lien, Hsing-Lung; Chung, Jung-Shing; Yeh, Hund-Der


    Magnetic nanoparticles modified by third-generation dendrimers (MNP-G3) and MNP-G3 further modified by ethylenediaminetetraacetic acid (EDTA) (MNP-G3-EDTA) were conducted to investigate their ability for recovery of precious metals (Pd(IV), Au(III), Pd(II) and Ag(I)) in water. Experiments were carried out using batch reactors for the studies of adsorption kinetics, adsorption isotherms, competitive adsorption and regeneration. The pseudo second-order model is the best-fit model among others suggesting that the adsorption of precious metals by MNP-G3 in water is a chemisorption process. Three adsorption isotherms namely Langmuir, Freundlich and Dubinin-Radushkevich isotherm were examined and the results showed the similarities and consistency of both linear and nonlinear analyses. Pd(IV) and Au(III) with higher valence exhibited relatively better adsorption efficiency than Pd(II) and Ag(I) with lower valence suggesting that the adsorption of precious metals by MNP-G3 is a function of valence. In the presence of the competing ion Zn(II), the adsorption efficiency of MNP-G3 for all four precious metals was declined significantly. The use of MNP-G3-EDTA revealed an increase in the adsorption efficiency for all four precious metals. However, the low selectivity of MNP-G3 towards precious metals was not enhanced by the modification of EDTA onto the MNP-G3. The regeneration of metal-laden MNP-G3 can be readily performed by using 1.0% HCl solution as a desorbent solution.

  17. Adsorptive

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Gupta


    Full Text Available This work explores the feasibility of natural fibers derived from Ficus carica plant as an alternative precursor for the preparation of activated carbon via microwave assisted H3PO4 activation. The properties of activated carbon were investigated by scanning electron microscope (SEM and Fourier transform spectroscopy (FTIR. The operational parameters, chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were investigated. Adsorption performance of Cu(II and Ni(II onto activated carbon was investigated as a function of pH, contact time, initial metal ion concentration and temperature. The adsorption capacity of Cu(II and Ni(II onto the adsorbent was found to be 23.08 and 18.78 mg/g, respectively. Adsorption of metal ions followed second order kinetics with best fit for Fraundlich adsorption isotherm. The values of thermodynamic parameters such as enthalpy change (ΔH°, entropy change (ΔS° and free energy change (ΔG° were evaluated for the adsorption of both the metal ions. Adsorption of metal ions onto activated carbon was spontaneous and endothermic in nature. The results suggested that activated carbon developed from natural fibers successfully improved the metal ions adsorption capacity. On the basis of our findings, the adsorbent could be used as a detoxifying agent for better management of industrial effluents.

  18. CO{sub 2} Adsorption in Metal-organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun; Kim, Hee-Young; Ahn, Wha-Seung [Inha University, Incheon (Korea, Republic of)


    Metal organic frameworks (MOFs) are a class of crystalline organic-inorganic hybrid compounds formed by coordination of metal clusters or ions with organic linkers. MOFs have recently attracted intense research interest due to their permanent porous structures, large surface areas and pore volume, high-dispersed metal species, and potential applications in gas adsorption, separation, and catalysis. CO{sub 2} adsorption in MOFs has been investigated in two areas of CO{sub 2} storage at high pressures and CO{sub 2} adsorption at atmospheric pressure conditions. In this short review, CO{sub 2} adsorption/separation results using MOFs conducted in our laboratory was explained in terms of four contributing effects; (1) coordinatively unsaturated open metal sites, (2) functionalization, (3) interpenetration/catenation, and (4) ion-exchange. Zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs) were also considered as a candidate material.

  19. Adsorption of heavy metal from landfill leachate by wasted biosolids

    African Journals Online (AJOL)



    Dec 16, 2011 ... Key words: Adsorption, biomass waste, heavy metal, synthetic water, leachate. INTRODUCTION ... Gadd, 1993; White et al., 1997). There is also ..... The performance of natural clay as a barrier to the diffusion of municipal ...

  20. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption. (United States)

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui


    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  1. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.


    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  2. Phonons on the clean metal surfaces and in adsorption structures (United States)

    Rusina, Galina G.; Chulkov, Evgenii V.


    The state-of-the-art studies of the vibrational dynamics of clean metal surfaces and metal surface structures formed upon the sub-monolayer adsorption of the atoms of various elements are considered. A brief historical survey of the milestones of investigations of surface phonons is presented. The results of studies of the atomic structure and vibration characteristics of surfaces with low and high Miller indices and adsorption structures are analyzed. It is demonstrated that vicinal surfaces of FCC metals tend to exhibit specific vibrational modes located on the step and polarized along the step. Irrespective of the type and position of adsorption or the substrate structure, the phonon spectra of sub-monolayer adsorption structures always tend to display two modes for combined translational displacements of adatoms and for coupled vibrations of substrate atoms and adatoms polarized in the direction normal to the surface. The bibliography includes 202 references.

  3. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G


    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  4. Heavy metal adsorption of Streptomyces chromofuscus K101

    Directory of Open Access Journals (Sweden)

    Said Mohamed Daboor


    Full Text Available Objective: To find the best actinomycete that has potential application value in the heavy metal remediation due to its special morphological and physiological metabolism. Methods: In some areas of River Nile, Egypt, a total of 67 actinomycete isolates (17 isolates from surface water and 50 from sediment were identified. In addition, the studied area was characterized by a large amount of submerged macrophyte species Ceratophyllum demersum, one free floating species Eichhornia crassipes and two emergent species Polygonum tomentosum and Saccharum spontaneum with the highest biomass production values. Many methods are used in this research like qualitative evaluation of heavy metals, minimum inhibitory concentration of heavy metal determination, metal binding assay, heavy metal assessment, etc. Results: Many actinomycetes isolates were isolated from River Nile, Egypt, the absorbent efficiency of one isolate Streptomyces chromofuscusK101 showed the most efficient metal binding activity. The adsorption process of Zn2+ , Pb2+ and Fe 2+ single or mixture metal ions was investigated, where the order of adsorption potential ( Zn2+ >Pb2+ >Fe 2+ was observed in single metal reaction. The adsorption in mixed metal reactions was the same order as in single-metal ion with a significant decrease in Fe 2+ and Pb2+ adsorption. Conclusions: In conclusion the metal adsorption reactions were very fast, pH dependent and culture age-independent, suggestive of a physicochemical reaction between cell wall components and heavy metal ions. The absorbent removal efficiency was determined as a function of ion concentration, pH and temperature.

  5. Adsorption affinity of anions on metal oxyhydroxides (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.


    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  6. Modelling and Interpretation of Adsorption Isotherms

    Directory of Open Access Journals (Sweden)

    Nimibofa Ayawei


    Full Text Available The need to design low-cost adsorbents for the detoxification of industrial effluents has been a growing concern for most environmental researchers. So modelling of experimental data from adsorption processes is a very important means of predicting the mechanisms of various adsorption systems. Therefore, this paper presents an overall review of the applications of adsorption isotherms, the use of linear regression analysis, nonlinear regression analysis, and error functions for optimum adsorption data analysis.

  7. Removal of Heavy Metals in Effluent by Adsorption and Coagulation

    Institute of Scientific and Technical Information of China (English)

    Feng Ting LI; Xia LI; Bing Ru ZHANG; Qing Hua OUYANG


    The silicate colloids with an average diameter 100 nm, were prepared by the hydrolysis of tetraethoxysilane (TES), NH4OH (30%) and then modified by (3-mercaptopropyl) trimethoxysilane ( APS). The colloids can adsorb heavy metals such as Pb and Cr in effluent and after adsorption the colloids can be separated by coagulation of aluminum sulfate. The removal of heavy metals is up to 99%.

  8. Adsorptive removal of nitrogen-containing compounds from fuel by metal-organic frameworks

    Institute of Scientific and Technical Information of China (English)

    Zhaoyang; Wang; Zhiguo; Sun; Linghao; Kong; Gang; Li


    The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,quinoline and indole were used as model NCCs in fuels to study the adsorption mechanism.The physicochemical properties of the adsorbents were characterized by XRD,N2physical adsorption,FT-IR spectrum and Hammett indicator method.The metal-organic frameworks(MOFs),especially the MIL-101(Cr)containing Lewis acid sites as well as high specific surface area,can adsorb large quantities of NCCs from fuels.In addition,the adsorptive capacity over MIL-101(Cr)will be different for NCCs with different basicity.The stronger basicity of the NCC is,the more it can be absorbed over MIL-101(Cr).Furthermore,pore size and shape also affect the adsorption capacity for a given adsorbate,which can be proved by the adsorption over MIL-53(Al)and MIL-96(Al).The pseudo-second-order kinetic model and Langmuir equation can be used to describe kinetics and thermodynamics of the adsorption process,respectively.Finally,the regeneration of the used adsorbent has been conducted successfully by just washing it with ethanol.

  9. Adsorption of valuable metals from leachates of mobile phone wastes using biopolymers and activated carbon. (United States)

    Zazycki, Maria A; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L


    In this work, chitin (CTN), chitosan (CTS) and activated carbon (AC) were used as adsorbents to recover valuable metals from leachates of mobile phone wastes. The mobile phone wastes (contactors) were collected and characterized. The valuable metals were extracted by thiourea leaching. The adsorption of valuable metals from leachates was studied according to the kinetic and equilibrium viewpoints. It was found that the contactors were composed by Au, Ni, Cu and Sn. The thiourea leaching provided extraction percentages of 68.6% for Au, 22.1% for Ni and 2.8% for Cu. Sn was not extracted. The leachate presented 17.5 mg L(-1) of Au, 324.9 mg L(-1) of Ni and 573.1 mg L(-1) of Cu. The adsorption was fast, being the equilibrium attained within 120 min. The adsorption of Au, Ni and Cu onto CTN and AC followed the Langmuir model, while, the adsorption of these metals onto CTS, followed the Freundlich model. Removal percentages higher than 95% were obtained for all metals, depending of the type and amount of adsorbent. It was demonstrated that the adsorption onto chitin, chitosan and activated carbon can be an alternative to recover valuable metals from leachates of mobile phone wastes.

  10. Effect of metal adatoms on hydrogen adsorption properties of phosphorene (United States)

    Yu, Zhiyuan; Lei, Shuangying; Wan, Neng; Luan, Shan; Shen, Haiyun; Yu, Hong


    Based on first-principles density functional theory, we have investigated hydrogen storage on metal adatoms decorated phosphorene. Almost all metals including alkali, alkaline, 3d, 4d and 5d transition metals (TM) as well as post-TMs are considered to decorate phosphorene, and most metals exhibit an enhancement of H2 adsorption energy (E a), except for Zn, Cd, Hg, and all post-TMs. Nine metals show ideal Ea within the energy window 0.2-0.6 eV/H2 for practical application purposes. Among them, Li, Sc, Ti, Y, Zr, and La exhibit superior adsorption abilities of 3-5 H2 per adatom. Based on local density of states and Barder analyses, underlying mechanisms of interaction between phosphorene, metal, and H2 are also discussed.

  11. Cell surface engineering of microorganisms towards adsorption of heavy metals. (United States)

    Li, Peng-Song; Tao, Hu-Chun


    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  12. Water adsorption on goethite: Application of multilayer adsorption models (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.


    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  13. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Studt, Felix


    with the adsorption energy of the central, C, N, O, or S atom, the scaling constant depending only on x. A model is proposed to understand this behavior. The scaling model is developed into a general framework for estimating the reaction energies for hydrogenation and dehydrogenation reactions.......Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately...

  14. Hydrogen Adsorption by Alkali Metal Graphite Intercalation Compounds (United States)

    Purewal, Justin

    Adsorption occurs whenever a solid surface is exposed to a gas or liquid, and is characterized by an increase in fluid density near the interface. Adsorbents have drawn attention in the current effort to engineer materials that store hydrogen at high densities within moderate temperature and pressure regimes. Carbon adsorbents are a logical choice as a storage material due to their low costs and large surface areas. Unfortunately, carbon adsorbents suffer from a low binding enthalpy for H2 (about 5 kJ mol-1), well below the 15 to 18 kJ mol-1) that is considered optimal for hydrogen storage systems. Binding interactions can be increased by the following methods: (1) adjusting the graphite interplanar separation with a pillared structure, and (2) introducing dopant species that interact with H2 molecules by strong electrostatic forces. Graphite intercalation compounds are a class of materials that contain both pillared structures and chemical dopants, making them an excellent model system for studying the fundamentals of hydrogen adsorption in nanostructured carbons. Pressure-composition-temperature diagrams of the MC24(H 2)x graphite intercalation compounds were measured for M = (K, Rb, Cs). Adsorption enthalpies were measured as a function of H2 concentration. Notably, CsC24 had an average adsorption enthalpy of 14.9 kJ mol-1), nearly three times larger than that of pristine graphite. The adsorption enthalpies were found to be positively correlated with the alkali metal size. Adsorption capacities were negatively correlated with the size of the alkali metal. The rate of adsorption is reduced at large H2 compositions, due to the effects of site-blocking and correlation on the H2 diffusion. The strong binding interaction and pronounced molecular-sieving behavior of KC24 is likely to obstruct the translational diffusion of adsorbed H2 molecules. In this work, the diffusion of H2 adsorbed in KC24 was studied by quasielastic neutron scattering measurements and molecular

  15. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes. (United States)

    Li, Qiang; Chen, Bo; Lin, Peng; Zhou, Jiali; Zhan, Juhong; Shen, Qiuying; Pan, Xuejun


    The root powder of long-root Eichhornia crassipes, as a new kind of biodegradable adsorbent, has been tested for aqueous adsorption of Pb, Zn, Cu, and Cd. From FT-IR, we found that the absorption peaks of phosphorous compounds, carbonyl, and nitrogenous compounds displayed obvious changes before and after adsorption which illustrated that plant characteristics may play a role in binding with metals. Surface properties and morphology of the root powders have been characterized by means of SEM and BET. Energy spectrum analysis showed that the metals were adsorbed on root powders after adsorption. Then, optimum quantity of powder, pH values, and metal ion concentrations in single-system and multi-system were detected to discuss the characteristics and mechanisms of metal adsorption. Freundlich model and the second-order kinetics equation could well describe the adsorption of heavy metals in single-metal system. The adsorption of Pb, Zn, and Cd in the multi-metal system decreased with the concentration increased. At last, competitive adsorption of every two metals on root powder proved that Cu and Pb had suppressed the adsorption performance of Cd and Zn.

  16. Heterogeneity of Adsorption Sites and Adsorption Kinetics of n-Hexane on Metal-Organic Framework MIL-101(Cr)

    Institute of Scientific and Technical Information of China (English)

    Xuejiao Sun; Jinpeng Miao; Jing Xiao; Qibin Xia⁎; Zhenxia Zhao


    abstract The heterogeneity of adsorption sites and adsorption kinetics of n-hexane on a chromium terephthalate-based metal-organic framework MIL-101(Cr) were studied by gravimetric method and temperature-programmed de-sorption (TPD) experiments. The MIL-101 crystals were synthesized by microwave irradiation method. The ad-sorption isotherms and kinetic curves of n-hexane on the MIL-101 were measured. Desorption activation energies of n-hexane from the MIL-101 were estimated by TPD experiments. The results showed that equilibrium amount of n-hexane adsorbed on the MIL-101 was up to 5.62 mmol·g-1 at 298 K and 1.6 × 104 Pa, much higher than that of some activated carbons, zeolites and so on. The isotherms of n-hexane on the MIL-101 could be wel fitted with Langmuir-Freundlich model. TPD spectra exhibit two types of adsorption sites on the MIL-101 with desorption activation energies of 39.41 and 86.69 kJ·mol-1. It reflects the surface energy heterogeneity on the MIL-101 frameworks for n-hexane adsorption. The diffusion coefficients of n-hexane are in the range of (1.35-2.35) × 10-10 cm2·s-1 with adsorption activation energy of 16.33 kJ·mol-1. © 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  17. Gas adsorption on metal-organic frameworks (United States)

    Willis, Richard R [Cary, IL; Low, John J. , Faheem, Syed A.; Benin, Annabelle I [Oak Forest, IL; Snurr, Randall Q [Evanston, IL; Yazaydin, Ahmet Ozgur [Evanston, IL


    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  18. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)


    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  19. Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yu Li Huang


    Full Text Available Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc and Zn-phthalocyanine (ZnPc on Au(111 and Ag(111 surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111 are exclusively due to Pauli pushback. On Ag(111, we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states.

  20. Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lasheen, M.R., E-mail: [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Sherif, Iman Y., E-mail: [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); Tawfik, Magda E., E-mail: [Polymers and Pigments Department, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Wakeel, S.T., E-mail: [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Shahat, M.F., E-mail: [Faculty of Science, Ain Shams University, Khalifa El-Maamon St., Abbasiya Sq., 11566, Cairo (Egypt)


    Highlights: • Nano magnetite–chitosan films were prepared by casting method. • The efficiency of the prepared films for removing heavy metals was investigated. • The adsorption mechanism was studied using different isotherm and kinetic models. • Films reuse and metals recovery were studied. - Abstract: Nano magnetite chitosan (NMag–CS) film was prepared and characterized with different analytical methods. X-ray diffraction (XRD) patterns confirmed the formation of a pure magnetite structure and NMag–CS nanocomposite. TEM image of the film, revealed the uniform dispersion of magnetite nanoparticles inside chitosan matrix. The adsorption properties of the prepared film for copper, lead, cadmium, chromium and nickel metal ions were evaluated. Different factors affecting the uptake behavior by the composite films such as time, initial pH and film dose were investigated. The adsorption equilibrium attained using 2 g/L of the film after 120 min of reaction. The equilibrium data were analyzed using Langmuir and Freundlich models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all metals. The metals regenerated from films with an efficiency greater than 95% using 0.1 M ethylene diamine tetra acetic acid (EDTA) and films were successfully reused for adsorption.

  1. Adsorption

    Directory of Open Access Journals (Sweden)

    Denis J.L. Guerra


    Full Text Available Nontronite is an important phyllosilicate with a high concentration of ferric iron in the octahedral layer. A new occurrence of Brazilian nontronite sample was used for the organofunctionalization process with 3-aminopropyltriethoxysilane. Due to the increment of basic centers attached to the pendant chains, the metal adsorption capability of the final chelating material, was found to be higher than its precursor. The ability of these materials to remove Pb2+, Mn2+, and Zn2+ from aqueous solutions was followed by a series of adsorption isotherms at room temperature and pH 6.0, in batch adsorption experiments in order to explain the adsorption mechanism. In order to evaluate the phyllosilicate samples as adsorbents in a dynamic system, a glass column was fulfilled with nontronite samples (1.5 g and it was fed with 2.1 mmol dm−3 divalent cations at pH 6.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. The effects of three divalent metals adsorption in the zero point of charge of each material were investigated.

  2. Selective gas adsorption and separation in metal-organic frameworks. (United States)

    Li, Jian-Rong; Kuppler, Ryan J; Zhou, Hong-Cai


    Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal-organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

  3. Hydrogen adsorption in metal-decorated silicon carbide nanotubes (United States)

    Singh, Ram Sevak; Solanki, Ankit


    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  4. Relationship between breakthrough curve and adsorption isotherm of Ca(II) imprinted chitosan microspheres for metal adsorption

    Institute of Scientific and Technical Information of China (English)

    Yangcheng Lu; Jing He; Longwen Wu; Guangsheng Luo


    In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(II) imprinted chitosan (Ca(II)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(II)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(II)-CS microspheres from breakthrough curve was fulfilled by model ing calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with smal/uniform size and fast adsorption kinetics like Ca(II)-CS microspheres to cut down the gap between lab and industry.

  5. Competitive adsorption of dyes and heavy metals on zeolitic structures. (United States)

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A


    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Removal of heavy metals through adsorption using sand

    Institute of Scientific and Technical Information of China (English)


    The removal of four heavy metals i.e. Pb, Cr, Cu, and Zn from their aqueous solutions, using ordinary sand as an adsorbent, was studied at 20oC. The amount of metal adsorbed to form monolayer on sand(am), obtained from Langmuir isotherm, exhibited the preference of metals for sand in the order Pb>Cr>Cu>Zn. The heavy metal-sand adsorption phenomena can be illustrated on the basis of the interaction between surface functional group of silicates (sand) and the metal ions. It is deduced that sand can be used as a low cost adsorbent for the removal of heavy metal from wastewater (containing low conc. of metals), especially in the developing countries.

  7. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong


    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  8. Adsorption of enterobactin to metal oxides and the role of siderophores in bacterial adhesion to metals. (United States)

    Upritchard, Hamish G; Yang, Jing; Bremer, Philip J; Lamont, Iain L; McQuillan, A James


    The potential contribution of chemical bonds formed between bacterial cells and metal surfaces during biofilm initiation has received little attention. Previous work has suggested that bacterial siderophores may play a role in bacterial adhesion to metals. It has now been shown using in situ ATR-IR spectroscopy that enterobactin, a catecholate siderophore secreted by Escherichia coli, forms covalent bonds with particle films of titanium dioxide, boehmite (AlOOH), and chromium oxide-hydroxide which model the surfaces of metals of significance in medical and industrial settings. Adsorption of enterobactin to the metal oxides occurred through the 2,3-dihydroxybenzoyl moieties, with the trilactone macrocycle having little involvement. Vibrational modes of the 2,3-dihydroxybenzoyl moiety of enterobactin, adsorbed to TiO(2), were assigned by comparing the observed IR spectra with those calculated by the density functional method. Comparison of the observed adsorbate IR spectrum with the calculated spectra of catecholate-type [H(2)NCOC(6)H(3)O(2)Ti(OH)(4)](2-) and salicylate-type [H(2)NCOC(6)H(3)O(2)HTi(OH)(4)](2-) surface complexes indicated that the catecholate type is dominant. Analysis of the spectra for enterobactin in solution and that adsorbed to TiO(2) revealed that the amide of the 2,3-dihydroxybenzoylserine group reorientates during coordination to surface Ti(IV) ions. Investigation into the pH dependence of enterobactin adsorption to TiO(2) surfaces showed that all 2,3-dihydroxybenzoyl groups are involved. Infrared absorption bands attributed to adsorbed enterobactin were also strongly evident for E. coli cells attached to TiO(2) particle films. These studies give evidence of enterobactin-metal bond formation and further suggest the generality of siderophore involvement in bacterial biofilm initiation on metal surfaces.

  9. From Electronic Structure to Catalytic Activity: A Single Descriptor for Adsorption and Reactivity on Transition-Metal Carbides

    DEFF Research Database (Denmark)

    Vojvodic, A.; Hellman, Anders; Ruberto, C.


    Adsorption and catalytic properties of the polar (111) surface of transition-metal carbides (TMC's) are investigated by density-functional theory. Atomic and molecular adsorption are rationalized with the concerted-coupling model, in which two types of TMC surface resonances (SR's) play key roles...

  10. Mechanistic understanding and performance of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and adsorption isotherms modeling, alkali and alkaline metal displacement and EDX analysis (United States)

    The performance and mechanism of the sorptive removal of Ni2+ and Zn2+ from aqueous solution using grapefruit peel (GFP) as a new sorbent was investigated. The sorption process was fast, equilibrium was established in 60 min. The equilibrium process was described well by the Langmuir isotherm model,...

  11. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling (United States)

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul


    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  12. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen


    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.


    Energy Technology Data Exchange (ETDEWEB)

    Jenks, Jeromy WJ; TeGrotenhuis, Ward E.; Motkuri, Radha K.; Paul, Brian; McGrail, B. Peter


    Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years due to their potential applications in energy storage and gas separation. However, there have been few reports on MOFs for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems. Adsorption cooling is an excellent alternative in industrial environments where waste heat is available. Applications also include hybrid systems, refrigeration, power-plant dry cooling, cryogenics, vehicular systems and building HVAC. Adsorption based cooling and refrigeration systems have several advantages including few moving parts and negligible power consumption. Key disadvantages include large thermal mass, bulkiness, complex controls, and low COP (0.2-0.5). We explored the use of metal organic frameworks that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. An adsorption chiller based on MOFs suggests that a thermally-driven COP>1 may be possible with these materials, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Computational fluid dynamics combined with a system level lumped-parameter model have been used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. In addition, a cost model has been developed to project manufactured cost of entire systems. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Presented herein are computational and experimental results for hydrophyilic MOFs, fluorophilic MOFs and also flourophilic Covalent-organic frameworks (COFs).

  14. Metal induced amino acid adsorption on nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia M., E-mail: [Research Center for the Remediation of Soil and Ground Water Pollution, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Jalbout, Abraham F. [Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora C.P., 83000 Mexico (Mexico)


    In this work we detail the mechanism by which alkali metal encapsulation inside an armchair (9,9) single walled carbon nanotube (SWNT) can affect external amino acid interactions. Based on our analysis, several configurations revealed that the physical properties of the SWNT systems are modified by using an internally situated Li atom. Density-functional theory calculations reveal that the most favorable interactions of the SWNT system is with tryptophan, threonine and proline that can be directly correlated to the backbone geometry of the amino acid species.

  15. Thermodynamic Profile of Some Heavy Metal Ions Adsorption Onto Biomaterial Surfaces

    Directory of Open Access Journals (Sweden)

    Medhat A. Shaker


    Full Text Available The adsorption of Co2+, Zn2+, Pb2+ and Hg2+ onto dried non-living biomass (NB of different Pseudomonas strains has been investigated in detail. Maximum adsorption of these cations is achieved at optimum pH values from 3.5 to 4.5 to avoid hydrolysis, polymerization and precipitation of metal cations in the treatment solutions. The experimental data obtained at different temperatures were fitted to the Langmuir model at different temperatures from 283 to 323 K. Metal ions adsorption occurs in multi detectable steps (i=A, B, C. Binding of Pb(II to NB occurs in one detectable step labeled A, where two detectable binding steps were observed for the other cations; A and B for Zn(II, A and C for Co(II, B and C for Hg(II, respectively. Site capacities, υi are found to be temperature-independent in the whole investigated temperature range. The thermodynamic parameters (∆Hi, ∆Si and ∆Gi for the adsorption processes were calculated for each binding step i and the results suggest that the nature of adsorption is endothermic and the process is spontaneous and favorable. Thermodynamic data pairs (∆Hi , ∆Si for metal binding are linearly correlated for all sites in the investigated biosorption systems.

  16. A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces. (United States)

    Rudrake, Amit; Karan, Kunal; Horton, J Hugh


    To investigate asphaltene-metal interactions, a combined quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS) study of asphaltene adsorption on a gold surface was conducted. Adsorption experiments were conducted at 25 degrees C with solutions of asphaltenes in toluene at concentrations ranging from 50 to 1500 ppm. QCM measurements yielded information on the kinetics of adsorption and further assessment of the data allowed the estimation of equilibrium adsorption levels. XPS analysis of adsorbed and bulk asphaltene demonstrated the presence of carboxylic, thiophenic, sulfide, pyridinic and pyrrolic type functional groups. The intensity of the main carbon (C-H) peak was related to surface coverage of adsorbed asphaltene as a function of asphaltene concentration by a simple mathematical model. The mass adsorption data from the QCM experiments also allowed estimation of the surface coverage, which was compared to those from XPS analyses. Surface coverage estimates as a function of asphaltene concentration could be described by a Langmuir (type-I) isotherm. The free energy of asphaltene adsorption was estimated to be -26.8+/-0.1 and -27.3+/-0.1 kJ/mol from QCM and XPS data, respectively assuming asphaltene molar mass of 750 g/gmol. QCM and XPS data was also analyzed to estimate adsorbed layer thickness after accounting for surface coverage. The thickness of the adsorbed asphaltene estimated from both XPS and QCM data analyses ranged from 6-8 nm over the entire range of adsorption concentrations investigated.

  17. Tuning of gate adsorption: modification of a flexible metal-organic framework by secondary organic ligands. (United States)

    Kondo, Atsushi; Fujii, Takuro; Maeda, Kazuyuki


    For realizing selective adsorption of targeted molecules, a flexible metal-organic framework (MOF) was modified with monodentate secondary ligands. Although the modified MOF retains CO2 adsorptivities with a vertical adsorption uptake, the material also shows gate adsorptivities of a specific gas molecule that the pristine MOF does not adsorb.

  18. Surface modification of glass beads with glutaraldehyde: Characterization and their adsorption property for metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Mustafa; Can, Keziban; Akin, Ilker; Arslan, Gulsin [Department of Chemistry, Selcuk University, 42031, Konya (Turkey); Tor, Ali, E-mail: [Department of Environmental Engineering, Selcuk University, Engineering Faculty, Campus, 42031, Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Department of Chemistry, Selcuk University, 42031, Konya (Turkey)


    In this study, a new material that adsorbs the metal ions was prepared by modification of the glass beads surfaces with glutaraldehyde. First, the glass beads were etched with 4 M NaOH solution. Then, they were reacted with 3-aminopropyl-triethoxysilane (APTES). Finally, silanized glass beads were treated with 25% of glutaraldehyde solution. The characterization studies by using Fourier Transform Infrared Spectroscopy (FT-IR), Thermal Gravimetric Analysis (TGA), elemental analysis and Scanning Electron Microscopy (SEM) indicated that modification of the glass bead surfaces was successfully performed. The adsorption studies exhibited that the modified glass beads could be efficiently used for the removal of the metal cations and anion (chromate ion) from aqueous solutions via chelation and ion-exchange mechanisms. For both Pb(II) and Cr(VI), selected as model ions, the adsorption equilibrium was achieved in 60 min and adsorption of both ions followed the second-order kinetic model. It was found that the sorption data was better represented by the Freundlich isotherm in comparison to the Langmuir and Redlich-Peterson isotherm models. The maximum adsorption capacities for Pb(II) and Cr(VI) were 9.947 and 11.571 mg/g, respectively. The regeneration studies also showed that modified glass beads could be re-used for the adsorption of Pb(II) and Cr(VI) from aqueous solutions over three cycles.

  19. Modelling and simulation of affinity membrane adsorption. (United States)

    Boi, Cristiana; Dimartino, Simone; Sarti, Giulio C


    A mathematical model for the adsorption of biomolecules on affinity membranes is presented. The model considers convection, diffusion and adsorption kinetics on the membrane module as well as the influence of dead end volumes and lag times; an analysis of flow distribution on the whole system is also included. The parameters used in the simulations were obtained from equilibrium and dynamic experimental data measured for the adsorption of human IgG on A2P-Sartoepoxy affinity membranes. The identification of a bi-Langmuir kinetic mechanisms for the experimental system investigated was paramount for a correct process description and the simulated breakthrough curves were in good agreement with the experimental data. The proposed model provides a new insight into the phenomena involved in the adsorption on affinity membranes and it is a valuable tool to assess the use of membrane adsorbers in large scale processes.


    Directory of Open Access Journals (Sweden)

    S. Arivoli, M. Hema, C. Barathiraja


    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste and treated by acid was tested for its efficiency in removing metal ions of Fe(II, Co(II and Ni(II. The process parameters studied included agitation time, initial metal ion concentration, carbon dosage, pH, other ions and temperature. The kinetics of adsorption followed first order reaction equation and the rate was mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity obtained from the Langmuir isotherm plots was found around 28mg/g for all selected metal ions at an initial pH of 6. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying pH of the metal ion solutions. The type I and II isotherms obtained, positive H0 values, pH dependent results and desorption of metal ions in mineral acid suggests that the adsorption of metal ions on this type of adsorbent involves both chemisorption and physical adsorption mechanisms.

  1. CO adsorption on metal-oxide surfaces doped with transition-metal adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, Janne; Lehman, Lauri; Salo, Petri [Department of Applied Physics, Aalto University, FI-00076 Aalto (Finland)


    Using first principles density functional theory calculations, we have studied the adsorption of carbon monoxide (CO) on clean, Ag and Pd doped MgO(001), TiO{sub 2}(110), and {alpha}-Al{sub 2}O{sub 3}(0001) surfaces. Our results show that adsorption of CO on the clean surfaces is generally weak. Ag doping improves the adsorption only weakly, except on the TiO{sub 2} surface. The presence of Pd, however, significantly improves adsorption on all the surfaces studied. On the doped surfaces, the best adsorption sites are always the sites on top of the transition metal adatom, and the interaction range is 3-4 Aa around an isolated adatom. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Heavy metals adsorption in luvisols and cambisols of Paraíba State

    Directory of Open Access Journals (Sweden)

    Iêde de Brito Chaves


    Full Text Available The adsorption of heavy metal can be evaluated by mathematical model described by Langmuir equation. The objective of this study was to evaluate copper and cadmium adsorption in surface samples of Luvisols and Cambisols from Paraíba State, Brazil. In order to quantify these adsorbed elements, 2 g of air-dried soil were equilibrated with 20 mL of solution containing different concentration of Cu (5, 10, 20, 40, 60, 80 mg L-1 and of Cd (20, 30, 50, 100, 150 e 200 mg L-1. The study showed that Langmuir model offered a good fit for Cu and Cd; the soil properties evaluated not correlated with parameters of adsorption of copper and cadmium; Luvisols e Cambisol adsorbs more cadmium and copper, respectively. In both soil cadmium is more easily lost.Key-words: copper, cadmium, mathematical model, environmental impact.

  3. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models (United States)

    Kloutse, A. F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M.


    Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric-volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin-Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal-organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models' prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg-1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.

  4. Theoretical study of the adsorption of benzene on coinage metals

    Directory of Open Access Journals (Sweden)

    Werner Reckien


    Full Text Available The adsorption of benzene on the M(111, M(100 and M(110 surfaces of the coinage metals copper (M = Cu, silver (M = Ag and gold (M = Au is studied on the basis of density functional theory (DFT calculations with an empirical dispersion correction (D3. Variants of the Perdew–Burke–Ernzerhof functionals (PBE, RPBE and RevPBE in combination with different versions of the dispersion correction (D3 and D3(BJ are compared. PBE-D3, PBE-D3(BJ and RPBE-D3 give similar results which exhibit a good agreement with experimental data. RevPBE-D3 and RevPBE-D3(BJ tend to overestimate adsorption energies. The inclusion of three-center terms (PBE-D3(ABC leads to a slightly better agreement with the experiment in most cases. Vertical adsorbate–substrate distances are calculated and compared to previous theoretical results. The observed trends for the surfaces and metals are consistent with the calculated adsorption energies.

  5. Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. (United States)

    Yang, Qingyuan; Zhong, Chongli


    Recent experimental investigations show that the open metal sites may have a favorable impact on the hydrogen adsorption capacity of metal-organic frameworks (MOFs); however, no definite evidence has been obtained to date and little is known on the interactions between hydrogen and the pore walls of this kind of MOFs. In this work, a combined grand canonical Monte Carlo simulation and density functional theory calculation is performed on the adsorption of hydrogen in MOF-505, a recently synthesized MOF with open metal sites, to provide insight into molecular-level details of the underlying mechanisms. This work shows that metal-oxygen clusters are preferential adsorption sites for hydrogen, and the strongest adsorption of hydrogen is found in the directions of coordinatively unsaturated open metal sites, providing evidence that the open metal sites have a favorable impact on the hydrogen sorption capacity of MOFs. The storage capacity of hydrogen of MOF-505 at room temperature and moderate pressures is predicted to be low, in agreement with the outcome for hydrogen physisorption in other porous materials.

  6. Kinetics comparison on simultaneous and sequential competitive adsorption of heavy metals in red soils

    Institute of Scientific and Technical Information of China (English)

    王艳; 李忠武; 黄斌; 蒋卫国; 郭亮; 黄金权; 曾光明


    To compare the adsorption kinetics of Cu, Zn and Cd introduced into red soils simultaneously and sequentially as well as their distribution coefficients, the ability of red soils to retain heavy metals was evaluated by performing batch experiments. The results indicate that Cu is preferentially adsorbed by red soils no matter in simultaneous or in sequential situation. The adsorption amount of Cd is the minimum in simultaneous competitive adsorption experiment. As heavy metals are added into red soils sequentially, the heavy metal adsorptions are relatively hard to reach equilibrium in 2 h. Red soils retain more Cd than Zn, which is opposite to the result in simultaneous adsorption. The addition sequences of heavy metals affect their adsorbed amounts in red soils to a certain extent. The joint distribution coefficients of metals in simultaneous adsorption are slightly higher than those in sequential adsorption.

  7. Adsorptive desulfurization and denitrogenation using metal-organic frameworks. (United States)

    Ahmed, Imteaz; Jhung, Sung Hwa


    With the increasing worldwide demand for energy, utilization of fossil fuels is increasing proportionally. Additionally, new and unconventional energy sources are also being utilized at an increasing rate day-by-day. These sources, along with some industrial processes, result in the exposal of several sulfur- and nitrogen-containing compounds (SCCs and NCCs, respectively) to the environment, and the exposure is one of the greatest environmental threats in the recent years. Although, several methods were established for the removal of these pollutants during the last few decades, recent advancements in adsorptive desulfurization and denitrogenation (ADS and ADN, respectively) with metal-organic frameworks (MOFs) make this the most promising and remarkable method. Therefore, many research groups are currently involved with ADS and ADN with MOFs, and the results are improving gradually by modifying the MOF adsorbents according to several specific adsorption mechanisms. In this review, ADS and ADN studies are thoroughly discussed for both liquid-phase and gas-phase adsorption. The MOF modification procedures, which are important for improved adsorption, are also described. To improve the knowledge among the scientific community, it is very important to understand the detailed chemistry and mechanism involved in a chemical process, which also creates the possibility and pathway for further developments in research and applications. Therefore, the mechanisms related to the adsorption procedures are also discussed in detail. From this review, it can be expected that the scientific community will obtain an understanding of the current state of ADS and ADN, their importance, and some encouragement and insight to take the research knowledge base to a higher level.

  8. Alkali metal and simple gas atom adsorption and coadsorption on transition metal surfaces

    CERN Document Server

    Norris, A G


    system is formed by adsorption of potassium or cesium on the Ni(100)c(2x2)-O overlayer. The difficulty of the structural fit is compounded' by the size of the unit cell. In this study, Anomalous Scattering was used to investigate whether there is a contribution from the nickel substrate to the reconstruction. Measurements of the fractional order rods at 10 eV and 200 eV below the nickel K edge (8333 eV) showed no discernible differences and involvement of the nickel substrate in the reconstruction can be eliminated. Alkali metal coadsorption systems represent a step along the pathway from simple model adsorbate overlayers to more technologically relevant real systems. Such is their complexity, however, that very few systems have been solved structurally. Presented here are SXRD and STM investigations of two such systems. The first study involves potassium adsorption on the Ni(100)(2x2)p4g-N surface, where a clock reconstruction is present with the nickel substrate atoms rotated in alternate clockwise and anti...

  9. Heavy metals adsorption on rolling mill scale; Adsorcion de metales pesados sobre cascarill de laminacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F. A.; Martin, M. I.; Perez, C.; Lopez-Delgado, A.; Alguacil, E. J.


    A great quantity of industries are responsible for contaminating the environment with the heavy metals which are containing in their wastewaters. The recovery of these metals is both from an environmental and economical points of view of the upmost interest. A study is made of the use of mill scale-originating in the hot rolling of steel-as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Zn''2+, Cd''2+ y Pb''2+ on the rolling mill scale was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on mill scale adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Langmuir and Freundlich. Desorption process of metals from loaded mill scales was also studied using several doser bent at different experimental conditions. It has been proved that the mill scale is an effective adsorbent for the cations studies in aqueous solutions within the range of the working concentrations. (Author) 32 refs.

  10. Adsorption of rare earth metal ion by algae. Sorui ni yoru kidorui ion no kyuchaku

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, T.; Yazawa, A. (Miyagi National College of Technology, Miyagi (Japan))


    This paper reports the result of investigations on adsorption of rare earth metal ion by using algae, and adsorption of different metal ions by using egg white and soy bean protein. Rare earth metal ion is adsorbed at a considerably high rate with alga powder of different kinds. The adsorption has been judged to be cation exchange reactive adsorption, while with use of spirulina and chlorella a maximum value of adsorption rate has been observed at pH from 3 to 4.5. Therefore, selective adsorption and separation of metal ions other than rare earth metal ion has become possible. When the blue pigment extracted from spirulina, the spirulina blue, is used, the rare earth metal ion had its selective adsorption and separation performance improved higher than using spirulina itself at pH from 3 to 4.5. As a result of adsorption experiment using egg white and soy bean protein, it has been found that the metal ion adsorption behavior of the spirulina blue depends on coagulative action of protein structure to some extent. However, the sharp selective adsorption performance on rare earth metal ion due to particular pH strength has been found because of actions unique to the pigment structure of phycocyanin, a major component in the spirulina blue. 7 refs., 19 figs.

  11. Adsorption Model for Off-Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J. Rutledge


    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  12. Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes. (United States)

    Escudero, Carlos; Gabaldón, Carmen; Marzal, Paula; Villaescusa, Isabel


    In the present work, two industrial vegetable wastes, grape stalk, coming from a wine producer, and exhausted coffee, coming from a soluble coffee manufacturer, have been investigated for the removal of Cu(II) and Ni(II) from aqueous solutions in presence and in absence of the strongly complexing agent EDTA. Effects of pH and metal-EDTA molar ratio, kinetics as a function of sorbent concentration, and sorption equilibrium for both metals onto both sorbents were evaluated in batch experiments. Metal uptake was dependent of pH, reaching a maximum from pH around 5.5. EDTA was found to dramatically reduce metal adsorption, reaching total uptake inhibition for both metals onto both sorbents at equimolar metal:ligand concentrations. Kinetic results were successfully modelled by means of the pseudo second order model. Langmuir and Freundlich models were used to describe the sorption equilibrium data. Grape stalk showed the best performance for Cu(II) and Ni(II) removal in presence and in absence of EDTA, despite exhausted coffee appears as less sensitive to the presence of complexing agent. The performance of Cu(II) and Ni(II) sorption onto grape stalk in a continuous flow process was evaluated. In solutions containing EDTA, an initial metal concentration in the outlet flow corresponding to the complexed metal fraction was observed from the beginning of the process. A high metal recovery yield (>97%) was achieved by feeding the metal-loaded column with 0.05 M HCl.

  13. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water

    Directory of Open Access Journals (Sweden)

    Tshabalala, M. A.


    Full Text Available Bark flour from ponderosa pine (Pinus ponderosa was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(II, Zn(II, Cd(II, and Ni(II under both equilibrium and dynamic adsorption conditions. The experimental data for Cd(II and Zn(II showed a better fit to the Langmuir than to the Freundlich isotherm. The Cu(II data best fit the Freundlich isotherm, and the Ni(II data fitted both Freundlich and Langmuir isotherms equally. According to the Freundlich constant KF, adsorption capacity of pelletized bark for the metal ions in aqueous solution, pH 5.1 ± 0.2, followed the order Cd(II > Cu(II > Zn(II >> Ni(II; according to the Langmuir constant b, adsorption affinity followed the order Cd(II >> Cu(II ≈ Zn(II >> Ni(II. Although data from dynamic column adsorption experiments did not show a good fit to the Thomas kinetic adsorption model, estimates of sorption affinity series of the metal ions on pelletized bark derived from this model were not consistent with the series derived from the Langmuir or Freundlich isotherms and followed the order Cu(II > Zn(II ≈ Cd(II > Ni(II. According to the Thomas kinetic model, the theoretical maximum amounts of metal that can be sorbed on the pelletized bark in a column at influent concentration of ≈10 mg/L and flow rate = 5 mL/min were estimated to be 57, 53, 50, and 27 mg/g for copper, zinc, cadmium, and nickel, respectively. This study demonstrated the potential for converting low-cost bark residues to value-added sorbents using starting materials and chemicals derived from renewable resources. These sorbents can be applied in the removal of toxic heavy metals from waste streams with heavy metal ion concentrations of up to 100 mg/L in the case of Cu(II.

  14. Coulombic amino group-metal bonding: adsorption of adenine on Cu110. (United States)

    Preuss, M; Schmidt, W G; Bechstedt, F


    The interaction between molecular amino groups and metal surfaces is analyzed from first-principles calculations using the adsorption of adenine on Cu110 as a model case. The amino group nitrogens are found to adsorb on top of the surface copper atoms. However, the bonding clearly cannot be explained in terms of covalent interactions. Instead, we find it to be largely determined by mutual polarization and Coulomb interaction between substrate and adsorbate.

  15. Modified silicates applied in adsorption of heavy metal; Silicatos modificados aplicados na adsorcao de metal pesado

    Energy Technology Data Exchange (ETDEWEB)

    Farias, M.C.M. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Raposo, C.M.O., E-mail: [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Mineracao e Geologia


    The levels of heavy metals in the environment has increased considerably in recent decades due to various human activities, which cause serious pollution problems, both in aquatic systems and in soil. The clay minerals present himself as amenable to the adsorption of metal ions and, sometimes, taking the advantage of being abundant and inexpensive. Vermiculite has intrinsic characteristics which favor its use as adsorbent. In this work, we investigate the adsorption of lead (II) from aqueous solutions by vermiculite fractions in commercial, fine to medium in molar concentration between 1-4 mmol (s). The samples provided by the Uniao Brasileira de Mineracao/Paraiba/Brazil were modified thermal and organically. The results of X-ray diffraction associated with the results of X-ray fluorescence showed that the average fraction vermiculite exfoliated organically modified responded most significantly to the adsorption process when compared to vermiculite fine fraction under the same conditions. (author)

  16. Adsorption and protein-induced metal release from chromium metal and stainless steel. (United States)

    Lundin, M; Hedberg, Y; Jiang, T; Herting, G; Wang, X; Thormann, E; Blomberg, E; Wallinder, I Odnevall


    A research effort is undertaken to understand the mechanism of metal release from, e.g., inhaled metal particles or metal implants in the presence of proteins. The effect of protein adsorption on the metal release process from oxidized chromium metal surfaces and stainless steel surfaces was therefore examined by quartz crystal microbalance with energy dissipation monitoring (QCM-D) and graphite furnace atomic absorption spectroscopy (GFAAS). Differently charged and sized proteins, relevant for the inhalation and dermal exposure route were chosen including human and bovine serum albumin (HSA, BSA), mucin (BSM), and lysozyme (LYS). The results show that all proteins have high affinities for chromium and stainless steel (AISI 316) when deposited from solutions at pH 4 and at pH 7.4 where the protein adsorbed amount was very similar. Adsorption of albumin and mucin was substantially higher at pH 4 compared to pH 7.4 with approximately monolayer coverage at pH 7.4, whereas lysozyme adsorbed in multilayers at both investigated pH. The protein-surface interaction was strong since proteins were irreversibly adsorbed with respect to rinsing. Due to the passive nature of chromium and stainless steel (AISI 316) surfaces, very low metal release concentrations from the QCM metal surfaces in the presence of proteins were obtained on the time scale of the adsorption experiment. Therefore, metal release studies from massive metal sheets in contact with protein solutions were carried out in parallel. The presence of proteins increased the extent of metals released for chromium metal and stainless steel grades of different microstructure and alloy content, all with passive chromium(III)-rich surface oxides, such as QCM (AISI 316), ferritic (AISI 430), austentic (AISI 304, 316L), and duplex (LDX 2205).

  17. Unusual adsorption behavior on metal-organic frameworks. (United States)

    Fairen-Jimenez, David; Seaton, Nigel A; Düren, Tina


    Metal-organic frameworks (MOFs) have shown adsorption behavior that is not observed in other microporous materials such as zeolites or activated carbons. This study used grand canonical Monte Carlo simulation to evaluate a particular form of behavior, which corresponds to the presence of unusual type V adsorption isotherms. Study of a series of MOFs in the IRMOF family, containing chemically similar linkers of different length, showed that the presence of type V adsorption depends on a fine balance between the strength of the fluid-fluid and fluid-solid interactions, which in turn is a strong function of the length of the linker and therefore the pore size. A transition from type V behavior to the more common type I behavior is observed as the temperature increases. The temperature at which this transition occurs increases, and the transition becomes more diffuse, as the length of the linker increases. This type V behavior leads to an interesting possibility in the design of MOF adsorbents for use in gas separation and gas storage applications.

  18. The research on the adsorption effect on metal ions by immobilized marine algae

    Institute of Scientific and Technical Information of China (English)

    WANG Xian; QIU Haiyuan; CAI Zhenzhen; CHEN Lidan; ZHENG Shenghua; HUANG Zhiwei


    The process of adsorption of Cu2+, Cd2+ by immobilized marine algae was investigated. It can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japonica can be described by the Banerm model.According to the model, the adsorption rate constant calculated was 0.107 8 and 0.030 28 min-1 for Cu2+ and Cd2+ respectively. The experimental biosorption equilibrium data for Cu2+ and Cd2+ were in good agreement with those calculated by the Langmuir model. The maximum uptake capacity calculated was 83.3 and 112.4 mg/g for Cu2+ and Cd2+ according to the Langmuir model, respectively. The appetency of Laminaria japonica to Cu2+was better than Cd2+.

  19. Oxygen adsorption at noble metal/TiO2 junctions (United States)

    Hossein-Babaei, F.; Alaei-Sheini, Navid; Lajvardi, Mehdi M.


    Electric conduction in titanium dioxide is known to be oxygen sensitive and the conductivity of a TiO2 ceramic body is determined mainly by the concentration of its naturally occurring oxygen vacancy. Recently, fabrications and electronic features of a number of noble metal/TiO2-based electronic devices, such as solar cells, UV detectors, gas sensors and memristive devices have been demonstrated. Here, we investigate the effect of oxygen adsorption at the noble metal/TiO2 junction in such devices, and show the potentials of these junctions in chemical sensor fabrication. The polycrystalline, poly-phase TiO2 layers are grown by the selective and controlled oxidation of titanium thin films vacuum deposited on silica substrates. Noble metal thin films are deposited on the oxide layers by physical vapor deposition. Current-voltage (I-V) diagrams of the fabricated devices are studied for Ag/, Au/, and Pt/TiO2 samples. The raw samples show no junction energy barrier. After a thermal annealing in air at 250° C, I-V diagrams change drastically. The annealed samples demonstrate highly non-linear I-V indicating the formation of high Schottky energy barriers at the noble metal/TiO2 junctions. The phenomenon is described based on the effect of the oxygen atoms adsorbed at the junction.

  20. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals

    Institute of Scientific and Technical Information of China (English)

    Xiaolin Yu; Shengrui Tong; Maofa Ge; Lingyan Wu; Junchao Zuo; Changyan Cao; Weiguo Song


    A novel nanoadsorbent for the removal of heavy metal ions is reported.Cotton was first hydrolyzed to obtain cellulose nanocrystals (CNCs).CNCs were then chemically modified with succinic anhydride to obtain SCNCs.The sodic nanoadsorbent (NaSCNCs) was further prepared by treatment of SCNCs with saturated NaHCO3 aqueous solution.Batch experiments were carried out with SCNCs and NaSCNCs for the removal of Pb2+ and Cd2+.The effects of contact time,pH,initial adsorption concentration,coexisting ions and the regeneration performance were investigated.Kinetic studies showed that the adsorption equilibrium time of Pb2+ and Cd2+ was reached within 150 rain on SCNCs and 5 rain on NaSCNCs.The adsorption capacities of Pb2+ and Cd2+ on SCNCs and NaSCNCs increased with increasing pH.The adsorption isotherm was well fitted by the Langmuir model.The maximum adsorption capacities of SCNCs and NaSCNCs for Pb2+ and Cd2+ were 367.6 mg/g,259.7 mg/g and 465.1 mg/g,344.8 rag/g,respectively.SCNCs and NaSCNCs showed high selectivity and interference resistance from coexisting ions for the adsorption of Pb2+.NaSCNCs could be efficiently regenerated with a mild saturated NaC1 solution with no loss of capacity after two recycles.The adsorption mechanisms of SCNCs and NaSCNCs were discussed.

  1. Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, O.S. [GET-CNRS-UPS-IRD-UMR 5563, 14, Avenue Edouard Belin, 31400 Toulouse (France); Probst, A., E-mail: [Universite de Toulouse, INPT, UPS, EcoLab (Laboratoire Ecologie fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Leviel, E. [GET-CNRS-UPS-IRD-UMR 5563, 14, Avenue Edouard Belin, 31400 Toulouse (France); Liao, B. [International College, Central South University of Forestry and Technology, Changsha 410004 (China)


    Highlights: Black-Right-Pointing-Pointer Adsorption experiments of Cd and Pb in acid soils (China, France). Black-Right-Pointing-Pointer Large pH conditions and large range of metal concentrations were considered. Black-Right-Pointing-Pointer Similar dependencies between metals concentration in solution and metal adsorbed on the surface were predicted using Langmuir and Freundlich equations and surface complexation model (SCM). Black-Right-Pointing-Pointer No competition between Cd and Pb detected at pH 5. Black-Right-Pointing-Pointer Metal adsorption capacity is two orders of magnitude higher than limit value for soil protection. - Abstract: The importance of high- and low-affinity surface sites for cadmium and lead adsorption in typical European and Asian soils was investigated. Adsorption experiments on surface and deep horizons of acidic brown (Vosges, France) and red loess soils (Hunan, China) were performed at 25 Degree-Sign C as a function of the pH (3.5-8) and a large range of metal concentrations in solution (10{sup -9}-10{sup -4} mol l{sup -1}). We studied the adsorption kinetics using a Cd{sup 2+}-selective electrode and desorption experiments as a function of the solid/solution ratio and pH. At a constant solution pH, all samples exhibited similar maximal adsorption capacities (4.0 {+-} 0.5 {mu}mol/g Cd and 20 {+-} 2 {mu}mol/g Pb). A constant slope of adsorbed-dissolved concentration dependence was valid over 5 orders of magnitude of metal concentrations. Universal Langmuir and Freundlich equations and the SCM formalism described the adsorption isotherms and the pH-dependent adsorption edge over very broad ranges of metal concentrations, indicating no high- or low-affinity sites for metal binding at the soil surface under these experimental conditions. At pH 5, Cd and Pb did not compete, in accordance with the SCM. The metal adsorption ability exceeded the value for soil protection by two orders of magnitude, but only critical load guarantees soil

  2. Competitive adsorption of heavy metals on local landfill clay

    Directory of Open Access Journals (Sweden)

    Ibtissem Ghorbel-Abid


    The experimental data points have been fitted to the Langmuir and Freundlich models. The competitive adsorption isotherms of CrIII and CdII ions in similar conditions have been studied by the batch technique. The amount of adsorbed ions, Qe was determined. The results show that the presence of CdII has an important effect on the uptake of CrIII.

  3. Lanthanide metal-organic frameworks as selective microporous materials for adsorption of heavy metal ions. (United States)

    Jamali, Abbas; Tehrani, Alireza Azhdari; Shemirani, Farzaneh; Morsali, Ali


    Four microporous lanthanide metal-organic frameworks (MOFs), namely Ln(BTC)(H2O)(DMF)1.1 (Ln = Tb, Dy, Er and Yb, DMF = dimethylformamide, H3BTC = benzene-1,3,5-tricarboxylic acid), have been used for selective adsorption of Pb(ii) and Cu(ii). Among these MOFs, the Dy-based MOF shows better adsorption property and selectivity toward Pb(ii) and Cu(ii) ions. Adsorption isotherms indicate that sorption of Pb(ii) and Cu(ii) on MOFs is via monolayer coverage. Preconcentration is based on solid-phase extraction in which MOFs were rapidly injected into water samples and adsorption of metal ions was rapid because of good contact with analyte; then adsorbed Pb(ii) and Cu(ii) ions were analyzed by FAAS. The optimized methodology represents good linearity between 1 and 120 μg L(-1) and detection limit of 0.4 and 0.26 μg L(-1) for Pb(ii) and Cu(ii), respectively. Subsequently the method was evaluated for preconcentration of target metal ions in some environmental water samples.

  4. A Valuable Biochar from Poplar Catkins with High Adsorption Capacity for Both Organic Pollutants and Inorganic Heavy Metal Ions. (United States)

    Liu, Xia; Sun, Ju; Duan, Shengxia; Wang, Yanan; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Chengming; Li, Jiaxing


    In this paper, biochar derived from poplar catkins was used as an economical and renewable adsorbent for adsorption organic and inorganic pollutants such as, dyes, organic compounds, and heavy metal ions from wastewater. Mesoporous activated carbonized poplar catkins (ACPCs) were produced from char as a by-product by carbonized poplar catkins (CPCs). With their high surface area, ACPCs exhibited the maximum adsorption capacities of 71.85 and 110.17 mg/g for the removal of inorganic U(VI) and Co(II). Compared other biochars adsorbents, ACPCs can also adsorb organic pollutants with the maximum adsorption capacities of 534, 154, 350, 148 and 384 mg/g for methylene blue (MB), methyl orange (MO), Congo red (CR), chloramphenicol (CAP) and naphthalene. The adsorption of organic pollutants was fitted with pseudo-first order, pseudo-second order, and intra-particle diffusion kinetic models figure out the kinetic parameters and adsorption mechanisms. Langmuir adsorption isotherm was found to be suitable for Co(II) and U(VI) adsorption and thermodynamic studies indicated adsorption processes to be endothermic and spontaneous. The adsorption process includes both outer-sphere surface complexes and hydrogen-bonding interactions. The results showed that biochar derived from poplar catkins was a potential material to remove pollutants in wastewater.

  5. Adsorption of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates (United States)

    Ma, Feng-Ji; Liu, Shu-Xia; Liang, Da-Dong; Ren, Guo-Jian; Wei, Feng; Chen, Ya-Guang; Su, Zhong-Min


    The functionalization of porous metal-organic frameworks (Cu 3( BTC) 2) was achieved by incorporating Keggin-type polyoxometalates (POMs), and further optimized via alkali metal ion-exchange. In addition to thermal gravimetric analysis, IR, single-crystal X-ray diffraction, and powder X-ray diffraction, the adsorption properties were characterized by N 2 and volatile organic compounds (VOCs) adsorption measurements, including short-chain alcohols ( C<4), cyclohexane, benzene, and toluene. The adsorption enthalpies estimated by the modified Clausius-Clapeyron equation provided insight into the impact of POMs and alkali metal cations on the adsorption of VOCs. The introduction of POMs not only improved the stability, but also brought the increase of adsorption capacity by strengthening the interaction with gas molecules. Furthermore, the exchanged alkali metal cations acted as active sites to interact with adsorbates and enhanced the adsorption of VOCs.

  6. Adsorption of Heavy Metal Ions from Aqueous Solutions by Zeolite Based on Oil Shale Ash: Kinetic and Equilibrium Studies

    Institute of Scientific and Technical Information of China (English)

    BAO Wei-wei; ZOU Hai-feng; GAN Shu-cai; XU Xue-chun; JI Gui-juan; ZHENG Ke-yan


    Na-A zeolite was successfully synthesized via the alkaline fusion method with oil shale ash as the raw material.The adsorption capacity of it was tested by removing CU2+,Ni2+,Pb2+ and Cd2+ from aqueous solutions.The results reveal the maximum adsorption capacity of adsorbent for Pb2+,Cu2+,Cd2+ and Ni2+ were 224.72,156.74,118.34 and 53.02 mg/g,respectively.The effects of contact time and pH value of solutions on the adsorption efficiency of the zeolite were evaluated.Besides,The equilibrium adsorption data and the batch kinetic data were correlated with Langmuir and Freundlich models and the pseudo-first-order and pseudo-second-order models separately.The results show that the Langmuir isotherm and the pseudo-second-order equation were more suitable for the adsorption of Na-A zeolite for the metal ions.In addition,Thermodynamic parameters of the adsorption(the Gibbs free energy,entropy,and enthalpy) were also evaluated and discussed.The results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions and the synthesized zeolite was an effective adsorbent for the removal of metal ions from aqueous solution.

  7. Adsorption modeling for off-gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ladshaw, A.; Sharma, K.; Yiacoumi, S.; Tsouris, C. [Georgia Institute of Technology, Atlanta, GA 30332-0459 (United States); De Paoli, D.W. [Oak Ridge National Laboratory: Oak Ridge, TN 37831-6181 (United States)


    Off-gas generated from the reprocessing of used nuclear fuel contains a mixture of several radioactive gases including {sup 129}I{sub 2}, {sup 85}Kr, HTO, and {sup 14}CO{sub 2}. Over the past few decades, various separation and recovery processes have been studied for capturing these gases. Adsorption data for gaseous mixtures of species can be difficult to determine experimentally. Therefore, procedures capable of predicting the adsorption behavior of mixtures need to be developed from the individual isotherms of each of the pure species. A particular isotherm model of interest for the pure species is the Generalized Statistical Thermodynamic Adsorption isotherm. This model contains an adjustable number of parameters and will therefore describe a wide range of adsorption isotherms for a variety of components. A code has been developed in C++ to perform the non-linear regression analysis necessary for the determination of the isotherm parameters, as well as the least number of parameters needed to describe an entire set of data. (authors)

  8. Electrospun chitosan/baker’s yeast nanofibre adsorbent: preparation, characterization and application in heavy metal adsorption

    Indian Academy of Sciences (India)



    In this study, chitosan/baker’s yeast nanofibre was synthesized by electrospinning method and subsequently, the performance of the prepared nanofibre for removal of uranium(VI) and thorium(IV) ions from aqueous solutions was investigated. The prepared adsorbent was characterized by Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The influences of experimental parameters on the chitosan/baker’s yeast nanofibre such as contact time, pH, temperature and initial concentration were studied in a batch system. The adsorption kinetics was studied by the pseudo-firstorder, pseudo-second-order, double-exponential and intra-particle kinetic models. Three isotherm models, namely Langmuir, Freundlich and Dubinin–Radushkevich (D–R) were used for analysis of equilibrium data of heavymetals. The maximum adsorption capacities of U(VI) and Th(IV) were estimated by Langmuir model to be 219 and 131.9 mg g$^{−1}$ at optimum conditions, respectively. The positive values of the enthalpy changes and negative values of Gibbs free energy changes showed that U(VI) and Th(IV) adsorption process was endothermic and spontaneous. Also, the inhibitory effect of Co(II), Cu(II), Cd(II), Fe(II) and Ni(II) metal ions on U(VI) and Th(IV) adsorption was investigated. The reusability of chitosan/baker’s yeast nanofibre was determined after five adsorption–desorption cycles.

  9. Surface complexation modeling of the effects of phosphate on uranium(VI) adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gonzalez, M.R.; Cheng, T.; Barnett, M.O. [Auburn Univ., AL (United States). Dept. of Civil Engeneering; Roden, E.E. [Wisconsin Univ., Madison, WI (United States). Dept. of Geology and Geophysics


    Previous published data for the adsorption of U(VI) and/or phosphate onto amorphous Fe(III) oxides (hydrous ferric oxide, HFO) and crystalline Fe(III) oxides (goethite) was examined. These data were then used to test the ability of a commonly-used surface complexation model (SCM) to describe the adsorption of U(VI) and phosphate onto pure amorphous and crystalline Fe(III) oxides and synthetic goethite-coated sand, a surrogate for a natural Fe(III)-coated material, using the component additivity (CA) approach. Our modeling results show that this model was able to describe U(VI) adsorption onto both amorphous and crystalline Fe(III) oxides and also goethite-coated sand quite well in the absence of phosphate. However, because phosphate adsorption exhibits a stronger dependence on Fe(III) oxide type than U(VI) adsorption, we could not use this model to consistently describe phosphate adsorption onto both amorphous and crystalline Fe(III) oxides and goethite-coated sand. However, the effects of phosphate on U(VI) adsorption could be incorporated into the model to describe U(VI) adsorption to both amorphous and crystalline Fe(III) oxides and goethite-coated sand, at least for an initial approximation. These results illustrate both the potential and limitations of using surface complexation models developed from pure systems to describe metal/radionuclide adsorption under more complex conditions. (orig.)

  10. A Study on the Fixed-bed Adsorption of Heavy Metal Ions over Chitosan Bead

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K.H. [Department of Petrochemical Engineering, Hanlyo University, Chonnam (Korea)


    Fixed-bed adsorption of metal ions on chitosan bead was studied to remove heavy metal ions in waste water. Chitin was extracted from crab shell and chitosan was prepared by deacetylation of the chitin. The chitosan in bead was used as an adsorbent for heavy metal ions. Freundlich and Langmuir isotherm was determined from the experimental results of equilibrium adsorption for individual metal ion (Cu{sup 2+}, Co{sup 2+}, Ni{sup 2+}) on chitosan bead. Adsorption strength of metal ions decreased in the order of Cu{sup 2+}>Co{sup 2+}>Ni{sup 2+} ion. Breakthrough curves of single and multicomponent adsorption for metal ions were obtained from the experimental results of fixed-bed adsorption. The breakthrough curves were analyzed by simulation with fixed-bed adsorption equation based on LDFA (linear driving force approximation) adopted LAS (ideal adsorbed solution) theory which can predict multi-component adsorption isotherm from individual adsorption isotherm. The behavior of fixed bed adsorption for single and multi-component system could be nicely simulated by the equation. 22 refs., 10 figs., 2 tabs.

  11. A lattice Boltzmann model for adsorption breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Saurabh; Verma, Nishith [Indian Institute of Technology Kanpur, Department of Chemical Engineering, Kanpur (India); Mewes, Dieter [Universitat Hannover, Institut fur Verfahrenstechnik, Hannover (Germany)


    A lattice Boltzmann model is developed to simulate the one-dimensional (1D) unsteady state concentration profiles, including breakthrough curves, in a fixed tubular bed of non-porous adsorbent particles. The lattice model solves the 1D time dependent convection-diffusion-reaction equation for an ideal binary gaseous mixture, with solute concentrations at parts per million levels. The model developed in this study is also able to explain the experimental adsorption/desorption data of organic vapours (toluene) on silica gel under varying conditions of temperature, concentrations and flowrates. Additionally, the programming code written for simulating the adsorption breakthrough is modified with minimum changes to successfully simulate a few flow problems, such as Poiseuille flow, Couette flow, and axial dispersion in a tube. The present study provides an alternative numerical approach to solving such types of mass transfer related problems. (orig.)

  12. Optimization of Continuous Flow Adsorption of Heavy Metal Ions on Continuous System Column by Peganum Harmala Seeds

    Directory of Open Access Journals (Sweden)

    Elhameh Mohammadpour


    Full Text Available Background & Aims of the Study: Heavy metals discharge to environment is a worldwide problem growing in scale. When they accumulate in the environment and in food chains, they can profoundly disrupt biological processes. Peganum Harmala Seeds (PHS was used as a bio-sorbent, using a continuous system for removing Pb2+, Co2+, Ni2+ and Cu2+ ions from aqueous solutions. Materials and Methods: PHS was used as adsorbent in adsorption of heavy metals from aqueous solutions. A stock solution of Pb(II, Co(II, Cu (II and Ni (II was prepared and experiments were down in a column as a reactor. The concentration was determined by atomic adsorption spectroscopy. The effect of various parameters such as pH, contact time, heavy metal concentration, ionic strength, particle size and adsorbent dosage on the process was investigated. Langmuir, Frundlich and Temkin isotherms were studied to evaluate of adsorption isotherms. Results: The adsorption efficiency was found to be pH dependent and enhanced by increasing the solution pH. Maximum removal of ions were obtained at pH=4-8. The equilibrium time was attained after 30 min and desorption studies were performed, using diluted HNO3, H2SO4 and HCl solution (1M on adsorbed metal ions from PHS. Results illustrated that adsorbed metal ions could be recovered under acidic conditions. Investigation of the process kinetic was best fitted with pseudo second-order model. Langmuir, Freundlich and Temkin models were tested for describing the equilibrium data. The Langmuir isotherm illustrated the best description of the cobalt and copper adsorption mechanism and Freundlich model describes lead and nickel ions adsorption on PHS. Conclusion: It was found that PHS would be a good adsorbent for removal of heavy metals.


    Directory of Open Access Journals (Sweden)



    Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.

  14. Understanding Structure, Metal Distribution, and Water Adsorption in Mixed-Metal MOF-74

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Joshua D.; Morelock, Cody R.; Jiao, Yang; Chapman, Karena W.; Walton, Krista S.; Sholl, David S.


    We present a joint computational and experimental study of Mg–Ni-MOF-74 and Mg–Cd-MOF-74 to gain insight into the mixing of metals and understand how metal mixing affects the structure of the undercoordinated open-metal sites. Our calcula tions predict that metal mixing is energetically preferred in these materials. Recent experimental work has demonstrated that Mg–Ni-MOF-74 shows a much greater surface area retention in the presence of water than Mg-MOF-74. To probe this effect, we study H2O adsorption in Mg–Ni-MOF-74, finding that the adsorption en ergetics and electronic structure do not change significantly at the metal sites when compared to Mg-MOF-74 and Ni-MOF-74, respectively. We conclude that the in creased stability of Mg–Ni-MOF-74 is a result of a M–O bond length distortion in mixed-metal MOF-74, consistent with recent work on the stability of MOF-74 under water exposure.

  15. Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s (United States)

    Ha, Nguyen Thi Thu; Lefedova, O. V.; Ha, Nguyen Ngoc


    Density functional theory (DFT) calculations were performed to investigate the adsorption of carbon dioxide (CO2) on metal-organic framework (MOF-5) and alkali-metal (Li, K, Na) doped MOF-5s. The adsorption energy calculation showed that metal atom adsorption is exothermic in MOF-5 system. Moreover, alkali-metal doping can significantly improve the adsorption ability of carbon dioxide on MOF-5. The best influence is observed for Li-doping.

  16. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee


    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  17. Modeling the adsorption of mixed gases based on pure gas adsorption properties (United States)

    Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.


    Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.

  18. Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. (United States)

    Azhar, Muhammad Rizwan; Abid, Hussein Rasool; Sun, Hongqi; Periasamy, Vijay; Tadé, Moses O; Wang, Shaobin


    The increasing concerns on toxicity of sulfonamide antibiotics in water require a prompt action to establish efficient wastewater treatment processes for their removal. In this study, adsorptive removal of a model sulfonamide antibiotic, sulfachloropyridazine (SCP), from wastewater is presented for the first time using a metal organic framework (MOF). A high surface area and thermally stable MOF, HKUST-1, was synthesized by a facile method. Batch adsorption studies were systematically carried out using HKUST-1. The high surface area and unsaturated metal sites resulted in a significant adsorption capacity with faster kinetics. Most of the SCP was removed in 15min and the kinetic data were best fitted with the pseudo second order model. Moreover, isothermal data were best fitted with the Langmuir model. The thermodynamic results showed that the adsorption is a spontaneous and endothermic process. The adsorption capacity of HKUST-1 is 384mg/g at 298K which is the highest compared to most of the materials for the antibiotics. The high adsorption capacity is attributed mainly to π-π stacking, hydrogen bonding and electrostatic interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Metal-loaded polystyrene-based activated carbons as DBT removal media via reactive adsorption



    [EN] To improve the desulfurization capability of activated carbons, new metal-loaded carbon-based sorbents containing sodium, cobalt, copper, and silver highly dispersed within the carbon matrix were prepared and tested at room temperature for dibenzothiophene (DBT) adsorption. The content of metals can be controlled by selective washing. The new adsorbents showed good adsorption capacities and selectivity towards DBT. The metals incorporated to the surface act not only as active sites for s...

  20. O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles. (United States)

    Gheisi, Amir R; Neygandhi, Chris; Sternig, Andreas K; Carrasco, Esther; Marbach, Hubertus; Thomele, Daniel; Diwald, Oliver


    Optical properties of metal oxide nanoparticles are subject to synthesis related defects and impurities. Using photoluminescence spectroscopy and UV diffuse reflectance in conjunction with Auger electron spectroscopic surface analysis we investigated the effect of surface composition and oxygen adsorption on the photoluminescence properties of vapor phase grown ZnO and MgO nanoparticles. On hydroxylated MgO nanoparticles as a reference system, intense photoluminescence features exclusively originate from surface excitons, the radiative deactivation of which results in collisional quenching in an O2 atmosphere. Conversely, on as-prepared ZnO nanoparticles a broad yellow emission feature centered at hνEm = 2.1 eV exhibits an O2 induced intensity increase. Attributed to oxygen interstitials as recombination centers this enhancement effect originates from adsorbate-induced band bending, which is pertinent to the photoluminescence active region of the nanoparticles. Annealing induced trends in the optical properties of the two prototypical metal oxide nanoparticle systems, ZnO and MgO, are explained by changes in the surface composition and underline that particle surface and interface changes that result from handling and processing of nanoparticles critically affect luminescence.

  1. Evaluation of functionalized silica's for the adsorptive recovery of homogenous catalysts through interaction with the metal centre

    NARCIS (Netherlands)

    Djekic, T.; Ham, van der A.G.J.; Haan, de A.B.


    The goal of this paper is the evaluation of functionalized silica's for the recovery of homogeneous catalysts by adsorption via its metal centre. As model catalysts, we selected bis(triphenylphosphine)cobalt(II)dichloride (CoCl2(PPh3)2), bis(triphenylphosphine)palladium(II)dichloride (PdCl2(PPh3)2)

  2. Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef Agricultural Waste

    Directory of Open Access Journals (Sweden)

    Mulu Berhe Desta


    Full Text Available Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu onto Activated Teff Straw (ATS has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni, 82.9% (Cd, 81.5% (Cu, 74.5% (Cr, and 68.9% (Pb. Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.

  3. Study on the Adsorption of Metal Ions by Immobilized Marine Algae with the Existence of Clay

    Institute of Scientific and Technical Information of China (English)


    The process of adsorption of metal ions by immobilized marine algae with the existence of clay was investigated. It can be noted from the results that, after mixing with clay,the adsorption rate increases rapidly with the increasing amount of the marine algae. When pH=5, the best ratio between the clay and the marine algae is 1:4 for Pb2+. The result of in situ handling of the waste water containing heavy metals shows that the average adsorption rates of heavy metal irons Cu2+, Cd2+, Pb2+ and Ni2+ are all over 70 %.

  4. Adsorption and surface oxidation of Fe(II) on metal (hydr)oxides.

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.


    The Fe(II) adsorption by non-ferric and ferric (hydr)oxides has been analyzed with surface complexation modeling. The CD model has been used to derive the interfacial distribution of charge. The fitted CD coefficients have been linked to the mechanism of adsorption. The Fe(II) adsorption is

  5. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene (United States)

    Sahin, H.; Peeters, F. M.


    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  6. The removal of heavy metals from aqueous solution by adsorption on weathered coal

    Energy Technology Data Exchange (ETDEWEB)

    Meena, A.K.; Gupta, M.D.; Mishra, G.K.; Rajagopal, C.; Nagar, P.N. [Central Research Institute (Ayurveda), Gwalior (India)


    The adsorption followed first-order kinetics. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed. On the basis of experimental results, it can be inferred that the adsorbent weathered coal may be useful in developing an adsorptive technology for the removal of heavy metals. 25 refs., 8 figs., 4 tabs.

  7. Roles of metal/activated carbon hybridization on elemental mercury adsorption. (United States)

    Bae, Kyong-Min; Kim, Byung-Joo; Rhee, Kyong Yop; Park, Soo-Jin


    In this study, the elemental mercury removal behavior of metal (copper or nickel)/activated carbon hybrid materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed using the N2/77 K adsorption isotherms. The microstructure and surface morphologies of the hybrid materials were characterized by X-ray diffraction and scanning electron microscopy, respectively. In the experimental results, the elemental mercury adsorption capacities of all copper/activated carbon hybrid materials were higher than that of the as-received material despite the decrease in specific surface areas and total pore volumes after the metal loading. All the samples containing the metal particles showed excellent elemental mercury adsorption. The Ni/ACs exhibited superior elemental mercury adsorption to those of Cu/ACs. This suggests that Ni/ACs have better elemental mercury adsorption due to the higher activity of nickel.

  8. Adsorption of Heavy Metal Ions by Adsorbent from Waste Mycelium Chitin

    Institute of Scientific and Technical Information of China (English)

    苏海佳; 王丽娟; 等


    The adsorption properties of chitin adsorbent from mycelium of fermentation industries for the removal of heavy metal ions were studied.The result shows that the chitin adsorbent has high adsorption capacity for many heavy metal ions and Ni2+ in citric acid.The influence of pH was significant:When pH is higher than 4.0,the high adsorption capacity is obtained.otherwise H+ ion inhibits the adsorption of heavy metal ions.The comparison of the chitin adsorbent with some other commercial adsorbents was made,in which that the adsorption behavior of chitin adsorbent is close to that of commercial cation exchange adsorbents,and its cost is much lower than those commercial adsorbents.

  9. Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost. (United States)

    He, Xin; Zhang, Yaxin; Shen, Maocai; Tian, Ye; Zheng, Kaixuan; Zeng, Guangming


    The simultaneous adsorption of heavy metals (Pb, Cd) and organic pollutant (tetracycline (TC)) by a sewage sludge-derived vermicompost was investigated. The maximal adsorption capacity for Pb, Cd, and TC in a single adsorptive system calculated from Langmuir equation was 12.80, 85.20, and 42.94 mg L(-1), while for mixed substances, the adsorption amount was 2.99, 13.46, and 20.89 mg L(-1), respectively. The adsorption kinetics fitted well to the pseudo-second-order model, implying chemical interaction between adsorbates and functional groups, such as -COOH, -OH, -NH, and -CO, as well as the formation of organo-metal complexes. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) specific surface area measurement were adopted to gain insight into the structural changes and a better understanding of the adsorption mechanism. The sewage sludge-derived vermicompost can be a low cost and environmental benign eco-material for high efficient wastewater remediation.

  10. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering


    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  11. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons

    Institute of Scientific and Technical Information of China (English)

    T. S. Anirudhan; S. S. Sreekumari


    Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(Ⅱ),Hg(Ⅱ) and Cu(Ⅱ) from industrial effluents through batch adsorption process.The AC was characterized by elemental analysis,fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,thermal gravimetric and differential thermal analysis,surface area analyzer and potentiometric titrations.The effects of initial metal concentration,contact time,pH and adsorbent dose on the adsorption of metal ions were studied.The adsorbent revealed a good adsorption potential for Pb(Ⅱ) and Cu(Ⅱ) at pH 6.0 and for Hg(Ⅱ) at pH 7.0.The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation.The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model.The adsorption capacities of the AC decreased in the order:Pb(Ⅱ) >Hg(Ⅱ) > Cu(Ⅱ).

  12. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification. (United States)

    Jun, Jong Won; Tong, Minman; Jung, Beom K; Hasan, Zubair; Zhong, Chongli; Jhung, Sung Hwa


    The adsorptive removal of organoarsenic compounds such as p-arsanilic acid (ASA) and roxarsone (ROX) from water using metal-organic frameworks (MOFs) has been investigated for the first time. A MOF, iron benzenetricarboxylate (also called MIL-100-Fe) exhibits a much higher adsorption capacity for ASA and ROX than activated carbon, zeolite (HY), goethite, and other MOFs. The adsorption of ASA and ROX over MIL-100-Fe is also much more rapid than that over activated carbon. Moreover, the used MIL-100-Fe can be recycled by simply washing with acidic ethanol. Therefore, it is determined that a MOF such as MIL-100-Fe can be used to remove organoarsenic compounds from contaminated water because of its high adsorption capacity, rapid adsorption, and ready regeneration. Moreover, only one of three analogous MIL-100 species (MIL-100-Fe, rather than MIL-100-Al or MIL-100-Cr) can effectively remove the organoarsenic compounds. This selective and high adsorption over MIL-100-Fe, different from other analogous MIL-100 species, can be explained (through calculations) by the facile desorption of water from MIL-100-Fe as well as the large (absolute value) replacement energy (difference between the adsorption energies of the organoarsenic compounds and water) exhibited by MIL-100-Fe. A plausible adsorption/desorption mechanism is proposed based on the surface charge of the MOFs, FTIR results, calculations, and the reactivation results with respect to the solvents used in the experiments.

  13. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

    DEFF Research Database (Denmark)

    Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan;


    The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains...... the existence of scaling relationships among these compounds....

  14. Molecular Mechanisms for Adsorption in Cu-BTC Metal Organic Framework

    NARCIS (Netherlands)

    Gutiérrez Sevillano, J.J.; Vicent-Luna, J.M.; Dubbeldam, D.; Calero, S.


    We use molecular simulations to analyze the preferential adsorption sites of molecules that differ in size, shape, and polarizability in Cu-BTC metal organic framework. The cage system of the framework can be exploited to enhance adsorption of small gases. We find that nonpolar molecules adsorb

  15. Competitive adsorption of heavy metals in soil underlying an infiltration facility installed in an urban area. (United States)

    Hossain, M A; Furumai, H; Nakajima, F


    Accumulation of heavy metals at elevated concentration and potential of considerable amount of the accumulated heavy metals to reach the soil system was observed from earlier studies in soakaways sediments within an infiltration facility in Tokyo, Japan. In order to understand the competitive adsorption behaviour of heavy metals Zn, Ni and Cu in soil, competitive batch adsorption experiments were carried out using single metal and binary metal combinations on soil samples representative of underlying soil and surface soil at the site. Speciation analysis of the adsorbed metals was carried out through BCR sequential extraction method. Among the metals, Cu was not affected by competition while Zn and Ni were affected by competition of coexisting metals. The parameters of fitted 'Freundlich' and 'Langmuir' isotherms indicated more intense competition in underlying soil compared to surface soil for adsorption of Zn and Ni. The speciation of adsorbed metals revealed less selectivity of Zn and Ni to soil organic matter, while dominance of organic bound fraction was observed for Cu, especially in organic rich surface soil. Compared to underlying soil, the surface soil is expected to provide greater adsorption to heavy metals as well as provide greater stability to adsorbed metals, especially for Cu.

  16. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling

    NARCIS (Netherlands)

    Weng, L.P.; Vega, F.A.; Riemsdijk, van W.H.


    The pH dependency of soluble phosphate in soil was measured for six agricultural soils over a pH range of 3–10. A mechanistic model, the LCD (ligand charge distribution) model, was used to simulate this change, which considers phosphate adsorption to metal (hydr)oxides in soils under the influence o

  17. Long-term balance in heavy metal adsorption and release in biochar derived from sewage sludge (United States)

    Sohi, Saran; Cleat, Robert; Graham, Margaret; Cross, Andrew


    In Europe, sewage sludge has major potential as a resource for producing biochar. Biochar from sludge could offer a means for the controlled recycling of phosphorus to soil, with the additional benefit of carbon stabilisation. Biochar made from contaminated feedstock could, however, also leach heavy metals into soil. Counter to release of metals, biochar from fresh plant biomass has a documented affinity and adsorption capacity. The longer term balance of release and adsorption of metals in sludge-derived biochar has not been established. Our work compared the adsorption and release of both indigenous metals and metals adsorbed to sludge derived biochar. The hypotheses were threefold: (1) the capacity to adsorb metals is lower than the potential to release them, (2) the affinity for indigenous metals is higher than for metals in solution, 3) oxidative ageing of biochar leads to partial release of adsorbed metals. Sludge biochar was produced in a horizontal, externally heated kiln at a feed rate of approx. 0.5 kg/hr. Dry sludge was converted in a 20 min. transit time with peak kiln temperature of 550°C. Elemental analysis using ICP OES (after a published preparation step) showed Zn, Pb and Cu to be the most abundant heavy metals in the biochar. The same elements were assessed in sequential water and Mehlich III extracts. Adsorption of the metals from pure and mixed Zn, Pb and Pb solutions were undertaken before and after the other extractions. All the treatments were applied to the same biochar after oxidative ageing, in which biochar C was also found to be very stable. Extractability of all three metals from fresh biochar was low (less than 5 %), but for two of the metals it was lower after ageing. For one of the metals, ageing increased extractability. For the same metal, adsorption was lower when undertaken with a mixed rather than pure solution. Capacity for adsorption of one of the other metals was higher after biochar ageing; the general capacity for metal

  18. Synthesis of rare earth metal-organic frameworks (Ln-MOFs) and their properties of adsorption desulfurization

    Institute of Scientific and Technical Information of China (English)

    刘想; 王景艳; 李庆远; 蒋赛; 张天浩; 季生福


    The rare earth metal-organic frameworks (Ln-MOFs) materials, Ln(BTC)(H2O)·(DMF), were synthesized using the rare earth metal (Ln=Sm, Eu, Tb, Y) and 1,3,5-trimesic acid (BTC) as a metal ion center and ligand, respectively. X-ray diffraction (XRD) and infrared spectroscopy (FT-IR) were employed to characterize the Ln-MOFs structural features. The property of adsorption desul-furization of Ln-MOFs materials was evaluated with thiophene/n-octane as model oil. The results showed that Ln-MOFs with rare earth metals Sm, Eu, Tb and Y had perfect crystalline and good adsorption desulfurization ability. Y(BTC)(H2O)·(DMF) material had a comparatively better activity for the adsorption desulfurization with desulfurization rate up to 80.7%and the sulfur adsorption ca-pacity was found 30.7 mgS/g(Y-MOFs). The Ln-MOFs materials had excellent reusability.

  19. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts (United States)

    Fischer-Wolfarth, Jan-Henrik; Hartmann, Jens; Farmer, Jason A.; Flores-Camacho, J. Manuel; Campbell, Charles T.; Schauermann, Swetlana; Freund, Hans-Joachim


    A new ultrahigh vacuum microcalorimeter for measuring heats of adsorption and adsorption-induced surface reactions on complex single crystal-based model surfaces is described. It has been specifically designed to study the interaction of gaseous molecules with well-defined model catalysts consisting of metal nanoparticles supported on single crystal surfaces or epitaxial thin oxide films grown on single crystals. The detection principle is based on the previously described measurement of the temperature rise upon adsorption of gaseous molecules by use of a pyroelectric polymer ribbon, which is brought into mechanical/thermal contact with the back side of the thin single crystal. The instrument includes (i) a preparation chamber providing the required equipment to prepare supported model catalysts involving well-defined nanoparticles on clean single crystal surfaces and to characterize them using surface analysis techniques and in situ reflectivity measurements and (ii) the adsorption/reaction chamber containing a molecular beam, a pyroelectric heat detector, and calibration tools for determining the absolute reactant fluxes and adsorption heats. The molecular beam is produced by a differentially pumped source based on a multichannel array capable of providing variable fluxes of both high and low vapor pressure gaseous molecules in the range of 0.005-1.5 × 1015 molecules cm-2 s-1 and is modulated by means of the computer-controlled chopper with the shortest pulse length of 150 ms. The calorimetric measurements of adsorption and reaction heats can be performed in a broad temperature range from 100 to 300 K. A novel vibrational isolation method for the pyroelectric detector is introduced for the reduction of acoustic noise. The detector shows a pulse-to-pulse standard deviation ≤15 nJ when heat pulses in the range of 190-3600 nJ are applied to the sample surface with a chopped laser. Particularly for CO adsorption on Pt(111), the energy input of 15 nJ (or 120 nJ cm


    Finch, Craig; Clarke, Thomas; Hickman, James J


    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices.

  1. Unusual adsorption site behavior in PCN-14 metal-organic framework predicted from Monte Carlo simulation. (United States)

    Lucena, Sebastião M P; Mileo, Paulo G M; Silvino, Pedro F G; Cavalcante, Célio L


    The adsorption equilibrium of methane in PCN-14 was simulated by the Monte Carlo technique in the grand canonical ensemble. A new force field was proposed for the methane/PCN-14 system, and the temperature dependence of the molecular siting was investigated. A detailed study of the statistics of the center of mass and potential energy showed a surprising site behavior with no energy barriers between weak and strong sites, allowing open metal sites to guide methane molecules to other neighboring sites. Moreover, this study showed that a model assuming weakly adsorbing open metal clusters in PCN-14, densely populated only at low temperatures (below 150 K), can explain published experimental data. These results also explain previously observed discrepancies between neutron diffraction experiments and Monte Carlo simulations.

  2. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    Institute of Scientific and Technical Information of China (English)


    This article deals with the determination of the adsorption properties of metal ions and humic acid in water on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation technique without any additives. The solubility test of these crosslinked materials were investigated in acidic, alkaline media,distilled water, and certain organic solvents. Scanning electron microscopic (SEM) images showed that the crosslinked chitosan derivatives possessed a porous morphological structure. Charged characteristic analyses demonstrated typically pH-dependent properties of the crosslinked materials. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu2+, Cd2+) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Moreover, isothermal adsorption data revealed that Cu2+, Cd2+,and humic acid were removed by these crosslinked materials with high efficiency. Adsorption isothermal data were interpreted well by the Langmuir equation. These crosslinked carboxymethylated chitosan derivatives indicate favorable adsorption of metal ions and humic acid.

  3. Removal of heavy metals from aqueous solution by adsorption on biomass based adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Sultan; Azmatullah, M. [Malakand Univ., Chakdara, Dir (Pakistan). Dept. of Chemistry; Bangash, Fazlullah Khan [Peshawar Univ. (Pakistan). Inst. of Chemical Sciences; Amin, Noor-ul [Abdul Wali Khan Univ., Mardan (Pakistan). Dept. of Chemistry


    Removal of heavy metals i.e. Zn{sup 2+} and Cd{sup 2+} from aqueous solution by adsorption onto biomass based adsorbent was investigated as a function of time and different concentrations. The sample was characterized by FTIR, EDS, BET surface area and Zeta potential technique, which was reported earlier. Adsorption kinetics of Zn{sup 2+} and Cd{sup 2+} was tested by first order kinetics, 'Elovich and parabolic diffusion kinetic equations which show that the process of adsorption is diffusion controlled process. The rate of adsorption was high at high adsorption temperature. Thermodynamic parameters like {Delta}H , {Delta}S and {Delta}G were calculated from the kinetic data. The negative value of Gibbs free energy ({Delta}G ) shows the spontaneous nature of the process. Freundlich, Langmuir, Temkin isotherms and distribution coefficient were found fit to the adsorption isotherm data. (orig.)

  4. Cellulose aerogel regenerated from ionic liquid solution for immobilized metal affinity adsorption. (United States)

    Oshima, Tatsuya; Sakamoto, Toshihiko; Ohe, Kaoru; Baba, Yoshinari


    Surface morphology of cellulosic adsorbents is expected to influence the adsorption behavior of biomacromolecules. In the present study, cellulose aerogel regenerated from ionic liquid solution was prepared for use as a polymer support for protein adsorption. Iminodiacetic acid groups were introduced to the aerogel for immobilized metal affinity adsorption of proteins. A Cu(II)-immobilized iminodiacetic acid cellulose aerogel (Cu(II)-IDA-CA), which has a large specific surface area, showed a higher adsorption capacity than Cu(II)-immobilized iminodiacetic acid bacterial cellulose (Cu(II)-IDA-BC) and Cu(II)-immobilized iminodiacetic acid plant cellulose (Cu(II)-IDA-PC). In contrast, the Cu(II)-immobilized cellulosic adsorbents showed similar adsorption capacities for smaller amino acid and peptides. The results show that cellulose aerogels are useful as polymer supports with high protein adsorption capacities.

  5. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.


    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.

  6. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium. (United States)

    Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Hirotsu, Takahiro; Ooi, Kenta; Yoshimura, Yuji; Feng, Qi; Sumida, Naoto


    Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)adsorption isotherms for TP and 1-BTP followed the Langmuir's relationship and the saturation capacities by CeY-zeolite(Na) were calculated as 0.022 and 0.033 mmol/g, respectively. The mole ratios of TP/Ce and 1-BTP/Ce were 0.031 and 0.047, respectively. CeY-zeolite(NH4) which was prepared from NH4Y-zeolite showed less uptake of TP and 1-BTP than CeY-zeolite(Na), probably due to its lower cerium content.

  7. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti


    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  8. Preparation of metal oxide doped ACNFs and their adsorption performance for low concentration SO2

    Institute of Scientific and Technical Information of China (English)

    Hong-quan Yu; Yan-bo Wu; Tie-ben Song; Yue Li; Yu Shen


    Metal oxide (TiO2 or Co3O4) doped activated carbon nanofibers (ACNFs) were prepared by electrospinning. These nanofibers were characterized by X-ray diff raction (XRD), scanning electron microscopy (SEM), and Brunner-Emmett-Teller method (BET). The results show that the average diameters of ACNFs were within the range of 200-500 nm, and the lengths were several tens of micrometers. The specific surface areas were 1146.7 m2/g for TiO2-doped ACNFs and 1238.5 m2/g for Co3O4-doped ACNFs, respectively. The electrospun nanofibers were used for adsorption of low concentration sulfur dioxide (SO2). The results showed that the adsorption rates of these ACNFs increased with an increase in SO2concentration. When the SO2 concentration was 1.0 µg/mL, the adsorption rates of TiO2-doped ACNFs and Co3O4-doped ACNFs were 66.2%and 67.1%, respectively. The adsorption rate also increased as the adsorption time increased. When the adsorption time was 40 min, the adsorption rates were 67.6%and 69.0%for TiO2-doped ACNFs and Co3O4-doped ACNFs, respectively. The adsorption rate decreased as the adsorption temperature increased below 60˚C, while it increased as the adsorption temperature increased to more than 60◦C.

  9. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite (United States)

    Liu, Xiaoxia; Gong, Wenpeng; Luo, Jing; Zou, Chentao; Yang, Yun; Yang, Shuijin


    A novel environmental friendly adsorbent H6P2W18O62/MOF-5 was synthesized by a simple one-step reaction under solvothermal conditions and characterized by XRD, FTIR, thermogravimetric analyses (TGA) and N2 adsorption-desorption isotherms. The removal rate of H6P2W18O62/MOF-5 was quite greater (85%) than that of MOF-5 (almost zero), showing that the adsorption performance of porous MOF-5 can be improved through the modification of H6P2W18O62. Further study revealed that H6P2W18O62/MOF-5 exhibited a fast adsorption rate and selective adsorption ability towards the cationic dyes in aqueous solution. The removal rate was up to 97% for cationic dyes methylene blue (MB) and 68% for rhodamine B(Rhb) within 10 min. However, anionicdye methyl orange(MO) can only reach to 10%. The influences including initial concentration, contact time, initial solution pH and temperature of MB adsorption onto H6P2W18O62/MOF-5 were investigated in detail. The kinetic study indicated that the adsorption of MB onto H6P2W18O62/MOF-5 followed the pseudo second-order model well. The isotherm obtained from experimental data fitted the Langmuir model, yielding maximum adsorption capacity of 51.81 mg/g. The thermodynamic parameters analysis illustrated that the MB adsorption onto H6P2W18O62 immobilized MOF-5 was spontaneous and endothermic process. Besides, these results implied that designing a novel material polyoxometalate-based metal-organic frameworks is great potential for removing cationic organic pollutants and even extended to improve other specific application.

  10. Treatment of metal-containing wastewater by adsorption of metal-chelate complexes onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shay, M.A.


    To eliminate difficulties associated with interference of chelating or complexing agents on precipitation of heavy metals from wastewaters, the feasibility of a process which utilized chelating agents in the removal of the heavy metals was investigated. Heavy metal ions were removed from simulated metal plating wastewater by sorption of a heavy metal chelate complex onto activated carbon. In this process, a chelate which might be present in a wastewater could be used in removal of a heavy metal, rather than interfere with its removal. System development of a continuous flow process consisted of bench scale column tests to answer questions about key adsorption column operating parameters. The metals investigated were Cu(II), Ni(II) and Zn(II). Hydrogen ion concentration had the largest effect on removal of heavy metalchelate complexes, but contact time and heavy metal:chelate ratio were important. The normal contact time for activated carbon columns of 30 to 60 minutes was found adequate to achieve heavy metal-chelate removals of at least 90% for citrate or EDTA complexes. For citrate complexes better removals were achieved at heavy metal:chelate ratios greater than 1:1. For EDTA, there was no advantage to ratios greater than 1:1. Increasing pH, at least to pH 9.0, increased the heavy metal chelate removal; however, for EDTA, removals greater than 90% could be achieved at a pH as low as 3.0. The maximum amount of Cu(II)-citrate complex that could be removed was 2.8 mg per gram of carbon, the maximum amount for Zn(II)citrate complex was 1.2 mg per gram of carbon, and for Ni(II)-citrate, the maximum was 1.3 mg per gram of carbon. For the EDTA complexes, the maximum removal was 2.1 mg of Cu(II)-EDTA complex per gram of carbon, 6.9 mg of Zn(II)-EDTA complex per gram of carbon, and 3.2 mg of Ni(II)-EDTA complex per gram of carbon.

  11. Fast voltammetry of metals at carbon-fiber microelectrodes: copper adsorption onto activated carbon aids rapid electrochemical analysis. (United States)

    Pathirathna, Pavithra; Samaranayake, Srimal; Atcherley, Christopher W; Parent, Kate L; Heien, Michael L; McElmurry, Shawn P; Hashemi, Parastoo


    Rapid, in situ trace metal analysis is essential for understanding many biological and environmental processes. For example, trace metals are thought to act as chemical messengers in the brain. In the environment, some of the most damaging pollution occurs when metals are rapidly mobilized and transported during hydrologic events (storms). Electrochemistry is attractive for in situ analysis, primarily because electrodes are compact, cheap and portable. Electrochemical techniques, however, do not traditionally report trace metals in real-time. In this work, we investigated the fundamental mechanisms of a novel method, based on fast-scan cyclic voltammetry (FSCV), that reports trace metals with sub-second temporal resolution at carbon-fiber microelectrodes (CFMs). Electrochemical methods and geochemical models were employed to find that activated CFMs rapidly adsorb copper, a phenomenon that greatly advances the temporal capabilities of electrochemistry. We established the thermodynamics of surface copper adsorption and the electrochemical nature of copper deposition onto CFMs and hence identified a unique adsorption-controlled electrochemical mechanism for ultra-fast trace metal analysis. This knowledge can be exploited in the future to increase the sensitivity and selectivity of CFMs for fast voltammetry of trace metals in a variety of biological and environmental models.

  12. First Principles Study of HCN Adsorption on Graphene Doped with 5d Transition Metal (United States)

    Dong, Hai-Kuan; Wang, Yong-Ping; Shi, Li Bin


    Hydrogen cyanide (HCN) adsorption on graphene doped with 5d transition metal (TM) is investigated by the first principles based on density functional theory. It is observed that Hg atom cannot be doped into graphene due to saturated valence electron configurations of 5d106s2. Three kinds of HCN adsorption configurations are investigated, in which H, C and N in HCN are close to the adsorption site, respectively. The most stable adsorption configuration is obtained by total energy optimization. HCN adsorption can be studied by adsorption energy and electron density difference. HCN can only be physisorbed on Ir, Pt and Au-doped graphenes, while chemisorption is observed for Lu, Hf, Ta, W, Re and Os-doped graphenes. The band structure is calculated by B3LYP and Generalized gradient approximation (GGA) functionals. It is observed from B3LYP method that the conductivity of Lu, Hf, Re and Os-doped graphenes does not obviously change before and after HCN adsorption. Ta and W-doped graphenes change from semiconductor to metal after adsorption of HCN molecule. The results indicate that Ta and W-doped graphenes may be a promising sensor for detecting HCN. This study provides a useful basis for understanding of a wide variety of physical properties on graphene.

  13. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes. (United States)

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng


    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  14. H2 adsorption on 3d transition metal clusters: a combined infrared and density functional study

    NARCIS (Netherlands)

    Swart, I.; de Groot, F.M.F.; Weckhuysen, B.M.; Gruene, P.; Meijer, G.; Fielicke, A.


    The adsorption of H2 on a series of gas-phase transition metal (scandium, vanadium, iron, cobalt, and nickel) clusters containing up to 20 metal atoms is studied using IR-multiple photon dissociation spectroscopy complemented with density functional theory based calculations. Comparison of the exper

  15. Adsorption and migration of single metal atoms on the calcite (10.4) surface (United States)

    Pinto, H.; Haapasilta, V.; Lokhandwala, M.; Öberg, S.; Foster, Adam S.


    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3d (Ti, Cr, Fe, Ni, Cu), 4d (Zr, Nb, Mo, Pd, Ag) and 5d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca–Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface.

  16. The application of prepared porous carbon materials: Effect of different components on the heavy metal adsorption. (United States)

    Song, Min; Wei, Yuexing; Yu, Lei; Tang, Xinhong


    In this study, five typical municipal solid waste (MSW) components (tyres, cardboard, polyvinyl chloride (PVC), acrylic textile, toilet paper) were used as raw materials to prepare four kinds of MSW-based carbon materials (paperboard-based carbon materials (AC1); the tyres and paperboard-based carbon materials (AC2); the tyres, paperboard and PVC-based carbon materials (AC3); the tyres, paperboard, toilet paper, PVC and acrylic textile-based carbon materials (AC4)) by the KOH activation method. The characteristic results illustrate that the prepared carbon adsorbents exhibited a large pore volume, high surface area and sufficient oxygen functional groups. Furthermore, the application of AC1, AC2, AC3, AC4 on different heavy metal (Cu(2+), Zn(2+), Pb(2+), Cr(3+)) removals was explored to investigate their adsorption properties. The effects of reaction time, pH, temperature and adsorbent dosage on the adsorption capability of heavy metals were investigated. Comparisons of heavy metal adsorption on carbon of different components were carried out. Among the four samples, AC1 exhibits the highest adsorption capacity for Cu(2+); the highest adsorption capacities of Pb(2+) and Zn(2+) are obtained for AC2; that of Cr(3+) are obtained for AC4. In addition, the carbon materials exhibit better adsorption capability of Cu(2+) and Pb(2+) than the other two kind of metal ions (Zn(2+) and Cr(3+)).

  17. [Rapid Synthesis of Metal Organic Framework and Its Adsorption Properties on Anonic Dyes]. (United States)

    Sun, De-shuai; Liu, Ya-li; Zhang, Xiao-dong; Qin, Ting-ting


    The waste water containing dyes is difficult to be biochemically treated because of its deep color. Adsorption becomes an important treatment method for this kind of waste water. The iron organic framework was rapidly synthesized at room temperature, and characterized by IR and XRD. Adsorption properties of the materials were tested using four anonic dyes solutions. It was found that the iron organic framework could be formed rapidly, with higher surface area and pore volumes. The pH value of zero point charge was 3.7. The adsorption experiments showed that the iron organic material could remove more dyes in acid solution. The dye adsorption capacity increased with increasing dye concentration. These adsorption data fitted well with Langmuir thermoadsorption equation. The calculated parameter from Langmuir adsorption indicated that the adsorption process could be performed easily. The second order kinetic equation could describe the adsorption data. In addition, the structure of dyes could affect the adsorption process. The metal complex dyes could be quickly removed.

  18. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework. (United States)

    Wu, Xiaofei; Yuan, Bin; Bao, Zongbi; Deng, Shuguang


    An ultramicroporous copper metal-organic framework (Cu-MOF), Cu(hfipbb)(H2hfipbb)0.5 [H2hfipbb=4,4'-(hexafluoro-isopropylidene) bis(benzoic acid)] was successfully synthesized by a microwave-assisted method (1) with a shorter reaction time and higher MOFs yield. The obtained Cu-MOF sample was characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and carbon dioxide adsorption at 273 K for pore textural properties. Single-component adsorption (adsorption equilibrium and kinetics) of CO2, CH4, and N2 on 1 was measured using a Micromeritics ASAP 2020 adsorption porosimeter at 278, 298 and 318 K, and pressures up to 1 bar. Isosteric heats of adsorption, Henry's constants, and diffusion time constants were calculated and carefully analyzed. Adsorption equilibrium selectivity (α), adsorbent selection parameter for pressure swing adsorption processes (S), kinetic selectivity and combined separation selectivity (β) for CO2/CH4, CO2/N2 and CH4/N2 binary mixtures were estimated based on the single-component adsorption data. The relative high values of the adsorption selectivities suggest that Cu-MOF is a promising adsorbent for separating CO2/CH4, CO2/N2 and CH4/N2 gas pairs. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material. (United States)

    Yin, Ping; Xu, Qiang; Qu, Rongjun; Zhao, Guifang; Sun, Yanzhi


    A novel inorganic-organic composite material silica gel microspheres encapsulated by imidazole functionalized polystyrene (SG-PS-azo-IM) has been synthesized and characterized. This composite material was used to investigate the adsorption of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), Hg(II), Pb(II), Pd(II), Pt(II), Ag(I), and Au(III) from aqueous solutions, and the research results displayed that SG-PS-azo-IM has the highest adsorption capacity for Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation, and the maximum adsorption capacity for Au(III) is 1.700 mmol/g. The adsorption selectivity, the dynamic adsorption and desorption properties of SG-PS-azo-IM for Au(III) have also been studied. The results showed that SG-PS-azo-IM had excellent adsorption for Au(III) in four binary ions system, especially in the systems of Au(III)-Zn(II) and Au(III)-Cu(II), and almost Au(III) could be desorbed with the eluent solution of 0.5% thiourea in 1 mol/L HCl. Moreover, this novel composite material was used to preconcentrate Au(III) before its determination by flame atomic adsorption spectrometry. In the initial concentration range of 0.10-0.20 microg/mL, multiple of enrichment could reach 5.28. Thus, silica gel encapsulated by polystyrene coupling with imidazole (SG-PS-azo-IM) is favorable and useful for the removal of transition metal ions, and the high adsorption capacity makes it a good promising candidate material for Au(III) removal.

  20. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin


    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  1. A simplified adsorption model for water vapor adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    姚小龙; 李立清; 李海龙; 马卫武


    A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures (20-50 °C) and relative humidities (5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.

  2. DFT study of adsorption of CO2 on palladium cluster doped by transition metal (United States)

    Saputro, A. G.; Agusta, M. K.; Wungu, T. D. K.; Suprijadi; Rusydi, F.; Dipojono, H. K.


    We report on a theoretical study of CO2 adsorption on Pd6-M (M: Ni, Cu, Pt, Rh) cluster using first-principles density functional theory (DFT) calculations. We find that CO2 molecule is adsorbed with a bidendate configuration on Pd7 and on most of Pd6M clusters. The bidendate adsorption configuration is formed due to the filling of the unoccupied n* orbital of CO2 molecule upon its interaction with d-orbitals of the cluster. We find that transition metal doping could modify the adsorption energy, adsorption site and adsorption configuration of CO2 molecule on Pd7 cluster. We also predict that the usage of Pd6M clusters as CO2 hydrogenation catalysts might facilitate the formations of HCOO/COOH.

  3. Modeling of adsorption of CO2 in the deformed pores of MIL-53(Al). (United States)

    Dundar, Ege; Chanut, Nicolas; Formalik, Filip; Boulet, Pascal; Llewellyn, Philip L; Kuchta, Bogdan


    Molecular simulations were performed to predict CO2 adsorption in flexible metal-organic frameworks (MOFs). A generic force field was fitted to our experimental data to describe the non-bonded (electrostatic and van der Waals) interactions between CO2 molecules and the large pore (lp) and narrow pore (np) forms of the MIL-53(Al) framework. With the new validated force field, it is possible to predict CO2 uptake and enthalpy of adsorption at various applied external pressures that will modify the structure's pore configuration and allow us to have more control over the adsorption/desorption process. A sensitivity analysis of MOF adsorption properties to the variation of the force field parameters was also intensively studied. It was shown that relatively small variations of the adsorbate gas model can improve the quality of the numerical predictions of the experimental data. However, the variations must be kept small enough to not modify the properties of the gas itself.

  4. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks


    Hyunho Kim; H. Jeremy Cho; Shankar Narayanan; Sungwoo Yang; Hiroyasu Furukawa; Scott Schiffres; Xiansen Li; Yue-Biao Zhang; Juncong Jiang; Yaghi, Omar M.; Wang, Evelyn N.


    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of ads...

  5. Characterization and application of tourmaline and beryl from Brazilian pegmatite in adsorption process with divalent metals

    Institute of Scientific and Technical Information of China (English)

    Denis L.Guerra; Silze P.Oliveira; Ricardo A.R.Silva; Victor Leidens; Adriano C.Batista


    In this study,the original tourmaline and beryl mineral samples have been collected from a Brazilian pegmatite.The objective of this study was to examine the adsorption behavior of Brazilian ciclosilicate sampies,towards divalent metals (Pb2+,Mn2+,and Zn2+) in ethanol solution has been studies by a batch technique.The ciclosilicate samples were characterized by elemental analysis,Fourier transform infrared spectroscopy,helium picnometry,mercury porosity,and nitrogen adsorption-desorption.The Langmuir expression for adsorption isotherm was applied in order to determine the adsorption capacity to form a monolayer and the constant related to the adsorption intensity.In aqueous solution there was a significant adsorption increase with the temperature and pronounced synergistic effects were observed.The maximum number of moles adsorbed was determined to be 12.48 and 11.49 mmol/g for systems Pb2+/beryl and Pb2+/tourmaline,respectively.The energetic effects caused by metal cations adsorption were determined through calorimetric titrations.Thermodynamics indicated the existence of favorable conditions for such Pb2+-,Mn2+-,and Zn2+-OH interactions.

  6. Effects of composition and structure of alginates on adsorption of divalent metals (United States)

    Zheng, Nai-Yu; Zhang, Yan-Xia; Fan, Xiao; Han, Li-Jun


    Results of a series of experiments (on the adsorption of divalent metal ions by dried alginic acid, Na and Ca alginates of different composition and block structure) conducted in this systematic study of the effects of the composition and structure of alginates on the static adsorption equilibrium of divalent metal ions indicate that the properties of alginate adsorption to divalent metal ions are highly different, depending not only on the cations used, but also on the form and structure of the alginates. There is close correlation between the adsorption properties and the structure of the alginates. The selectivity coefficient of Na alginate for Cd-Sr ion exchange tends to increase with the increase of the M/G ratio in alginate, whereas the adsorption capacity of Ca alginate for Cu2+ ion decrease with the increase of the G-block or the average length of the G-block(bar N_G ) and the total adsorption capacity of alginic acid is found to vary in the same order as the F MM(diad frequency) in alginate in the mixed solution of Sr2+, Ba2+ and Cd2+.

  7. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential. (United States)

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi


    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials.

  8. Ordering kinetics in model systems with inhibited interfacial adsorption

    DEFF Research Database (Denmark)

    Willart, J.-F.; Mouritsen, Ole G.; Naudts, J.


    The ordering kinetics in two-dimensional Ising-like spin moels with inhibited interfacial adsorption are studied by computer-simulation calculations. The inhibited interfacial adsorption is modeled by a particular interfacial adsorption condition on the structure of the domain wall between...... neighboring domains. This condition can be either hard, as modeled by a singularity in the domain-boundary potential, or soft, as modeled by a version of the Blume-Capel model. The results show that the effect of the steric hindrance, be it hard or soft, is only manifested in the amplitude, A...

  9. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. (United States)

    Weng, Liping; Vega, Flora Alonso; Van Riemsdijk, Willem H


    The pH dependency of soluble phosphate in soil was measured for six agricultural soils over a pH range of 3-10. A mechanistic model, the LCD (ligand charge distribution) model, was used to simulate this change, which considers phosphate adsorption to metal (hydr)oxides in soils under the influence of natural organic matter (NOM) and polyvalent cations (Ca(2+), Al(3+), and Fe(3+)). For all soils except one, the description in the normal pH range 5-8 is good. For some soils at more extreme pH values (for low P-loading soils at low pH and for high P-loading soils at high pH), the model over predicts soluble P. The calculation shows that adsorption is the major mechanism controlling phosphate solubility in soils, except at high pH in high P-loading soils where precipitation of calcium phosphate may take place. NOM and polyvalent cations have a very strong effect on the concentration level of P. The pattern of pH dependency of soluble P in soils differs greatly from the pH effects on phosphate adsorption to synthetic metal (hydr)oxides in a monocomponent system. According to the LCD model, the pH dependency in soil is mainly caused by the synergistic effects of Ca(2+) adsorption to oxides. Adsorption of Al(3+) to NOM adsorbed plays an important role only at a pH < 4.5. Presence of NOM coating strongly competes with phosphate for the adsorption and is an important factor to consider in modeling phosphate adsorption in natural samples.

  10. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. (United States)

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo


    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+).

  11. Effect of organic substituents on the adsorption of carbon dioxide on a metal-organic framework (United States)

    Thu Ha, Nguyen Thi; Lefedova, O. V.; Ha, Nguyen Ngoc


    The adsorption of carbon dioxide on the MOF-5 metal-organic framework and modifications of it obtained by replacing the hydrogen atoms in the organic ligands with electron donor (-CH3,-OCH3) or electron acceptor groups (-CN,-NO2) is investigated using the grand canonical Monte Carlo (GCMC) method and density functional theory (DFT). It is shown that the adsorption of carbon dioxide molecules on the structures of metal-organic frameworks is most likely on Zn4O clusters, and that the adsorption of carbon dioxide is of a physical nature. The presence of substituents-CH3,-OCH3,-CN in metal-organic frameworks increases their capacity to adsorb carbon dioxide, while that of nitro groups (-NO2) has the opposite effect.

  12. Destructive Adsorption of Carbon Tetrachloride on Alkaline Earth Metal Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Mestl, Gerhard; Rosynek, Michael P.; Krawietz, Thomas R.; Haw, James F.; Lunsford, Jack H.


    The destructive adsorption of CCl4 on MgO, CaO, SrO, and BaO has been studied as a function of the reaction temperature and the amount of CCl4 injected. The reaction was followed using in situ Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 13 C mag

  13. Adsorption Mechanisms of Heavy Metal Ions from Drinking Water by Weakly Basic Anion Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    赵璇; 何仕均; 杨磊


    Heavy metal micro-contaminants can be removed from water sources technologies. Weakly basic anion exchange resins offer the best ability to remove trace amounts of heavy metals with high selectivity. This paper discusses how weakly basic resins adsorb heavy metals using two different approaches. The removal of mercury, cadmium, and lead ions is based on the fundamental theory of coordination chemistry. The mechanism is not ion exchange but extractive adsorption of heavy metal salts. However, the marked preferential adsorption of chromate by weakly basic anion exchange can be explained using the traditional theory of ion exchange. A lab-scale study produced positive results for the removal of trace amounts of heavy metal ions from drinking water.

  14. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. (United States)

    Lee, Chang-Gu; Lee, Soonjae; Park, Jeong-Ann; Park, Chanhyuk; Lee, Sang Jeong; Kim, Song-Bae; An, Byungryul; Yun, Seong-Taek; Lee, Sang-Hyup; Choi, Jae-Woo


    In this study, the characterizations and adsorption efficiencies for chromium, copper and nickel were evaluated using manufacture-grade Fe2O3-carbon foam. SEM, XRD, XRF and BET analyses were performed to determine the characteristics of the material. Various pore sizes (12-420 μm) and iron contents (3.62%) were found on the surface of the Fe2O3-carbon foam. Fe2O3-carbon foam was found to have excellent adsorption efficiency compared to carbon foam for mixed solutions of cationic and anionic heavy metals. The adsorption capacities for chromium, copper and nickel were 6.7, 3.8 and 6.4 mg/g, respectively, which were obtained using a dual exponential adsorption model. In experiments with varying dosages of the Fe2O3 powder, no notable differences were observed in the removal efficiency. In a fixed-bed column test, Fe2O3-carbon foam achieved adsorption capacities for chromium, copper and nickel of 33.0, 12.0 and 9.5 mg/g, respectively, after 104 h. Based on these results, Fe2O3-carbon foam was observed to be a promising material for treatment of plating wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Baccar, R. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail:; Bouzid, J. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail:; Feki, M. [Unite de Recherche de Chimie Industrielle et Materiaux, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail:; Montiel, A. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail:


    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO{sub 4} as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu{sup 2+} ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO{sub 4} into insoluble manganese (IV) oxide (MnO{sub 2}) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  16. Studies of Adsorption of Heavy Metals onto Spent Coffee Ground: Equilibrium, Regeneration, and Dynamic Performance in a Fixed-Bed Column

    Directory of Open Access Journals (Sweden)

    N. E. Davila-Guzman


    Full Text Available Equilibrium and dynamic adsorption of heavy metals onto spent coffee ground (SCG were studied. The equilibrium adsorption of Cd2+, Cu2+, and Pb2+ in a batch system was modeled by an ion-exchange model (IEM based on an ion-exchange of heavy metals with calcium and protons bonded to active sites on SCG surface. The maximum amount of adsorbed metal ions obtained using the IEM was 0.12, 0.21, and 0.32 mmol/g of Cd2+, Cu2+, and Pb2+, respectively. Regeneration of SCG was evaluated using citric acid, calcium chloride, and nitric acid. The observed trend of desorption efficiency through four adsorption-desorption cycles was HNO3 > CaCl2 > C6H8O7. The effect of process variables such as flow rate and bed height during the dynamic adsorption was evaluated. Moreover, the applicability of a mass transfer model based on external mass transfer resistance, axial dispersion, and ion-exchange isotherm was evaluated, and the results were in good agreement with the experimental data for the adsorption in SCG packed column. The sensitivity analysis of the model parameters showed that axial dispersion coefficient is the most significant parameter in the dynamic simulation. The results obtained showed the potential of SCG as a low-cost material for wastewater metal removal in continuous systems.

  17. Adsorption of graphene oxide/chitosan porous materials for metal ions

    Institute of Scientific and Technical Information of China (English)

    Yong Qiang He; Na Na Zhang; Xiao Dong Wang


    Porous graphene oxide/chitosan (PGOC) materials were prepared by a unidirectional freeze-drying method. Their porous structure, mechanical property and adsorption for metal ions were investigated. The results show that the incorporation of graphene oxide (GO) significantly increased the compressive strength of the PGOC materials. The saturated adsorption capacity of Pb2+ increased about 31%, up to 99 mg/g when 5 wt% GO was incorporated These biodegradable, nontoxic, efficient PGOC materials will be a potential adsorbent for metal ions in aqueous solution.

  18. Direct Observation of Hydrogen Adsorption Sites and Nanocage Formation in Metal-Organic Frameworks (United States)

    Yildirim, T.; Hartman, M. R.


    The hydrogen adsorption sites in MOF5 were determined using neutron powder diffraction along with first-principles calculations. The metal-oxide cluster is primarily responsible for the adsorption while the organic linker plays only a secondary role. Equally important, at low temperatures and high-concentration, H2 molecules form unique interlinked high-symmetry nanoclusters with intermolecular distances as small as 3.0 Å and H2 uptake as high as 11 wt %. These results hold the key to optimizing metal-organic framework (MOF) materials for hydrogen storage applications and also suggest that MOFs can be used as templates to create artificial interlinked hydrogen nanocages with novel properties.

  19. Study of Adsorption and Desorption Performances of Zr-Based Metal-Organic Frameworks Using Paper Spray Mass Spectrometry. (United States)

    Wang, Xiaoting; Chen, Ying; Zheng, Yajun; Zhang, Zhiping


    The dynamic pore systems and high surface areas of flexible metal-organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal-organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal-organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH₂ and UiO-66(Zr)-2COOH] as well as ZrO₂ in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO₂ demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO₂-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin).

  20. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers. (United States)

    Sim, Jaeung; Yim, Haneul; Ko, Nakeun; Choi, Sang Beom; Oh, Youjin; Park, Hye Jeong; Park, SangYoun; Kim, Jaheon


    Three functionalized metal-organic frameworks (MOFs), MOF-205-NH2, MOF-205-NO2, and MOF-205-OBn, formulated as Zn4O(BTB)4/3(L), where BTB is benzene-1,3,5-tribenzoate and L is 1-aminonaphthalene-3,7-dicarboxylate (NDC-NH2), 1-nitronaphthalene-3,7-dicarboxylate (NDC-NO2) or 1,5-dibenzyloxy-2,6-naphthalenedicarboxylate (NDC-(OBn)2), were synthesized and their gas (H2, CO2, or CH4) adsorption properties were compared to those of the un-functionalized, parent MOF-205. Ordered structural models for MOF-205 and its derivatives were built based on the crystal structures and were subsequently used for predicting porosity properties. Although the Brunauer-Emmett-Teller (BET) surface areas of the three MOF-205 derivatives were reduced (MOF-205, 4460; MOF-205-NH2, 4330; MOF-205-NO2, 3980; MOF-205-OBn, 3470 m(2) g(-1)), all three derivatives were shown to have enhanced H2 adsorption capacities at 77 K and CO2 uptakes at 253, 273, and 298 K respectively at 1 bar in comparison with MOF-205. The results indicate the following trend in H2 adsorption: MOF-205 MOF-205-NO2 MOF-205-NH2 MOF-205-OBn. MOF-205-OBn showed good ideal adsorbed solution theory (IAST) selectivity values of 6.5 for CO2/N2 (15/85 in v/v) and 2.7 for CO2/CH4 (50/50 in v/v) at 298 K. Despite the large reduction (-22%) in the surface area, MOF-205-OBn displayed comparable total volumetric CO2 (at 48 bar) and CH4 (at 35 bar) storage capacities with those of MOF-205 at 298 K: MOF-205-OBn, 305 (CO2) and 112 (CH4) cm(3) cm(-3), and for MOF-205, 307 (CO2) and 120 (CH4) cm(3) cm(-3), respectively.

  1. Adsorption of strontium (II) metal ions using phosphonate-functionalized polymer

    Indian Academy of Sciences (India)



    Diethyl[3-(methoxydimethylsilyl)propyl]phosphonate (DMPP) polymer was synthesized for the strontium (II) metal ion recovery using diethylallylphosphonate as staring material. Diethylallylphosphonate was reactedwith poly(methylhydro)siloxane (MW 1900–2000 g mol$^{−1}$) in the presence of Speier’s catalyst. The synthesized monomer was characterized by IR, ${}^1$H NMR, ${}^{13}$C NMR and FT-IR spectroscopy techniques, and the synthesizedpolymers were characterized by IR and NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis and solubility. The synthesized polymer was used for sequestering strontium metal from the aqueous solution. The metal binding was examined by the energy dispersive spectroscopy and scanning electron microscopy for the adsorbed Sr(II). Batch adsorption studies were performed by varying three parameters, namely initial pH, adsorbentdose and the contact time. The reaction kinetics was determined by the Langmuir, Freundlich, and pseudo-firstand second-order models. Results of this study indicate that the synthesized polymer DMPP has been effective inremoving Sr(II) from the aqueous solution.

  2. Adsorption of heavy metals in representative soils of Israel and North Germany in dependence of the specific surface. Adsorption von Schwermetallen in repraesentativen Boeden Israels und Nordwestdeutschlands in Abhaengigkeit von der spezifischen Oberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, A.


    The investigations can be subdivided into two sections: 1. the determination of the specific surface of soils as a parameter of the solid soil substances determining the heavy metal adsorption; 2. the adsorption behaviour of the heavy metals Cd, Zn, Pb and Cu with special consideration to the relation between the adsorption density and the soil solution concentration. In order to determine the specific surface of soils a collection of samples from 140 soil horizons of which 71 are from North Germany and 69 from Israel was selected and investigated for their most important physical and chemical properties. The specific surface of the samples was determined through adsorption of H{sub 2}0, ethylene glycol ethyl ether (EGME) and N{sub 2} (designed as SSA-H{sub 2}0, SSA-EGME and SSA-N). For each soil type adsorption isotherms of the elements Cd, Zn, Pb and Cu were produced in the saturation extract, i.e. under a soil-specific soil/solution ratio of <1:0.8 according to the methods described. The relation between quantity and intensity resulting from this was separately analysed for each soil type both through the Langmuir adsorption model and the Freundlich model. (orig./EF).

  3. Modeling adsorption: Investigating adsorbate and adsorbent properties (United States)

    Webster, Charles Edwin


    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  4. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin, E-mail:


    Graphical abstract: - Highlights: • Several superhydrophobic metallic surfaces were fabricated by fast electrodeposition. • Both micro/nanostructures and adsorption of airborne hydrocarbons make contributions. • XPS analyses confirm presence of airborne hydrocarbons on these metallic surfaces. • The adsorption of airborne hydrocarbons on the clean metal Au surface was very quick. • UV-O{sub 3} treatment oxidized the hydrocarbons to hydrophilic oxygen-containing organics. - Abstract: Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar{sup +}-etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O{sub 3} treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films.

  5. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling (United States)

    Poirier, Eric; Dailly, Anne


    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn4O(1,3,5-benzenetribenzoate)2, MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g-1. An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g-1 at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol-1 in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn4O(1,4-benzenedicarboxylate)3, IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  6. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling. (United States)

    Poirier, Eric; Dailly, Anne


    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn4O(1,3,5-benzenetribenzoate)2, MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g(-1). An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g(-1) at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol(-1) in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn4O(1,4-benzenedicarboxylate)3, IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.


    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç


    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  8. Thermodynamics of hydrogen adsorption on metal-organic frameworks. (United States)

    Areán, Carlos O; Chavan, Sachin; Cabello, Carlos P; Garrone, Edoardo; Palomino, Gemma T


    Interaction between adsorbed hydrogen and the coordinatively unsaturated Mg(2+) and Co(2+) cationic centres in Mg-MOF-74 and Co-MOF-74, respectively, was studied by means of variable-temperature infrared (VTIR) spectroscopy. Perturbation of the H(2) molecule by the cationic adsorbing centre renders the H--H stretching mode IR-active at 4088 and 4043 cm(-1) for Mg-MOF-74 and Co-MOF-74, respectively. Simultaneous measurement of integrated IR absorbance and hydrogen equilibrium pressure for spectra taken over the temperature range of 79-95 K allowed standard adsorption enthalpy and entropy to be determined. Mg-MOF-74 showed ΔH(0)=-9.4 kJ mol(-1) and ΔS(0)=-120 J mol(-1) K(-1), whereas for Co-MOF-74 the corresponding values of ΔH(0)=-11.2 kJ mol(-1) and ΔS(0)=-130 J mol(-1) K(-1) were obtained. The observed positive correlation between standard adsorption enthalpy and entropy is discussed in the broader context of corresponding data for hydrogen adsorption on cation-exchanged zeolites, with a focus on the resulting implications for hydrogen storage and delivering.

  9. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue. (United States)

    Kırbıyık, Çisem; Pütün, Ayşe Eren; Pütün, Ersan


    In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform-infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process.

  10. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate

    Directory of Open Access Journals (Sweden)

    Elizabeth Rojas García


    Full Text Available A Metal-Organic Framework (MOF, iron-benzenetricarboxylate (Fe(BTC, has been studied for the adsorptive removal of azo-dye Orange II from aqueous solutions, where the effect of various parameters was tested and isotherm and kinetic models were suggested. The adsorption capacities of Fe(BTC were much higher than those of an activated carbon. The experimental data can be best described by the Langmuir isotherm model (R2 > 0.997 and revealed the ability of Fe(BTC to adsorb 435 mg of Orange II per gram of adsorbent at the optimal conditions. The kinetics of Orange II adsorption followed a pseudo-second-order kinetic model, indicating the coexistence of physisorption and chemisorption, with intra-particle diffusion being the rate controlling step. The thermodynamic study revealed that the adsorption of Orange II was feasible, spontaneous and exothermic process (−25.53 kJ·mol−1. The high recovery of the dye showed that Fe(BTC can be employed as an effective and reusable adsorbent for the removal of Orange II from aqueous solutions and showed the economic interest of this adsorbent material for environmental purposes.

  11. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate (United States)

    Rojas García, Elizabeth; López Medina, Ricardo; May Lozano, Marcos; Hernández Pérez, Isaías; Valero, Maria J.; Maubert Franco, Ana M.


    A Metal-Organic Framework (MOF), iron-benzenetricarboxylate (Fe(BTC)), has been studied for the adsorptive removal of azo-dye Orange II from aqueous solutions, where the effect of various parameters was tested and isotherm and kinetic models were suggested. The adsorption capacities of Fe(BTC) were much higher than those of an activated carbon. The experimental data can be best described by the Langmuir isotherm model (R2 > 0.997) and revealed the ability of Fe(BTC) to adsorb 435 mg of Orange II per gram of adsorbent at the optimal conditions. The kinetics of Orange II adsorption followed a pseudo-second-order kinetic model, indicating the coexistence of physisorption and chemisorption, with intra-particle diffusion being the rate controlling step. The thermodynamic study revealed that the adsorption of Orange II was feasible, spontaneous and exothermic process (−25.53 kJ·mol−1). The high recovery of the dye showed that Fe(BTC) can be employed as an effective and reusable adsorbent for the removal of Orange II from aqueous solutions and showed the economic interest of this adsorbent material for environmental purposes. PMID:28788289

  12. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption. (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan


    Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.

  13. Adsorption on Mesoporous Metal-Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds. (United States)

    Samokhvalov, Alexander


    Adsorption and desorption play major roles in separations, purification of water, waste streams, liquid fuels, catalysis, biomedicine and chromatography. Mesoporous metal-organic frameworks (MOFs) with pore sizes 2-50 nm are particularly suitable for adsorption of organic compounds in solution. Tens of thousands of aromatic and heterocyclic compounds are major components of liquid fuels, feedstock for industrial synthesis, solvents, dyestuffs, agricultural chemicals, medicinal drugs, food additives, and so forth. This Review provides a systematization and analysis of studies on adsorption/desorption on mesoporous MOFs in solution and their underlying chemical mechanisms. The (in)stability of mesoporous MOFs in water is critically discussed. Adsorption capacity and selectivity are covered for organic dyes, medicinal drugs, major components of liquid fuels, and miscellaneous industrial chemicals. Ionic interactions, Brønsted acid-base interactions, hydrogen bonding, coordination bonding, π-π interactions, and non-specific interactions are covered amongst adsorption mechanisms. The effects of post-synthetic modifications of mesoporous MOFs on their stability, adsorption capacity, selectivity, and mechanisms of adsorption and desorption are analyzed. To encourage research in this quickly growing field, we identify "niches" for which no application-oriented and/or mechanistic studies were reported. Perspectives and limitations of a wide use of mesoporous MOFs as industrial sorbents are discussed.

  14. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. (United States)

    Xiao, Bo; Wheatley, Paul S; Zhao, Xuebo; Fletcher, Ashleigh J; Fox, Sarah; Rossi, Adriano G; Megson, Ian L; Bordiga, S; Regli, L; Thomas, K Mark; Morris, Russell E


    Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H2 per g of HKUST-1 (22.7 mg g(-)1, 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-)1, 3.6 wt %) at 10 bar. Adsorption of D2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.

  15. Understanding the kinetics of adsorption in narrow channel metal organic frameworks (United States)

    Zhou, Wei; Simmons, Jason; Yildirim, Taner


    Advancements in the controlled synthesis of metal organic frameworks (MOFs) have lead to impressive increases in hydrogen storage capacities and enhanced binding energies that may offer higher temperature operation. Given that the optimum pore size for hydrogen adsorption is on the order of 7 Angstroms, diffusion of hydrogen into these materials can play an important role in their ultimate implementation. In this presentation we use a combination of experimental and computational techniques, including gas sorption and neutron scattering measurements and detailed first-principles calculations, to better understand the kinetic limitations to adsorption in narrow channel MOF. In particular we show that the adsorption is diffusion limited with a significant activation barrier of ˜70 meV, and that this barrier is phonon-mediated. This work demonstrates the importance of considering kinetic effects in addition to pore volume and heats of adsorption when optimizing MOF materials for hydrogen storage.

  16. Unveiling Adsorption Mechanisms of Organic Pollutants onto Carbon Nanomaterials by Density Functional Theory Computations and Linear Free Energy Relationship Modeling. (United States)

    Wang, Ya; Chen, Jingwen; Wei, Xiaoxuan; Hernandez Maldonado, Arturo J; Chen, Zhongfang


    Predicting adsorption of organic pollutants onto carbon nanomaterials (CNMs) and understanding the adsorption mechanisms are of great importance to assess the environmental behavior and ecological risks of organic pollutants and CNMs. By means of density functional theory (DFT) computations, we investigated the adsorption of 38 organic molecules (aliphatic hydrocarbons, benzene and its derivatives, and polycyclic aromatic hydrocarbons) onto pristine graphene in both gaseous and aqueous phases. Polyparameter linear free energy relationships (pp-LFERs) were developed, which can be employed to predict adsorption energies of aliphatic and aromatic hydrocarbons on graphene. Based on the pp-LFERs, contributions of different interactions to the overall adsorption were estimated. As suggested by the pp-LFERs, the gaseous adsorption energies are mainly governed by dispersion and electrostatic interactions, while the aqueous adsorption energies are mainly determined by dispersion and hydrophobic interactions. It was also revealed that curvature of single-walled carbon nanotubes (SWNTs) exhibits more significant effects than the electronic properties (metallic or semiconducting) on gaseous adsorption energies, and graphene has stronger adsorption abilities than SWNTs. The developed models may pave a promising way for predicting adsorption of environmental chemicals onto CNMs with in silico techniques.

  17. Protein adsorption on nanoparticles: model development using computer simulation (United States)

    Shao, Qing; Hall, Carol K.


    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles.

  18. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. (United States)

    Al-Ghouti, Mohammad A; Li, Juiki; Salamh, Yousef; Al-Laqtah, Nasir; Walker, Gavin; Ahmad, Mohammad N M


    A potential usefulness of raw date pits as an inexpensive solid adsorbent for methylene blue (MB), copper ion (Cu(2+)), and cadmium ion (Cd(2+)) has been demonstrated in this work. This work was conducted to provide fundamental information from the study of equilibrium adsorption isotherms and to investigate the adsorption mechanisms in the adsorption of MB, Cu(2+), and Cd(2+) onto raw date pits. The fit of two models, namely Langmuir and Freundlich models, to experimental data obtained from the adsorption isotherms was checked. The adsorption capacities of the raw date pits towards MB and both Cu(2+) and Cd(2+) ions obtained from Langmuir and Freundlich models were found to be 277.8, 35.9, and 39.5 mg g(-1), respectively. Surface functional groups on the raw date pits surface substantially influence the adsorption characteristics of MB, Cu(2+), and Cd(2+) onto the raw date pits. The Fourier transform infrared spectroscopy (FTIR) studies show clear differences in both absorbances and shapes of the bands and in their locations before and after solute adsorption. Two mechanisms were observed for MB adsorption, hydrogen bonding and electrostatic attraction, while other mechanisms were observed for Cu(2+) and Cd(2+). For Cu(2+), binding two cellulose/lignin units together is the predominant mechanism. For Cd(2+), the predominant mechanism is by binding itself using two hydroxyl groups in the cellulose/lignin unit. 2009 Elsevier B.V. All rights reserved.

  19. Generalized statistical model for multicomponent adsorption equilibria on zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Rota, R.; Gamba, G.; Paludetto, R.; Carra, S.; Morbidelli, M. (Dipartimento di Chimica Fisica Applicata, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (IT))


    The statistical thermodynamic approach to multicomponent adsorption equilibria on zeolites has been extended to nonideal systems, through the correction of cross coefficients characterizing the interaction between unlike molecules. Estimation of the model parameters requires experimental binary equilibrium data. Comparisons with the classical model based on adsorbed solution theory are reported for three nonideal ternary systems. The two approaches provide comparable results in the simulation of binary and ternary adsorption equilibrium data at constant temperature and pressure.

  20. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series (United States)

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A. R.


    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.

  1. Theoretical study of adsorption of water vapor on surface of metallic uranium

    Institute of Scientific and Technical Information of China (English)


    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH2 wich C2v configuration is obtained in the state of 5A1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.474 7 kJ.mol-1, which indicates a typical chemical adsorption.

  2. Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo


    Full Text Available Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic - inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, respectively. The structure and physicochemical properties of the materials were characterized by means of elemental analysis, X-ray diffraction (XRD, nitrogen adsorption - desorption, thermogravimetric analysis, FTIR spectroscopy and immersion calorimetry. The organic functional groups were successfully grafted onto the SBA-15 surface and the ordering of the support was not affected by the chemical modification. The behavior of the grafted solids was investigated for the adsorption of heavy metal ions from aqueous solutions. The hybrid materials showed high adsorption capacity and high selectivity for zinc ions. Other ions, such as cooper and cobalt were absorbed by the modified SBA-15 material.

  3. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. (United States)

    Yang, Qingyuan; Zhong, Chongli


    Metal-organic frameworks (MOFs) are thought to be a set of promising hydrogen storage materials; however, little is known about the interactions between hydrogen molecules and pore walls as well as the diffusivities of hydrogen in MOFs. In this work, we performed a systematic molecular simulation study on the adsorption and diffusion of hydrogen in MOFs to provide insight into molecular-level details of the underlying mechanisms. This work shows that metal-oxygen clusters are preferential adsorption sites for hydrogen in MOFs, and the effect of the organic linkers becomes evident with increasing pressure. The hydrogen storage capacity of MOFs is similar to carbon nanotubes, which is higher than zeolites. Diffusion of hydrogen in MOFs is an activated process that is similar to diffusion in zeolites. The information derived in this work is useful to guide the future rational design and synthesis of tailored MOF materials with improved hydrogen adsorption capability.

  4. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry


    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.

  5. Adsorption equilibrium, kinetics and thermodynamics of α-amylase on poly(DVB-VIM)-Cu(+2) magnetic metal-chelate affinity sorbent. (United States)

    Osman, Bilgen; Kara, Ali; Demirbel, Emel; Kök, Senay; Beşirli, Necati


    Designing an immobilised metal ion affinity process on large-scale demands that a thorough understanding be developed regarding the adsorption behaviour of proteins on metal-loaded gels and the characteristic adsorption parameters to be evaluated. In view of this requirement, interaction of α-amylase as a model protein with newly synthesised magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter, 53-212 μm) was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerising of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterised by N(2) adsorption/desorption isotherms, electron spin resonance, elemental analysis, scanning electron microscope and swelling studies. Cu(2+) ions were chelated on the m-poly(DVB-VIM) beads and used in adsorption of α-amylase in a batch system. The maximum α-amylase adsorption capacity of the m-poly(DVB-VIM)-Cu(2+) beads was determined as 10.84 mg/g at pH 6.0, 25 °C. The adsorption data were analyzed using three isotherm models, which are the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The pseudo-first-order, pseudo-second-order, modified Ritchie's-second-order and intraparticle diffusion models were used to test dynamic experimental data. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes.

  6. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption

    NARCIS (Netherlands)

    Mason, J.A.; Sumida, K.; Herm, Z.R.; Krishna, R.; Long, J.R.


    Two representative metal-organic frameworks, Zn4O(BTB)2 (BTB3− = 1,3,5-benzenetribenzoate; MOF-177) and Mg2(dobdc) (dobdc4− = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), are evaluated in detail for their potential use in post-combustion CO2 capture via temperature swing adsorption


    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta


    Full Text Available This research aims are to separate of Ca and Fe metal ion in source water, with local zeolite and active carbon by adsorption column technic. Efficiency of separation are control by adsorption time and size of zeolite. Method that used was column adsorption with a flow system in which sample is applied to the filtration tube containing zeolite and active carbon. Initial and final concentrations of the samples were analyzed using Atomic Adsorption Spectrophotometer instrument. The results obtained shows that ability adsorption of zeolite to Ca and Fe metal ion are a good. Zeolite 1 (10 mesh can reduce iron concentration until 93.98 % and zeolite 2 (5mesh until 98.88% for 1 – 4 week range time. Whereas reducing of calcium concentration is not good, until 2 week period time adsorption of calcium ion is about 50%.   Keywords: adsorption, zeolite, source water

  8. Gas adsorption and storage in metal-organic framework MOF-177. (United States)

    Li, Yingwei; Yang, Ralph T


    Gas adsorption experiments have been carried out on a zinc benzenetribenzoate metal-organic framework material, MOF-177. Hydrogen adsorption on MOF-177 at 298 K and 10 MPa gives an adsorption capacity of approximately 0.62 wt %, which is among the highest hydrogen storage capacities reported in porous materials at ambient temperatures. The heats of adsorption for H2 on MOF-177 were -11.3 to -5.8 kJ/mol. By adding a H2 dissociating catalyst and using our bridge building technique to build carbon bridges for hydrogen spillover, the hydrogen adsorption capacity in MOF-177 was enhanced by a factor of approximately 2.5, to 1.5 wt % at 298 K and 10 MPa, and the adsorption was reversible. N2 and O2 adsorption measurements showed that O2 was adsorbed more favorably than N2 on MOF-177 with a selectivity of approximately 1.8 at 1 atm and 298 K, which makes MOF-177 a promising candidate for air separation. The isotherm was linear for O2 while being concave for N2. Water vapor adsorption studies indicated that MOF-177 adsorbed up to approximately 10 wt % H2O at 298 K. The framework structure of MOF-177 was not stable upon H2O adsorption, which decomposed after exposure to ambient air in 3 days. All the results suggested that MOF-177 could be a potentially promising material for gas separation and storage applications at ambient temperature (under dry conditions or with predrying).

  9. Highly Efficient Adsorption of Aqueous Pb(II with Mesoporous Metal-Organic Framework-5: An Equilibrium and Kinetic Study

    Directory of Open Access Journals (Sweden)

    José María Rivera


    Full Text Available Mesoporous metal-organic framework-5 (MOF-5, with the composition Zn4O(BDC3, showed a high capacity for the adsorptive removal of Pb(II from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM equipped with an energy dispersive X-ray (EDX system, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS analysis. The experimental evidence showed that Zn(II liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.

  10. Modeling adsorption of binary and ternary mixtures on microporous media

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander


    The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes...... it possible using the same equation of state to describe the thermodynamic properties of the segregated and the bulk phases. For comparison, we also used the ideal adsorbed solution theory (IAST) to describe adsorption equilibria. The main advantage of these two models is their capabilities to predict...

  11. Adsorption of some transition metal ions (Cu(II), Fe(III), Cr(III) and Au(III)) onto lignite-based activated carbons modified by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Paunka St. Vassileva; Albena K. Detcheva [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of General and Inorganic Chemistry


    The main purpose of the present work was to study the adsorption of some transition metal ions from aqueous solution via a novel porous material obtained from Bulgarian lignite (Chukurovo deposit) and its oxidized modifications. The adsorption of Cu(II), Fe(III), Cr(III) and Au(III) ions was investigated using batch methods to study solutions with different concentrations and acidities. It was found that the adsorption process was affected significantly by the pH value of the aqueous solution. Treatment of the equilibrium data using the linear Langmuir, Freundlich and Dubinin-Radushkevich models allowed the maximum adsorption capacities to be calculated. The uptake of Au(III) ions was almost 100% for the three adsorbents investigated, being greater than 300 mg/l and independent of the pH over the pH range studied. The initial activated carbon proved to be the most suitable for the selective adsorption of Au(III) ions from aqueous solutions in the presence of other transition metal ions, while its oxidized modification Ch-P exhibited an enhanced adsorption efficiency towards transition metals.

  12. Adsorption of Some Transition Metal Ions (Cu(II), Fe(III), Cr(III) and Au(III)) onto lignite-based activated carbons modified by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Vassileva, P.S.; Detcheva, A.K. [Bulgarian Academy of Science, Sofia (Bulgaria)


    The main purpose of the present work was to study the adsorption of some transition metal ions from aqueous solution via a novel porous material obtained from Bulgarian lignite (Chukurovo deposit) and its oxidized modifications. The adsorption of Cu(II), Fe(III), Cr(III) and Au(III) ions was investigated using batch methods to study solutions with different concentrations and acidities. It was found that the adsorption process was affected significantly by the pH value of the aqueous solution. Treatment of the equilibrium data using the linear Langmuir, Freundlich and Dubinin-Radushkevich models allowed the maximum adsorption capacities to be calculated. The uptake of Au(III) ions was almost 100% for the three adsorbents investigated, being greater than 300 mg/l and independent of the pH over the pH range studied. The initial activated carbon proved to be the most suitable for the selective adsorption of Au(III) ions from aqueous solutions in the presence of other transition metal ions, while its oxidized modification Ch-P exhibited an enhanced adsorption efficiency towards transition metals.

  13. Evaluation of functionalized silica's for the adsorptive recovery of homogenous catalysts through interaction with the metal centre. (United States)

    Djekić, T; van der Ham, A G J; de Haan, A B


    The goal of this paper is the evaluation of functionalized silica's for the recovery of homogeneous catalysts by adsorption via its metal centre. As model catalysts, we selected bis(triphenylphosphine)cobalt(II)dichloride (CoCl(2)(PPh(3))(2)), bis(triphenylphosphine)palladium(II)dichloride (PdCl(2)(PPh(3))(2)) and tris(triphenylphosphine)rhodium(I)dichloride (RhCl(PPh(3))(3)). Twelve functionalized groups selected from four classes containing one or more N-, O-, P- or S-atoms were evaluated. A preliminary selection of the adsorbents was done by investigating the adsorption of the metal salts for the cobalt and the palladium complex. The results could be explained by the Hard and Soft Acid Base (HSAB) theory. For the most suitable functionalized adsorbents, these experiments were extended by introducing the ligand in the system which promoted the competition of the functionalized groups on adsorbent and the ligands present in solution. These experiments demonstrated that different complex species are adsorbed. 2-(2pyridyl)ethyl-functionalized silica is selected as a promising adsorbent for adsorption of the CoCl(2)(PPh(3))(2) from acetonitrile, while 3-(mercapto)propyl-functionalized silica is selected as a promising adsorbent for adsorption of the PdCl(2)(PPh(3))(2) and RhCl(PPh(3))(3) from DMF. The presence of a ligand, an increase of the temperature and the presence of a solvent with the donor properties can decrease the adsorption equilibrium and need to be taken into account.

  14. Adsorption of Pb and Zn from binary metal solutions and in the presence of dissolved organic carbon by DTPA-functionalised, silica-coated magnetic nanoparticles. (United States)

    Hughes, D L; Afsar, A; Harwood, L M; Jiang, T; Laventine, D M; Shaw, L J; Hodson, M E


    The ability of diethylenetriaminepentaacetic acid (DTPA)-functionalised, silica-coated magnetic nanoparticles to adsorb Pb and Zn from single and bi-metallic metal solutions and from solutions containing dissolved organic carbon was assessed. In all experiments 10 mL solutions containing 10 mg of nanoparticles were used. For single metal solutions (10 mg L(-1) Pb or Zn) at pH 2 to 8, extraction efficiencies were typically >70%. In bi-metallic experiments, examining the effect of a background of either Zn or Pb (0.025 mmol L(-1)) on the adsorption of variable concentrations (0-0.045 mmol L(-1)) of the other metal (Pb or Zn, respectively) adsorption was well modelled by linear isotherms (R(2) > 0.60; p ≤ 0.001) and Pb was preferentially adsorbed relative to Zn. In dissolved organic carbon experiments, the presence of fulvic acid (0, 2.1 and 21 mg DOC L(-1)) reduced Pb and Zn adsorption from 0.01, 0.1 and 1.0 mmol L(-1) solutions. However, even at 21 mg DOC L(-1) fulvic acid, extraction efficiencies from 0.01 to 0.1 mmol L(-1) solutions remained >80% (Pb) and >50% (Zn). Decreases in extraction efficiency were significant between initial metal concentrations of 0.1 and 1.0 mmol L(-1) indicating that at metal loadings between c. 100 mg kg(-1) and 300 mg kg(-1) occupancy of adsorption sites began to limit further adsorption. The nanoparticles have the potential to perform effectively as metal adsorbents in systems containing more than one metal and dissolved organic carbon at a range of pH values. Copyright © 2017. Published by Elsevier Ltd.

  15. Dissociative adsorption of O2 on unreconstructed metal (100) surfaces: Pathways, energetics, and sticking kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Da-Jiang [Ames Laboratory; Evans, James W. [Ames Laboratory


    An accurate description of oxygen dissociation pathways and kinetics for various local adlayer environments is key for an understanding not just of the coverage dependence of oxygen sticking, but also of reactive steady states in oxidation reactions. Density functional theory analysis for M(100) surfaces with M=Pd, Rh, and Ni, where O prefers the fourfold hollow adsorption site, does not support the traditional Brundle-Behm-Barker picture of dissociative adsorption onto second-nearest-neighbor hollow sites with an additional blocking constraint. Rather adsorption via neighboring vicinal bridge sites dominates, although other pathways can be active. The same conclusion also applies for M=Pt and Ir, where oxygen prefers the bridge adsorption site. Statistical mechanical analysis is performed based on kinetic Monte Carlo simulation of a multisite lattice-gas model consistent with our revised picture of adsorption. This analysis determines the coverage and temperature dependence of sticking for a realistic treatment of the oxygen adlayer structure.

  16. Coverage dependent adsorption and co-adsorption of CO and H₂ on the CdI₂-antitype metallic Mo₂C(001) surface. (United States)

    Wang, Tao; Tian, Xinxin; Yang, Yong; Li, Yong-Wang; Wang, Jianguo; Beller, Matthias; Jiao, Haijun


    The adsorption and co-adsorption of CO and H2 at different coverage on the CdI2-antitype metallic Mo2C(001) surface termination have been systematically computed at the level of periodic density functional theory. Only molecular CO adsorption is possible and the monolayer coverage (1 ML) can have 16CO adsorbed at the top sites. Dissociative H2 adsorption is favored thermodynamically and the monolayer coverage (1 ML) can have 16H adsorbed at the hollow sites. Since CO has much stronger adsorption energy than H2, pre-adsorption of CO is possible. CO pre-adsorption strongly affects atomic hydrogen co-adsorption at a high CO/H2 ratio, while hardly affects that at a low CO/H2 ratio. Under ultra-high vacuum conditions (200 K, 10(-12) atm and CO/H2 = 1/1), the most stable adsorbed surface state has CO/H2 = 15/1. Comparison among the metallic terminations of the CdI2-antitype Mo2C(001), eclipsed Mo2C(001) and orthorhombic Mo2C(100) surfaces shows their different CO and hydrogen adsorption as well as activation properties, which reveals that the CdI2-antitype Mo2C(001) surface is least active. These differences come from their surface bonding properties; the CdI2-antitype Mo2C(001) surface is saturated and less metallic, while the eclipsed Mo2C(001) and orthorhombic Mo2C(100) surfaces are unsaturated and more metallic.

  17. Modeling of hydrogen adsorption on activated carbon and SWNT nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Benard, P.; Chahine, R. [Quebec Univ., Hydrogen Research Institute, Trois Rivieres, PQ (Canada)


    The physical properties of hydrogen adsorption on activated carbon over a temperature range of 77 to 273 degrees K and pressure range 0 to 6 MPa are discussed. Results show that for the hydrogen/activated carbon system over a wide temperature and pressure range the Langmuir model is adequate, however, at low temperatures and high pressures a new approach is required, one that takes into account excess adsorption and adsorbate-adsorbate interactions. Under these conditions the Ono-Kondo approach is more appropriate. The adsorption properties of hydrogen on single-walled nanotubes (SWNT) were also studied using the Stan and Cole potential to account for the effect of the cylindrical geometry of the nanotubes on the adsorption properties. Comparison of the adsorption properties of activated carbon and SWNTs showed that the larger specific surfaces on activated carbon can lead to larger adsorption effects at higher pressures, even though the adsorption energy is smaller. SWNTs are effective only at low pressures. 5 refs., 3 figs.

  18. Adsorption of phthalocyanines on noble metal surfaces; Adsorption von Phthalocyaninen auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Ingo


    In this thesis the adsorbate systems CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc and TiOPc/Ag(111) were investigated and characterized in great detail using complementary methods. The focus of the experiments was the determination of lateral geometric structures with spot-profile-analysis low energy electron diffraction (SPA-LEED) and scanning tunneling microscopy (STM), as well as the measurement of adsorption heights using the method of normal incidence X-ray standing waves (NIXSW). High resolution electron energy loss spectroscopy (HREELS) was used to characterize the vibronic properties of the molecule and the interface dynamical charge transfer (IDCT). The electronic structure and the charge transfer into the molecule were investigated with ultraviolet photoelectron spectroscopy (UPS). The most important results of this work are related with the interplay between adsorbate-substrate and adsorbate-adsorbate interaction of Phthalocyanines in the submonolayer regime. (orig.)

  19. Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation. (United States)

    Khan, Nazmul Abedin; Jhung, Sung Hwa


    Efficient removal and separation of chemicals from the environment has become a vital issue from a biological and environmental point of view. Currently, adsorptive removal/separation is one of the most promising approaches for cleaning purposes. Selective adsorption/removal of various sulfur- and nitrogen-containing compounds, olefins, and π-electron-rich gases via π-complex formation between an adsorbent and adsorbate molecules is very competitive. Porous metal-organic framework (MOF) materials are very promising in the adsorption/separation of various liquids and gases owing to their distinct characteristics. This review summarizes the literature on the adsorptive removal/separation of various π-electron-rich compounds mainly from fuel and gases using MOF materials containing metal ions that are active for π-complexation. Details of the π-complexation, including mechanism, pros/cons, applications, and efficient ways to form the complex, are discussed systematically. For in-depth understanding, molecular orbital calculations regarding charge transfer between the π-complexing species are also explained in a separate section. From this review, readers will gain an understanding of π-complexation for adsorption and separation, especially with MOFs, to develop new insight for future research.

  20. Synthesis, fine structural characterization, and CO2 adsorption capacity of metal organic frameworks-74. (United States)

    Adhikari, Abhijit Krishna; Lin, Kuen-Song


    Two metal organic frameworks of MOF-74 group (zinc and copper-based) were successfully synthesized, characterized, and evaluated for CO2 adsorption. The both samples such as MOF-74(Zn) and MOF-74(Cu) were characterized with FE-SEM for morphology and particle size, XRD patterns for phase structure, FTIR for organic functional groups, nitrogen adsorption for pore textural properties, and X-ray absorption spectroscopy for fine structural parameters and oxidation states of central metal atoms. CO2 adsorption isotherms of MOF-74 samples were measured in a volumetric adsorption unit at 273 K and pressure up to 1.1 bar. The MOF-74(Zn) and MOF-74(Cu) adsorbents have the pore widths of 8.58 and 8.04 angstroms with the BET specific surface areas of 1,474 and 1,345 m2 g(-1), respectively. CO2 adsorption capacities of MOF-74(Zn) and MOF-74(Cu) were 4.10 and 3.38 mmol x g(-1), respectively measured at 273 K and 1.1 bar. The oxidation state of central atoms in MOF-74(Zn) was Zn(II) confirmed by XANES spectra while MOF-74(Cu) was composed of Cu(I) and Cu(II) central atoms. The bond distances of Zn--O and Cu--O were 1.98 and 1.94 angstroms, respectively.

  1. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption. (United States)

    Zukal, Arnošt; Mayerová, Jana; Čejka, Jiří


    Mesoporous aluminosilicate adsorbents for carbon dioxide were prepared by the grafting of aluminium into SBA-15 silica using an aqueous solution of aluminium chlorohydrate. As the ion exchange sites are primarily associated with the presence of tetrahedrally coordinated aluminium, extra-framework aluminium on the SBA-15 surface was inserted into the silica matrix by a treatment with an aqueous solution of NH(4)OH. Synthesized mesoporous aluminosilicate preserving all the characteristic features of a mesoporous molecular sieve was finally modified by the alkali metal cation exchange. To examine carbon dioxide adsorption on prepared materials, adsorption isotherms in the temperature range from 0 °C to 60 °C were measured. Based on the known temperature dependence of adsorption isotherms, isosteric adsorption heats giving information on the surface energetics of CO(2) adsorption were calculated and discussed. The comparison of carbon dioxide isotherms obtained on aluminosilicate SBA-15, aluminosilicate SBA-15 containing cations Na(+) and K(+) and activated alumina F-200 reveals that the doping with sodium or potassium cations dramatically enhances adsorption in the region of equilibrium pressures lower than 10 kPa. Therefore, synthesized aluminosilicate adsorbents doped with Na(+) or K(+) cations are suitable for carbon dioxide separation from dilute gas mixtures.

  2. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal. (United States)

    Liu, Guangyang; Li, Lingyun; Xu, Donghui; Huang, Xiaodong; Xu, Xiaomin; Zheng, Shuning; Zhang, Yanguo; Lin, Huan


    A novel magnetic copper-based metal-organic framework (M-MOF) was prepared using a Fe4O3-graphene oxide (GO)-β-cyclodextrin (β-CD) nanocomposite as the magnetic core and support, and used for adsorption and removal of neonicotinoid insecticide pollutants from aqueous solution. M-MOF characterization suggested that (1)Fe4O3-GO-β-CD consisted of a thin single layer with anchored Fe3O4. The M-MOF was coated on the Fe4O3-GO-β-CD surface. The M-MOF had a large Brunauer-Emmett-Teller surface area (250.33m(2)g(-1)) and high super-paramagnetism with saturation magnetization of 10.47emug(-1). Adsorption model analysis showed that the equilibrium data for thiacloprid fitted Langmuir monolayer adsorption and the other insecticides tested showed Freundlich bimolecular layer adsorption. The results show that M-MOF is a promising hybrid adsorbent for rapid removal of neonicotinoid insecticide pollutants from environmental waters. Copyright © 2017. Published by Elsevier Ltd.

  3. [Heavy metals contents and Hg adsorption characteristics of mosses in virgin forest of Gongga Mountain]. (United States)

    Liang, Peng; Yang, Yong-Kui; He, Lei; Wang, Ding-Yong


    Seven main moss species in the Hailuogou virgin forest of Gongga Mountain were sampled to determine their heavy metals (Hg, Cr, Cd, Ni, Pb, Cu, Mn, Zn and Fe) content, and two widely distributed species, Pleurozium schreberi (Brid.) Mitt. and Racomitrium laetum Besch., were selected to study their Hg adsorption characteristics. The results showed that the heavy metals contents in the mosses were lower than the background values in Europe and America, except that the Cd had a comparable value, which indicated that the atmosphere in study area was not polluted by heavy metals and good in quality. The Hg adsorption by P. schreberi and R. laetum was an initiative and rapid process, with the equilibrium reached in about two hours, and could be well fitted by Freundlich and Langmuir equations. Based on Langmuir equation, the maximum Hg adsorption capacities of P. schreberi and R. laetum were 15.24 and 8.19 mg x g(-1), respectively, suggesting that the two mosses had a good capacity of Hg adsorption, and could be used as the bio-monitors of atmospheric Hg pollution.

  4. Decrease in ciprofloxacin absorption by polyvalent metal cations is not fully attributable to chelation or adsorption. (United States)

    Imaoka, Ayuko; Hattori, Michiko; Akiyoshi, Takeshi; Ohtani, Hisakazu


    The drug interaction between new quinolone antibiotics (NQs) and polyvalent metal cation products, leading to a significant decrease in the absorption of NQ, is considered to be attributable to the formation of poorly absorbable chelate and physicochemical adsorption of NQs to cation products. To clarify the mechanisms of this drug interaction in detail, we investigated the effects of Al(3+) or Mg(2+) on the membrane permeation profile of ciprofloxacin (CPFX) across human colon carcinoma cell lines (Caco-2) in monolayer culture, and characterized the adsorption nature of CPFX to polyvalent metal cation products under physiological conditions. As a result, Al(3+) or Mg(2+) partially but not fully impaired the permeation of CPFX across Caco-2 monolayer up to 30% or 60% of control, respectively. Physicochemical adsorption of CPFX to cation products was not observed under physiological pH. In conclusion, two possible mechanisms investigated, the decrease in the permeability of CPFX by chelate formation and adsorption of CPFX to polyvalent metal cation products, may partially but not fully explain the extent of the drug interaction clinically observed.

  5. Heavy Metal Removal from Aqueous Solution by Adsorption on Modified Banana Shell


    MR Mehrasbi; Z Farahmand kia


    Background and Objectives: Heavy Metals in Water resources is one of the most important environmental problems of countries. Up to now various methods of removing of these metals is considered, which is including using of low prices materials. In this study the potential of banana shells was assessed for adsorption of heavy metal ions such as Pb and Cd from aqueous solution. "nMaterials and Methods: Banana shells were pretreated separately with 0.4 mol/L NaOH, 0.4 mol/L HNO and distilled wate...

  6. Modeling oxyanion adsorption on ferralic soil, part 2: chromate, selenate, molybdate, and arsenate adsorption. (United States)

    Pérez, Claudio; Antelo, Juan; Fiol, Sarah; Arce, Florencio


    High levels of oxyanions are found in the soil environment, often as a result of human activity. At high concentrations, oxyanions can be harmful to both humans and wildlife. Information about the interactions between oxyanions and natural samples is essential for understanding the bioavailability, toxicity, and transport of these compounds in the environment. In the present study, the authors investigated the reactivity of different oxyanions (AsO4 , MoO4 , SeO4 , and CrO4 ) at different pH values in 2 horizons of a ferralic soil. By combining available microscopic data on iron oxides with the macroscopic data obtained, the authors were able to use the charge distribution model to accurately describe the adsorption of these 4 oxyanions and thus to determine the surface speciation. The charge distribution model was previously calibrated and evaluated using phosphate adsorption/desorption data. The adsorption behavior on ferralic soil is controlled mainly by the natural iron oxides present, and it is qualitatively analogous to that exhibited by synthetic iron oxides. The highest adsorption was found for arsenate ions, whereas the lowest was found for selenate, with chromate and molybdate ions showing an intermediate behavior.

  7. Use of the PIXEL method to investigate gas adsorption in metal-organic frameworks. (United States)

    Maloney, Andrew G P; Wood, Peter A; Parsons, Simon


    PIXEL has been used to perform calculations of adsorbate-adsorbent interaction energies between a range of metal-organic frameworks (MOFs) and simple guest molecules. Interactions have been calculated for adsorption between MOF-5 and Ar, H2, and N2; Zn2(BDC)2(TED) (BDC = 1,4-benzenedicarboxylic acid, TED = triethylenediamine) and H2; and HKUST-1 and CO2. The locations of the adsorption sites and the calculated energies, which show differences in the Coulombic or dispersion characteristic of the interaction, compare favourably to experimental data and literature energy values calculated using density functional theory.

  8. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra


    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  9. Adsorption and displacement effects in the gas-chromatography of metal beta-diketonates. (United States)

    Uden, P C; Jenkins, C R


    A detailed study of the gas chromatography of the aluminium(III), chromium(III) and iron(III) beta-diketonates has shown that their elution and separation characteristics arise from a number of adsorptive effects. Conditions of optimal peak shape for individual compounds are established by varying Chromatographie parameters, and the adsorption of one metal chelate on a column and its subsequent displacement by another chelate are investigated. The chromatography of iron(III) beta-diketonates is seen to be further complicated by gradual elution of a portion of the chelate before the rest of the sample.

  10. Water adsorption in porous metal-organic frameworks and related materials. (United States)

    Furukawa, Hiroyasu; Gándara, Felipe; Zhang, Yue-Biao; Jiang, Juncong; Queen, Wendy L; Hudson, Matthew R; Yaghi, Omar M


    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal-organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset of these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)4(-CO2)n secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.

  11. Modeling Interfacial Adsorption of Polymer-Grafted Nanoparticles (United States)

    Yong, Xin


    Numerous natural and industrial processes demand advances in our fundamental understanding of colloidal adsorption at liquid interfaces. Using dissipative particle dynamics (DPD), we model the interfacial adsorption of core-shell nanoparticles at the water-oil interface. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with polymer chains. The nanoparticles bind to the interface from either phase to minimize total surface energy. With a single nanoparticle, we demonstrate detailed kinetics of different stages in the adsorption process. Prominent effect of grafted polymer chains is characterized by varying molecular weight and polydispersity of the chains. We also preload nanoparticles straddling the interface to reveal the influence of nanoparticle surface density on further adsorption. Importantly, these studies show how surface-grafted polymer chains can alter the interfacial behavior of colloidal particles and provide guidelines for designing on-demand Pickering emulsion.

  12. Adsorption of Ammonium and Heavy Metal Ions on Industrial Vermiculite from the Yuli Mine in Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    PENG Tongjiang; ZHANG Baoshu; LIU Fusheng


    The present work discusses the mineralogy, saturated adsorption of ammonium and adsorption of heavy metal ions (Cu2+, Pb2+ and Zn2+) on industrial vermiculite samples from the Yuli Mine in Xinjiang Autonomous Region. The saturated adsorption capacity of ammonium and the affection factors of adsorption of Cu2+, Pb2+ and Zn2+ are discussed on the basis of the mineralogical characteristics of the industrial vermiculite samples. The saturated adsorption capacities of ammonium are between 56.02 and 98.42 mmol/100g. The time of adsorption equilibrium is about 30-60 min, and the pH values and concentration of the ion solution significantly affect the adsorption capacities of the heavy metal ions. The adsorption capabilities of the heavy metal ions on industrial vermiculite are almost the same in the low ion concentration solutions, characterized by a sequence of Zn2+>Pb2+>Cu2+ for adsorption capacity in solutions with relatively high ion concentration. The results have practical significance for the application of the industrial vermiculite to treating wastewater containing ammonium or heavy metal ions.

  13. Tailoring oxide properties: An impact on adsorption characteristics of molecules and metals (United States)

    Honkala, Karoliina


    Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster's theoretically predicted ability to activate and dissociate O2 at the Au-MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide-metal

  14. Adsorption of heavy metals by agroforestry waste derived activated ...

    African Journals Online (AJOL)



    Apr 2, 2014 ... Activated carbons prepared from macadamia nut shells, baobab shells, pigeon pea husks, rice husks,. Moringa ... residues as adsorbents for the removal of dyes and metal ions from ..... dye from aqueous solutions onto apricot stone activated. Bioresour ... solution using natural and modified rice husk.

  15. Adsorptive infiltration of metals in urban drainage--media characteristics (United States)



    Urban pavement drainage often contains significant quantities of anthropogenic metal elements, including Cd, Cu, Pb and Zn that exceed surface water discharge standards. In many urban areas low rainfall pH, results in predominately dissolved metal element mass. Such partitioning has critical implications for the selection of in-situ treatment. One such category of treatment is engineered infiltration systems. To be effective, such systems must adsorb dissolved metal elements to their fixed media while also acting as filters for particulate-bound fractions. One such strategy is called a partial exfiltration trench (PET). The PET contains oxide-coated sand (OCS); an amphoteric media of high surface area (5-15 m2/g) as compared to uncoated silica sand (0.01-0.05 m2/g). OCS was generated through heating a mixture of silica sand and ferric nitrate solution to dryness. This paper presents results of both media characterization and bench scale PET simulations. Media tested were OCS and plain silica sand. Media testing was carried out until capacity was exhausted, using both synthetic and actual stormwater loadings. Testing was conducted for pH levels of 6.5 and 8.0. Results indicated that OCS had greater capacity than silica sand for all dissolved fractions. As the pH was raised from 6.5 to 8.0, OCS capacity was improved. A PET configuration with porous pavement resulted in the highest in-situ treatment capacity for metal element bearing storm water.

  16. Theoretical study of n-alkane adsorption on metal surfaces

    DEFF Research Database (Denmark)

    Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko


    The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...

  17. Adsorptive removal of Cu(II) and Ni(II) from single-metal, binary-metal, and industrial wastewater systems by surfactant-modified alumina. (United States)

    Khobragade, Moni U; Pal, Anjali


    Batch adsorption was carried out to investigate the possibility of utilizing surfactant-modified alumina (SMA) as an adsorbent for the removal of Cu(II) and Ni(II) from single-metal and binary-metal solutions. Scanning electron microscopic (SEM) images of SMA before and after metal removal from single-metal matrix, showed no significant changes, whereas energy dispersive X-ray (EDX) studies confirmed the incorporation of Cu(II) (∼ 0.74 atomic%) and Ni(II) (∼ 0.64 atomic%) on the adsorbent surface. The removal of Cu(II) and Ni(II), using SMA depends on contact time, adsorbent dose and medium pH. The sorption kinetics followed pseudo-second-order model for Cu(II). However, for Ni(II), either pseudo-first-order or pseudo-second-order model is applicable. The batch experimental data were fitted to Langmuir and Freundlich isotherm, and based on the correlation coefficient value (R(2)), the adsorption could be described more precisely by the Freundlich isotherm. The maximum adsorption capacity from Langmuir isotherm of Cu(II) was 9.34 mg g(-1) and for Ni(II) 6.87 mg g(-1). In a synthetic binary mixture of Cu(II) and Ni(II), having a concentration of 10 mg L(-1) each, removal of Cu(II) was better. The treatment method was further applied to real wastewater from an electroplating industry. The batch experiment results showed that SMA was effective in the simultaneous removal of Cu(II) and Ni(II) to a significant extent, with additional improvement of water quality of the industrial effluent considered.

  18. Density functional theory study of elemental mercury adsorption on boron doped graphene surface decorated by transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Jungsuttiwong, Siriporn, E-mail: [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Wongnongwa, Yutthana [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Namuangruk, Supawadee [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120 (Thailand); Kungwan, Nawee [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Promarak, Vinich [Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210 (Thailand); Kunaseth, Manaschai, E-mail: [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120 (Thailand)


    Graphical abstract: Decoration of Pd{sub 4}-A (square planar) on B-doped graphene significantly promotes Hg{sup 0} adsorption, a single site of Pd{sub 4} cluster on BDG could strongly adsorb up to six Hg atoms. - Highlights: • Transition metal atom and cluster binds strongly on B-doped graphene surface. • Decoration of transition metal on B-doped graphene significantly promotes Hg{sup 0} adsorption. • Adsorption strength of Hg{sup 0} atom on metal decorated B-doped graphene: Pd > Pt > Ru > W > Cu. • One site decorated Pd4 cluster adsorbed Hg{sup 0} strongly up to six atoms.

  19. Adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO surface

    KAUST Repository

    Yadav, Manoj Kumar


    The adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO(100) surface has been studied employing density functional theory. It is found that all these transition metals (TM) on MgO(100) surface are capable of adsorbing dinitrogen (N2), however there is no dissociative adsorption of N2 on single transition metal dopant. When two TM atoms are doped on MgO(100) surface, dissociative adsorption of dinitrogen occurs in all the three cases. Whether the dissociation is spontaneous or is it associated with activation barrier depends on the orientation of N2 molecule approaching the dopant site.

  20. Quantum chemical modeling of uranyl adsorption on mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kremleva, A.; Krueger, S.; Roesch, N. [Dept. Chemie and Catalysis Research Center, Technische Univ. Muenchen, Garching (Germany)


    We overview quantum mechanical simulations that model the adsorption of actinide ions at solvated mineral surfaces. Pertinent examples illustrate the status of this emerging field of computational chemistry. In particular, we describe our own studies on uranyl adsorption on kaolinite. Already the few available results, from applications of density functional methods to cluster models or periodic slab models, show that such calculations are a useful complement to experimental investigations. Detailed information at the atomic level from accurate electronic structure calculations on well defined model systems helps to refine current interpretations of the chemical nature of uranyl adsorption species and to discover new features of these interface systems. Results from quantum mechanical simulations also provide a valuable reference for future experimental investigations. (orig.)

  1. Light Hydrocarbons Adsorption Mechanisms in Two Calcium-based Microporous Metal Organic Frameworks

    KAUST Repository

    Plonka, Anna M.


    The adsorption mechanism of ethane, ethylene and acetylene (C2Hn; n=2, 4, 6) on two microporous metal organic frameworks (MOFs) is described here that is consistent with observations from single crystal and powder X-ray diffraction, calorimetric measurments and gas adsorption isotherm measurements. Two calcium-based MOFs, designated as SBMOF-1 and SBMOF-2 (SB: Stony Brook), form three-dimensional frameworks with one-dimensional open channels. As determined form single crystal diffraction experiments channel geometries of both SBMOF-1 and SBMOF-2 provide multiple adsorption sites for hydrocarbon molecules trough C-H…π and C-H…O interactions, similarly to interactions in the molecular and protein crystals. Both materials selectively adsorb C2 hydrocarbon gases over methane as determined with IAST and breakthrough calculations, with C2H6/CH4 selectivity as high as 74 in SBMOF-1.

  2. Graphene on metal surfaces and its hydrogen adsorption

    DEFF Research Database (Denmark)

    Andersen, Mie; Hornekær, L.; Hammer, B.


    The interaction of graphene with various metal surfaces is investigated using density functional theory and the meta-generalized gradient approximation (MGGA) M06-L functional. We demonstrate that this method is of comparable accuracy to the random-phase approximation (RPA). With M06-L we study...... large systems inaccessible to RPA with H adsorbed on graphene on a selected strongly (Ni) and a selected weakly (Pt) interacting substrate. Very stable graphane-like clusters, where every other C atom binds to a H atom above and every other to a metal atom below, are found on both substrates....... Such graphane-like clusters have been proposed to be responsible for opening a band gap in graphene. On Ni we find that the binding energies of the H clusters are almost constant with the cluster size, whereas on Pt the binding energies increase with the cluster size. Comparing the Perdew-Burke-Ernzerhof and M...

  3. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria. (United States)

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin


    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB.

  4. Competitive adsorption and mobility sequence of heavy metals in urban soils of southeastern China

    Institute of Scientific and Technical Information of China (English)


    Heavy metals can be introduced into urban soils at the same time. Therefore, their selective retention and competitive adsorption by the soils become of major importance in determining their availability and movement throughout the soil. In this study,the availability and mobility of six heavy metals in eight urban soils collected from different cities of Zhejiang Province, southeastern China were assessed using distribution coefficients(Kd) and retardation factor(Rf). The results showed that there were great differences in the Kd and Rf among the tested soils. The adsorption sequences were Cr>Pb>Cu>Cd>Zn>Ni, and the Kd decreased with increasing levels of metal addition. Ni generally has the lowest Rf values followed closely by Cd, and Zn whereas Cr and Pb reached the highest values. The results suggest that Ni and Zn have the highest mobility associated to the lowest adsorption, Cr and Pb present the opposite behavior. Correlation analysis indicates that soil pH, CaCO3 content, and cation exchange capacity (CEC) are key factors controlling the solubility and mobility of the metals in the urban soils.

  5. Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal-Organic Frameworks. (United States)

    Jonckheere, Dries; Steele, Julian A; Claes, Birgit; Bueken, Bart; Claes, Laurens; Lagrain, Bert; Roeffaers, Maarten B J; De Vos, Dirk E


    Metal-organic frameworks (MOFs) are investigated for the adsorption of aromatic amino acids l-phenylalanine (l-Phe), l-tryptophan (l-Trp), and l-tyrosine (l-Tyr) from aqueous solutions. After screening a range of water-stable MOFs, the hydrophobic Zr-MOF MIL-140C emerged as the best performing material, exhibiting uptakes of 15 wt % for l-Trp and 20 wt % for l-Phe. These uptakes are 5-10 wt % higher than those of large-pore zeolites Beta and Y. Both single-compound and competitive adsorption isotherms for l-Phe and l-Trp were experimentally obtained at the natural pH of these amino acid mixtures (pH 6.5-7) without additional pH modification. We find that the hydrophobic nature of MIL-140C and the capacity of l-Trp to form hydrogen bonds favor the uptake of l-Trp with its larger indole moiety compared to the smaller phenyl side group of l-Phe. On the basis of literature and vibrational analysis, observations of hydrogen-bonded l-Trp within the MIL-140C framework are evidenced by red- and blue-shifted -NH vibrations (3400 cm(-1)) in Fourier transform infrared spectroscopy, which were attributed to types N-Hl-Trp···πMIL-140C and N-Hl-Trp···OMIL-140C, respectively. MIL-140C is shown to be recycled at least three times for both aromatic amino acids without any loss of adsorption capacity, separation performance, or crystallinity. Desorption of aromatic amino acids proceeds easily in aqueous ethanol. Substantial coadsorption of negatively charged amino acids l-glutamate and l-aspartate (l-Glu and l-Asp) was observed from a model solution for wheat straw protein hydrolysate at pH 4.3. On the basis of these results, we conclude that MIL-140C is an interesting material for the recovery of essential aromatic amino acids l-Tyr, l-Phe, and l-Trp and of l-Glu and l-Asp from waste protein hydrolysates.

  6. Kinetic modelling of cytochrome c adsorption on SBA-15. (United States)

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi


    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  7. Boron Trifluoride Gas Adsorption in Metal-Organic Frameworks. (United States)

    Siu, Paul W; Siegfried, John P; Weston, Mitchell H; Fuller, Patrick E; Morris, William; Murdock, Christopher R; Hoover, William J; Richardson, Rachelle K; Rodriguez, Stephanie; Farha, Omar K


    Coordinatively unsaturated metal-organic frameworks (MOFs) were studied for boron trifluoride (BF3) sorption. MOF-74-Mg, MOF-74-Mn, and MOF-74-Co show high initial uptake (below 6.7 × 10(-3) bar) with negligible deliverable capacity. The BF3 isotherm of MOF-74-Cu exhibits gradual uptake up to 0.9 bar and has a deliverable gravimetric capacity that is more than 100% higher than activated carbon. Two other Cu(2+) MOFs, MOF-505 and HKUST-1, have slightly lower deliverable capacities compared to MOF-74-Cu.

  8. Some models for the adsorption kinetics of pesticides in soil

    NARCIS (Netherlands)

    Leistra, M.; Dekkers, W.A.


    Three models describing adsorption‐desorption kinetics of pesticides in soil, that could be incorporated into computer programs on pesticide movement in soil, were discussed, the first model involved single first‐order rate equations for adsorption and desorption. Results from an analytical and a

  9. Off-Gas Adsorption Model Capabilities and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently

  10. Adsorption of Cu(II) to Bacillus subtilis: A pH-dependent EXAFS and thermodynamic modelling study (United States)

    Moon, Ellen M.; Peacock, Caroline L.


    Bacteria are very efficient sorbents of trace metals, and their abundance in a wide variety of natural aqueous systems means biosorption plays an important role in the biogeochemical cycling of many elements. We measured the adsorption of Cu(II) to Bacillus subtilis as a function of pH and surface loading. Adsorption edge and XAS experiments were performed at high bacteria-to-metal ratio, analogous to Cu uptake in natural geologic and aqueous environments. We report significant Cu adsorption to B. subtilis across the entire pH range studied (pH ˜2-7), with adsorption increasing with pH to a maximum at pH ˜6. We determine directly for the first time that Cu adsorbs to B. subtilis as a (CuO 5H n) n-8 monodentate, inner-sphere surface complex involving carboxyl surface functional groups. This Cu-carboxyl complex is able to account for the observed Cu adsorption across the entire pH range studied. Having determined the molecular adsorption mechanism of Cu to B. subtilis, we have developed a new thermodynamic surface complexation model for Cu adsorption that is informed by and consistent with EXAFS results. We model the surface electrostatics using the 1p K basic Stern approximation. We fit our adsorption data to the formation of a monodentate, inner-sphere tbnd RCOOCu + surface complex. In agreement with previous studies, this work indicates that in order to accurately predict the fate and mobility of Cu in complex biogeochemical systems, we must incorporate the formation of Cu-bacteria surface complexes in reactive transport models. To this end, this work recommends log K tbnd RCOOCu + = 7.13 for geologic and aqueous systems with generally high B. subtilis-to-metal ratio.

  11. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. (United States)

    Wu, Di; Gassensmith, Jeremiah J; Gouvêa, Douglas; Ushakov, Sergey; Stoddart, J Fraser; Navrotsky, Alexandra


    The enthalpy of adsorption of CO2 on an environmentally friendly metal-organic framework, CD-MOF-2, has been determined directly for the first time using adsorption calorimetry at 25 °C. This calorimetric methodology provides a much more accurate and model-independent measurement of adsorption enthalpy than that obtained by calculation from the adsorption isotherms, especially for systems showing complex and strongly exothermic adsorption behavior. The differential enthalpy of CO2 adsorption shows enthalpy values in line with chemisorption behavior. At near-zero coverage, an irreversible binding event with an enthalpy of -113.5 kJ/mol CO2 is observed, which is followed by a reversible -65.4 kJ/mol binding event. These enthalpies are assigned to adsorption on more and less reactive hydroxyl groups, respectively. Further, a second plateau shows an enthalpy of -40.1 kJ/mol and is indicative of physisorbed CO2. The calorimetric data confirm the presence of at least two energetically distinct binding sites for chemisorbed CO2 on CD-MOF-2.

  12. Polar Ketone-Functionalized Metal-Organic Framework Showing a High CO2 Adsorption Performance. (United States)

    Feng, Genfeng; Peng, Yuxin; Liu, Wei; Chang, Feifan; Dai, Yafei; Huang, Wei


    The incorporation of various functionalities into porous metal-organic frameworks (MOFs) represents an efficacious strategy to improving their gas adsorption properties. In this work, a carbonylated tetracarboxylic acid ligand (5,5'-carbonyldiisophthalic acid) was synthesized, and a ketone-functionalized MOF with exposed metal sites based on this ligand was formed successfully. Structural analysis reveals that the new MOF possesses channels decorated by the carbonyl groups and rhombicuboctahedral cages, with open Cu(II) sites pointing toward the cage center. The framework exhibits exceptionally high CO2 (46.7 wt % at 273 K and 1 bar) and H2 (2.8 wt % at 77 K and 1 bar) uptake. Furthermore, it displays high selectivities of CO2 adsorption over N2 and CH4 at 298 K.

  13. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water (United States)

    Miyoung Oh; Mandla A. Tshabalala


    Bark flour from ponderosa pine (Pinus ponderosa) was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(ll), Zn(ll), Cd(ll). and Ni(ll) under both equilibrium...

  14. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse


    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  15. Adsorption and detection of sport doping drugs on metallic plasmonic nanoparticles of different morphology. (United States)

    Izquierdo-Lorenzo, Irene; Alda, Irene; Sanchez-Cortes, Santiago; Garcia-Ramos, José Vicente


    A comparative study of different plasmonic nanoparticles with different morphologies (nanospheres and triangular nanoprisms) and metals (Ag and Au) was done in this work and applied to the ultrasensitive detection of aminoglutethimide (AGI) drug by surface enhanced Raman spectroscopy (SERS) and plasmon resonance. AGI is an aromatase inhibitor used as an antitumoral drug with remarkable pharmacological interest and also in illegal sport doping. The application of very sensitive spectroscopic techniques based on the localization of an electromagnetic field on plasmonic nanoparticles confirms the previous study of the adsorption of drugs onto a metal surface due to the near field character of these techniques. The adsorption of AGI on the above substrates was investigated at different pH values and surface coverages, and the results were analyzed on the basis of AGI/metal affinity, considering the interaction mechanism, the existence of two binding sites in AGI, and the influence of the interface on the adsorption in terms of surface charge due to the presence of other ions linked to the surface. Finally, a comparative quantitative detection of AGI was performed on both spherical and triangular nanoprism nanoparticles, and a limit of detection lower than those reported so far was deduced on the latter nanoparticles.

  16. Modeling of surfactant transport and adsorption in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.T.H.


    When surfactant solution is flowing in a reservoir formation, surfactants will be diluted by flow dispersion, retained in dead-end pores, adsorbed on rock surfaces, or precipitated due to ion exchange. The loss of surfactant will be detrimental to the performance of gas foam. Information of surfactant concentration profiles in reservoir formations is essential for gas foaming technique development. The major objective of this research is to investigate with mathematical models the transport and dynamic adsorption of surfactants in porous media. The mathematical models have taken into account the convection, dispersion, capacitance, and adsorption effects on concentrations of surfactants. Numerical methods and computer programs have been developed which can be used to match experimental results and to determine the characterization parameters in the models. The models can be included in foam simulation programs to calculate surfactant concentration profiles in porous media. A flow experimental method was developed to measure the effluent surfactant concentration, which will be used to determine the model parameters. Commercial foaming agent Alipal CD-128 was used in this study. Equilibrium adsorption and surfactant precipitation have been tested. Tracer solutions with a nonadsorbing solute such as dextrose and sucrose were used to determine the dispersion parameters for the experimental sandpack; thus, the adsorption of the surfactant in the test sand can be identified with an adequate model. 49 refs., 21 figs.

  17. Review of heavy metal bio-remediation in contaminated freeway facilitated by adsorption (United States)

    Zheng, Chaocheng


    Toxicity around biological systems is a significant issue for environmental health in a long term. Recent biotechnological approaches for bio-remediation of heavy metals in freeway frequently include mineralization, bio-adsorption or even remediation. Thus, adequate restoration in freeway requiring cooperation, integration and assimilation of such biotechnological advances along with traditional and ethical wisdom to unravel the mystery of nature in the emerging field of bio-remediation was reviewed with highlights to better understand problems associated with toxicity of heavy metals and eco-friendly technologies.

  18. Surface Complexation Modelling in Metal-Mineral-Bacteria Systems (United States)

    Johnson, K. J.; Fein, J. B.


    The reactive surfaces of bacteria and minerals can determine the fate, transport, and bioavailability of aqueous heavy metal cations. Geochemical models are instrumental in accurately accounting for the partitioning of the metals between mineral surfaces and bacteria cell walls. Previous research has shown that surface complexation modelling (SCM) is accurate in two-component systems (metal:mineral and metal:bacteria); however, the ability of SCMs to account for metal distribution in mixed metal-mineral-bacteria systems has not been tested. In this study, we measure aqueous Cd distributions in water-bacteria-mineral systems, and compare these observations with predicted distributions based on a surface complexation modelling approach. We measured Cd adsorption in 2- and 3-component batch adsorption experiments. In the 2-component experiments, we measured the extent of adsorption of 10 ppm aqueous Cd onto either a bacterial or hydrous ferric oxide sorbent. The metal:bacteria experiments contained 1 g/L (wet wt.) of B. subtilis, and were conducted as a function of pH; the metal:mineral experiments were conducted as a function of both pH and HFO content. Two types of 3-component Cd adsorption experiments were also conducted in which both mineral powder and bacteria were present as sorbents: 1) one in which the HFO was physically but not chemically isolated from the system using sealed dialysis tubing, and 2) others where the HFO, Cd and B. subtilis were all in physical contact. The dialysis tubing approach enabled the direct determination of the concentration of Cd on each sorbing surface, after separation and acidification of each sorbent. The experiments indicate that both bacteria and mineral surfaces can dominate adsorption in the system, depending on pH and bacteria:mineral ratio. The stability constants, determined using the data from the 2-component systems, along with those for other surface and aqueous species in the systems, were used with FITEQL to

  19. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite (United States)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia


    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  20. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Enamul; Lee, Ji Eun [Department of Chemistry, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Jang, In Tae; Hwang, Young Kyu; Chang, Jong-San [Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, P.O. Box, 107, Yusung, Daejeon 305-600 (Korea, Republic of); Jegal, Jonggeon [Membrane and Separation Research Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusung, Daejeon 305-600 (Korea, Republic of); Jhung, Sung Hwa, E-mail: [Department of Chemistry, Kyungpook National University, Daegu 702-701 (Korea, Republic of)


    Two typical highly porous metal-organic framework (MOF) materials based on chromium-benzenedicarboxylates (Cr-BDC) obtained from Material of Institute Lavoisier with special structure of MIL-101 and MIL-53 have been used for the adsorptive removal of methyl orange (MO), a harmful anionic dye, from aqueous solutions. The adsorption capacity and adsorption kinetic constant of MIL-101 are greater than those of MIL-53, showing the importance of porosity and pore size for the adsorption. The performance of MIL-101 improves with modification: the adsorption capacity and kinetic constant are in the order of MIL-101 < ethylenediamine-grafted MIL-101 < protonated ethylenediamine-grafted MIL-101 (even though the porosity and pore size are slightly decreased with grafting and further protonation). The adsorption capacity of protonated ethylenediamine-grafted MIL-101 decreases with increasing the pH of an aqueous MO solution. These results suggest that the adsorption of MO on the MOF is at least partly due to the electrostatic interaction between anionic MO and a cationic adsorbent. Adsorption of MO at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with MO adsorption. The adsorbent MIL-101s are re-usable after sonification in water. Based on this study, MOFs can be suggested as potential re-usable adsorbents to remove anionic dyes because of their high porosity, facile modification and ready re-activation.

  1. The use of sugar and alcohol industry waste in the adsorption of potentially toxic metals. (United States)

    Santos, Oseas Silva; Mendonça, André Gustavo Ribeiro; Santos, Josué Carinhanha Caldas; Silva, Amanda Paulina Bezerra; Costa, Silvanio Silverio Lopes; Oliveira, Luciana Camargo; Carmo, Janaina Braga; Botero, Wander Gustavo


    One of the waste products of the industrial process of the sugar and alcohol agribusiness is filter cake (FC). This waste product has high levels of organic matter, mainly proteins and lipids, and is rich in calcium, nitrogen, potassium and phosphorous. In this work we characterized samples of FC from sugar and alcohol industries located in sugarcane-producing regions in Brazil and assessed the adsorption of potentially toxic metals (Cu(II), Cd(II), Pb(II), Ni(II) and Cr(III)) by this waste in mono- and multi-elemental systems, seeking to use FC as an adsorbent in contaminated environments. The characterization of FCs showed significant differences between the samples and the adsorption studies showed retention of over 90% of potentially toxic metals. In a competitive environment (multi-metallic solution), the FC was effective in adsorbing all metals except lead, but less effective compared to the mono-metallic solution. These results show the potential for use of this residue as an adsorbent in contaminated environments.

  2. Removal of Heavy Metals from Liquid Laboratory Waste Using Precipitation and Adsorption Methods

    Directory of Open Access Journals (Sweden)

    Nastiti Siswi Indrasti


    Full Text Available Liquid laboratory waste (such as residue of Chemical Oxygen Demand/COD analysis contains high concentration of heavy metals (mercury/Hg, silver/Ag and chrome/Cr and has a high potential to pollute the environment. The liquid waste generated by laboratories is generally in small quantity, but it is extremely toxic. It is urgently in need to find out an appropriate method to reduce the problems according to the liquid waste characteristics. In this research work, precipitation and adsorption methods were evaluated to remove Hg, Ag and Cr from liquid laboratory waste, covering determination of optimum process conditions, levels of removal and achievable treated waste quality. Results showed that a Cr removal of 97% was obtained by pH 10, and Hg and Ag removals of 97-99% were reached by pH 12. Although heavy metals removals using precipitation was very significant, but the concentration of heavy metals in the treated waste was still high (0.73-2.62 mg/L and need for further treatment. Applying activated carbon adsorption for further treatment of the effluent reduced dissolved heavy metals to 0-0.05 mg/L, depending on the type of heavy metals as well as the type and dosing of activated carbon.

  3. Influence of metal doping of a MOF-74 framework on hydrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Botas, J.A.; Calleja, G.; Orcajo, M.G. [Rey Juan Carlos Univ., Madrid (Spain). Dept. of Chemical and Energy Technology; Sanchez-Sanchez, M. [CSIC, Madrid (Spain). Inst. de Catalisis y Petroleoquimica


    Microporous Metal-Organic Framework (MOF) adsorbents are considered an interesting option for hydrogen storage. Due to their porous nature and unusually high surface areas, these materials show an exceptional H{sub 2} uptake. Unfortunately, their interaction with H{sub 2} molecules is weak, so cryogenic temperatures are required to reach competitive H{sub 2} storage capacities. In this sense, the presence of coordinatively unsaturated and exposed metal centers in some MOF frameworks could increase the affinity for H{sub 2} through stronger metal-H{sub 2} interactions. In this preliminary work, the effect of doping a Zn{sup 2+}-MOF-74 framework with Co{sup 2+}, Cu{sup 2+} and Mg{sup 2+} on its adsorption properties for H{sub 2} has been studied. Characterization studies suggest that the samples prepared have actually the MOF-74 structure, in which the different tested heteroatom ions have been successfully incorporated. The differences in H{sub 2} adsorption at 77 K and 87 K between the MOF-74 samples doped with the mentioned divalent metal ions were discussed as a function of their free pore volume and amount of metal incorporation. (orig.)

  4. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling. (United States)

    Cui, Yanshan; Weng, Liping


    The pH dependent solid-solution distribution of arsenate and phosphate in five Dutch agricultural soil samples was measured in the pH range 4-8, and the results were interpreted using the LCD (ligand and charge distribution) adsorption modeling. The pH dependency is similar for both oxyanions, with a minimum soluble concentration observed around pH 6-8. This pH dependency can be successfully described with the LCD model and it is attributed mainly to the synergistic effects from Ca adsorption. The solubility of phosphate is much lower than that of arsenate. This big difference cannot be sufficiently explained by the reduction of small amount of As(V) into As(III), neither by slow desorption/adsorption. The difference between phosphate and arsenate in their solid-solution distribution becomes larger with the increase of aluminum (hydr)oxides (Al-oxides) contribution to the total amount of metal (Al and Fe) (hydr)oxides. The influence of Al-oxides is much larger than its relative amount extracted from the soils. When Al-oxides account for >40% of the soil oxides, the whole adsorbents behave apparently similarly to that of pure Al-oxides. These results indicated that surface coating and substitution may have modified significantly oxyanion adsorption to Fe-oxides in soils, and how to account for this complexity is a challenge for geochemical modeling.

  5. Evaluation of a Mathematical Model for Single Component Adsorption Equilibria with Reference to the Prediction of Multicomponent Adsorption Equilibria

    DEFF Research Database (Denmark)

    Krøll, Annette Elisabeth; Marcussen, Lis


    An equilibrium equation for pure component adsorption is compared to experiments and to the vacancy solution theory. The investigated equilibrium equation is a special case of a model for prediction of multicomponent adsorption equilibria.The vacancy solution theory for multicomponent systems req...

  6. Adsorption of Different Fractions of Organic Matter on the Surface of Metal Oxide

    KAUST Repository

    Zaouri, Noor A


    The adsorption of different fractions of organic matter on the surface of Al2O3 and ZrO2 were investigated. The aim was to study the affinity of these fractions on the surface of metal oxide and the effect of several factors. Batch adsorption experiments were conducted with Low molecular weight oxygenated compounds. These chemical compound have been chosen to investigate:1) the aliphatic and aromatic structurer;2)contribution of hydroxyl group and; 3) the number of carboxyl group. HPLC and IC analysis used for determent the concentration of these chemical in the working solution. ATR-FTIR used to distinguish the type of coordination structure with the surface of metal oxide. The results fitted with Langmuir equation. The results showed that the chemical structure and the type and number of attached functional have an impact on the adsorption. Which it was proved via ATR-FTIR where the result showed that each chemical have different coordination structure on the surface of ZrO2 and Al2O3. Different fractions and sources of NOM were used (hydrophobic fraction of Suwannee and Colorado River, biopolymers extracted for the exuded of 2 species of algae, and low molecular acids that do not adsorb in XAD-8 resin). Results showed that these different fractions have different affinity with the surface of Al2O3 and ZrO2. These adsorption behaviors were varying according to the difference in the component of each NOM. Biopolymers showed significant adsorption at acidic pH. These biopolymers are mainly comprised of polysaccharides and this result proved that polysaccharide adsorb on the surface of ZrO2 more than Al2O3.

  7. A DFT study of volatile organic compounds adsorption on transition metal deposited graphene (United States)

    Kunaseth, Manaschai; Poldorn, Preeyaporn; Junkeaw, Anchalee; Meeprasert, Jittima; Rungnim, Chompoonut; Namuangruk, Supawadee; Kungwan, Nawee; Inntam, Chan; Jungsuttiwong, Siriporn


    Recently, elevated global emission of volatile organic compounds (VOCs) was associated to the acceleration and increasing severity of climate change worldwide. In this work, we investigated the performance of VOCs removal via modified carbon-based adsorbent using density functional theory. Here, four transition metals (TMs) including Pd, Pt, Ag, and Au were deposited onto single-vacancy defective graphene (SDG) surface to increase the adsorption efficiency. Five prototypical VOCs including benzene, furan, pyrrole, pyridine, and thiophene were used to study the adsorption capability of metal-deposited graphene adsorbent. Calculation results revealed that Pd, Pt, Au, and Ag atoms and nanoclusters bind strongly onto the SDG surface. In this study, benzene, furan and pyrrole bind in the π-interaction mode using delocalized π-electron in aromatic ring, while pyridine and thiophene favor X- interaction mode, donating lone pair electron from heteroatom. In terms of adsorption, pyridine VOC adsorption strengths to the TM-cluster doped SDG surfaces are Pt4 (-2.11 eV) > Pd4 (-2.05 eV) > Ag4 (-1.53 eV) > Au4 (-1.87 eV). Our findings indicate that TM-doped SDG is a suitable adsorbent material for VOC removal. In addition, partial density of states analysis suggests that benzene, furan, and pyrrole interactions with TM cluster are based on p-orbitals of carbon atoms, while pyridine and thiophene interactions are facilitated by hybridized sp2-orbitals of heteroatoms. This work provides a key insight into the fundamentals of VOCs adsorption on carbon-based adsorbent.

  8. 多组分吸附过程的吸附速率模型%Adsorption Rate Models for Multicomponent Adsorption Systems

    Institute of Scientific and Technical Information of China (English)



    Three adsorption rate models are derived for multicomponent adsorption systems under either pore diffusion or surface diffusion control. The linear driving force (LDF) model is obtained by assuming a parabolic intraparticle concentration profile. Models I and Ⅱ are obtained from the parabolic concentration layer approximation. Examples are presented to demonstrate the usage and accuracy of these models. It is shown that Model I is suitable for batch adsorption calculations and Model H provides a good approximation in fixed-bed adsorption processes while the LDF model should not be used in batch adsorption and may be considered acceptable in fixed-bed adsorption where the parameter Ti is relatively large.

  9. Arsenic Removal from Aqueous Solution Using Pure and Metal-Doped Titania Nanoparticles Coated on Glass Beads: Adsorption and Column Studies

    Directory of Open Access Journals (Sweden)

    M. Ihsan Danish


    Full Text Available Nanosized metal oxide, Titania, provides high surface area and specific affinity for the adsorption of heavy metals, including arsenic (As, which is posing a great threat to the world population due to its carcinogenic nature. In this study, As(III adsorption was studied on pure and metal- (Ag- and Fe- doped Titania nanoparticles. The nanoparticles were synthesized by liquid impregnation method with some modifications, with crystallite size in the range of 30 to 40 nm. Band gap analysis, using Kubelka-Munk function showed a shift of absorption band from UV to visible region for the metal-doped Titania. Effect of operational parameters like dose of nanoparticles, initial As(III concentration, and pH was evaluated at 25°C. The data obtained gave a good fit with Langmuir and Freundlich isotherms and the adsorption was found to conform to pseudo-second-order kinetics. In batch studies, over 90% of arsenic removal was observed for both types of metal-doped Titania nanoparticles from a solution containing up to 2 ppm of the heavy metal. Fixed bed columns of nanoparticles, coated on glass beads, were used for As(III removal under different operating conditions. Thomas and Yoon-Nelson models were applied to predict the breakthrough curves and to find the characteristic column parameters useful for process design. The columns were regenerated using 10% NaOH solution.

  10. Surface complexation modeling of Cu(II adsorption on mixtures of hydrous ferric oxide and kaolinite

    Directory of Open Access Journals (Sweden)

    Schaller Melinda S


    Full Text Available Abstract Background The application of surface complexation models (SCMs to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO, pure kaolinite (from two sources and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples.

  11. Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES

    Energy Technology Data Exchange (ETDEWEB)

    Liang Pei; Qin Yongchao; Hu Bin; Li Chunxiang; Peng Tianyou; Jiang Zucheng [Wuhan Univ., HB (China). Dept. of Chemistry


    A new method using nanoparticle TiO{sub 2} as solid-phase extractant coupled with ICP-AES was proposed for simultaneous determination of trace elements. The adsorption behavior of nanometer TiO{sub 2} towards Cu, Cr, Mn and Ni was investigated by ICP-AES, and the adsorption pH curves, adsorption isotherms and adsorption capacities were obtained. It was found that the adsorption rates of the metal ions studied were more than 90% in pH 8.0{proportional_to}9.0, and 2.0 mol L{sup -1} HCl was sufficient for complete elution. Nanometer TiO{sub 2} possesses a significant capacity for the sorption of the metal ions studied which is higher than the capacity of silica, the commonly used extractant. The method has been applied to the analysis of some environmental samples with satisfactory results. (orig.)

  12. Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. (United States)

    Peng, Xin-Wen; Zhong, Lin-Xin; Ren, Jun-Li; Sun, Run-Cang


    Xylan-rich hemicelluloses-based hydrogel was developed as a novel porous bioadsorbent by graft co-polymerization of acrylic acid (AA) and xylan-rich hemicelluloses for adsorption of heavy metal ions (Pd(2+), Cd(2+), and Zn(2+)) from aqueous solutions. The chemical structure, the interaction between the hydrogel and metal ions, and the porous structure of xylan-rich hemicelluloses-g-AA hydrogel were revealed by Fourier transform infrared spectroscopy and scanning electron microscopy. The effects of AA and cross-linker dosage, pH value, contacting time, and initial concentration of metal ion on the adsorption capacity were studied. The adsorption equilibrium time was about 60 min from the adsorption kinetics study. The maximum adsorption capacities of Pd(2+), Cd(2+), and Zn(2+) were 859, 495, and 274 mg/g, respectively. Furthermore, xylan-rich hemicelluloses-g-AA hydrogel also exhibited highly efficient regeneration and metal ion recovery efficiency and can be reused without noticeable loss of adsorption capacity for Pd(2+), Cd(2+), and Zn(2+) after quite a number of repeated adsorption/desorption cycles.

  13. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study. (United States)

    Jiao, Chenlu; Xiong, Jiaqing; Tao, Jin; Xu, Sijun; Zhang, Desuo; Lin, Hong; Chen, Yuyue


    Ordered porous sodium alginate/graphene oxide (SAGO) aerogel was fabricated by in situ crosslinking and freeze-drying method. GO, as reinforcing filler, can be easily incorporated with SA matrix by self-assembly via hydrogen bonding interaction. Compared with pure SA aerogel, the as-prepared SAGO exhibited excellent mechanical strength and elasticity, and the compression strength of SAGO can reach up to 324 kPa and remain 249 kPa after five compression cycles when 4 wt% GO was added, which were considered significant improvements. SEM result presents that the addition of GO obviously improves the porous structures of aerogel, which is beneficial for the enhancement of strength-toughness and adsorbability. As a consequence, the adsorption process of SAGO is better described by pseudo-second-order kinetic model and Langmuir isotherm, with maximum monolayer adsorption capacities of 98.0 mg/g for Cu2+ and 267.4 mg/g for Pb2+, which are extremely high adsorption capacities for metal ions and show far more promise for application in sewage treatment.

  14. Solvation and electrostatic model for specific electrolyte adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, N.; Sverjensky, D.A. [Johns Hopkins Univ., Baltimore, MD (United States)


    A salvation and electrostatic model has been developed for estimating electrolyte adsorption from physical and chemical properties of the system, consistent with the triple-layer model. The model is calibrated on experimental surface titration data for ten oxides and hydroxides in ten electrolytes over a range of ionic strengths from 0.001 M-2.9 M. 77 refs., 7 figs., 4 tabs.

  15. The role of soil's particle-size fractions in the adsorption of heavy metals

    Directory of Open Access Journals (Sweden)

    Saglara Mandzhieva


    Full Text Available The parameters of adsorption of Cu2+, Pb2+, and Zn2+ cations by southern chernozem and their particle-size fractions were studied. The adsorption of metals by soils and the strength of their fixation on the surface of soil particles under both mono- and poly-element contamination decreased with the decreasing proportion of fine fractions in the soil. The aim of this work was to study the effect of the particle-size distribution and the silt and physical clay fractions on the adsorption of copper, lead, and zinc by chernozems. The objects of study included the upper humus horizons of different southern chernozems of the Rostov oblast. To study the ion-exchange adsorption of the Cu2+, Pb2+, and Zn2+ cations, the soil in the natural ionic form was disaggregated using a pestle with a rubber head and sieved through a 1mm sieve. The soil samples were treated with solutions of Cu2+, Pb2+, and Zn2+ nitrates and acetates at the separate and simultaneous presence of heavy metals (HMs. In the solutions with the simultaneous presence of HMs, their molar concentrations were similar. The concentrations of the initial solutions varied in the range from 0.05 to 1 mM/l. The soil: solution ratio was 1:10. The contents of HMs in the filtrates were determined by atomic absorption spectrophotometry. The contents of adsorbed HM cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions. The increase in the degree of dispersion of the particle-size fractions in similar soils resulted not only in an increase in the content of adsorbed HMs but also in an enhancement of their fixation on the surface of the fine particles. Therefore, the adsorption capacity of the Lower Don soils for Cu2+, Pb2+, and Zn2+ decreased in the following sequence: clay loamy southern chernozem > loamy southern chernozem > loamy sandy southern chernozem. This was related to the qualitative differences in the mineralogy and chemistry of

  16. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)


    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  17. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs. (United States)

    Saini, Vipin K; Pires, João


    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  18. Off-gas Adsorption Model and Simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge


    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  19. Hybrid empirical--theoretical approach to modeling uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Larry C.; Grossman, Christopher; Fjeld, Robert A.; Coates, John T.; Elzerman, Alan W


    An estimated 330 metric tons of U are buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of U transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of U fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms were measured for 14 sediment samples collected from sedimentary interbeds underlying the SDA. The adsorption data were fit with a Freundlich isotherm. The Freundlich n parameter is statistically identical for all 14 sediment samples and the Freundlich K{sub f} parameter is correlated to sediment surface area (r{sup 2}=0.80). These findings suggest an efficient approach to material characterization and implementation of a spatially variable reactive transport model that requires only the measurement of sediment surface area. To expand the potential applicability of the measured isotherms, a model is derived from the empirical observations by incorporating concepts from surface complexation theory to account for the effects of solution chemistry. The resulting model is then used to predict the range of adsorption conditions to be expected in the vadose zone at the SDA based on the range in measured pore water chemistry. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  20. Adsorption of hydrogen sulphide on Metal-Organic Frameworks

    NARCIS (Netherlands)

    Gutiérrez-Sevillano, J.J.; Martin-Calvo, A.; Dubbeldam, D.; Calero, S.; Hamad, S.


    Three new sets of interatomic potentials to model hydrogen sulphide (H2S) have been fitted. One of them is a 3-sites potential (which we named 3S) and the other two are 5-sites potentials (which we named 5S and 5Sd). The molecular dipole of the 3S and 5S potentials is 1.43 D, which is the value

  1. Lignin: A sustainable biosorbent for heavy metal adsorption from wastewater, a review (United States)

    Nasrullah, Asma; Bhat, A. H.; Isa, Mohamed Hasnain


    With the recent advancements in science and technology, environmental pollution is a challenging problem due to increased activities in domestic, industrial, and agricultural sector. These activities have led to the release of various types of micropollutants such as heavy metal ions, organic and inorganic ions (detergents, and dye) etc into ground water which badly affects the ecosystem. Among various types of pollutants, heavy metals are the most reported in the recent decade. Water pollution is the most challenging problem, and needs to be controlled for better and healthy ecosystem which requires a healthy, eco-friendly and cheaper technology. In this context. lignin is abundantly available, cheaper and environmentally friendly. For efficient removal of heavy metals, lignin can be modified chemically or thermally to increased its biosorption capacity. In this review merits of adsorption and demerits of other separation technologies are compared. This paper presents the recent state of research on the efficient utilization of lignin, its modification and its adsorption efficiency for heavy metal removal from wastewater.

  2. Tuning the work function of ultrathin oxide films on metals by adsorption of alkali atoms. (United States)

    Martinez, Umberto; Giordano, Livia; Pacchioni, Gianfranco


    We report a theoretical investigation of the adsorption of alkali metal atoms deposited on ultrathin oxide films. The properties of Li, Na, and K atoms adsorbed on SiO(2)/Mo(112) and of K on MgO / Ag(100) and TiO(2)/Pt(111) have been analyzed with particular attention to the induced changes in the work function of the system, Phi. On the nonreducible SiO(2) and MgO oxide films there is a net transfer of the outer ns electron of the alkali atom to the metal substrate conduction band; the resulting surface dipole substantially lowers Phi. The change in Phi depends (a) on the adsorption site (above the oxide film or at the interface) and (b) on the alkali metal coverage. Deposition of K on reducible TiO(2) oxide films results in adsorbed K(+) ions and in the formation of Ti(3+) ions. No charge transfer to the metal substrate is observed but also in this case the surface dipole resulting from the K-TiO(2) charge transfer has the effect to considerably reduce the work function of the system.

  3. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method

    Indian Academy of Sciences (India)

    H M Pathan; C D Lokhande


    During last three decades, successive ionic layer adsorption and reaction (SILAR) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, semiconductors, metals and temperature sensitive substrates (like polyester) can be used since the deposition is carried out at or near to room temperature. As a low temperature process, it also avoids oxidation and corrosion of the substrate. The prime requisite for obtaining good quality thin film is the optimization of preparative provisos viz. concentration of the precursors, nature of complexing agent, pH of the precursor solutions and adsorption, reaction and rinsing time durations etc. In the present review article, we have described in detail, successive ionic layer adsorption and reaction (SILAR) method of metal chalcogenide thin films. An extensive survey of thin film materials prepared during past years is made to demonstrate the versatility of SILAR method. Their preparative parameters and structural, optical, electrical properties etc are described. Theoretical background necessary for the SILAR method is also discussed.

  4. Modeling and CFD prediction for diffusion and adsorption within room with various adsorption isotherms. (United States)

    Murakami, S; Kato, S; Ito, K; Zhu, Q


    This paper presents physical models that are used for analyzing numerically the transportation of volatile organic compounds (VOCs) from building materials in a room. The models are based on fundamental physicochemical principles of their diffusion and adsorption/desorption (hereafter simply sorption) both in building materials and in room air. The performance of the proposed physical models is examined numerically in a test room with a technique supported by computational fluid dynamics (CFD). Two building materials are used in this study. One is a VOC emitting material for which the emission rate is mainly controlled by the internal diffusion of the material. The other is an adsorptive material that has no VOC source. It affects the room air concentration of VOCs with its sorption process. The floor is covered with an emission material made of polypropylene styrene-butadiene rubber (SBR). An adsorbent material made of coal-based activated carbon is spread over the sidewalls. The results of numerical prediction show that the physical models and their numerical simulations explain well the mechanism of the transportation of VOCs in a room.

  5. Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions (United States)

    Fan, Suzhen; Liu, Sisi; Wang, Xiao-Qiao; Wang, Cai-Feng; Chen, Su


    Given the increasing heavy metal pollution issue, fast preparation of polymeric hydrogels with excellent adsorption property toward heavy metal ions is very attractive. In this work, a series of poly( N-vinylimidazole-co-acrylamide) (poly(VI-co-AM)) hydrogels were synthesized via laser-ignited frontal polymerization (LIFP) for the first time. The dependence of frontal velocity and temperature on two factors monomer ratios and initiator concentrations was systematically investigated. Poly(VI-co-AM) hydrogels with any self-supporting shapes can be synthesized by a one-step LIFP in seconds through the application of 3D templates. These shape-persistent hydrogels are pH-responsive and exhibit excellent adsorption/desorption characteristics toward Mn(II), Zn(II), Cd(II), Ni(II), Cu(II) and Co(II) ions, and the adsorption conformed to the pseudo-second-order kinetic model. The reusability of the hydrogels toward mental ions adsorption was further researched, which suggested that the hydrogels can be reused without serious decrease in adsorption capacity. This work might open a promising strategy to facilely prepare shape-controllable hydrogels and expand the application of LIFP.

  6. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor. (United States)

    Hu, Keshui; Xiao, Xin; Cao, Xiufang; Hao, Rong; Zuo, Xiaoxi; Zhang, Xiaojing; Nan, Junmin


    Titanate nanotube powders (TNTPs) with the twofold removal ability, i.e. adsorptive separation and photocatalytic degradation, are synthesized under hydrothermal conditions using metal Ti particles as a precursor in the concentrated alkaline solution, and their morphology, structure, adsorptive and photocatalytic properties are investigated. Under hydrothermal conditions, the titanate nanotubes (TNTs) with pore diameter of 3-4nm are produced on the surface of metal Ti particles, and stacked together to form three-dimensional (3D) network with porous structure. The TNTPs synthesized in the autoclave at 130°C for 24h exhibits a maximum adsorption capability of about 197mg g(-1) in the neutral methylene blue (MB) solution (40mg L(-1)) within 90min, the adsorption process can be described by pseudo second-order kinetics model. Especially, in comparison with the adsorptive and the photocatalytic processes are performed in turn, about 50min can be saved through synchronously utilizing the double removal ability of TNTPs when the removal ratio of MB approaches 95% in MB solution (40mg L(-1)) at a solid-liquid (S/L) ratio of 1:8 under ultraviolet (UV) light irradiation. These 3D TNTPs with the twofold removal properties and easier separation ability for recycling use show promising prospect for the treatment of dye pollutants from wastewaters in future industrial application.

  7. Adsorption of a PEO-PPO-PEO triblock copolymer on metal oxide surfaces with a view to reducing protein adsorption and further biofouling. (United States)

    Yang, Y; Poleunis, C; Románszki, L; Telegdi, J; Dupont-Gillain, C C


    Abstract Biomolecule adsorption is the first stage of biofouling. The aim of this work was to reduce the adsorption of proteins on stainless steel (SS) and titanium surfaces by modifying them with a poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO triblock copolymer. Anchoring of the central PPO block of the copolymer is known to be favoured by hydrophobic interaction with the substratum. Therefore, the surfaces of metal oxides were first modified by self-assembly of octadecylphosphonic acid. PEO-PPO-PEO preadsorbed on the hydrophobized surfaces of titanium or SS was shown to prevent the adsorption of bovine serum albumin (BSA), fibrinogen and cytochrome C, as monitored by quartz crystal microbalance (QCM). Moreover, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry were used to characterize the surfaces of the SS and titanium after competitive adsorption of PEO-PPO-PEO and BSA. The results show that the adsorption of BSA is well prevented on hydrophobized surfaces, in contrast to the surfaces of native metal oxides.

  8. Enthalpy-entropy compensation for n-hexane adsorption on Y zeolite containing transition metal cations

    Directory of Open Access Journals (Sweden)

    Hercigonja R.


    Full Text Available In this work, the values of entropy changes related to n-hexane adsorption onto cation exchanged Y zeolite were calculated from differential heats. Various transition metal cations (Co2+, Ni2+, Zn2+ and Cd2+ were introduced into the lattice of the parent NaY, and the existence of enthalpy-entropy compensation effect related to n-hexane adsorption, id. est, the linearity of -ΔH vs. -ΔS plots was examined. The compensation effect was confirmed for all investigated zeolites. The compensation effect can be comprehended as governed by ion-induced dipole interaction between highly polarizing cationic centers in zeolite and nonopolar n-hexane molecules. Finally, the compensation effect and so the compensation temperature were found to depend on the type of charge-balancing cation (charge, size and electronic configuration. [Projekat Ministarstva nauke Republike Srbije, br. 172018

  9. Nickel(II) oxide nanostructure derived from metal-organic frameworks and its adsorption capability (United States)

    Ru, Shuai; Xu, Lina; Xiao, Hongping; Li, Xinhua


    Nanosized nickel(II) oxide (NiO) was obtained by oxidation of ([(Ni2(nic)4(H2O)] n , nic = nicotinic acid), a metal-organic framework (MOF), at 350 °C. Nanosized NiO assembled to form block NiO having a mesoporous structure similar to the porous structure of activated carbon block. This bulk NiO exhibits excellent adsorbing capability, with 100% higher adsorption capacities than the [(Ni2(nic)4(H2O)] n MOF towards toluene and water steam; therefore, it can find potential application in gas adsorption. Moreover, this bulk NiO can be synthesized using a facile, environment-friendly, and cost-effective method, and exhibits excellent hydrothermal stability, which is not commonly observed for MOFs.

  10. Experimental Study of the Selective Adsorption of Heavy Metals onto Clay Minerals

    Institute of Scientific and Technical Information of China (English)

    何宏平; 郭九皋; 等


    The interaction between minerals and heavy metals has been a hot object of study in environmental science,mineralogy and soil science,Through the selective adsorption experiment of Ca-montomorillonite,illite and kaolinite to Cu2+,Pb2+,Zn2+,Cd2+,and Cr3+ ions at certain conditions,it could be concluded that Cr3+ is most effectively sorbed by all the three minerals.Also,it can be found that Pb2+ shows a strong affinity for illite and kaolinite while cu2+ for montmorillonite .Based on the adsorption experiment at varying pH of solution,it can be found that the amount of heavy etals sorbed by minerals increases with increasing pH of the solution.

  11. Ab initio study of adsorption of molecular hydrogen on microporous metal-organic frameworks. (United States)

    Hamel, Sébastien; Côté, Michel


    In the ongoing search for promising compounds for hydrogen storage, novel porous metal-organic frameworks (MOF) have been discovered recently [1]. Well defined binding sites were deduced from inelastic neutron scattering (INS) spectroscopy of the rotational transitions of the adsorbed molecular hydrogen. In light of this discovery we performed ab initio density functional theory (DFT) calculations of the adsorption of molecular hydrogen on this class of microporous MOF to compare different adsorption sites. Different approximations for the exchange-correlation potentials were accessed for a set of relevant properties such as binding energy, energetically favored configuration and distance between the adsorbents and adsorbates. In particular, theoretical rotational spectra of the adsorbed H2 were obtained that could be compared to the experimental INS spectra. [1] Rosi et al., Science Vol. 300, 1127 (2003)

  12. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Cotten (Parsons); J. D. Navratil (INEEL); H. B. Eldredge (U of Idaho)


    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics.

  13. Tuning the electronic and magnetic properties of borophene by 3d transition-metal atom adsorption (United States)

    Li, J. Y.; Lv, H. Y.; Lu, W. J.; Shao, D. F.; Xiao, R. C.; Sun, Y. P.


    The electronic and magnetic properties of borophene functionalized by 3d transition metal (TM) atom adsorption are investigated by using first-principles calculations. The results show that the 3d TM atoms can be adsorbed on borophene with high binding energies ranging between 5.9 and 8.3 eV. Interestingly, the originally nonmagnetic borophene tends to be ferromagnetic when Ti, V, Cr, Mn, and Fe atoms are adsorbed, and the magnetic moments are dominated by the TM atoms. The origin of the ferromagnetism is discussed based on the Stoner criterion. Our results indicate that the magnetic properties of borophene can be effectively tuned through the adsorption of 3d TM atoms, which could have promising applications in spintronics and nanoelectronics.

  14. Modeling two-rate adsorption kinetics: Two-site, two-species, bilayer and rearrangement adsorption processes. (United States)

    Tripathi, Sumit; Tabor, Rico F


    The adsorption kinetics of many systems show apparent two-rate processes, where there appears to be resolved fast and slow adsorption steps. Such non-standard adsorption processes cannot be accounted for by conventional modeling methods, motivating new approaches. In this work, we present four different models that can account for two-rate adsorption and are based upon physically realistic processes - two adsorbing species, two surface sites having different energies, bilayer formation and molecular rearrangement modes. Each model is tested using a range of conditions, and the characteristic behavior is explored and compared. In these models, the effects of mass transport and bulk concentration are also accounted for, making them applicable in systems which are transport-limited or attachment-limited, or intermediate between the two. The applicability of these models is demonstrated by fitting exemplar experimental data for each of the four models, selecting the model on the basis of the known physical behavior of the adsorption kinetics. These models can be applied in a wide range of systems, from stagnant adsorption in large volume water treatment to highly dynamic flow conditions relevant to printing, coating and processing applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption. (United States)

    Liu, Botao; Li, Haiyan; Xu, Xiaonan; Li, Xue; Lv, Nana; Singh, Vikramjeet; Stoddart, J Fraser; York, Peter; Xu, Xu; Gref, Ruxandra; Zhang, Jiwen


    The biocompatible and renewable cyclodextrin metal-organic frameworks (CD-MOFs) have addressed a range of opportunities in molecular storage and separation sciences. The reported protocols for their synthesis, however, were carried out at room temperature over long time periods of time (24h), producing crystals of relatively poor uniformity. In this investigation, micron sized γ-CD-MOFs were synthesized by an optimized vapor diffusion method at elevated temperature (50°C) within 6h, after which the size control, crystalline stability and drug adsorption behavior were investigated in detail. In this manner, uniform cubic γ-CD-MOF crystals were obtained when the reaction temperature was raised to 50°C with pre-addition of the reaction solvent. The size of γ-CD-MOFs was adjusted efficiently by changing the reactant concentrations, temperatures, time, γ-CD ratios to KOH and surfactant concentrations, without influencing the porosity and crystallinity of the material markedly. Varing degrees of reduction in crystallinity and change in morphology were observed when the γ-CD-MOF crystals are treated under conditions of high temperature (100°C), high humidity (92.5%) and polar solvents (e.g., MeOH and DMF). In relation to drug adsorption by γ-CD-MOFs, most of the drug molecules containing carboxyl groups showed relatively high adsorption (>5%), while low adsorption (synthesis and size control of γ-CD-MOFs, the crystalline stability and drug adsorption characteristics of γ-CD-MOF crystals have been evaluated as a fundamental requirement of a potential vehicle for drug delivery.

  16. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks (United States)

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V.; Ku Kang, Jeung; Yaghi, Omar M.; Terasaki, Osamu


    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of ‘extra adsorption domains’—that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  17. Synthesis and gas adsorption study of porous metal-organic framework materials (United States)

    Mu, Bin

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for postsynthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gasadsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structureproperty relationships of these novel adsorbents.

  18. The use of waste mussel shells for the adsorption of dyes and heavy metals (United States)

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris


    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  19. Tritium Specific Adsorption Simulation Utilizing the OSPREY Model

    Energy Technology Data Exchange (ETDEWEB)

    Veronica Rutledge; Lawrence Tavlarides; Ronghong Lin; Austin Ladshaw


    During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University, and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. This report is discusses the development of a tritium specific adsorption model. Using the OSPREY model and integrating it with a fundamental level isotherm model developed under and experimental data provided by the NEUP grant, the tritium specific adsorption model was developed.

  20. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals. (United States)

    Zhou, Yun; Zhang, Zhiqiang; Zhang, Jiao; Xia, Siqing


    The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb(2+) and Zn(2+) in aqueous single-metal solutions. A pH value of the metal solutions at 6.0 was beneficial to the high adsorption quantity of the biosorbent. The optimal mass ratio of the biosorbent to metal ions was found to be 2. A higher adsorption quantity of the biosorbent was achieved by keeping the reaction temperature below 55°C. Response surface methodology was applied to optimize the biosorption processes, and the developed mathematical equations showed high determination coefficients (above 0.99 for both metal ions) and insignificant lack of fit (p=0.0838 and 0.0782 for Pb(2+) and Zn(2+), respectively). Atomic force microscopy analyses suggested that the metal elements were adsorbed onto the biosorbent surface via electrostatic interaction. X-ray photoelectron spectroscopy analyses indicated the presence of complexation (between -NH2, -CN and metal ions) and ion-exchange (between -COOH and metal ions). The adsorption mechanisms could be the combined action of electrostatic interaction, complexation and ion-exchange between functional groups and metal ions. Copyright © 2016. Published by Elsevier B.V.

  1. Adsorption performances and mechanisms of the newly synthesized N,N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jing Xiaosheng [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Liu Fuqiang, E-mail: [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China) and Engineering Technology Research Center of Organic Toxic Substance Control and Resource Reuse of Jiangsu Province, Nanjing 210046 (China); Yang Xin; Ling Panpan; Li Lanjuan [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Long Chao; Li Aimin [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Engineering Technology Research Center of Organic Toxic Substance Control and Resource Reuse of Jiangsu Province, Nanjing 210046 (China)


    N,N'-di (carboxymethyl) dithiocarbamate chelating resin (PSDC) was synthesized by anchoring the chelating agent of N,N'-di (carboxymethyl) dithiocarbamate to the chloromethylated PS-DVB (Cl-PS-DVB) matrix, as a new adsorbent for removing divalent heavy metal ions from waste-stream. The physicochemical structures of Cl-PS-DVB and PSDC were elaborately characterized using Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), and were further morphologically characterized using BET and BJH methods. The adsorption performances of PSDC towards heavy metals such as Cu(II), Pb(II) and Ni(II) were systematically investigated, based upon which the adsorption mechanisms were deeply exploited. For the above target, the classic batch adsorption experiments were conducted to explore the kinetics and isotherms of the removal processes with pH-value, initial concentration, temperature, and contact time as the controlling parameters. The kinetic and isotherm data could be well elucidated with Lagergren-second-order equation and Langmuir model respectively. The strong affinity of PSDC toward these target soft acids could be well demonstrated with the electrostatic attraction and chelating interaction caused by IDA moiety and sulphur which were namely soft bases on the concept of hard and soft acids and bases (HASB). Thermodynamic parameters, involving {Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o} were also calculated from graphical interpretation of the experimental data. The standard heats of adsorption ({Delta}H{sup o}) were found to be endothermic and the entropy change values ({Delta}S{sup o}) were calculated to be positive for the adsorption of Cu(II), Pb(II) and Ni(II) ions onto the tested adsorbents. Negative values of {Delta}G{sup o} indicated that adsorption processes for all tested metal ions onto PSDC were spontaneous.


    Directory of Open Access Journals (Sweden)

    B. M. Braga

    Full Text Available Abstract Hydrotalcite-like compounds are anionic clays of scientific and technological interest for their use as ion exchange materials, catalysts and modified electrodes. Surface phenomenon are important for all these applications. Although conventional analytical methods have enabled progress in understanding the behavior of anionic clays in solution, an evaluation at the atomic scale of the dynamics of their ionic interactions has never been performed. Molecular simulation has become an extremely useful tool to provide this perspective. Our purpose is to validate a simplified model for the adsorption of 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (MBSA, a prototype molecule of anionic dyes, onto a hydrotalcite surface. Monte Carlo simulations were performed in the canonical ensemble with MBSA ions and a pore model of hydrotalcite using UFF and ClayFF force fields. The proposed molecular model has allowed us to reproduce experimental data of atomic force microscopy. Influences of protonation during the adsorption process are also presented.

  3. Enhanced half-metallicity in the zigzag graphene nanoribbons by adsorption of the zigzag hydrogen fluoride molecular chains

    Directory of Open Access Journals (Sweden)

    Xue Gong


    Full Text Available A comprehensive theoretical study of the half-metallicity in the zigzag graphene nanoribbons (ZGNRs by adsorption of the zigzag hydrogen fluoride chains was presented. The ZGNR by adsorption of the hydrogen fluoride chains could be half-metallic when a critical length of the hydrogen fluoride chain is achieved on the ZGNR at low temperature. It was found that the strong dipole moments of the hydrogen fluoride chains act as the constant electric field. Our results suggest a huge possibility in spintronics device applications for achieving half-metallicity in the ZGNRs without the excessively high external electric fields.

  4. Adsorption on metal oxides Studies with the metastable impact electron spectroscopy

    CERN Document Server

    Krischok, S; Kempter, V


    An overview is given on the application of metastable impact electron spectroscopy, in combination with UPS, to the study of clean magnesia and titania surfaces and their interaction with metal atoms and small molecules. The mechanisms for metal adsorption on reducible (titania) and non-reducible (magnesia) substrates are different: while on titania the metal atom often bonds by electron transfer to Ti3d states, it is hybridization of the adsorbate and anion wavefunctions which accounts for the bonding on MgO. In the case of H sub 2 O, molecular adsorption takes place both on MgO and TiO sub 2; on the other hand, water-alkali coadsorption leads to hydroxide formation. In the case of CO sub 2 , chemisorption takes place in form of carbonate (CO sub 3) species. These originate from the CO sub 2 interaction with O sup 2 sup - surface anions. While for CaO chemisorption takes place at regular oxygen sites, for MgO this occurs at low-coordinated oxygen ions only; for TiO sub 2 chemisorption requires alkali coadsor...

  5. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111) (United States)

    Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg


    The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting

  6. Kinetic analysis of palladium(II) adsorption process on condensed-tannin gel based on redox reaction models. (United States)

    Kim, Yeon-Ho; Ogata, Takeshi; Nakano, Yoshio


    We have developed a novel recovery system of palladium (Pd) from wastes such as spent catalysts or scraps, using tannin gel particles synthesized from condensed-tannin molecules. The Pd(II) ionic species are reduced to metallic Pd(0) on the network of the tannin gel: a two-electron transfer from the tannin gel to Pd(II). The kinetic study of the electron transfer was performed with a multiple reaction model containing an intermediate step (formation of a ligand-substituted Pd(II)-tannin inner sphere complex), resulting in a better fit with the experimental results than with the single reaction model (outer sphere redox reaction), which means that the inner sphere redox mechanism is an appropriate reaction model for the Pd(II) adsorption process. Because the intermediate is included in the adsorption amount, the adsorption process can be divided into two steps: fast adsorption by the ligand substitution at the initial stage and slow adsorption by the subsequent redox reaction after the ligand substitution reaches an equilibrium state, with different adsorption rates between the Pd(II) ionic species (PdCl(+)>PdCl(2)>PdCl(3)(-),PdCl(4)(2-)).

  7. Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals. (United States)

    Upritchard, Hamish G; Yang, Jing; Bremer, Philip J; Lamont, Iain L; McQuillan, A James


    The initiation of biofilm formation is poorly understood, and in particular, the contribution of chemical bond formation between bacterial cells and metal surfaces has received little attention. We have previously used in situ infrared spectroscopy to show, during the initial stages of Pseudomonas aeruginosa biofilm formation, the formation of coordinate covalent bonds between titanium dioxide particle films and pyoverdine, a mixed catecholate and hydroxamate siderophore. Here we show using infrared spectroscopy that pyoverdine can also form covalent bonds with particle films of Fe2O3, CrOOH, and AlOOH. Adsorption to the metal oxides through the catechol-like 2,3-diamino-6,7-dihydroxyquinoline part of pyoverdine was most evident in the infrared spectrum of the adsorbed pyoverdine molecule. Weaker infrared absorption bands that are consistent with the hydroxamic acids of pyoverdine binding covalently to TiO2, Fe2O3, and AlOOH surfaces were also observed. The adsorption of pyoverdine to TiO2 and Fe2O3 surfaces showed a pH dependence that is indicative of the dominance of the catechol-like ligand of pyoverdine. Infrared absorption bands were also evident for pyoverdine associated with the cells of P. aeruginosa on TiO2 and Fe2O3 surfaces and were notably absent for genetically modified cells unable to synthesize or bind pyoverdine at the cell surface. These studies confirm the generality of pyoverdine-metal bond formation and suggest a wider involvement of siderophores in bacterial biofilm initiation on metals.

  8. A porous Cu(II) metal-organic framework: Synthesis, crystal structure and gas adsorption properties (United States)

    Li, Wu-Wu; Guo, Ying; Zhang, Wei-Hong


    Presented here is a new porous Cu(II) metal-organic framework, namely [Cu(tdc)(H2O)]n·n(DMA) (1 H2tdc = thiophene-2,5-dicarboxylic acid, DMA = N,N‧-dimethylacetamide), which was obtained by the self-assembly reaction of CuCl2 and H2tdc under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D chain structure subunits, and the 1D rhombohedral channels are occupied by the lattice DMA molecules. Gas adsorption studies reveal that this desolvated sample exhibit high uptake capacity for light hydrocarbons.

  9. Hydrogen adsorption of nitrogen-doped carbon nanotubes functionalized with 3d-block transition metals

    Indian Academy of Sciences (India)

    Michael R Mananghaya


    A systematic study of the most stable configurations, calculation of the corresponding binding and free energies of functionalized 3d transition metals (TMs) on (10,0) Single Walled Carbon Nanotube (SWCNT) doped with porphyrin-like nitrogen defects (4ND-CNxNT) using spin-polarized density functional theory (DFT) formalism with flavours of LDA and GGA exchange-correlation (XC) functionals has been made. A thorough analysis showed that the electronic and magnetic properties of SWCNT are dependent on the TMs absorbed wherein, the composite material TM/4ND-CNxNT can act as a medium for storing hydrogen at room temperature manifested through favourable adsorption energy.


    Directory of Open Access Journals (Sweden)

    Leandra de Oliveira Cruz da Silva


    Full Text Available The adsorptive stripping voltammetry with differential pulse cathodic through the use of a mixture of complexing agents dimethylglyoxime and oxine was used for an exploratory study simultaneously of ions cadmium, cobalt, copper, nickel, lead and zinc. Were obtained voltammograms of the 64 individual solutions used in planning and current data were submitted to principal component analysis (PCA, allowing to characterize the trends of the solutions of metal ions studied. The system can be described in eight principal components that explained 98.32% of variance. Since the first three principal components accumulated approximately 85.46% of the total variance.

  11. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.


    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  12. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. (United States)

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S


    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns.

  13. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji [Faculty of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Machida, Motoi [Graduate School of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan)], E-mail:; Tatsumoto, Hideki [Graduate School of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan)


    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to C{pi}-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to {pi}-{pi} dispersion for the aromatics.

  14. Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies. (United States)

    Mihaly-Cozmuta, L; Mihaly-Cozmuta, A; Peter, A; Nicula, C; Tutu, H; Silipas, Dan; Indrea, Emil


    This paper summarizes the conclusions of experiments conducted on the adsorption of Cd(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), Pb(2+) and Zn(2+) onto zeolite. The focus of the experiments was to establish the influence of the initial pH of the contact solution as well as the selectivity of zeolite on the efficiency of the adsorption process. To this end, experimental adsorption isotherms were established for the pH values ranging from 1 to 4 by using the Na-form of clinoptilolite (particle size range 0.5-1 mm) as an adsorbent. Langmuir, Freundlich and Dubinin-Raduschkevich isotherm models were used to validate the experimental data and the Gibbs free energy was calculated based on the distribution coefficient. From the Langmuir model, correlations between the maximum adsorption capacity and selected physical-chemical parameters of the cations studied were established. The results of the experiments suggest that the selectivity of zeolite is strongly influenced by the pH of the contact solution, dehydration energy of cations, diffusion coefficient and the pH at which the precipitation of hydroxides occurs.

  15. Hydrogen adsorption in metal-organic frameworks: The role of nuclear quantum effects (United States)

    Wahiduzzaman, Mohammad; Walther, Christian F. J.; Heine, Thomas


    The role of nuclear quantum effects on the adsorption of molecular hydrogen in metal-organic frameworks (MOFs) has been investigated on grounds of Grand-Canonical Quantized Liquid Density-Functional Theory (GC-QLDFT) calculations. For this purpose, we have carefully validated classical H2-host interaction potentials that are obtained by fitting Born-Oppenheimer ab initio reference data. The hydrogen adsorption has first been assessed classically using Liquid Density-Functional Theory and the Grand-Canonical Monte Carlo methods. The results have been compared against the semi-classical treatment of quantum effects by applying the Feynman-Hibbs correction to the Born-Oppenheimer-derived potentials, and by explicit treatment within the GC-QLDFT. The results are compared with experimental data and indicate pronounced quantum and possibly many-particle effects. After validation calculations have been carried out for IRMOF-1 (MOF-5), GC-QLDFT is applied to study the adsorption of H2 in a series of MOFs, including IRMOF-4, -6, -8, -9, -10, -12, -14, -16, -18, and MOF-177. Finally, we discuss the evolution of the H2 quantum fluid with increasing pressure and lowering temperature.

  16. Adsorption, separation, and catalytic properties of densified metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Jambovane, Sachin R.; McGrail, B. Peter; Schaef, Herbert T.; Nune, Satish. K.


    Metal-organic frameworks (MOFs) are one of the widely investigated materials of 21st century due to their unique properties such as structural tailorability, controlled porosity and crystallinity. These exceptional properties make them promising candidates for various applications including gas adsorption and storage, separation, and catalysis. However, commercial applications of MOFs produced by conventional methods including solvothermal or hydrothermal synthesis are rather limited or restricted because they often produce fine powders. The use of MOF powders for industrial applications often results in pressure drop problems similar to the case with Zeolites. To realize these materials for practical applications, densification of MOFs is routinely employed to form pellets, extrudates or beads to improve the overall density, volumetric adsorption, mechanical and thermal properties. However, the improvements come with some drawbacks such as reduction in overall porosity, surface area, and gravimetric adsorption capacity. Thus, optimizing the properties of densified MOF’s by tuning the packing density is very crucial for realizing these materials for industrial applications. In this review, various methods of densification of MOFs, their properties, and applications are discussed.

  17. A novel recovery technology of trace precious metals from waste water by combining agglomeration and adsorption

    Institute of Scientific and Technical Information of China (English)


    A novel and efficient technology for separating and recovering precious metals from waste water containing traces of Pd and Ag was studied by the combination of agglomeration and adsorption. The recovery process and the impacts of operating conditions such as pH value of waste water, adsorption time, additive quantity of the flocculant and adsorbent on the recovery efficiency were studied experimentally. The results show that Freundlich isothermal equation is suitable for describing the behavior of the recovery process, and the apparent first-order adsorption rate constant k at 25 ℃ is about 0.233 4 h-1 The optimum technology conditions during the recovery process are that pH value is 8-9; the volume ratio of flocculant to waste water is about 1 :(2 000-4 000); the mass ratio of adsorbent to waste water is 1 :(30-40); and processing time is 2-4 h. Finally, the field tests were done at the optimum technology conditions, which show that the total concentration of Pd and Ag in the waste water below 11 mg/L can be reduced to be less than 1 mg/L.

  18. Tuning the adsorption behaviors and conversions of CHx species on metal embedded graphene surfaces (United States)

    Tang, Yanan; Shen, Zigang; Chen, Weiguang; Pan, Lijun; Wang, Xiaolong; Dai, Xianqi


    The stable geometries and adsorption behaviors of CHx (x = 0, 1, 2, 3, 4) species on the single-atoms metal embedded graphene (M-graphene) are investigated by first-principles calculations. It is found that the adsorbed CHx species have the different stability on the M-graphene surfaces, and the adsorption energies of CHx species on the Al-graphene are smaller than those on the Au-graphene. Besides, the adsorption of CHx species can regulate the electronic structure and magnetic properties of M-graphene systems. Moreover, the diffusion pathways of CHx (x = 0-3) species and the conversion reactions between CHx (x = 1-4) species on the M-graphene are analyzed systematically. In the conversion reactions, the adsorbed C and CH species can be more easily converted into the CHx+2 species through the hydrogenation reactions, the broken M-H bond and the formation of new Csbnd H bond need overcome the large energy barriers. These results give a clue for designing graphene-based anode materials with high activity and inhibiting carbon deposition.

  19. Kinetic and steric differences in adsorption in two porous metal-organic frameworks (United States)

    Lask, Kathleen; Krungleviciute, Vaiva; Bulut, Murat; Migone, Aldo; Lee, J.-Y.; Li, Jing


    Kinetic and steric differences are two of the three fundamental mechanisms underlying the use of adsorption in applications to gas mixture separations. We present experimental results on kinetics and equilibrium adsorption measurements of tetrafluoromethane and argon on two metal-organic framework (MOF) materials: RPM1-Co or [Co3(bpdc)3bpy].4DMF.H2O] (bpdc = biphenyldicarboxylate, bpy = 4,4'-bipyridine, DMF = N,N- dimethylformamide) and Cu-BTC or Cu3(BTC)2(H2O)3 (BTC = benzene-1,3,5-tricarboxylate). The adsorbates display significant differences in their kinetics on RPM1-Co (i.e., there are sizable differences in the time required for each gas to reach equilibrium after it is allowed access to the substrate). Our equilibrium measurements show that CF4 is sterically precluded from adsorbing in the small tetrahedral-shaped side pockets present in Cu-BTC. We will compare our experimental results with predictions for how adsorption kinetics depends on the size of the adsorbate and on those of the pores present in the substrate.

  20. Hydrogen adsorption properties of metal-organic frameworks within the density-functional based tight-binding approach




    Practical methods for hydrogen storage are still a prime challenge in the realization of an energy economy based on Hydrogen. Metal organic frameworks (MOFs) are crystalline ultra-porous materials with ability to trap and store voluminous amounts of gas molecules. MOFs represent an encouraging storage method relying on their enormous surface area. However, MOFs show reduced hydrogen uptake at room temperature due to low adsorption energy of hydrogen. To increase the adsorption uptake of MOFs ...

  1. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. (United States)

    Park, Jinhee; Yuan, Daqiang; Pham, Khanh T; Li, Jian-Rong; Yakovenko, Andrey; Zhou, Hong-Cai


    A metal-organic framework (MOF) for reversible alteration of guest molecule adsorption, here carbon dioxide, upon photochemical or thermal treatment has been discovered. An azobenzene functional group, which can switch its conformation upon light irradiation or heat treatment, has been introduced to the organic linker of a MOF. The resulting MOF adsorbs different amount of CO(2) after UV or heat treatment. This remarkable stimuli-responsive adsorption effect has been demonstrated through experiments.

  2. Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite. (United States)

    Tan, Yinyue; Guo, Yong; Gu, Xueyuan; Gu, Cheng


    Ciprofloxacin (CIP) can be strongly adsorbed by ferric oxides, but some influencing factors, such as multivalent cations and soil organic matter, have not been evaluated extensively. In this study, the interaction between CIP and four divalent metals (Ca, Cd, Cu, and Pb) was investigated using potentiometric titration and the results indicated that CIP can bind to the divalent metals in the following affinity order: Cu(II) > Pb(II) > Cd(II) > Ca(II). The effects of metals and fulvic acid (FA) on the adsorption behavior of CIP onto goethite surfaces were also examined using batch experiments. It was found that metal cations enhanced the CIP retention on goethite surfaces in the same order as the affinity order with CIP, indicating that metals likely increased CIP retention through cation bridging. FA was found to promote CIP sorption rather than compete with it, and the coexistence of FA and Cu(II) in the system exhibited an addictive effect with CIP sorption, indicating that they might influence the sorption separately under the studied loading condition. Taken together, our results suggested that the coexistence of divalent cations or soil organic matter will enhance CIP sorption on goethite surfaces, hence reducing its mobility and bioavailability in the environment.

  3. Adsorption of Heavy Metal Ions, Dyes and Proteins by Chitosan Composites and Derivatives-A Review

    Institute of Scientific and Technical Information of China (English)

    LIU Bingjie; WANG Dongfeng; YU Guangli; MENG Xianghong


    Chitosan composites and derivatives have gained wide attentions as effective biosorbents due to their low costs and high contents of amino and hydroxyl functional groups.They have showed significant potentials of removing metal ions,dyes and proteins from various media.Chemical modifications that lead to the formation of the chitosan derivatives and chitosan composites have been extensively studied and widely reported in literatures.The aims of this review were to summarize the important information of the bioactivities of chitosan,highlight the various preparation methods of chitosan-based active biosorbents,and outline its potential applications in the adsorption of heavy metal ions,dyes and proteins from wastewater and aqueous solutions.

  4. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. (United States)

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A


    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  5. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks. (United States)

    Gómez-Gualdrón, Diego A; Wang, Timothy C; García-Holley, Paula; Sawelewa, Ruth M; Argueta, Edwin; Snurr, Randall Q; Hupp, Joseph T; Yildirim, Taner; Farha, Omar K


    Metal-organic frameworks (MOFs) are porous crystalline materials that are promising for adsorption-based, on-board storage of hydrogen in fuel-cell vehicles. Volumetric and gravimetric hydrogen capacities are the key factors that determine the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor too heavy. Because the goals of maximizing MOF volumetric and gravimetric hydrogen adsorption loadings individually are incompatible, an in-depth understanding of the trade-off between MOF volumetric and gravimetric loadings is necessary to achieve the best compromise between these properties. Here we study, both experimentally and computationally, the trade-off between volumetric and gravimetric cryo-adsorbed hydrogen deliverable capacity by taking an isoreticular series of highly stable zirconium MOFs, NU-1101, NU-1102, and NU-1103 as a case study. These MOFs were studied under recently proposed operating conditions: 77 K/100 bar →160 K/5 bar. We found the difference between highest and lowest measured deliverable capacity in the MOF series to be ca. 40% gravimetrically, but only ca. 10% volumetrically. From our molecular simulation results, we found hydrogen "monolayer" adsorption to be proportional to the surface area, whereas hydrogen "pore filling" adsorption is proportional to the pore volume. Thus, we found that the higher variability in gravimetric deliverable capacity in contrast to the volumetric capacity, occurs due to the proportional relation between gravimetric surface area and pore volume in the NU-110x series in contrast to the inverse relation between volumetric surface area and void fraction. Additionally, we find better correlations with geometric surface areas than with BET areas. NU-1101 presents the highest measured volumetric performance with 46.6 g/L (9.1 wt %), whereas NU-1103 presents the highest gravimetric one

  6. Olsalazine-Based Metal-Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery. (United States)

    Levine, Dana J; Runčevski, Tomče; Kapelewski, Matthew T; Keitz, Benjamin K; Oktawiec, Julia; Reed, Douglas A; Mason, Jarad A; Jiang, Henry Z H; Colwell, Kristen A; Legendre, Christina M; FitzGerald, Stephen A; Long, Jeffrey R


    The drug olsalazine (H4olz) was employed as a ligand to synthesize a new series of mesoporous metal-organic frameworks that are expanded analogues of the well-known M2(dobdc) materials (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; M-MOF-74). The M2(olz) frameworks (M = Mg, Fe, Co, Ni, and Zn) exhibit high surface areas with large hexagonal pore apertures that are approximately 27 Å in diameter. Variable temperature H2 adsorption isotherms revealed strong adsorption at the open metal sites, and in situ infrared spectroscopy experiments on Mg2(olz) and Ni2(olz) were used to determine site-specific H2 binding enthalpies. In addition to its capabilities for gas sorption, the highly biocompatible Mg2(olz) framework was also evaluated as a platform for the delivery of olsalazine and other encapsulated therapeutics. The Mg2(olz) material (86 wt % olsalazine) was shown to release the therapeutic linker through dissolution of the framework under simulated physiological conditions. Furthermore, Mg2(olz) was used to encapsulate phenethylamine (PEA), a model drug for a broad class of bioactive compounds. Under simulated physiological conditions, Mg2(olz)(PEA)2 disassembled to release PEA from the pores and olsalazine from the framework itself, demonstrating that multiple therapeutic components can be delivered together at different rates. The low toxicity, high surface areas, and coordinatively unsaturated metal sites make these M2(olz) materials promising for a range of potential applications, including drug delivery in the treatment of gastrointestinal diseases.

  7. Adsorption of group 1b metal ions on Galena: Effects on half-cell potential and photovoltage (United States)

    Kunze, O. A.

    The conditions at the solid-liquid interface play a crucial role in the flotation of minerals. These conditions are susceptible to a variety of influences, a detailed knowledge of which is important in extractive metallurgy. In this study, effects on the electrode potential and the surface photovoltage of galena as a result of the adsorption of group 1b metal ions were investigated. Significant differences in the effects of copper, silver and gold could be observed. Copper, even at very low concentration, was found to affect the rest potential markedly (> 100 mV for 1 ppm Cu 2+) and to quench the surface photovoltage. These experimental observations led us to propose a qualitative electrostatic-electrochemical model of the galena-electrolyte interface during copper-ion adsorption. According to this model, copper ions on galena can be present and act in two different modes: (a) as surface states in conjunction with the galena surface and; (b) as a constituent of copper sulphide formed on that surface. Silver produced a similar change in potential but no quenching action on the photovoltage was observed. Gold was found to have less influence on the electrode potential. The appearance of a slow photovoltage of opposite polarity to the original surface photovoltage indicates the formation of a surface layer with high lying metastable acceptor levels.

  8. Low-energy electron diffraction study of rare gas adsorption on metal surfaces (United States)

    Caragiu, Mellita


    The method of Low Energy Electron Diffraction (LEED) is applied to the study of rare gas - metal systems. The emphasis is on the adsorption site of the adatoms on the substrate, as a result of controversial opinions on this matter arising both from theoretical approaches and previous experimental data. Contrary to the expectations, it is found that rare gases prefer low coordination sites when adsorbed in commensurate phases for practically all studied structures: Cu111 -3x3 R30°-Xe, Pt111- 3x3 R30°-Xe, Pd111 -3x3 R30° -Xe, Ag111 -7x 7R19.1° -4Ar, Cu110 - 41 02 -5Kran dCu110 - 61 02 -7Xe. Possible explanations for the rare gas behavior on metal substrates are reviewed. Besides the crucial information of the rare gas adsorption site, the LEED analysis provides structural (geometrical) parameters for the systems under study and several non-structural ones (e.g. vibrations of the atoms and inner potential of the crystal).

  9. Isolation of Renewable Phenolics by Adsorption on Ultrastable Hydrophobic MIL-140 Metal-Organic Frameworks. (United States)

    Van de Voorde, Ben; Damasceno Borges, Daiane; Vermoortele, Frederik; Wouters, Robin; Bozbiyik, Belgin; Denayer, Joeri; Taulelle, Francis; Martineau, Charlotte; Serre, Christian; Maurin, Guillaume; De Vos, Dirk


    The isolation and separation of phenolic compounds from aqueous backgrounds is challenging and will gain in importance as we become more dependent on phenolics from lignocellulose-derived bio-oil to meet our needs for aromatic compounds. Herein, we show that highly stable and hydrophobic Zr metal-organic frameworks of the MIL-140 type are effective adsorbent materials for the separation of different phenolics and far outperform other classes of porous solids (silica, zeolites, carbons). The mechanism of the hydroquinone-catechol separation on MIL-140C was studied in detail by combining experimental results with computational techniques. Although the differences in adsorption enthalpy between catechol and hydroquinone are negligible, the selective uptake of catechol in MIL-140C is explained by its dense π-π stacking in the pores. The interplay of enthalpic and entropic effects allowed separation of a complex, five-compound phenol mixture through breakthrough over a MIL-140C column. Unlike many other metal-organic frameworks, MIL-140C is remarkably stable and maintained structure, porosity and performance after five adsorption-desorption cycles.

  10. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. (United States)

    Hasan, Zubair; Jhung, Sung Hwa


    Provision of clean water is one of the most important issues worldwide because of continuing economic development and the steady increase in the global population. However, clean water resources are decreasing everyday, because of contamination with various pollutants including organic chemicals. Pharmaceutical and personal care products, herbicides/pesticides, dyes, phenolics, and aromatics (from sources such as spilled oil) are typical organics that should be removed from water. Because of their huge porosities, designable pore structures, and facile modification, metal-organic frameworks (MOFs) are used in various adsorption, separation, storage, and delivery applications. In this review, the adsorptive purifications of contaminated water with MOFs are discussed, in order to understand possible applications of MOFs in clean water provision. More importantly, plausible adsorption or interaction mechanisms and selective adsorptions are summarized. The mechanisms of interactions such as electrostatic interaction, acid-base interaction, hydrogen bonding, π-π stacking/interaction, and hydrophobic interaction are discussed for the selective adsorption of organics over MOFs. The adsorption mechanisms will be very helpful not only for understanding adsorptions but also for applications of adsorptions in selective removal, storage, delivery and so on.

  11. Pore-scale modeling of competitive adsorption in porous media. (United States)

    Ryan, Emily M; Tartakovsky, Alexandre M; Amon, Cristina


    In this paper we present a smoothed particle hydrodynamics (SPH) pore-scale multicomponent reactive transport model with competitive adsorption. SPH is a Lagrangian, particle based modeling method which uses the particles as interpolation points to discretize and solve flow and transport equations. The theory and details of the SPH pore-scale model are presented along with a novel method for handling surface reactions, the continuum surface reaction (CSR) model. The numerical accuracy of the CSR model is validated with analytical and finite difference solutions, and the effects of spatial and temporal resolution on the accuracy of the model are also discussed. The pore-scale model is used to study competitive adsorption for different Damköhler and Peclet numbers in a binary system where a plume of species B is introduced into a system which initially contains species A. The pore-scale model results are compared with a Darcy-scale model to investigate the accuracy of a Darcy-scale reactive transport model for a wide range of Damköhler and Peclet numbers. The comparison shows that the Darcy model over estimates the mass fraction of aqueous and adsorbed species B and underestimates the mass fractions of species A. The Darcy-scale model also predicts faster transport of species A and B through the system than the pore-scale model. The overestimation of the advective velocity and the extent of reactions by the Darcy-scale model are due to incomplete pore-scale mixing. As the degree of the solute mixing decreases with increasing Peclet and Damköhler numbers, so does the accuracy of the Darcy-scale model. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. The adsorption of Pb(sup2+) and Cu(sup2+) onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models

    CSIR Research Space (South Africa)

    Mittal, H


    Full Text Available at pH 5.0 for both metal ions. The adsorption isotherm data were analyzed by applying five different isotherm models, namely, the Langmuir, Freundlich, Temkin, Flory-Huggins, and Dubinin-Kaganer-Radushkevich isothermal models. The Langmuir model...

  13. Study on preparation of Luffa activated carbon and its adsorption of metal ions (United States)

    Zhai, Kuilu; Li, Zichao; Li, Qun


    In this paper, loofah was used as raw material and alkali and hydrogen peroxide were used to pre-oxidize. The activated carbon was activated by zinc chloride, and the activated carbon was used to desorb the heavy metal ions nickel and copper. The removal efficiency of heavy metal ions was studied under different conditions. The effects of retinervus Luffae Fructus active carbon adsorption of metal ions on process conditions, including metal ion concentration, reaction temperature, loofah activated carbon types and activated carbon dosage. In the present study, in different strain rate on the loofah sponge material compression tests in a wide range of density from 24 to 64 kg cubic meters. Luffa fibers and followed by carbonization to prepare MCAC KOH activation. MCAC has dense in parallel channels 10 mm in diameter and 4 - 0.3 - 1 mm wall thickness, which is inherited from the native structure of Luffa. Micro and middle holes are formed on the inner surface of the channel wall to form a hierarchical porous structure.

  14. Adsorption of precious and coinage metals on Rh (111), Ru (0001) and W (110) surfaces (United States)

    Zhu, Quanxi; Wang, Shao-qing


    Bimetallic surface alloys have been considered as an effective strategy to achieve better catalytic performance and to modify the work function of the substrate toward metal-gate electrode application. We perform a systematical investigation of Group 10 and Group 11 transition metals adsorption on Rh (111), Ru (0001) and W (110) surfaces with various coverages using first-principles method. Through comparing the Bader charge results and the plots of work function shift, it is found that the polarization effect plays an important role in modification of the bimetallic surface work functions rather than the charge transfer effect especially at low coverages. The coverage-dependent work function behavior gives a general feature: as it has a large negative shift at 0.25ML coverage, then increases almost linearly with the coverage and followed by a saturation value which is controlled by the lattice strain. It is also found that the metal over-layer growth modes are correlated with the specific features of the coverage-dependent metal-substrate adhesion energy. All these findings may give some guidelines for the bimetallic catalysts design in terms of growth, stability and activity.

  15. Application of surface complexation models to anion adsorption by natural materials (United States)

    Various chemical models of ion adsorption will be presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model w...

  16. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption (United States)

    Ketolainen, T.; Havu, V.; Puska, M. J.


    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green's function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.

  17. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ketolainen, T., E-mail:; Havu, V.; Puska, M. J. [COMP, Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto (Finland)


    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green’s function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.

  18. Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. (United States)

    Liu, Huijuan; Yang, Fan; Zheng, Yuming; Kang, Jin; Qu, Jiuhui; Chen, J Paul


    Technology for immobilization of biomass has attracted a great interest due to the high sorption capacity of biomass for sequestration of toxic metals from industrial effluents. However, the currently practiced immobilization methods normally reduce the metal sorption capacities. In this study, an innovative ion-imprint technology was developed to overcome the drawback. Copper ion was first imprinted onto the functional groups of chitosan that formed a pellet-typed sorbent through the granulation with Sargassum sp.; the imprinted copper ion was chemically detached from the sorbent, leading to the formation of a novel copper ion-imprinted chitosan/Sargassum sp. (CICS) composite adsorbent. The copper sorption on CICS was found to be highly pH-dependent and the maximum uptake capacity was achieved at pH 4.7-5.5. The adsorption isotherm study showed the maximum sorption capacity of CICS of 1.08 mmol/g, much higher than the non-imprinted chitosan/Sargassum sp. sorbent (NICS) (0.49 mmol/g). The used sorbent was reusable after being regenerated through desorption. The FTIR and XPS studies revealed that the greater sorption of heavy metal was attributed to the large number of primary amine groups available on the surfaces of the ion-imprinted chitosan and the abundant carboxyl groups on Sargassum sp. Finally, an intraparticle surface diffusion controlled model well described the sorption history of the sorbents.

  19. Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal-organic frameworks: a combination of molecular simulations and microcalorimetry/gravimetry measurements. (United States)

    Rosenbach, N; Ghoufi, A; Déroche, I; Llewellyn, P L; Devic, T; Bourrelly, S; Serre, C; Férey, G; Maurin, G


    The adsorption of short linear alkanes has been explored in the highly flexible MIL-53(Cr) porous metal-organic framework by means of molecular simulations based on configurational bias grand canonical Monte Carlo. The unusual shape of the adsorption isotherms with the existence of steps has been successfully modelled by creating a (narrow pore, large pore) phase mixture domain, the composition of which varies with pressure. A further step consisted of combining our computational approach with several experimental tools including microcalorimetry, gravimetry and in situ X-ray diffraction, to fully characterize the adsorption behaviour of the isostructural MIL-47(V) rigid MOF, i.e. the preferential arrangement of each type of alkane inside the pores and the resulting interaction energy. Finally, relationships are established between the adsorption enthalpies and both alkyl chain length and polarisability of the alkanes that can be further utilised to predict the energetics of the adsorption process for longer alkane chains.

  20. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Angeles [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain)], E-mail:; Souza-Egipsy, Virginia [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); San Martin-Uriz, Patxi [Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Amils, Ricardo [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)


    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g{sup -1} biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p < 0.05) were found in the amount of total EPS extracted from biofilms dominated by the same organism at different sampling points. The amount of EPS varied among different biofilms collected from the same sampling location. Colloidal EPS ranged from 42 to 313 mg g{sup -1} dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g{sup -1} dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p < 0.05). Total amount of EPS decreased when total cell numbers and pH increased. There was a positive correlation between EPS concentration and heavy metal concentration in the water. Observations by low temperature scanning electron microscopy (LTSEM) revealed the mineral adsorption in the matrix of EPS and onto the cell walls. EPS in all biofilms were primarily composed of carbohydrates, heavy metals and humic acid, plus small quantities of proteins and DNA. After carbohydrates, heavy metals were the second main constituents of the extracellular matrix. Their total concentrations ranged from 3 to 32 mg g{sup -1} biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected.

  1. Density Functional Theory Study of Hydrogen Adsorption in a Ti-Decorated Mg-Based Metal-Organic Framework-74. (United States)

    Suksaengrat, Pitphichaya; Amornkitbamrung, Vittaya; Srepusharawoot, Pornjuk; Ahuja, Rajeev


    The Ti-binding energy and hydrogen adsorption energy of a Ti-decorated Mg-based metal-organic framework-74 (Mg-MOF-74) were evaluated by using first-principles calculations. Our results revealed that only three Ti adsorption sites were found to be stable. The adsorption site near the metal oxide unit is the most stable. To investigate the hydrogen-adsorption properties of Ti-functionalized Mg-MOF-74, the hydrogen-binding energy was determined. For the most stable Ti adsorption site, we found that the hydrogen adsorption energy ranged from 0.26 to 0.48 eV H2 (-1) . This is within the desirable range for practical hydrogen-storage applications. Moreover, the hydrogen capacity was determined by using ab initio molecular dynamics simulations. Our results revealed that the hydrogen uptake by Ti-decorated Mg-MOF-74 at temperatures of 77, 150, and 298 K and ambient pressure were 1.81, 1.74, and 1.29 H2  wt %, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Charge transfer and formation of reduced Ce{sup 3+} upon adsorption of metal atoms at the ceria (110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, Michael [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland)


    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce{sup 3+}, while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  3. Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide. (United States)

    Chen, Chi; Xu, Kui; Ji, Xiao; Miao, Ling; Jiang, Jianjun


    The adsorption of several acidic gases (CO2, NO2 and SO2) on light metal (Li, Al) decorated graphene oxide (GO) is theoretically studied, based on the first-principles calculations. Configuration relaxation, binding energy and charge transfer are carried out to discuss the acidic gas adsorption ability of light metal decorated GO. It is found out that Li, Al could be anchored stably by hydroxyl and epoxy groups on GO, and then a strong adsorption of CO2, NO2 and SO2 will occur above these light metals. In contrast to Ti, Li decorated GO exhibits a comparable adsorption ability of acidic gases, but a much smaller interaction with O2 about 2.85-3.98 eV lower in binding energy; and Al decorated GO displays much higher binding energy of all acidic gases with an enhancement of about 0.59-2.29 eV. The results of enhanced acidic gas adsorption ability and a reduced interference by O2 imply that Li, Al decorated GO may be useful and promising for collection and filtration of exhaust gases.

  4. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. (United States)

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas


    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  5. Surface Adsorption from the Exchange-Hole Dipole Moment Dispersion Model. (United States)

    Christian, Matthew S; Otero-de-la-Roza, Alberto; Johnson, Erin R


    The accurate calculation of intermolecular interaction energies with density functional theory requires methods that include a treatment of long-range, nonlocal dispersion correlation. In this work, we explore the ability of the exchange-hole dipole moment (XDM) dispersion correction to model molecular surface adsorption. Adsorption energies are calculated for six small aromatic molecules (benzene, furan, pyridine, thiophene, thiophenol, and benzenediamine) and the four DNA nucleobases (adenine, thymine, guanine, and cytosine) on the (111) surfaces of the three coinage metals (copper, silver, and gold). For benzene, where the experimental reference data is most precise, the mean absolute error in the computed absorption energies is 0.04 eV. For the other aromatic molecules, the computed binding energies are found to be within 0.09 eV of the available reference data, on average, which is well below the expected experimental uncertainties for temperature-programmed desorption measurements. Unlike other dispersion-corrected functionals, adequate performance does not require changes to the canonical XDM implementation, and the good performance of XDM is explained in terms of the behavior of the exchange hole. Additionally, the base functional employed (B86bPBE) is also optimal for molecular studies, making B86bPBE-XDM an excellent candidate for studying chemistry on material surfaces. Finally, the noncovalent interaction (NCI) plot technique is shown to detect adsorption effects in real space on the order of tenths of an eV.

  6. Morphology and adsorption of chromium ion on uranium 1,2,4,5-benzenetetracarboxylic acid metal organic framework (MOF

    Directory of Open Access Journals (Sweden)

    Vala Remy M.K.


    Full Text Available In this paper, we report the synthesis of metal organic framework of uranium 1,2,4,5-benzene tetracarboxylic acid (U-H4btec MOF by solvothermal method. The obtained MOF was characterized by Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray diffraction spectroscopy (XRD, Energy dispersive spectroscopy (EDS, thermogravimetric and differential thermogravimetric analysis (TGA/DTA. The morphology of the uranium 1,2,4,5-benzene tetracarboxylic acid MOF observed by SEM, revealed the presence of flaky porous structure. Adsorption of Cr3+ from aqueous solution onto the uranium 1,2,4,5-benzene tetracarboxylic acid MOF was systematically studied. Langmuir and Freundlich adsorption isotherms were applied to determine the adsorption capacity of the MOF to form a monolayer. Kinetic determination of the adsorption of Cr3+ suggested both chemisorption and physisorption probably due to the presence of carbonyl groups within the MOF and its porous structure.

  7. Ohmic model for electrodeposition of metallic ions

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, A.S. [Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 29, 10129 Torino (Italy); Alexe-Ionescu, A.L. [Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 29, 10129 Torino (Italy); Department of Physics, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest (Romania); Barbero, G., E-mail: [Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 29, 10129 Torino (Italy)


    An ohmic model to describe the electrodeposition of metallic ions on the electrodes is proposed. We assume that the ionic distribution is homogeneous across the electrolytic cell, and that the ionic current is due to the bulk electric field. The nucleation in the electrodeposition is supposed to be well described by a kinetic equation at the electrode, taking into account the neutralization of metallic ions on the electrodes. Two cases are considered. In the first case the characteristic time describing the neutralization of the ions is supposed to be negligible with respect to the flight time of the ions across the cell. In this framework the bulk electric field coincides with the external electric field, and our analysis gives analytical formulae for the surface density of deposited ions and for the electric current in the external circuit. The case where the two characteristic times are comparable, and the effective electric field in the bulk depends on the surface deposition, is considered too. In this case the ordinary differential equations describing the ionic distribution and the adsorption phenomenon have to be solved numerically. The agreement between the presented model and the experimental results published by several groups is reasonably good.

  8. A high throughput approach to quantify protein adsorption on combinatorial metal/metal oxide surfaces using electron microprobe and spectroscopic ellipsometry (United States)

    Byrne, T.; Lohstreter, L.; Filiaggi, M. J.; Bai, Zhijun; Dahn, J. R.


    Although metallic biomaterials are widely used, systematic studies of protein adsorption onto such materials are generally lacking. Combinatorial binary films of Al 1-xTi x and Al 1-xNb x (0 ⩽ x ⩽ 1) and corresponding pure element films were produced on glass substrates using a unique magnetron sputtering technique. Fibrinogen and albumin adsorption amounts were measured by wavelength-dispersive spectroscopy (WDS) and spectroscopic ellipsometry (SE) equipment, both high throughput techniques with automated motion stage capabilities. X-ray diffraction revealed that the binary films have crystalline phases present near the ends of the compositional gradient with an amorphous region throughout the interior of the gradient. X-ray photoelectron spectroscopy provided the surface chemistry along the binary films and showed that Al 2O 3 preferentially formed at the surface. Protein adsorption onto these films was found to be closely correlated to the alumina surface fraction, with high alumina content at the surface leading to low amounts of adsorbed fibrinogen and albumin. Protein adsorption amounts obtained with WDS and SE were in excellent agreement for all films. This suggests that this combinatorial materials approach combined with these state-of-the-art, automated high throughput instruments provides a novel way to accurately monitor protein adsorption taking place at the surfaces of these metal/metal oxide materials.

  9. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition (United States)

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.


    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  10. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra


    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  11. Selective Adsorption of Thiols Using Gold Nanoparticles Supported on Metal Oxides. (United States)

    Sui, Ruohong; Lesage, Kevin L; Carefoot, Sarah K; Fürstenhaupt, Tobias; Rose, Chelsea J; Marriott, Robert A


    Selective capture of thiols from a synthetic hydrogen sulfide containing mixture using supported nanogold materials has been explored for the potential removal of thiols from sour gas production fluids. In this research, TiO2-, Al2O3-, SiO2-, and ZnO-supported gold nanoparticles have been studied for their usage as regeneratable adsorbents to capture CH3SH, C2H5SH, and i-C3H7SH. Au/TiO2 and Au/Al2O3 showed promising properties for removing the thiols efficiently from a gas-phase mixture; however, Au/Al2O3 did catalyze some undesirable side reactions, e.g., carbonyl sulfide formation. It was found that a mild temperature of T = 200 °C was sufficient for regeneration of either Au/TiO2 or Au/Al2O3 adsorbent. The metal oxide mesopores played an important role for accommodating gold particles and chemisorption of the thiols, where smaller pore sizes were found to inhibit the agglomeration/growth of gold particles. The nature of thiol adsorption and the impact of multiple adsorption-desorption cycles on the adsorbents have been studied using electron microscopy, XPS, XRD, GC, and physi/chemiadsorption analyses.

  12. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof (United States)

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra


    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  13. Adsorption and Reactive Desorption on Metal-Organic Frameworks: A Direct Strategy for Lactic Acid Recovery. (United States)

    Stassin, Timothée; Reinsch, Helge; Van de Voorde, Ben; Wuttke, Stefan; Medina, Dana D; Stock, Norbert; Bein, Thomas; Ameloot, Rob; De Vos, Dirk


    Biomass-derived lactic acid (LA) is an important platform chemical towards the sustainable production of numerous materials. However, the fermentation process currently in use is limited by the difficult recovery of the LA product from the fermentation broth and results in the generation of stoichiometric amounts of gypsum waste. Herein, we show that metal-organic frameworks (MOFs) of the UiO-66(Zr) type are effective adsorbents for the separation of LA from aqueous (buffer) solutions. These frameworks based on zirconium clusters and terephthalic acid derivatives display a tremendous uptake (up to 42 wt %) and a high affinity for LA. The latter can further be tuned by changing the hydrogen-bonding properties of the functional groups present on the organic ligand. A Rietveld refinement disclosed the specific interaction of LA with the clusters of UiO-66(Zr) and a preferential adsorption on open zirconium sites. Taking advantage of the catalytic activity of UiO-66(Zr), desorption of LA was performed in alcohols to recover up to 73 % as ester. Applied to the recovery of LA, adsorption and reactive desorption offer a direct and gypsum-free strategy as an alternative for the current multi-step process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen adsorption in metal-organic frameworks: the role of nuclear quantum effects

    CERN Document Server

    Wahiduzzaman, Mohammad; Heine, Thomas


    The role of nuclear quantum effects on the adsorption of molecular hydrogen in metal-organic frameworks (MOFs) has been investigated on grounds of Grand-Canonical Quantized Liquid Density-Functional Theory (GC-QLDFT) calculations. For this purpose, we have carefully validated classical H2 -host interaction potentials that are obtained by fitting Born-Oppenheimer ab initio reference data. The hydrogen adsorption has first been assessed classically using Liquid Density-Functional Theory (LDFT) and the Grand-Canonical Monte Carlo (GCMC) methods. The results have been compared against the semi-classical treatment of quantum effects by applying the Feynman-Hibbs correction to the Born-Oppenheimer-derived potentials, and by explicit treatment within the Grand-Canonical Quantized Liquid Density-Functional Theory (GC-QLDFT). The results are compared with experimental data and indicate pronounced quantum and possibly many-particle effects. After validation calculations have been carried out for IRMOF-1 (MOF-5), GC-QLD...

  15. Adsorption of Thiophenic Compounds from Model Diesel Fuel Using Copper and Nickel Impregnated Activated Carbons

    Directory of Open Access Journals (Sweden)

    Ramin Karimzadeh


    Full Text Available Adsorption of sulfur compoundsby porous materials is an effective way to produce cleaner diesel fuel.In this study, adsorption of refractory thiophenic sulfur compounds, i.e., benzothiophene (BT, dibenzothiophene (DBT, and 4,6-dimethyldibenzothiophene (4,6-DMDBT in single-solute systems from n-hexane solutions onto metal-impregnated activated carbons was investigated. A hydrogen-treated activated carbon fiber was selectively loaded with Ni, NiO, Cu, Cu2O, and CuO species to systematically assess the impact of each metal species on the adsorption of thiophenic compounds (TC. Metal-loaded adsorbents had the same total metal contents and similar microporosities, but contained different types of copper or nickel species. All metal-loaded adsorbents showed enhanced adsorption of tested TC. Cu2O- or NiO-loaded adsorbents exhibited the highest uptakes, due to more specific interactions between Cu+ or Ni2+ species and TC molecules. The theoretical monolyer coverage of TC on the exposed Cu+ sites was estimated and compared with that calculated from the experimental data. Results suggested catalytic conversion of TC molecules to other compounds on the Cu+ sites, followed by adsorption of reaction products onto the carbon surface or multilayer accumulation of TC molecules on the Cu+sites. TC adsorption uptake of the majority of adsorbents followed the order of: 4,6-DMDBT > DBT > BT due to higher intensity of specific and non-specific interactions of larger TC molecules with adsorbents.

  16. A microporous Zn(II)-MOF with open metal sites: structure and selective adsorption properties. (United States)

    Zheng, Xiaofang; Huang, Yumei; Duan, Jingui; Wang, Chenggang; Wen, Lili; Zhao, Jinbo; Li, Dongfeng


    A three-dimensional microporous framework, Zn(II)-MOF [Zn(HPyImDC)(DMA)]n (1) (H3PyImDC = 2-(pyridine-4-yl)-1H-4,5-imidazoledicarboxylic, DMA = N,N'-dimethylacetamide), with open metal sites and small-sized pores, exhibits excellent selective capture of CO2 over N2 and CH4 at 273 K, as well as alcohols from water. The excellent CO2 adsorption selectivity of 1 allows its potential use in the capture of CO2 from industrial flue gas or the removal of CO2 from natural gas. More interestingly, compound represents the rare case of porous materials separating propanol isomers, which may be caused by the relative flexibility of the linear n-propanol considering that both n-propanol and i-propanol have similar kinetic diameters.

  17. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation (United States)

    Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong


    The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.

  18. Adsorptive kinetic mechanism of heavy metal cations on the surface of graphite oxide and its SiO2 composite (United States)

    Sheet, Imtithal; Kabbani, Ahmad; Holail, Hanafy


    Nanomaterials have gained great attention because of their novel size- and shape-dependent properties, large specific surface area and high reaction activity. Moreover, nanomaterials have a wide range of applications, as in the technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatments. In the present study, nanostructured graphite oxide, silica/graphite oxide composites and silica nanoparticles were used for the removal of the heavy metal ions from aqueous solutions by a batch adsorption method and the adsorptive kinetic mechanism of heavy metal cations on the surface of graphite oxide and its SiO2 composite was evaluated. The experimental results revealed a strong adsorption of the metal cations on the surface of graphite oxide, this is reflected in the shifts in wave numbers after adsorption with nanostructured graphite oxide and the big shift in wave numbers (Δv¯) for nickel ions reflects chemosorption type of adsorption. This is confirmed by the coherence between Δv¯, removal percentage and crystal field stabilization energy (CFSE). Silica/ GO (2:3) composite showed the greatest removal percentage at different concentrations compared to pure graphite oxide and silica nanoparticles. The higher removal percentage of nickel ions by silica /GO composite (2:3) was observed at 180 min contact time and basic pH. The kinetic studies showed that silica/ GO (2:3) composite had rapid adsorption rate and efficiency and it was found to follow first order rate expression or an exponential decay of the metal cations from water study.

  19. Enhanced isosteric heat of H2 adsorption by inclusion of crown ethers in a porous metal-organic framework. (United States)

    Park, Hye Jeong; Suh, Myunghyun Paik


    Inclusion of 18-crown-6 or 15-crown-5 in a porous MOF increased the isosteric heats of H(2) adsorption significantly, which are comparable to MOFs containing open metal sites. This journal is © The Royal Society of Chemistry 2012

  20. Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas


    Full Text Available This work aims to study the removal of Cu(II and Cr(VI from aqueous solutions with commercial coffee wastes. Materials with no further treatment such as coffee residues from café may act as adsorbents for the removal of Cu(II and Cr(VI. Equilibrium data were successfully fitted to the Langmuir, Freundlich and Langmuir-Freundlich model (L-F. The maximum adsorption capacity of the coffee residues can reach 70 mg/g for the removal of Cu(II and 45 mg/g for Cr(VI. The kinetic data were fitted to pseudo-first, -second and -third order equations. The equilibrium was achieved in 120 min. Also, the effect of pH on adsorption and desorption was studied, as well as the influence of agitation rate. Ten cycles of adsorption-desorption were carried out revealing the strong reuse potential of these low-cost adsorbents; the latter was confirmed from a brief economic approach.

  1. Adsorption of endotoxins on Ca2+-iminodiacetic acid by metal ion affinity chromatography

    Institute of Scientific and Technical Information of China (English)

    André Moreni LOPES; Jorge Sánchez ROMEU; Rolando Páez MEIRELES; Gabriel Marquez PERERA; Rolando Perdomo MORALES; Adalberto PESSOA; Lourdes Zumalacárregui CáRDENAS


    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins,purified from Escherichia coli.LPS can be considered stable under a wide range of temperature and pH,making their removal one of the most difficult tasks in downstream processes during protein purification.The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration.Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules,thus enabling high-efficiency separation of the target molecules from other components present in a mixture.Affinity chromatography is applied with Ca2+-iminodiacetic acid (IDA)to remove most of the LPS contaminants from the end product (more than 90%).In this study,the adsorption of LPS on an IDA-Ca2+ was investigated.The adsorption Freundlich isotherm of LPS-IDA-Ca2 + provides a theoretical basis for LPS removal.It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads.The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100000 EU/mL.This new protocol represents a substantial advantage in time,effort,and production costs.

  2. Chlorobenzene, chloroform, and carbon tetrachloride adsorption on undoped and metal-doped sol-gel substrates (SiO{sub 2}, Ag/SiO{sub 2}, Cu/SiO{sub 2} and Fe/SiO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.A. [Postgrado de Ciencias Ambientales and Departamento de Investigacion en Zeolitas, Instituto de Ciencias, Universidad Autonoma de Puebla, Edificio 76, Complejo de Ciencias, Ciudad Universitaria, CP 72570 Puebla (Mexico)], E-mail:; Gonzalez, A.I.; Corona, L.; Hernandez, F. [Postgrado de Ciencias Ambientales and Departamento de Investigacion en Zeolitas, Instituto de Ciencias, Universidad Autonoma de Puebla, Edificio 76, Complejo de Ciencias, Ciudad Universitaria, CP 72570 Puebla (Mexico); Rojas, F.; Asomoza, M.; Solis, S. [Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, D.F. Mexico (Mexico); Portillo, R.; Salgado, M.A. [Facultad de Ciencias Quimicas, Universidad Autonoma de Puebla (Mexico)


    Adsorption isotherms of chlorobenzene, chloroform and carbon tetrachloride vapors on undoped SiO{sub 2}, and metal-doped Ag/SiO{sub 2}, Cu/SiO{sub 2} and Fe/SiO{sub 2} substrates were measured in the temperature range of 398-593 K. These substrates were prepared from a typical sol-gel technique in the presence of metal dopants that rendered an assortment of microporous-mesoporous solids. The relevant characteristic of these materials was the different porosities and micropore to mesopore volume ratios that were displayed; this was due to the effect that the cationic metal valence exerts on the size of the sol-gel globules that compose the porous solid. The texture of these SiO{sub 2} materials was analyzed by X-ray diffraction (XRD), FTIR, and diverse adsorption methods. The pore-size distributions of the adsorbents confirmed the existence of mesopores and supermicropores, while ultramicropores were absent. The Freundlich adsorption model approximately fitted the chlorinated compounds adsorption data on the silica substrates by reason of a heterogeneous energy distribution of adsorption sites. The intensity of the interaction between these organic vapors and the surface of the SiO{sub 2} samples was analyzed through evaluation of the isosteric heat of adsorption and standard adsorption energy; from these last results it was evident that the presence of metal species within the silica structure greatly affected the values of both the amounts adsorbed as well as of the isosteric heats of adsorption.

  3. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. (United States)

    Baltrusaitis, Jonas; Jayaweera, Pradeep M; Grassian, Vicki H


    The adsorption of nitrogen dioxide on gamma aluminium oxide (gamma-Al(2)O(3)) and alpha iron oxide (alpha-Fe(2)O(3)) particle surfaces under various conditions of relative humidity, presence of molecular oxygen and UV light has been investigated. X-Ray photoelectron spectroscopy (XPS) is used to monitor the different surface species that form under these environmental conditions. Adsorption of NO(2) on aluminum oxide particle surfaces results primarily in the formation of surface nitrate, NO(3)(-) with an oxidation state of +5, as indicated by a peak with binding energy of 407.3 eV in the N1s region. An additional minority species, sensitive to the presence of relative humidity and molecular oxygen, is also observed in the N1s region with lower binding energy of 405.9 eV. This peak is assigned to a surface species in the +4 oxidation state. When irradiated with UV light, other species form on the surface. These surface-bound photochemical products all have lower binding energy, between 400 and 402 eV, indicating reduced nitrogen species in the range of N oxidations states spanning +1 to -1. Co-adsorbed water decreases the amount of these reduced surface-bound products while the presence of molecular oxygen completely suppresses the formation of all reduced nitrogen species on aluminum oxide particle surfaces. For NO(2) on iron oxide particle surfaces, photoreduction is enhanced relative to gamma-Al(2)O(3) and surface bound photoreduced species are observed under all environmental conditions. Complementing the experimental data, N1s core electron binding energies (CEBEs) were calculated using DFT for a number of nitrogen-containing species in the gas phase and adsorbed on an Al(8)O(12) cluster. A range of CEBEs is calculated for various nitrogen species in different adsorption modes and oxidation states. These calculated values are discussed in light of the peaks observed in the XPS N1s region and the possible species that form following NO(2) adsorption and

  4. Alkali metal adsorption on Ge(0 0 1)-c(2 × 4) surface: 0.25 monolayer of Na, K, Rb and Cs

    Energy Technology Data Exchange (ETDEWEB)

    Stankiewicz, B., E-mail: [Institute of Experimental Physics, University of Wrocław, Pl. Maxa Borna 9, 50-204 Wrocław (Poland); Mikołajczyk, P. [Nokia Solutions and Networks, Gen. J. Bema Str. 2, 50-265 Wrocław (Poland)


    Highlights: • We examine alkali metals adsorption on the Ge(0 0 1)-c(2 × 4) surface. • We calculated atomic and electronic structures using local-orbital and plane-waves methods. • We simulated expected scanning tunneling microscopy images. - Abstract: Alkali metals on Ge(0 0 1) surface reveal different adsorption energy depending on the initial substrate reconstruction and the adsorption site. The theoretical analysis of adsorption of 0.25 monolayer of alkali metals (Na, K, Rb and Cs) on Ge(0 0 1)-c(2 × 4) surface is presented. Stable adsorption sites are found and adsorption energy, atomic and electronic structures are given. The simulated STM images are also presented for the discussed adsorbed surface structures.

  5. Effect of transition metal Fe adsorption on CeO2 (110) surface in the methane activation and oxygen vacancy formation: A density functional theory study (United States)

    Tian, Dong; Zeng, Chunhua; Wang, Hua; Cheng, Xianming; Zheng, Yane; Xiang, Chao; Wei, Yonggang; Li, Kongzhai; Zhu, Xing


    Methane activation and oxygen vacancy formation over transition metal Fe adsorption on CeO2 (110) are studied by using the method of density functional theory (DFT) + U method. A set of model configurations are generated by placing Fe at five surface sites, viz., O-top site, O-bridge site, Ce-bridge site, Ce-top and double oxygen-bridge sites. The study shows that the energetically most favorable configuration is Fe adsorption at the double oxygen-bridge site. Based on the calculated surface, subsurface and the second oxygen vacancies formation energy with (or without) Fe adsorption, it shows that the Fe adsorption is in favor of the surface, subsurface and second oxygen vacancies formation. For the surface and subsurface oxygen vacancy on the Fe/CeO2 (110) surface, the main factor responsible for lowering of Evac is that the adsorption induces structural distortions, whereas, for the second oxygen vacancy, half can be attributed to the large structural relaxation, half can be attributed to the electronic effects. After calculating and discussing about the CH4 activation on CeO2 (110) and Fe/CeO2 (110) surface with (or without) the surface or subsurface oxygen vacancies at the possible adsorption sites, the results show that when the CH4 adsorbed on the Fe/CeO2 (110) with the surface oxygen vacancy at the Ce1 and Ce2 sites, the CH4 decomposed into the CH(ads) and H(ads), its belongs to the chemical absorption, whereas, when the CH4 adsorbed on the other possible sites, the mentioned phenomenon is not occurred, its belongs to the physical absorption. This study reveals the correlation between surface reducibility and catalytic activity for methane oxidation on cerium-based materials, which might be beneficial in developing improved catalysts for methane combustion.

  6. Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jehun; Lee, Jae W. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)


    This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.

  7. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon. (United States)

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju


    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  8. Preparation and evaluation adsorption capacity of cellulose xanthate of sugarcane bagasse for removal heavy metal ion from aqueous solutions (United States)

    Iryani, D. A.; Risthy, N. M.; Resagian, D. A.; Yuwono, S. D.; Hasanudin, U.


    The discharge of heavy metals from industrial effluents into aquatic system in surrounding area of Lampung bay become a serious problem today. The data shows that the concentrations of heavy metals in this area are above allowable limits for the discharge of toxic heavy metals in the aquatic systems. The most common of heavy metal pollutant is divalent metal ions. Cellulose xanthate is one of the selective adsorbent to solve this problem, since xanthate contains two negative sulfur atoms that is capable to catch divalent metal ions. Preparation of cellulose xanthate was conducted by reacting carbon disulfide (CS2) and cellulose from sugarcane bagasse. The morphological characteristics of cellulose xanthate were visualized via Scanning Electron Microscope (SEM) and the presence of sulfur groups on sugarcane bagasse xanthate were identified by FTIR spectroscopic study. The degree of substitution (DS), degree of polymerization (DP), and adsorption capacities of cellulose xanthate for Cu2+ and Pb2+ metal were studied. The results of study reveals that the maximum adsorption capacities of Cu2+ and Pb2+ metal on cellulose xanthate are 54.226 mg Cu2+/g, and 51.776 mg Pb2+/g, respectively. This study reveals that cellulose xanthate could be a solution to reduce environmental pollution caused by industrial wastewater.

  9. Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5(Co). (United States)

    Sarker, Mithun; Bhadra, Biswa Nath; Seo, Pill Won; Jhung, Sung Hwa


    Benzotriazole (BTA) and benzimidazole (BZI) are regarded as water pollutants because of their extensive uses in industry and appreciable water solubility. The adsorption of both BTA and BZI from water over a newly synthesized metal-organic framework, MAF-5(Co), was investigated and compared with zeolitic imidazole frameworks (ZIFs), such as ZIF-8(Zn) and ZIF-67(Co), as well as commercial activated carbon. MAF-5(Co) had the highest adsorption capacities for both BTA and BZI. The maximum adsorption capacities of MAF-5(Co) for BTA and BZI were 389 and 175mgg(-1), respectively. Hydrophobic and π-π interactions between the aromatic adsorbate BTA and MAF-5(Co) were suggested as a plausible mechanism. Based on the zeta potential of MAF-5(Co) and effects of pH on the BTA adsorption, electrostatic interactions between the MAF-5(Co) and BTA species might also affect the adsorption of BTA over MAF-5(Co). MAF-5(Co) can be recycled for adsorptive removal of BTA by simple ethanol washing. Therefore, MAF-5(Co) is suggested as a promising adsorbent for the removal of BTA and BZI from water.

  10. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei


    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  11. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. (United States)

    Chen, Tan; Zhang, Yaxin; Wang, Hongtao; Lu, Wenjing; Zhou, Zeyu; Zhang, Yuancheng; Ren, Lulu


    To investigate systematically the influence of pyrolysis temperature on properties and heavy metal adsorption potential of municipal sludge biochar, biophysical dried sludge was pyrolyzed under temperature varying from 500°C to 900°C. The biochar yield decreased with the increase in pyrolysis temperature, while the ash content retained mostly, thus transforming the biochars into alkaline. The structure became porous as the temperature increased, and the concentrations of surface functional group elements remained low. Despite the comparatively high content of heavy metal in the biochar, the leaching toxicity of biochars was no more than 20% of the Chinese standard. In the batch experiments of cadmium(II) adsorption, the removal capacity of biochars improved under higher temperature, especially at 800°C and 900°C even one order of magnitude higher than that of the commercial activated carbon. For both energy recovery and heavy metal removal, the optimal pyrolysis temperature is 900°C.

  12. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.;


    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society......The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...

  13. Chemo-thermal Treatment of Tribulus tresstris to Enhance Its Sequestering Potential for Adsorption of Some Heavy Metals from Aqueous Media: Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Shaheen


    Full Text Available The plant based renewable biosorbents have extensively been investigated for removing water pollutants. The present study describes the sequestering of metal ions by exploiting a low cost biomaterial derived from Tribulus tresstris as sorbent. The batch equilibrium studies have been carried out both with raw and chemically/thermally treated biomaterial as a function of pH, contact time, shaking speed and shaking time to decide the effectiveness of biosorbent. The sorbent was activated chemically by utilizing 0.1M HCl and 0.1M K2CO3. A close muffle furnace was used for thermal treatment of the sorbent. The adsorption capacity was enhanced to 25% by thermal treatment and 54% by chemical treatment because of increase in pore volume and surface area. The greatest sorption was found for particle size of 200 µm with a 0.5 g dosage at pH 6 for 20 min at shaking speed 100 rpm. The FT-IR and SEM study was performed to discover the adsorption capacity of various functional groups and their binding mechanism. The adsorption data demonstrates that Langmuir, Freundlich and Dubinin-Radushkevich isotherm models were very much fitted to describe the adsorption behavior

  14. Metal-organic framework with optimally selective xenon adsorption and separation (United States)

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej; Thallapally, Praveen K.


    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

  15. Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatments. (United States)

    Saiano, Filippo; Ciofalo, Maurizio; Cacciola, Santa Olga; Ramirez, Stefania


    An insoluble material of polysaccharidic nature has been obtained by thermal alkali treatment of the filamentous fungus Phomopsis sp. FT-IR spectrum of the resulting material as well as its nitrogen content suggest that chitosan and glucans are the main components of the biomaterial. Information on Lewis base sites has also been obtained and used as a guideline in the evaluation of the complexing ability against a number of metal ions in aqueous media at pH in the range 4--6. Results indicate that after 24h contact time, up to 870 micromol/g of lead, 390 micromol/g of copper, 230 micromol/g of cadmium, 150 micromol/g of zinc and 110 micromol/g of nickel ions are adsorbed into the material. After approximately 10 min, about 70% of the overall adsorption process has already been completed. Adsorbed metal ions can be recovered by washing with dilute acid. Experiments have been extended to a real wastewater effluent confirming the potential of this biomaterial as a depolluting agent.

  16. Direct Observation of Hydrogen Adsorption Sites and Nano-Cage Formation in Metal-Organic Frameworks (MOF)


    Yildirim, T.; Hartman, M. R.


    The hydrogen adsorption sites in MOF5 were determined using neutron powder diffraction along with first-principles calculations. The metal-oxide cluster is primarily responsible for the adsorption while the organic linker plays only a secondary role. Equally important, at low temperatures and high-concentration, H2 molecules form unique interlinked high-symmetry nano-clusters with intermolecular distances as small as 3.0 Ang. and H2-uptake as high as 10-wt%. These results hold the key to opti...

  17. Microstructure modeling in weld metal

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Babu, S.S.


    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model`s comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds.

  18. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon. (United States)

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi


    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  19. Multicomponent Adsorption Model for Polar and Associating Mixtures

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Kontogeorgis, Georgios M.


    of these problems could be due to the fact that the original MPTA assumes that a given adsorbent has the same adsorption capacity (for example, porous volume) for all the adsorbed substances and is adjusted simultaneously to many data. This is a simplified picture, as experimental data indicate that the adsorption....... Thus, we feel that there is no need to use more complex potentials provided that the difference in the individual adsorption capacities is accounted for....

  20. Eu(III) adsorption on rutile:Batch experiments and modeling

    Institute of Scientific and Technical Information of China (English)


    Eu(III) adsorption on rutile was investigated as a function of contact time,pH,ionic strength and Eu(III) concentration by using a batch experimental method.The effects of carbonate,sulfate,and phosphate were also studied.It was found that the kinetics of Eu(III) adsorption on rutile could be described by a pseudo-second-order model.The adsorption of Eu(III) on rutile is strongly pH-dependent,but relatively insensitive to ionic strength.A double layer model (DLM) with two inner-sphere Eu(III) surface complexes was applied to quantitatively interpret the adsorption of Eu(III) on rutile.There were no apparent effects of carbonate and sulfate on Eu(III) adsorption,whereas the presence of phosphate promoted Eu(III) adsorption on rutile.The surface complexes of Eu(III) on rutile were evidenced by X-ray photoelectron spectroscopy (XPS).

  1. Diamine-appended metal-organic frameworks: enhanced formaldehyde-vapor adsorption capacity, superior recyclability and water resistibility. (United States)

    Wang, Zhong; Wang, WenZhong; Jiang, Dong; Zhang, Ling; Zheng, Yali


    Capturing formaldehyde (HCHO) from indoor air with porous adsorbents still faces challenges due to their low uptake capacity, difficult regeneration, and especially, the sorption capacity reduction that is caused by the competitive adsorption of H2O when exposed to a humid atmosphere. In this work, MIL-101 is modified with ethylenediamine (ED) on its open-metal sites to substantially improve the HCHO adsorption properties. The HCHO uptake capacity of modified MIL-101 can be up to 5.49 mmol g(-1) in this study, which is among the highest-levels of various adsorbents reported thus far. Moreover, this modification both improved the material's recyclability and water resistibility, allowing for cyclic and selective tests with stable adsorption capacities, revealing the potential utility of amine-modified MOFs for indoor air purification.

  2. Chromium (VI) adsorption on boehmite

    Energy Technology Data Exchange (ETDEWEB)

    Granados-Correa, F. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)], E-mail:; Jimenez-Becerril, J. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)


    Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323 K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.

  3. Probing Adsorption Interactions In Metal-Organic Frameworks Using X-ray Spectroscopy and Density Functional Theory (United States)

    Drisdell, Walter; Poloni, Roberta; McDonald, Thomas; Long, Jeffrey; Smit, Berend; Neaton, Jeffrey; Prendergast, David; Kortright, Jeffrey


    Metal-organic frameworks (MOFs) are currently among the most promising materials for gas separation applications such as carbon capture. We explore the local electronic signatures of molecular adsorption at coordinatively unsaturated binding sites in the metal-organic framework Mg-MOF-74 using X-ray spectroscopy and first principles calculations. In situ measurements at the Mg K-edge reveal distinct pre-edge absorption features associated with the unique, open coordination of the Mg sites. These spectral features are suppressed upon adsorption of CO2 and N ,N' -dimethylformamide. Density functional theory shows that these spectral changes arise from modifications of local symmetry around the Mg sites upon gas uptake and are strongly dependent on the metal-adsorbate binding strength. Similar sensitivity to local symmetry is expected for any open metal site, making X-ray spectroscopy an ideal tool for examining adsorption in such MOFs. This work was supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015

  4. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy


    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  5. Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture

    Indian Academy of Sciences (India)

    Satyanarayana Bonakala; Sundaram Balasubramanian


    Modelling the adsorption of small molecule gases such as N2 , CH4 and CO2 in porous solids can provide valuable insights for the development of next generation materials. Employing a grand canonical Monte Carlo simulation code developed in our group, the adsorption isotherms of CH4 and CO2 in many metal organic frameworks have been calculated and compared with experimental results. The isotherms computed within a force field approach are able to well reproduce the experimental data. Key functional groups in the solids which interact with gas molecules and the nature of their interactions have been identified. The most favorable interaction sites for CH4 and CO2 in the framework solids are located in the linkers which are directed towards the pores. The structure of a perfluorinated conjugated microporous polymer has been modelled and it is predicted to take up 10% more CO2 than its hydrogenated counterpart. In addition, the vibrational, orientational and diffusive properties of CO2 adsorbed in the solids have been examined using molecular dynamics simulations. Intermolecular modes of such adsorbed species exhibit a blue shift with increasing gas pressure.

  6. Sorption of trace metals on calcite: Applicability of the surface precipitation model

    NARCIS (Netherlands)

    Comans, R.N.J.; Middelburg, J.J.


    Published Sorption isotherm data of Cd2+, Mn2+, Zn2+, and Co2+ on calcite are adequately described by the surface precipitation model which was originally developed by FArley et al. (1985) for the sorption of cations on metal oxides. In addition to monolayer adsorption, the model accounts for the fo

  7. A Multiscale Approach for Modeling Oxygen Production by Adsorption

    Directory of Open Access Journals (Sweden)

    Pavone D.


    Full Text Available Oxygen production processes using adsorbents for application to CCS technologies (Carbon Capture and Storage offer potential cost benefits over classical cryogenics. In order to model adsorption processes an approach using three size scales has been developed. This work is being conducted in the framework of the DECARBit European research project. The first scale is at the size of the oxygen adsorption bed to be modelled as a vertical cylinder filled with pellets. Its length is 0.2 m (scale 10-1 m. The bed is homogeneous in the transversal direction so that the problem is 1D (independent variables t, x. The physics in the process include gas species (Cbk (t, x convection and dispersion, thermal convection and conduction (T(t, x and hydrodynamics (v(t, x. The gas constituents involved are N2, 02, CO2 and H2O. The second scale is at the size of the pellets that fill the adsorber and which are assumed to be of spherical shape with a typical radius of 5 mm (scale 10-3 m. The independent variable for the pellets is the radius “rp”. At a certain height (x down in the adsorber all the pellets are the same and are surrounded by the same gas composition but inside the pellets the concentrations may vary. The state variables for the inner part of the pellets are the gas concentrations Cpk(t, x, rp. The pellets are so small that they are assumed to have a uniform temperature. This leads to a 2D transient model for the pellets linked to the 1D transient model for the bulk. The third scale looks into the detailed structure of the pellets that are made of perovskite crystallites. The latter are assumed to be spherical. Oxygen adsorption occurs in the crystallites which have a radius of about 0.5 pm (scale 10-7 m. All the crystallites at the same radius in a pellet are supposed to behave the same and because they are spherical, the only independent variable for a crystallite located at (x, rp is its radius “rc”. The state variables for the crystallites

  8. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). (United States)

    Haque, Enamul; Jun, Jong Won; Jhung, Sung Hwa


    An iron terephthalate (MOF-235), one of the metal-organic frameworks (MOFs), has been used for the removal of harmful dyes (anionic dye methyl orange (MO) and cationic dye methylene blue (MB)) from contaminated water via adsorption. The adsorption capacities of MOF-235 are much higher than those of an activated carbon. The performance of MOF-235 having high adsorption capacity is remarkable because the MOF-235 does not adsorb nitrogen at liquid nitrogen temperature. Based on this study, MOFs, even if they do not adsorb gases, can be suggested as potential adsorbents to remove harmful materials in the liquid phase. Adsorption of MO and MB at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with adsorption of MO and MB. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Water in Metal-Organic Frameworks: A Computational Study of Adsorption in Porous Materials in the Presence of Ambient Humidity (United States)

    Ghosh, Pritha

    Metal-organic frameworks, or MOFs, are a class of porous crystalline materials renowned for their chemically tunable nature. In this work, molecular-level modeling is used to assess MOFs as potential adsorbents for a variety of applications where ambient humidity is present, such as toxic gas capture, nerve agent decomposition, and sensing via changes in proton conductivity. The concept of hydrophobicity in MOFs is explored from a number of angles. Classical simulation methods and quantum chemistry calculations are used to predict adsorption behavior and to shed light on experimentally observed phenomena. Hydrophobic MOFs are attractive candidates for selective gas capture under ambient conditions, and in this work hydrophobic MOFs are examined for two particular applications: ammonia capture and CO2 capture. In the first study, GCMC simulations are used to evaluate a set of three hydrophobic MOFs for ammonia capture at three humidity conditions: 0% relative humdity (RH), 36% RH, and 80% RH. In the second study, GCMC simulations predict the CO2 loading in a hydrophobic fluorinated MOF at 80% RH, which is the humidity of flue gas. In both of these studies, results demonstrate that hydrophobic MOFs are equally capable of capturing the target adsorbate under humid or dry conditions. In related work, water adsorption behavior is investigated for a fairly hydrophilic Zr MOF, and it is revealed that missing linker defects engender hydrophilicity in this framework. An ideal, defect-free version of this Zr MOF demonstrates hydrophobic behavior. Additionally, perfluoroalkane adsorption is predicted in a related material, a faujasite-type zeolite, and the results suggest the presence of co-adsorbed water molecules. MOFs with coordinated solvent molecules can be used as catalysts and novel chemical sensors. In this work, quantum chemistry calculations are used to study the interaction of a nerve agent simulant with a Zr MOF node. Results indicate that it is favorable for a

  10. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling (United States)

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.


    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  11. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chunlin [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Wang, Heyun [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan, Shihezi University, Shihezi 832003 (China); Wei, Zhong, E-mail: [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China); Key Laboratory for Green Processing of Chemical Engineering of Xinjiang bingtuan, Shihezi University, Shihezi 832003 (China); Li, Chuan; Luo, Zhidong [School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003 (China)


    Graphical abstract: - Highlights: • A simple and versatile approach to produce PEI-functionalized nanofibers. • Novel PEI-functionalized PVC nanofibrous membrane was prepared. • Adsorption of PVC@PDA and PVC@PDA-PEI nanofibrous membranes for Cu{sup 2+} was tested. • Isotherms, kinetic model and thermodynamic parameters were investigated. • Adsorption mechanism of Cu{sup 2+} on modified membranes was inferred. - Abstract: In this paper, a simple and versatile approach for the fabrication of a polyethyleneimine (PEI)-functionalized nanofibrous membrane utilizing polydopamine (PDA) as a mediator is proposed. The morphology and structure of the PDA-coated and PEI-grafted nanofibrous membranes were confirmed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Due to a large specific surface area and long fibrous morphology, the synthesized membranes were used as novel adsorbents for copper ion (Cu{sup 2+}) removal from aqueous solutions. The adsorption of Cu{sup 2+} was investigated on the synthesized membranes regarding the membrane dosages, initial solution pH values, initial solution concentrations, contact times and temperatures. In addition, the adsorption equilibrium data of PEI-grafted membranes were well fitted with the Langmuir adsorption isotherm, and a maximum adsorption capacity value of 33.59 mg g{sup −1} was determined (while it was 21.94 mg g{sup −1} for the PDA-coated membranes). The thermodynamic parameters indicated that Cu{sup 2+} absorption was a spontaneous and exothermic adsorption process. In addition, XPS peak differentiation imitating analysis permitted the proposal of a copper-amine coordination adsorption mechanism that can be used to explain changes in the adsorption properties compared to PDA coating nanofibrous membranes.

  12. Atomistic insight into adsorption, mobility, and vibration of water in ion-exchanged zeolite-like metal-organic frameworks. (United States)

    Nalaparaju, A; Babarao, R; Zhao, X S; Jiang, J W


    The adsorption, mobility, and vibration of water in ion-exchanged rho-zeolite-like metal-organic frameworks (ZMOFs) are investigated using atomistic simulations. Because of the high affinity for the ionic framework and nonframework ions, water is strongly adsorbed in rho-ZMOFs with a three-step adsorption mechanism. At low pressures, water is preferentially adsorbed onto Na(+) ions, particularly at site II; with increasing pressure, adsorption occurs near the framework and finally in the large cage. Upon water adsorption, Na(+) ions are observed to redistribute from site I to site II and gradually hydrated with increasing pressure. In Li-, Na-, and Cs-exchanged rho-ZMOFs, the adsorption capacity and isosteric heat decrease with increasing ionic radius attributed to the reduced electrostatic interaction and free volume. The mobility of water in Na-rho-ZMOF increases at low pressures but decreases upon approaching saturation. With sufficient amount of water present, the mobility of Na(+) ions is promoted. The vibrational spectra of water in Na-rho-ZMOF exhibit distinct bands for librational motion, bending, and stretching. The librational motion has a frequency higher than bulk water due to confinement. With increasing loading and hence stronger coordinative attraction, the bending frequency shows a blue shift. Symmetric and asymmetric modes are observed in the stretching as a consequence of the strong water-ion interaction. This study provides a fundamental microscopic insight into the static and dynamic properties of water in charged ZMOFs and reveals the subtle interplay between water and nonframework ions.

  13. Adsorption of selected gases on metal-organic frameworks and covalent organic frameworks: A comparative grand canonical Monte Carlo simulation (United States)

    Wang, Lili; Wang, Lu; Zhao, Jijun; Yan, Tianying


    The adsorption properties of H2, CO, NO, and NO2 in several typical nanoporous materials (covalent organic framework (COF)-105, COF-108, metal-organic framework (MOF)-5, and MOF-177) at 298 K were investigated by grand canonical Monte Carlo simulations. Good agreement between simulated results and experimental data has been achieved for H2 adsorption on MOF-5 and MOF-177, indicating the reliability of the theoretical approach. The simulated adsorption isotherms for these four gases show analogical trend, i.e., increasing nearly linearly with pressure. Among the four host materials, COF-108 exhibits the highest hydrogen uptake (˜0.89 wt. % at 100 bars) owing to its low densities and high surface area. The adsorption amounts of NO2 in these materials are higher than those of the other three gases because of the stronger gas-sorbent interaction. In particular, NO2 adsorption amount in MOF-177 can reach as high as 10.7 mmol/g at 298 K and 10 bars. The interaction between the four gases (H2, CO, NO, and NO2) and the COF/MOF adsorbents is further discussed in terms of the isosteric heat.

  14. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape. (United States)

    Yang, Kun; Sun, Qian; Xue, Feng; Lin, Daohui


    Adsorption of gaseous volatile organic compounds (VOCs) on metal-organic frameworks MIL-101, a novel porous adsorbent with extremely large Langmuir surface area of 5870 m(2)/g and pore volume of 1.85 cm(3)/g, and the influence of VOC molecular size and shape on adsorption were investigated in this study. We observed that MIL-101 is a potential superior adsorbent for the sorptive removal of VOCs including polar acetone and nonpolar benzene, toluene, ethylbeznene, and xylenes. MIL-101 is of higher adsorption capacities for all selected VOCs than zeolite, activated carbon and other reported adsorbents. Adsorption of VOCs on MIL-101 is captured by a pore filling mechanism, showing the size and shape selectivity of VOC molecules. These prove to be a negative linear relationship between the volume adsorption capacities of VOCs and their molecular cross-sectional area values. Most VOC molecules, such as acetone, benzene, toluene, ethylbenzene and p-xylene, enter into MIL-101 pores with the planes having the minimum diameters. However, m-xylene and o-xylene may fill into the pores with the planes having the maximum diameters because of the preferred interaction of MIL-101 with the two methyl groups of adsorbate molecules.

  15. Adsorption of Heavy Metals by Graphene Oxide/Cellulose Hydrogel Prepared from NaOH/Urea Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Xiong Chen


    Full Text Available By taking advantage of cellulose, graphene oxide (GO, and the process for crosslinking using epichlorohydrin (ECH, we propose a simple and novel method to prepare GO/cellulose hydrogel with good potential to adsorb metal ions. GO nanosheets containing carboxyl and hydroxyl groups were introduced into the surface of the cellulose hydrogel with retention of the gel structure and its nanoporous property. Due to the introduction of GO, the GO/cellulose composite hydrogels exhibited good compressive strength. Adsorption capacity of Cu2+ significantly increases with an increase in the GO/cellulose ratio and GO/cellulose hydrogel showed high adsorption rates. The calculated adsorption capacities at equilibrium ( q e cal for GO/cellulose hydrogel (GO:cellulose = 20:100 in weight was up to 94.34 mg·g−1, which was much higher than that of the pristine cellulose hydrogels. Furthermore, GO/cellulose hydrogel exhibited high efficient regeneration and metal ion recovery, and high adsorption capacity for Zn2+, Fe3+, and Pb2+.

  16. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework. (United States)

    Yang, Sihai; Lin, Xiang; Blake, Alexander J; Walker, Gavin S; Hubberstey, Peter; Champness, Neil R; Schröder, Martin


    Metal-organic frameworks (MOFs)--microporous materials constructed by bridging metal centres with organic ligands--show promise for applications in hydrogen storage, which is a key challenge in the development of the 'hydrogen economy'. Their adsorption capacities, however, have remained insufficient for practical applications, and thus strategies to enhance hydrogen-MOF interactions are required. Here we describe an anionic MOF material built from In(III) centres and tetracarboxylic acid ligands (H(4)L) in which kinetic trapping behaviour--where hydrogen is adsorbed at high pressures but not released immediately on lowering the pressure--is modulated by guest cations. With piperazinium dications in its pores, the framework exhibits hysteretic hydrogen adsorption. On exchange of these dications with lithium cations, no hysteresis is seen, but instead there is an enhanced adsorption capacity coupled to an increase in the isosteric heat of adsorption. This is rationalized by the different locations of the cations within the pores, determined with precision by X-ray crystallography.

  17. Grasping hydrogen adsorption and dynamics in metal-organic frameworks using (2)H solid-state NMR. (United States)

    Lucier, Bryan E G; Zhang, Yue; Lee, Kelly J; Lu, Yuanjun; Huang, Yining


    Record greenhouse gas emissions have spurred the search for clean energy sources such as hydrogen (H2) fuel cells. Metal-organic frameworks (MOFs) are promising H2 adsorption and storage media, but knowledge of H2 dynamics and adsorption strengths in these materials is lacking. Variable-temperature (VT) (2)H solid-state NMR (SSNMR) experiments targeting (2)H2 gas (i.e., D2) shed light on D2 adsorption and dynamics within six representative MOFs: UiO-66, M-MOF-74 (M = Zn, Mg, Ni), and α-M3(COOH)6 (M = Mg, Zn). D2 binding is relatively strong in Mg-MOF-74, Ni-MOF-74, α-Mg3(COOH)6, and α-Zn3(COOH)6, giving rise to broad (2)H SSNMR powder patterns. In contrast, D2 adsorption is weaker in UiO-66 and Zn-MOF-74, as evidenced by the narrow (2)H resonances that correspond to rapid reorientation of the D2 molecules. Employing (2)H SSNMR experiments in this fashion holds great promise for the correlation of MOF structural features and functional groups/metal centers to H2 dynamics and host-guest interactions.

  18. The interaction of hydrazine with an Rh(1 1 1) surface as a model for adsorption to rhodium nanoparticles: A dispersion-corrected DFT study

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan Bin [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Pharmaceutical Department, Changzhi Medical College, Changzhi 046000 (China); Jia, Jian Feng, E-mail: [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Wu, Hai Shun, E-mail: [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China)


    Highlights: • We propose a model suitable for simulating the adsorption of hydrazine on rhodium nanoparticles. • We found that inclusion of dispersion correction results in significant enhancement for the adsorption to the Rh(1 1 1) surface. • Nanoparticles surface with lower-coordinated sites are more reactive than those with almost saturated surface sites. - Abstract: In recent years, metal nanoparticles were found to be excellent catalysts for hydrogen generation from hydrazine for chemical hydrogen storage. In order to gain a better understanding of these catalytic systems, we have simulated the adsorption of hydrazine on rhodium nanoparticles surfaces by density functional theory (DFT) calculations with dispersion correction, DFT-D3 in the method of Grimme. The rhodium nanoparticles were modeled by the Rh(1 1 1) surface, in addition, the adsorptions at corners and edges sites of nanoparticles were considered by using rhodium adatoms on the surfaces. The calculations showed that hydrazine binds most strongly to the edge of nanoparticle with adsorption energy of −2.48 eV, where the hydrazine bridges adatoms of edge with the molecule twisted to avoid a cis structure; similar adsorption energy was found at the corner of nanoparticle, where the hydrazine bridges corner atom and surface atom with gauche configuration. However, we found that inclusion of the dispersion correction results in significant enhancement of molecule–substrate binding, thereby increasing the adsorption energy, especially the adsorption to the Rh(1 1 1) surface. The results demonstrate that the surface structure is a key factor to determine the thermodynamics of adsorption, with low coordinated atoms which providing sites of strong adsorption from the surface.

  19. Modeling micelle-templated mesoporous material SBA-15: atomistic model and gas adsorption studies. (United States)

    Bhattacharya, Supriyo; Coasne, Benoit; Hung, Francisco R; Gubbins, Keith E


    We report the development of a realistic molecular model for mesoporous silica SBA-15, which includes both the large cylindrical mesopores and the smaller micropores in the pore walls. The methodology for modeling the SBA-15 structure involves molecular and mesoscale simulations combined with geometrical interpolation techniques. First, a mesoscale model is prepared by mimicking the synthesis process using lattice Monte Carlo simulations. The main physical features of this mesoscale pore model are then carved out of an atomistic silica block; both the mesopores and the micropores are incorporated from the mimetic simulations. The calculated pore size distribution, surface area, and simulated TEM images of the model structure are in good agreement with those obtained from experimental samples of SBA-15. We then investigate the adsorption of argon in this structure using Grand Canonical Monte Carlo (GCMC) simulations. The adsorption results for our SBA-15 model are compared with those for a similar model that does not include the micropores; we also compare with results obtained in a regular cylindrical pore. The simulated adsorption isotherm for the SBA-15 model shows semiquantitative agreement with the experimental isotherm for a SBA-15 sample having a similar pore size. We observe that the presence of the micropores leads to increased adsorption at low pressure compared to the case of a model without micropores in the pore walls. At higher pressures, for all models, the filling proceeds via the monolayer-multilayer adsorption on the mesopore surface followed by capillary condensation, which is mainly controlled by the mesopore diameter and is not influenced by the presence of the micropores.

  20. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles

    Institute of Scientific and Technical Information of China (English)

    Shu-Huei Hsieh; Jao-Jia Horng


    Carbon nanotubes (CNTs) were grown on the surface of microsized Al2O3 particles in CH4 atmosphere at 700 ℃ under the catalysis of Fe-Ni nanoparticles.The CNTs on Al2O3 were used for adsorbing Pb2+,Cu2+,and Cd2+ from the solution and the results were compared with active carbon powders,commercial carbon nanotubes,and Al2O3 particles.The as-grown CNTs/Al2O3 have demonstrated extraordinary absorption capacity with further treatment or oxidation,as well as hydrophilic ability that other CNTs lacked.The adsorption capacity of CNTs on Al2O3 is superior to other adsorbents and the preference order of adsorption on composite Al2O3 is Pb2+>Cu2+>Cd2+.It seemed that the adsorption of those Pb2+,Cu2+,and Cd2+ did not change the surface properties of composite particles.The adsorption behaviors of Pb2+,Cu2+,and Cd2+ by CNTs on Al2O3 match well with the Langmuir isothermal adsorption model and the second order kinetic model.The calculated saturation amount adsorbed by 1 g of CNTs on Al2O3 are 67.11,26.59,and 8.89 mg/g for Pb2+,Cu2+,and Cd2+ in single adsorption test,respectively.

  1. Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. (United States)

    Li, Xueying; Zhou, Haihui; Wu, Wenqin; Wei, Shudan; Xu, Yan; Kuang, Yafei


    Chitosan/Sulfydryl-functionalized graphene oxide composite (CS/GO-SH) was successfully synthesized via covalent modification and electrostatic self-assembly. A facile diazonium chemical process was developed to fabricate sulfydryl-functionalized graphene oxide (GO-SH) by introducing sulfydryl compounds to the graphene oxide sheets (GO), and the GO-SH was used to self-assemble with chitosan via an electrostatic interaction. The chemical structure and morphology of the CS/GO-SH composite were characterized by Fourier transformed infrared, Raman spectroscopy, scanning electron microscopy, X-ray powder diffraction and thermogravimetric examination. The results indicated that the CS/GO-SH was a new type of with multifunctional groups such as -OH, -COOH, -SH and -NH2. Simultaneously, the self-assembly of chitosan with GO-SH sheets changed the blocky structure of the CS to the loosely packed structure which is analogous to graphene oxide sheets. The resulting CS/GO-SH was used as an adsorbent material for removal of Cu (II), Pb (II) and Cd (II) in single- and multi-metal ions systems. It was found that the CS/GO-SH has potential applications in fields of adsorptive materials due to its superiority of the chemical characteristic and the specific surface area.

  2. Using NMR to study small molecule adsorption in metal organic frameworks (United States)

    Lopez, M. G.; Canepa, P.; Thonhauser, T.


    We calculate the carbon nuclear magnetic resonance (NMR) chemical shift for the CO2 molecule and the hydrogen shift for both H2 and H2O inside the metal organic framework structure Mg-MOF74 using ab initio calculations at the density functional theory level[1,2] with the van der Waals density functional (vdW-DF).[3] These shifts are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. Our binding energy results agree well with previous experiments and calculation, and the NMR calculations show that it is reasonable to expect an experimentally observable change in the chemical shift depending on adsorbant, position, and loading. By providing this mapping of chemical shift to position and loading for these adsorbants, we argue that NMR probes could be used to provide information about the position at which these small molecules bind within the MOF and provide information about the loading of the adsorbed molecule.

  3. High adsorption capacity of two Zn-based metal-organic frameworks by ultrasound assisted synthesis. (United States)

    Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali


    Micro- and nano-rods and plates of two 3D, porous Zn(II)-based metal-organic frameworks [Zn(oba)(4-bpdh)0.5]n·(DMF)1.5 (TMU-5) and [Zn(oba)(4-bpmb)0.5]n (DMF)1.5 (TMU-6) were prepared by sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction and IR spectroscopy. These MOFs were synthesized using a non-linear dicarboxylate (H2oba=4,4-oxybisbenzoic acid) and two linear N-donor (4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene and 4-bpmb=N(1),N(4)-bis((pyridin-4-yl)methylene)benzene-1,4-diamine) ligands by ultrasonic irradiation. Sonication time and concentration of initial reagents influencing size and morphology of nano-structured MOFs, were also studied. Calcination of TMU-5 and TMU-6 at 550°C under air atmosphere yields ZnO nanoparticles. TMU-5 and TMU-6 exhibited maximum percent adsorption of 96.2% and 92.8% of 100ppm rhodamine B dye, respectively, which obeys first order reaction kinetics.

  4. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption (United States)

    Alhamami, Mays; Doan, Huu; Cheng, Chil-Hung


    Metal-organic frameworks (MOFs) are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses. PMID:28788614

  5. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs for Gas Adsorption

    Directory of Open Access Journals (Sweden)

    Mays Alhamami


    Full Text Available Metal-organic frameworks (MOFs are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses.

  6. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations. (United States)

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre


    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude.

  7. Scaling properties in the adsorption of ionic polymeric surfactants on generic nanoparticles of metallic oxides by mesoscopic simulation

    CERN Document Server

    Mayoral, E


    We study the scaling of adsorption isotherms of polyacrylic dispersants on generic surfaces of metallic oxides $XnOm$ as a function of the number of monomeric units, using Electrostatic Dissipative Particle Dynamics simulations. The simulations show how the scaling properties in these systems emerge and how the isotherms rescale to a universal curve, reproducing reported experimental results. The critical exponent for these systems is also obtained, in perfect agreement with the scaling theory of deGennes. Some important applications are mentioned.

  8. A metal-organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation. (United States)

    Wang, Chenghong; Lee, Melanie; Liu, Xinlei; Wang, Bo; Paul Chen, J; Li, Kang


    The development of a metal-organic framework/α-alumina composite leads to a novel concept: efficient adsorption occurs within a plurality of radial micro-channels with no loss of the active adsorbents during the process. This composite can effectively remediate arsenic contaminated water producing potable water recovery, whereas the conventional fixed bed requires eight times the amount of active adsorbents to achieve a similar performance.

  9. Binding and Adsorption Energies of Heavy Metal Ions with Hapli-Udic Argosol and Ferri-Udic Argosol Particles

    Institute of Scientific and Technical Information of China (English)


    Gibbs free binding energy and adsorption energy between cations and charged soil particles were used to evaluate the interactions between ions and soil particles. The distribution of Gibbs free adsorption energies could not be determined experimentally before the development of Wien effect measurements in dilute soil suspensions. In the current study, energy relationships between heavy metal ions and particles of Hapli-Udic Argosol (Alfisol) and Ferri-Udic Argosol were inferred from Wien effect measurements in dilute suspensions of homoionic soil particles (< 2 μm) of the two soils, which were saturated with ions of five heavy metals, in deionized water. The mean Gibbs free binding energies of the heavy metal ions with Hapli-Udic Argosol and Ferri-Udic Argosol particles diminished in the order of Pb2+>Cd2+>Cu2+> Zn2+ >Cr3+, where the range of binding energies for Hapli-Udic Argosol (7.25-9.32 kJ mol-1) was similar to that for Ferri-Udic Argosol (7.43-9.35 kJ mol-1). The electrical field-dependent mean Gibbs free adsorption energies of these heavy metal ions for Hapli-Udic Argosol and for Ferri-Udic Argosol descended in the order: Cu2+≥ Cd2+≥ Pb2+ > Zn2+>Cr3+,and Cd2+ >Cu2+>Pb2+>Zn2+>Cr3+, respectively. The mean Gibbs free adsorption energies of Cu2+, Zn2+, Cd2+,Pb2+, and Cr3+ at a field strength of 200 kV cm-1, for example, were in the range of 0.8-3.2 kJ mol-1 for the two soils.

  10. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies. (United States)

    Luo, Junhua; Xu, Hongwu; Liu, Yun; Zhao, Yusheng; Daemen, Luke L; Brown, Craig; Timofeeva, Tatiana V; Ma, Shengqian; Zhou, Hong-Cai


    A highly stable porous lanthanide metal-organic framework, Y(BTC)(H2O).4.3H2O (BTC = 1,3,5-benzenetricarboxylate), with pore size of 5.8 A has been constructed and investigated for hydrogen storage. Gas sorption measurements show that this porous MOF exhibits highly selective sorption behaviors of hydrogen over nitrogen gas molecules and can take up hydrogen of about 2.1 wt % at 77 K and 10 bar. Difference Fourier analysis of neutron powder diffraction data revealed four distinct D2 sites that are progressively filled within the nanoporous framework. Interestingly, the strongest adsorption sites identified are associated with the aromatic organic linkers rather than the open metal sites, as occurred in previously reported MOFs. Our results provide for the first time direct structural evidence demonstrating that optimal pore size (around 6 A, twice the kinetic diameter of hydrogen) strengthens the interactions between H2 molecules and pore walls and increases the heat of adsorption, which thus allows for enhancing hydrogen adsorption from the interaction between hydrogen molecules with the pore walls rather than with the normally stronger adsorption sites (the open metal sites) within the framework. At high concentration H2 loadings (5.5 H2 molecules (3.7 wt %) per Y(BTC) formula), H2 molecules form highly symmetric novel nanoclusters with relatively short H2-H2 distances compared to solid H2. These observations are important and hold the key to optimizing this new class of rare metal-organic framework (RMOF) materials for practical hydrogen storage applications.

  11. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling. (United States)

    Zhao, Yanping; Gu, Xueyuan; Li, Shiyin; Han, Ruiming; Wang, Guoxiang


    Adsorption of tetracycline (TC) on kaolinite and montmorillonite was investigated using batch adsorption experiments with different pH, ionic strength, and surface coverage. As a result, pH and ionic strength-dependent adsorption of TC was observed for the two clay minerals. The adsorption of TC decreased with the increase of pH and ionic strength, and high initial TC concentration had high adsorption. In addition, a triple-layer model was used to predict the adsorption and surface speciation of TC on the two minerals. As a result, four complex species on kaolinite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), ≡SOH(0)∙H2TC(±), and ≡SOH(0)∙HTC(-)) and three species on montmorillonite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), and ≡SOH(0)∙HTC(-)) were structurally constrained by spectroscopy, and these species were also successfully fitted to the adsorption edges of TC. Three functional groups of TC were involved in these adsorption reactions, including the positively charged dimethylamino group, the C=O amide I group, and the C=O group at the C ring. Combining adsorption experiments and model in this study, the adsorption of TC on kaolinite and montmorillonite was mainly attributed to cation exchange on the surface sites (≡X(-)) compared to surface complexation on the edge sites (≡SOH) at natural soil pH condition. Moreover, the surface adsorption species, the corresponding adsorption modes, and the binding constants for the surface reactions were also estimated.

  12. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li


    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  13. Influence of Multi-Valency, Electrostatics and Molecular Recognition on the Adsorption of Transition Metal Complexes on Metal Oxides: A Molecular Approach to Catalyst Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M


    In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and alumina materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.

  14. Adsorption studies of molasse's wastewaters on activated carbon: modelling with a new fractal kinetic equation and evaluation of kinetic models. (United States)

    Figaro, S; Avril, J P; Brouers, F; Ouensanga, A; Gaspard, S


    Adsorption kinetic of molasses wastewaters after anaerobic digestion (MSWD) and melanoidin respectively on activated carbon was studied at different pH. The kinetic parameters could be determined using classical kinetic equations and a recently published fractal kinetic equation. A linear form of this equation can also be used to fit adsorption data. Even with lower correlation coefficients the fractal kinetic equation gives lower normalized standard deviation values than the pseudo-second order model generally used to fit adsorption kinetic data, indicating that the fractal kinetic model is much more accurate for describing the kinetic adsorption data than the pseudo-second order kinetic model.

  15. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors. (United States)

    Vojvodic, A; Ruberto, C; Lundqvist, B I


    This study explores atomic and molecular adsorption on a number of early transition-metal carbides (TMCs) in NaCl structure by means of density-functional theory calculations. The investigated substrates are the TM-terminated TMC(111) surfaces, of interest because of the presence of different types of surface resonances (SRs) on them and because of their technological importance in growth processes. Also, TM compounds have shown potential in catalysis applications. Trend studies are conducted with respect to both period and group in the periodic table, choosing the substrates ScC, TiC, VC, ZrC, NbC, δ-MoC, TaC, and WC (in NaCl structure) and the adsorbates H, B, C, N, O, F, NH, NH(2), and NH(3). Trends in adsorption strength are explained in terms of surface electronic factors, by correlating the calculated adsorption-energy values with the calculated surface electronic structures. The results are rationalized by use of a concerted-coupling model (CCM), which has previously been applied successfully to the description of adsorption on TiC(111) and TiN(111) surfaces (Ruberto et al 2007 Solid State Commun. 141 48). First, the clean TMC(111) surfaces are characterized by calculating surface energies, surface relaxations, Bader charges, and surface-localized densities of states (DOSs). Detailed comparisons between surface and bulk DOSs reveal the existence of transition-metal localized SRs (TMSRs) in the pseudogap and of several C-localized SRs (CSRs) in the upper valence band on all considered TMC(111) surfaces. The spatial extent and the dangling bond nature of these SRs are supported by real-space analyses of the calculated Kohn-Sham wavefunctions. Then, atomic and molecular adsorption energies, geometries, and charge transfers are presented. An analysis of the adsorbate-induced changes in surface DOSs reveals a presence of both adsorbate-TMSR and adsorbate-CSRs interactions, of varying strengths depending on the surface and the adsorbate. These variations are

  16. Adsorption of superfluid 4He films on planar heavy-alkali metals studied with the Orsay-Trento density functional (United States)

    Szybisz, Leszek


    The wetting of planar surfaces of alkali metals (Cs, Rb, K, and Na) by superfluid 4He films at T=0 K is theoretically studied. Calculations have been carried out by using the Orsay-Trento nonlocal density functional and the adsorption potential of Chizmeshya-Cole-Zaremba. Surface tensions and contact angles are determined for several approximations. We find that the conclusion on the wetting of an Rb substrate is sensible to the gradient-gradient term in the functional and the softness of the He-metal interaction.

  17. The influence of adsorption coating on molecular heat transfer in the system `rarefied gas — metal' (United States)

    Ukhov, A. I.; Borisov, S. F.; Porodnov, B. T.


    Based on the classical concept of atomic motion and the Goodman and Wachman lattice theory, we have developed a computer program to model the equilibrium and non-equilibrium scattering of helium atoms by 3D tungsten crystal lattice with allowance for adsorption surface coating. Within the concept of energy accommodation coefficient, we have calculated the rate of molecular heat transfer of helium to clean tungsten surface or to tungsten surface partially covered with an adsorbate. The calculations were performed for various surface temperatures. The calculated dependences were compared to test data obtained in experiments with surfaces controlled in terms of their chemical composition. Within the developed approach, the simulations proved capable of providing an adequate description to experimental data obtained for the equilibrium energy accommodation coefficient on the clean surface, and also for the non-equilibrium energy accommodation coefficient for the surface partially covered with adsorbate.

  18. A transverse isotropic model for microporous solids: Application to coal matrix adsorption and swelling (United States)

    Espinoza, D. N.; Vandamme, M.; Dangla, P.; Pereira, J.-M.; Vidal-Gilbert, S.


    Understanding the adsorption-induced swelling in coal is critical for predictable and enhanced coal bed methane production. The coal matrix is a natural anisotropic disordered microporous solid. We develop an elastic transverse isotropic poromechanical model for microporous solids which couples adsorption and strain through adsorption stress functions and expresses the adsorption isotherm as a multivariate function depending on fluid pressure and solid strains. Experimental data from the literature help invert the anisotropic adsorptive-mechanical properties of Brzeszcze coal samples exposed to CO2. The main findings include the following: (1) adsorption-induced swelling can be modeled by including fluid-specific and pressure-dependent adsorption stress functions into equilibrium equations, (2) modeling results suggest that swelling anisotropy is mostly caused by anisotropy of the solid mechanical properties, and (3) the total amount of adsorbed gas measured by immersing coal in the adsorbate overestimates adsorption amount compared to in situ conditions up to ˜20%. The developed fully coupled model can be upscaled to determine the coal seam permeability through permeability-stress relationships.

  19. Derivation of adsorption parameters for nanofiltration membranes using a 1-pK Basic Stern model

    NARCIS (Netherlands)

    de Lint, W.B.S.; Benes, Nieck Edwin; Higler, A.P.; Verweij, H.


    The ion retention and flux of nanofiltration (NF) membranes are to a large extent determined by the membrane surface charge. This surface charge is in turn strongly influenced by adsorption of ions from the solution onto the membrane material. A 1-pK adsorption model with a Basic Stern electrostatic

  20. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis


    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  1. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Osifo, Peter O., E-mail: [Department of Chemical Engineering, Vaal University of Technology, P/Bag X021, Vanderbijlpark 1900 (South Africa); Neomagus, Hein W.J.P.; Everson, Raymond C. [School of Chemical and Minerals Engineering, North-West University, P/Bag X6001, Potchefstroom 2520 (South Africa); Webster, Athena [University of Utah, Chemistry Department, Salt Lake City, UT 84112 (United States); Gun, Marius A. vd [Sulzer Elbar B.V., Spikweien 36, NL-5943 AD Lomm (Netherlands)


    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead.

  2. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework (United States)

    Mohideen, M. Infas H.; Xiao, Bo; Wheatley, Paul S.; McKinlay, Alistair C.; Li, Yang; Slawin, Alexandra M. Z.; Aldous, David W.; Cessford, Naomi F.; Düren, Tina; Zhao, Xuebo; Gill, Rachel; Thomas, K. Mark; Griffin, John M.; Ashbrook, Sharon E.; Morris, Russell E.


    Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as ‘protecting groups’ to accomplish selective transformations that are difficult using standard chemistry techniques.

  3. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University


    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  4. Modeling adsorption of liquid mixtures on porous materials

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander


    The multicomponent potential theory of adsorption (MPTA), which was previously applied to adsorption from gases, is extended onto adsorption of liquid mixtures on porous materials. In the MPTA, the adsorbed fluid is considered as an inhomogeneous liquid with thermodynamic properties that depend...... on the distance from the solid surface (or position in the porous space). The theory describes the two kinds of interactions present in the adsorbed fluid, i.e. the fluid-fluid and fluid-solid interactions, by means of an equation of state and interaction potentials, respectively. The proposed extension...

  5. Adsorption of gases and large polycyclic organic molecules in metal-organic frameworks (United States)

    Siberio-Perez, Diana Yazmin

    Metal-organic frameworks (MOFs) are a class of porous materials with unique properties, including size tunable pores and cavities that allow for high surface areas and high levels of porosity. These properties make MOFs appealing for a number of traditional processes such as separations and catalysis, and for areas of current interest such as gas storage. The implementation of these frameworks into these areas first requires an understanding of the adsorbene-adsorbent interactions. For this reason, the adsorption behavior of CH4, N2, and CO2 (298 K, 30 bar) in a series of isoreticular MOFs (IRMOFs) was investigated by Raman spectroscopy. The data were marked by different shifts to the normal vibrational modes of the gases, depending on the IRMOF to which they were adsorbed. These shifts arise due to interactions within the framework pores, and not with the outer crystal surface. In all cases, Raman spectra at pressures up to 30 bar showed that saturation of the sorption sites does not occur. The observed shifts of the vibrational modes for each gas indicate different chemical environments within different IRMOFs, pointing to the important role the linkers play in the adsorption of gases. Despite the fact that MOFs possess surface areas that exceed those of other porous materials, no method of determining the upper limit in surface area for a material had yet been determined. Here, a general strategy is presented that has allowed for the realization of a structure that has one of the highest surface areas reported to date. The design and inclusion properties of crystalline Zn4O(1,3,5-benzenetribenzoate)2, a framework with a surface area measured to exceed 4,500 m2/g, is reported. This framework, named MOF-177, combines this exceptional level of surface area with an ordered structure that has extra-large pores capable of binding polycyclic organic guest molecules, that include C60 and several dyes. Size and isomer selectivity may also be achieved with MOF-177, as

  6. Optimization of parameters for competitive adsorption of heavy metal ions (Pb{sup +2}, Ni{sup +2}, Cd{sup +2}) onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kavand, Mohammad; Kaghazchi, Tahereh; Soleimani, Mansooreh [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)


    This study investigates optimization of various competitive adsorption parameters for removal of Cd(II), Ni(II) and Pb(II) from aqueous solutions by commercial activated carbon (AC) using the Taguchi method. Adsorption parameters such as initial metal concentration of each metal ion (C{sub 0,i}), initial pH (pH0), adsorbent dosage (m) and contact time (t) in batch technique were studied to observe their effects on the total adsorption capacity of metals onto activated carbon (q{sub tot}). The adsorbent dosage has been found to be the most significant parameter. Interactions between C{sub 0,Cd} x C{sub 0,Ni}, C{sub 0,Cd} x C{sub 0,Pb} and C{sub 0,Ni} x C{sub 0,Pb} have been considered for simultaneous metal ions adsorption. The optimum condition for adsorption of metal ions were obtained with C{sub 0,i}=100 mg L{sup -1}, pH{sub 0}=7, m=2 g L{sup -1} and t=80min. Finally, experimental results showed that a multi-staged adsorptive treatment would be necessary to reach the minimal discharge standards of metal ions in the effluent.

  7. Chemical modeling of boron adsorption by humic materials using the constant capacitance model (United States)

    The constant capacitance surface complexation model was used to describe B adsorption behavior on reference Aldrich humic acid, humic acids from various soil environments, and dissolved organic matter extracted from sewage effluents. The reactive surface functional groups on the humic materials wer...

  8. The role of dissolved organic matter and its adsorption for the fate of heavy metals in clay-rich soil (United States)

    Refaey, Yasser B.; Jansen, Boris; El-Shater, Abdel-Hamid; El-Haddad, Abdel-Aziz; Kalbitz, Karsten


    Heavy metals (HMs), due to their toxic and hazardous nature, are possibly the most widespread contaminants imposing a serious threat to human health. To find out the effect of dissolved organic matter (DOM) and soil constituents on the uptake of Cu, Ni, and Zn, batch adsorption experiments were conducted using five soils sampled from Egypt. Sorption data were interpreted in terms of the initial mass (IM) isotherm model. In all soils, for all metals and in all experiments, the majority of the HMs were immobilized on the solid phase. The addition of DOM and timing thereof was found to play a pivotal role in determining the affinity of the HMs for the solid phase. When DOM and HMs were added simultaneously, Cu affinity decreased in Fe-(hydr)oxide rich soils (by 7%) and increased in soils poor in Fe-(hydr)oxide (by 6-10%). When DOM was added first, followed by HMs in a later stage affinity of Cu strongly increased in most soils. In contrast, for both Ni and Zn the affinity to the solid phase was enhanced (3-18%) in presence of DOM regardless of whether the DOM was added simultaneously with or prior to HMs addition. The difference is explained by Cu binding to the solid phase and to DOM through strong inner-sphere complexes, whereas Ni and Zn interacted predominantly through weaker electrostatic interactions. As a result Cu was able to bind more strongly to previously adsorbed DOM on the solid phase in case of smectite, while this effect was counteracted by the coating of available specific binding sites on Fe-(hydr)oxides.

  9. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. (United States)

    Karaca, S; Gürses, A; Ejder, M; Açikyildiz, M


    The adsorption of phosphate from aqueous solution on dolomite was investigated at 20 and 40 degrees C in terms of pseudo-second-order mechanism for chemical adsorption as well as an intraparticle diffusion mechanism process. Adsorption was changed with increased contact time, initial phosphate concentration, temperature, solution pH. A pseudo-second-order model and intraparticle diffusion model have been developed to predict the rate constants of adsorption and equilibrium capacities. The activation energy of adsorption can be evaluated using the pseudo-second-order rate constants. The adsorption of phosphate onto dolomite are an exothermically activated process. A relatively low activation energy and a model highly fitting to intraparticle diffusion suggest that the adsorption of phosphate by dolomite may involve not only physical but also chemisorption. This was likely due to its combined control of chemisorption and intraparticle diffusion. However, for phosphate/dolomite system chemical reaction is important and significant in the rate-controlling step, and for the adsorption of phosphate onto dolomite the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.

  10. Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes. (United States)

    Apul, Onur Guven; Zhou, Yang; Karanfil, Tanju


    This paper examines the adsorption of environmentally relevant halogenated aliphatic compounds using single-walled (SWCNT) and multi-walled carbon nanotubes (MWCNT), and the development of linear solvation-energy relationships (LSER) to examine those adsorption mechanisms. The poly-parameter LSER model was also compared to those previously generated for the adsorption of aromatic compounds by CNTs. The adsorption affinity of aliphatic compounds was greater on the SWCNT than MWCNT with similar oxygen contents. This was attributed to the pore-filling mechanism that was enhanced by higher micropore volume of the SWCNT bundles over the MWCNT bundles. LSER models showed that, at higher concentrations, B (the hydrogen bond accepting ability) was the most influential descriptor for both SWCNT and MWCNT. Other important descriptors were V followed by P, both of which exhibited a positive correlation with adsorption, indicating that their size and polarizability favors adsorption. The contribution of these descriptors to overall adsorption was 2-3 times less than the B. In comparison, V was the most important descriptor in the aromatic compound LSER models. This difference indicates that adsorbate hydrophobicity greatly affects the adsorption of aromatic compounds by CNTs, whereas, aliphatic compounds are affected by both the hydrophobic driving force and other interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. (United States)

    Elhafez, S E Abd; Hamad, H A; Zaatout, A A; Malash, G F


    In the last decades, Egypt has been suffering from the phenomenon of black cloud resulting from burning rice husk and increasing the demand for water leading to the water crisis. An alternative, low-value and surplus agricultural byproduct (rice husk, RH) has an enormous potential for the removal of Cu(II) ions from water. The present study focuses on the chance of the use of rice husk as a bio-adsorbent without any chemical treatment instead of burning it and soiling the environment. The elemental, structural, morphological, surface functional, thermal, and textural characteristics of RH are determined by XRF, XRD, SEM, FT-IR, TGA, and BET surface area, respectively, and contributed to the understanding of the adsorption mechanism of Cu(II) ions in aqueous solution. Also, the performance analysis, adsorption mechanism, influencing factors, favorable conditions, etc. are discussed in this article. The results obtained from optimization by batch mode are achieved under the following conditions: initial concentration, 150 ppm; amount of rice husk, 1 g; average particle size, 0.25 mm; temperature, 25 °C; pH, 4; agitation rate, 180 rpm; and contact time, 60 min. RH exhibits a high degree of selectivity for Cu(II) adsorption. The adsorption isotherm is fitted well with Langmuir and Freundlich models with R (2) 0.998 and 0.997, respectively. The adsorption is well governed by the pseudo-second-order kinetics. It is observed that the rate of adsorption improves with decreasing temperature, and the process is exothermic and non-spontaneous. Particular attention has being paid to factors as production processes, fixed/operational cost, production cost, and profit. The techno-economical analysis is presented in this study that provides precise demands on capital for a fixed investment, provisions for operational capital, and finally provisions for revenue. The social, economical, and environmental benefits by industrial point of view using low-cost adsorbent are also

  12. Modelling of copper and zinc adsorption onto zeolite

    Directory of Open Access Journals (Sweden)

    H. Pavolová


    Full Text Available Adsorption of Cu(II and Zn(II ions from metallurgical solutions has been studied and the adsorption capacity of zeolite (Nižný Hrabovec, SK has been determined. Zeolites are characterized by relatively high sorption capacity, i.e. Cu(II and Zn(II can be removed even at relatively low concentrations. The experiments were realised in a batch system and evaluated using isotherms. According to the results of the experiments the adsorption equilibrium of Cu(II and Zn(II on zeolite was best described by Freundlich isotherm. The maximum sorption capacity was 1,48 and 1,49 mg/g for Cu(II and Zn(II, respectively. The experimental results of this study demonstrate that zeolite is suitable for adsorption of copper and zinc from aqueous solutions at low concentrations.

  13. Surface-complexation modelling for describing adsorption of ...

    African Journals Online (AJOL)


    Jun 8, 2013 ... eutrophication, anoxia, and degradation of freshwater habitats. (Bennett et al., 2001). Natural ... phosphate in soils and aquifers occurs through adsorption onto ...... typical of most polluted natural settings, the results from the.

  14. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Tanuwijaya, V. V., E-mail: [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung Jalan Ganeca 10 Gd. T.P. Rachmat, Bandung 40132 (Indonesia); Hidayat, N. N., E-mail:; Agusta, M. K., E-mail:; Dipojono, H. K., E-mail:


    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  15. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks (United States)

    Tanuwijaya, V. V.; Hidayat, N. N.; Agusta, M. K.; Dipojono, H. K.


    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO3 sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.


    Institute of Scientific and Technical Information of China (English)

    HUANGWenqiang; HANLijun; 等


    Metal ion-imprintedly crosslinked chitosan resin 1 and resin 2 were prepared by the use of Cu2+ and Ni2+ as template ions and glutaraldehyde as crosslinking agent,respectively,Through investigation on the adsorption capacties and binding constants for Cu2+,Ni2+ and Co2+ ions on chitosan resins,resin 1 and resin 2 exhibit the adsorption selectivity for the mixture solution of 1L1 Cu2+ and Ni2+ ions.The adsorption selectivity of metal ion-imprinted resins for their template ions in much higher than that of uncrosslinked chitosan resin.

  17. Kinetic model of water vapour adsorption by gluten-free starch (United States)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena


    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  18. Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. (United States)

    Vijver, Martina G; Wolterbeek, Hubert Th; Vink, Jos P M; van Gestel, Cornelis A M


    In terrestrial organisms, bioaccumulation is usually based on a summation of the amount of metal adsorbed to the body wall and absorbed into the body. The relative proportions of metal adsorption and absorption are usually not quantified. In this study, the distinction between adsorbed and absorbed metals was investigated in two different terrestrial species exposed to metals for 2 weeks. The earthworm Lumbricus rubellus was chosen as representative for organisms mainly taking up metals via the dermal route, and the isopod Porcellio scaber as an organism taking up metals mainly via the alimentary tract. Cross-sections of whole animals were made using a cryostat and accumulated metals were localized by means of a phosphor screen (autoradiography). Radiolabels were used to determine the distribution of metals over the different organs and to distinguish between adsorption and absorption. Cd in the earthworm was mainly found in tissues of the chloragogenous region, whereas Zn was also found in various other organs and in the connective tissue. In the isopod, both Cd and Zn were mainly located in the hepatopancreas. Adsorbed amounts of Cd and Zn were negligible compared to internalized Cd and Zn concentrations for both organisms. Consequently, when focusing on effects of metal uptake for the organism itself, there is no need to correct for adsorption. This suggests that adsorption to the epidermis is not a rate limiting step in metal uptake by soil invertebrates.

  19. Adsorption of Toxic Metals and Control of Mosquitos-borne Disease by Lysinibacillus sphaericus: Dual Benefits for Health and Environment. (United States)

    Javier, Edo Vargas; Jenny, Dussán


    Assessment of the bacterium L. sphaericus as a dual-action candidate for biological control of mosquito-borne diseases and bioremediation of toxic metals. Larvae of the mosquito, C. quinquefasciatus, were first evaluated for metal tolerance and then exposed to 5 ppm cadmium, chromium, arsenic, and lead in assays together with seven strains of L. sphaericus. A probit regression analysis was used to estimate the LC(50) of Cd, Cr, As, and Pb to C. quinquefasciatus. An analysis of covariance and multifactorial ANOVA examined the metal biosorption and larvicidal properties of the seven strains of L. sphaericus. We found that L. sphaericus adsorbed the toxic metal ions and was toxic against mosquito larvae. The L. sphaericus strain III(3)7 resulted in a larvae mortality of over 80% for all the tested metals. This strain also exhibited the capacity to adsorb 76% of arsenic, 32% of lead, 25% of chromium, and 7% of cadmium. This study found combined metal adsorption and larval toxicity associated with three strains of L. sphaericus [III(3)7, OT4b.31, and CBAM5]. This suggests that a combination of these strains shows strong dual potential for biological control of mosquitos in heavy metal-contaminated areas and remediate the heavy metal contamination as well. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. A comparative study of fibrinogen adsorption onto metal oxide thin films (United States)

    Silva-Bermudez, P.; Muhl, S.; Rodil, S. E.


    One of the first events occurring upon foreign material-biological medium contact is the adsorption of proteins, which evolution greatly determines the cells response to the material. Protein-surface interactions are a complex phenomenon driven by the physicochemical properties of the surface, protein(s) and liquid medium involve in the interaction. In this article the adsorption of fibrinogen (Fbg) onto Ta2O5, Nb2O5, TiO2 and ZrO2 thin films is reported. The adsorption kinetics and characteristics of the adsorbed fibrinogen layer were studied in situ using dynamic and spectroscopic ellipsometry. The films wettability, surface energy (γLW/AB) and roughness were characterized aiming to elucidate their correlations with Fbg adsorption. The adsorption rate changed accordingly to the film; the fastest adsorption rate and highest Fbg surface mass concentration (Γ) was observed on ZrO2. The hydrophobic/hydrophilic character of the oxide highly influenced Fbg adsorption. On Ta2O5, Nb2O5 and TiO2, which were either hydrophilic or in the breaking-point between hydrophilicity and hydrophobicity, Γ was correlated to the polar component of γLW/AB and roughness of the surface. On ZrO2, clearly hydrophobic, Γ increased significantly off the correlation observed for the other films. The results indicated different adsorption dynamics and orientations of the Fbg molecules dependent on the surface hydrophobic/hydrophilic character.

  1. Modeling of Cd Uptake and Efflux Kinetics in Metal-Resistant Bacterium Cupriavidus metallidurans

    NARCIS (Netherlands)

    Hajdu, R.; Pinheiro, J.P.; Galceran, J.; Slaveykova, V.I.


    The Model of Uptake with Instantaneous Adsorption and Efflux, MUIAE, describing and predicting the overall Cd uptake by the metal-resistant bacterium Cupriavidus metallidurans CH34, is presented. MUIAE takes into account different processes at the bacteria-medium interface with specific emphasis on

  2. CO{sub 2} adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X)

    Energy Technology Data Exchange (ETDEWEB)

    Zhijian Liang; Marc Marshall; Alan L. Chaffee [Monash University, Vic. (Australia). Cooperative Research Centre for Greenhouse Gas Technology (CO2CRC) and School of Chemistry


    The potential for the metal organic framework (MOF) Cu-BTC to selectively adsorb and separate CO{sub 2} is considered. Isotherms for CO{sub 2}, CH{sub 4}, and N{sub 2} were measured from 0 to 15 bar and at temperatures between 25 and 105{sup o}C. The isotherms suggest a much higher working capacity (x4) for CO{sub 2} adsorption on Cu-BTC relative to the benchmark zeolite 13X over the same pressure range. Higher CO{sub 2}/N{sub 2} and CO{sub 2}/CH{sub 4} selectivities in the higher pressure range (1-15 bar) and with lower heats of adsorption were also demonstrated. Cu-BTC was observed to be stable in O{sub 2} at 25{sup o}C, but its crystallinity was reduced in humid environments. The CO{sub 2} adsorption capacity was progressively reduced upon cyclic exposure to water vapor at low relative humidity (<30%), but leveled out at 75% of its original value after several water adsorption/desorption cycles. 27 refs., 1 fig.

  3. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane (United States)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan


    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  4. Numerical analysis of nitrogen adsorption isotherms on active carbons by an employment of the new LBET class models. (United States)

    Kwiatkowski, Mirosław


    The reported research concerns properties of the new LBET class models designed to describe the heterogeneous adsorption on microporous carbonaceous materials. In particular, the new adsorption models were used for the analysis of the microporous structure of two active carbons on the basis of nitrogen adsorption isotherms. This paper gives more information on the properties of the proposed identification technique.

  5. Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models. (United States)

    Ocampo-Perez, Raul; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa M


    The concentration decay curves for the adsorption of phenol on organobentonite were obtained in an agitated tank batch adsorber. The experimental adsorption rate data were interpreted with diffusional models as well as first-order, second-order and Langmuir kinetic models. The surface diffusion model adjusted the data quite well, revealing that the overall rate of adsorption was controlled by surface diffusion. Furthermore, the surface diffusion coefficient increased raising the mass of phenol adsorbed at equilibrium and was independent of the particle diameter in the range 0.042-0.0126 cm. It was demonstrated that the overall rate of adsorption was essentially not affected by the external mass transfer. The second-order and the Langmuir kinetic models fitted the experimental data quite well; however, the kinetic constants of both models varied without any physical meaning while increasing the particle size and the mass of phenol adsorbed at equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Mathematical modelling and simulation on the adsorption of Hydrogen Sulfide (H2S) gas (United States)

    Zulkefli, N. N.; Masdar, M. S.; Isahak, W. R. W.; Jahim, J.; Majlan, E. H.; Rejab, S. A. M.; Lye, C. C.


    Hydrogen sulfide, H2S, a pollutant in biofuel gas, i.e., biohydrogen and biomethane, is produced at concentrations ranging from 100 ppm to 10,000 ppm and is recommended to be removed at the early stage of gas purification because it is known as a problematic compound. In this study, adsorption technologies show a promising technique to remove H2S from biofuel gas, which mainly depends on the operating parameters and adsorbent ability. In this study, the development of the models is important to investigate the fundamentals of H2S adsorption mechanism. The fitted mathematics model was performed by considering several assumptions made for fixed-bed adsorption, leading to the determination of the breakthrough curve by solving a set of partial differential equations (PDEs). The operating parameters were as follows: varied inlet concentration at 1000 ppm to 10,000 ppm, flow rate at 0.2 L/min to 0.6 L/min, length bed used at 10 cm to 30 cm, and pressure at 1.5 atm to 5 atm. The adsorption performance was also studied by using commercial activated carbon such as palm kernel shell (PKS-AC), coconut shell activated carbon (coconut shell-AC), and zeolite ZSM-5. To support the effectiveness of the mathematical models, the adsorption test was performed by loading the adsorbent into the fixed-bed adsorption column at an overall diameter of 6 cm and height of 30 cm. The system operated under room temperature, H2S inlet concentration of 1000 ppm, and varying flow rate as in the modelling for PKS-AC. As a result, in the modelling study, the inlet concentration effect was highest in adsorption capacity, breakthrough time, and exhaustion time. However, the increase of flow rate and length bed used only affected the breakthrough and exhaustion times but not adsorption capacity. The total pressure used did not affect adsorption performance. Coconut shell-AC shows longer exhaustion time compared with other adsorbents due to the less frequent changes of adsorbent. In the experimental

  7. Site-selective adsorption of protein induced by a metal pattern on a poly(ethylene terephthalate) surface. (United States)

    Cao, Jiali; Wu, Zhongkui; Li, Shaoying; Tang, Hongxiao; Mei, Qilin


    A novel technique for inducing site-selective adsorption of protein through constructing metal patterns on flexible poly(ethylene terephthalate) surfaces is presented. The substrates were first modified by vacuum ultraviolet (VUV) irradiation through a photomask to introduce regions with different functional groups. Then the designed metal patterns were constructed on the surfaces of VUV-treated substrates. The surface rearrangement was effectively prevented by constructing silver patterns on poly(ethylene terephthalate) surfaces, thus significantly improving the stability and selectivity of protein adsorption on the surfaces. Moreover, the protein-repulsive layer further reinforced the effect. Finally, protein patterns were successfully obtained. As confirmed by fluorescence microscope, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and static water contact angle measurement, the protein patterns possess both excellent selectivity and high fidelity. Feature size of the protein patterns surrounded by a protein-repulsive layer was exactly the same as that of the photomask. And the grain sizes of silver particles were approximately 50 nm. This work could potentially be used in various fields such as biomedicine, bioelectronic components, and tissue repair and replacement, where selective adsorption of protein is desired.

  8. Gas adsorption and structural diversity in a family of Cu(II) pyridyl-isophthalate metal-organic framework materials (United States)

    Gould, Jamie A.; Athwal, Harprit Singh; Blake, Alexander J.; Lewis, William; Hubberstey, Peter; Champness, Neil R.; Schröder, Martin


    A family of Cu(II)-based metal-organic frameworks (MOFs) has been synthesized using three pyridyl-isophthalate ligands, H2L1 (4'-(pyridin-4-yl)biphenyl-3,5-dicarboxylic acid), H2L2 (4''-(pyridin-4-yl)-1,1':4',1''-terphenyl-3,5-dicarboxylic acid) and H2L3 (5-[4-(pyridin-4-yl)naphthalen-1-yl]benzene-1,3-dicarboxylic acid). Although in each case the pyridyl-isophthalate ligands adopt the same pseudo-octahedral [Cu2(O2CR)4N2] paddlewheel coordination modes, the resulting frameworks are structurally diverse, particularly in the case of the complex of Cu(II) with H2L3, which leads to three distinct supramolecular isomers, each derived from Kagomé and square nets. In contrast to [Cu(L2)] and the isomers of [Cu(L3)], [Cu(L1)] exhibits permanent porosity. Thus, the gas adsorption properties of [Cu(L1)] were investigated with N2, CO2 and H2, and the material exhibits an isosteric heat of adsorption competitive with leading MOF sorbents for CO2. [Cu(L1)] displays high H2 adsorption, with the density in the pores approaching that of liquid H2. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  9. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects (United States)

    Jeppu, Gautham P.; Clement, T. Prabhakar


    Analytical isotherm equations such as Langmuir and Freundlich isotherms are widely used for modeling adsorption data. However, these isotherms are primarily useful for simulating data collected at a fixed pH value and cannot be easily adapted to simulate pH-dependent adsorption effects. Therefore, most adsorption studies currently use numerical surface-complexation models (SCMs), which are more complex and time consuming than traditional analytical isotherm models. In this work, we propose a new analytical isotherm model, identified as the modified Langmuir-Freundlich (MLF) isotherm, which can be used to simulate pH-dependent adsorption. The MLF isotherm uses a linear correlation between pH and affinity coefficient values. We validated the proposed MLF isotherm by predicting arsenic adsorption onto two different types of sorbents: pure goethite and goethite-coated sand. The MLF model gave good predictions for both experimental and surface complexation-model predicted datasets for these two sorbents. The proposed analytical isotherm framework can help reduce modeling complexity, model development time, and computational efforts. One of the limitations of the proposed method is that it is currently valid only for single-component systems. Furthermore, the model requires a system-specific pH. vs. affinity coefficient relation. Despite these limitations, the approach provides a promising analytical framework for simulating pH-dependent adsorption effects.

  10. Cd adsorption onto bacterial surfaces: A universal adsorption edge? (United States)

    Yee, Nathan; Fein, Jeremy


    In this study, we measure the thermodynamic stability constants for proton and Cd binding onto the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive bacteria Bacillus megaturium, Streptococcus faecalis, Staphylococcus aureus, Sporosarcina ureae, and Bacillus cereus. Potentiometric titrations and Cd-bacteria adsorption experiments yield average values for the carboxyl site pK a, site concentration, and log stability constant for the bacterial surface Cd-carboxyl complex of 5.0, 2.0 × 10 -3 mol/g and 4.0 respectively. Our results indicate that a wide range of bacterial species exhibit nearly identical Cd adsorption behavior as a function of pH. We propose that metal-bacteria adsorption is not dependent on the bacterial species involved, and we develop a generalized adsorption model which may greatly simplify the task of quantifying the effects of bacterial adsorption on dissolved mass transport in realistic geologic systems.

  11. Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites. (United States)

    Levasseur, Benoit; Petit, Camille; Bandosz, Teresa J


    Composites of a copper-based metal-organic framework (MOF) and graphite oxide (GO) were tested for NO2 adsorption and retention of NO in dry and moist conditions. The samples were analyzed before and after exposure to NO2 by thermal analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and adsorption of nitrogen at -196 °C. In dry conditions, the composites exhibit an enhanced NO2 breakthrough capacity compared to MOF and GO separately. This improvement is linked to the increased porosity and the reactive adsorption of NO2 on copper, which leads to the formation of bidentate and monodentate nitrate. Even though less NO2 is adsorbed in moist conditions than in dry ones, the materials are more stable than in dry conditions and the NO retention is enhanced. Water in the challenge gas competes with NO2 to bind to copper, and thus, the number of reactive adsorption sites on which NO2 can be adsorbed/reacted decreases.

  12. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules. (United States)

    Chen, Ran; Riviere, Jim E


    Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  13. Analysis of statistical thermodynamic model for binary protein adsorption equilibria on cation exchange adsorbent

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiaopeng; SU Xueli; SUN Yan


    A study of nonlinear competitive adsorption equilibria of proteins is of fundamental importance in understanding the behavior of preparative chromatographic separation.This work describes the nonlinear binary protein adsorption equilibria on ion exchangers by the statistical thermodynamic (ST) model.The single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin(BSA)on SP Sepharose FF were determined by batch adsorption experiments in 0.05 mol/L sodium acetate buffer at three pH values(4.5,5.0 and 5.5)and three NaCl concentrations(0.05,0.10 and 0.15 mol/L)at pH 5.0.The ST model was found to depict the effects of pH and ionic strength on the single-component equilibria well,with model parameters depending on the pH and ionic strength.Moreover,the ST model gave acceptable fitting to the binary adsorption data with the fltted singlecomponent model parameters,leading to the estimation of the binary ST model parameter.The effects of pH and ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories.Results demonstrate the availability of the ST model for describing nonlinear competitive protein adsorption equilibria in the presence of two proteins.

  14. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.


    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  15. Adsorption Behavior of CH2 and CH3 on Metal Clusters Cun (n=1-6)

    Institute of Scientific and Technical Information of China (English)

    Xi-hui Cheng; Ming-xing Jin; Zhan Hu; Fei-fei Hu; Da-jun Ding


    Using density functional theory with generalized gradient approximation and hybrid functional, we studied the properties of energy, charge population, and vibration of CH2 and CH3 adsorbed on Cun (n=1-6)clusters. The results show that the DFT calculation with the hybrid functional matches the experimental results better in both cases. The calculation results indicate that the adsorption of CH2 is stronger than that of CH3. During adsorption, the charges transfer from Cu to CH2 or CH3. The obtained vibrational frequencies for different modes of CH2 and CH3 adsorbed on Cun agree well with the experimental results for the adsorption on Cu(111) surface.

  16. Evaluation of natural organic matter adsorption on Fe-Al binary oxide: Comparison with single metal oxides. (United States)

    Kim, Kyung-Jo; Jang, Am


    The adsorption characteristics of three types of standard natural organic matter (NOM) on iron-aluminum (Fe-Al) binary oxide (FAO) and heated aluminum oxide (HAO) under natural surface water condition were investigated using various adsorption isotherms and kinetic models. FAO was synthesized by Fe oxide and Al oxide, mixed using the sol-gel hydrothermal method, and aluminum sulfate was used to make HAO. The amount of adsorbed NOM was increased to 79.6 mg g(-1) for humic acid (HA), 101.1 mg g(-1) for sodium alginate (SA) in the FAO, but the maximum adsorption capacity of bovine serum albumin (BSA) (461.3 mg g(-1)) was identified on the HAO. The adsorption of HA, BSA, and SA dramatically increased (>70%) on FAO in 5 min and HA was significantly removed (90%) among the three NOM. Mutual interaction among the adsorbed NOM (BSA) occurred on the HAO surface during adsorption due to formation of monolayer by protein molecules at neutral pH. The pseudo second order clearly represented the adsorption kinetics for both adsorbents. The equilibrium isotherm data of FAO was better exhibited by the Langmuir isotherm model than by the Freundlich isotherm, but HAO was a slightly non-linear Langmuir type. Also, the free energy, enthalpy, and entropy of adsorption were determined from the thermodynamic experiments. Adsorption on FAO was spontaneous and an exothermic process. Fluorescence excitation-emission matrix (FEEM) spectra were used to elucidate the variation in organic components. The results obtained suggests that the significant changes in the surface property of the adsorbent (large surface area, increased crystalline intensity, and fine particle size) were effectively determined by the Fe-synthesized Al oxide mixed using the sol-gel hydrothermal method. The results also suggest that the changes enhanced the adsorption capacity, whereby three NOM were notably removed on FAO regardless of NOM characteristics (hydrophobic and hydrophilic). Copyright © 2017 Elsevier

  17. Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption (United States)

    Wahiduzzaman; Khan, Mujibur R.; Harp, Spencer; Neumann, Jeffrey; Sultana, Quazi Nahida


    The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm-1 which

  18. Mean field lattice model for adsorption isotherms in zeolite NaA (United States)

    Ayappa, K. G.; Kamala, C. R.; Abinandanan, T. A.


    Using a lattice model for adsorption in microporous materials, pure component adsorption isotherms are obtained within a mean field approximation for methane at 300 K and xenon at 300 and 360 K in zeolite NaA. It is argued that the increased repulsive adsorbate-adsorbate interactions at high coverages must play an important role in determining the adsorption behavior. Therefore, this feature is incorporated through a "coverage-dependent interaction" model, which introduces a free, adjustable parameter. Another important feature, the site volume reduction, has been treated in two ways: a van der Waal model and a 1D hard-rod theory [van Tassel et al., AIChE J. 40, 925 (1994)]; we have also generalized the latter to include all possible adsorbate overlap scenarios. In particular, the 1D hard-rod model, with our coverage-dependent interaction model, is shown to be in best quantitative agreement with the previous grand canonical Monte Carlo isotherms. The expressions for the isosteric heats of adsorption indicate that attractive and repulsive adsorbate-adsorbate interactions increase and decrease the heats of adsorption, respectively. It is concluded that within the mean field approximation, our simple model for repulsive interactions and the 1D hard-rod model for site volume reduction are able to capture most of the important features of adsorption in confined regions.

  19. Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14). (United States)

    Karra, Jagadeswara R; Grabicka, Bogna E; Huang, You-Gui; Walton, Krista S


    Metal-organic frameworks (MOFs) are attractive microporous materials for adsorption separations due to their extraordinary structures and impressive high surface areas. Catenation, or framework interpenetration, can significantly impact the crystal stability and improve the adsorption interactions. This interesting approach was used to obtain {[Cu(3)(BTB)(2)(H(2)O)(3)]·(DMF)(9)(H(2)O)(2)} (MOF-14) as a microporous material with a high surface area and large pore volume, which are desirable parameters for adsorption applications. Here, we report a detailed study of this catenated material with its gas adsorption properties. The potential for adsorption separations is evaluated by measuring pure-component adsorption isotherms for carbon dioxide, methane, and nitrogen. The Ideal Adsorbed Solution Theory (IAST) was used to evaluate adsorption selectivities of MOF-14 for CO(2)/CH(4) and CO(2)/N(2) equimolar mixtures. In addition, water adsorption and the impact of exposure on structural degradation are reported. Compared to other open-metal site MOFs, MOF-14 adsorbs significantly less water. This interwoven MOF is a promising competitor to other MOF materials in the gas separation field due to low interactions with water and high selectivity for CO(2) over N(2). Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Applicaiton of a Kinetic Multireaction Model for Studying Metolachlor Adsorption in Soil

    Institute of Scientific and Technical Information of China (English)



    Metolachlor retention on a Sharkey clay soil was quantified using a kinetic batch method for different initial solution concentrations.Time-dependent adsorption was carried out by monitoring solution concentration at different reaction times.Adsorption was kinetic multireaction model which includes reverible and irreversible retention processes of the equilibrium and kinetic types,The predictive capability of the model for the dexcription of experimental results for metolachlor retention was examined and proved to be adequate。

  1. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon. (United States)

    Matsui, Yoshihiko; Ando, Naoya; Sasaki, Hiroshi; Matsushita, Taku; Ohno, Koichi


    Super-powdered activated carbon (S-PAC) is activated carbon of much finer particle size than powdered activated carbon (PAC). Geosmin is a naturally occurring taste and odor compound that impairs aesthetic quality in drinking water. Experiments on geosmin adsorption on S-PAC and PAC were conducted, and the results using adsorption kinetic models were analyzed. PAC pulverization, which produced the S-PAC, did not change geosmin adsorption capacity, and geosmin adsorption capacities did not differ between S-PAC and PAC. Geosmin adsorption kinetics, however, were much higher on S-PAC than on PAC. A solution to the branched pore kinetic model (BPKM) was developed, and experimental adsorption kinetic data were analyzed by BPKM and by a homogeneous surface diffusion model (HSDM). The HSDM describing the adsorption behavior of geosmin required different surface diffusivity values for S-PAC and PAC, which in