WorldWideScience

Sample records for model membranes mimicking

  1. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Directory of Open Access Journals (Sweden)

    Qingqing Lin

    Full Text Available Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM and/or phosphatidylcholine (PC outside/phosphatidylethanolamine (PE and phosphatidylserine (PS inside, and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm" vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  2. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Science.gov (United States)

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm") vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  3. Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane.

    Science.gov (United States)

    Witschas, Katja; Jobin, Marie-Lise; Korkut, Dursun Nizam; Vladan, Maria Magdalena; Salgado, Gilmar; Lecomte, Sophie; Vlachova, Viktorie; Alves, Isabel D

    2015-05-01

    The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1.

    Science.gov (United States)

    Almarwani, Bashiyar; Phambu, Esther Nzuzi; Alexander, Christopher; Nguyen, Ha Aimee T; Phambu, Nsoki; Sunda-Meya, Anderson

    2018-06-01

    The cell-penetrating peptide (CPP) Pep-1 presents a great potential in drug delivery due to its intrinsic property to cross plasma membrane. However, its mechanism of entry into the cell remains unresolved. In this study, we compare the selectivity of Pep-1 towards vesicles mimicking normal and cancer cell membranes. The interaction was performed in a wide range of peptide-to-lipid molar ratios using infrared (IR), fluorescence, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. At low peptide concentration, fluorescence experiments show that lipid-phosphatidylserine (PS) seems to enable Pep-1 translocation into cancer cell membrane as evidenced by the blue shift of its maximal emission wavelength. DSC data show that Pep-1 induces segregation of lipids. At high peptide concentration, IR data indicate that the interaction of Pep-1 is relatively stronger with normal cell membrane than with cancer cell membrane through the phosphate groups, while the interaction is weaker with normal cell membrane than with cancer cell membrane through the carbonyl groups. TGA and DSC data reveal that vesicles of normal cell membrane are thermally more stable than vesicles of cancer cell membrane. This suggests that the additional lipid PS included in cancer cell membrane has a destabilizing effect on the membrane structure. SEM images reveal that Pep-1 form superstructures including spherical particles and fibrils in the presence of both model membranes. PS seems to enhance peptide transport across cellular membranes. The biophysical techniques in this study provide valuable insights into the properties of CPPs in drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Conformational analysis of a synthetic fish kisspeptin 1 peptide in membrane mimicking environments.

    Science.gov (United States)

    Thakuria, Dimpal; Shahi, Neetu; Singh, Atul Kumar; Khangembam, Victoria Chanu; Singh, Arvind Kumar; Kumar, Satish

    2017-01-01

    Kisspeptin 1 is a neuropeptide hormone of the RFamide family, which act as an upstream regulator of brain-pituitary-gonad (BPG) axis in most vertebrates including teleosts. In the present study, a 16 amino acid long putative mature bioactive peptide (kiss 1) from preprokisspeptin 1 of golden mahseer, Tor putitora (Hamilton, 1822), was synthesized and characterized using an integrated (experimental and in silico) approach. The far-UV circular dichroism (CD) spectrum of this peptide was evaluated both in aqueous and membrane mimicking solvents (TFE, HFIP and Dioxane). The results indicate that kiss 1 peptide adopted helical, turn and β conformations in membrane like environments. The near-UV CD spectroscopy was also carried out to examine the tertiary packing around aromatic residues of kiss 1 peptide and the peptide-membrane complex. The kiss 1 peptide exhibited little signal in water, but a prominent negative band was observed at around 275 nm when membrane mimetic solution was added. The observed ordered conformations of kiss 1 peptide in the different solvents indicated its potential biological activity which could enhance the secretion of gonadotropin-releasing hormone (GnRH) at BPG axis. The conformational information generated from the present study reinforces the application prospects of bioactive synthetic peptide analogs of kisspeptin 1 in improving the reproductive performances of important cultivable fish species.

  6. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer

    Science.gov (United States)

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-07-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it.

  7. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  8. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  9. Mimicking cell/extracellular matrix adhesion with lipid membranes and solid substrates: requirements, pitfalls and proposals

    Science.gov (United States)

    Cuvelier, Damien; Vezy, Cyrille; Viallat, Annie; Bassereau, Patricia; Nassoy, Pierre

    2004-07-01

    The interest in physical approaches to the study of cell adhesion has generated numerous recent works on the development of substrates mimicking the extracellular matrix and the use of giant synthetic liposomes, commonly considered as basic models of living cells. The use of well-characterized bioactive substrates and artificial cells should allow us to gain new insight into the cell-extracellular matrix interactions, provided that their biomimetic relevance has been really proved. The aim of this paper is to define some minimal requirements for effective biomimetic features and to propose simple adhesion assays. We show, for instance, that immobilization of specific ligands is sometimes not sufficient to ensure specific adhesion of cells expressing the corresponding receptors. By investigating comparatively the adhesive behaviour of decorated erythrocytes and vesicles, we also discuss the potentialities and limitations of synthetic vesicles as test cells.

  10. Calcium phosphate scaling during wastewater desalination on oligoamide surfaces mimicking reverse osmosis and nanofiltration membranes.

    Science.gov (United States)

    Rathinam, Karthik; Oren, Yoram; Petry, Winfried; Schwahn, Dietmar; Kasher, Roni

    2018-01-01

    Desalinated domestic wastewater is an indispensable water resource in arid regions; however, its recovery can be limited by calcium phosphate scaling and fouling of the membrane. Here we investigated calcium phosphate mineralization on oligoamide surfaces that mimics reverse osmosis (RO) and nanofiltration (NF) membrane surfaces. We used a solution that simulates desalination of secondary treated domestic wastewater effluents for calcium phosphate mineralization experiments with oligoamide-coated gold surfaces. Attenuated total reflection-Fourier transform infrared spectroscopy and energy dispersive spectrometry showed that calcium phosphate and carbonate precipitated on RO mimetic surfaces. The rate of precipitation on oligoamide sensors was monitored by a quartz crystal microbalance, showing that scaling was more intense on the RO than the NF mimetic surface and that excessive carboxyl functional groups on both surfaces promoted scaling. Filtration experiments of similar solutions with commercial membranes showed that scaling was more intense on the RO membranes than on the NF membranes, which supported the results obtained with the oligoamide model surfaces. The results of this study can be implemented in developing RO and NF membranes to prevent calcium phosphate scaling and consequently lower water-treatment costs of domestic wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes

    Science.gov (United States)

    Lombardi, Lucia; Stellato, Marco Ignazio; Oliva, Rosario; Falanga, Annarita; Galdiero, Massimiliano; Petraccone, Luigi; D'Errico, Geradino; de Santis, Augusta; Galdiero, Stefania; Del Vecchio, Pompea

    2017-03-01

    Antimicrobial peptides are promising candidates as future therapeutics in order to face the problem of antibiotic resistance caused by pathogenic bacteria. Myxinidin is a peptide derived from the hagfish mucus displaying activity against a broad range of bacteria. We have focused our studies on the physico-chemical characterization of the interaction of myxinidin and its mutant WMR, which contains a tryptophan residue at the N-terminus and four additional positive charges, with two model biological membranes (DOPE/DOPG 80/20 and DOPE/DOPG/CL 65/23/12), mimicking respectively Escherichia coli and Pseudomonas aeruginosa membrane bilayers. All our results have coherently shown that, although both myxinidin and WMR interact with the two membranes, their effect on membrane microstructure and stability are different. We further have shown that the presence of cardiolipin plays a key role in the WMR-membrane interaction. Particularly, WMR drastically perturbs the DOPE/DOPG/CL membrane stability inducing a segregation of anionic lipids. On the contrary, myxinidin is not able to significantly perturb the DOPE/DOPG/CL bilayer whereas interacts better with the DOPE/DOPG bilayer causing a significant perturbing effect of the lipid acyl chains. These findings are fully consistent with the reported greater antimicrobial activity of WMR against P. aeruginosa compared with myxinidin.

  12. Gold nanoparticles functionalized with angiogenin-mimicking peptides modulate cell membrane interactions.

    Science.gov (United States)

    Cucci, Lorena M; Munzone, Alessia; Naletova, Irina; Magrì, Antonio; La Mendola, Diego; Satriano, Cristina

    2018-04-16

    Angiogenin is a protein crucial in angiogenesis, and it is overexpressed in many cancers and downregulated in neurodegenerative diseases, respectively. The protein interaction with actin, through the loop encompassing the 60-68 residues, is an essential step in the cellular cytoskeleton reorganization. This, in turn, influences the cell proliferation and migration processes. In this work, hybrid nanoassemblies of gold nanoparticles with angiogenin fragments containing the 60-68 sequence were prepared and characterized in their interaction with both model membranes of supported lipid bilayers (SLBs) and cellular membranes of cancer (neuroblastoma) and normal (fibroblasts) cell lines. The comparison between physisorption and chemisorption mechanisms was performed by the parallel investigation of the 60-68 sequence and the peptide analogous containing an extra cysteine residue. Moreover, steric hindrance and charge effects were considered with a third analogous peptide sequence, conjugated with a fluorescent carboxyfluorescein (Fam) moiety. The hybrid nanobiointerface was characterized by means of ultraviolet-visible, atomic force microscopy and circular dichroism, to scrutinize plasmonic changes, nanoparticles coverage and conformational features, respectively. Lateral diffusion measurements on SLBs "perturbed" by the interaction with the gold nanoparticles-peptides point to a stronger membrane interaction in comparison with the uncoated nanoparticles. Cell viability and proliferation assays indicate a slight nanotoxicity in neuroblastoma cells and a proliferative activity in fibroblasts. The actin staining confirms different levels of interaction between the hybrid assemblies and the cell membranes.

  13. Hydrophilic Phage-Mimicking Membrane Active Antimicrobials Reveal Nanostructure-Dependent Activity and Selectivity.

    Science.gov (United States)

    Jiang, Yunjiang; Zheng, Wan; Kuang, Liangju; Ma, Hairong; Liang, Hongjun

    2017-09-08

    The prevalent wisdom on developing membrane active antimicrobials (MAAs) is to seek a delicate, yet unquantified, cationic-hydrophobic balance. Inspired by phages that use nanostructured protein devices to invade bacteria efficiently and selectively, we study here the antibiotic role of nanostructures by designing spherical and rod-like polymer molecular brushes (PMBs) that mimic the two basic structural motifs of bacteriophages. Three model PMBs with different well-defined geometries consisting of multiple, identical copies of densely packed poly(4-vinyl-N-methylpyridine iodide) branches are synthesized by controlled/"living" polymerization, reminiscent of the viral structural motifs comprised of multiple copies of protein subunits. We show that, while the individual linear-chain polymer branch that makes up the PMBs is hydrophilic and a weak antimicrobial, amphiphilicity is not a required antibiotic trait once nanostructures come into play. The nanostructured PMBs induce an unusual topological transition of bacterial but not mammalian membranes to form pores. The sizes and shapes of the nanostructures further help define the antibiotic activity and selectivity of the PMBs against different families of bacteria. This study highlights the importance of nanostructures in the design of MAAs with high activity, low toxicity, and target specificity.

  14. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  15. Artificial Klebsiella pneumoniae biofilm model mimicking in vivo system: altered morphological characteristics and antibiotic resistance.

    Science.gov (United States)

    Singla, Saloni; Harjai, Kusum; Chhibber, Sanjay

    2014-04-01

    The purpose of this study was to develop a biofilm model of Klebsiella pneumoniae B5055, mimicking in vivo biofilm system so as to determine susceptibility of different phases of biofilm to antibiotics by three-dimensional analysis. Artificial mature biofilm of K. pneumoniae was made on black, polycarbonate membranes. Biofilm structure was visualized by scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM). Viable count method, CLSM and SEM analysis confirmed that mature, uniform and viable biofilms can be formed on the polycarbonate membranes by this method. The three-dimensional heterogeneity of biofilm was confirmed on the basis of results of CLSM, which is an important characteristics of in vivo biofilm system. Staining with the LIVE/DEAD BacLight viability kit and acridine orange suggested that the center of biofilm had more inactive cells compared with actively dividing cells on the periphery. Amikacin at a concentration of 40 μg ml⁻¹ was effective against younger biofilm whereas ineffective against older biofilm that showed sparsely populated dead cells using the BacLight viability staining kit. Role of altered morphological characteristics toward increased antibiotic susceptibility was also studied for different phases of K. pneumoniae biofilm by CLSM and light microscopy. Thickness of biofilm increased from 0.093 to 0.231 mm with time. So, both heterogeneity and thickness of the biofilm are likely to influence the ineffectiveness of amikacin in older biofilm. The present model holds considerable clinical relevance and may be useful for evaluating the efficacy of antimicrobial agent on bacterial biofilms in vitro.

  16. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...... oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins....

  17. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  18. Interaction of the amyloid β peptide with sodium dodecyl sulfate as a membrane-mimicking detergent.

    NARCIS (Netherlands)

    Hashemi, Shabestari M.; Meeuwenoord, N.J.; Filippov, D.V.; Huber, M.I.

    2016-01-01

    The amyloid β (A β) peptide is important in the context of Alzheimer's disease, since it is one of the major components of the fibrils that constitute amyloid plaques. Agents that can influence fibril formation are important, and of those, membrane mimics are particularly relevant, because the

  19. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...... and the rejection coefficient. The second model is a stationary model for the flux of solvent and solute in a hollow fibre membrane. In the model we solve the time independent equations for transport of solvent and solute within the hollow fibre. Furthermore, the flux of solute and solvent through the membrane...

  20. Liquid immiscibility in model bilayer lipid membranes

    Science.gov (United States)

    Veatch, Sarah L.

    There is growing evidence that cell plasma membranes are laterally organized into "raft" regions in which particular lipids and proteins are concentrated. These domains have sub-micron dimensions and have been implicated in vital cell functions. Similar liquid domains are observed in model bilayer membrane mixtures that mimick cellular lipid compositions. In model membranes, domains can be large (microns) and can readily form in the absence of proteins. This thesis presents studies of liquid immiscibility in model membrane systems using two experimental methods. By fluorescence microscopy, this thesis documents that miscibility transitions occur in a wide variety of ternary lipid mixtures containing high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol. I have constructed detailed miscibility phase diagrams for three separate ternary lipid mixtures (DOPC/DPPC/Chol, DOPC/PSM/Chol, and POPC/PSM/Chol). Phase separation is also observed in membranes of lipids extracted from human erythrocytes. NMR experiments probe lipid order and verify the coexistence of a saturated lipid and cholesterol rich liquid ordered (Lo) phase with a more disordered, unsaturated lipid rich liquid crystalline (Lalpha) phase at low temperatures. These experiments also find multiple thermodynamic transitions and lipid organization on different length-scales. This complexity is revealed because fluorescence microscopy and NMR probe lipid order at different length-scales (>1mum vs. ˜100nm). NMR detects small domains (˜80nm) at temperatures just below the miscibility transition, even though micron-scale domains are observed by fluorescent microscopy. NMR does detect large-scale ("100nm) demixing, but at a lower temperature. In addition, it has long been known that >10nm length-scale structure is present in many lipid mixtures containing cholesterol and at least one additional lipid species, though it is shown here that only a subset of

  1. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    Science.gov (United States)

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.

    2016-10-01

    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  2. Synthesis of biomorphological mesoporous TiO2 templated by mimicking bamboo membrane in supercritical CO2.

    Science.gov (United States)

    Li, Jinhong; Shi, Xiaoying; Wang, Lijuan; Liu, Fei

    2007-11-01

    A new approach is presented for preparing biomorphological mesoporous TiO2 templated by mimicking bamboo inner shell membrane via supercritical CO2 (SCCO2) transportation through titanium tetrabutyloxide (TTBO). The analysis of wide-angle X-ray powder diffraction (XRD) showed the prepared TiO2 in phase of anatase, and the small-angle XRD revealed the presence of mesopores without periodicity. The product exhibited the shape of crinkled films and extended in two dimensions up to centimeters. The electron microscopic observation showed that the TiO2 films were around 200 nm in thickness, and across the films there were numerous round or ellipse-shaped mesopores, being 10-50 nm in diameter, which were formed by the close packing of TiO2 particles. High-resolution transmission electron microscope (HRTEM) displayed that the single TiO2 particle size was about 12.5 nm. The UV-vis absorption spectrum was transparent in the wavelength of 320-350 nm for suspensions of the prepared mesoporous TiO2 in ethanol at the concentration of 5.0 mg/l. The mesoporous TiO2 prepared with the aid of SCCO2 exhibited an obvious blue shift compared with the TiO2 prepared by sol-gel infiltration. The possible mechanism for the formation of the mesoporous TiO2 is summarized into a biomimetic mineralization pathway. First, TTBO was transported to the membrane surface via SCCO2, and then condensed. Hydrolysis reactions between the functional groups of organic membrane and TTBO took place to form the nuclear TiO2, and the TiO2 seeds grew around the organic membrane into TiO2 mesoporous materials. The approach provides a low-cost and efficient route for the production of ceramics nanomaterials with unique structural features, which may have potential application in designing UV-selective shielding devices [S. Zhao, X.H. Wang, S.B. Xin, Q. Jiang, X.P. Liang, Rare Metal Mater. Eng. 35 (2006) 508-510].

  3. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    Heijman, M.G.J.

    1984-01-01

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  4. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...

  5. A free plate model can predict guided modes propagating in tubular bone-mimicking phantoms.

    Science.gov (United States)

    Minonzio, Jean-Gabriel; Foiret, Josquin; Moilanen, Petro; Pirhonen, Jalmari; Zhao, Zuomin; Talmant, Maryline; Timonen, Jussi; Laugier, Pascal

    2015-01-01

    The goal of this work was to show that a non-absorbing free plate model can predict with a reasonable accuracy guided modes measured in bone-mimicking phantoms that have circular cross-section. Experiments were carried out on uncoated and coated phantoms using a clinical axial transmission setup. Adjustment of the plate model to the experimental data yielded estimates for the waveguide characteristics (thickness, bulk wave velocities). Fair agreement was achieved over a frequency range of 0.4 to 1.6 MHz. A lower accuracy observed for the thinnest bone-mimicking phantoms was caused by limitations in the wave number measurements rather than by the model itself.

  6. Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels.

    Science.gov (United States)

    Casciaro, Sergio; Conversano, Francesco; Musio, Stefano; Casciaro, Ernesto; Demitri, Christian; Sannino, Alessandro

    2009-04-01

    Tissue mimicking phantoms have been widely reported to be an important tool for development, optimisation and performance testing of ultrasound-based diagnostic techniques. In particular, modern applications of tissue mimicking phantoms often include characterisation of the nonlinear behaviour of experimental ultrasound contrast agents. In such cases, the tissue-mimicking materials should be chosen not only based on the values of their density, speed of sound and attenuation coefficient, but also considering their effect on the appearance of "native harmonics" due to nonlinear distortion of ultrasound signal during propagation. In a previous paper it was demonstrated that a cellulose-based hydrogel is suitable to simulate nonlinear acoustical behaviour of liver tissue for thicknesses up to 8 cm. In this paper we present the experimental characterisation of the nonlinear acoustical behaviour of a different polyethylene glycol diacrylate (PEGDA)-based hydrogel, in order to assess whether and how it can improve the performances and overcome some limitations of the cellulose-based hydrogel as liver tissue-mimicking material. Samples of pig liver tissue, cellulose-based hydrogel and PEGDA-based hydrogel were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values. Second harmonic and first harmonic amplitudes were extracted from the spectra of received signals and their difference was then used to compare sample behaviours. Obtained results show how a new more accurate and combined experimental model of linear and nonlinear acoustical behaviour of liver tissue is feasible. In fact, a further confirmation of the cellulose-based hydrogel effectiveness to precisely simulate the liver tissue for penetration depths up to 8 cm was provided, and it was also shown that the employment of the PEGDA-based hydrogel can extend the range of useful tissue-mimicking material thicknesses up to 11 cm, moreover allowing a

  7. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  8. Neutrons and model membranes

    Science.gov (United States)

    Fragneto, G.

    2012-11-01

    Current research in membrane protein biophysics highlights the emerging role of lipids in shaping membrane protein function. Cells and organisms have developed sophisticated mechanisms for controlling the lipid composition and many diseases are related to the failure of these mechanisms. One of the recent advances in the field is the discovery of the existence of coexisting micro-domains within a single membrane, important for regulating some signaling pathways. Many important properties of these domains remain poorly characterized. The characterization and analysis of bio-interfaces represent a challenge. Performing measurements on these few nanometer thick, soft, visco-elastic and dynamic systems is close to the limits of the available tools and methods. Neutron scattering techniques including small angle scattering, diffraction, reflectometry as well as inelastic methods are rapidly developing for these studies and are attracting an increasing number of biologists and biophysicists at large facilities. This manuscript will review some recent progress in the field and provide perspectives for future developments. It aims at highlighting neutron reflectometry as a versatile method to tackle questions dealing with the understanding and function of biomembranes and their components. The other important scattering methods are only briefly introduced.

  9. Modified arctan-gravity model mimicking a cosmological constant

    Science.gov (United States)

    Kruglov, S. I.

    2014-03-01

    A novel theory of F(R) gravity with the Lagrangian density L =[R-(b/β)arctan(βR)]/(2κ2) is analyzed. Constant curvature solutions of the model are found, and the potential of the scalar field and the mass of a scalar degree of freedom in Einstein's frame are derived. The cosmological parameters of the model are calculated, which are in agreement with the PLANCK data. Critical points for the de Sitter phase and the matter dominated epoch of autonomous equations are obtained and studied.

  10. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations......, as model systems to understand the fundamental properties of biomembranes. The properties of lipid bilayers can be studied at different time and length scales. For some properties it is sufficient to envision a membrane as an elastic sheet, while for others it is important to take into account the details...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  11. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  12. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  13. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.

    Science.gov (United States)

    Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L

    2009-01-01

    A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.

  15. Artificial plasma membrane models based on lipidomic profiling.

    Science.gov (United States)

    Essaid, Donia; Rosilio, Véronique; Daghildjian, Katia; Solgadi, Audrey; Vergnaud, Juliette; Kasselouri, Athena; Chaminade, Pierre

    2016-11-01

    Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Interaction of antimicrobial biomimetics with bacterial and cytoplasmic membrane models

    Science.gov (United States)

    Gidalevitz, David

    2010-03-01

    Non-natural mimics of antimicrobial peptides are excellent candidates for anti-infectious agents due to their stability towards enzymatic degradation and broad adjustability of physicochemical properties. This study examines how structural rigidity affects interactions of the AMP analogs with model Langmuir monolayers of phospholipids at the air-liquid interface mimicking bacterial and mammalian lipid membrane surfaces. Flexible acyl-lysine olygomer was more efficient in disrupting Gram-negative rather than Gram-positive bacterial model membrane. Electron density profiles across the film, derived from XR data, demonstrate that following OAK and arylamide insertion into bacterial membrane mimics their hydrophobic cores were located within the lipid acyl chains, inducing opposite local curvatures. Moreover, flexible OAK molecules were found to penetrate the six acyl chains lipid A better than two chain DPPG, while conformationally restrained arylamide molecules, as well as previously characterized natural antimicrobial peptides LL-37, protegrin-1 and SMAP-29, insert into DPPG monolayer with almost identical or better efficiency.

  17. Membranes and theoretical modeling of membrane distillation: a review.

    Science.gov (United States)

    Khayet, Mohamed

    2011-05-11

    Membrane distillation (MD) is one of the non-isothermal membrane separation processes used in various applications such desalination, environmental/waste cleanup, food, etc. It is known since 1963 and is still being developed at laboratory stage for different purposes and not fully implemented in industry. An abrupt increase in the number of papers on MD membrane engineering (i.e. design, fabrication and testing in MD) is seen since only 6 years ago. The present paper offers a comprehensive MD state-of-the-art review covering a wide range of commercial membranes, MD membrane engineering, their MD performance, transport mechanisms, experimental and theoretical modeling of different MD configurations as well as recent developments in MD. Improved MD membranes with specific morphology, micro- and nano-structures are highly demanded. Membranes with different pore sizes, porosities, thicknesses and materials as well as novel structures are required in order to carry out systematic MD studies for better understanding mass transport in different MD configurations, thereby improving the MD performance and looking for MD industrialization. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Molecular Modeling of Nafion Permselective Membranes

    National Research Council Canada - National Science Library

    Vishnyakov, Aleksey M; Neimark, Alexander V

    2005-01-01

    .... We developed molecular models for Nafion and nerve agent simulant DMMP and explored microphase segregation and mechanisms of DMMP sorption and transport in hydrated membranes with K+ counterion...

  19. Modeling branching pore structures in membrane filters

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2016-11-01

    Membrane filters are in widespread industrial use, and mathematical models to predict their efficacy are potentially very useful, as such models can suggest design modifications to improve filter performance and lifetime. Many models have been proposed to describe particle capture by membrane filters and the associated fluid dynamics, but most such models are based on a very simple structure in which the pores of the membrane are assumed to be simple circularly-cylindrical tubes spanning the depth of the membrane. Real membranes used in applications usually have much more complex geometry, with interconnected pores which may branch and bifurcate. Pores are also typically larger on the upstream side of the membrane than on the downstream side. We present an idealized mathematical model, in which a membrane consists of a series of bifurcating pores, which decrease in size as the membrane is traversed. Feed solution is forced through the membrane by applied pressure, and particles are removed from the feed either by sieving, or by particle adsorption within pores (which shrinks them). Thus the membrane's permeability decreases as the filtration progresses, ultimately falling to zero. We discuss how filtration efficiency depends on the characteristics of the branching structure. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  20. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model

    Directory of Open Access Journals (Sweden)

    Yaprak Gedik

    2016-01-01

    To generate a protective vaccine against toxoplasmosis, multistage vaccines and usage of challenging models mimicking natural route of infection are critical cornerstones. In this study, we generated a BAG1 and GRA1 multistage vaccine that induced strong immune response in which the protection was not at anticipated level. In addition, the murine model was orally challenged with tissue cysts to mimic natural route of infection.

  1. Liquid crystal model of membrane flexoelectricity.

    Science.gov (United States)

    Rey, Alejandro D

    2006-07-01

    An interfacial liquid crystal model is formulated and used to derive a membrane shape equation that takes into account pressure, tension, bending, torsion, and flexoelectric forces. Flexoelectricity introduces electric field-induced curvature and is of relevance to the study and characterization of biological membranes. It is shown that flexoelectricity renormalizes the membrane mechanical tension, shear, and bending effects, and hence it offers diverse pathways to manipulate the membrane's shape. The derived electroelastic shape equation provides systematic guidance on how to use electric fields in membrane studies.

  2. Model Answers to Lipid Membrane Questions

    DEFF Research Database (Denmark)

    Mouritsen, O. G.

    2011-01-01

    Ever since it was discovered that biological membranes have a core of a bimolecular sheet of lipid molecules, lipid bilayers have been a model laboratory for investigating physicochemical and functional properties of biological membranes. Experimental and theoretical models help the experimental ...... to pursue. Here we review some membrane models for lipid self-assembly, monolayers, bilayers, liposomes, and lipid-protein interactions and illustrate how such models can help answering questions in modern lipid cell biology....... scientist to plan experiments and interpret data. Theoretical models are the theoretical scientist's preferred toys to make contact between membrane theory and experiments. Most importantly, models serve to shape our intuition about which membrane questions are the more fundamental and relevant ones...

  3. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  4. Artificial membranes as models in penetration investigations.

    Science.gov (United States)

    Krulikowska, M; Arct, J; Lucova, M; Cetner, B; Majewski, S

    2013-02-01

    In vitro methods used in the research of transepidermal transport of active substances generally rely on the penetration rate of test compounds through standard membranes. Models typically used in penetration experiments are specially prepared human or animal skin samples or synthetic membranes. The objective of this study was to establish if the test results for an artificial liposome membrane can be extrapolated to determine the actual bioavailability of active substances. Tests were conducted in a side-by-side diffusion cell. As model membranes, a liquid-crystal lipid membrane (LM), phospholipid membrane (PM) and pig skin sample were used. The test compounds were eight synthetic dyes used in hair colouring products. Research findings reveal that membranes composed of lipids, identical to those present in the epidermis and forming analogical liquid-crystal structures provide a close approximation of the actual bioavailability of active substances (correlation between the results obtained for pig skin and LM was significant: R = 0.95 and R = 0.93 in the presence of a 1% Sodium dodecyl sulphate in donor system). Unlike biological membranes, intercellular cement does not contain phospholipids. The observed correlation between penetration coefficients through the PM and pig skin was not significant (R = 0.82). The experiments confirm that the PM constitutes a less credible model for the studies of transepidermal transport in real life conditions. © 2012 John Wiley & Sons A/S.

  5. A Model for Membrane Fusion

    Science.gov (United States)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  6. Interaction of elaiophylin with model bilayer membrane

    Science.gov (United States)

    Genova, J.; Dencheva-Zarkova, M.

    2017-01-01

    Elaiophylin is a new macrodiolide antibiotic, which is produced by the Streptomyces strains [1]. It displays biological activities against Gram-positive bacteria and fungi. The mode of action of this antibiotic has been attributed to an alteration of the membrane permeability. When this antibiotic is inserted into the bilayer membranes destabilization of the membrane and formation of ion-penetrable channels is observed. The macrodiolide antibiotic forms stable cation selective ion channels in synthetic lipid bilayer membranes. The aim of this work was to study the interactions of Elaiophylin with model bilayer membranes and to get information on the mechanical properties of lipid bilayers in presence of this antibiotic. Patch-clamp technique [2] were used in the study

  7. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study

    International Nuclear Information System (INIS)

    He, Mengying; Wu, Ting; Pan, Siyi; Xu, Xiaoyun

    2014-01-01

    Antimicrobial mechanism of four flavonoids (kaempferol, hesperitin, (+)-catechin hydrate, biochanin A) against Escherichia coli ATCC 25922 was investigated through cell membranes and a liposome model. The release of bacterial protein and images from transmission electron microscopy demonstrated damage to the E. coli ATCC 25922 membrane. A liposome model with dipalmitoylphosphatidylethanolamine (DPPE) (0.6 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG) (0.4 molar ratio), representative of the phospholipid membrane of E. coli ATCC 25922, was used to specify the mode of action of four selected flavonoids through Raman spectroscopy and differential scanning calorimetry. It is suggested that for flavonoids, to be effective antimicrobials, interaction with the polar head-group of the model membrane followed by penetration into the hydrophobic regions must occur. The antimicrobial efficacies of the flavonoids were consistent with liposome interaction activities, kaempferol > hesperitin > (+)-catechin hydrate > biochanin A. This study provides a liposome model capable of mimicking the cell membrane of E. coli ATCC 25922. The findings are important in understanding the antibacterial mechanism on cell membranes.

  8. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study

    Energy Technology Data Exchange (ETDEWEB)

    He, Mengying; Wu, Ting; Pan, Siyi; Xu, Xiaoyun, E-mail: xiaoyunxu88@gmail.com

    2014-06-01

    Antimicrobial mechanism of four flavonoids (kaempferol, hesperitin, (+)-catechin hydrate, biochanin A) against Escherichia coli ATCC 25922 was investigated through cell membranes and a liposome model. The release of bacterial protein and images from transmission electron microscopy demonstrated damage to the E. coli ATCC 25922 membrane. A liposome model with dipalmitoylphosphatidylethanolamine (DPPE) (0.6 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG) (0.4 molar ratio), representative of the phospholipid membrane of E. coli ATCC 25922, was used to specify the mode of action of four selected flavonoids through Raman spectroscopy and differential scanning calorimetry. It is suggested that for flavonoids, to be effective antimicrobials, interaction with the polar head-group of the model membrane followed by penetration into the hydrophobic regions must occur. The antimicrobial efficacies of the flavonoids were consistent with liposome interaction activities, kaempferol > hesperitin > (+)-catechin hydrate > biochanin A. This study provides a liposome model capable of mimicking the cell membrane of E. coli ATCC 25922. The findings are important in understanding the antibacterial mechanism on cell membranes.

  9. Simulation Model of Membrane Gas Separator Using Aspen Custom Modeler

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong-keun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Shin, Gahui; Yun, Jinwon; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-12-15

    Membranes are used to separate pure gas from gas mixtures. In this study, three different types of mass transport through a membrane were developed in order to investigate the gas separation capabilities of a membrane. The three different models typically used are a lumped model, a multi-cell model, and a discretization model. Despite the multi-cell model producing similar results to a discretization model, the discretization model was selected for this investigation, due to the cell number dependence of a multi-cell model. The mass transport model was then used to investigate the effects of pressure difference, flow rate, total exposed area, and permeability. The results showed that the pressure difference increased with the stage cut, but the selectivity was a trade-off for the increasing pressure difference. Additionally, even though permeability is an important parameter, the selectivity and stage cut of the membrane converged as permeability increased.

  10. Interaction of Mastoparan with Model Membranes

    Science.gov (United States)

    Haloot, Justin

    2010-10-01

    The use of antimicrobial agents began during the 20th century to reduce the effects of infectious diseases. Since the 1990s, antimicrobial resistance has become an ever-increasing global problem. Our laboratory recently found that small antimicrobial peptides (AMPs) have potent antimicrobial activity against a wide range of Gram-negative and Gram-positive organisms including antibiotic resistant organisms. These AMPs are potential therapeutic agents against the growing problem of antimicrobial resistance. AMPs are small peptides produced by plants, insects and animals. Several hypotheses concede that these peptides cause some type of structural perturbations and increased membrane permeability in bacteria however, how AMPs kill bacteria remains unclear. The goal of this study was to design an assay that would allow us to evaluate and monitor the pore forming ability of an AMP, Mastoparan, on model membrane structures called liposomes. Development of this model will facilitate the study of how mastoparan and related AMPs interact with the bacterial membrane.

  11. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis

    DEFF Research Database (Denmark)

    Moser, Claus; van Gennip, Maria; Bjarnsholt, Thomas

    2009-01-01

    Moser C, van Gennip M, Bjarnsholt T, Jensen PO, Lee B, Hougen HP, Calum H, Ciofu O, Givskov M, Molin S, Hoiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009; 117: 95-107. The dominant cause of premature...... death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes...... and 2003) of the chronic lung infection of one CF patient using the seaweed alginate embedment model. The results showed that the non-mucoid clones reduced their virulence over time, resulting in faster clearing of the bacteria from the lungs, improved pathology and reduced pulmonary production...

  12. Modelling Of Manufacturing Processes With Membranes

    Science.gov (United States)

    Crăciunean, Daniel Cristian; Crăciunean, Vasile

    2015-07-01

    The current objectives to increase the standards of quality and efficiency in manufacturing processes can be achieved only through the best combination of inputs, independent of spatial distance between them. This paper proposes modelling production processes based on membrane structures introduced in [4]. Inspired from biochemistry, membrane computation [4] is based on the concept of membrane represented in its formalism by the mathematical concept of multiset. The manufacturing process is the evolution of a super cell system from its initial state according to the given actions of aggregation. In this paper we consider that the atomic production unit of the process is the action. The actions and the resources on which the actions are produced, are distributed in a virtual network of companies working together. The destination of the output resources is specified by corresponding output events.

  13. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  14. Critical Review of Membrane Bioreactor Models

    DEFF Research Database (Denmark)

    Naessens, W.; Maere, T.; Ratkovich, Nicolas Rios

    2012-01-01

    modelling. In this paper, the vast literature on hydrodynamic and integrated modelling in MBR is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones......Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical...

  15. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model

    DEFF Research Database (Denmark)

    Cheniour, Mouhedine; Brewer, Jonathan R.; Bagatolli, Luis

    2017-01-01

    Background Mitochondrial creatine kinase (mtCK) is highly abundant in mitochondria; its quantity is equimolecular to the Adenylic Nucleotide Translocator and represents 1% of the mitochondrial proteins. It is a multitask protein localized in the mitochondria intermembrane space where it binds...

  16. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning.

    Science.gov (United States)

    Zheng, Yi; Zhang, Wenxiang; Tang, Bing; Ding, Jie; Zheng, Yi; Zhang, Zhien

    2018-02-01

    Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Interactions of Model Cell Membranes with Nanoparticles

    Science.gov (United States)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  18. Insulin-mimicking bioactivities of acylated inositol glycans in several mouse models of diabetes with or without obesity.

    Directory of Open Access Journals (Sweden)

    Susumu Suzuki

    Full Text Available Insulin-mimetic species of low molecular weight are speculated to mediate some intracellular insulin actions. These inositol glycans, which are generated upon insulin stimulation from glycosylphosphatidylinositols, might control the activity of a multitude of insulin effector enzymes. Acylated inositol glycans (AIGs are generated by cleavage of protein-free GPI precursors through the action of GPI-specific phospholipase C (GPI-PLC and D (GPI-PLD. We synthesized AIGs (IG-1, IG-2, IG-13, IG-14, and IG-15 and then evaluated their insulin-mimicking bioactivities. IG-1 significantly stimulated glycogen synthesis and lipogenesis in 3T3-L1 adipocytes and rat isolated adipocytes dose-dependently. IG-2 significantly stimulated lipogenesis in rat isolated adipocytes dose-dependently. IG-15 also enhanced glycogen synthesis and lipogenesis in 3T3-L1 adipocytes. The administration of IG-1 decreased plasma glucose, increased glycogen content in liver and skeletal muscles and improved glucose tolerance in C57B6N mice with normal diets. The administration of IG-1 decreased plasma glucose in STZ-diabetic C57B6N mice. The treatment of IG-1 decreased plasma glucose, increased glycogen content in liver and skeletal muscles and improved glucose tolerance in C57B6N mice with high fat-diets and db/db mice. The long-term treatment of IG-1 decreased plasma glucose and reduced food intake and body weight in C57B6N mice with high fat-diets and ob/ob mice. Thus, IG-1 has insulin-mimicking bioactivities and improves glucose tolerance in mice models of diabetes with or without obesity.

  19. Geometric and electronic structures of the synthetic Mn₄CaO₄ model compound mimicking the photosynthetic oxygen-evolving complex.

    Science.gov (United States)

    Shoji, Mitsuo; Isobe, Hiroshi; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-04-28

    Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(Bu(t)COO)8(py)(Bu(t)COOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.

  20. Physical model for membrane protrusions during spreading

    International Nuclear Information System (INIS)

    Chamaraux, F; Ali, O; Fourcade, B; Keller, S; Bruckert, F

    2008-01-01

    During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane–cytoskeleton complex, such as the membrane–cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane–cytoskeleton adherence

  1. Mathematical model of a PEMFC using a PBI membrane

    International Nuclear Information System (INIS)

    Cheddie, Denver; Munroe, Norman

    2006-01-01

    Proton exchange membrane fuel cells (PEMFC) operating with Nafion[reg] membranes have encountered numerous problems associated with water management and CO poisoning because of their low temperature of operation. Alternative high temperature membranes have been investigated, one such membrane being polybenzimidazole (PBI). This paper presents a one dimensional mathematical model, which predicts the polarization performance of a PEMFC using a PBI membrane. Peak power densities in the same order as Nafion[reg] are predicted. Results indicate that the greatest scope for improving PBI PEMFC performance is increasing the membrane conductivity and improving the catalyst performance as it interfaces with the PBI membrane

  2. Surfactant protein C peptides with salt-bridges (“ion-locks” promote high surfactant activities by mimicking the α-helix and membrane topography of the native protein

    Directory of Open Access Journals (Sweden)

    Frans J. Walther

    2014-07-01

    Full Text Available Background. Surfactant protein C (SP-C; 35 residues in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as ‘helical adjuvants’ to maintain activity by overriding the β-sheet propensities of the native sequences.Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges (“ion-locks” promote surface activity by mimicking the α-helix and membrane topography of native SP-C.Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines. Ion-lock SP-C molecules were prepared by incorporating single or double Glu−–Lys+ into the parent SP-C’s. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D exchange FTIR, and also Membrane Protein Explorer (MPEx hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency.Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with ‘amyloid-like’ properties. The enhanced

  3. Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model.

    Science.gov (United States)

    Tanizaki, Seiichiro; Feig, Michael

    2006-01-12

    The heterogeneous dielectric generalized Born (HDGB) methodology is an the extension of the GBMV model for the simulation of integral membrane proteins with an implicit membrane environment. Three large integral membrane proteins, the bacteriorhodopsin monomer and trimer and the BtuCD protein, were simulated with the HDGB model in order to evaluate how well thermodynamic and dynamic properties are reproduced. Effects of the truncation of electrostatic interactions were examined. For all proteins, the HDGB model was able to generate stable trajectories that remained close to the starting experimental structures, in excellent agreement with explicit membrane simulations. Dynamic properties evaluated through a comparison of B-factors are also in good agreement with experiment and explicit membrane simulations. However, overall flexibility was slightly underestimated with the HDGB model unless a very large electrostatic cutoff is employed. Results with the HDGB model are further compared with equivalent simulations in implicit aqueous solvent, demonstrating that the membrane environment leads to more realistic simulations.

  4. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments

    Science.gov (United States)

    Kocourková, Lucie; Novotná, Pavlína; Čujová, Sabína; Čeřovský, Václav; Urbanová, Marie; Setnička, Vladimír

    2017-01-01

    Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.

  5. MFI-molecular sieve membranes:synthesis, characterization and modelling

    OpenAIRE

    Jareman, Fredrik

    2002-01-01

    This work concerns evaluation by permeation measurements and modeling of thin (<2µm) MFI molecular sieve membranes and, to a smaller extent, synthesis of such materials. The membranes have been synthesized on graded a-alumina microfiltration filters using The seed film method. Scanning electron microscopy and x-ray diffraction were used for characterization in addition to permeation measurements. Mathematical models describing membrane flux for real membranes and defect distributions were ...

  6. Finite element modeling of lipid bilayer membranes

    Science.gov (United States)

    Feng, Feng; Klug, William S.

    2006-12-01

    A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.

  7. An articulated predictive model for fluid-free artificial basilar membrane as broadband frequency sensor

    Science.gov (United States)

    Ahmed, Riaz; Banerjee, Sourav

    2018-02-01

    In this article, an extremely versatile predictive model for a newly developed Basilar meta-Membrane (BM2) sensors is reported with variable engineering parameters that contribute to it's frequency selection capabilities. The predictive model reported herein is for advancement over existing method by incorporating versatile and nonhomogeneous (e.g. functionally graded) model parameters that could not only exploit the possibilities of creating complex combinations of broadband frequency sensors but also explain the unique unexplained physical phenomenon that prevails in BM2, e.g. tailgating waves. In recent years, few notable attempts were made to fabricate the artificial basilar membrane, mimicking the mechanics of the human cochlea within a very short range of frequencies. To explain the operation of these sensors a few models were proposed. But, we fundamentally argue the "fabrication to explanation" approach and proposed the model driven predictive design process for the design any (BM2) as broadband sensors. Inspired by the physics of basilar membrane, frequency domain predictive model is proposed where both the material and geometrical parameters can be arbitrarily varied. Broadband frequency is applicable in many fields of science, engineering and technology, such as, sensors for chemical, biological and acoustic applications. With the proposed model, which is three times faster than its FEM counterpart, it is possible to alter the attributes of the selected length of the designed sensor using complex combinations of model parameters, based on target frequency applications. Finally, the tailgating wave peaks in the artificial basilar membranes that prevails in the previously reported experimental studies are also explained using the proposed model.

  8. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    Science.gov (United States)

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Zeolite Membranes: Ozone Detemplation, Modeling, and Performance Characterization

    OpenAIRE

    Kuhn, J.

    2009-01-01

    Membrane technology plays an increasingly important role in developing a more sustainable process industry. Zeolites are a novel class of membrane materials with unique properties enabling molecular sieving and affinity based separations. This thesis proposes some new concepts in zeolite membrane synthesis, application, and modeling. The influence of zeolite polarity is assessed and the use of a hydrophobic zeolite membrane for water separation is explored. Ozonication, a novel method for zeo...

  10. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding......A separation process could be defined as a process that transforms a given mixture of chemicals into two or more compositionally distinct end-use products. One way to design these separation processes is to employ a model-based approach, where mathematical models that reliably predict the process...

  11. Detailed modelling and optimal design of membrane separation systems

    OpenAIRE

    Marriott, J. I.

    2001-01-01

    The search for alternatives to traditional energy intensive separation methods such as distillation has led to the introduction of processes based on membranes. In this research, the use of detailed mathematical models for the optimal design of membrane systems is investigated. Mathematical models of hollow-fibre and spiral-wound membrane modules are presented in this thesis. The models are developed from rigorous mass, momentum and energy balances and can be used to describ...

  12. Comparative analysis of colonic gene expression of three experimental colitis models mimicking inflammatory bowel disease

    NARCIS (Netherlands)

    te Velde, Anje A.; de Kort, Floor; Sterrenburg, Ellen; Pronk, Inge; ten Kate, Fiebo J. W.; Hommes, Daniel W.; van Deventer, Sander J. H.

    2007-01-01

    BACKGROUND: Mouse models of inflammatory bowel diseases (IBD) are used to unravel the pathophysiology of IBD and to study new treatment modalities, but their relationship to Crohn's disease (CD) or ulcerative colitis (UC) is speculative. METHODS: Using Agilent mouse TOX oligonucleotide microarrays,

  13. Atomic force microscopy of model lipid membranes.

    Science.gov (United States)

    Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim

    2013-02-01

    Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.

  14. A new model mimicking persistent HBV e antigen-negative infection using covalently closed circular DNA in immunocompetent mice.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Despite the availability of an effective vaccine, hepatitis B virus (HBV infection remains a major health problem. HBV e antigen (HBeAg-negative strains have become prevalent. Previously, no animal model mimicked the clinical course of HBeAg-negative HBV infection. To establish an HBeAg-negative HBV infection model, the 3.2-kb full-length genome of HBeAg-negative HBV was cloned from a clinical sample and then circularized to form covalently closed circular (cccDNA. The resulting cccDNA was introduced into the liver of C57BL/6J mice through hydrodynamic injection. Persistence of the HBeAg-negative infection was monitored at predetermined time points using HBV-specific markers including HBV surface antigen (HBsAg, HBeAg, and HBV core antigen (HBcAg as well as DNA copies. Throughout the study, pAAV-HBV1.2 was used as a control. In mice injected with HBeAg-negative cccDNA, the HBV infection rate was 100% at the initial stage. HBsAg levels increased up to 1 week, at which point levels peaked and dropped quickly thereafter. In 60% of injected mice, HBsAg and HBcAg persisted for more than 10 weeks. High numbers of HBV DNA copies were detected in the serum and liver. Moreover, cccDNA persisted in the liver tissue of HBeAg-negative mice. In contrast to the pAAV-HBV 1.2 injected mice, no HBeAg was found in mice injected with HBeAg-negative HBV throughout the study period. These results demonstrate the first successful establishment of a model of HBeAg-negative HBV-persistent infection in immunocompetent mice. Compared to pAAV-HBV1.2-injected mice, the infection persistence and levels of serum virological and biochemical markers were approximately equal in the model mice. This model will be useful for mechanistic studies on HBeAg-negative HBV infection and will facilitate the evaluation of new antiviral drugs.

  15. Reprodaetion of an animal model of multiple intestinal injuries mimicking "lethal triad" caused by severe penetrating abdominal trauma

    Directory of Open Access Journals (Sweden)

    Peng-fei WANG

    2011-03-01

    Full Text Available Objective To reproduce an animal model of multi-intestinal injuries with "lethal triad" characterized by low body temperature,acidosis and coagulopathy.Methods Six female domestic outbred pigs were anesthetized,and the carotid artery and jugular vein were cannulated for monitoring the blood pressure and heart rate and for infusion of fluid.The animals were shot with a gun to create a severe penetrating abdominal trauma.Immediately after the shooting,50% of total blood volume(35ml/kg hemorrhage was drawn from the carotid artery in 20min.After a 40min shock period,4h of pre-hospital phase was mimicked by normal saline(NS resuscitation to maintain systolic blood pressure(SBP > 80mmHg or mean arterial pressure(MAP > 60mmHg.When SBP > 80mmHg or MAP > 60mmHg,no fluid infusion or additional bleeding was given.Hemodynamic parameters were recorded,and pathology of myocardium,lung,small intestine and liver was observed.Results There were multiple intestinal perforations(8-10 site injuries/pig leading to intra-abdominal contamination,mesenteric injury(1-2 site injuries/pig resulted in partial intestinal ischemia and intra-abdominal hemorrhage,and no large colon and mesenteric vascular injury.One pig died before the completion of the model establishment(at the end of pre-hospital resuscitation.The typical symptoms of trauma-induced hemorrhagic shock were observed in survival animals.Low temperature(33.3±0.5℃,acidosis(pH=7.242±0.064,and coagulopathy(protrombin time and activated partial thromboplasting time prolonged were observed after pre-hospital resuscitation.Pathology showed that myocardium,lung,small intestine and liver were severely injured.Conclusions A new model,simulating three stages of "traumatic hemorrhagic shock,pre-hospital recovery and hospital treatment" and inducing the "lethal triad" accompanied with abdominal pollution,has been successfully established.This model has good stability and high reproducibility.The survival animals can be

  16. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes

    Science.gov (United States)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B.

    2017-06-01

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  17. Polyether sulfone membrane modeling and construction for the ...

    African Journals Online (AJOL)

    Polyether sulfone membrane modeling and construction for the removal of nitrate from water using ion interference sulfate and iron nano-particle. ... The aim of this study was constructed the polyether sulfone membrane and modelling it, and for checking impact pressure, the amount of iron nanoparticles and sulfate iron ...

  18. Models of dynamic extraction of lipid tethers from cell membranes

    International Nuclear Information System (INIS)

    Nowak, Sarah A; Chou, Tom

    2010-01-01

    When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this process by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that tethers can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers

  19. Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing.

    Science.gov (United States)

    Jürgens, Tim; Clark, Nicholas R; Lecluyse, Wendy; Meddis, Ray

    2016-01-01

    To use a computer model of impaired hearing to explore the effects of a physiologically-inspired hearing-aid algorithm on a range of psychoacoustic measures. A computer model of a hypothetical impaired listener's hearing was constructed by adjusting parameters of a computer model of normal hearing. Absolute thresholds, estimates of compression, and frequency selectivity (summarized to a hearing profile) were assessed using this model with and without pre-processing the stimuli by a hearing-aid algorithm. The influence of different settings of the algorithm on the impaired profile was investigated. To validate the model predictions, the effect of the algorithm on hearing profiles of human impaired listeners was measured. A computer model simulating impaired hearing (total absence of basilar membrane compression) was used, and three hearing-impaired listeners participated. The hearing profiles of the model and the listeners showed substantial changes when the test stimuli were pre-processed by the hearing-aid algorithm. These changes consisted of lower absolute thresholds, steeper temporal masking curves, and sharper psychophysical tuning curves. The hearing-aid algorithm affected the impaired hearing profile of the model to approximate a normal hearing profile. Qualitatively similar results were found with the impaired listeners' hearing profiles.

  20. Flexoelectric effects in model and native membranes containing ion channels.

    Science.gov (United States)

    Petrov, A G; Miller, B A; Hristova, K; Usherwood, P N

    1993-01-01

    An experimental study of flexoelectricity in model membranes containing ion pores and native membranes containing ion channels has been undertaken with the objective of determining the relationship, if any, between flexoelectricity and ion transport. Model membrane patches containing ion pores induced by a blue-green algal toxin, microcystin-LR, and locust muscle membrane patches containing potassium channels were studied using patch-clamp techniques. A correspondence was established between the presence of open channels and pores and the amplitude of the 1st harmonic of the total membrane current when the membranes or patches were subjected to pressure oscillations. The 2nd harmonic of the membrane current provided a measure of the amplitude of a membrane curvature induced by pressure, thus making it possible to determine the membrane flexoelectric coefficient. This study shows that flexoelectricity could be an effective driving force for ion transport through membrane pores and channels, thus further highlighting the possible biological significance of this mechano-electric phenomenon.

  1. Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon.

    Directory of Open Access Journals (Sweden)

    Sophie Fehlbaum

    Full Text Available In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor's fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source.

  2. Spatiotemporal Organization of Spin-Coated Supported Model Membranes

    Science.gov (United States)

    Simonsen, Adam Cohen

    All cells of living organisms are separated from their surroundings and organized internally by means of flexible lipid membranes. In fact, there is consensus that the minimal requirements for self-replicating life processes include the following three features: (1) information carriers (DNA, RNA), (2) a metabolic system, and (3) encapsulation in a container structure [1]. Therefore, encapsulation can be regarded as an essential part of life itself. In nature, membranes are highly diverse interfacial structures that compartmentalize cells [2]. While prokaryotic cells only have an outer plasma membrane and a less-well-developed internal membrane structure, eukaryotic cells have a number of internal membranes associated with the organelles and the nucleus. Many of these membrane structures, including the plasma membrane, are complex layered systems, but with the basic structure of a lipid bilayer. Biomembranes contain hundreds of different lipid species in addition to embedded or peripherally associated membrane proteins and connections to scaffolds such as the cytoskeleton. In vitro, lipid bilayers are spontaneously self-organized structures formed by a large group of amphiphilic lipid molecules in aqueous suspensions. Bilayer formation is driven by the entropic properties of the hydrogen bond network in water in combination with the amphiphilic nature of the lipids. The molecular shapes of the lipid constituents play a crucial role in bilayer formation, and only lipids with approximately cylindrical shapes are able to form extended bilayers. The bilayer structure of biomembranes was discovered by Gorter and Grendel in 1925 [3] using monolayer studies of lipid extracts from red blood cells. Later, a number of conceptual models were developed to rationalize the organization of lipids and proteins in biological membranes. One of the most celebrated is the fluid-mosaic model by Singer and Nicolson (1972) [4]. According to this model, the lipid bilayer component of

  3. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    International Nuclear Information System (INIS)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David

    2017-01-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  4. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  5. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  6. There Is No Simple Model of the Plasma Membrane Organization

    Czech Academy of Sciences Publication Activity Database

    de la serna, J. B.; Schütz, G.; Eggeling, Ch.; Cebecauer, Marek

    2016-01-01

    Roč. 4, SEP 2016 (2016), 106 ISSN 2296-634X R&D Projects: GA ČR GA15-06989S Institutional support: RVO:61388955 Keywords : plasma membrane * membrane organization models * heterogeneous distribution Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Simple membrane-based model of the Min oscillator

    Science.gov (United States)

    Petrášek, Zdeněk; Schwille, Petra

    2015-04-01

    Min proteins in E. coli bacteria organize into a dynamic pattern oscillating between the two cell poles. This process identifies the middle of the cell and enables symmetric cell division. In an experimental model system consisting of a flat membrane with effectively infinite supply of proteins and energy source, the Min proteins assemble into travelling waves. Here we propose a simple one-dimensional model of the Min dynamics that, unlike the existing models, reproduces the sharp decrease of Min concentration when the majority of protein detaches from the membrane, and even the narrow MinE maximum immediately preceding the detachment. The proposed model thus provides a possible mechanism for the formation of the MinE ring known from cells. The model is restricted to one dimension, with protein interactions described by chemical kinetics allowing at most bimolecular reactions, and explicitly considering only three, membrane-bound, species. The bulk solution above the membrane is approximated as being well-mixed, with constant concentrations of all species. Unlike other models, our proposal does not require autocatalytic binding of MinD to the membrane. Instead, it is assumed that two MinE molecules are necessary to induce the dissociation of the MinD dimer and its subsequent detachment from the membrane. We investigate which reaction schemes lead to unstable homogeneous steady states and limit cycle oscillations, and how diffusion affects their stability. The suggested model qualitatively describes the shape of the Min waves observed on flat membranes, and agrees with the experimental dependence of the wave period on the MinE concentration. These results highlight the importance of MinE presence on the membrane without being bound to MinD, and of the reactions of Min proteins on the membrane.

  8. Simple membrane-based model of the Min oscillator

    International Nuclear Information System (INIS)

    Petrášek, Zdeněk; Schwille, Petra

    2015-01-01

    Min proteins in E. coli bacteria organize into a dynamic pattern oscillating between the two cell poles. This process identifies the middle of the cell and enables symmetric cell division. In an experimental model system consisting of a flat membrane with effectively infinite supply of proteins and energy source, the Min proteins assemble into travelling waves. Here we propose a simple one-dimensional model of the Min dynamics that, unlike the existing models, reproduces the sharp decrease of Min concentration when the majority of protein detaches from the membrane, and even the narrow MinE maximum immediately preceding the detachment. The proposed model thus provides a possible mechanism for the formation of the MinE ring known from cells. The model is restricted to one dimension, with protein interactions described by chemical kinetics allowing at most bimolecular reactions, and explicitly considering only three, membrane-bound, species. The bulk solution above the membrane is approximated as being well-mixed, with constant concentrations of all species. Unlike other models, our proposal does not require autocatalytic binding of MinD to the membrane. Instead, it is assumed that two MinE molecules are necessary to induce the dissociation of the MinD dimer and its subsequent detachment from the membrane. We investigate which reaction schemes lead to unstable homogeneous steady states and limit cycle oscillations, and how diffusion affects their stability. The suggested model qualitatively describes the shape of the Min waves observed on flat membranes, and agrees with the experimental dependence of the wave period on the MinE concentration. These results highlight the importance of MinE presence on the membrane without being bound to MinD, and of the reactions of Min proteins on the membrane. (paper)

  9. There Is No Simple Model of the Plasma Membrane Organization

    Science.gov (United States)

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  10. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  11. Modeling of a Membrane-Based Absorption Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J.; Pellegrino, J.; Kozubal, E.; Slayzak, S.; Burch, J.

    2009-01-01

    In this paper, a membrane heat pump is proposed and analyzed. Fundamentally, the proposed heat pump consists of an aqueous CaCl{sub 2} solution flow separated from a water flow by a vapor-permeable membrane. The low activity of the solution results in a net flux of water vapor across the membrane, which heats the solution stream and cools the water stream. This mechanism upgrades water-side low-temperature heat to solution-side high-temperature heat, creating a 'temperature lift.' The modeling results show that using two membranes and an air gap instead of a single membrane increases the temperature lift by 185%. The model predicts temperature lifts for the air-gap design of 24, 16, and 6 C for inlet temperatures of 55, 35, and 15 C, respectively. Membranes with lower thermal conductivities and higher porosities improve the performance of single-membrane designs while thinner membranes improve the performance of air-gap designs. This device can be used with a solar heating system which already uses concentrated salt solutions for liquid-desiccant cooling.

  12. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltık, M.B.; Özkan, Leyla; Jacobs, Marc; Padt, van der Albert

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process

  13. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  14. The role of ultraviolet colour in the assessment of mimetic accuracy between Batesian mimics and their models: a case study using ant-mimicking spiders

    Science.gov (United States)

    Corcobado, Guadalupe; Herberstein, Marie E.; Pekár, Stano

    2016-12-01

    The use of ultraviolet (UV) cues for intra- and inter-specific communication is common in many animal species. Still, the role of UV signals under some predator-prey contexts, such as Batesian mimicry, is not clear. Batesian mimicry is a defensive strategy by which a palatable species (the mimic) resembles an unpalatable or noxious species (the model) to avoid predation. This strategy has evolved independently in many different taxa that are predated by species capable of UV perception. Moreover, there is considerable variation in how accurately Batesian mimics resemble their models across species. Our aim was to investigate how UV colour contributed to mimetic accuracy using several ant-mimicking spider species as a case study. We measured the reflectance spectrum (300-700 nm) for several species of mimics and models, and we tested whether they differ in visible and UV colour. We modelled whether two different predators could discriminate between mimics and models using colour information. We found that generally, ant-mimicking spiders differed significantly from their ant models in UV colour and that information from the visible range of light cannot be extrapolated into the UV. Our modelling suggested that wasps should be able to discriminate between mimics and models combining information from visible and the UV light, whereas birds may not discriminate between them. Thus, we show that UV colour can influence mimic accuracy and we discuss its potential role in Batesian mimicry. We conclude that colour, especially in the UV range, should be taken into account when measuring mimetic accuracy.

  15. Phase-field theories for mathematical modeling of biological membranes.

    Science.gov (United States)

    Lázaro, Guillermo R; Pagonabarraga, Ignacio; Hernández-Machado, Aurora

    2015-01-01

    Biological membranes are complex structures whose mechanics are usually described at a mesoscopic level, such as the Helfrich bending theory. In this article, we present the phase-field methods, a useful tool for studying complex membrane problems which can be applied to very different phenomena. We start with an overview of the general theory of elasticity, paying special attention to its derivation from a molecular scale. We then study the particular case of membrane elasticity, explicitly obtaining the Helfrich bending energy. Within the framework of this theory, we derive a phase-field model for biological membranes and explore its physical basis and interpretation in terms of membrane elasticity. We finally explain three examples of applications of these methods to membrane related problems. First, the case of vesicle pearling and tubulation, when lipidic vesicles are exposed to the presence of hydrophobic polymers that anchor to the membrane, inducing a shape instability. Finally, we study the behavior of red blood cells while flowing in narrow microchannels, focusing on the importance of membrane elasticity to the cell flow capabilities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  17. Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model

    Directory of Open Access Journals (Sweden)

    Touboul Cyril

    2013-01-01

    Full Text Available Abstract Background The early peritoneal invasion of epithelial ovarian cancer (EOC by tumoral aggregates presents in ascites is a major concern. The role of the microenvironment seems to be important in this process but the lack of adequate models to study cellular interactions between cancer cells and stromal cells does not allow to uncover the molecular pathways involved. Our goal was to study the interactions between ovarian cancer cells (OCC and mesenchymal stem cells (MSC using a 3D model. Methods We used millimetric pieces of amniochorionic membrane - referred to as amniotic membrane scaffold (AMS - to create 3D peritoneal nodules mimicking EOC early invasion. We were able to measure the distribution and the depth of infiltration using confocal microsopy. We extracted MSC from the amniochorionic membrane using the markers CD34-, CD45-, CD73+, CD90+, CD105+ and CD29+ at the Fluorescence Activated Cell Sorting (FACS analysis. We used transwell and wound healing tests to test OCC migration and invasion in vitro. Results Here we show that OCC tumors were located in regions rich in MSC (70%. The tumors infiltrated deeper within AMS in regions rich in MSC (p Conclusions The use of tridimensional models using AMS could be a useful tool to decipher early molecular events in ovarian cancer metastasis. Cytokine inhibitors interrupting the cross-talk between OCCs and MSCs such as IL6 should be investigated as a new therapeutic approach in ovarian cancer.

  18. Biopores/membrane proteins in synthetic polymer membranes.

    Science.gov (United States)

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  19. A Dry Membrane Protection Technique to Allow Surface Acoustic Wave Biosensor Measurements of Biological Model Membrane Approaches

    Directory of Open Access Journals (Sweden)

    Marius Enachescu

    2013-09-01

    Full Text Available Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences.

  20. Membrane Modeling, Simulation and Optimization for Propylene/Propane Separation

    KAUST Repository

    Alshehri, Ali

    2015-06-01

    Energy efficiency is critical for sustainable industrial growth and the reduction of environmental impacts. Energy consumption by the industrial sector accounts for more than half of the total global energy usage and, therefore, greater attention is focused on enhancing this sector’s energy efficiency. It is predicted that by 2020, more than 20% of today’s energy consumption can be avoided in countries that have effectively implemented an action plan towards efficient energy utilization. Breakthroughs in material synthesis of high selective membranes have enabled the technology to be more energy efficient. Hence, high selective membranes are increasingly replacing conventional energy intensive separation processes, such as distillation and adsorption units. Moreover, the technology offers more special features (which are essential for special applications) and its small footprint makes membrane technology suitable for platform operations (e.g., nitrogen enrichment for oil and gas offshore sites). In addition, its low maintenance characteristics allow the technology to be applied to remote operations. For these reasons, amongst other, the membrane technology market is forecast to reach $16 billion by 2017. This thesis is concerned with the engineering aspects of membrane technology and covers modeling, simulation and optimization of membranes as a stand-alone process or as a unit operation within a hybrid system. Incorporating the membrane model into a process modeling software simplifies the simulation and optimization of the different membrane processes and hybrid configurations, since all other unit operations are pre-configured. Various parametric analyses demonstrated that only the membrane selectivity and transmembrane pressure ratio parameters define a membrane’s ability to accomplish a certain separation task. Moreover, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is only defined by the feed composition

  1. Modeling CO2-facilitated transport across a diethanolamine liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lihong Bao; Michael C. Trachtenberg [Carbozyme Inc., Monmouth Junction, NJ (United States)

    2005-12-15

    We compared experimental and model data for the facilitated transport of CO2 from a CO2-air mixture across an aqueous solution of diethanolamine (DEA) via a hollow fiber, contained liquid membrane (HFCLM) permeator. A two-step carbamate formation model was devised to analyze the data instead of the one-step mechanism used by previous investigators. The effects of DEA concentration, liquid membrane thickness and feed CO2 concentration were also studied. With a 20% (wt) DEA liquid membrane and feed of 15% CO2 in CO2-air mixture at atmosphere pressure, the permeance reached 1.51E-8 mol/m{sup 2} s Pa with a CO2/N2 selectivity of 115. Model predictions compared well with the experimental results at CO2 concentrations of industrial importance. Short-term stability of the HFCLM permeator performance was examined. The system was stable during 5-days of testing.

  2. Modeling of Hollow-Fiber Membrane System During Ultrafiltration

    International Nuclear Information System (INIS)

    EI-Bialy, S.H.

    2004-01-01

    The present study aims to evaluate the performance of hollow fiber membrane module during ultrafiltration of aqueous solutions. The model is represented by a set of differential equations for permeate and residue pressure drop and volumetric flow rates in the axial direction, beside the principle equations of both solvent and solute fluxes through the membrane, while osmotic pressure was neglected in model equations. The shell and tube module type was considered where feed pass in the shell and permeate in the bore side. Tortousily factor of membrane pores in addition to concentration polarization modulus were taken into account in calculations. The model was solved numerically with the help of suitable program in both co current and countercurrent flow pattern and comparison of results were carried out

  3. Glycogen synthase kinase-3beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results.

    Science.gov (United States)

    Bersudsky, Yuly; Shaldubina, Alona; Kozlovsky, Nitzan; Woodgett, James R; Agam, Galila; Belmaker, R H

    2008-05-01

    In mice glycogen synthase kinase (GSK)-3beta heterozygote knockout status was reported to cause reduced immobility in the Porsolt forced swim test and reduced amphetamine-induced hyperactivity, behaviors that mimic the effects of lithium. GSK-3beta protein and mRNA level and activity have been reported to be reduced in the postmortem brain of schizophrenia patients and this could suggest the involvement of GSK-3beta in the etiology of schizophrenia. However, apomorphine-induced stereotyping was reported to be unchanged in GSK-3beta heterozygote (HZ) knockout (KO) mice. As such behaviors are not always robust, study in another laboratory seemed indicated. Motor activity and coordination were assessed in the rotarod test. Behavior was studied in the following tests: pilocarpine-induced seizures model for lithium action, Porsolt forced swim test, tail suspension test, elevated plus-maze, large open field, startle response and prepulse inhibition of acoustic startle response, amphetamine-induced hyperactivity, and apomorphine-induced stereotypic climbing. We could not confirm the report that GSK-3beta HZ KO mice exhibit reduced immobility in the Porsolt forced swim or reduced amphetamine-induced hyperactivity in a manner mimicking the behavioral effects of lithium. We did not find increased apomorphine-induced stereotypic climbing or disruption of prepulse inhibition, suggesting that human postmortem findings regarding GSK-3beta in schizophrenia are not mediated by changes in dopamine receptors and are not the cause of prepulse inhibition deficits in schizophrenia. These data do not support the role of GSK-3beta in schizophrenia or in the mechanism of therapeutic action of lithium. Although differences in the genetic background of the GSK-3beta HZ KOs used in the present study compared with that of the previous study could be responsible, such results could suggest that the previously reported effects of GSK-3beta knockout on behavior are not robust.

  4. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    Science.gov (United States)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  5. Continuous Modeling of Calcium Transport Through Biological Membranes

    Science.gov (United States)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  6. Model predictive control for ethanol steam reformers with membrane separation

    OpenAIRE

    Serra, Maria; Ocampo-Martínez, Carlos; Li, Mingming; Llorca Piqué, Jordi

    2017-01-01

    © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This paper focuses on the dynamic modelling and the predictive control of an ethanol steam reformer (ESR) with Pdsingle bondAg membrane separation stage for the generation of pure hydrogen. Hydrogen purity necessary to feed a proton exchange membrane fuel cell (PEMFC) is required. A non-linear dynamic model of the ESR is developed together with a procedure f...

  7. Flexoelectricity of model and living membranes.

    Science.gov (United States)

    Petrov, Alexander G

    2002-03-19

    The theory and experiments on model and biomembrane flexoelectricity are reviewed. Biological implications of flexoelectricity are underlined. Molecular machinery and molecular electronics applications are pointed out.

  8. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  9. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  10. Interaction of Cytotoxic and Cytoprotective Bile Acids with Model Membranes: Influence of the Membrane Composition.

    Science.gov (United States)

    Esteves, M; Ferreira, M J; Kozica, A; Fernandes, A C; Gonçalves da Silva, A; Saramago, B

    2015-08-18

    To understand the role of bile acids (BAs) in cell function, many authors have investigated their effect on biomembrane models which are less complex systems, but there are still many open questions. The present study aims to contribute for the deepening of the knowledge of the interaction between BAs and model membranes, in particular, focusing on the effect of BA mixtures. The cytotoxic deoxycholic acid (DCA), the cytoprotective ursodeoxycholic acid (UDCA), and the equimolar mixture (DCA + UDCA) were investigated. Monolayers and liposomes were taken as model membranes with two lipid compositions: an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM), and cholesterol (Chol)) traditionally associated with the formation of lipid rafts and an equimolar POPC/SM binary mixture. The obtained results showed that DCA causes the fluidization of monolayers and bilayers, leading to the eventual rupture of POPC/SM liposomes at high concentration. UDCA may provide a stabilization of POPC/SM membranes but has a negligible effect on the Chol-containing liposomes. In the case of equimolar mixture DCA/UDCA, the interactions depend not only on the lipid composition but also on the design of the experiment. The BA mixture has a greater impact on the monolayers than do pure BAs, suggesting a cooperative DCA-UDCA interaction that enhances the penetration of UDCA in both POPC/SM and POPC/SM/Chol monolayers. For the bilayers, the presence of UDCA in the mixture decreases the disturbing effect of DCA.

  11. Mathematical modelling of dextran filtration through hollow fibre membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2014-01-01

    In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within...... dependent viscosity. The model shows that both the observed and intrinsic rejection increase when the inlet velocity increases. Moreover, the intrinsic rejection increases as a function of transmembrane pressure, but the observed rejection has a characteristic maximum. Therefore, the observed rejection can...... either increase or decrease as a function of pressure. The influence of a concentration dependent viscosity is to increase the concentration on the membrane surface. This leads to a decrease in both the observed and the intrinsic rejection, when compared to a constant viscosity. For small values...

  12. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

    Science.gov (United States)

    Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban

    2016-09-06

    Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.

  13. Enhancement of the Computational Efficiency of Membrane Computing Models

    National Research Council Canada - National Science Library

    Das, Digendra K

    2007-01-01

    .... Membrane computing consists of cell-like membranes placed inside a unique skin membrane. In regions delimited by a membrane structure, cells are placed in multisets of objects which evolve according to evolution rules associated with the regions...

  14. Stochastic lattice model of synaptic membrane protein domains

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  15. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  16. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    Science.gov (United States)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  17. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component......- and system models match experimental data from the literature. However, limited data were available for verification so further work is necessary to confirm detailed aspects of the models. It is nonetheless expected that the developed models will be useful for system modeling and optimization of PEM fuel...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  18. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    Orellano, Pablo; Brasnarof, Daniel; Florido Pablo

    2003-01-01

    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  19. The effect of sediment mimicking drill cuttings on deep water rhodoliths in a flow-through system: Experimental work and modeling.

    Science.gov (United States)

    Figueiredo, Marcia A O; Eide, Ingvar; Reynier, Marcia; Villas-Bôas, Alexandre B; Tâmega, Frederico T S; Ferreira, Carlos Gustavo; Nilssen, Ingunn; Coutinho, Ricardo; Johnsen, Ståle

    2015-06-15

    The impact of sediment coverage on two rhodolith-forming calcareous algae species collected at 100m water depth off the coast of Brazil was studied in an experimental flow-through system. Natural sediment mimicking drill cuttings with respect to size distribution was used. Sediment coverage and photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ϕPSIImax) were measured as functions of light intensity, flow rate and added amount of sediment once a week for nine weeks. Statistical experimental design and multivariate data analysis provided statistically significant regression models which subsequently were used to establish exposure-response relationship for photosynthetic efficiency as function of sediment coverage. For example, at 70% sediment coverage the photosynthetic efficiency was reduced 50% after 1-2weeks of exposure, most likely due to reduced gas exchange. The exposure-response relationship can be used to establish threshold levels and impact categories for environmental monitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modeling and optimization of membrane lifetime in dead-end ultra filtration

    NARCIS (Netherlands)

    Zondervan, Edwin; Roffel, Brian

    2008-01-01

    In this paper, a membrane lifetime model is developed and experimentally validated. The lifetime model is based on the Weibull probability density function. The lifetime model can be used to determine an unambiguous characteristic membrane lifetime. Experimental results showed that membrane lifetime

  1. Dimer-based model for heptaspanning membrane receptors.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferré, Sergi; Fuxe, Kjell; Cortés, Antonio; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2005-07-01

    The existence of intramembrane receptor-receptor interactions for heptaspanning membrane receptors is now fully accepted, but a model considering dimers as the basic unit that binds to two ligand molecules is lacking. Here, we propose a two-state-dimer model in which the ligand-induced conformational changes from one component of the dimer are communicated to the other. Our model predicts cooperativity in binding, which is relevant because the other current models fail to address this phenomenon satisfactorily. Our two-state-dimer model also predicts the variety of responses elicited by full or partial agonists, neutral antagonists and inverse agonists. This model can aid our understanding of the operation of heptaspanning receptors and receptor channels, and, potentially, be important for improving the treatment of cardiovascular, neurological and neuropsychyatric diseases.

  2. Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Witschas, Katja; Jobin, M.-L.; Korkut, D. N.; Vladan, M. M.; Salgado, G.; Lecomte, S.; Vlachová, Viktorie; Alves, I. D.

    2015-01-01

    Roč. 1848, č. 5 (2015), s. 1147-1159 ISSN 0005-2736 R&D Projects: GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : TRP channels * peptide-lipid intractions * secondary structure Subject RIV: ED - Physiology Impact factor: 3.687, year: 2015

  3. Validation of kinetic modeling of progesterone release from polymeric membranes

    Directory of Open Access Journals (Sweden)

    Analia Irma Romero

    2018-01-01

    Full Text Available Mathematical modeling in drug release systems is fundamental in development and optimization of these systems, since it allows to predict drug release rates and to elucidate the physical transport mechanisms involved. In this paper we validate a novel mathematical model that describes progesterone (Prg controlled release from poly-3-hydroxybutyric acid (PHB membranes. A statistical analysis was conducted to compare the fitting of our model with six different models and the Akaike information criterion (AIC was used to find the equation with best-fit. A simple relation between mass and drug released rate was found, which allows predicting the effect of Prg loads on the release behavior. Our proposed model was the one with minimum AIC value, and therefore it was the one that statistically fitted better the experimental data obtained for all the Prg loads tested. Furthermore, the initial release rate was calculated and therefore, the interface mass transfer coefficient estimated and the equilibrium distribution constant of Prg between the PHB and the release medium was also determined. The results lead us to conclude that our proposed model is the one which best fits the experimental data and can be successfully used to describe Prg drug release in PHB membranes.

  4. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    This work focuses on development of computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured based on workflows for different general modeling tasks. The overall objective of this work is to support the model develope...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  5. Multiset-based Tree Model for Membrane Computing

    Directory of Open Access Journals (Sweden)

    D. Singh

    2011-06-01

    Full Text Available In this paper, we introduce a new paradigm - multiset-based tree model. We show that trees can be represented in the form of wellfounded multisets. We also show that the conventional approach for this representation is not injective from a set of trees to the class of multisets representing such trees. We establish a one-to-one correspondence between trees and suitable permutations of a wellfounded multiset, which we call \\textit{tree structures}. We give formal definitions of a \\textit{tree structure} and a \\textit{subtree structure} of a tree structure. Finally, we represent membrane structures in the form of tree structures - a form in which membrane structures can suitably be represented at programming level.

  6. Confronting dark energy models mimicking ΛCDM epoch with observational constraints: Future cosmological perturbations decay or future Rip?

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2013-01-01

    We confront dark energy models which are currently similar to ΛCDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from ΛCDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as ΛCDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.

  7. Confronting dark energy models mimicking {Lambda}CDM epoch with observational constraints: Future cosmological perturbations decay or future Rip?

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V., E-mail: artyom.art@gmail.com [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Odintsov, Sergei D. [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Eurasian International Center for Theor. Physics, Eurasian National University, Astana 010008 (Kazakhstan); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2013-01-29

    We confront dark energy models which are currently similar to {Lambda}CDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from {Lambda}CDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as {Lambda}CDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.

  8. Characterisation of enterocolitis in the piroxicam-accelerated interleukin-10 knock out mouse--a model mimicking inflammatory bowel disease.

    Science.gov (United States)

    Holgersen, Kristine; Kvist, Peter Helding; Markholst, Helle; Hansen, Axel Kornerup; Holm, Thomas Lindebo

    2014-02-01

    In inflammatory bowel disease a defective mucosal barrier, a dysregulated immune response and an excessive reactivity against the gut microbiota are assumed to cause a breakdown of the intestinal homeostasis and lead to chronic inflammation. Piroxicam treatment is a method for induction of colitis in IL-10 k.o. mice, which integrates a dysfunction of both the intestinal barrier and the immune system. However, the translational value of this model has not been thoroughly clarified. To characterise the piroxicam-accelerated colitis (PAC) IL-10 k.o. model with respect to clinical features, pathogenic mechanisms and its ability to respond to existing therapies. The PAC IL-10k.o. model was established on a C57BL/6J background and the clinical manifestations, immunological mechanisms and efficacy of ampicillin and anti-IL-12/23p40 treatment were assessed. The PAC IL-10 k.o. mice developed weight loss and diarrhoea, and colonoscopy revealed a thickened granulomatous mucosa. Histological evaluation of ileum and colon showed Crohn's disease-like changes with pronounced hyperplasia and focal transmural inflammation. Ileitis was also observed in piroxicam treated wild type mice. The total number of neutrophils, monocytes and natural killer cells was elevated in the blood compared to IL-10 k.o. and wild type mice, indicating a role of the innate immune system in the pathogenesis. These findings were supported by analyses of the intestinal cytokine profile. Ampicillin and anti-IL-12/23p40 treatment significantly suppressed disease in the model. The PAC IL-10 k.o. model resembles several features of Crohn's disease and could be a useful in vivo model in preclinical research. © 2013 Elsevier B.V. All rights reserved.

  9. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Science.gov (United States)

    Minkwitz, Susann; Faßbender, Mirja; Kronbach, Zienab; Wildemann, Britt

    2015-01-01

    Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group) to an open osteotomy (hypertrophy group) led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group) decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  10. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Directory of Open Access Journals (Sweden)

    Susann Minkwitz

    Full Text Available Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group to an open osteotomy (hypertrophy group led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  11. Sensory nerve degeneration in a mouse model mimicking early manifestations of familial amyloid polyneuropathy due to transthyretin Ala97Ser.

    Science.gov (United States)

    Kan, H-W; Chiang, H; Lin, W-M; Yu, I-S; Lin, S-W; Hsieh, S-T

    2018-02-08

    Sensory nerve degeneration and consequent abnormal sensations are the earliest and most prevalent manifestations of familial amyloid polyneuropathy (FAP) due to amyloidogenic transthyretin (TTR). FAP is a relentlessly progressive degenerative disease of the peripheral nervous system. However, there is a lack of mouse models to replicate the early neuropathic manifestations of FAP. We established human TTR knock-in mice by replacing one allele of the mouse Ttr locus with human wild-type TTR (hTTR wt ) or human TTR with the A97S mutation (hTTR A97S ). Given the late onset of neuropathic manifestations in A97S-FAP, we investigated nerve pathology, physiology, and behavioural tests in these mice at two age points: the adult group (8 - 56 weeks) and the ageing group (> 104 weeks). In the adult group, nerve profiles, neurophysiology and behaviour were similar between hTTR wt and hTTR A97S mice. By contrast, ageing hTTR A97S mice showed small fibre neuropathy with decreased intraepidermal nerve fibre density and behavioural signs of mechanical allodynia. Furthermore, significant reductions in sural nerve myelinated nerve fibre density and sensory nerve action potential amplitudes in these mice indicated degeneration of large sensory fibres. The unaffected motor nerve physiology replicated the early symptoms of FAP patients, that is, sensory nerves were more vulnerable to mutant TTR than motor nerves. These results demonstrate that the hTTR A97S mouse model develops sensory nerve pathology and corresponding physiology mimicking A97S-FAP and provides a platform to develop new therapies for the early stage of A97S-FAP. © 2018 British Neuropathological Society.

  12. Computational fluid dynamics modeling of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    UM,SUKKEE; WANG,C.Y.; CHEN,KEN S.

    2000-02-11

    A transient, multi-dimensional model has been developed to simulate proton exchange membrane (PEM) fuel cells. The model accounts simultaneously for electrochemical kinetics, current distribution, hydrodynamics and multi-component transport. A single set of conservation equations valid for flow channels, gas-diffusion electrodes, catalyst layers and the membrane region are developed and numerically solved using a finite-volume-based computational fluid dynamics (CFD) technique. The numerical model is validated against published experimental data with good agreement. Subsequently, the model is applied to explore hydrogen dilution effects in the anode feed. The predicted polarization cubes under hydrogen dilution conditions are found to be in qualitative agreement with recent experiments reported in the literature. The detailed two-dimensional electrochemical and flow/transport simulations further reveal that in the presence of hydrogen dilution in the fuel stream, hydrogen is depleted at the reaction surface resulting in substantial kinetic polarization and hence a lower current density that is limited by hydrogen transport from the fuel stream to the reaction site.

  13. A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse mimicking muscular dystrophy.

    Science.gov (United States)

    Desguerre, Isabelle; Arnold, Ludovic; Vignaud, Alban; Cuvellier, Sylvain; Yacoub-Youssef, Houda; Gherardi, Romain K; Chelly, Jamel; Chretien, Fabrice; Mounier, Rémi; Ferry, Arnaud; Chazaud, Bénédicte

    2012-06-01

    Duchenne Muscular Dystrophy (DMD) is characterized by the lack of dystrophin that leads to severe myofiber degeneration. We have shown that endomysial fibrosis is correlated with age at ambulation loss in DMD patients. However, the dystrophin-deficient mdx mouse does not have fibrotic lesions in adult limb muscles. Here, we describe a model of chronic mechanical muscle injury that triggers chronic lesions in mdx hindlimb muscle. Micromechanical injuries were performed daily in tibialis anterior muscles for 2 weeks. Endomysial fibrosis appeared beginning 1 week post-injury, remained stable for 3 months and was associated with loss of specific maximal force. Fibrosis was associated with an increased expression of factors involved in fibrogenesis including α-smooth muscle actin, connective tissue growth factor, and lysyl oxidase, which colocalized with collagen deposits. This induced fibrotic dystrophic model may be useful to study mechanisms of fibrosis in dystrophinopathies and to evaluate antifibrotic treatments. Copyright © 2012 Wiley Periodicals, Inc.

  14. Electrospun PBLG/PLA nanofiber membrane for constructing in vitro 3D model of melanoma.

    Science.gov (United States)

    Wang, Yaping; Qian, Junmin; Liu, Ting; Xu, Weijun; Zhao, Na; Suo, Aili

    2017-07-01

    Though much progress in utilizing tissue engineering technology to investigate tumor development in vitro has been made, the effective management of human melanoma is still a challenge in clinic due to lack of suitable 3D culture systems. In this study, we prepared a poly(γ-benzyl-l-glutamate)/poly(lactic acid) (PBLG/PLA) nanofiber membrane by electrospinning and demonstrated its suitability as a matrix for 3D culture of melanoma cells in vitro. The electrospun PBLG/PLA nanofiber membrane displayed a smooth and uniform fibrous morphology and had a desirable water contact angle of 79.3±0.6°. The average diameter of PBLG/PLA nanofibers was 320.3±95.1nm that was less than that (516.2±163.3nm) of pure PLA nanofibers. The addition of PBLG into PLA decreased the cold crystallization peak of PLA fibers from 93 to 75°C. The in vitro biocompatibility of PBLG/PLA nanofiber membrane was evaluated with B16F10 cells using PLA nanofiber membrane as control. It was found that, compared to PLA nanofiber membrane, PBLG/PLA nanofiber membrane could better support cell viability and proliferation, as indicated by MTT assay and live-dead staining. SEM results revealed that PBLG/PLA rather than PLA nanofiber membrane promoted the generation of tumoroid-like structures. These findings clearly demonstrated that the electrospun PBLG/PLA nanofiber membrane could mimick the extracellular matrix of melanoma microenvironment and be a promising platform for 3D cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. KRAS (G12D Cooperates with AML1/ETO to Initiate a Mouse Model Mimicking Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    2014-01-01

    Full Text Available Background/Aims: It has been demonstrated that KRAS mutations represent about 90% of cancer-associated mutations, and that KRAS mutations play an essential role in neoplastic transformation. Cancer-associated RAS mutations occur frequently in acute myeloid leukemia (AML, suggesting a functional role for Ras in leukemogenesis. Methods: We successfully established a mouse model of human leukemia by transplanting bone marrow cells co-transfected with the K-ras (G12D mutation and AML1/ETO fusion protein. Results: Mice transplanted with AML/ETO+KRAS co-transduced cells had the highest mortality rate than mice transplanted with AML/ETO- or KRAS-transduced cells (115d vs. 150d. Upon reaching a terminal disease stage, EGFP-positive cells dominated their spleen, lymph nodes, peripheral blood and central nervous system tissue. Immunophenotyping, cytologic analyses revealed that AML/ETO+KRAS leukemias predominantly contained immature myeloid precursors (EGFP+/c-Kit+/Mac-1-/Gr-1-. Histologic analyses revealed that massive leukemic infiltrations were closely packed in dense sheets that effaced the normal architecture of spleen and thymus in mice transplanted with AML1/ETO + KRAS co-transduced cells. K-ras mRNA and protein expression were upregulated in bone marrow cells of the K-ras group and AML1/ETO + Kras group. The phosphorylation of MEK/ERK was significantly enhanced in the AML1/ETO + Kras group. The similar results of the AML1/ETO + Nras group were consistent with those reported previously. Conclusion: Co-transduction of KrasG12D and AML1/ETO induces acute monoblastic leukemia. Since expression of mutant K-ras alone was insufficient to induce leukemia, this model may be useful for investigating the multi-step leukemogenesis model of human leukemia.

  16. Exponential Decay of Covariances for the Supercritical Membrane Model

    Science.gov (United States)

    Bolthausen, Erwin; Cipriani, Alessandra; Kurt, Noemi

    2017-08-01

    We consider the membrane model, that is the centered Gaussian field on {\\mathbb{Z}^d} whose covariance matrix is given by the inverse of the discrete Bilaplacian. We impose a {δ}-pinning condition, giving a reward of strength {\\varepsilon} for the field to be 0 at any site of the lattice. In this paper we prove that in dimensions {d≥ 5} covariances of the pinned field decay at least exponentially, as opposed to the field without pinning, where the decay is polynomial. The proof is based on estimates for certain discrete weighted norms, a percolation argument and on a Bernoulli domination result.

  17. Analytical model describes ion conduction in fuel cell membranes

    Science.gov (United States)

    Herbst, Daniel; Tse, Steve; Witten, Thomas

    2014-03-01

    Many fuel cell designs employ polyelectrolyte membranes, but little is known about how to tune the parameters (water level, morphology, etc.) to maximize ion conductivity. We came up with a simple model based on a random, discrete water distribution and ion confinement due to neighboring polymer. The results quantitatively agree with molecular dynamics (MD) simulations and explain experimental observations. We find that when the ratio of water volume to polymer volume, Vw /Vp , is small, the predicted ion self-diffusion coefficient scales roughly as Dw T√{Vw /Vp } exp(- ⋯Vp /Vw) , where Dw T is the limiting value in pure water at temperature T . At high water levels the model also agrees with MD simulation, plateauing to Dw T . The model predicts a maximum conductivity at a water level higher than is typically used, and that it would be beneficial to increase water retention even at the expense of lower ion concentration. Also, membranes would conduct better if they phase-separated into water-rich and polymer-rich regions. US ARMY MURI #W911NF-10-1-0520.

  18. Effect of Membrane Thickness on Conformational Sampling of Phospholamban from Computer Simulations

    Science.gov (United States)

    Sayadi, Maryam; Tanizaki, Seiichiro; Feig, Michael

    2010-01-01

    Abstract The conformational sampling of monomeric, membrane-bound phospholamban is described from computer simulations. Phospholamban (PLB) plays a key role as a regulator of sarcoplasmic reticulum calcium ATPase. An implicit membrane model is used in conjunction with replica exchange molecular dynamics simulations to reach μs-ms timescales. The implicit membrane model was also used to study the effect of different membrane thicknesses by scaling the low-dielectric region. The conformational sampling with the membrane model mimicking dipalmitoylphosphatidylcholine bilayers is in good agreement overall with experimental measurements, but consists of a wide variety of different conformations including structures not described previously. The conformational ensemble shifts significantly in the presence of thinner or thicker membranes. This has implications for the structure and dynamics of PLB in physiological membranes and offers what we believe to be a new interpretation of previous experimental measurements of PLB in detergents and microsomal membrane. PMID:20197034

  19. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix.

    Science.gov (United States)

    Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo

    2014-09-19

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  20. Randomized clinical trial comparing manual suture and different models of mechanical suture in the mimicking of bariatric surgery in swine

    Directory of Open Access Journals (Sweden)

    Fernandes MA

    2014-02-01

    Full Text Available Marcos AP Fernandes,1 Bruno MT Pereira,2 Sandra M Guimarães,1 Aline Paganelli,3 Carlos Manoel CT Pereira,1 Claudio Sergio Batista4 1Institute of Obesity and Advanced Video Laparoscopic Surgery of Petropolis, Rio de Janeiro, Brazil; 2Division of Trauma, University of Campinas, São Paulo, Brazil; 3Laboratório de Patologia Micron Cell Diagnóstico, Rio de Janeiro, Brazil; 4Department of Gynecology and Obstetrics, Faculty of Medicine of Petropolis, Rio de Janeiro, Brazil Context and objective: Variations in the ability of surgeons served as motivation for the development of devices that, overcoming individual differences, allow the techniques to be properly performed, and of which the end result was the best possible. Every technique must be reproduced reliably by the majority of surgeons for their results to be adopted and recognized as effective. The aim of this study was to compare the results, from the point of view of anatomic pathology, of manual sutures versus mechanical sutures using different models of linear mechanical staplers, in the procedure of gastroenteroanastomosis and enteroanastomosis in swine. Methods: Thirty-six healthy, adult, male Sus scrofa domesticus pigs, weighing between 20.7 and 25.5 kg, were used. The swine were randomly divided into four groups of nine pigs, according to the type of suture employed: group A, manual suture with Polysorb® 3-0 wire; group B, 80-shear linear stapler (Covidien® Gia 8038-S; group C, 75-shear linear stapler (Ethicon® Tlc 75; and group D, 75-shear linear stapler (Resource® Yq 75-3. A temporal study was established on the seventh postoperative day for histopathological analysis, and the degree of inflammation, fibrosis, and newly formed vessels, as well as the presence or absence of granulation tissue, foreign body granuloma, and necrosis were all evaluated qualitatively and semiquantitatively. The results were analyzed statistically. Results: Observations during the histopathological

  1. Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes.

    Science.gov (United States)

    Barnes, Allison L; Wassel, Ronald A; Mondalek, Fadee; Chen, Kejian; Dormer, Kenneth J; Kopke, Richard D

    2007-01-04

    To quantitatively compare in-vitro and in vivo membrane transport studies of targeted delivery, one needs characterization of the magnetically-induced mobility of superparamagnetic iron oxide nanoparticles (SPION). Flux densities, gradients, and nanoparticle properties were measured in order to quantify the magnetic force on the SPION in both an artificial cochlear round window membrane (RWM) model and the guinea pig RWM. Three-dimensional maps were created for flux density and magnetic gradient produced by a 24-well casing of 4.1 kilo-Gauss neodymium-iron-boron (NdFeB) disc magnets. The casing was used to pull SPION through a three-layer cell culture RWM model. Similar maps were created for a 4 inch (10.16 cm) cube 48 MGOe NdFeB magnet used to pull polymeric-nanoparticles through the RWM of anesthetized guinea pigs. Other parameters needed to compute magnetic force were nanoparticle and polymer properties, including average radius, density, magnetic susceptibility, and volume fraction of magnetite. A minimum force of 5.04 x 10(-16) N was determined to adequately pull nanoparticles through the in-vitro model. For the guinea pig RWM, the magnetic force on the polymeric nanoparticles was 9.69 x 10-20 N. Electron microscopy confirmed the movement of the particles through both RWM models. As prospective carriers of therapeutic substances, polymers containing superparamagnetic iron oxide nanoparticles were succesfully pulled through the live RWM. The force required to achieve in vivo transport was significantly lower than that required to pull nanoparticles through the in-vitro RWM model. Indeed very little force was required to accomplish measurable delivery of polymeric-SPION composite nanoparticles across the RWM, suggesting that therapeutic delivery to the inner ear by SPION is feasible.

  2. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...... of MD configurations: Vacuum Membrane Distillation , Sweeping Gas Membrane Distillation , Direct Contact Membrane Distillation and Osmotic Membrane Distillation. The influence of feed temperature and feed flow rate on the permeate flux and concentration factor for different types of aroma compounds have...

  3. Limitations of membrane cultures as a model solid-state fermentation system

    NARCIS (Netherlands)

    Rahardjo, Y.S.P.; Korona, D.; Haemers, S.; Weber, F.J.; Tramper, J.; Rinzema, A.

    2004-01-01

    Aims: To examine the reliability of membrane cultures as a model solid-state fermentation (SSF) system. Methods and Results: In overcultures of Aspergillus oryzae on sterilized wheat flour discs overlaid with a polycarbonate membrane, we demonstrated that the presence of membrane filters reduced the

  4. Pervaporation : membranes and models for the dehydration of ethanol

    NARCIS (Netherlands)

    Spitzen, Johannes Wilhelmus Franciscus

    1988-01-01

    In this thesis the dehydration of ethanol/water mixtures by pervaporation using homogeneous membranes is studied. Both the general transport mechanism as well as the development of highly selective membranes for ethanol/water separation are investigated.

  5. Zeolite Membranes : Ozone Detemplation, Modeling, and Performance Characterization

    NARCIS (Netherlands)

    Kuhn, J.

    2009-01-01

    Membrane technology plays an increasingly important role in developing a more sustainable process industry. Zeolites are a novel class of membrane materials with unique properties enabling molecular sieving and affinity based separations. This thesis proposes some new concepts in zeolite membrane

  6. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    Directory of Open Access Journals (Sweden)

    Serge Feyder

    2015-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM, or the external medium, via the exocytosis or secretory pathway (SEC, and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway or directly (alkaline phosphatase or ALP pathway. Plasma membrane proteins can be internalized by endocytosis (END and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway. Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  7. Defective membrane remodeling in neuromuscular diseases: insights from animal models.

    Directory of Open Access Journals (Sweden)

    Belinda S Cowling

    Full Text Available Proteins involved in membrane remodeling play an essential role in a plethora of cell functions including endocytosis and intracellular transport. Defects in several of them lead to human diseases. Myotubularins, amphiphysins, and dynamins are all proteins implicated in membrane trafficking and/or remodeling. Mutations in myotubularin, amphiphysin 2 (BIN1, and dynamin 2 lead to different forms of centronuclear myopathy, while mutations in myotubularin-related proteins cause Charcot-Marie-Tooth neuropathies. In addition to centronuclear myopathy, dynamin 2 is also mutated in a dominant form of Charcot-Marie-Tooth neuropathy. While several proteins from these different families are implicated in similar diseases, mutations in close homologues or in the same protein in the case of dynamin 2 lead to diseases affecting different tissues. This suggests (1 a common molecular pathway underlying these different neuromuscular diseases, and (2 tissue-specific regulation of these proteins. This review discusses the pathophysiology of the related neuromuscular diseases on the basis of animal models developed for proteins of the myotubularin, amphiphysin, and dynamin families. A better understanding of the common mechanisms between these neuromuscular disorders will lead to more specific health care and therapeutic approaches.

  8. Redistribution of Cholesterol in Model Lipid Membranes in Response to the Membrane-Active Peptide Alamethicin

    Science.gov (United States)

    Heller, William; Qian, Shuo

    2013-03-01

    The cellular membrane is a heterogeneous, dynamic mixture of molecules and macromolecules that self-assemble into a tightly-regulated functional unit that provides a semipermeable barrier between the cell and its environment. Among the many compositional differences between mammalian and bacterial cell membranes that impact its physical properties, one key difference is cholesterol content, which is more prevalent in mammals. Cholesterol is an amphiphile that associates with membranes and serves to maintain its fluidity and permeability. Membrane-active peptides, such as the alpha-helical peptide alamethicin, interact with membranes in a concentration- and composition-dependent manner to form transmembrane pores that are responsible for the lytic action of the peptide. Through the use of small-angle neutron scattering and deuterium labeling, it was possible to observe a redistribution of the lipid and cholesterol in unilamellar vesicles in response to the presence of alamethicin at a peptide-to-lipid ratio of 1/200. The results demonstrate that the membrane remodeling powers of alamethicin reach beyond the membrane thinning effect to altering the localization of specific components in the bilayer, complementing the accepted two-state mechanism of pore formation. Research was supported by U. S. DOE-OBER (CSMB; FWP ERKP291) and the U. S. DOE-BES Scientific User Facilities Division (ORNL's SNS and HFIR).

  9. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  10. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2016-01-01

    Full Text Available Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  11. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    propose a novel mathematical zero-dimensional model for water mass balance of a polymer electrolyte membrane. Physical and electrochemical processes occurring in the membrane electrolyte are included; water adsorption/desorption phenomena are also considered. The effect of diffusivity, surface roughness...... of water transport when membrane absorption/desorption is considered in the model. The model becomes useful when studying fuel cell systems in dynamic conditions....

  12. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes.

    Science.gov (United States)

    Mason, R Preston; Jacob, Robert F; Shrivastava, Sandeep; Sherratt, Samuel C R; Chattopadhyay, Amitabha

    2016-12-01

    Cholesterol crystalline domains characterize atherosclerotic membranes, altering vascular signaling and function. Omega-3 fatty acids reduce membrane lipid peroxidation and subsequent cholesterol domain formation. We evaluated non-peroxidation-mediated effects of eicosapentaenoic acid (EPA), other TG-lowering agents, docosahexaenoic acid (DHA), and other long-chain fatty acids on membrane fluidity, bilayer width, and cholesterol domain formation in model membranes. In membranes prepared at 1.5:1 cholesterol-to-phospholipid (C/P) mole ratio (creating pre-existing domains), EPA, glycyrrhizin, arachidonic acid, and alpha linolenic acid promoted the greatest reductions in cholesterol domains (by 65.5%, 54.9%, 46.8%, and 45.2%, respectively) compared to controls; other treatments had modest effects. EPA effects on cholesterol domain formation were dose-dependent. In membranes with 1:1 C/P (predisposing domain formation), DHA, but not EPA, dose-dependently increased membrane fluidity. DHA also induced cholesterol domain formation without affecting temperature-induced changes in-bilayer unit cell periodicity relative to controls (d-space; 57Å-55Å over 15-30°C). Together, these data suggest simultaneous formation of distinct cholesterol-rich ordered domains and cholesterol-poor disordered domains in the presence of DHA. By contrast, EPA had no effect on cholesterol domain formation and produced larger d-space values relative to controls (60Å-57Å; pacids with differing chain length or unsaturation may differentially influence membrane lipid dynamics and structural organization as a result of distinct phospholipid/sterol interactions. Copyright © 2016. Published by Elsevier B.V.

  13. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  14. Protein-lipid interactions in bilayer membranes: A lattice model

    Science.gov (United States)

    Pink, David A.; Chapman, Dennis

    1979-01-01

    A lattice model has been developed to study the effects of intrinsic membrane proteins upon the thermodynamic properties of a lipid bilayer membrane. We assume that only nearest-neighbor van der Waals and steric interactions are important and that the polar group interactions can be represented by effective pressure—area terms. Phase diagrams, the temperature T0, which locates the gel—fluid melting, the transition enthalpy, and correlations were calculated by mean field and cluster approximations. Average lipid chain areas and chain areas when the lipid is in a given protein environment were obtained. Proteins that have a “smooth” homogeneous surface (“cholesterol-like”) and those that have inhomogeneous surfaces or that bind lipids specifically were considered. We find that T0 can vary depending upon the interactions and that another peak can appear upon the shoulder of the main peak which reflects the melting of a eutectic mixture. The transition enthalpy decreases generally, as was found before, but when a second peak appears departures from this behavior reflect aspects of the eutectic mixture. We find that proteins have significant nonzero probabilities for being adjacent to one another so that no unbroken “annulus” of lipid necessarily exists around a protein. If T0 does not increase much, or decreases, with increasing c, then lipids adjacent to a protein cannot all be all-trans on the time scale (10-7 sec) of our system. Around a protein the lipid correlation depth is about one lipid layer, and this increases with c. Possible consequences of ignoring changes in polar group interactions due to clustering of proteins are discussed. PMID:286996

  15. Mechanics and dynamics of triglyceride-phospholipid model membranes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Duelund, Lars; Qvortrup, Klaus

    2011-01-01

    We demonstrate here that triolein alters the mechanical properties of phospholipid membranes and induces extraordinary conformational dynamics. Triolein containing membranes exhibit fluctuations up to size range of 100µm and with the help of these are e.g. able to squeeze through narrow passages...... with larger lamellar distances observed in the TOPOPC membranes. These findings suggest repulsion between adjacent membranes. We provide a comprehensive discussion on the possible explanations for the observed mechanics and dynamics in the TOPOPC system and on their potential cellular implications....

  16. The practical use of resistance modelling to interpret the gas separation properties of hollow fiber membranes

    International Nuclear Information System (INIS)

    Ahmad Fauzi Ismail; Shilton, S.J.

    2000-01-01

    A simple resistance modelling methodology is presented for gas transport through asymmetric polymeric membranes. The methodology allows fine structural properties such as active layer thickness and surface porosity, to be determined from experimental gas permeation data. This paper, which could be regarded as a practical guide, shows that resistance modeling, if accompanied by realistic working assumptions, need not be difficult and can provide a valuable insight into the relationships between the membrane fabrication conditions and performance of gas separation membranes. (Author)

  17. Xanthogranulomatous cholecystitis mimicking gallbladder cancer.

    Science.gov (United States)

    Ewelukwa, Ofor; Ali, Omair; Akram, Salma

    2014-05-08

    Xanthogranulomatous cholecystitis (XGC) is a benign, uncommon variant of chronic cholecystitis characterised by focal or diffuse destructive inflammatory process of the gallbladder (GB). Macroscopically, it appears like yellowish tumour-like masses in the wall of the GB. This article reports on a 74-year-old woman with XGC mimicking GB cancer.

  18. An advanced simulation model for membrane bioreactors: development, calibration and validation.

    Science.gov (United States)

    Ludwig, T; Gaida, D; Keysers, C; Pinnekamp, J; Bongards, M; Kern, P; Wolf, C; Sousa Brito, A L

    2012-01-01

    Membrane wastewater treatment plants (WWTPs) have several advantages compared with conventionally designed WWTPs with classical purification techniques. The filtration process is the key to their commercial success in Germany with respect to energy consumption and effectiveness, enabled by the optimization of filtration using a dynamic simulation model. This work is focused on the development of a robust, flexible and practically applicable membrane simulation model for submerged hollow-fibre and flat-sheet membrane modules. The model is based on standard parameters usually measured on membrane WWTPs. The performance of the model is demonstrated by successful calibration and validation for three different full-scale membrane WWTPs achieving good results. Furthermore, the model is combinable with Activated Sludge Models.

  19. Parametric linear modeling of circular cMUT membranes in vacuum.

    Science.gov (United States)

    Köymen, Hayrettin; Senlik, Muhammed N; Atalar, Abdullah; Olcum, Selim

    2007-06-01

    We present a lumped element parametric model for the clamped circular membrane of a capacitive micromachined ultrasonic transducer (cMUT). The model incorporates an electrical port and two sets of acoustic ports, through which the cMUT couples to the medium. The modeling approach is based on matching a lumped element model and the mechanical impedance of the cMUT membrane at the resonance frequencies in vacuum. Very good agreement between finite element simulation results and model impedance is obtained. Equivalent circuit model parameters can be found from material properties and membrane dimensions without a need for finite element simulation.

  20. An averaged polarizable potential for multiscale modeling in phospholipid membranes

    DEFF Research Database (Denmark)

    Witzke, Sarah; List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural...

  1. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...... of MD configurations: Vacuum Membrane Distillation , Sweeping Gas Membrane Distillation , Direct Contact Membrane Distillation and Osmotic Membrane Distillation. The influence of feed temperature and feed flow rate on the permeate flux and concentration factor for different types of aroma compounds have...

  2. An Analytical Model for CMUTs with Square Multilayer Membranes Using the Ritz Method

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2016-03-01

    Full Text Available Capacitive micromachined ultrasonic transducer (CMUT multilayer membrane plays an important role in the performance metrics including the transmitting efficiency and the receiving sensitivity. However, there are few studies of the multilayer membranes. Some analytical models simplify the multilayer membrane as monolayer, which results in inaccuracies. This paper presents a new analytical model for CMUTs with multilayer membranes, which can rapidly and accurately predict static deflection and response frequency of the multilayer membrane under external pressures. The derivation is based on the Ritz method and Hamilton’s principle. The mathematical relationships between the external pressure, static deflection, and response frequency are obtained. Relevant residual stress compensation method is derived. The model has been verified for three-layer and double-layer CMUT membranes by comparing its results with finite element method (FEM simulations, experimental data, and other monolayer models that treat CMUTs as monolayer plates/membranes. For three-layer CMUT membranes, the relative errors are ranging from 0.71%–3.51% for the static deflection profiles, and 0.35%–4.96% for the response frequencies, respectively. For the double-layer CMUT membrane, the relative error with residual stress compensation is 4.14% for the central deflection, and −1.17% for the response frequencies, respectively. This proposed analytical model can serve as a reliable reference and an accurate tool for CMUT design and optimization.

  3. Understanding Detergent Effects on Lipid Membranes: A Model Study of Lysolipids

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Andresen, Thomas Lars; Feldborg, Lise Nørkjær

    2010-01-01

    in terms of a phenomenological model based on continuum elastic theory, which yields information about the curvature-inducing properties of the LPC molecule. The results reveal: 1), an increase in the partition coefficient with increasing LPC acyl-chain length; and 2), that the degree of acyl-chain...... mismatch between LPC and POPC determines the magnitude of the membrane mechanical perturbation per LPC molecule in the membrane. Finally, the three-stage model describing detergent membrane interaction has been extended by a parameter D-MCI, which governs the membrane curvature stability in the detergent...... concentration range below the cmc-value of the LPC molecule....

  4. Key factors regulating the mass delivery of macromolecules to model cell membranes

    DEFF Research Database (Denmark)

    Campbell, Richard A.; Watkins, Erik B.; Jagalski, Vivien

    2014-01-01

    We show that both gravity and electrostatics are key factors regulating interactions between model cell membranes and self-assembled liquid crystalline aggregates of dendrimers and phospholipids. The system is a proxy for the trafficking of reservoirs of therapeutic drugs to cell membranes for sl...... of the aggregates to activate endocytosis pathways on specific cell types is discussed in the context of targeted drug delivery applications.......We show that both gravity and electrostatics are key factors regulating interactions between model cell membranes and self-assembled liquid crystalline aggregates of dendrimers and phospholipids. The system is a proxy for the trafficking of reservoirs of therapeutic drugs to cell membranes for slow...

  5. Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model

    International Nuclear Information System (INIS)

    Lee, Young Duk; Bae, Ho June; Ahn, Kook Young; Yu, Sang Seok; Hwang, Joon Young

    2009-01-01

    The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/Simulink □ environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier

  6. Replica Ornstein-Zernike Theory Applied for Studying the Equilibrium Distribution of Electrolytes across Model Membranes.

    Science.gov (United States)

    Hribar-Lee, Barbara; Lukšič, Miha

    2018-01-24

    By means of replica Ornstein-Zernike theory (supplemented in a few cases by Monte Carlo simulations) we examined the distribution of an annealed primitive model +1:-1 electrolyte in a mixture with uncharged hard spheres, or another model +1:-1 or +2:-1 electrolyte inside and outside the quenched vesicles, decorated by a model membrane, and across the membrane phase. We explored the influence of the size and charge of the annealed fluid on the partition equilibrium, as well as the effect of the vesicle size and membrane interaction parameters (repulsive barrier height, attractive depth, and membrane width). A hydrophobic cation, present in the mixture with NaCl, slightly enhanced the concentration of sodium ions inside the model vesicle, compared to pure NaCl solution. The replica theory was in good agreement with computer simulations and as such adequate for studying partitioning of small and hydrophobic ions or hydrophobic solutes across model membranes.

  7. Experimental investigation and theoretical modelling of the nonlinear acoustical behaviour of a liver tissue and comparison with a tissue mimicking hydrogel.

    Science.gov (United States)

    Casciaro, Sergio; Demitri, Christian; Conversano, Francesco; Casciaro, Ernesto; Distante, Alessandro

    2008-02-01

    Native harmonics generated by nonlinear distortion of ultrasound during propagation in a medium may cause misinterpretations in spectral analysis when studying contrast agents. The aim of this paper is to quantitatively evaluate nonlinear propagation effects of diagnostic ultrasound pulses in biological tissues and to assess whether a cellulose-based hydrogel can be a suitable material for tissue mimicking purposes. Hydrogel and pig liver tissue samples of various thicknesses were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values (range 0.06-0.60). Second harmonic and first harmonic amplitudes were extracted from spectra of received signals and their ratio was then used to compare hydrogel and liver behaviours. Resulting trends are very similar for sample thicknesses up to 8 cm and highlight a significant increase in nonlinearity for MI > 0.3, for both liver and hydrogel. A numerical procedure was also employed to calculate pressure distribution along the beam axis: these theoretical results showed a very good agreement with experimental data in the low pressure range, though failed in predicting the MI threshold. In conclusion, the hydrogel resulted to be a suitable material for manufacturing tissue mimicking phantoms, in particular to study contrast agent behaviour with a "low power approach".

  8. Chemo-mechanical model of biological membranes for actuation mechanisms

    Science.gov (United States)

    Sundaresan, Vishnu-Baba; Leo, Donald J.

    2005-05-01

    Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by ATP hydrolysis assists the transport of ions and fluids to achieve volumetric expansion and homeostasis. Materials that develop pressure and hence strain similar to bio-materials are classified as nastic materials. Recent calculations for controlled actuation of an active material inspired by biological transport mechanism demonstrated the feasibility of developing such a material with actuation energy densities on the order of 100 kJ/m3. Our initial investigation was based on capsules that generate pressure thus causing strain in the surrounding matrix material. Our present work focuses on our efforts to fabricate a representative actuation structure and describes the chemo-mechanical constitutive equation for such a material. The actuator considered in this work is a laminated arrangement of a hydraulic actuator plate with microscopic barrels and a fluid reservoir kept separated by a semi-permeable membrane dispersed with biological transporters. We present here our initial design and a mathematical model to predict the fluid flux and strain developed in such an actuator.

  9. Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation

    KAUST Repository

    Lee, Jung Gil

    2016-12-27

    Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.

  10. Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure

    KAUST Repository

    Calo, Victor M.

    2015-07-17

    The selection of an appropriate membrane for a particular application is a complex and expensive process. Computational modeling can significantly aid membrane researchers and manufacturers in this process. The membrane morphology is highly influential on its efficiency within several applications, but is often overlooked in simulation. Two such applications which are very important in the provision of clean water are forward osmosis and filtration using functionalized micro/ultra/nano-filtration membranes. Herein, we investigate the effect of the membrane morphology in these two applications. First we present results of the separation process using resolved finger- and sponge-like support layers. Second, we represent the functionalization of a typical microfiltration membrane using absorptive pore walls, and illustrate the effect of different microstructures on the reactive process. Such numerical modeling will aid manufacturers in optimizing operating conditions and designing efficient membranes.

  11. Multiscale Modeling of Polymer Membranes for Soldiers Protective Clothing

    National Research Council Canada - National Science Library

    Andzelm, Jan; Sloan, James; Napadensky, Eugene; Beyer, Rick; Snyder, James; McKnight, Steven; Chung, Peter W

    2006-01-01

    .... These simulations lead to the prediction of the architecture and morphology of the membrane. We have also studied mesoscale morphology of the copolymer constrained by a surface or the nanopore...

  12. A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane

    OpenAIRE

    Kim, Kyung Hwan; Choi, Sung Jin; Kim, Jin Ho

    2013-01-01

    We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear mode...

  13. Experimental Support for a Predictive Osmotic Model of Clay Membranes

    International Nuclear Information System (INIS)

    Fritz, S.J.

    2001-01-01

    Osmosis has been cited as a mechanism for explaining anomalously high fluid pressures in the subsurface. Clays and shales act as membranes, and osmotic flux across these units may result in pressures sufficiently high to explain these anomalies. The theoretical osmotic pressures as calculated solely from solution properties can be quite large; however, it is not yet resolved whether these geologic membranes are sufficiently ideal to generate such pressures

  14. Binding dynamics of hepatitis C virus' NS5A amphipathic peptide to cell and model membranes.

    Science.gov (United States)

    Cho, Nam-Joon; Cheong, Kwang Ho; Lee, ChoongHo; Frank, Curtis W; Glenn, Jeffrey S

    2007-06-01

    Membrane association of the hepatitis C virus NS5A protein is required for viral replication. This association is dependent on an N-terminal amphipathic helix (AH) within NS5A and is restricted to a subset of host cell intracellular membranes. The mechanism underlying this specificity is not known, but it may suggest a novel strategy for developing specific antiviral therapy. Here we have probed the mechanistic details of NS5A AH-mediated binding to both cell-derived and model membranes by use of biochemical membrane flotation and quartz crystal microbalance (QCM) with dissipation. With both assays, we observed AH-mediated binding to model lipid bilayers. When cell-derived membranes were coated on the quartz nanosensor, however, significantly more binding was detected, and the QCM-derived kinetic measurements suggested the existence of an interacting receptor in the target membranes. Biochemical flotation assays performed with trypsin-treated cell-derived membranes exhibited reduced AH-mediated membrane binding, while membrane binding of control cytochrome b5 remained unaffected. Similarly, trypsin treatment of the nanosensor coated with cellular membranes abolished AH peptide binding to the cellular membranes but did not affect the binding of a control lipid-binding peptide. These results therefore suggest that a protein plays a critical role in mediating and stabilizing the binding of NS5A's AH to its target membrane. These results also demonstrate the successful development of a new nanosensor technology ideal both for studying the interaction between a protein and its target membrane and for developing inhibitors of that interaction.

  15. A Model of Direct Contact Membrane Distillation of Black Currant Juice

    DEFF Research Database (Denmark)

    Jensen, Morten Busch; Christensen, Knud Villy; Andrésen, René

    2011-01-01

    A numerical model to describe a direct contact membrane distillation proces has been developed. Said model is based on the Dusty Gas model and shell mass and energy balances over a tubular membrane module.  "The solution is applicable to laminar, incompressible and continuous flow in shell......-side spacing of tubular-type unit."  Turtuosity and porosity are characteristics of the membrane in use and have been estimated base don eksperimental studies on destillation of pure water. The fitted model shows a good fit to experimental data obtained by destillation of black currant juice....

  16. Pervaporation separation of n-heptane/thiophene mixtures by polyethylene glycol membranes: Modeling and experimental.

    Science.gov (United States)

    Lin, Ligang; Zhang, Yuzhong; Kong, Ying

    2009-11-01

    Gasoline desulfurization by membrane processes is a newly emerged technology, which has provided an efficient new approach for sulfur removal and gained increasing attention of the membrane and petrochemical field. A deep understanding of the solution/diffusion of gasoline molecules on/in the membrane can provide helpful information in improving or optimizing membrane performance. In this study, a desulfurization mechanism of polyethylene glycol (PEG) membranes has been investigated by the study of sorption and diffusion behavior of typical sulfur and hydrocarbon species through PEG membranes. A solution-diffusion model based on UNIFAC and free volume theory has been established. Pervaporation (PV) and sorption experiments were conducted to compare with the model calculation results and to analyze the mass transport behavior. The dynamic sorption curves for pure components and the sorption experiments for binary mixtures showed that thiophene, which had a higher solubility coefficient than n-heptane, was the preferential sorption component, which is key in the separation of thiophene/hydrocarbon mixtures. In all cases, the model calculation results fit well the experimental data. The UNIFAC model was a sound way to predict the solubility of solvents in membranes. The established model can predict the removal of thiophene species from hydrocarbon compounds by PEG membranes effectively.

  17. Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen Processing

    Directory of Open Access Journals (Sweden)

    Guozhao Ji

    2013-08-01

    Full Text Available This work shows the application of a validated mathematical model for gas permeation at high temperatures focusing on demonstrated scale-up design for H2 processing. The model considered the driving force variation with spatial coordinates and the mass transfer across the molecular sieve cobalt oxide silica membrane to predict the separation performance. The model was used to study the process of H2 separation at 500 °C in single and multi-tube membrane modules. Parameters of interest included the H2 purity in the permeate stream, H2 recovery and H2 yield as a function of the membrane length, number of tubes in a membrane module, space velocity and H2 feed molar fraction. For a single tubular membrane, increasing the length of a membrane tube led to higher H2 yield and H2 recovery, owing to the increase of the membrane area. However, the H2 purity decreased as H2 fraction was depleted, thus reducing the driving force for H2 permeation. By keeping the membrane length constant in a multi-tube arrangement, the H2 yield and H2 recovery increase was attributed to the higher membrane area, but the H2 purity was again compromised. Increasing the space velocity avoided the reduction of H2 purity and still delivered higher H2 yield and H2 recovery than in a single membrane arrangement. Essentially, if the membrane surface is too large, the driving force becomes lower at the expense of H2 purity. In this case, the membrane module is over designed. Hence, maintaining a driving force is of utmost importance to deliver the functionality of process separation.

  18. Multicystic Hepatocarcinoma Mimicking Liver Abscess

    Directory of Open Access Journals (Sweden)

    Evangelos Falidas

    2013-01-01

    Full Text Available The diagnosis of hepatocellular carcinoma (HCC became easier in relation to the improved radiological examinations; however, the neoplasm may occur under atypical presentations mimicking other benign or malignant processes. Multicystic HCC mimicking a liver abscess associated with septic-type fever and leukocytosis is rare, has a poor prognosis, and poses diagnostic and therapeutic dilemmas. We present the case of an 80-year-old patient, who presented with fever, leukocytosis, and large cystic masses involving right and left lobes of the liver initially considered abscesses and finally diagnosed as HCC after open drainage and liver biopsy. Although the patient died on the tenth postoperative day due to pulmonary oedema, the authors emphasize the high index of suspicion needed in the diagnosis of this unusual presentation of HCC.

  19. Particle-based membrane model for mesoscopic simulation of cellular dynamics

    Science.gov (United States)

    Sadeghi, Mohsen; Weikl, Thomas R.; Noé, Frank

    2018-01-01

    We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.

  20. (CryoTransmission Electron Microscopy of Phospholipid Model Membranes Interacting with Amphiphilic and Polyphilic Molecules

    Directory of Open Access Journals (Sweden)

    Annette Meister

    2017-10-01

    Full Text Available Lipid membranes can incorporate amphiphilic or polyphilic molecules leading to specific functionalities and to adaptable properties of the lipid bilayer host. The insertion of guest molecules into membranes frequently induces changes in the shape of the lipid matrix that can be visualized by transmission electron microscopy (TEM techniques. Here, we review the use of stained and vitrified specimens in (cryoTEM to characterize the morphology of amphiphilic and polyphilic molecules upon insertion into phospholipid model membranes. Special emphasis is placed on the impact of novel synthetic amphiphilic and polyphilic bolalipids and polymers on membrane integrity and shape stability.

  1. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  2. Modeling bidirectional transport of quantum dot nanoparticles in membrane nanotubes.

    Science.gov (United States)

    Kuznetsov, A V

    2011-08-01

    This paper develops a model of transport of quantum dot (QD) nanoparticles in membrane nanotubes (MNTs). It is assumed that QDs are transported inside intracellular organelles (called here nanoparticle-loaded vesicles, NLVs) that are propelled by either kinesin or dynein molecular motors while moving on microtubules (MTs). A vesicle may have both types of motors attached to it, but the motors are assumed to work in a cooperative fashion, meaning that at a given time the vesicle is moved by either kinesin or dynein motors. The motors are assumed not to work against each other, when one type of motors is pulling the vesicle, the other type is inactive. From time to time the motors may switch their roles: passive motors can become active motors and vice versa, resulting in the change of the vesicle's direction of motion. It is further assumed that QDs can escape NLVs and become free QDs, which are then transported by diffusion. Free QDs can be internalized by NLVs. The effects of two possible types of MT orientation in MNTs are investigated: when all MTs have a uniform polarity orientation, with their plus-ends directed toward one of the cells connected by an MNT, and when MTs have a mixed polarity orientation, with half of MTs having their plus-ends directed toward one of the cells and the other half having their plus-ends directed toward the other cell. Computational results are presented for three cases. The first case is when organelles are as likely to be transported by kinesin motors as by dynein motors. The second case is when organelles are more likely to be transported by kinesin motors than by dynein motors, and the third case is when NLVs do not associate with dynein motors at all. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Evaluation of novel resorbable membranes for bone augmentation in a rat model

    NARCIS (Netherlands)

    Zeng, N.; van Leeuwen, A.C.; Yuan, Huipin; Bos, R.R.M.; Grijpma, Dirk W.; Kuijer, R.

    2016-01-01

    Objectives Our study compared two novel, biodegradable poly(trimethylene carbonate) (PTMC) barrier membranes to clinically applied barrier membranes in maintaining volume of block autologous bone grafts in a rat mandible model. Material and methods Two hundred and forty rats were included in this

  4. Evaluation of novel resorbable membranes for bone augmentation in a rat model

    NARCIS (Netherlands)

    Zeng, Ni; van Leeuwen, Anne; Yuan, Huipin; Bos, Ruud R M; Grijpma, Dirk W; Kuijer, Roelof

    ObjectivesOur study compared two novel, biodegradable poly(trimethylene carbonate) (PTMC) barrier membranes to clinically applied barrier membranes in maintaining volume of block autologous bone grafts in a rat mandible model. Material and methodsTwo hundred and forty rats were included in this

  5. Air gap membrane distillation. 2. Model validation and hollow fibre module performance analysis

    NARCIS (Netherlands)

    Guijt, C.M.; Meindersma, G.W.; Reith, T.; de Haan, A.B.

    2005-01-01

    In this paper the experimental results of counter current flow air gap membrane distillation experiments are presented and compared with predictive model calculations. Measurements were carried out with a cylindrical test module containing a single hollow fibre membrane in the centre and a

  6. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    International Nuclear Information System (INIS)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed

  7. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu; Li, Yue; Modis, Yorgo, E-mail: yorgo.modis@yale.edu

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  8. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Bioinspired model of mechanical energy harvesting based on flexoelectric membranes.

    Science.gov (United States)

    Rey, Alejandro D; Servio, P; Herrera-Valencia, E E

    2013-02-01

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane electrical polarization due to bending and membrane bending under electric fields. In this paper we propose, formulate, and characterize a mechanical energy harvesting system consisting of a deformable soft flexoelectric thin membrane subjected to harmonic forcing from contacting bulk fluids. The key elements of the energy harvester are formulated and characterized, including (i) the mechanical-to-electrical energy conversion efficiency, (ii) the electromechanical shape equation connecting fluid forces with membrane curvature and electric displacement, and (iii) the electric power generation and efficiency. The energy conversion efficiency is cast as the ratio of flexoelectric coupling to the product of electric and bending elasticity. The device is described by a second-order curvature dynamics coupled to the electric displacement equation and as such results in mechanical power absorption with a resonant peak whose amplitude decreases with bending viscosity. The electric power generation is proportional to the conversion factor and the power efficiency decreases with frequency. Under high bending viscosity, the power efficiency increases with the conversion factor and under low viscosities it decreases with the conversion factor. The theoretical results presented contribute to the ongoing experimental efforts to develop mechanical energy harvesting from fluid flow energy through solid-fluid interactions and electromechanical transduction.

  10. Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen Processing

    OpenAIRE

    Guozhao Ji; Guoxiong Wang; Kamel Hooman; Suresh K. Bhatia; João C. Diniz da Costa

    2013-01-01

    This work shows the application of a validated mathematical model for gas permeation at high temperatures focusing on demonstrated scale-up design for H2 processing. The model considered the driving force variation with spatial coordinates and the mass transfer across the molecular sieve cobalt oxide silica membrane to predict the separation performance. The model was used to study the process of H2 separation at 500 °C in single and multi-tube membrane modules. Parameters of interest include...

  11. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  12. Interactions of a Photochromic Spiropyran with Liposome Model Membranes

    KAUST Repository

    Jonsson, Fabian

    2013-02-19

    The interactions between anionic or zwitterionic liposomes and a water-soluble, DNA-binding photochromic spiropyran are studied using UV/vis absorption and linear dichroism (LD) spectroscopy. The spectral characteristics as well as the kinetics of the thermal isomerization process in the absence and presence of the two different liposome types provide information about the environment and whether or not the spiropyran resides in the liposome membrane. By measuring LD on liposomes deformed and aligned by shear flow, further insight is obtained about interaction and binding geometry of the spiropyran at the lipid membranes. We show that the membrane interactions differ between the two types of liposomes used as well as the isomeric forms of the spiropyran photoswitch. © 2013 American Chemical Society.

  13. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.

    Science.gov (United States)

    Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B

    2012-10-01

    In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of amniotic membrane to reduce postlaminectomy epidural adhesion on a rat model.

    Science.gov (United States)

    Choi, Hyu Jin; Kim, Kyoung Beom; Kwon, Young-Min

    2011-06-01

    Epidural fibrosis and adhesion are the main reasons for post-laminectomy sustained pain and functional disability. In this study, the authors investigate the effect of irradiated freeze-dried human amniotic membrane on reducing epidural adhesion after laminectomy on a rat model. A total of 20 rats were divided into two groups. The group A did not receive human amniotic membrane implantation after laminectomy and group B underwent human amniotic membrane implantation after laminectomy. Gross and microscopic findings were evaluated and compared at postoperative 1, 3 and 8 weeks. The amount of scar tissue and tenacity were reduced grossly in group of rats with human amniotic membrane implantation (group B). On a microscopic evaluation, there were less inflammatory cell infiltration and fibroblast proliferation in group B. This experimental study shows that implantation of irradiated freeze-dried human amniotic membrane reduce epidural fibrosis and adhesion after spinal laminectomy in a rat model.

  15. Ice formation in model biological membranes in the presence of cryoprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.A. E-mail: kiselev@nf.jinr.ru; Lesieur, P.; Kisselev, A.M.; Ollivon, M

    2000-06-21

    Ice formation in model biological membranes is studied by SAXS and WAXS in the presence of cryoprotectors: dimethyl sulfoxide and glycerol. Three types of phospholipid membranes: DPPC, DMPC, DSPC are chosen for the investigation as well-studied model biological membranes. A special cryostat is used for sample cooling from 14.1 deg. C to -55.4 deg. C. The ice formation is detected only by WAXS in binary phospholipid/water and ternary phospholipid/cryoprotector/water systems in the condition of excess solvent. Ice formation in a binary phospholipid/water system creates an abrupt decrease of the membrane repeat distance by {delta}d, the so-called ice-induced dehydration of intermembrane space. The value of {delta}d decreases as the cryoprotector concentration increases. The formation of ice does not influence the membrane structure ({delta}d=0) for cryoprotector mole fractions higher than 0.05.

  16. Direct observation of intermediate states in model membrane fusion

    Science.gov (United States)

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-01-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285

  17. Protein modeling of apical membrane antigen-1(AMA-1) of ...

    African Journals Online (AJOL)

    Apical membrane Antigen-1(AMA-1), an asexual blood stage antigen of Plasmodium cynomolgi, is an important candidate for testing as a component of malarial vaccine. The degree of conservation of. AMA-1 sequences implies a conserved function for this molecule across different species of Plasmodium. Since the AMA-1 ...

  18. Modelling of biohydrogen production and recovery by membrane gas separation

    Czech Academy of Sciences Publication Activity Database

    Búcsú, D.; Nemestóthy, N.; Pientka, Zbyněk; Gubicza, L.; Bélafi-Bakó, K.

    2009-01-01

    Roč. 240, 1-3 (2009), s. 306-310 ISSN 0011-9164 R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : integrated system * Escherichia coli * PES-PI membrane Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  19. α-Synuclein oligomers distinctively permeabilize complex model membranes

    NARCIS (Netherlands)

    Stefanovic, Anja N D; Stöckl, Martin T; Claessens, Mireille M A E; Subramaniam, Vinod

    α-Synuclein oligomers are increasingly considered to be responsible for the death of dopaminergic neurons in Parkinson's disease. The toxicity mechanism of α-synuclein oligomers likely involves membrane permeabilization. Even though it is well established that α-synuclein oligomers bind and

  20. Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation

    International Nuclear Information System (INIS)

    Xing, Lei; Du, Shangfeng; Chen, Rui; Mamlouk, Mohamed; Scott, Keith

    2016-01-01

    A two-dimensional along-the-channel CFD (computational fluid dynamic) model, coupled with a two-phase flow model of liquid water and gas transport for a PEM (proton exchange membrane) fuel cell is described. The model considers non-isothermal operation and thus the non-uniform temperature distribution in the cell structure. Water phase-transfer between the vapour, liquid water and dissolved phase is modelled with the combinational transport mechanism through the membrane. Liquid water saturation is simulated inside the electrodes and channels at both the anode and cathode sides. Three types of models are compared for the HOR (hydrogen oxidation reaction) and ORR (oxygen reduction reaction) in catalyst layers, including Butler–Volmer (B–V), liquid water saturation corrected B–V and agglomerate mechanisms. Temperature changes in MEA (membrane electrode assembly) and channels due to electrochemical reaction, ohmic resistance and water phase-transfer are analysed as a function of current density. Nonlinear relations of liquid water saturations with respect to current densities at both the anode and cathode are regressed. At low and high current densities, liquid water saturation at the anode linearly increases as a consequence of the linear increase of liquid water saturation at the cathode. In contrast, exponential relation is found to be more accurate at medium current densities. - Highlights: • A fully coupled 2D, along-the-channel, two-phase flow, non-isothermal, CFD model is developed. • Temperature rise due to electrochemical reactions, ohmic resistance and water phase-transfer is analysed. • Mathematical expressions of liquid water saturation against current density at anode and cathode are regressed. • Relationship between the liquid water saturation at anode and cathode is built.

  1. Expansion of thermodynamic model of solute permeation through reverse osmosis membrane

    International Nuclear Information System (INIS)

    Nishimaki, Kenzo; Koyama, Akio

    1994-01-01

    Many studies have been performed on permeation mechanism of solute and solvent in membrane separation process like reverse osmosis or ultrafiltration, and several models of solute/solvent permeation through membrane are proposed. Among these models, Kedem and Katchalsky, based on the theory of thermodynamics of irreversible processes, formulated the one-solute permeation process in their mathematical model, which treats membrane as a black box, not giving consideration to membrane structure and to interaction between membrane material and permeates, viz. solute and solvent. According to this theory, the driving force of solute/solvent permeation through membrane is the difference of their chemical potential between both sides of membrane, and the linear phenomenological equation is applied to describing the relation between driving force and flux of solute/solvent. This equation can be applied to the irreversible process only when the process is almost in equilibrium. This condition is supposed to be satisfied in the solute/solvent permeation process through compact membrane with fine pores like reverse osmosis membrane. When reverse osmosis is applied to treatment process for liquid waste, which usually contains a lot of solutes as contaminants, we can not predict the behavior of contaminants by the above one-solute process model. In the case of multi-solutes permeation process for liquid waste, the number of parameter in thermodynamic model increases rapidly with the number of solute, because of coupling phenomenon among solutes. In this study, we expanded the above thermodynamic model to multi-solute process applying operational calculus to the differential equations which describe the irreversible process of the system, and expressed concisely solute concentration vector as a matrix product. In this way, we predict the behavior of solutes in multi-solutes process, using values of parameters obtained in two-solutes process. (author)

  2. Analysis and optimization of a proton exchange membrane fuel cell using modeling techniques

    International Nuclear Information System (INIS)

    Torre Valdés, Ing. Raciel de la; García Parra, MSc. Lázaro Roger; González Rodríguez, MSc. Daniel

    2015-01-01

    This paper proposes a three-dimensional, non-isothermal and steady-state model of Proton Exchange Membrane Fuel Cell using Computational Fluid Dynamic techniques, specifically ANSYS FLUENT 14.5. It's considered multicomponent diffusion and two-phasic flow. The model was compared with experimental published data and with another model. The operation parameters: reactants pressure and temperature, gases flow direction, gas diffusion layer and catalyst layer porosity, reactants humidification and oxygen concentration are analyzed. The model allows the fuel cell design optimization taking in consideration the channels dimensions, the channels length and the membrane thickness. Furthermore, fuel cell performance is analyzed working with SPEEK membrane, an alternative electrolyte to Nafion. In order to carry on membrane material study, it's necessary to modify the expression that describes the electrolyte ionic conductivity. It's found that the device performance has got a great sensibility to pressure, temperature, reactant humidification and oxygen concentration variations. (author)

  3. Electrochemistry Modeling of Proton Exchange Membrane (PEM) Water Electrolysis for Hydrogen Production

    International Nuclear Information System (INIS)

    Meng Ni; Michael KH Leung; Dennis YC Leung

    2006-01-01

    An electrochemistry model was developed to analyse the J-V characteristics of a Proton Exchange Membrane (PEM) water electrolyzer for hydrogen production. The Butler-Volmer equation and water transport characteristics through electrolyte membrane were employed to simulate the electrode activation over-potential and membrane ohmic over-potential, respectively. The modeling results are found to agree reasonably well with experimental data published in the literature. The parametric simulations show that the ohmic over-potential is relatively small with typical water content in the membrane. Compared with the cathode over-potential, the anode over-potential is more significant and constitutes the major source of voltage loss. The high anode over-potential is due to the relatively slow oxidation kinetics, which is related to anode material property and microstructure. This model can be integrated with a photovoltaic or wind turbine model to predict the performance of sustainable hydrogen production systems and optimise their designs. (authors)

  4. Exploring large-scale phenomena in composite membranes through an efficient implicit-solvent model

    Science.gov (United States)

    Laradji, Mohamed; Kumar, P. B. Sunil; Spangler, Eric J.

    2016-07-01

    Several microscopic and mesoscale models have been introduced in the past to investigate various phenomena in lipid membranes. Most of these models account for the solvent explicitly. Since in a typical molecular dynamics simulation, the majority of particles belong to the solvent, much of the computational effort in these simulations is devoted for calculating forces between solvent particles. To overcome this problem, several implicit-solvent mesoscale models for lipid membranes have been proposed during the last few years. In the present article, we review an efficient coarse-grained implicit-solvent model we introduced earlier for studies of lipid membranes. In this model, lipid molecules are coarse-grained into short semi-flexible chains of beads with soft interactions. Through molecular dynamics simulations, the model is used to investigate the thermal, structural and elastic properties of lipid membranes. We will also review here few studies, based on this model, of the phase behavior of nanoscale liposomes, cytoskeleton-induced blebbing in lipid membranes, as well as nanoparticles wrapping and endocytosis by tensionless lipid membranes. Topical Review article submitted to the Journal of Physics D: Applied Physics, May 9, 2016

  5. Exploring large-scale phenomena in composite membranes through an efficient implicit-solvent model

    International Nuclear Information System (INIS)

    Laradji, Mohamed; Sunil Kumar, P B; Spangler, Eric J

    2016-01-01

    Several microscopic and mesoscale models have been introduced in the past to investigate various phenomena in lipid membranes. Most of these models account for the solvent explicitly. Since in a typical molecular dynamics simulation, the majority of particles belong to the solvent, much of the computational effort in these simulations is devoted for calculating forces between solvent particles. To overcome this problem, several implicit-solvent mesoscale models for lipid membranes have been proposed during the last few years. In the present article, we review an efficient coarse-grained implicit-solvent model we introduced earlier for studies of lipid membranes. In this model, lipid molecules are coarse-grained into short semi-flexible chains of beads with soft interactions. Through molecular dynamics simulations, the model is used to investigate the thermal, structural and elastic properties of lipid membranes. We will also review here few studies, based on this model, of the phase behavior of nanoscale liposomes, cytoskeleton-induced blebbing in lipid membranes, as well as nanoparticles wrapping and endocytosis by tensionless lipid membranes. (topical review)

  6. A macroscopic model of proton transport through the membrane-ionomer interface of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kumar, Milan; Edwards, Brian J.; Paddison, Stephen J.

    2013-02-01

    The membrane-ionomer interface is the critical interlink of the electrodes and catalyst to the polymer electrolyte membrane (PEM); together forming the membrane electrode assembly in current state-of-the-art PEM fuel cells. In this paper, proton conduction through the interface is investigated to understand its effect on the performance of a PEM fuel cell. The water containing domains at this interface were modeled as cylindrical pores/channels with the anionic groups (i.e., -SO3-) assumed to be fixed on the pore wall. The interactions of each species with all other species and an applied external field were examined. Molecular-based interaction potential energies were computed in a small test element of the pore and were scaled up in terms of macroscopic variables. Evolution equations of the density and momentum of the species (water molecules and hydronium ions) were derived within a framework of nonequilibrium thermodynamics. The resulting evolution equations for the species were solved analytically using an order-of-magnitude analysis to obtain an expression for the proton conductivity. Results show that the conductivity increases with increasing water content and pore radius, and strongly depends on the separation distance between the sulfonate groups and their distribution on the pore wall. It was also determined that the conductivity of two similar pores of different radii in series is limited by the pore with the smaller radius.

  7. Modeling and Design Optimization of Multifunctional Membrane Reactors for Direct Methane Aromatization.

    Science.gov (United States)

    Fouty, Nicholas J; Carrasco, Juan C; Lima, Fernando V

    2017-08-29

    Due to the recent increase of natural gas production in the U.S., utilizing natural gas for higher-value chemicals has become imperative. Direct methane aromatization (DMA) is a promising process used to convert methane to benzene, but it is limited by low conversion of methane and rapid catalyst deactivation by coking. Past work has shown that membrane separation of the hydrogen produced in the DMA reactions can dramatically increase the methane conversion by shifting the equilibrium toward the products, but it also increases coke production. Oxygen introduction into the system has been shown to inhibit this coke production while not inhibiting the benzene production. This paper introduces a novel mathematical model and design to employ both methods in a multifunctional membrane reactor to push the DMA process into further viability. Multifunctional membrane reactors, in this case, are reactors where two different separations occur using two differently selective membranes, on which no systems studies have been found. The proposed multifunctional membrane design incorporates a hydrogen-selective membrane on the outer wall of the reaction zone, and an inner tube filled with airflow surrounded by an oxygen-selective membrane in the middle of the reactor. The design is shown to increase conversion via hydrogen removal by around 100%, and decrease coke production via oxygen addition by 10% when compared to a tubular reactor without any membranes. Optimization studies are performed to determine the best reactor design based on methane conversion, along with coke and benzene production. The obtained optimal design considers a small reactor (length = 25 cm, diameter of reaction tube = 0.7 cm) to subvert coke production and consumption of the product benzene as well as a high permeance (0.01 mol/s·m²·atm 1/4 ) through the hydrogen-permeable membrane. This modeling and design approach sets the stage for guiding further development of multifunctional membrane reactor

  8. Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles

    DEFF Research Database (Denmark)

    Malekkhaiat Häffner, S; Nyström, L; Nordström, R

    2017-01-01

    ) on layered double hydroxide (LDH) interactions with both bacteria-mimicking and mammalian-mimicking lipid membranes. LDH binding to bacteria-mimicking membranes, extraction of anionic lipids, as well as resulting membrane destabilization, was found to increase with decreasing particle size, also translating...... into size-dependent synergistic effects with the antimicrobial peptide LL-37. Due to strong interactions with anionic lipopolysaccharide and peptidoglycan layers, direct membrane disruption of both Gram-negative and Gram-positive bacteria is suppressed. However, LDH nanoparticles cause size-dependent charge...

  9. Propionic acidemia mimicking diabetic ketoacidosis.

    Science.gov (United States)

    Dweikat, Imad M; Naser, Enas N; Abu Libdeh, Abdulsalam I; Naser, Osama J; Abu Gharbieh, Najwan N; Maraqa, Nizar F; Abu Libdeh, Bassam Y

    2011-05-01

    Propionic acidemia manifesting with hyperglycemia is rare. Few cases have been reported mainly of the neonatal-onset form associated with high mortality. We report a 9-month-old Palestinian boy who manifested with coma, severe hyperglycemia and ketoacidosis mimicking diabetic ketoacidosis. Family history of unexplained infant deaths was helpful in reaching the correct diagnosis. In response to therapy, the patient regained consciousness without neurologic deficits and had normal examination. This is, to our knowledge, the first case report of late-onset propionic acidemia that had this presentation and survived. Copyright © 2010 The Japanese Society of Child Neurology. All rights reserved.

  10. Experimental measurement of tympanic membrane response for finite element model validation of a human middle ear.

    Science.gov (United States)

    Ahn, Tae-Soo; Baek, Moo-Jin; Lee, Dooho

    2013-01-01

    The middle ear consists of a tympanic membrane, ligaments, tendons, and three ossicles. An important function of the tympanic membrane is to deliver exterior sound stimulus to the ossicles and inner ear. In this study, the responses of the tympanic membrane in a human ear were measured and compared with those of a finite element model of the middle ear. A laser Doppler vibrometer (LDV) was used to measure the dynamic responses of the tympanic membrane, which had the measurement point on the cone of light of the tympanic membrane. The measured subjects were five Korean male adults and a cadaver. The tympanic membranes were stimulated using pure-tone sine waves at 18 center frequencies of one-third octave band over a frequency range of 200 Hz ~10 kHz with 60 and 80 dB sound pressure levels. The measured responses were converted into the umbo displacement transfer function (UDTF) with a linearity assumption. The measured UDTFs were compared with the calculated UDTFs using a finite element model for the Korean human middle ear. The finite element model of the middle ear consists of three ossicles, a tympanic membrane, ligaments, and tendons. In the finite element model, the umbo displacements were calculated under a unit sound pressure on the tympanic membrane. The UDTF of the finite element model exhibited good agreement with that of the experimental one in low frequency range, whereas in higher frequency band, the two response functions deviated from each other, which demonstrates that the finite element model should be updated with more accurate material properties and/or a frequency dependent material model.

  11. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1994-01-01

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport

  12. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  13. Atomistic simulations of anionic Au-144(SR)(60) nanoparticles interacting with asymmetric model lipid membranes

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Experimental observations indicate that the interaction between nanoparticles and lipid membranes varies according to the nanoparticle charge and the chemical nature of their protecting side groups. We report atomistic simulations of an anionic Au nanoparticle (AuNP-) interacting with membranes...... whose lipid composition and transmembrane distribution are to a large extent consistent with real plasma membranes of eukaryotic cells. To this end, we use a model system which comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The simulations...... clearly show that AuNP- attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment...

  14. Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas

    KAUST Repository

    Khalilpour, Rajab

    2011-08-12

    The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO 2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO 2/N 2 binary mixture or considering the co/countercurrent flow pattern of hollow-fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers (AIChE).

  15. Enhancement of the Computational Efficiency of Membrane Computing Models

    Science.gov (United States)

    2007-04-01

    Information Retrieval, SPIRE 2000, La Coruna, Spain, 64-74. [9] S.N. Krishna, R. Rama: P Systems with Replicated Rewriting. Journal of Automata Languages...Paraschiv. Membrane software. A P system simulator. Fundamental Informaticae , 49(13):61-66, 2002. [25] P. Fitzgibbons, D. Das, and T. Renz, “Bio...systems with worm-objects, IEEE 7th International Conference on String Processing and Information Retrieval, SPIRE, La Coruna, Spain, 2000, pp. 64

  16. Comparison of the Modeling Approach between Membrane Bioreactor and Conventional Activated Sludge Processes

    DEFF Research Database (Denmark)

    Jiang, Tao; Sin, Gürkan; Spanjers, Henri

    2009-01-01

    Activated sludge models (ASM) have been developed and largely applied in conventional activated sludge (CAS) systems. The applicability of ASM to model membrane bioreactors (MBR) and the differences in modeling approaches have not been studied in detail. A laboratory-scale MBR was modeled using ASM......2d. It was found that the ASM2d model structure can still be used for MBR modeling. There are significant differences related to ASM modeling. First, a lower maximum specific growth rate for MBR nitrifiers was estimated. Independent experiments demonstrated that this might be attributed...... to the inhibition effect of soluble microbial products (SMP) at elevated concentration. Second, a greater biomass affinity to oxygen and ammonium was found, which was probably related to smaller MBR sludge flocs. Finally, the membrane throughput during membrane backwashing/relaxation can be normalized...

  17. Nerve cell-mimicking liposomes as biosensor for botulinum neurotoxin complete physiological activity.

    Science.gov (United States)

    Weingart, Oliver G; Loessner, Martin J

    2016-12-15

    Botulinum neurotoxins (BoNT) are the most toxic substances known, and their neurotoxic properties and paralysing effects are exploited for medical treatment of a wide spectrum of disorders. To accurately quantify the potency of a pharmaceutical BoNT preparation, its physiological key activities (binding to membrane receptor, translocation, and proteolytic degradation of SNARE proteins) need to be determined. To date, this was only possible using animal models, or, to a limited extent, cell-based assays. We here report a novel in vitro system for BoNT/B analysis, based on nerve-cell mimicking liposomes presenting motoneuronal membrane receptors required for BoNT binding. Following triggered membrane translocation of the toxin's Light Chain, the endopeptidase activity can be quantitatively monitored employing a FRET-based reporter assay within the functionalized liposomes. We were able to detect BoNT/B physiological activity at picomolar concentrations in short time, opening the possibility for future replacement of animal experimentation in pharmaceutical BoNT testing. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Sanford, James A.; Park, Jea H.; Deatherage, Brooke L.; Champion, Boyd L.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2012-06-01

    Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.

  19. Parameter estimation in neuronal stochastic differential equation models from intracellular recordings of membrane potentials in single neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline

    2016-01-01

    Dynamics of the membrane potential in a single neuron can be studied by estimating biophysical parameters from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolut...

  20. Testing the limits of model membrane simulations-bilayer composition and pressure scaling.

    Science.gov (United States)

    Ivanova, Nikoleta; Ivanova, Anela

    2018-03-30

    Studying transfer of bioactive compounds across cell membranes by simulations attracts growing attention. To perform such calculations accurately, it is necessary to verify the validity of computational protocols established for description of unperturbed lipid bilayers also with translocating substances present. The current work reports the results from 1 μs long atomistic molecular dynamics simulations of two types of model plasma membranes-one built of a single phospholipid (DPPC) and one constructed of four types of phospholipids-in the presence of a drug-peptide complex experimentally known to cross cell membranes. The influence of membrane composition and of applied pressure scaling algorithm on the simulations outcome is analyzed with particular focus on membrane structure and on complex-lipid interactions during the initial penetration stage. It is found that the mixed composition of the membrane is important for correct assessment of the interactions with the complex both from purely structural perspective and because of the uneven charge distribution. The structure of the mixed lipid bilayer is affected more markedly by the pressure scaling algorithm. When the pressure is isotropically scaled, lipids are distributed almost homogeneously along the membrane in liquid ordered state. On semi-isotropic scaling, the lipid tails undergo significant rearrangement and a long-range ordered state is established. This results in "freezing" of the membrane and expulsion of the complex. The statistical analysis of the MD data points to the conclusion that a mixed-lipid membrane model with isotropic pressure scaling would be more suitable for describing the process of complex translocation across neoplastic membranes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. A study of the isobutane dehydrogenation in a porous membrane catalytic reactor: design, use and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casanave, D.

    1996-01-26

    The aim of this study was to set up and model a catalytic fixed-bed membrane reactor for the isobutane dehydrogenation. The catalyst, developed at Catalysis Research Institute (IRC), was a silicalite-supported Pt-based catalyst. Their catalytic performances (activity, selectivity, stability) where found better adapted to the membrane reactor, when compared with commercial Pt or Cr based catalysts. The kinetic study of the reaction has been performed in a differential reactor and led to the determination of a kinetic law, suitable when the catalyst is used near thermodynamic equilibrium. The mass transfer mechanisms were determined in meso-porous and microporous membranes through both permeability and gas mixtures (iC{sub 4}/H{sub 2}/N{sub 2}) separation measurements. For the meso-porous {gamma}-alumina, the mass transfer is ensured by a Knudsen diffusion mechanism which can compete with surface diffusion for condensable gas like isobutane. The resulting permselectivity H{sub 2}/iC4 of this membrane is low ({approx} 4). For the microporous zeolite membrane, molecular sieving occurs due to steric hindrance, leading to higher permselectivity {approx}14. Catalyst/membrane associations were compared in terms of isobutane dehydrogenation performances, for both types of membranes (meso-porous and microporous) and for two different reactor configurations (co-current and counter-current sweep gas flow). The best experimental results were obtained with the zeolite membrane, when sweeping the outer compartment in a co-current flow. The equilibrium displacement observed with the {gamma}-alumina membrane was lower and mainly due to a dilution effect of the reaction mixture by the sweep gas. A mathematical model was developed, which correctly describes all the experimental results obtained with the zeolite membrane, when the co-current mode is used. (Abstract Truncated)

  2. Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling.

    Science.gov (United States)

    Chen, Mingzhu; Boyle, Fergal J

    2014-10-01

    In recent years a number of red-blood-cell (RBC) models have been proposed using spring networks to represent the RBC membrane. Some results predicted by these models agree well with experimental measurements. However, the suitability of these membrane models has been questioned. The RBC membrane, like a continuum membrane, is mechanically isotropic throughout its surface, but the mechanical properties of a spring network vary on the network surface and change with deformation. In this work spring-network mechanics are investigated in large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh, spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test. It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree of shear. It is found that spring-network deformation approaches continuous as the mesh density increases. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Histoplasmosis mimicking metastatic spinal tumour.

    Science.gov (United States)

    Liu, Bing; Qu, Liyan; Zhu, Jian; Yang, Zhengming; Yan, Shigui

    2017-08-01

    Histoplasmosis is an infection caused by a fungus called Histoplasma. Diagnosis of histoplasmosis is based on the culture of biological samples and detection of fungus in tissues. Histoplasmosis can mimic malignant lesions. We report a 65-year-old, immunocompetent, male patient with back pain. We describe the main clinical and radiological characteristics in our patient who had vertebral histoplasmosis that mimicked cancer. A computed tomography scan showed lytic lesions of the right side of T4, T5, and T6 vertebral bodies. Magnetic resonance imaging displayed abnormal marrow signals in T4, T5, and T6 vertebral bodies (low signal on T1, high on T2 and short time inversion recovery (STIR)). Which was mimicking malignancy, such as haematological malignancy and metastatic bone cancer. Therefore, thoracic spinal surgery using the anterior approach was performed. An intraoperative frozen section examination and routine postoperative pathology showed thoracic histoplasmosis infection. Treatment of histoplasmosis was performed with oral itraconazole. The lesions did not progress and the patient symptomatically improved at a follow-up of 26 months.

  4. A mathematical model for predicting the life of polymer electrolyte fuel cell membranes subjected to hydration cycling

    Science.gov (United States)

    Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.

    2012-10-01

    Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.

  5. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    Science.gov (United States)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  6. Development of a dynamic model for cleaning ultra filtration membranes fouled by surface water

    NARCIS (Netherlands)

    Zondervan, E.; Betlem, Bernardus H.L.; Roffel, B.

    2007-01-01

    In this paper, a dynamic model for cleaning ultra filtration membranes fouled by surface water is proposed. A model that captures the dynamics well is valuable for the optimization of the cleaning process. The proposed model is based on component balances and contains three parameters that can be

  7. Model studies of lipid flip-flop in membranes

    DEFF Research Database (Denmark)

    Parisio, Giulia; Ferrarini, Alberta; Sperotto, Maria Maddalena

    2016-01-01

    , and growth heavily depend. Such transverse motion—commonly called flip-flop—has been studied both experimentally and computationally. Experimental investigations face difficulties related to time-scales and probe-induced membrane perturbation issues. Molecular dynamics simulations play an important role...... for the molecular-level understanding of flip-flop. In this review we present a summary of the state of the art of computational studies of spontaneous flip-flop of phospholipids, sterols and fatty acids. Also, we highlight critical issues and strategies that have been developed to solve them, and what remains...

  8. Modeling of air-gap membrane distillation process: A theoretical and experimental study

    KAUST Repository

    Alsaadi, Ahmad Salem

    2013-06-03

    A one dimensional (1-D) air gap membrane distillation (AGMD) model for flat sheet type modules has been developed. This model is based on mathematical equations that describe the heat and mass transfer mechanisms of a single-stage AGMD process. It can simulate AGMD modules in both co-current and counter-current flow regimes. The theoretical model was validated using AGMD experimental data obtained under different operating conditions and parameters. The predicted water vapor flux was compared to the flux measured at five different feed water temperatures, two different feed water salinities, three different air gap widths and two MD membranes with different average pore sizes. This comparison showed that the model flux predictions are strongly correlated with the experimental data, with model predictions being within +10% of the experimentally determined values. The model was then used to study and analyze the parameters that have significant effect on scaling-up the AGMD process such as the effect of increasing the membrane length, and feed and coolant flow rates. The model was also used to analyze the maximum thermal efficiency of the AGMD process by tracing changes in water production rate and the heat input to the process along the membrane length. This was used to understand the gain in both process production and thermal efficiency for different membrane surface areas and the resultant increases in process capital and water unit cost. © 2013 Elsevier B.V.

  9. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  10. Electrical Thermal Network for Direct Contact Membrane Distillation Modeling and Analysis

    KAUST Repository

    Karam, Ayman M.

    2015-02-04

    Membrane distillation is an emerging water distillation technology that offers several advantages compared to conventional water desalination processes. Although progress has been made to model and understand the physics of the process, many studies are based on steady-state assumptions or are computationally not appropriate for real time control. This paper presents the derivation of a novel dynamical model, based on analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). The proposed model captures the dynamics of temperature distribution and distilled water flux. To demonstrate the adequacy of the proposed model, validation with transient and steady-state experimental data is presented.

  11. Polyamide Thin-Film Composite Membranes for Potential Raw Biogas Purification: Experiments and Modelling.

    Czech Academy of Sciences Publication Activity Database

    Šimčík, Miroslav; Růžička, Marek; Kárászová, Magda; Sedláková, Zuzana; Vejražka, Jiří; Veselý, M.; Čapek, P.; Friess, K.; Izák, Pavel

    2016-01-01

    Roč. 167, JUL 14 (2016), s. 163-173 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S; GA TA ČR TE01020080; GA MŠk(CZ) LD13018; GA MŠk LH14006 Institutional support: RVO:67985858 Keywords : thin film composite membrane * biogas membrane separation * transport model ing Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  12. Polyamide Thin-Film Composite Membranes for Potential Raw Biogas Purification: Experiments and Modelling.

    Czech Academy of Sciences Publication Activity Database

    Šimčík, Miroslav; Růžička, Marek; Kárászová, Magda; Sedláková, Zuzana; Vejražka, Jiří; Veselý, M.; Čapek, P.; Friess, K.; Izák, Pavel

    2016-01-01

    Roč. 167, JUL 14 (2016), s. 163-173 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S; GA TA ČR TE01020080; GA MŠk(CZ) LD13018; GA MŠk LH14006 Institutional support: RVO:67985858 Keywords : thin film composite membrane * biogas membrane separation * transport modeling Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  13. Function and failure of the fetal membrane: Modelling the mechanics of the chorion and amnion.

    Directory of Open Access Journals (Sweden)

    Stefaan W Verbruggen

    Full Text Available The fetal membrane surrounds the fetus during pregnancy and is a thin tissue composed of two layers, the chorion and the amnion. While rupture of this membrane normally occurs at term, preterm rupture can result in increased risk of fetal mortality and morbidity, as well as danger of infection in the mother. Although structural changes have been observed in the membrane in such cases, the mechanical behaviour of the human fetal membrane in vivo remains poorly understood and is challenging to investigate experimentally. Therefore, the objective of this study was to develop simplified finite element models to investigate the mechanical behaviour and rupture of the fetal membrane, particularly its constituent layers, under various physiological conditions. It was found that modelling the chorion and amnion as a single layer predicts remarkably different behaviour compared with a more anatomically-accurate bilayer, significantly underestimating stress in the amnion and under-predicting the risk of membrane rupture. Additionally, reductions in chorion-amnion interface lubrication and chorion thickness (reported in cases of preterm rupture both resulted in increased membrane stress. Interestingly, the inclusion of a weak zone in the fetal membrane that has been observed to develop overlying the cervix would likely cause it to fail at term, during labour. Finally, these findings support the theory that the amnion is the dominant structural component of the fetal membrane and is required to maintain its integrity. The results provide a novel insight into the mechanical effect of structural changes in the chorion and amnion, in cases of both normal and preterm rupture.

  14. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Directory of Open Access Journals (Sweden)

    Yihao Zhang

    2017-02-01

    Full Text Available Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav, which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  15. Stochastic approach to model fouling in membrane filters with complex pore morphology

    Science.gov (United States)

    Sanaei, Pejman; Gu, Binan; Kondic, Lou; Cummings, Linda J.

    2017-11-01

    Membrane filters are widely used in industrial applications to remove contaminants and undesired impurities (particles) from a solvent. During the filtration process the membrane internal void area becomes fouled with impurities and as a consequence the filter performance deteriorates, a process that depends on filter internal structure, particle concentration and flow dynamics. The complexity of membrane internal morphology and the random nature of the particle dynamics in the flow make the filtration and fouling challenging to predict; nonetheless, mathematical modeling can play a key role in investigating filter fouling, and in suggesting design modifications for more efficient filtration. To date, many models have been proposed to describe the effects of complexity of membrane structure, and the stochasticity of particle dynamics individually but very few studies focus on both together. In this work, we present an idealized mathematical model, in which a membrane consists of a series of bifurcating pores. Pores decrease in size as the membrane is traversed and particles are removed from the feed by adsorption within pores (which shrinks them) and stochastic sieving (pore blocking by large particles). NSF DMS 1615719.

  16. Modelling a full scale membrane bioreactor using Activated Sludge Model No.1: challenges and solutions.

    Science.gov (United States)

    Delrue, F; Choubert, J M; Stricker, A E; Spérandio, M; Mietton-Peuchot, M; Racault, Y

    2010-01-01

    A full-scale membrane bioreactor (1,600 m(3) d(-1)) was monitored for modelling purposes during the summer of 2006. A complete calibration of the ASM1 model is presented, in which the key points were the wastewater characterisation, the oxygen transfer and the biomass kinetics. Total BOD tests were not able to correctly estimate the biodegradable fraction of the wastewater. Therefore the wastewater fractionation was identified by adjusting the simulated sludge production rate to the measured value. MLVSS and MLSS were accurately predicted during both calibration and validation periods (20 and 30 days). Because the membranes were immerged in the aeration tank, the coarse bubble and fine bubble diffusion systems coexisted in the same tank. This allowed five different aeration combinations, depending whether the 2 systems were operating separately or simultaneously, and at low speed or high speed. The aeration control maintained low DO concentrations, allowing simultaneous nitrification and denitrification. This made it difficult to calibrate the oxygen transfer. The nitrogen removal kinetics were determined using maximum nitrification rate tests and an 8-hour intensive sampling campaign. Despite the challenges encountered, a calibrated set of parameters was identified for ASM1 that gave very satisfactory results for the calibration period. Matching simulated and measured data became more difficult during the validation period, mainly because the dominant aeration configuration had changed. However, the merit of this study is to be the first effort to simulate a full-scale MBR plant.

  17. Modelling Protein-induced Membrane Deformation using Monte Carlo and Langevin Dynamics Simulations

    Science.gov (United States)

    Radhakrishnan, R.; Agrawal, N.; Ramakrishnan, N.; Kumar, P. B. Sunil; Liu, J.

    2010-11-01

    In eukaryotic cells, internalization of extracellular cargo via the cellular process of endocytosis is orchestrated by a variety of proteins, many of which are implicated in membrane deformation/bending. We model the energetics of deformations membranes by using the Helfrich Hamiltonian using two different formalisms: (i) Cartesian or Monge Gauge using Langevin dynamics; (ii) Curvilinear coordinate system using Monte Carlo (MC). Monge gauge approach which has been extensively studied is limited to small deformations of the membrane and cannot describe extreme deformations. Curvilinear coordinate approach can handle large deformation limits as well as finite-temperature membrane fluctuations; here we employ an unstructured triangular mesh to compute the local curvature tensor, and we evolve the membrane surface using a MC method. In our application, we compare the two approaches (i and ii above) to study how the spatial assembly of curvature inducing proteins leads to vesicle budding from a planar membrane. We also quantify how the curvature field of the membrane impacts the spatial segregation of proteins.

  18. Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D Symptoms in an Opioid-Receptor Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Chunqiu Chen

    Full Text Available Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI tract and cortical neurons using animal models and in vitro tests.The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D symptoms. Then the opioid antagonists were used to identify the receptors involved. Furthermore, the effect of berberineon opioid receptors expression was established in the mouse intestine and rat fetal cortical neurons.In mouse models, berberine prolonged GI transit and time to diarrhea in a dose-dependent manner, and significantly reduced visceral pain. In physiological conditions the effects of berberine were mediated by mu- (MOR and delta- (DOR opioid receptors; hypermotility, excessive secretion and nociception were reversed by berberine through MOR and DOR-dependent action. We also found that berberine increased the expression of MOR and DOR in the mouse bowel and rat fetal cortical neurons.Berberine significantly improved IBS-D symptoms in animal models, possibly through mu- and delta- opioid receptors. Berberine may become a new drug candidate for the successful treatment of IBS-D in clinical conditions.

  19. Development of a Comprehensive Fouling Model for a Rotating Membrane Bioreactor System Treating Wastewater

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2015-01-01

    Full Text Available Membrane bioreactors (MBRs are now main stream wastewater treatment technologies. In recent times, novel pressure driven rotating membrane disc modules have been specially developed that induce high shear on the membrane surface, thereby reducing fouling. Previous research has produced dead-end filtration fouling model which combines all three classical mechanisms that was later used by another researcher as a starting point for a greatly refined model of a cross flow side-stream MBR that incorporated both hydrodynamics and soluble microbial products’ (SMP effects. In this study, a comprehensive fouling model was created based on this earlier work that incorporated all three classical fouling mechanisms for a rotating MBR system. It was tested and validated for best fit using appropriate data sets. The initial model fit appeared good for all simulations, although it still needs to be calibrated using further appropriate data sets.

  20. Light radiation pressure upon a wrinkled membrane – parametrization of an optically orthotropic model

    Science.gov (United States)

    Nerovny, N. A.; Zimin, V. N.

    2018-04-01

    In this paper, the problem of representing the light pressure force upon the surface of a thin wrinkled film is discussed. The common source of wrinkles is the shear deformation of the membrane sample. The optical model of such a membrane is assumed to be optically orthotropic and an analytic equation for infinitesimal light pressure force is written. A linear regression model in the case of wrinkle geometry, where a surface element can have different optical parameters, is constructed and the Bayesian approach is used to calculate the parameters of this model.

  1. Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-10-01

    Full Text Available A membrane contactor using ionic liquids (ILs as solvent for pre-combustion capture CO2 at elevated temperature (303–393 K and pressure (20 bar has been studied using mathematic model in the present work. A comprehensive two-dimensional (2D mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO2 removal efficiency were systematically studied. The simulation results show that CO2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range. Keywords: CO2 capture, Pre-combustion, Membrane contactor, Ionic liquids, Modelling

  2. Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA.

    Science.gov (United States)

    Fojan, Peter; Gurevich, Leonid

    2017-01-01

    The cell membrane is the first barrier and quite often the primary target that antimicrobial peptides (AMPs) have to destroy or penetrate to fulfill their mission. Upon penetrating through the membrane, the peptides can further attack intracellular targets, in particular DNA. Studying the interaction of an antimicrobial peptide with a cell membrane and DNA holds keys to understanding its killing mechanisms. Commonly, these interactions are studied by using optical or scanning electron microscopy and appropriately labeled peptides. However, labeling can significantly affect the hydrophobicity, conformation, and size of the peptide, hence altering the interaction significantly. Here, we describe the use of atomic force microscopy (AFM) for a label-free study of the interactions of peptides with model membranes under physiological conditions and DNA as a possible intracellular target.

  3. Biological nitrogen and phosphorus removal in membrane bioreactors: model development and parameter estimation.

    Science.gov (United States)

    Cosenza, Alida; Mannina, Giorgio; Neumann, Marc B; Viviani, Gaspare; Vanrolleghem, Peter A

    2013-04-01

    Membrane bioreactors (MBR) are being increasingly used for wastewater treatment. Mathematical modeling of MBR systems plays a key role in order to better explain their characteristics. Several MBR models have been presented in the literature focusing on different aspects: biological models, models which include soluble microbial products (SMP), physical models able to describe the membrane fouling and integrated models which couple the SMP models with the physical models. However, only a few integrated models have been developed which take into account the relationships between membrane fouling and biological processes. With respect to biological phosphorus removal in MBR systems, due to the complexity of the process, practical use of the models is still limited. There is a vast knowledge (and consequently vast amount of data) on nutrient removal for conventional-activated sludge systems but only limited information on phosphorus removal for MBRs. Calibration of these complex integrated models still remains the main bottleneck to their employment. The paper presents an integrated mathematical model able to simultaneously describe biological phosphorus removal, SMP formation/degradation and physical processes which also include the removal of organic matter. The model has been calibrated with data collected in a UCT-MBR pilot plant, located at the Palermo wastewater treatment plant, applying a modified version of a recently developed calibration protocol. The calibrated model provides acceptable correspondence with experimental data and can be considered a useful tool for MBR design and operation.

  4. Mathematical modelling of a flow-injection system with a membrane separation module

    NARCIS (Netherlands)

    Kolev, S.D.; Kolev, Spas D.; van der Linden, W.E.

    1992-01-01

    A mathematical model for a flow-injection system with a membrane separation module based on the axially dispersed plug flow model was developed. It takes into account the geometrical dimensions and dispersion properties of the main sections of the manifold, the mass transfer in the channels of the

  5. Model-based fault detection for proton exchange membrane fuel cell ...

    African Journals Online (AJOL)

    In this paper, an intelligent model-based fault detection (FD) is developed for proton exchange membrane fuel cell (PEMFC) dynamic systems using an independent radial basis function (RBF) networks. The novelty is that this RBF networks is used to model the PEMFC dynamic systems and residuals are generated based ...

  6. Modelling Ser129 phosphorylation inhibits membrane binding of pore-forming alpha-synuclein oligomers.

    Directory of Open Access Journals (Sweden)

    Georg Sebastian Nübling

    Full Text Available BACKGROUND: In several neurodegenerative diseases, hyperphosphorylation at position Ser129 is found in fibrillar deposits of alpha-synuclein (asyn, implying a pathophysiological role of asyn phosphorylation in neurodegeneration. However, recent animal models applying asyn phosphorylation mimics demonstrated a protective effect of phosphorylation. Since metal-ion induced asyn oligomers were identified as a potential neurotoxic aggregate species with membrane pore-forming abilities, the current study was undertaken to determine effects of asyn phosphorylation on oligomer membrane binding. METHODS: We investigated the influence of S129 phosphorylation on interactions of metal-ion induced asyn oligomers with small unilamellar lipid vesicles (SUV composed of POPC and DPPC applying the phosphorylation mimic asyn129E. Confocal single-particle fluorescence techniques were used to monitor membrane binding at the single-particle level. RESULTS: Binding of asyn129E monomers to gel-state membranes (DPPC-SUV is slightly reduced compared to wild-type asyn, while no interactions with membranes in the liquid-crystalline state (POPC-SUV are seen for both asyn and asyn129E. Conversely, metal-ion induced oligomer formation is markedly increased in asyn129E. Surprisingly, membrane binding to POPC-SUV is nearly absent in Fe(3+ induced asyn129E oligomers and markedly reduced in Al(3+ induced oligomers. CONCLUSION: The protective effect of pseudophosphorylation seen in animal models may be due to impeded oligomer membrane binding. Phosphorylation at Ser129 may thus have a protective effect against neurotoxic asyn oligomers by preventing oligomer membrane binding and disruption of the cellular electrophysiological equilibrium. Importantly, these findings put a new complexion on experimental pharmaceutical interventions against POLO-2 kinase.

  7. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  8. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    International Nuclear Information System (INIS)

    Salahi, Abdolhamid; Mohammadi, Toraj; Behbahani, Reza Mosayebi; Hemmati, Mahmood

    2015-01-01

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L 16 orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m 2 h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model

  9. Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Abdolhamid; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Behbahani, Reza Mosayebi [Petroleum University of Technology (PUT), Ahwaz (Iran, Islamic Republic of); Hemmati, Mahmood [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Hollow fiber membranes were prepared from polyethersulfone/additives/NMP and DMSO system via phase inversion induced by precipitation in non-solvent coagulation bath. The interaction effects of polyethylene-glycol (PEG), propionic-acid (PA), Tween-20, PEG molecular weight and polyvinyl-pyrrolidone (PVP) on morphology and performance of synthesized membranes were investigated. Taguchi method (L{sub 16} orthogonal array) was used initially to plan a minimum number of experiments. 32 membranes were synthesized (with two replications) and their permeation flux and TOC rejection properties to oily wastewater treatment were studied. The obtained results indicated that addition of PA to spinning dope decreases flux while it increases TOC rejection of prepared membranes. Also, the result shows that addition of PVP, Tween-20 and PEG content in spinning dope enhances permeation flux while reducing TOC rejection. The obtained results indicated that the synthesized membranes was effective and suitable for treatment of the oily wastewater to achieve up to 92.6, 98.2, and 98.5% removal of TOC, TSS, and OGC, respectively with a flux of 247.19 L/(m{sup 2}h). Moreover, Hermia's models were used for permeation flux decline prediction. Experimental data and models predictions were compared. The results showed that there is reasonable agreement between experimental data and the cake layer model followed by the intermediate blocking model.

  10. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Directory of Open Access Journals (Sweden)

    Byung-Sik Lee

    2015-12-01

    Full Text Available The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst–Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  11. The problem of fouling in submerged membrane bioreactors - Model validation and experimental evidence

    Science.gov (United States)

    Tsibranska, Irene; Vlaev, Serafim; Tylkowski, Bartosz

    2018-01-01

    Integrating biological treatment with membrane separation has found a broad area of applications and industrial attention. Submerged membrane bioreactors (SMBRs), based on membrane modules immersed in the bioreactor, or side stream ones connected in recycle have been employed in different biotechnological processes for separation of thermally unstable products. Fouling is one of the most important challenges in the integrated SMBRs. A number of works are devoted to fouling analysis and its treatment, especially exploring the opportunity for enhanced fouling control in SMBRs. The main goal of the review is to provide a comprehensive yet concise overview of modeling the fouling in SMBRs in view of the problematics of model validation, either by real system measurements at different scales or by analysis of the obtained theoretical results. The review is focused on the current state of research applying computational fluid dynamics (CFD) modeling techniques.

  12. Mathematical models of membrane fouling in cross-flow micro-filtration

    Directory of Open Access Journals (Sweden)

    Mónica Jimena Ortíz Jerez

    2008-01-01

    Full Text Available The greatest difficulty arising during cross-flow micro-filtration is the formation of a cake layer on the membrane sur-face (also called fouling, thereby affecting system performance. Fouling has been related to permeate flux decay re-sulting from changes in operating variables. Many articles have been published in an attempt to explain this phe-nomenon but it has not yet been fully understood because it depends on specific solution/membrane interactions and differing parameters. This work was aimed at presenting an analytical review of recently published mathematical models to explain fouling. Although the reviewed models can be adjusted to any type of application, a simple “con-centration polarisation” model is advisable in the particular case of tropical fruit juices for describing the insoluble solids being deposited on membrane surface.

  13. Fundamental Studies of Novel Zwitterionic Hybrid Membranes: Kinetic Model and Mechanism Insights into Strontium Removal

    OpenAIRE

    Wen Zhu; Junsheng Liu; Meng Li

    2014-01-01

    A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models). Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was foun...

  14. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    Directory of Open Access Journals (Sweden)

    R R Poznanski

    Full Text Available A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage' have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by

  15. Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR).

    Science.gov (United States)

    Robles, A; Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2014-04-01

    The results of a global sensitivity analysis of a filtration model for submerged anaerobic MBRs (AnMBRs) are assessed in this paper. This study aimed to (1) identify the less- (or non-) influential factors of the model in order to facilitate model calibration and (2) validate the modelling approach (i.e. to determine the need for each of the proposed factors to be included in the model). The sensitivity analysis was conducted using a revised version of the Morris screening method. The dynamic simulations were conducted using long-term data obtained from an AnMBR plant fitted with industrial-scale hollow-fibre membranes. Of the 14 factors in the model, six were identified as influential, i.e. those calibrated using off-line protocols. A dynamic calibration (based on optimisation algorithms) of these influential factors was conducted. The resulting estimated model factors accurately predicted membrane performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Solving Problem of Graph Isomorphism by Membrane-Quantum Hybrid Model

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2015-10-01

    Full Text Available This work presents the application of new parallelization methods based on membrane-quantum hybrid computing to graph isomorphism problem solving. Applied membrane-quantum hybrid computational model was developed by authors. Massive parallelism of unconventional computing is used to implement classic brute force algorithm efficiently. This approach does not suppose any restrictions of considered graphs types. The estimated performance of the model is less then quadratic that makes a very good result for the problem of \\textbf{NP} complexity.

  17. Ions transfer modeling through monopolar and bipolar membranes: Treatment of wastewater containing ammonium nitrate by electrodialysis

    Directory of Open Access Journals (Sweden)

    Mohamed Amine Ben Ali

    2015-05-01

    Full Text Available In this study, a mathematical model was proposed to illustrate the different transport modes contributing in transfer of all involved species through anion, cation and bipolar membranes. This study was led on a wastewater containing ammonium nitrate treated by bipolar membrane electrodialysis (BPMED. In this electrodialysis, different species are involved, in particular, ammonium ions NH4+, nitrates NO3-, ammoniac NH3, water H2O and protons H+. Calculations led from the material balance sheets equations obtained in bath mode, allowed to validate the proposed transfer model and to check balance sheets material on all involved species during electrodialysis.

  18. [Modelling of pattern formation and oscillations in pH and transmembrane potential near the cell membrane of Chara corallina].

    Science.gov (United States)

    Pliusnina, T Iu; Lavrova, A I; Riznichenko, G Iu; Rubin, A B

    2005-01-01

    A mathematical model of potencial-dependent proton transfer across the membrane of Chara corallina cells is considered. To construct the model, partial differential equations describing the system dynamics in time and in space were used. The variables of the model are the proton concentration and membrane potential. The model describes the experimentally observed inhomogeneous distribution of transmembrane potential and pH along the membrane and oscillations of the potential and pH in time. A mechanism of the distribution of pH and membrane potential along the Chara corallina cell is suggested.

  19. A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes.

    Science.gov (United States)

    Tanizaki, Seiichiro; Feig, Michael

    2005-03-22

    Reliable computer simulations of complex biological environments such as integral membrane proteins with explicit water and lipid molecules remain a challenging task. We propose a modification of the standard generalized Born theory of homogeneous solvent for modeling the heterogeneous dielectric environments such as lipid/water interfaces. Our model allows the representation of biological membranes in the form of multiple layered dielectric regions with dielectric constants that are different from the solute cavity. The proposed new formalism is shown to predict the electrostatic component of solvation free energy with a relative error of 0.17% compared to exact finite-difference solutions of the Poisson equation for a transmembrane helix test system. Molecular dynamics simulations of melittin and bacteriorhodopsin are carried out and performed over 10 ns and 7 ns of simulation time, respectively. The center of melittin along the membrane normal in these stable simulations is in excellent agreement with the relevant experimental data. Simulations of bacteriorhodopsin started from the experimental structure remained stable and in close agreement with experiment. We also examined the free energy profiles of water and amino acid side chain analogs upon membrane insertion. The results with our implicit membrane model agree well with the experimental transfer free energy data from cyclohexane to water as well as explicit solvent simulations of water and selected side chain analogs.

  20. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Science.gov (United States)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. PMID:24725935

  1. Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling

    Science.gov (United States)

    Lai, L. S.; Yeong, Y. F.; Lau, K. K.; Azmi, M. S.; Chew, T. L.

    2018-03-01

    In this work, ZIF-8 membrane synthesized through solvent evaporation secondary seeded growth was tested for single gas permeation and binary gases separation of H2 and CO2. Subsequently, a modified mathematical modeling combining the effects of membrane and support layers was applied to represent the gas transport properties of ZIF-8 membrane. Results showed that, the membrane has exhibited H2/CO2 ideal selectivity of 5.83 and separation factor of 3.28 at 100 kPa and 303 K. Besides, the experimental results were fitted well with the simulated results by demonstrating means absolute error (MAE) values ranged from 1.13 % to 3.88 % for single gas permeation and 10.81 % to 21.22 % for binary gases separation. Based on the simulated data, most of the H2 and CO2 gas molecules have transported through the molecular pores of membrane layer, which was up to 70 %. Thus, the gas transport of the gases is mainly dominated by adsorption and diffusion across the membrane.

  2. Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes.

    Science.gov (United States)

    Trendeleva, Tatiana A; Sukhanova, Evgenia I; Rogov, Anton G; Zvyagilskaya, Renata A; Seveina, Inna I; Ilyasova, Tatiana M; Cherepanov, Dmitry A; Skulachev, Vladimir P

    2013-09-01

    The effects of the mitochondria-targeted lipophilic cation dodecyltriphenylphosphonium (C12TPP, the charge is delocalized and screened by bulky hydrophobic residues) and those of lipophilic cations decyltriethylammonium bromide and cetyltrimethylammonium bromide (C10TEA and C16TMA, the charges are localized and screened by less bulky residues) on bilayer planar phospholipid membranes and tightly-coupled mitochondria from the yeast Yarrowia lipolytica have been compared. In planar membranes, C12TPP was found to generate a diffusion potential as if it easily penetrates these membranes. In the presence of palmitate, C12TPP induced H(+) permeability like plastoquinonyl decyltriphenilphosphonium that facilitates transfer of fatty acid anions (Severin et al., PNAS, 2010, 107, 663-668). C12TPP was shown to stimulate State 4 respiration of mitochondria and caused a mitochondrial membrane depolarization with a half-maximal effect at 6μM. Besides, C12TPP profoundly potentiated the uncoupling effect of endogenous or added fatty acids. C10TEA and C16TMA inhibited State 4 respiration and decreased the membrane potential, though at much higher concentrations than C12TPP, and they did not promote the uncoupling action of fatty acids. These relationships were modeled by molecular dynamics. They can be explained by different membrane permeabilities for studied cations, which in turn are due to different availabilities of the positive charge in these cations to water dipoles. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Tissuepatch is biocompatible and seals iatrogenic membrane defects in a rabbit model.

    Science.gov (United States)

    Engels, Alexander C; Joyeux, Luc; Van der Merwe, Johannes; Jimenez, Julio; Prapanus, Savitree; Barrett, David W; Connon, Che; Chowdhury, Tina T; David, Anna L; Deprest, Jan

    2018-01-01

    To evaluate novel sealing techniques for their biocompatibility and sealing capacity of iatrogenic fetal membrane defects in a pregnant rabbit model. At day 23 of gestation (term = d31), a standardized fetoscopy was performed through a 14G cannula. The resulting fetal membrane defect was closed with condensed collagen, collagen with fibrinogen, Tissuepatch, Duraseal, or a conventional collagen plug (Lyostypt) as reference. At d30, the fetuses were harvested and full thickness fetal membrane samples were analyzed. The study consisted of 2 consecutive parts: (1) biocompatibility testing by fetal survival, apoptosis, and infiltration of polymorphonuclear cells in the membranes and (2) the efficacy to seal fetal membrane defects. Three sealants (collagen with fibrinogen, Duraseal, or Lyostypt) were associated with a higher fetal mortality compared to control unmanipulated littermates and hence were excluded from further analysis. Tissuepatch was biocompatible, and amniotic fluid levels were comparable to those of control untouched littermates. Compared to the condensed collagen, Tissuepatch was also easier in surgical handling and induced limited cell proliferation. Tissuepatch had the best biocompatibility and efficacy in sealing an iatrogenic fetal membrane defect in the pregnant rabbit compared to other readily available sealants. © 2017 John Wiley & Sons, Ltd.

  4. Selective Interaction of a Cationic Polyfluorene with Model Lipid Membranes: Anionic versus Zwitterionic Lipids

    Directory of Open Access Journals (Sweden)

    Zehra Kahveci

    2014-03-01

    Full Text Available This paper explores the interaction mechanism between the conjugated polyelectrolyte {[9,9-bis(6'-N,N,N-trimethylammoniumhexyl]fluorene-phenylene}bromide (HTMA-PFP and model lipid membranes. The study was carried out using different biophysical techniques, mainly fluorescence spectroscopy and microscopy. Results show that despite the preferential interaction of HTMA-PFP with anionic lipids, HTMA-PFP shows affinity for zwitterionic lipids; although the interaction mechanism is different as well as HTMA-PFP’s final membrane location. Whilst the polyelectrolyte is embedded within the lipid bilayer in the anionic membrane, it remains close to the surface, forming aggregates that are sensitive to the physical state of the lipid bilayer in the zwitterionic system. The different interaction mechanism is reflected in the polyelectrolyte fluorescence spectrum, since the maximum shifts to longer wavelengths in the zwitterionic system. The intrinsic fluorescence of HTMA-PFP was used to visualize the interaction between polymer and vesicles via fluorescence microscopy, thanks to its high quantum yield and photostability. This technique allows the selectivity of the polyelectrolyte and higher affinity for anionic membranes to be observed. The results confirmed the appropriateness of using HTMA-PFP as a membrane fluorescent marker and suggest that, given its different behaviour towards anionic and zwitterionic membranes, HTMA-PFP could be used for selective recognition and imaging of bacteria over mammalian cells.

  5. Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models

    International Nuclear Information System (INIS)

    Suwalsky, Mario; Zambrano, Pablo; Mennickent, Sigrid; Villena, Fernando; Sotomayor, Carlos P.; Aguilar, Luis F.; Bolognin, Silvia

    2011-01-01

    Research highlights: → PPA is a common ingredient in cough-cold medication and appetite suppressants. → Reports on its effects on human erythrocytes are very scarce. → We found that PPA induced in vitro morphological changes to human erythrocytes. → PPA interacted with isolated unsealed human erythrocyte membranes. → PPA interacted with class of lipid present in the erythrocyte membrane outer monolayer. -- Abstract: Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada. Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 μM; (c) X-ray diffraction studies showed that PPA in the 0.1-0.5 mM range induced increasing

  6. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration.

    Science.gov (United States)

    Calciolari, E; Ravanetti, F; Strange, A; Mardas, N; Bozec, L; Cacchioli, A; Kostomitsopoulos, N; Donos, N

    2018-02-15

    Although collagen membranes have been clinically applied for guided tissue/bone regeneration for more than 30 years, their in vivo degradation pattern has never been fully clarified. A better understanding of the different stages of in vivo degradation of collagen membranes is extremely important, considering that the biology of bone regeneration requires the presence of a stable and cell/tissue-occlusive barrier during the healing stages in order to ensure a predictable result. Therefore, the aim of this study was to investigate the degradation pattern of a porcine non-cross-linked collagen membrane in an in vivo model of guided bone regeneration (GBR). Decalcified and paraffin-embedded specimens from calvarial defects of 18, 10-month-old Wistar rats were used. The defects were treated with a double layer of collagen membrane and a deproteinized bovine bone mineral particulate graft. At 7, 14 and 30 days of healing, qualitative evaluation with scanning electron microscopy and atomic force microscopy, and histomorphometric measurements were performed. Markers of collagenase activity and bone formation were investigated using an immunofluorescence technique. A significant reduction of membrane thickness was observed from 7 to 30 days of healing, which was associated with progressive loss of collagen alignment, increased collagen remodeling and progressive invasion of woven bone inside the membranes. A limited inflammatory infiltrate was observed at all time points of healing. The collagen membrane investigated was biocompatible and able to promote bone regeneration. However, pronounced signs of degradation were observed starting from day 30. Since successful regeneration is obtained only when cell occlusion and space maintenance exist for the healing time needed by the bone progenitor cells to repopulate the defect, the suitability of collagen membranes in cases where long-lasting barriers are needed needs to be further reviewed. © 2018 John Wiley & Sons A

  7. Hyaluronidase allergy mimicking orbital cellulitis.

    Science.gov (United States)

    Raichura, Nirav D; Alam, Md Shahid; Jaichandran, V V; Mistry, Saurabh; Mukherjee, Bipasha

    2017-10-20

    Hyaluronidase enzyme is a common additive with local anesthetic agent to facilitate faster permeation of the anesthetic in periocular tissues during ophthalmic surgery. We report a series of five subjects presenting with clinical features mimicking orbital cellulitis following peribulbar anesthesia and consequently diagnosed with hyaluronidase hypersensitivity. The study was conducted at a tertiary eye care center in Southern India. It was a retrospective interventional case series. We retrospectively reviewed the case records of patients diagnosed as and treated for hyaluronidase allergy from 2011 to 2015. The presenting features included periocular edema, proptosis, and restriction of ocular movements. The symptoms appeared immediately after the injection to as late as 6 days after the surgery. All patients underwent comprehensive ophthalmic evaluation, relevant investigations, and dermal allergy tests. All five patients tested positive for hyaluronidase. Patients were treated with antihistaminics, systemic steroids, and emergency orbital decompression, when required. In majority of the patients, symptoms resolved in 3-5 days. Clinically, hyaluronidase allergy may mimic orbital cellulitis, which in the context of a recent intraocular surgery may be alarming for both the patient and the surgeon. However, with prompt intervention, the prognosis is extremely favorable in cases of hyaluronidase allergy. It is important for ophthalmic surgeons and anesthetists to recognize and differentiate this entity from the more serious vision threatening conditions.

  8. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Noelia Campillo

    2016-07-01

    Full Text Available Intermittent hypoxia (IH, a hallmark of obstructive sleep apnea (OSA, plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS and consists of a cylindrical well covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time 6 s. Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.

  9. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea.

    Science.gov (United States)

    Campillo, Noelia; Jorba, Ignasi; Schaedel, Laura; Casals, Blai; Gozal, David; Farré, Ramon; Almendros, Isaac; Navajas, Daniel

    2016-01-01

    Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.

  10. Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes.

    Science.gov (United States)

    Sedwards, Sean; Mazza, Tommaso

    2007-10-15

    Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.

  11. Probing the interaction of brain fatty acid binding protein (B-FABP with model membranes.

    Directory of Open Access Journals (Sweden)

    Fábio Dyszy

    Full Text Available Brain fatty acid-binding protein (B-FABP interacts with biological membranes and delivers polyunsaturated fatty acids (FAs via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.

  12. Bisection method for accurate modeling and simulation of fouling in hollow fiber membrane system.

    Science.gov (United States)

    Liang, Shuang; Zhao, Yubo; Zhang, Jian; Song, Lianfa

    2017-06-01

    Accurate description and modeling of fouling on hollow fibers imposes a serious challenge to more effective fouling mitigation and performance optimization of the membrane system. Although the governing equations for membrane fouling can be constructed based on the known theories from membrane filtration and fluid dynamics, they are unsolvable analytically due to the complex spatially and temporally varying nature of fouling on hollow fibers. The current available numerical solutions for the governing equations are either unreliable or inconvenient to use because of the uses of unfounded assumptions or cumbersome calculation methods. This work presented for the first time a rigorous numerical procedure to solve the governing equations for fouling development on hollow fibers. A critical step to achieve the goal is the use of bisection method to determine the transmembrane pressure at the dead end of the fibers. With this procedure, fouling behavior in the hollow fiber membrane system under a given condition can be simulated within a second. The model simulations were well calibrated and verified with the published experimental data from literature. Also presented in the paper were simulations for performances of the hollow fiber membrane system under various operation conditions. Graphical abstract ᅟ.

  13. Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study.

    Science.gov (United States)

    Zaklit, Josette; Craviso, Gale L; Leblanc, Normand; Yang, Lisha; Vernier, P Thomas; Chatterjee, Indira

    2017-10-01

    Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca 2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca 2+ mobilization from Ca 2+ -storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca 2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.

  14. Fundamental studies of novel zwitterionic hybrid membranes: kinetic model and mechanism insights into strontium removal.

    Science.gov (United States)

    Zhu, Wen; Liu, Junsheng; Li, Meng

    2014-01-01

    A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models). Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was found that the adsorption of strontium ions on these zwitterionic hybrid membranes fitted well with the Lagergren pseudo-second order model. Mechanism insights suggested that diffusion-chemisorption was one of the main adsorption mechanisms. Boyd equation exhibited that film-diffusion mechanism might be the control process during the starting period. These findings are very useful in strontium removal from the stimulated radioactive wastewater.

  15. Fundamental Studies of Novel Zwitterionic Hybrid Membranes: Kinetic Model and Mechanism Insights into Strontium Removal

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2014-01-01

    Full Text Available A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models. Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was found that the adsorption of strontium ions on these zwitterionic hybrid membranes fitted well with the Lagergren pseudo-second order model. Mechanism insights suggested that diffusion-chemisorption was one of the main adsorption mechanisms. Boyd equation exhibited that film-diffusion mechanism might be the control process during the starting period. These findings are very useful in strontium removal from the stimulated radioactive wastewater.

  16. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013

  17. Mechanism of Action of a Membrane-Active Quinoline-Based Antimicrobial on Natural and Model Bacterial Membranes.

    Science.gov (United States)

    Hubbard, Alasdair T M; Barker, Robert; Rehal, Reg; Vandera, Kalliopi-Kelli A; Harvey, Richard D; Coates, Anthony R M

    2017-02-28

    HT61 is a quinoline-derived antimicrobial, which exhibits bactericidal potency against both multiplying and quiescent methicillin resistant and sensitive Staphylococcus aureus, and has been proposed as an adjunct for other antimicrobials to extend their usefulness in the face of increasing antimicrobial resistance. In this study, we have examined HT61's effect on the permeability of S. aureus membranes and whether this putative activity can be attributed to an interaction with lipid bilayers. Using membrane potential and ATP release assays, we have shown that HT61 disrupts the membrane enough to result in depolarization of the membrane and release of intercellular constituents at concentrations above and below the minimum inhibitory concentration of the drug. Utilizing both monolayer subphase injection and neutron reflectometry, we have shown that increasing the anionic lipid content of the membrane leads to a more marked effect of the drug. In bilayers containing 25 mol % phosphatidylglycerol, neutron reflectometry data suggest that exposure to HT61 increases the level of solvent in the hydrophobic region of the membrane, which is indicative of gross structural damage. Increasing the proportion of PG elicits a concomitant level of membrane damage, resulting in almost total destruction when 75 mol % phosphatidylglycerol is present. We therefore propose that HT61's primary action is directed toward the cytoplasmic membrane of Gram-positive bacteria.

  18. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments

    Czech Academy of Sciences Publication Activity Database

    Kocourková, L.; Novotná, P.; Čujová, Sabína; Čeřovský, Václav; Urbanová, M.; Setnička, V.

    2017-01-01

    Roč. 170, Jan 5 (2017), s. 247-255 ISSN 1386-1425 Institutional support: RVO:61388963 Keywords : antimicrobial peptides * conformation * liposomes * model membranes * circular dichroism * infrared spectroscopy Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.536, year: 2016

  19. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J

    1994-01-01

    Alterations in basement membrane components, notably proteoglycans, in a rat model of polycystic kidney disease have been investigated. Rats were fed phenol II (2-amino-4-hydroxyphenyl-5-phenyl thiazole) for 4 days and then changed to normal diet for a 7-day recovery period. Marked dilation of di...

  20. Development and Testing of a Fully Adaptable Membrane Bioreactor Fouling Model for a Sidestream Configuration System

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2013-04-01

    Full Text Available A dead-end filtration model that includes the three main fouling mechanisms mentioned in Hermia (i.e., cake build-up, complete pore blocking, and pore constriction and that was based on a constant trans-membrane pressure (TMP operation was extensively modified so it could be used for a sidestream configuration membrane bioreactor (MBR situation. Modifications and add-ons to this basic model included: alteration so that it could be used for varying flux and varying TMP operations; inclusion of a backwash mode; it described pore constriction (i.e., irreversible fouling in relation to the concentration of soluble microbial products (SMP in the liquor; and, it could be used in a cross flow scenario by the addition of scouring terms in the model formulation. The additional terms in this modified model were checked against an already published model to see if they made sense, physically speaking. Next this modified model was calibrated and validated in Matlab© using data collected by carrying out flux stepping tests on both a pilot sidestream MBR plant, and then a pilot membrane filtration unit. The model fit proved good, especially for the pilot filtration unit data. In conclusion, this model formulation is of the right level of complexity to be used for most practical MBR situations.

  1. A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I Mutation Mimicking the Mild Phenotype in Humans

    DEFF Research Database (Denmark)

    Krag, Thomas O; Vissing, John

    2015-01-01

    Limb-girdle muscular dystrophy type 2I (LGMD2I) is caused by mutations in the Fukutin-related protein (FKRP) gene, leading to inadequate glycosylation of α-dystroglycan, an important protein linking the extracellular matrix to the cytoskeleton. We created a mouse model of the common FKRP L276I...... mutation and a hemizygous FKRP L276I knockout model. We studied histopathology and protein expression in the models at different ages and found that homozygous FKRP L276I mice developed a mild progressive myopathy with increased muscle regeneration and fibrosis starting from 1 year of age. This was likely...... in maintaining proper glycosylation of α-dystroglycan. The mild progression in the homozygous FKRP L276I model resembles that in patients with LGMD2I who are homozygous for the L276I mutation. This animal model could, therefore, be relevant for understanding the pathophysiology of and developing a treatment...

  2. Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes.

    Science.gov (United States)

    González-Jaramillo, Lina María; Aranda, Francisco José; Teruel, José Antonio; Villegas-Escobar, Valeska; Ortiz, Antonio

    2017-08-01

    Lipopeptide biosurfactants constitute one of the most promising groups of compounds for the treatment and prevention of fungal diseases in plants. Bacillus subtilis strain EA-CB0015 produces iturin A, fengycin C and surfactin and it has been proven useful for the treatment of black Sigatoka disease in banana plants, an important pathology caused by the fungus Mycosphaerella fijiensis (Morelet). We have found that B. subtilis EA-CB0015 cell free supernatants and purified fractions inhibit M. fijiensis cellular growth. The effect of the purified lipopeptides mentioned above on fungal growth has been also evaluated, observing that iturin A and fengycin C inhibit mycelial growth and ascospore germination, whereas surfactin is not effective. On the hypothesis that the antifungal action of the lipopeptides is associated to their incorporation into biological membranes, ultimately leading to membrane permeabilization, a detailed biophysical study on the interaction of a new isoform of fengycin C with model dipalmitoyphosphatidylcholine (DPPC) membranes has been carried out. Differential scanning calorimetry shows that fengycin C alters the thermotropic phase transitions of DPPC, and is laterally segregated in the fluid bilayer forming domains. Fluorescent probe polarization measurements show that fengycin C does not affect the hydrophobic interior of the membrane. This latter perturbation is concomitant with a strong dehydration of the polar region of DPPC, as shown by FTIR. Fengycin-rich domains, where the surrounding DPPC molecules are highly dehydrated, may well constitute sites of membrane permeabilization leading to a leaky target membrane. These results are a solid support to explain the membrane perturbing action of fengycin, which has been related to its antifungal activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model

    Science.gov (United States)

    Guillén-González, F.; Tierra, G.

    2018-02-01

    Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.

  4. Development of a no-wash assay for mitochondrial membrane potential using the styryl dye DASPEI

    DEFF Research Database (Denmark)

    Reveles Jensen, Kristian; Rekling, Jens C

    2010-01-01

    in CHO cells exposed to cobalt (mimicking hypoxia) and in PC12 cells exposed to amyloid ß, demonstrating that the assay can be used in cellular models of hypoxia and Alzheimer's disease. The assay needs no washing steps, has a Z' value >0.5, can be used on standard fluorometers, has good post liquid......, which is a suspected mitochondrial toxicant. CCCP and DNP have short-term depolarizing effects, and thioridazine has long-term hyperpolarizing effects on the mitochondrial membrane potential of Chinese hamster ovary (CHO) cells. The assay also detected changes of the mitochondrial membrane potential...

  5. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    Science.gov (United States)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  6. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  7. Transport phenomena and fouling in vacuum enhanced direct contact membrane distillation: Experimental and modelling

    KAUST Repository

    Naidu, Gayathri

    2016-08-27

    The application of vacuum to direct contact membrane distillation (vacuum enhanced direct contact membrane distillation, V-DCMD) removed condensable gasses and reduced partial pressure in the membrane pores, achieving 37.6% higher flux than DCMD at the same feed temperature. Transfer mechanism and temperature distribution profile in V-DCMD were studied. The empirical flux decline (EFD) model represented fouling profiles of V-DCMD. In a continuous V-DCMD operation with moderate temperature (55 degrees C) and permeate pressure (300 mbar) for treating wastewater ROC, a flux of 16.0 +/- 0.3 L/m(2) h and high quality distillate were achieved with water flushing, showing the suitability of V-DCMD for ROC treatment. (C) 2016 Elsevier B.V. All rights reserved.

  8. Modeling of gadolinium recovery from nitrate medium with 8-hydroxyquinoline by emulsion liquid membrane

    International Nuclear Information System (INIS)

    Hasan, M.A.; Aglan, R.F.; El-Reefy, S.A.

    2009-01-01

    The extraction equilibrium of Gd(III) from nitrate medium by 8-hydroxyquinoline (HOX) in toluene was studied. Liquid-liquid investigations were first carried out. Based on the equilibrium results, the extraction of Gd(III) from aqueous nitrate medium into an emulsion liquid membrane system (ELM) containing 8-hydroxyquinoline in toluene as extractant, HNO 3 as stripping solution, Span-80 as surfactant was studied. The stability of the prepared ELM was studied in terms of the degree of membrane breakage. The different parameters affecting the permeation of gadolinium (III) were also studied. A general permeation model for the recovery of Gd(III) by the selected membrane is presented. The internal mass transfer in the water in oil (W/O) emulsion drop, the external mass transfer around the drop, the rates of formation and decomposition of the complex at the external aqueous-organic interface were considered.

  9. Nonlinear Shell Modeling of Thin Membranes with Emphasis on Structural Wrinkling

    Science.gov (United States)

    Tessler, Alexander; Sleight, David W.; Wang, John T.

    2003-01-01

    Thin solar sail membranes of very large span are being envisioned for near-term space missions. One major design issue that is inherent to these very flexible structures is the formation of wrinkling patterns. Structural wrinkles may deteriorate a solar sail's performance and, in certain cases, structural integrity. In this paper, a geometrically nonlinear, updated Lagrangian shell formulation is employed using the ABAQUS finite element code to simulate the formation of wrinkled deformations in thin-film membranes. The restrictive assumptions of true membranes, i.e. Tension Field theory (TF), are not invoked. Two effective modeling strategies are introduced to facilitate convergent solutions of wrinkled equilibrium states. Several numerical studies are carried out, and the results are compared with recent experimental data. Good agreement is observed between the numerical simulations and experimental data.

  10. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate

    DEFF Research Database (Denmark)

    Stock, Roberto; Brewer, Jonathan R.; Wagner, Kerstin

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model...... membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy...... and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing...

  11. Structure and interaction with lipid membrane models of Semliki Forest virus fusion peptide.

    Science.gov (United States)

    Agopian, A; Quetin, M; Castano, S

    2016-11-01

    Semliki Forest virus (SFV) is a well-characterized alphavirus that infects cells via endocytosis and an acid-triggered fusion step using class II fusion proteins. Membrane fusion is mediated by the viral spike protein, a heterotrimer of two transmembrane subunits, E1 and E2, and a peripheral protein, E3. Sequence analysis of the E1 ectodomain of a number of alphaviruses demonstrated the presence of a highly conserved hydrophobic domain on the E1 ectodomain. This sequence was proposed to be the fusion peptide of SFV and is believed to be the domain of E1 that interacts with the target membrane and triggers fusion. Here, we investigate the structure and the interaction with lipid membrane models of 76 YQCKVYTGVYPFMWGGAYCFC 96 sequence from SFV, named SFV21, using optical method (ellipsometry) and vibrational spectroscopiy approaches (Polarization Modulation infra-Red Reflection Absorption Spectroscopy, PMIRRAS, and polarized ATR-FTIR). We demonstrate a structural flexibility of SFV21 sequence whether the lateral pressure and the lipid environment. In a lipid environment that mimics eukaryotic cell membranes, a conformational transition from an α-helix to a β-sheet is induced in the presence of lipid by increasing the peptide to lipid ratio, which leads to important perturbations in the membrane organisation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A theoretical model for evaluation of the design of a hollow-fiber membrane oxygenator.

    Science.gov (United States)

    Tabesh, Hadi; Amoabediny, Ghassem; Poorkhalil, Ali; Khachab, Ali; Kashefi, Ali; Mottaghy, Khosrow

    2012-12-01

    Geometric data are fundamental to the design of a contactor. The efficiency of a membrane contactor is mainly defined by its mass-transfer coefficient. However, design modifications also have significant effects on the performance of membrane contactors. In a hollow-fiber membrane oxygenator (HFMO), properties such as priming volume and effective membrane surface area (referred to as design specifications) can be determined. In this study, an extensive theoretical model for calculation of geometric data and configuration properties, and, consequently, optimization of the design of an HFMO, is presented. Calculations were performed for Oxyphan(®) hollow-fiber micro-porous membranes, which are frequently used in current HFMOs because of their high gas exchange performance. The results reveal how to regulate both the transverse and longitudinal pitches of fiber bundles to obtain a lower rand width and a greater number of windings. Such modifications assist optimization of module design and, consequently, substantially increase the efficiency of an HFMO. On the basis of these considerations, three values, called efficiency factors, are proposed for evaluation of the design specifications of an HFMO with regard with its performance characteristics (i.e. oxygen-transfer rate and blood pressure drop). Moreover, the performance characteristics of six different commercial HFMOs were measured experimentally, in vitro, under the same standard conditions. Comparison of calculated efficiency factors reveals Quadrox(®) is the oxygenator with the most efficient design with regard with its performance among the oxygenators tested.

  13. Model lipid bilayers mimic non-specific interactions of gold nanoparticles with macrophage plasma membranes.

    Science.gov (United States)

    Montis, Costanza; Generini, Viola; Boccalini, Giulia; Bergese, Paolo; Bani, Daniele; Berti, Debora

    2018-04-15

    Understanding the interaction between nanomaterials and biological interfaces is a key unmet goal that still hampers clinical translation of nanomedicine. Here we investigate and compare non-specific interaction of gold nanoparticles (AuNPs) with synthetic lipid and wild type macrophage membranes. A comprehensive data set was generated by systematically varying the structural and physicochemical properties of the AuNPs (size, shape, charge, surface functionalization) and of the synthetic membranes (composition, fluidity, bending properties and surface charge), which allowed to unveil the matching conditions for the interaction of the AuNPs with macrophage plasma membranes in vitro. This effort directly proved for the first time that synthetic bilayers can be set to mimic and predict with high fidelity key aspects of nanoparticle interaction with macrophage eukaryotic plasma membranes. It then allowed to model the experimental observations according to classical interface thermodynamics and in turn determine the paramount role played by non-specific contributions, primarily electrostatic, Van der Waals and bending energy, in driving nanoparticle-plasma membrane interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.

    Directory of Open Access Journals (Sweden)

    Roberto P Stock

    Full Text Available The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1 ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2 the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3 in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.

  15. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.

    Science.gov (United States)

    Stock, Roberto P; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.

  16. A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane

    Directory of Open Access Journals (Sweden)

    Kyung Hwan Kim

    2013-01-01

    Full Text Available We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN model and a novel sound processing strategy for cochlear implants (CIs based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters.

  17. A Model of Electrostimulation Based on the Membrane Capacitance as Electromechanical Transducer for Pore Gating.

    Science.gov (United States)

    Irnich, Werner; Kroll, Mark W

    2015-07-01

    Electrostimulation has gained enormous importance in modern medicine, for example, in implantable pacemakers and defibrillators, pain stimulators, and cochlear implants. Most electrostimulation macromodels use the electrical current as the primary parameter to describe the conventional strength-duration relationship of the output of a generator. These models normally assume that the stimulation pulse charges up the passive cell membrane capacitance, and then the increased (less-negative) transmembrane potential activates voltage-gated sodium channels. However, this model has mechanistic and accuracy limitations. Our model assumes that the membrane capacitance is an electromechanical transducer and that the membrane is compressed by the endogenous electric field. The pressure is quadratically correlated with the transmembrane voltage. If the pressure is reduced by an exogenous field, the compression is released and, thus, opening the pores for Na(+) influx initiates excitation. The exogenous electric field must always be equal to or greater than the rheobase field strength (rheobase condition). This concept yields a final result that the voltage-pulse-content produced by the exogenous field between the two ends of a cell is a linear function of the pulse duration at threshold level. Thus, the model yields mathematical formulations that can describe and explain the characteristic features of electrostimulation. Our model of electrostimulation can describe and explain electrostimulation at cellular level. The model's predictions are consistent with published experimental studies. Practical applications in cardiology are discussed in the light of this model of electrostimulation. ©2015 The Authors. Pacing and Clinical Electrophysiology Published by Wiley Periodicals, Inc.

  18. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    KAUST Repository

    Karam, Ayman M.

    2016-10-03

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  19. Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL; Qu, Ming [ORNL

    2017-01-01

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. The model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.

  20. The interactions of squalene, alkanes and other mineral oils with model membranes; effects on membrane heterogeneity and function.

    Science.gov (United States)

    Richens, Joanna L; Lane, Jordan S; Mather, Melissa L; O'Shea, Paul

    2015-11-01

    Droplet interface bilayers (DIBs) offer many favourable facets as an artificial membrane system but the influence of any residual oil that remains in the bilayer following preparation is ill-defined. In this study the fluorescent membrane probes di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (Di-8-ANEPPS) and Fluoresceinphosphatidylethanolamine (FPE) were used to help understand the nature of the phospholipid-oil interaction and to examine any structural and functional consequences of such interactions on membrane bilayer properties. Concentration-dependent modifications of the membrane dipole potential were found to occur in phospholipid vesicles exposed to a variety of different oils. Incorporation of oil into the lipid bilayer was shown to have no significant effect on the movement of fatty acids across the lipid bilayer. Changes in membrane heterogeneity were, however, demonstrated with increased microdomain formation being visible in the bilayer following exposure to mineral oil, pentadecane and squalene. As it is important that artificial systems provide an accurate representation of the membrane environment, careful consideration should be taken prior to the application of DIBs in studies of membrane structure and organisation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission.

    Science.gov (United States)

    Chen, Jiangang; Foiret, Josquin; Minonzio, Jean-Gabriel; Talmant, Maryline; Su, Zhongqing; Cheng, Li; Laugier, Pascal

    2012-05-21

    Human soft tissue is an important factor that influences the assessment of human long bones using quantitative ultrasound techniques. To investigate such influence, a series of soft tissue-bone phantoms (a bone-mimicking plate coated with a layer of water, glycerol or silicon rubber) were ultrasonically investigated using a probe with multi-emitter and multi-receiver arrays in an axial transmission configuration. A singular value decomposition signal processing technique was applied to extract the frequency-dependent wavenumbers of several guided modes. The results indicate that the presence of a soft tissue-mimicking layer introduces additional guided modes predicted by a fluid waveguide model. The modes propagating in the bone-mimicking plate covered by the soft-tissue phantom are only slightly modified compared to their counterparts in the free bone-mimicking plate, and they are still predicted by an elastic transverse isotropic two-dimensional waveguide. Altogether these observations suggest that the soft tissue-bone phantoms can be modeled as two independent waveguides. Even in the presence of the overlying soft tissue-mimicking layer, the modes propagating in the bone-mimicking plate can still be extracted and identified. These results suggest that our approach can be applied for the purpose of the characterization of the material and structural properties of cortical bone.

  2. Modelling carbon membranes for gas and isotope separation.

    Science.gov (United States)

    Jiao, Yan; Du, Aijun; Hankel, Marlies; Smith, Sean C

    2013-04-14

    Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

  3. Screening of different stress factors and development of growth/no growth models for Zygosaccharomyces rouxii in modified Sabouraud medium, mimicking intermediate moisture foods (IMF).

    Science.gov (United States)

    Vermeulen, A; Daelman, J; Van Steenkiste, J; Devlieghere, F

    2012-12-01

    The microbial stability of intermediate moisture foods (IMF) is linked with the possible growth of osmophilic yeast and xerophilic moulds. As most of these products have a long shelf life the assessment of the microbial stability is often an important hurdle in product innovation. In this study a screening of several Zygosaccharomyces rouxii strains towards individual stress factors was performed and growth/no growth models were developed, incorporating a(w), pH, acetic acid and ethanol concentrations. These stress factors are important for sweet IMF such as chocolate fillings, ganache, marzipan, etc. A comparison was made between a logistic regression model with and without the incorporation of time as an explanatory variable. Next to the model development, a screening of the effect of chemical preservatives (sorbate and benzoate) was performed, in combination with relevant stress factors within the experimental design of the model. The results of the study showed that the influence of the investigated environmental stress factors on the growth/no growth boundary of Z. rouxii is the most significant in the first 30-40 days of incubation. Incorporating time as an explanatory variable in the model had the advantage that the growth/no growth boundary could be predicted at each time between 0 and 60 days of incubation at 22 °C. However, the growth/no growth boundary enlarged significantly leading to a less accurate prediction on the growth probability of Z. rouxii. The developed models can be a useful tool for product developers of sweet IMF. Screening with chemical preservatives revealed that benzoic acid was much less active towards Z. rouxii than sorbic acid or a mixture of both acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells.

    Science.gov (United States)

    Appelt-Menzel, Antje; Cubukova, Alevtina; Günther, Katharina; Edenhofer, Frank; Piontek, Jörg; Krause, Gerd; Stüber, Tanja; Walles, Heike; Neuhaus, Winfried; Metzger, Marco

    2017-04-11

    In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm 2 and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening.

    Science.gov (United States)

    Kumar, Deepak; Moore, Robert M; Mercer, Brian M; Mansour, Joseph M; Mesiano, Sam; Schatz, Frederick; Lockwood, Charles J; Moore, John J

    2017-12-01

    The progestogen 17-α hydroxyprogesterone caproate (17-OHPC) is 1 of only 2 agents recommended for clinical use in the prevention of spontaneous preterm delivery, and studies of its efficacy have been conflicting. We have developed an in-vitro model to study the fetal membrane weakening process that leads to rupture in preterm premature rupture of the fetal membranes (pPROM). Inflammation/infection associated with tumor necrosis factor-α (TNF-α) induction and decidual bleeding/abruption associated thrombin release are leading causes of preterm premature rupture of the fetal membranes. Both agents (TNF-α and thrombin) cause fetal membrane weakening in the model system. Furthermore, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical intermediate for both TNF-α and thrombin-induced fetal membrane weakening. In a previous report, we demonstrated that 3 progestogens, progesterone, 17-alpha hydroxyprogesterone (17-OHP), and medroxyprogesterone acetate (MPA), each inhibit both TNF-α- and thrombin-induced fetal membrane weakening at 2 distinct points of the fetal membrane weakening pathway. Each block both the production of and the downstream action of the critical intermediate granulocyte-macrophage colony-stimulating factor. The objective of the study was to characterize the inhibitory effects of 17-OHPC on TNF-α- and thrombin-induced fetal membrane weakening in vitro. Full-thickness human fetal membrane fragments from uncomplicated term repeat cesarean deliveries were mounted in 2.5 cm Transwell inserts and cultured with/without 17-alpha hydroxyprogesterone caproate (10 -9 to 10 -7 M). After 24 hours, medium (supernatant) was removed and replaced with/without the addition of tumor necrosis factor-alpha (20 ng/mL) or thrombin (10 U/mL) or granulocyte-macrophage colony-stimulating factor (200 ng/mL). After 48 hours of culture, medium from the maternal side compartment of the model was assayed for granulocyte-macrophage colony

  6. Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model.

    Directory of Open Access Journals (Sweden)

    Seth H Weinberg

    Full Text Available Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a weighted sum of the membrane potential prior history. However, it is not clear to what extent fractional-order dynamics may alter the properties of active excitable cells. In this study, we investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in the membrane patch model, as fractional-order decreases, i.e., a greater influence of membrane potential memory, peak sodium and potassium currents are altered, and spike frequency and amplitude are generally reduced. In the nerve axon, the velocity of spike propagation increases as fractional-order decreases, while in a neural network, electrical activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails to reproduce many of the key alterations in spiking properties, suggesting that membrane capacitive memory and fractional-order membrane potential dynamics are important and necessary to reproduce neuronal electrical activity.

  7. Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model.

    Science.gov (United States)

    Weinberg, Seth H

    2015-01-01

    Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a weighted sum of the membrane potential prior history. However, it is not clear to what extent fractional-order dynamics may alter the properties of active excitable cells. In this study, we investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in the membrane patch model, as fractional-order decreases, i.e., a greater influence of membrane potential memory, peak sodium and potassium currents are altered, and spike frequency and amplitude are generally reduced. In the nerve axon, the velocity of spike propagation increases as fractional-order decreases, while in a neural network, electrical activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails to reproduce many of the key alterations in spiking properties, suggesting that membrane capacitive memory and fractional-order membrane potential dynamics are important and necessary to reproduce neuronal electrical activity.

  8. BSM-MBR: a benchmark simulation model to compare control and operational strategies for membrane bioreactors.

    Science.gov (United States)

    Maere, Thomas; Verrecht, Bart; Moerenhout, Stefanie; Judd, Simon; Nopens, Ingmar

    2011-03-01

    A benchmark simulation model for membrane bioreactors (BSM-MBR) was developed to evaluate operational and control strategies in terms of effluent quality and operational costs. The configuration of the existing BSM1 for conventional wastewater treatment plants was adapted using reactor volumes, pumped sludge flows and membrane filtration for the water-sludge separation. The BSM1 performance criteria were extended for an MBR taking into account additional pumping requirements for permeate production and aeration requirements for membrane fouling prevention. To incorporate the effects of elevated sludge concentrations on aeration efficiency and costs a dedicated aeration model was adopted. Steady-state and dynamic simulations revealed BSM-MBR, as expected, to out-perform BSM1 for effluent quality, mainly due to complete retention of solids and improved ammonium removal from extensive aeration combined with higher biomass levels. However, this was at the expense of significantly higher operational costs. A comparison with three large-scale MBRs showed BSM-MBR energy costs to be realistic. The membrane aeration costs for the open loop simulations were rather high, attributed to non-optimization of BSM-MBR. As proof of concept two closed loop simulations were run to demonstrate the usefulness of BSM-MBR for identifying control strategies to lower operational costs without compromising effluent quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The influence of NBD fluorescent probe on model membranes containing POPC and DPPC.

    Science.gov (United States)

    Weng, Chi-Jung; Wu, Ju-Ping; Kuo, Ming-Yen; Hsueh, Ya-Wei

    2016-03-01

    To investigate the effect of fluorescent probe on the properties of membranes, we studied model membranes composed of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the presence and absence of fluorescent probe. The morphology of giant unilamellar vesicles (GUVs) has been observed as a function of temperature and composition by fluorescence microscopy using NBD-DOPE or C 6 -NBD-PC as the probe. The phase behavior of model membranes containing no fluorescent probe was investigated by 2 H-NMR spectroscopy. We found that the bright phase observed on GUVs was the fluid phase enriched in POPC and the dark phase was the gel phase enriched in DPPC. NBD-DOPE and C 6 -NBD-PC preferentially participated in the fluid-phase domains when GUVs were in the gel + fluid phase coexistence. Inclusion of both fluorescent probes (1 mol%) lowered the transition temperature of POPC/DPPC membranes. In addition, C 6 -NBD-PC exhibited a stronger effect than NBD-DOPE, which was considered to be associated with the structures of fluorescent molecules.

  10. Mullite ceramic membranes for industrial oily wastewater treatment: experimental and neural network modeling.

    Science.gov (United States)

    Shokrkar, H; Salahi, A; Kasiri, N; Mohammadi, T

    2011-01-01

    In this paper, results of an experimental and modeling of separation of oil from industrial oily wastewaters (desalter unit effluent of Seraje, Ghom gas wells, Iran) with mullite ceramic membranes are presented. Mullite microfiltration symmetric membranes were synthesized from kaolin clay and alpha-alumina powder. The results show that the mullite ceramic membrane has a high total organic carbon and chemical oxygen demand rejection (94 and 89%, respectively), a low fouling resistance (30%) and a high final permeation flux (75 L/m2 h). Also, an artificial neural network, a predictive tool for tracking the inputs and outputs of a non-linear problem, is used to model the permeation flux decline during microfiltration of oily wastewater. The aim was to predict the permeation flux as a function of feed temperature, trans-membrane pressure, cross-flow velocity, oil concentration and filtration time, using a feed-forward neural network. Finally the structure of hidden layers and nodes in each layer with minimum error were reported leading to a 4-15 structure which demonstrated good agreement with the experimental measurements with an average error of less than 2%.

  11. Solution Approach for a Mathematical Model Developed for Membrane Separation of a Gas Hydrocarbon Mixture

    Science.gov (United States)

    Boroujeni, Mahdi K.; Goodarzi, F.

    2011-09-01

    In present study, a special mathematical model for membrane separation processes was studied. Mathematical model was developed for propylene/propane system and was solved using finite difference solution approach. In this study, membrane length is shared into a number of nodes and required equations are written for each node, separately. Also, golden section method was used for suitable step size selection. It is prescience that the results accuracy and calculation time, depend on number of meshes. Therefore 20 meshes were obtained as an optimum number. The effect of pressure drop equation on solution procedure of the model was also investigated and it was found that the pressure drop equation has a negligible effect on it.

  12. Finsler Geometry Modeling of Phase Separation in Multi-Component Membranes

    Directory of Open Access Journals (Sweden)

    Satoshi Usui

    2016-08-01

    Full Text Available A Finsler geometric surface model is studied as a coarse-grained model for membranes of three components, such as zwitterionic phospholipid (DOPC, lipid (DPPC and an organic molecule (cholesterol. To understand the phase separation of liquid-ordered (DPPC rich L o and liquid-disordered (DOPC rich L d , we introduce a binary variable σ ( = ± 1 into the triangulated surface model. We numerically determine that two circular and stripe domains appear on the surface. The dependence of the morphological change on the area fraction of L o is consistent with existing experimental results. This provides us with a clear understanding of the origin of the line tension energy, which has been used to understand these morphological changes in three-component membranes. In addition to these two circular and stripe domains, a raft-like domain and budding domain are also observed, and the several corresponding phase diagrams are obtained.

  13. Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling.

    Science.gov (United States)

    De Greef, Daniel; Aernouts, Jef; Aerts, Johan; Cheng, Jeffrey Tao; Horwitz, Rachelle; Rosowski, John J; Dirckx, Joris J J

    2014-06-01

    A new anatomically-accurate Finite Element (FE) model of the tympanic membrane (TM) and malleus was combined with measurements of the sound-induced motion of the TM surface and the bony manubrium, in an isolated TM-malleus preparation. Using the results, we were able to address two issues related to how sound is coupled to the ossicular chain: (i) Estimate the viscous damping within the tympanic membrane itself, the presence of which may help smooth the broadband response of a potentially highly resonant TM, and (ii) Investigate the function of a peculiar feature of human middle-ear anatomy, the thin mucosal epithelial fold that couples the mid part of the human manubrium to the TM. Sound induced motions of the surface of ex vivo human eardrums and mallei were measured with stroboscopic holography, which yields maps of the amplitude and phase of the displacement of the entire membrane surface at selected frequencies. The results of these measurements were similar, but not identical to measurements made in intact ears. The holography measurements were complemented by laser-Doppler vibrometer measurements of sound-induced umbo velocity, which were made with fine-frequency resolution. Comparisons of these measurements to predictions from a new anatomically accurate FE model with varied membrane characteristics suggest the TM contains viscous elements, which provide relatively low damping, and that the epithelial fold that connects the central section of the human manubrium to the TM only loosely couples the TM to the manubrium. The laser-Doppler measurements in two preparations also suggested the presence of significant variation in the complex modulus of the TM between specimens. Some animations illustrating the model results are available at our website (www.uantwerp.be/en/rg/bimef/downloads/tympanic-membrane-motion). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A Two‐Fluid model study of hydrogen production via water gas shift in fluidized bed membrane reactors

    OpenAIRE

    J.W. Voncken, Ramon; Roghair, Ivo; Van Sint Annaland, Martin

    2017-01-01

    Fluidized bed membrane reactors have been proposed as a promising reactor concept for the production of ultra-pure hydrogen via Water Gas Shift (WGS). High-flux thin-film dense palladium-based membranes are used to selectively extract hydrogen from the reaction medium, which shifts the thermodynamic equilibrium towards the products’ side, increasing the conversion. A Two-Fluid Model (TFM) has been used to investigate the effect of hydrogen extraction via perm-selective membranes on the WGS re...

  15. Modeling of proton exchange membrane fuel cell with variable distance gas flow in anode and cathode

    International Nuclear Information System (INIS)

    Mohd Shahbudin Masdar; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    A number of fundamental studies have been directed towards increasing our understanding of PEM fuel cell and their performance. Mathematical modeling is one of the way and very essential component in the development of this fuel cell. Model validation is presented, the validated model is then used to investigate the behavior of mole fraction of gases, current density, and the performances of stack using polarization curve depending on distance gases flow in channel. The model incorporates a complete cell with both the membrane electrode assembly (MEA) and the serpentine gas distributor channel. Finally, the parametric studies in single stack design are illustrated

  16. Mathematical Modeling of Hollow-Fiber Membrane System in Biological Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jian PENG

    2006-02-01

    Full Text Available A set of mathematical models were derived based on the bio-kinetics and material balance principles to describe the performance of membrane system in this research. A synthetic wastewater and a meat packing wastewater were processed through a lab-scale membrane bioreactor system to generate experimental data for calibration and verification of the derived models. For the synthetic wastewater treatment, a high and stable Total Organic Carbon (TOC removal was achieved with volumetric organic loading from 0.2 to 24.2 kg TOC/m3ƒ(d. It was found that the derived system models fit the experimental data well. The bio-kinetic coefficients of k, Ks, Y and kd in the models were found to be 0.16 d-1, 1.0 mg/L, 1.75 mg Mixed Liquor Volatile Suspended Solids (MLVSS/mg TOC and 0.11 d-1, respectively. For the meat packing wastewater treatment, the bio-kinetic coefficients of k, Ks, Y and kd were found to be 0.48 d-1, 56.3 mg/L, 0.53 mg MLVSS/mg COD and 0.04 d-1, respectively. F/M ratio of 0.08 was found to be the proper operating condition for the system. Based on the proposed system models, the optimum MLSS concentration and F/M ratio can be computed to yield minimum cost of a membrane bioreactor system without excess biomass production.

  17. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration

    Directory of Open Access Journals (Sweden)

    Olumoye Ajao

    2017-12-01

    Full Text Available Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.

  18. Electrostatic models of electron-driven proton transfer across a lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Anatoly Yu; Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Mourokh, Lev G [Department of Physics, Queens College, The City University of New York, Flushing, NY 11367 (United States)

    2011-06-15

    We present two models for electron-driven uphill proton transport across lipid membranes, with the electron energy converted to the proton gradient via the electrostatic interaction. In the first model, associated with the cytochrome c oxidase complex in the inner mitochondria membranes, the electrostatic coupling to the site occupied by an electron lowers the energy level of the proton-binding site, making proton transfer possible. In the second model, roughly describing the redox loop in a nitrate respiration of E. coli bacteria, an electron displaces a proton from the negative side of the membrane to a shuttle, which subsequently diffuses across the membrane and unloads the proton to its positive side. We show that both models can be described by the same approach, which can be significantly simplified if the system is separated into several clusters, with strong Coulomb interaction inside each cluster and weak transfer couplings between them. We derive and solve the equations of motion for the electron and proton creation/annihilation operators, taking into account the appropriate Coulomb terms, tunnel couplings, and the interaction with the environment. For the second model, these equations of motion are solved jointly with a Langevin-type equation for the shuttle position. We obtain expressions for the electron and proton currents and determine their dependence on the electron and proton voltage build-ups, on-site charging energies, reorganization energies, temperature, and other system parameters. We show that the quantum yield in our models can be up to 100% and the power-conversion efficiency can reach 35%.

  19. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models.

    Science.gov (United States)

    de Carvalho, Rayssa Julliane; de Souza, Geanny Targino; Honório, Vanessa Gonçalves; de Sousa, Jossana Pereira; da Conceição, Maria Lúcia; Maganani, Marciane; de Souza, Evandro Leite

    2015-12-01

    In the present study, we assessed the effects of Thymus vulgaris L. essential oil (TVEO) on Staphylococcus aureus and Listeria monocytogenes, pathogenic bacteria frequently associated with fresh or low-ripened cheeses (e.g., Brazilian coalho cheese), and on a starter co-culture comprising Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris, which are commonly used for the production of different cheeses. To measure these effects, we determined the minimum inhibitory concentration (MIC) and assessed bacterial cell viability over time in (coalho) cheese-based broth and in a semi-solid (coalho) cheese model at 10 °C. The MIC for TVEO was 2.5 μL/mL against S. aureus and L. monocytogenes, while the MIC was 1.25 μL/mL against the starter co-culture. The TVEO (5 and 2.5 μL/mL) sharply reduced the viable counts of all assayed bacteria in cheese broth over 24 h; although, at 5 μL/mL, TVEO more severely affected the viability of the starter co-culture compared with pathogenic bacteria. The addition of 1.25 μL/g of TVEO in the semi-solid cheese model did not reduce the viable counts of all assayed bacteria. At 2.5 μL/g, TVEO slightly decreased the viable counts of S. aureus, L. monocytogenes and Lactococcus spp. in the semi-solid cheese model over 72 h. The final counts of Lactococcus spp. in a semi-solid cheese model containing 2.5 μL/mL TVEO were lower than those of pathogenic bacteria under the same conditions. These results suggest that the doses of TVEO used to control pathogenic bacteria in fermented dairy products, especially in low-ripened cheeses, should be cautiously considered for potential negative effects on the growth and survival of starter cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modeling and simulation of the dynamic behavior of portable proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, C.

    2005-07-01

    In order to analyze the operational behavior, a mathematical model of planar self-breathing fuel cells is developed and validated in Chapter 3 of this thesis. The multicomponent transport of the species is considered as well as the couplings between the transport processes of heat, charge, and mass and the electrochemical reactions. Furthermore, to explain the oxygen mass transport limitation in the porous electrode of the cathode side an agglomerate model for the oxygen reduction reaction is developed. In Chapter 4 the important issue of liquid water generation and transport in PEMFCs is addressed. One of the major tasks when operating this type of fuel cell is avoiding the complete flooding of the PEMFC during operation. A one-dimensional and isothermal model is developed that is based on a coupled system of partial differential equations. The model contains a dynamic and two-phase description of the proton exchange membrane fuel cell. The mass transport in the gas phase and in the liquid phase is considered as well as the phase transition between liquid water and water vapor. The transport of charges and the electrochemical reactions are part of the model. Flooding effects that are caused by liquid water accumulation are described by this model. Moreover, the model contains a time-dependent description of the membrane that accounts for Schroeder's paradox. The model is applied to simulate cyclic voltammograms. Chapter 5 is focused on the dynamic investigation of PEMFC stacks. Understanding the dynamic behavior of fuel cell stacks is important for the operation and control of fuel cell stacks. Using the single cell model of Chapter 3 and the dynamic model of Chapter 4 as basis, a mathematical model of a PEMFC stack is developed. However, due to the complexity of a fuel cell stack, the spatial resolution and dynamic description of the liquid water transport are not accounted for. These restrictions allow for direct comparison between the solution variables of

  1. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-05-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find the optimal conditions, leading to a considerable demand of resources. Experimental insights demonstrate that the self-assembly of the block copolymers in solution has an effect on the final membrane structure. Nevertheless, the complete understanding of these multi-scale phenomena is elusive. Herein we use the coarse-grained method Dissipative Particle Dynamics to study the self-assembly of block copolymers that are used for the preparation of the membranes. To simulate representative time and length scales, we introduce a framework for model reduction of polymer chain representations for dissipative particle dynamics, which preserves the properties governing the phase equilibria. We reduce the number of degrees of freedom by accounting for the correlation between beads in fine-grained models via power laws and the consistent scaling of the simulation parameters. The coarse-graining models are consistent with the experimental evidence, showing a morphological transition of the aggregates as the polymer concentration and solvent affinity change. We show that hexagonal packing of the micelles can occur in solution within different windows of polymer concentration depending on the solvent affinity. However, the shape and size dispersion of the micelles determine the characteristic arrangement. We describe the order of crew-cut micelles using a rigid-sphere approximation and propose different phase parameters that characterize the emergence of monodisperse-spherical micelles in solution. Additionally, we investigate the effect of blending asymmetric diblock copolymers (AB/AC) over the properties of the membranes. We observe that the co-assembly mechanism localizes the AC molecules at the interface of A and B domains, and induces

  2. EXPERIMENTAL DESIGN AND RESPONSE SURFACE MODELING OF PI/PES-ZEOLITE 4A MIXED MATRIX MEMBRANE FOR CO2 SEPARATION

    Directory of Open Access Journals (Sweden)

    T. D. KUSWORO

    2015-09-01

    Full Text Available This paper investigates the effect of preparation of polyimide/polyethersulfone (PI/PES blending-zeolite mixed matrix membrane through the manipulation of membrane production variables such as polymer concentration, blending composition and zeolite loading. Combination of central composite design and response surface methodology were applied to determine the main effect and interaction effects of these variables on membrane separation performance. The quadratic models between each response and the independent parameters were developed and the response surface models were tested with analysis of variance (ANOVA. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The separation performance of mixed matrix membrane had been tested using pure gases such as CO2 and CH4. The results showed that zeolite loading was the most significant variable that influenced the CO2/CH4 selectivity among three variables and the experimental results were in good agreement with those predicted by the proposed regression models. The gas separation performance of the membrane was relatively higher as compare to polymeric membrane. Therefore, combination of central composite design and response surface methodology can be used to prepare optimal condition for mixed matrix membrane fabrication. The incorporation of 20 wt% zeolite 4A into 25 wt% of PI/PES matrix had resulted in a high separation performance of membrane material.

  3. Effect of Temperature-Sensitive Poloxamer Solution/Gel Material on Pericardial Adhesion Prevention: Supine Rabbit Model Study Mimicking Cardiac Surgery.

    Directory of Open Access Journals (Sweden)

    Hyun Kang

    Full Text Available We investigated the mobility of a temperature-sensitive poloxamer/Alginate/CaCl2 mixture (PACM in relation to gravity and cardiac motion and the efficacy of PACM on the prevention of pericardial adhesion in a supine rabbit model.A total of 50 rabbits were randomly divided into two groups according to materials applied after epicardial abrasion: PACM and dye mixture (group PD; n = 25 and saline as the control group (group CO; n = 25. In group PD, rabbits were maintained in a supine position with appropriate sedation, and location of mixture of PACM and dye was assessed by CT scan at the immediate postoperative period and 12 hours after surgery. The grade of adhesions was evaluated macroscopically and microscopically two weeks after surgery.In group PD, enhancement was localized in the anterior pericardial space, where PACM and dye mixture was applied, on immediate post-surgical CT scans. However, the volume of the enhancement was significantly decreased at the anterior pericardial space 12 hours later (P < .001. Two weeks after surgery, group PD had significantly lower macroscopic adhesion score (P = .002 and fibrosis score (P = .018 than did group CO. Inflammation score and expression of anti-macrophage antibody in group PD were lower than those in group CO, although the differences were not significant.In a supine rabbit model study, the anti-adhesion effect was maintained at the area of PACM application, although PACM shifted with gravity and heart motion. For more potent pericardial adhesion prevention, further research and development on the maintenance of anti-adhesion material position are required.

  4. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  5. A mathematical and empirical model of the performance of a membrane-coupled anaerobic fermentor.

    Science.gov (United States)

    Kim, Jong-Oh; Chung, Jinwook

    2011-09-01

    A mathematical model was developed to describe the performance of a membrane-coupled anaerobic fermentor (MCAF)-based process. In our experimental results, higher volatile fatty acid (VFA) recovery ratios were obtained at greater filtration ratios. The VFA recovery ratio peaked at an HRT of 12 h and a membrane filtration ratio of 0.95 at a constant SRT. Based on our simulation, the HRT and filtration ratio should be maintained at less than 1 day and above 0.9, respectively, to exceed an organic materials recovery ratio of 35% at a constant SRT of 10 days. Our empirical model, which predicts the effluent VFA concentration (C(o)), described the performance of the MCAF adequately. The model demonstrated that the outlet VFA concentration was a function of three independent parameters -HLR, input organic concentration (C(i)) and membrane filtration ratio (Φ). Multiple regression analyses were conducted using 50 measurements of the MCAF, yielding the following relationship: C(o) = 0.278Φ(1.13) C(i) (1.93) HLR(0.11). The correlation coefficient (R(2)) was 0.90. The simulation results were consistent with the observed data; therefore, due to its simplicity, this model predicts the effluent VFA concentration of an MCAF adequately.

  6. Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages

    DEFF Research Database (Denmark)

    Wüstner, Daniel

    2008-01-01

    membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments...

  7. Modeling flow in nanoporous, membrane reservoirs and interpretation of coupled fluxes

    Science.gov (United States)

    Geren, Filiz

    The average pore size in unconventional, tight-oil reservoirs is estimated to be less than 100 nm. At this pore size, Darcy flow is no longer the dominating flow mechanism and a combination of diffusive flows determines the flow characteristics. Concentration driven self-diffusion has been well known and included in the flow and transport models in porous media. However, when the sizes of the pores and pore-throats decrease down to the size of the hydrocarbon molecules, the porous medium acts like a semi-permeable membrane, and the size of the pore openings dictates the direction of transport between adjacent pores. Accordingly, characterization of flow and transport in tight unconventional plays requires understanding of their membrane properties. This Master of Science thesis first highlights the membrane properties of nanoporous, unconventional reservoirs and then discusses how filtration effects can be incorporated into the models of transport in nanoporous media within the coupled flux concept. The effect of filtration on fluid composition and its impact on black-oil fluid properties like bubble point pressure is also demonstrated. To define filtration and filtration pressure in unconventional, tight-oil reservoirs, analogy to chemical osmosis is applied two pore systems connected with a pore throat, which shows membrane properties. Because the pore throat selectivity permits the passage of fluid molecules by their sizes, given a filtration pressure difference between the two pore systems, the concentration difference between the systems is determined by flash calculations. The results are expressed in the form of filtration (membrane) efficiency, which is essential parameter to define coupled fluxes for porous media flow.

  8. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.

    Science.gov (United States)

    Wrobel, Dominika; Appelhans, Dietmar; Signorelli, Marco; Wiesner, Brigitte; Fessas, Dimitrios; Scheler, Ulrich; Voit, Brigitte; Maly, Jan

    2015-07-01

    The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers - OS) or completely (dense shell glycodendrimers - DS) modified with maltose residues. As a model membrane, two types of 100nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between

  9. Modeling and simulation of membrane separation process using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Kambiz Tahvildari

    2016-01-01

    Full Text Available Separation of CO2 from air was simulated in this work. The considered process for removal of CO2 was a hollow-fiber membrane contactor and an aqueous solution of 2-amino-2-metyl-1-propanol (AMP as absorbent. The model was developed based on mass transfer as well as chemical reaction for CO2 and solvent in the contactor. The equations of model were solved using finite element method. Simulation results were compared with experimental data, and good agreement was observed. The results revealed that increasing solvent velocity enhances removal of CO2 in the hollow-fiber membrane contactor. Moreover, it was found that counter-current process mode is more favorable to achieve the highest separation efficiency.

  10. Evaluation of the interaction of surfactants with stratum corneum model membrane from Bothrops jararaca by DSC.

    Science.gov (United States)

    Baby, André Rolim; Lacerda, Aurea Cristina Lemos; Velasco, Maria Valéria Robles; Lopes, Patrícia Santos; Kawano, Yoshio; Kaneko, Telma Mary

    2006-07-06

    The interaction of surfactants sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium chloride (CTAC) and lauryl alcohol ethoxylated (12 mol ethylene oxide) (LAE-12OE) was evaluated on the stratum corneum (SC) of shed snake skins from Bothrops jararaca, used as model membrane, and thermal characterized by differential scanning calorimetry (DSC). Surfactant solutions were employed above of the critical micellar concentration (CMC) with treatment time of 8h. The SDS interaction with the SC model membrane has increased the characteristic transition temperature of 130 degrees C in approximately 10 degrees C for the water loss and keratin denaturation, indicating an augmentation of the water content. Samples treated with CTAC have a decrease of the water loss temperature, while, for the LAE-12OE treated samples, changes on the transition temperature have not been observed.

  11. Mathematical models for biomass in membrane-BNR process for wastewater treatment.

    Science.gov (United States)

    Lee, J Y; Kwon, K H; Kim, S W; Min, K S; Yun, Z

    2010-01-01

    The equation of biomass is related to the mass-balance equation of substrate. This equation of substrate is expressed according to a model using the Monod equation, which indicates some limits for calculating the amounts of VSS in the MBR process. Some degradation of biomass which is caused by long SRT might result in the generation of substrate based on COD. Research was conducted by lab-scale tests with two membrane-BNR (Biological Nutrients Removal) processes. These were composed of multi-reactors as anaerobic, anoxic, aerobic tank and oxygen exhauster. The aerobic tank was also divided into 3 reactors, which were oxic for nitrification, oxic-media containing fluidized sponge typed media for simultaneous nitrification and denitrification, and oxic-membrane for submerged membrane. This membrane-BNR process could remove most of the organics, suspended solids and nutrient substances like nitrogen thus satisfying the reuse guidelines issued by the Korean Ministry of Environment. The value measured of VSS (X(v)) through the experiment with SRT of 35 days was similar to the biomass using the conventional equation while the one with SRT of 60 days was close to the concentration of VSS calculated by a revised equation which considered the biomass degraded with long SRT.

  12. Effect of Organic Tin Compounds on Electric Properties of Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Podolak, M.; Engel, G.; Man, D. [Inst. of Physics, Opole Univ., Opole (Poland)

    2006-05-15

    The objective of the present work was to investigate the effect of selected organic tin compounds and potassium chloride (used as a reference substance) on the trans-membrane electric voltage and electric resistance of model membranes, the latter being nitrocellulose filters impregnated with butylene ester of lauric acid. The increasing KCl concentration (in the measurement chambers) caused a rapid rise of the negative trans-membrane voltage, whose value stabilized afterwards. In the case of (C{sub 3}H{sub 7}){sub 3}SnCl an abrupt maximum of the negative voltage was observed followed by a monotonic drop to zero. In the case of highest concentrations of this compound the voltages, after having reached zero, changed their polarization to the opposite. Within the range of small concentrations two slight voltage maxima were observed. Non-ionic tin compounds like (CH{sub 3}){sub 4}Sn and (C{sub 2}H{sub 5}){sub 4}Sn had an insignificant influence on the electric properties of the studied membranes. (orig.)

  13. A membrane topology model for human interferon inducible transmembrane protein 1.

    Directory of Open Access Journals (Sweden)

    Stuart Weston

    Full Text Available InterFeron Inducible TransMembrane proteins 1-3 (IFITM1, IFITM2 and IFITM3 are a family of proteins capable of inhibiting the cellular entry of numerous human and animal viruses. IFITM1-3 are unique amongst the currently described viral restriction factors in their apparent ability to block viral entry. This restrictive property is dependant on the localisation of the proteins to plasma and endosomal membranes, which constitute the main portals of viral entry into cells. The topology of the IFITM proteins within cell membranes is an unresolved aspect of their biology. Here we present data from immunofluorescence microscopy, protease cleavage, biotin-labelling and immuno-electron microscopy assays, showing that human IFITM1 has a membrane topology in which the N-terminal domain resides in the cytoplasm, and the C-terminal domain is extracellular. Furthermore, we provide evidence that this topology is conserved for all of the human interferon-induced IFITM proteins. This model is consistent with that recently proposed for murine IFITM3, but differs from that proposed for murine IFITM1.

  14. Choline Modulation of the Aβ P1-40 Channel Reconstituted into a Model Lipid Membrane

    Directory of Open Access Journals (Sweden)

    Daniela Meleleo

    2010-01-01

    Full Text Available Nicotinic acetylcholine receptors (AChRs, implicated in memory and learning, in subjects affected by Alzheimer's disease result altered. Stimulation of α7-nAChRs inhibits amyloid plaques and increases ACh release. β-amyloid peptide (AβP forms ion channels in the cell and model phospholipid membranes that are retained responsible in Alzheimer disease. We tested if choline, precursor of ACh, could affect the AβP1-40 channels in oxidized cholesterol (OxCh and in palmitoyl-oleoyl-phosphatidylcholine (POPC:Ch lipid bilayers. Choline concentrations of 5 × 10−11 M–1.5 × 10−8 M added to the cis- or trans-side of membrane quickly increased AβP1-40 ion channel frequency (events/min and ion conductance in OxCh membranes, but not in POPC:Ch membranes. Circular Dichroism (CD spectroscopy shows that after 24 and 48 hours of incubation with AβP1-40, choline stabilizes the random coil conformation of the peptide, making it less prone to fibrillate. These actions seem to be specific in that ACh is ineffective either in solution or on AβP1-40 channel incorporated into PLMs.

  15. [Effects of silver nitrate on the phase state of model multibilayer membranes].

    Science.gov (United States)

    Vashchenko, O V; Iermak, Yu L; Krasnikova, A O; Lisetski, L N

    2015-01-01

    In order to study the effects caused by silver nitrate (AgNO3) on model lipid membranes, we studied multibilayer membranes based on L-α-dipalmitoylphosphatidylcholine (DPPC) and AgNO3 aqueous soluitions in a wide concentration range (up to 30 wt%) by means of differential scanning calorimetry. It has been shown that the presence of AgNO3 leads both to an increase in the main phase transition temperature (T(m)) and appearance of an additional phase transition peak (T(m)), suggesting increasing of both density and heterogeneity of the lipid membrane. The effect of nitrate ions (NO ) was shown to be of the opposite nature (bilayer fluidizing), so the integral densifying effect of AgNO3 can be referred solely to the action of silver ions (Ag(+)). With increasing AgNO3 concentration, the tendency was observed to opposite changes in T(m) and T'(m) peaks intensity, thereby at about 26. wt% of AgNO3 the initial peak (T(m)) disappeared. In the range of Ag+ therapeutic concentrations (up to 2 wt%) no significant changes in the DPPC membrane were revealed. This can be one of the reasons of the absence of a damaging effect of silver drugs on a host organism with simultaneous pronounced bactericidal effect.

  16. Ultrathin films of lipids to investigate the action of a flavonoid with cell membrane models.

    Science.gov (United States)

    Ferrreira, João Victor Narducci; Grecco, Simone Dos S; Lago, João Henrique G; Caseli, Luciano

    2015-03-01

    Understanding the role of natural compounds whose pharmaceutical activity is associated with cell membranes is fundamental to comprehending the biochemical processes that occur on membrane surfaces. In this work, we examined the action of 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one, known as quercetin, QCT, in lipid Langmuir monolayers at the air-water interface, which served as a model for half of a membrane. The surface pressure-area isotherms for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayers exhibited a noticeable shift to higher areas in the presence of the flavonoid, which indicated the incorporation of QCT into the monolayer and expansion of the film. Also the flavonoid incorporation diminishes the monolayer surface elasticity for DPPC and causes a relative decrease of the intensity for C-H stretch bands, pointing to a disruption of the packed order of DPPC. These results can be associated to the interaction between QCT and cell membrane surfaces during biochemical processes, which may influence its pharmaceutical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. What determines the activity of antimicrobial and cytolytic peptides in model membranes.

    Science.gov (United States)

    Clark, Kim S; Svetlovics, James; McKeown, Alesia N; Huskins, Laura; Almeida, Paulo F

    2011-09-20

    We previously proposed three hypotheses relating the mechanism of antimicrobial and cytolytic peptides in model membranes to the Gibbs free energies of binding and insertion into the membrane [Almeida, P. F., and Pokorny, A. (2009) Biochemistry 48, 8083-8093]. Two sets of peptides were designed to test those hypotheses, by mutating of the sequences of δ-lysin, cecropin A, and magainin 2. Peptide binding and activity were measured on phosphatidylcholine membranes. In the first set, the peptide charge was changed by mutating basic to acidic residues or vice versa, but the amino acid sequence was not altered much otherwise. The type of dye release changed from graded to all-or-none according to prediction. However, location of charged residues in the sequence with the correct spacing to form salt bridges failed to improve binding. In the second set, the charged and other key residues were kept in the same positions, whereas most of the sequence was significantly but conservatively simplified, maintaining the same hydrophobicity and amphipathicity. This set behaved completely different from predicted. The type of release, which was expected to be maintained, changed dramatically from all-or-none to graded in the mutants of cecropin and magainin. Finally, contrary to the hypotheses, the results indicate that the Gibbs energy of binding to the membrane, not the Gibbs energy of insertion, is the primary determinant of peptide activity. © 2011 American Chemical Society

  18. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice Boltzmann Model

    International Nuclear Information System (INIS)

    Hua-Bing, Li; Li, Jin; Bing, Qiu

    2008-01-01

    To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))

  19. Proton Exchange Membrane Fuel Cell Modelling Using Moving Least Squares Technique

    Directory of Open Access Journals (Sweden)

    Radu Tirnovan

    2009-07-01

    Full Text Available Proton exchange membrane fuel cell, with low polluting emissions, is a great alternative to replace the traditional electrical power sources for automotive applications or for small stationary consumers. This paper presents a numerical method, for the fuel cell modelling, based on moving least squares (MLS. Experimental data have been used for developing an approximated model of the PEMFC function of the current density, air inlet pressure and operating temperature of the fuel cell. The method can be applied for modelling others fuel cell sub-systems, such as the compressor. The method can be used for off-line or on-line identification of the PEMFC stack.

  20. Monte Carlo simulation for statistical mechanics model of ion-channel cooperativity in cell membranes

    Science.gov (United States)

    Erdem, Riza; Aydiner, Ekrem

    2009-03-01

    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.

  1. Model Biological Membranes and Possibilities of Application of Electrochemical Impedance Spectroscopy for Their Characterization

    Czech Academy of Sciences Publication Activity Database

    Skalová, Štěpánka; Vyskočil, V.; Barek, J.; Navrátil, Tomáš

    2018-01-01

    Roč. 30, č. 2 (2018), s. 207-219 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA17-05387S; GA ČR GA17-03868S Institutional support: RVO:61388955 Keywords : Electrochemical impedance spectroscopy (EIS) * Liposomes * Model membrane * Phospholipid bilayer * Planar lipid bilayer * Supported lipid bilayers * Tethered lipid bilayers Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 2.851, year: 2016

  2. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis

    KAUST Repository

    Karam, Ayman M.

    2016-09-19

    Membrane distillation (MD) is an emerging water desalination technology that offers several advantages compared to conventional desalination methods. Although progress has been made to model the physics of the process, there are two common limitations of existing models. Firstly, many of the models are based on the steady-state analysis of the process and secondly, some of the models are based on partial differential equations, which when discretized introduce many states which are not accessible in practice. This paper presents the derivation of a novel dynamic model, based on the analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). An analogous electrical thermal network is constructed and its elements are parameterized such that the response of the network models the DCMD process. The proposed model captures the spatial and temporal responses of the temperature distribution along the flow direction and is able to accurately predict the distilled water flux output. To demonstrate the adequacy of the proposed model, validation with time varying and steady-state experimental data is presented. (C) 2016 Elsevier Ltd. All rights reserved.

  3. Low-level red LED light inhibits hyperkeratinization and inflammation induced by unsaturated fatty acid in an in vitro model mimicking acne.

    Science.gov (United States)

    Li, Wen-Hwa; Fassih, Ali; Binner, Curt; Parsa, Ramine; Southall, Michael D

    2018-02-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous units (PSU), associated with increased sebum production, abnormal follicular keratinization (hyperkeratinization), follicular overgrowth of Propionibacterium acnes (P. acnes), and increased inflammatory mediator release. Light therapy has attracted medical interests as a safe alternative treatment for acne. Both blue and red light therapies at high doses >10 J/cm 2 have demonstrated marked effects on inflammatory acne lesions. However, few studies have investigated the effects of lower doses of light. The aim of this study is to investigate the biological effects of lower doses of red light at 0.2-1.2 J/cm 2 for acne using an in vitro model previously developed to mimic the inflammation and hyperkeratinization observed clinically in acne. Human epidermal equivalents were topically exposed to an unsaturated fatty acid, oleic acid (OA), followed by red light-emitting diode (LED) light treatments (light-plus-OA treatments). Endpoints evaluated included the proinflammatory cytokine IL-1α, epidermal barrier integrity, as measured by transepithelial electrical resistance (TEER), and stratum corneum (SC) thickness to monitor hyperkeratinization. OA-induced IL-1α release was significantly (P LED light at 0.2, 0.5, and 1.2 J/cm 2 , from 266 ± 11 pg/ml of no-light-plus-OA-treated (OA treatment without light) controls to 216 ± 9, 231 ± 8, and 212 ± 7 pg/ml, respectively. Histological examination showed that SC thickening following OA treatment was reduced from 43% of total epidermis for no-light-plus-OA treatment to 37% and 38% of total epidermis following 0.5 and 1.1 J/cm 2 red light plus OA treatment, respectively (P light-plus-OA treatment improved OA-induced TEER changes from 29% of baseline for no-light-plus-OA treatment, to 36% of baseline. Low level red LED light therapy could provide beneficial effects of anti-inflammation, normalizing pilosebaceous

  4. Comparing and Contrasting Traditional Membrane Bioreactor Models with Novel Ones Based on Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2013-02-01

    Full Text Available The computer modelling and simulation of wastewater treatment plant and their specific technologies, such as membrane bioreactors (MBRs, are becoming increasingly useful to consultant engineers when designing, upgrading, retrofitting, operating and controlling these plant. This research uses traditional phenomenological mechanistic models based on MBR filtration and biochemical processes to measure the effectiveness of alternative and novel time series models based upon input–output system identification methods. Both model types are calibrated and validated using similar plant layouts and data sets derived for this purpose. Results prove that although both approaches have their advantages, they also have specific disadvantages as well. In conclusion, the MBR plant designer and/or operator who wishes to use good quality, calibrated models to gain a better understanding of their process, should carefully consider which model type is selected based upon on what their initial modelling objectives are. Each situation usually proves unique.

  5. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Saha, Rajib; Jacobs, Jon M.; Nguyen, Amelia Y.; Gritsenko, Marina A.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.

    2016-04-07

    Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified in these membrane systems, and a comprehensive catalog of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared to the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared to a more specialized role for the thylakoid membrane in cellular energetics. Overall, the protein composition of the Synechocystis 6803 plasma membrane and thylakoid membrane is quite similar to the E.coli plasma membrane and Arabidopsis thylakoid membrane, respectively. Synechocystis 6803 can therefore be described as a gram-negative bacterium that has an additional internal membrane system that fulfils the energetic requirements of the cell.

  6. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Saha, Rajib; Jacobs, Jon M.; Nguyen, Amelia Y.; Gritsenko, Marina A.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.

    2016-04-07

    Cyanobacteria are photosynthetic microbes with highlydifferentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram

  7. Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models.

    Science.gov (United States)

    Agopian, Audrey; Castano, Sabine

    2014-01-01

    The fusion peptide of Ebola virus comprises a highly hydrophobic sequence located downstream from the N-terminus of the glycoprotein GP2 responsible for virus-host membrane fusion. The internal fusion peptide of GP2 inserts into membranes of infected cell to mediate the viral and the host cell membrane fusion. Since the sequence length of Ebola fusion peptide is still not clear, we study in the present work the behavior of two fusion peptides of different lengths which were named EBO17 and EBO24 referring to their amino acid length. The secondary structure and orientation of both peptides in lipid model systems made of DMPC:DMPG:cholesterol:DMPE (6:2:5:3) were investigated using PMIRRAS and polarized ATR spectroscopy coupled with Brewster angle microscopy. The infrared results showed a structural flexibility of both fusion peptides which are able to transit reversibly from an α-helix to antiparallel β-sheets. Ellipsometry results corroborate together with isotherm measurements that EBO peptides interacting with lipid monolayer highly affected the lipid organization. When interacting with a single lipid bilayer, at low peptide content, EBO peptides insert as mostly α-helices mainly perpendicular into the lipid membrane thus tend to organize the lipid acyl chains. Inserted in multilamellar vesicles at higher peptide content, EBO peptides are mostly in β-sheet structures and induce a disorganization of the lipid chain order. In this paper, we show that the secondary structure of the Ebola fusion peptide is reversibly flexible between α-helical and β-sheet conformations, this feature being dependent on its concentration in lipids, eventually inducing membrane fusion. © 2013.

  8. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents.

    Science.gov (United States)

    Hovakeemian, Sara G; Liu, Runhui; Gellman, Samuel H; Heerklotz, Heiko

    2015-09-14

    Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity.

  9. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study.

    Science.gov (United States)

    Pan, Jianjun; Khadka, Nawal K

    2016-05-26

    Quantitative characterization of membrane defects (pores) is important for elucidating the molecular basis of many membrane-active peptides. We study kinetic defects induced by melittin in vesicular and planar lipid bilayers. Fluorescence spectroscopy measurements indicate that melittin induces time-dependent calcein leakage. Solution atomic force microscopy (AFM) is used to visualize melittin-induced membrane defects. After initial equilibration, the most probable defect radius is ∼3.8 nm in 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) bilayers. Unexpectedly, defects become larger with longer incubation, accompanied by substantial shape transformation. The initial defect radius is ∼4.7 nm in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Addition of 30 mol % cholesterol to DOPC bilayers suppresses defect kinetics, although the inhibitory impact is negated by longer incubation. Overall, the kinetic rate of defect development follows DLPC > DOPC > DOPC/cholesterol. Kinetic defects are also observed when anionic lipids are present. Based on the observation that defects can occupy as large as 40% of the bilayer surface, we propose a kinetic defect growth model. We also study the effect of melittin on the phase behavior of DOPC/egg-sphingomyelin/cholesterol bilayers. We find that melittin initially suppresses or eliminates liquid-ordered (Lo) domains; Lo domains gradually emerge and become the dominant species with longer incubation; and defects in phase-coexisting bilayers have a most probable radius of ∼5 nm and are exclusively localized in the liquid-disordered (Ld) phase. Our experimental data highlight that melittin-induced membrane defects are not static; conversely, spontaneous defect growth is intrinsically associated with membrane permeabilization exerted by melittin.

  10. Diphytanoyl lipids as model systems for studying membrane-active peptides.

    Science.gov (United States)

    Kara, Sezgin; Afonin, Sergii; Babii, Oleg; Tkachenko, Anton N; Komarov, Igor V; Ulrich, Anne S

    2017-10-01

    The branched chains in diphytanoyl lipids provide membranes with unique properties, such as high chemical/physical stability, low water permeability, and no gel-to-fluid phase transition at ambient temperature. Synthetic diphytanoyl phospholipids are often used as model membranes for electrophysiological experiments. To evaluate whether these sturdy lipids are also suitable for solid-state NMR, we have examined their interactions with a typical amphiphilic peptide in comparison with straight-chain lipids. First, their phase properties were monitored using 31 P NMR, and the structural behaviour of the antimicrobial peptide PGLa was studied by 19 F NMR and circular dichroism in oriented membrane samples. Only lipids with choline headgroups (DPhPC) were found to form stable lipid bilayers in oriented samples, while DPhPG, DPhPE and DPhPS display non-lamellar structures. Hence, the experimental temperature and hydration are crucial factors when using supported diphytanoyl lipids, as both parameters must be maintained in an appropriate range to avoid the formation of non-bilayer structures. For the same reason, a high content of other diphytanoyl lipids besides DPhPC in mixed lipid systems is not favourable. Unlike the situation in straight-chain membranes, we found that the α-helical PGLa was not able to insert into the tightly packed fluid bilayer of DPhPC but remained in a surface-bound state even at very high peptide concentration. This behaviour can be explained by the high cohesivity and the negative spontaneous curvature of the diphytanoyl lipids. These characteristic features must therefore be taken into consideration, both, in electrophysiological studies, and when interpreting the structural behaviour of membrane-active peptides in such lipid environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Three-dimensional dynamic modelling of Polymer-Electrolyte-Membrane-Fuel-Cell-Systems; Dreidimensionale dynamische Modellierung und Berechnung von Polymer-Elektrolyt-Membran-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas

    2008-12-15

    This thesis deals with dynamic and multi-dimensional modelling of Polymer- Electrolyte-Membrane-Fuel-Cells (PEMFC). The developed models include all the different layers of the fuel cell e.g. flow field, gas diffusion layer, catalyst layer and membrane with their particular physical, chemical and electrical characteristics. The simulation results have been verified by detailed measurements performed at the research centre for hydrogen and solar energy in Ulm (ZSW Ulm). The developed three dimensional model describes the time- and spatial-dependent charge and mass transport in a fuel cell. Additionally, this model allows the analysis of critical operating conditions. For example, the current density distribution for different membranes is shown during insufficient humidification which results in local overstraining and degradation. The model also allows to analyse extreme critical operating conditions, e.g. short time breakdown of the humidification. Furthermore, the model shows the available potential of improvement opportunities in power density and efficiency of PEMFC due to optimisation of the gas diffusion layer, the catalyst and membrane. In the second part of the work the application of PEMFC systems for combined heat and power units is described by one-dimensional models for an electrical power range between 1 kW and 5 kW. This model contains the necessary components, e.g. gas processing, humidification, gas supply, fuel cell stack, heat storage, pumps, auxiliary burner, power inverter und additional aggregates. As a main result, it is possible to distinctly reduce the energy demand and the carbon dioxide exhaust for different load profiles. Today the costs for fuel cell systems are considerably higher than that of the conventional electrical energy supply. (orig.)

  12. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes

    Science.gov (United States)

    Vishnyakov, Aleksey; Mao, Runfang; Lee, Ming-Tsung; Neimark, Alexander V.

    2018-01-01

    We present a coarse-grained model of the acid form of Nafion membrane that explicitly includes proton transport. This model is based on a soft-core bead representation of the polymer implemented into the dissipative particle dynamics (DPD) simulation framework. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with water beads. Morse bond formation and breakup artificially mimics the Grotthuss hopping mechanism of proton transport. The proposed DPD model is parameterized to account for the specifics of the conformations and flexibility of the Nafion backbone and sidechains; it treats electrostatic interactions in the smeared charge approximation. The simulation results qualitatively, and in many respects quantitatively, predict the specifics of nanoscale segregation in the hydrated Nafion membrane into hydrophobic and hydrophilic subphases, water diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from a collection of isolated water clusters to a 3D network of pores filled with water embedded in the hydrophobic matrix. The segregated morphology is characterized in terms of the pore size distribution with the average size growing with hydration from ˜1 to ˜4 nm. Comparison of the predicted water diffusivity with the experimental data taken from different sources shows good agreement at high and moderate hydration and substantial deviation at low hydration, around and below the percolation threshold. This discrepancy is attributed to the dynamic percolation effects of formation and rupture of merging bridges between the water clusters, which become progressively important at low hydration, when the coarse-grained model is unable to mimic the fine structure of water network that includes singe molecule bridges. Selected simulations of water diffusion are performed for the alkali metal substituted membrane which demonstrate the effects of the counter-ions on

  13. Greenhouse gases from membrane bioreactors: Mathematical modelling, sensitivity and uncertainty analysis.

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Ekama, George A

    2017-09-01

    In this study a new mathematical model to quantify greenhouse gas emissions (namely, carbon dioxide and nitrous oxide) from membrane bioreactors (MBRs) is presented. The model has been adopted to predict the key processes of a pilot plant with pre-denitrification MBR scheme, filled with domestic and saline wastewater. The model was calibrated by adopting an advanced protocol based on an extensive dataset. In terms of nitrous oxide, the results show that an important role is played by the half saturation coefficients related to nitrogen removal processes and the model factors affecting the oxygen transfer rate in the aerobic and MBR tanks. Uncertainty analysis showed that for the gaseous model outputs 88-93% of the measured data lays inside the confidence bands showing an accurate model prediction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Isolated ovarian tuberculosis mimicking ovarian carcinoma: Case ...

    African Journals Online (AJOL)

    Although genitourinary tuberculosis is common, reports of isolated ovarian tuberculosis are rare. However, its presentation can mimick that of an ovarian tumour, leading to diagnostic difficulties. A woman of 17 years presented with chronic pelvic pain, weight loss, a right ovarian mass on ultrasound, and a significantly ...

  15. Uncomplicated bifid Meckle's diverticulum mimicking recurrent ...

    African Journals Online (AJOL)

    It was excised with V shaped ileal wall. Histopathology showed features of Meckel's diverticulum without any Gastric or pancreatic tissue in mucosa. Clinicians should be wary of a bifid meckel's diverticulum as a very rare anomaly that can be symptomatic mimicking appendicitis. Keywords: Bifid, Meckel's, Diverticulitis ...

  16. Right paratesticular abscess mimicking neonatal testicular torsion ...

    African Journals Online (AJOL)

    U.O. Ezomike

    Right paratesticular abscess mimicking neonatal testicular torsion and caused by Proteus mirabilis. U.O. Ezomikea,∗. , M.A. Ituena, S.C. Ekpemoa, S.O. Ekenzeb a Department of Surgery, Federal Medical Centre Umuahia, Abia State, Nigeria b Sub-Department of Pediatric Surgery, University of Nigeria Teaching Hospital, ...

  17. Acute dystonia mimicking angioedema of the tongue

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Pallesen, Kristine A U; Bygum, Anette

    2013-01-01

    We report a case of acute dystonia of the face, jaw and tongue caused by metoclopramide and mimicking angioedema. The patient had attacks for several years before the correct diagnosis was made and we present the first ever published video footage of an attack. This adverse drug reaction is known...

  18. Peripancreatic fat necrosis mimicking pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Thurnher, M.M.; Schima, W.; Turetschek, K.; Thurnher, S.A. [Vienna Univ. (Austria). Inst. fuer Radiologie; Fuegger, R. [Dept. of Surgery, University of Vienna (Austria); Oberhuber, G. [Dept. of Pathology, University of Vienna (Austria)

    2001-06-01

    A case of peripancreatic fat necrosis, after an episode of acute pancreatitis, which mimicked pancreatic cancer with lymph node metastases, is presented. We describe the imaging findings with helical CT scanning and with unenhanced and mangafodipir-enhanced MR imaging, with special emphasis on the differential diagnoses. (orig.)

  19. Iliacus Abscess with Radiculopathy Mimicking Herniated Nucleus ...

    African Journals Online (AJOL)

    2016-05-02

    May 2, 2016 ... radiculopathy mimicking herniated nucleus pulposus: Aadditional diagnostic value of magnetic resonance imaging. Niger J Clin Pract. 2017;20:392-3. This is an open access article distributed under the terms of the Creative Commons. Attribution-Non Commercial-Share Alike 3.0 License, which allows ...

  20. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure

    Directory of Open Access Journals (Sweden)

    Elena Beltrán-Heredia

    2017-05-01

    Full Text Available Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force. We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive

  1. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  2. Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids.

    Science.gov (United States)

    Raza Shaikh, Saame; Brown, David A

    2013-01-01

    Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Application of the mass-based UNIQUAC model to membrane systems: A critical revision

    International Nuclear Information System (INIS)

    Chovau, S.; Van der Bruggen, B.; Luis, P.

    2012-01-01

    Highlights: ► UNIQUAC model in mass-based terms is considered for the description of sorption equilibria in membrane systems. ► Model validation of molar and mass-based model is performed on simple (vapor + liquid) equilibrium. ► Discrepancy is found between molar and mass-based model, which is attributed to an incorrect conversion. ► Novel model based on correct thermodynamics is provided for future research. - Abstract: The UNIQUAC model is very suitable in describing (liquid + liquid) as well as (vapor + liquid) equilibrium for a wide range of systems. It can be extended to (solvent + polymer) systems for describing sorption equilibria. The original model is expressed in molar-based terms, but requires knowledge of structural parameters and molar masses of all components. Since these cannot always be easily determined for membranes, a conversion to mass-based terms is often performed, which eliminates this issue. Many studies use this model to calculate sorption equilibria in (solvent + polymer) systems. Nevertheless, in this work the conversion from molar to mass-based parameters is postulated to be erroneous. This even leads to an incorrect description of simple (vapor + liquid) equilibrium of pure liquid mixtures and hence it is advised not to use this model for further modeling of sorption equilibrium in (solvent + polymer) systems. In this paper, the errors in the conversion are pinpointed, and the effects it can have on the description of (vapor + liquid) equilibrium, if used improvident, are demonstrated. Furthermore, it is shown that in fact a simple and straightforward conversion can be performed. Finally, in the case when polymers are involved, an adaption and simplification to the model was successfully applied.

  4. Investigation of biological and fouling characteristics of submerged membrane bioreactor process for wastewater treatment by model sensitivity analysis.

    Science.gov (United States)

    Cho, J W; Ahn, K H; Lee, Y H; Lim, B R; Kim, J Y

    2004-01-01

    In this study, a mathematical model for the submerged membrane bioreactor (SMBR) was developed. The activated sludge model No. 1 (ASM1) was modified to be suitable for describing the characteristics of the SMBR, and the resistance-in-series model was integrated into the ASM1 to describe membrane fouling. Using the newly developed model, the biological and fouling characteristics of the submerged membrane bioreactor process for wastewater treatment was investigated by sensitivity analysis. The sensitivity of effluent COD and nitrogen, TSS in the reactor and membrane flux with respect to each parameter (K(h), mu(H), K(S), K(NHH), K(NOH), b(H), Y(H), mu(A), K(NHA), b(A), Y(A), K(m) and alpha) was investigated by model simulation. As a result, the most important factors affecting membrane fouling were hydrolysis rate constant (K(h)) and cross-flow effect coefficient (K(m)). Heterotrophic yield coefficient (Y(H)) had a great influence on effluent quality. Effluent quality was also somewhat sensitive to K(h). Peculiar operating conditions of the SMBR such as long solids retention time (SRT), absolute retention of solids by membrane and high biomass concentration in bioreactor could explain these model simulation results. The model developed in this study would be very helpful to optimize operating conditions as well as design parameters for a SMBR system.

  5. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  6. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.

    2009-01-01

    A mechanistic oxygen transfer model was developed and applied to a flow-through hollow-fiber membrane-aerated biofilm reactor. Model results are compared to conventional clean water test results as well as performance data obtained when an actively nitrifying biofilm was present on the fibers......-liquid interface was the most accurate of the predictive models (overpredicted by a factor of 1.1) while a coefficient determined by measuring bulk liquid dissolved oxygen underpredicted the oxygen transfer by a factor of 3. The mechanistic model was found to be an adequate tool for design because it used....... With the biofilm present, oxygen transfer efficiencies between 30 and 55% were calculated from the measured data including the outlet gas oxygen concentration, ammonia consumption stoichiometry, and oxidized nitrogen production stoichiometry, all of which were in reasonable agreement. The mechanistic model...

  7. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system....... The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  8. Validation of computational non-Newtonian fluid model for membrane bioreactor

    DEFF Research Database (Denmark)

    Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian

    2015-01-01

    Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool for optimiz......Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool...... for optimizing MBR-systems is computational fluid dynamics (CFD) modelling, giving the ability to describe the flow in the systems. A parameter which is often neglected in such models is the non-Newtonian properties of active sludge, which is of great importance for MBR systems since they operate at sludge...... are measured with a Laser Doppler Anemometer (LDA). The CFD model is found capable of modelling the correct velocities in a range of setups, making CFD models a powerful tool for optimisation of MBR systems....

  9. Chick Chorioallantoic Membrane Assay: A 3D Animal Model for Study of Human Nasopharyngeal Carcinoma.

    Science.gov (United States)

    Xiao, Xue; Zhou, Xiaoying; Ming, Huixin; Zhang, Jinyan; Huang, Guangwu; Zhang, Zhe; Li, Ping

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic head and neck cancer. However, mechanistic study of the invasion and metastasis of NPC has been hampered by the lack of proper in vivo models. We established an in vivo chick embryo chorioallantoic membrane (CAM) model to study NPC tumor biology. We found 100% micro-tumor formation 3 days after inoculation with NPC cell lines (4/4) or primary tumor biopsy tissue (35/35). The transplanted NPC micro-tumors grew on CAMs with extracellular matrix interaction and induced angiogenesis. In addition, the CAM model could be used to study the growth of transplanted NPC tumors and also several important steps of metastasis, including tumor invasion by detecting the extent of basement membrane penetration, tumor angiogenesis by analyzing the area of neo-vessels, and tumor metastasis by quantifying tumor cells in distant organs. We established and described a feasible, easy-to-manipulate and reliable CAM model for in vivo study of NPC tumor biology. This model closely simulates the clinical features of NPC growth, progression and metastasis and could help elucidate the biological mechanisms of the growth pattern and invasion of NPC cells and in quantitative assessment of angiogenesis and cell intravasation.

  10. Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges

    Directory of Open Access Journals (Sweden)

    Petros Kefalas

    2010-08-01

    Full Text Available Formal modelling of Multi-Agent Systems (MAS is a challenging task due to high complexity, interaction, parallelism and continuous change of roles and organisation between agents. In this paper we record our research experience on formal modelling of MAS. We review our research throughout the last decade, by describing the problems we have encountered and the decisions we have made towards resolving them and providing solutions. Much of this work involved membrane computing and classes of P Systems, such as Tissue and Population P Systems, targeted to the modelling of MAS whose dynamic structure is a prominent characteristic. More particularly, social insects (such as colonies of ants, bees, etc., biology inspired swarms and systems with emergent behaviour are indicative examples for which we developed formal MAS models. Here, we aim to review our work and disseminate our findings to fellow researchers who might face similar challenges and, furthermore, to discuss important issues for advancing research on the application of membrane computing in MAS modelling.

  11. CFD modelling of a membrane reactor for hydrogen production from ammonia

    Science.gov (United States)

    Shwe Hla, San; Dolan, Michael D.

    2018-01-01

    Despite the growing use of hydrogen (H2) as a transport fuel, one of the major barriers still remaining is efficient and inexpensive fuel distribution and storage. Current approaches, such as compression, liquefaction or metal hydride formation, incur a significant energy penalty. Ammonia (NH3) has long been considered a prospective H2 medium, exhibiting a higher volumetric H2 density than liquid H2, through liquid-phase storage at mild pressure. Decomposition of NH3 into H2 and N2 can be achieved via use of catalytic reactors and fuel-cell-grade H2 can be produced using metal membranes at H2 distribution sites.In this study, a 3-Dimensional (3D) Computational Fluid Dynamics (CFD) model has been developed to understand the performance of the H2 separation process in gas mixtures derived from an NH3-cracking reaction. The reactor consists of 19 tubular membrane tubes, each 470 mm long, inside a tubular shell with an inner diameter of 130 mm. Standard transport and energy equations governing a 3D, pressure-based, steady-state model were derived from the laws of conservation of mass, momentum and energy. The governing equations were solved using commercial CFD software ANSYS Fluent 18.0. Gas flow and mixing were modelled by the two-equation standard k-epsilon model for closure. Coupled solver was used for pressure-velocity coupling, enabling a pseudo-transient option with pseudo time steps of 0.01 s. To estimate H2 permeation through the metal membrane, a constant H2 permeability of 3.0E-07 mol.m-1 s-1 Pa-0.5 derived from series of experiments tested under a range of industrial conditions, was used. Model simulations were conducted for an adiabatic temperature of 300 °C, a feed-side pressure of 7.8 bara and a permeate side pressure of 0.1 bara. A parametric analysis was carried out to explore the effects of variation in total feed-gas flow and effects of changes in NH3-cracking efficiency on H2 production rates and H2 yields. The model estimated that 4.6-11.6 kg H2

  12. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Directory of Open Access Journals (Sweden)

    L. Vanysacker

    2013-01-01

    Full Text Available Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  13. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Science.gov (United States)

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  14. Effect of the surface charge of artificial model membranes on the aggregation of amyloid β-peptide.

    Science.gov (United States)

    Sabaté, Raimon; Espargaró, Alba; Barbosa-Barros, Lucyanna; Ventura, Salvador; Estelrich, Joan

    2012-08-01

    The neurotoxicity effect of the β-amyloid (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease, occurs through interactions with neuronal membranes. Here, we attempt to clarify the mechanisms and consequences of the interaction of Aβ with lipid membranes. We have used liposomes as a model of biological membrane, and have devoted particular attention to the bilayer charge effect. Our results show that insertion and surface association of peptide with membrane, increased in a membrane charge-dependent manner, lead to a reduction of Aβ soluble species, lag time elongation and an increase in the inter-molecular β-sheet ratio of amyloid fibrils. In addition, our findings suggest that the fine balance between peptide insertion and surface association modulates Aβ aggregation, influencing the amyloid fibrils concentration as well as their morphology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Retrieving Backbone String Neighbors Provides Insights Into Structural Modeling of Membrane Proteins*

    Science.gov (United States)

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-01-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold. PMID:22415040

  16. Retrieving backbone string neighbors provides insights into structural modeling of membrane proteins.

    Science.gov (United States)

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-07-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold.

  17. Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells

    Science.gov (United States)

    Xu, C.; Zhao, T. S.; Yang, W. W.

    In this work, a one-dimensional, isothermal two-phase mass transport model is developed to investigate the water transport through the membrane electrode assembly (MEA) for liquid-feed direct methanol fuel cells (DMFCs). The liquid (methanol-water solution) and gas (carbon dioxide gas, methanol vapor and water vapor) two-phase mass transport in the porous anode and cathode is formulated based on classical multiphase flow theory in porous media. In the anode and cathode catalyst layers, the simultaneous three-phase (liquid and vapor in pores as well as dissolved phase in the electrolyte) water transport is considered and the phase exchange of water is modeled with finite-rate interfacial exchanges between different phases. This model enables quantification of the water flux corresponding to each of the three water transport mechanisms through the membrane for DMFCs, such as diffusion, electro-osmotic drag, and convection. Hence, with this model, the effects of MEA design parameters on water crossover and cell performance under various operating conditions can be numerically investigated.

  18. Computational molecular modeling and structural rationalization for the design of a drug-loaded PLLA/PVA biopolymeric membrane

    International Nuclear Information System (INIS)

    Sibeko, B; Pillay, V; Choonara, Y E; Khan, R A; Danckwerts, M P; Modi, G; Iyuke, S E; Naidoo, D

    2009-01-01

    The purpose of this study was to design, characterize and assess the influence of triethanolamine (TEA) on the physicomechanical properties and release of methotrexate (MTX) from a composite biopolymeric membrane. Conjugated poly(L-lactic acid) (PLLA) and poly(vinyl alcohol) (PVA) membranes were prepared by immersion precipitation with and without the addition of TEA. Drug entrapment efficiency (DEE) and release studies were performed in phosphate buffered saline (pH 7.4, 37 deg. C). Scanning electron microscopy elucidated the membrane surface morphology. Computational and structural molecular modeling rationalized the potential mechanisms of membrane formation and MTX release. Bi-axial force-distance (F-D) extensibility profiles were generated to determine the membrane toughness, elasticity and fracturability. Membranes were significantly toughened by the addition of TEA as a discrete rubbery phase within the co-polymer matrix. MTX-TEA-PLLA-PVA membranes were tougher (F = 89 N) and more extensible (D = 8.79 mm) compared to MTX-PLLA-PVA (F = 35 N, D = 3.7 mm) membranes as a greater force of extension and fracture distance were required (N = 10). DEE values were relatively high (>80%, N = 5) for both formulations. Photomicrographs revealed distinct crystalline layered morphologies with macro-pores. MTX was released by tri-phasic kinetics with a lower fractional release of MTX from MTX-TEA-PLLA-PVA membranes compared to MTX-PLLA-PVA. TEA provided a synergistic approach to improving the membrane physicomechanical properties and modulation of MTX release. The composite biopolymeric membrane may therefore be suitable for the novel delivery of MTX in the treatment of chronic primary central nervous system lymphoma.

  19. Mathematical modeling of water mass balance for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari; Nik Suhaimi Mat Hassan

    2006-01-01

    Gas and water management are key to achieving good performance from a proton exchange membrane fuel cell (PEMFC) stack. Water plays a critical role in PEMFC. The proton conductivity is increase with the water content. In order to achieve enough hydration, water is normally introduced into the cell externally by a variety of methods such as liquid injection, steam introduction, and humidification of reactants by passing them through humidifiers before entering the cell. In this paper, mathematical modeling of water mass balance for PEMFC at anode and cathode side are proposed by using external humidification and assume that steady state, constant pressure, constant temperature and gases distribution are uniform

  20. A model-based parametric analysis of a direct ethanol polymer electrolyte membrane fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Andreadis, G.M.; Podias, A.K.M.; Tsiakaras, P.E. [Department of Mechanical and Industrial Engineering, School of Engineering, University of Thessaly, Pedion Areos, 383 34, Volos (Greece)

    2009-10-20

    In the present work, a model-based parametric analysis of the performance of a direct ethanol polymer electrolyte membrane fuel cell (DE-PEMFC) is conducted with the purpose to investigate the effect of several parameters on the cell's operation. The analysis is based on a previously validated one-dimensional mathematical model that describes the operation of a DE-PEMFC in steady state. More precisely, the effect of several operational and structural parameters on (i) the ethanol crossover rate from the anode to the cathode side of the cell, (ii) the parasitic current generation (mixed potential formation) and (iii) the total cell performance is investigated. According to the model predictions it was found that the increase of the ethanol feed concentration leads to higher ethanol crossover rates, higher parasitic currents and higher mixed potential values resulting in the decrease of the cell's power density. However there is an optimum ethanol feed concentration (approximately 1.0 mol L{sup -1}) for which the cell power density reaches its highest value. The platinum (Pt) loading of the anode and the cathode catalytic layers affects strongly the cell performance. Higher values of Pt loading of the catalytic layers increase the specific reaction surface area resulting in higher cell power densities. An increase of the anode catalyst loading compared to an equal one of the cathode catalyst loading has greater impact on the cell's power density. Another interesting finding is that increasing the diffusion layers' porosity up to a certain extent, improves the cell power density despite the fact that the parasitic current increases. This is explained by the fact that the reactants' concentrations over the catalysts are increased, leading to lower activation overpotential values, which are the main source of the total cell overpotentials. Moreover, the use of a thicker membrane leads to lower ethanol crossover rate, lower parasitic current and

  1. Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin

    Science.gov (United States)

    Marín-Menéndez, Alejandro; Montis, Costanza; Díaz-Calvo, Teresa; Carta, Davide; Hatzixanthis, Kostas; Morris, Christopher J.; McArthur, Michael; Berti, Debora

    2017-01-01

    Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy.

  2. Finite element model for nutrient distribution analysis of a hollow fiber membrane bioreactor.

    Science.gov (United States)

    Unnikrishnan, G U; Unnikrishnan, V U; Reddy, J N

    2012-02-01

    Hollow fiber membrane bioreactors (HFMB) are extensively used for the development of tissue substitutes for bones and cartilages. In an HFMB, the nutrient transport is dependent on the material properties of the porous scaffold and fiber membrane and also on the fluid flow through the hollow fiber. The difficulty in obtaining real-time data along with the presence of large number of variables in experimental studies have lead to increased application of computational models for the performance analysis of bioreactors. A major difficulty in the computational analysis of HFMB is the modeling of the interactions at the fluid and porous scaffold interfaces, which has often been neglected or incorporated using specific boundary conditions. In this study, a new FEM is developed to analyze the fluid flow in the fluid-porous region with the interface coupled directly into the FEM. Distribution of nutrients in the bioreactor is studied by coupling mass transport equations to the fluid-porous finite element framework. The new model is implemented to study the influence of permeability, cell density, and flow rate on the nutrient concentration distribution in the HFMB. The developed computational framework is an ideal tool to study fluid flow through porous-open channels and can also be used for the design of bioreactors for optimal tissue growth. Copyright © 2011 John Wiley & Sons, Ltd.

  3. The ELBA force field for coarse-grain modeling of lipid membranes.

    Directory of Open Access Journals (Sweden)

    Mario Orsi

    Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

  4. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    Science.gov (United States)

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  5. Intracranial capillary hemangioma mimicking a dissociative disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lacasse

    2012-01-01

    Full Text Available Capillary hemangiomas, hamartomatous proliferation of vascular endothelial cells, are rare in the central nervous system (CNS. Intracranial capillary hemangiomas presenting with reversible behavioral abnormalities and focal neurological deficits have rarely been reported. We report a case of CNS capillary hemangioma presenting with transient focal neurological deficits and behavioral abnormalities mimicking Ganser’s syndrome. Patient underwent total excision of the vascular malformation, resulting in complete resolution of his symptoms.

  6. Giant chondroid syringoma radiologically mimicking malignancy

    Directory of Open Access Journals (Sweden)

    Belkiz Uyar

    2013-01-01

    Full Text Available Chondroid syringoma, or mixed tumor of skin, is a relatively rare, usually benign sweat gland tumor, most often seen in the head-and-neck region. Rare malignant examples have been reported, commonly involving the extremities. We report here a case radiologically mimicking a malignant neoplasm, but histologically-proven benign subcutaneous chondroid syringoma, arising in the anterior aspect of the upper thigh of a 59-year-old male.

  7. Hydroxychloroquine-Associated Hyperpigmentation Mimicking Elder Abuse

    OpenAIRE

    Cohen, Philip R.

    2013-01-01

    Background Hydroxychloroquine may result in cutaneous dyschromia. Older individuals who are the victims of elder abuse can present with bruising and resolving ecchymoses. Purpose The features of hydroxychloroquine-associated hyperpigmentation are described, the mucosal and skin manifestations of elder abuse are reviewed, and the mucocutaneous mimickers of elder abuse are summarized. Case Report An elderly woman being treated with hydroxychloroquine for systemic lupus erythematosus developed d...

  8. Photochromic crystalline systems mimicking bio-functions.

    Science.gov (United States)

    Uchida, Kingo; Nishimura, Ryo; Hatano, Eri; Mayama, Hiroyuki; Yokojima, Satoshi

    2018-01-31

    Photoresponsive crystalline systems mimicking bio-functions are prepared using photochromic diarylethenes. Upon UV irradiation to a diarylethene crystal, the self-aggregated and needle-shaped crystals of photogenerated colored closed-ring isomer were generated on the surface. The rough surface showed the superhydrophobic lotus effect. By controlling the heating procedures, UV irradiation processes, and molecular structural modification, rose-petal effects of wetting, anti-reflective moth eye effect, and double-roughness structure mimicking the surface of lotus leaf were observed. By changing the molecular structure, superhydrophilic surface mimicking snail shell was photogenerated. We also found a derivative to form hollow crystals by sublimation. The crystals showed photosalient effect and the photo-response similar to impatiens was observed after small beads were packed in the hollow. These photoresponsive functions are unique, and they demonstrate a macroscopic response by assembling microscopic molecular movement of light. In the future, such a molecular assembly system will be a promising candidate for fabricating photoresponsive architectures and soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels

    Science.gov (United States)

    Langfeldt, F.; Gleine, W.; von Estorff, O.

    2018-03-01

    A new analytical model for the oblique incidence sound transmission loss prediction of baffled panels with multiple subwavelength sized membrane-type acoustic metamaterial (MAM) unit cells is proposed. The model employs a novel approach via the concept of the effective surface mass density and approximates the unit cell vibrations in the form of piston-like displacements. This yields a coupled system of linear equations that can be solved efficiently using well-known solution procedures. A comparison with results from finite element model simulations for both normal and diffuse field incidence shows that the analytical model delivers accurate results as long as the edge length of the MAM unit cells is smaller than half the acoustic wavelength. The computation times for the analytical calculations are 100 times smaller than for the numerical simulations. In addition to that, the effect of flexible MAM unit cell edges compared to the fixed edges assumed in the analytical model is studied numerically. It is shown that the compliance of the edges has only a small impact on the transmission loss of the panel, except at very low frequencies in the stiffness-controlled regime. The proposed analytical model is applied to investigate the effect of variations of the membrane prestress, added mass, and mass eccentricity on the diffuse transmission loss of a MAM panel with 120 unit cells. Unlike most previous investigations of MAMs, these results provide a better understanding of the acoustic performance of MAMs under more realistic conditions. For example, it is shown that by varying these parameters deliberately in a checkerboard pattern, a new anti-resonance with large transmission loss values can be introduced. A random variation of these parameters, on the other hand, is shown to have only little influence on the diffuse transmission loss, as long as the standard deviation is not too large. For very large random variations, it is shown that the peak transmission loss

  10. A biochemo-mechano coupled, computational model combining membrane transport and pericellular proteolysis in tissue mechanics.

    Science.gov (United States)

    Vuong, A-T; Rauch, A D; Wall, W A

    2017-03-01

    We present a computational model for the interaction of surface- and volume-bound scalar transport and reaction processes with a deformable porous medium. The application in mind is pericellular proteolysis, i.e. the dissolution of the solid phase of the extracellular matrix (ECM) as a response to the activation of certain chemical species at the cell membrane and in the vicinity of the cell. A poroelastic medium model represents the extra cellular scaffold and the interstitial fluid flow, while a surface-bound transport model accounts for the diffusion and reaction of membrane-bound chemical species. By further modelling the volume-bound transport, we consider the advection, diffusion and reaction of sequestered chemical species within the extracellular scaffold. The chemo-mechanical coupling is established by introducing a continuum formulation for the interplay of reaction rates and the mechanical state of the ECM. It is based on known experimental insights and theoretical work on the thermodynamics of porous media and degradation kinetics of collagen fibres on the one hand and a damage-like effect of the fibre dissolution on the mechanical integrity of the ECM on the other hand. The resulting system of partial differential equations is solved via the finite-element method. To the best of our knowledge, it is the first computational model including contemporaneously the coupling between (i) advection-diffusion-reaction processes, (ii) interstitial flow and deformation of a porous medium, and (iii) the chemo-mechanical interaction impelled by the dissolution of the ECM. Our numerical examples show good agreement with experimental data. Furthermore, we outline the capability of the methodology to extend existing numerical approaches towards a more comprehensive model for cellular biochemo-mechanics.

  11. Modeling and data analysis of a palladium membrane reactor for tritiated impurities cleanup

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.

    1995-01-01

    A Palladium Membrane Reactor (PMR) is under consideration for the tritium plant for the International Thermonuclear Experimental Reactor (ITER). The ITER reactor exhaust will contain tritiated impurities such as water and methane. Tritium will need to be recovered from these impurities for environmental and economic reasons. For this purpose a promising device, PMR, has been proposed. The PMR is a combined permeator and catalytic reactor. Shift catalysts are used to foster reactions such as water-gas shift, H 2 O + CO → H 2 + CO 2 , and methane steam reforming, CH 4 + H 2 O → 3H 2 + CO. Due to thermodynamic limitations these reactions only proceed to partial completion. Thus, a Pd/Ag membrane, which is exclusively permeable to hydrogen isotopes, is incorporated into the reactor. By maintaining a vacuum on the permeate, product hydrogen isotopes are removed, enabling the reactions to proceed to completion. A model has been developed to study the complex interactions in a PMR so that the optimal design can be determined. The model accounts for the coupled effects of transport-limited permeation of hydrogen isotopes and chemical reactions. The permeation model is an extension of previous models that include the effects of temperature, wall thickness, reaction-side pressure, and permeate-side pressure. Reaction rates for methane steam reforming and the water-gas shift reaction are incorporated into the model along with the respective reverse reactions. The model is compared to PMR data and used to investigate the concentration and pressure profiles in the reactor. Due to the interactions of permeation and reaction complex profiles can be produced in a PMR. For example, the water concentration often increases after the inlet to the PMR to a maximum value, and then decreases to the low values expected with a PMR. Detailed information like this is required for the design and optimization of PMRs for the ITER tritium plant

  12. Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents

    Directory of Open Access Journals (Sweden)

    Mahatheva Kalaruban

    2018-01-01

    Full Text Available Excessive concentrations of nitrate in ground water are known to cause human health hazards. A submerged membrane adsorption hybrid system that includes a microfilter membrane and four different adsorbents (Dowex 21K XLT ion exchange resin (Dowex, Fe-coated Dowex, amine-grafted (AG corn cob and AG coconut copra operated at four different fluxes was used to continuously remove nitrate. The experimental data obtained in this study was simulated mathematically with a homogeneous surface diffusion model that incorporated membrane packing density and membrane correlation coefficient, and applied the concept of continuous flow stirred tank reactor. The model fit with experimental data was good. The surface diffusion coefficient was constant for all adsorbents and for all fluxes. The mass transfer coefficient increased with flux for all adsorbents and generally increased with the adsorption capacity of the adsorbents.

  13. Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities.

    Science.gov (United States)

    Fenu, A; Guglielmi, G; Jimenez, J; Spèrandio, M; Saroj, D; Lesjean, B; Brepols, C; Thoeye, C; Nopens, I

    2010-08-01

    Membrane bioreactors (MBRs) have been increasingly employed for municipal and industrial wastewater treatment in the last decade. The efforts for modelling of such wastewater treatment systems have always targeted either the biological processes (treatment quality target) as well as the various aspects of engineering (cost effective design and operation). The development of Activated Sludge Models (ASM) was an important evolution in the modelling of Conventional Activated Sludge (CAS) processes and their use is now very well established. However, although they were initially developed to describe CAS processes, they have simply been transferred and applied to MBR processes. Recent studies on MBR biological processes have reported several crucial specificities: medium to very high sludge retention times, high mixed liquor concentration, accumulation of soluble microbial products (SMP) rejected by the membrane filtration step, and high aeration rates for scouring purposes. These aspects raise the question as to what extent the ASM framework is applicable to MBR processes. Several studies highlighting some of the aforementioned issues are scattered through the literature. Hence, through a concise and structured overview of the past developments and current state-of-the-art in biological modelling of MBR, this review explores ASM-based modelling applied to MBR processes. The work aims to synthesize previous studies and differentiates between unmodified and modified applications of ASM to MBR. Particular emphasis is placed on influent fractionation, biokinetics, and soluble microbial products (SMPs)/exo-polymeric substances (EPS) modelling, and suggestions are put forward as to good modelling practice with regard to MBR modelling both for end-users and academia. A last section highlights shortcomings and future needs for improved biological modelling of MBR processes. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Connecting membrane fluidity and surface charge to pore-forming antimicrobial peptides resistance by an ANN-based predictive model.

    Science.gov (United States)

    Mehla, Jitender; Sood, S K

    2013-05-01

    Efficiency of antibacterial chemotherapy is gradually more challenged by the emergence of pathogenic strains exhibiting high levels of antibiotic resistance. Pore-forming antimicrobial peptides (PF-AMPs) such as alamethicin (Alm) are therefore in the focus of extensive research efforts. In the present study, an artificial neural network (ANN)-based quantitative structure-activity relationship (SAR) modeling of membrane phospholipids vs. PF-AMPs, in context to membrane fluidity and surface charge, was carried out. We observed that the potency of PF-AMPs depends on the fatty acyl chain and polar head group of phospholipids. Alm showed surface interactions with zwitterionic phospholipids however could penetrate deeper inside the hydrophobic core of anionic membranes. Here, the resistance developed in bacterial cells was coupled to membrane fluidity and surface charge, and simultaneously, these principles could be applied for combating resistance against PF-AMPs. The correlation coefficient between observed CR and predicted CR using ANN was found to be 0.757. Thus, ANN could be used as a reliable modeling method for predicting CR, given the structure of the biomimetic membrane in terms of membrane fluidity and surface charge. Fully explored mechanisms of resistance, a forward modeling step in the design cycle of AMPs, can be cross-linked to the inward modeling using ANN to complete the peptide design cycle. The SAR between membrane phospholipids and PF-AMPs could furnish valuable information regarding their design to provide us efficacious peptides against premier pathogens. So far, this is the only report available to predict and quantify interactions of PF-AMPs with membrane phospholipids.

  15. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell

  16. Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes. Part B. Modeling

    KAUST Repository

    Lee, Jong Suk

    2010-03-15

    A previous paper characterized effects of exposure of Matrimid® asymmetric fibers to either toluene or n-heptane or a combination of both contaminants during permeation. In all cases, reductions in the carbon dioxide permeance and the carbon dioxide/methane selectivity were observed for both annealed and non-annealed samples. In this paper, the respective potential impacts of competitive sorption, fiber compaction, and antiplasticization/plasticization on membrane performance during contaminant exposure are quantified and analyzed. The combined impact of competitive sorption and antiplasticization/plasticization are shown to account for the loss in membrane performance observed during exposure to highly sorbing feed stream contaminants. The dual mode transport model for penetrant mixtures was used to explain reduction in CO2 permeance due to competitive sorption effects, while free volume-based modeling explained decrease in CO2 permeance due to antiplasticization. Finally, the impact on CO2 permeance during exposure of the annealed Matrimid® fibers to contaminants is analyzed. The analysis is based on reduction in segmental mobility expected due to reduction of residual unrelaxed volume as compared to unanealed sample. © 2010.

  17. Thermodynamic modelling of a membrane distillation crystallisation process for the treatment of mining wastewater.

    Science.gov (United States)

    Nathoo, Jeeten; Randall, Dyllon Garth

    2016-01-01

    Membrane distillation (MD) could be applicable in zero liquid discharge applications. This is due to the fact that MD is applicable at high salinity ranges which are generally outside the scope of reverse osmosis (RO) applications, although this requires proper management of precipitating salts to avoid membrane fouling. One way of managing these salts is with MD crystallisation (MDC). This paper focuses on the applicability of MDC for the treatment of mining wastewater by thermodynamically modelling the aqueous chemistry of the process at different temperatures. The paper is based on the typical brine generated from an RO process in the South African coal mining industry and investigates the effect water recovery and operating temperature have on the salts that are predicted to crystallise out, the sequence in which they will crystallise out and purities as a function of the water recovery. The study confirmed the efficacy of using thermodynamic modelling as a tool for investigating and predicting the crystallisation aspects of the MDC process. The key finding from this work was that, for an MDC process, a purer product can be obtained at higher operating temperatures and recoveries because of the inverse solubility of calcium sulphate.

  18. Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells

    Directory of Open Access Journals (Sweden)

    Tkacheva T. N.

    2014-07-01

    Full Text Available Aim. To study the dynamics of lipophilic content release from nanocarriers of different types, organic molecular ensembles and inorganic nanoparticles (NPs in vitro experiments. Methods. Two-channel ratiometric fluorescence detection method based on Forster Resonance Energy Transfer, fluorescent spectroscopy and micro-spectroscopy have been used. Results. It has been found that the profiles of lipophilic dyes release from organic nanocarriers (PC liposomes and SDS micelles and inorganic ones (GdYVO4:Eu3+ and CeO2 NPs are well fitted by the first-order reaction kinetics in both model cell membranes and living cells (rat hepatocytes. The dye release constants (K and half-lives (t1/2 were analyzed. Conclusions. GdYVO4:Eu3+ and CeO2 NPs have been shown to provide faster lipophilic content release in model cell membranes as compared to PC liposomes. Negatively charged or lipophilic compounds added into nanocarriers can decrease the rate of lipophilic dyes release. Specific interaction of GdYVO4:Eu3+ NPs with rat hepatocytes has been observed.

  19. Atomic model for the membrane-embedded VOmotor of a eukaryotic V-ATPase.

    Science.gov (United States)

    Mazhab-Jafari, Mohammad T; Rohou, Alexis; Schmidt, Carla; Bueler, Stephanie A; Benlekbir, Samir; Robinson, Carol V; Rubinstein, John L

    2016-11-03

    Vacuolar-type ATPases (V-ATPases) are ATP-powered proton pumps involved in processes such as endocytosis, lysosomal degradation, secondary transport, TOR signalling, and osteoclast and kidney function. ATP hydrolysis in the soluble catalytic V 1 region drives proton translocation through the membrane-embedded V O region via rotation of a rotor subcomplex. Variability in the structure of the intact enzyme has prevented construction of an atomic model for the membrane-embedded motor of any rotary ATPase. We induced dissociation and auto-inhibition of the V 1 and V O regions of the V-ATPase by starving the yeast Saccharomyces cerevisiae, allowing us to obtain a ~3.9-Å resolution electron cryomicroscopy map of the V O complex and build atomic models for the majority of its subunits. The analysis reveals the structures of subunits ac 8 c'c″de and a protein that we identify and propose to be a new subunit (subunit f). A large cavity between subunit a and the c-ring creates a cytoplasmic half-channel for protons. The c-ring has an asymmetric distribution of proton-carrying Glu residues, with the Glu residue of subunit c″ interacting with Arg735 of subunit a. The structure suggests sequential protonation and deprotonation of the c-ring, with ATP-hydrolysis-driven rotation causing protonation of a Glu residue at the cytoplasmic half-channel and subsequent deprotonation of a Glu residue at a luminal half-channel.

  20. Intramolecular energy transfer at donor-acceptor interactions in model and biological membranes

    International Nuclear Information System (INIS)

    Umarova, Fatima T.

    2011-01-01

    Intramolecular triplet-triplet energy transfer between molecules of sensibilisator and photochrome for registration of protein interactions in the membrane preparation of Na,K-ATPase was investigated. Erythrosinithiocyanate (ERITC) was used as the triplet label of sensibilisator, and 4-acetoamido-4 -isothiocyanatostilbene-2,2 disullfonic acid (SITS) was used as the photochrome label. Na,K-ATPase preparations were covalently bound with ERITC in active centre of enzyme, and SITS molecules were covalently bound by NH2-groups. In model system, in chymotrypsinogene molecule, SITS and ERITC labels were used also. The cis-trans-isomerization of SITS was initiated by triplet-triplet energy transfer from light excited ERITC molecule to photochrome. The kinetics of isomerization was recorded by the SITS fluorescence measurements. The constant of rate of triplet-triplet energy transfer from ERITC to cis-isomers of SITS in Na,K-ATPase was determined as (3-7)x10 3 M -1 s -1 , and in model system it equals 1x 10 7 M 1 s -1 . The value of energy transfer between loos molecules of erythrosine and SITS in buffer solution equaled to 7x10 7 M -1 s -1 . This drop of R m y in the membrane preparation of Na,K-ATPase at 10 4 reflected the decrease in the frequency of label collisions caused by the increase in the media viscosity and steric hindrances. (author)

  1. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network

    International Nuclear Information System (INIS)

    Pendashteh, Ali Reza; Fakhru'l-Razi, A.; Chaibakhsh, Naz; Abdullah, Luqman Chuah; Madaeni, Sayed Siavash; Abidin, Zurina Zainal

    2011-01-01

    Highlights: → Hypersaline oily wastewater was treated in a membrane bioreactor. → The effects of salinity and organic loading rate were evaluated. → The system was modeled by neural network and optimized by genetic algorithm. → The model prediction agrees well with experimental values. → The model can be used to obtain effluent characteristics less than discharge limits. - Abstract: A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000 mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m 3 day)) and cyclic time (12, 24, and 48 h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O and G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44 kg COD/(m 3 day), TDS of 78,000 mg/L and reaction time (RT) of 40 h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100 mg/L and met the discharge limits.

  2. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution

    International Nuclear Information System (INIS)

    Gong, Wenyin; Cai, Zhihua

    2013-01-01

    Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data

  3. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Asgari, A.

    2008-01-01

    In this work, the removal of ammonia from synthesis purge gas of an ammonia plant has been investigated. Since the ammonia decomposition is thermodynamically limited, a membrane reactor is used for complete decomposition. A double pipe catalytic membrane reactor is used to remove ammonia from purge gas. The purge gas is flowing in the reaction side and is converted to hydrogen and nitrogen over nickel-alumina catalyst. The hydrogen is transferred through the Pd-Ag membrane of tube side to the shell side. A mathematical model including conservation of mass in the tube and shell side of reactor is proposed. The proposed model was solved numerically and the effects of different parameters on the rector performance were investigated. The effects of pressure, temperature, flow rate (sweep ratio), membrane thickness and reactor diameter have been investigated in the present study. Increasing ammonia conversion was observed by raising the temperature, sweep ratio and reducing membrane thickness. When the pressure increases, the decomposition is gone toward completion but, at low pressure the ammonia conversion in the outset of reactor is higher than other pressures, but complete destruction of the ammonia cannot be achieved. The proposed model can be used for design of an industrial catalytic membrane reactor for removal of ammonia from ammonia plant and reducing NO x emissions

  4. Dynamic Modeling and Control of Distributed Heat Transfer Mechanisms: Application to a Membrane Distillation Module

    KAUST Repository

    Eleiwi, Fadi

    2015-12-01

    Sustainable desalination technologies are the smart solution for producing fresh water and preserve the environment and energy by using sustainable renewable energy sources. Membrane distillation (MD) is an emerging technology which can be driven by renewable energy. It is an innovative method for desalinating seawater and brackish water with high quality production, and the gratitude is to its interesting potentials. MD includes a transfer of water vapor from a feed solution to a permeate solution through a micro-porous hydrophobic membrane, rejecting other non-volatile constituents present in the influent water. The process is driven by the temperature difference along the membrane boundaries. Different control applications and supervision techniques would improve the performance and the efficiency of the MD process, however controlling the MD process requires comprehensive mathematical model for the distributed heat transfer mechanisms inside the process. Our objective is to propose a dynamic mathematical model that accounts for the time evolution of the involved heat transfer mechanisms in the process, and to be capable of hosting intermittent energy supplies, besides managing the production rate of the process, and optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have proved high agreement between model simulations and experiments with less than 5% relative error. Enhancing the MD production is an anticipated goal, therefore, two main control strategies are proposed. Consequently, we propose a nonlinear controller for a semi-discretized version of the dynamic model to achieve an asymptotic tracking for a desired temperature difference. Similarly, an observer-based feedback control is used to track sufficient temperature difference for better productivity. The second control strategy

  5. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution....... Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...

  6. ASM1-based activated sludge model with biopolymer kinetics for integrated simulation of membrane bioreactors for wastewater treatment

    OpenAIRE

    Janus, Tomasz; Ulanicki, Bogumil

    2015-01-01

    This paper presents an activated sludge model suitable for modelling membrane bioreactors (MBRs) for wastewater treatment. The model, later referred to as combined EPS and SMP production ASM1-based model (CES-ASM1), extends Activated Sludge Model No. 1 (ASM1) with biokinetics of two types of bacterial biopolymers: soluble microbial products (SMP) and extracellular polymeric substances (EPS). The biopolymer kinetics in CES-ASM1 are, in their majority, borrowed from Laspidou and Rittmann[1] ...

  7. Water uptake profile in a model ion-exchange membrane: Conditions for water-rich channels

    Science.gov (United States)

    Herbst, Daniel C.; Witten, Thomas A.; Tsai, Tsung-Han; Coughlin, E. Bryan; Maes, Ashley M.; Herring, Andrew M.

    2015-03-01

    Ionic conductivity in a polymeric fuel cell requires water uptake. Previous theoretical studies of water uptake used idealized parameters. We report a parameter-free prediction of the water-swelling behavior of a model fuel cell membrane. The model polymers, poly(methyl-butylene)-block-poly(vinylbenzyl-trimethylamine), form lamellar domains that absorb water in humid air. We use the Scheutjens-Fleer methodology to predict the resulting change in lamellar structure and compare with x-ray scattering. The results suggest locally uniform water distributions. However, under conditions where a PVBTMA and water mixture phase-separate, the two phases arrange into stripes with a dilute stripe sandwiched between two concentrated stripes. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance.

  8. Monitoring and modeling of nitrogen conversions in membrane-aerated biofilm reactors: Effects of intermittent aeration

    DEFF Research Database (Denmark)

    Ma, Yunjie

    relevant biological N2O production pathways. Sensitive kinetic parameters were estimated with long-term bulk performance data. With the calibrated model, roles of HB and AnAOB were discussed and evaluated in mitigating N2O emissions in auto-trophic nitrogen removal MABRs. Moreover, I developed a 1-D...... process. On the other hand, the presence of multiple simultaneous chemical gradients complicates the performance opti-mization. Mathematical modeling offers a way to describe and analyze multi-ple processes that occur simultaneously in time and space in biofilm systems. This PhD project investigated NH4...... the membrane, whilst NH4+ is provid-ed from the bulk liquid phase. The counter substrate supply not only offers flexible aeration control, but also supports the development of a unique mi-crobial community and spatial structure inside the biofilm. In this study, lab-scale MABRs were operated under two types...

  9. Integration of Bioreactor and Membrane Separation Processes: A Model Based Approach

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres

    test. Satisfactory results are obtained regulating the pH and managing the input constraints. The design and operability of the integrated bioreactor and REED module are investigated using the developed models and control structure. The study involves two different case studies: continuous lactic acid......This work is motivated by the need for tighter integration of industrial processes in an attempt to improve process sustainability. To this end, this work considers a interesting case study around which different systematic approaches are used or developed to achieve the above goal. The thesis...... is concerned with the understanding of an integrated bioreactor and electrically driven membrane separation processes for lactic acid fermentation. This is achieved through a model based investigation of the individual units and the integrated system. Development of system understanding is the key to reveal...

  10. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling

    International Nuclear Information System (INIS)

    Kahraman, Huseyin; Orhan, Mehmet F.

    2017-01-01

    Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.

  11. Xenopus laevis Oocytes as a Model System for Studying the Interaction Between Asbestos Fibres and Cell Membranes.

    Science.gov (United States)

    Bernareggi, Annalisa; Ren, Elisa; Borelli, Violetta; Vita, Francesca; Constanti, Andrew; Zabucchi, Giuliano

    2015-06-01

    The mode of interaction of asbestos fibres with cell membranes is still debatable. One reason is the lack of a suitable and convenient cellular model to investigate the causes of asbestos toxicity. We studied the interaction of asbestos fibres with Xenopus laevis oocytes, using electrophysiological and morphological methods. Oocytes are large single cells, with a limited ability to endocytose molecular ligands; we therefore considered these cells to be a good model for investigating the nature of asbestos/membrane interactions. Electrophysiological recordings were performed to compare the passive electrical membrane properties, and those induced by applying positive or negative voltage steps, in untreated oocytes and those exposed to asbestos fibre suspensions. Ultrastructural analysis visualized in detail, any morphological changes of the surface membrane caused by the fibre treatment. Our results demonstrate that Amosite and Crocidolite-type asbestos fibres significantly modify the properties of the membrane, starting soon after exposure. Cells were routinely depolarized, their input resistance decreased, and the slow outward currents evoked by step depolarizations were dramatically enhanced. Reducing the availability of surface iron contained in the structure of the fibres with cation chelators, abolished these effects. Ultrastructural analysis of the fibre-exposed oocytes showed no evidence of phagocytic events. Our results demonstrate that asbestos fibres modify the oocyte membrane, and we propose that these cells represent a viable model for studying the asbestos/cell membrane interaction. Our findings also open the possibly for finding specific competitors capable of hindering the asbestos-cell membrane interaction as a means of tackling the long-standing asbestos toxicity problem. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Applications of type I antifreeze proteins: studies with model membranes & cryoprotectant properties.

    Science.gov (United States)

    Inglis, Steven R; Turner, Jennifer J; Harding, Margaret M

    2006-12-01

    Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs), found in the body fluids of many species of polar fish allow them to survive in waters colder than the equilibrium freezing point of their blood and other internal fluids. Despite their structural diversity, all AF(G)Ps kinetically depress the temperature at which ice grows in a non-colligative manner and hence exhibit thermal hysteresis. AF(G)Ps also share the ability to interact with and protect mammalian cells and tissues from hypothermic damage (e.g., improved storage of human blood platelets at low temperatures), and are able to stabilize or disrupt membrane composition during low temperature and freezing stress (e.g., cryoprotectant properties in stabilization of sperm and oocytes). This review will summarize studies of AFPs with phospholipids and plant lipids, proposed mechanisms for inhibition of leakage from membranes, and cryoprotectant studies with biological samples. The major focus will be on the alpha-helical type I antifreeze proteins, and synthetic mutants, that have been most widely studied. For completeness, data on glycoproteins will also be presented. While a number of models to explain stabilization and destabilization of different lipid systems have been proposed, it is currently not possible to predict whether a particular AFP will stabilize or destabilize a given lipid system. Furthermore the relationship between the antifreeze property of thermal hysteresis and membrane stabilization is unknown. This lack of detailed knowledge about how AFPs function in the presence of different types of materials has hampered progress toward the development of antifreezes for cold storage of cells, tissues, and organs.

  13. Biotransformation of diazepam in a clinically relevant flat membrane bioreactor model using primary porcine hepatocytes.

    Science.gov (United States)

    Maringka, Michael; Giri, Shibashish; Nieber, Karen; Acikgöz, Ali; Bader, Augustinus

    2011-06-01

    In vitro biotransformation of drug using commercial culture medium with serum may not be the ideal culture medium for clinical application in extracorporeal bioartificial liver support (BAL) systems. In these systems, patient's blood or plasma is plumbed to primary hepatocytes within a seeded bioreactor, creating interaction between plasma and seeded hepatocytes. To address this situation, we investigated the biotransformation potential of diazepam in primary porcine hepatocytes with a flat membrane bioreactor (FMB); we used human plasma exposure and serum-free media in organotypical double gel culture model for long-term culture. We investigated diazepam clearance and all major metabolites of diazepam, such as oxazepam, temazepam, and desmethyldiazepam, in conventional single gel and organotypical sandwich models and compared them to the FMB model. Diazepam elimination was higher in double gel cultures with exposure to both SF 3 medium conditions and plasma, when compared to the single gel model in a Petri dish. It was observed that in the FMB, diazepam elimination was stable at about 3 pg/h/cell in plasma and SF 3 exposure. Oxazepam synthesis in the bioreactor was approximately one quarter less than in the Petri dish, but there were no differences between N-desmethyldiazepam and temazepam synthesis in double gel culture. In the flat membrane bioreactor, there was no decrease in the biotransformation of diazepam in plasma exposure compared with the control group. Our results suggest that this plasma exposure bioreactor may offer a useful approach in clinical use of extracorporeal BAL, as well as for drug metabolite investigation into toxicological research. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  14. Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel

    Science.gov (United States)

    Hu, Guilin; Fan, Jianren

    The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.

  15. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  16. Modeling and analysis of the membrane-behavior in capacitive micromachined ultrasonic transducer

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Ahn, Bong Young; Park, Hae Won; Kim, Young Joo; Kim, Kuk Jin; Lee, Seung Seok

    2003-01-01

    In this study, theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) in the capacitive micromachined ultrasonic transducer (cMUT) were performed. The design parameters of the cMUT were estimated and are the dimension and thickness of membrane, thickness of sacrificial layer, thickness and size of electrode, size of active element and so on. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was predicted.

  17. Modeling and analysis of the membrane-behavior in capacitive micromachined ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Bok; Ahn, Bong Young; Park, Hae Won; Kim, Young Joo; Kim, Kuk Jin; Lee, Seung Seok [NDE Group, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2003-05-15

    In this study, theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) in the capacitive micromachined ultrasonic transducer (cMUT) were performed. The design parameters of the cMUT were estimated and are the dimension and thickness of membrane, thickness of sacrificial layer, thickness and size of electrode, size of active element and so on. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was predicted.

  18. Modeling and analysis of the membrane-behavior in capacitive micromachined ultrasonic transducer

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Ahn, Bong Young; Park, Hae Won; Kim, Young Joo; Kim, Kuk Jin; Lee, Seung Seok

    2003-01-01

    In this study, theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) in the capacitive micromachined ultrasonic transducer (cMUT) were performed. The design parameter of the cMUT were estimated and are the dimension and thickness of membrane, thickness of sacrificed layer, thickness and size of electrode, size of active element and so on. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was predicted.

  19. Modeling and analysis of the membrane-behavior in capacitive micromachined ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Bok; Ahn, Bong Young; Park, Hae Won; Kim, Young Joo; Kim, Kuk Jin; Lee, Seung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2003-07-01

    In this study, theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) in the capacitive micromachined ultrasonic transducer (cMUT) were performed. The design parameter of the cMUT were estimated and are the dimension and thickness of membrane, thickness of sacrificed layer, thickness and size of electrode, size of active element and so on. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was predicted.

  20. Asymmetric bi-layer PFSA membranes as model systems for the study of water management in the PEMFC.

    Science.gov (United States)

    Peng, Z; Peng, A Z; Morin, A; Huguet, P; Lanteri, Y; Deabate, S

    2014-10-14

    New bi-layer PFSA membranes made of Nafion® NRE212 and Aquivion™ E79-05s with different equivalent weights are prepared with the aim of managing water repartition in the PEMFC. The membrane water transport properties, i.e. back-diffusion and electroosmosis, as well as the electrochemical performances, are compared to those of state-of-art materials. The actual water content (the inner water concentration profile across the membrane thickness) is measured under operation in the fuel cell by in situ Raman microspectroscopy. The orientation of the equivalent weight gradient with respect to the water external gradient and to the proton flow direction affects the membrane water content, the water transport ability and, thus, the fuel cell performances. Higher power outputs, related to lower ohmic losses, are observed when the membrane is assembled with the lower equivalent weight layer (Aquivion™) at the anode side. This orientation, corresponding to enhanced water transport by back-flow while electroosmosis remains unaffected, results in the higher hydration of the membrane and of the anode active layer during operation. Also, polarization data suggest a different water repartition in the fuel cell along the on-plane direction. Even if the interest in multi-layer PFSA membranes as perspective electrolytes for PEMFCs is not definitively attested, these materials appear to be excellent model systems to establish relationships between the membrane transport properties, the water distribution in the fuel cell and the electrochemical performances. Thanks to the micrometric resolution, in situ Raman microspectroscopy proves to be a unique tool to measure the actual hydration of the membrane at the surface swept by the hydrated feed gases during operation, so that it can be used as a local probe of the water concentration evolution along the gas distribution channels according to changing working conditions.

  1. Terahertz dielectric relaxation of biological water confined in model membranes made of lyotropic phospholipids

    NARCIS (Netherlands)

    Paparo, D.; Tielrooij, K.J.; Bakker, H.J.; Bonn, M.

    2009-01-01

    Understanding water-membrane interactions is a fundamental issue in biophysics since these interactions are at the basis of many key molecular processes occurring in membranes. The hydrogen-bond network of water molecules is highly dynamic and its dynamical structure influences membrane fluidity and

  2. Open-source CFD model for optimization of forward osmosis and reverse osmosis membrane modules

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Aslak, Ulf; Hélix-Nielsen, Claus

    2016-01-01

    Osmotic membrane separation processes are based on using semi-permeable membranes to remove solutes from a given feed solution. This can happen either as Reverse Osmosis (RO) where a hydraulic pressure is applied to drive separation across the membrane, or as Forward Osmosis (FO) where osmotic...

  3. Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations.

    Science.gov (United States)

    Farutin, Alexander; Rafaï, Salima; Dysthe, Dag Kristian; Duperray, Alain; Peyla, Philippe; Misbah, Chaouqi

    2013-11-27

    Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.

  4. A large-signal model for CMUT arrays with arbitrary membrane geometry operating in non-collapsed mode.

    Science.gov (United States)

    Satir, Sarp; Zahorian, Jaime; Degertekin, F Levent

    2013-11-01

    A large-signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For modeling of linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using commercial software. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array. The force-to-array-displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the time-domain transmitted pressure can be simulated for different large drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high- and low-aspect-ratio membranes as well as mass-loaded membranes. The overall software model is verified by comparison to transient 3-D finite element analysis and experimental results for different large drive signals, and an example for a phased array simulation is given.

  5. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  6. FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    MURAD, SOHAIL [University of Illinois at Chicago; JAMESON, CYNTHIA J [University of Illinois at Chicago

    2013-10-22

    During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

  7. Open-source FCPEM-Performance & Durability Model Consideration of Membrane Properties on Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Knights, Shanna [Ballard Fuel Cell Systems, Bend, OR (United States); Harvey, David [Ballard Fuel Cell Systems, Bend, OR (United States)

    2017-01-20

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.

  8. Contribution of the Tyr-1 in Plantaricin149a to Disrupt Phospholipid Model Membranes

    Directory of Open Access Journals (Sweden)

    Georgina Tonarelli

    2013-06-01

    Full Text Available Plantaricin149a (Pln149a is a cationic antimicrobial peptide, which was suggested to cause membrane destabilization via the carpet mechanism. The mode of action proposed to this antimicrobial peptide describes the induction of an amphipathic α-helix from Ala7 to Lys20, while the N-terminus residues remain in a coil conformation after binding. To better investigate this assumption, the purpose of this study was to determine the contributions of the Tyr1 in Pln149a in the binding to model membranes to promote its destabilization. The Tyr to Ser substitution increased the dissociation constant (KD of the antimicrobial peptide from the liposomes (approximately three-fold higher, and decreased the enthalpy of binding to anionic vesicles from −17.2 kcal/mol to −10.2 kcal/mol. The peptide adsorption/incorporation into the negatively charged lipid vesicles was less effective with the Tyr1 substitution and peptide Pln149a perturbed the liposome integrity more than the analog, Pln149S. Taken together, the peptide-lipid interactions that govern the Pln149a antimicrobial activity are found not only in the amphipathic helix, but also in the N-terminus residues, which take part in enthalpic contributions due to the allocation at a lipid-aqueous interface.

  9. Saponin Interactions with Model Membrane Systems - Langmuir Monolayer Studies, Hemolysis and Formation of ISCOMs.

    Science.gov (United States)

    de Groot, Carolin; Müller-Goymann, Christel C

    2016-12-01

    Saponins are used in medicine due to their pharmacological and immunological effects. To better understand interactions of saponins with model membranes and natural membranes of, for example, erythrocytes, Langmuir film balance experiments are well established. For most saponins, a strong interaction with cholesterol was demonstrated in dependence of both the aglycone part and the sugar moieties and is suggested to be correlated with a strong hemolytic activity, high toxicity, and high surface activity, as was demonstrated for the steroid saponin digitonin. In general, changes in the sugar chain or in substituents of the aglycone result in a modification of the saponin properties. A promising saponin with regard to fairly low hemolytic activity and high adjuvant effect is α -tomatine, which still shows a high affinity for cholesterol. An interaction with cholesterol and lipids has also been proven for the Quillaja saponin from the bark of Quillaja saponaria Molina. This triterpene saponin was approved in marketed vaccines as an adjuvant due to the formation of immunostimulating complexes. Immunostimulating complexes consist of a Quillaja saponin, cholesterol, phospholipids, and a corresponding antigen. Recently, another saponin from Quillaja brasiliensis was successfully tested in immunostimulating complexes, too. Based on the results of interaction studies, the formation of drug delivery systems such as immunostimulating complexes or similar self-assembled colloids is postulated for a variety of saponins. Georg Thieme Verlag KG Stuttgart · New York.

  10. A new numerical approach for a detailed multicomponent gas separation membrane model and AspenPlus simulation

    Energy Technology Data Exchange (ETDEWEB)

    Murad Chowdhury, M.H.; Feng, X.; Douglas, P.; Croiset, E. [Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2005-07-01

    A new numerical solution approach for a widely accepted model developed earlier by Pan [1] for multicomponent gas separation by high-flux asymmetric membranes is presented. The advantage of the new technique is that it can easily be incorporated into commercial process simulators such as AspenPlus trademark [2] as a user-model for an overall membrane process study and for the design and simulation of hybrid processes (i.e., membrane plus chemical absorption or membrane plus physical absorption). The proposed technique does not require initial estimates of the pressure, flow and concentration profiles inside the fiber as does in Pan's original approach, thus allowing faster execution of the model equations. The numerical solution was formulated as an initial value problem (IVP). Either Adams-Moulton's or Gear's backward differentiation formulas (BDF) method was used for solving the non-linear differential equations, and a modified Powell hybrid algorithm with a finite-difference approximation of the Jacobian was used to solve the non-linear algebraic equations. The model predictions were validated with experimental data reported in the literature for different types of membrane gas separation systems with or without purge streams. The robustness of the new numerical technique was also tested by simulating the stiff type of problems such as air dehydration. This demonstrates the potential of the new solution technique to handle different membrane systems conveniently. As an illustration, a multi-stage membrane plant with recycle and purge streams has been designed and simulated for CO{sub 2} capture from a 500 MW power plant flue gas as a first step to build hybrid processes and also to make an economic comparison among different existing separation technologies available for CO{sub 2} separation from flue gas. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  11. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    Science.gov (United States)

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  12. Interaction of local and general anaesthetics with liposomal membrane models: a QCM-D and DSC study.

    Science.gov (United States)

    Paiva, José Gabriel; Paradiso, Patrizia; Serro, Ana Paula; Fernandes, Anabela; Saramago, Benilde

    2012-06-15

    The behaviour of four local anaesthetics (lidocaine, levobupivacaine, ropivacaine and tetracaine) and one general anaesthetic (propofol) is compared when interacting with two types of model membranes: supported layers of liposomes and liposomes in solution. Several liposomal compositions were tested: dimyristoylphosphatidylcholine (DMPC), binary mixtures of DMPC with cholesterol (CHOL), and ternary mixtures of dipalmitoylphosphatidylcholine (DPPC), DMPC, and CHOL. A quartz crystal microbalance with dissipation, QCM-D, was used to assess changes in the properties of supported layers of liposomes. The effect of the anaesthetics on the phase behaviour of the liposomes in suspension was determined by differential scanning calorimetry. Both techniques show that all anaesthetics have a fluidizing effect on the model membranes but, apparently, the solid supported liposomes are less affected by the anaesthetics than the liposomes in solution. Although the different anaesthetics were compared at different concentrations, tetracaine and propofol seem to induce the strongest perturbation on the liposome membrane. The resistance of the liposomes to the anaesthetic action was found to increase with the presence of cholesterol, while adding DPPC to the binary mixture DMPC+CHOL does not change its behaviour. The novelty of the present work resides upon three points: (1) the use of supported layers of liposomes as model membranes to study interactions with anaesthetics; (2) application of QCM-D to assess changes of the adsorbed liposomes; (3) a comparison of the effect of local and general anaesthetics interacting with various model membranes in similar experimental conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Isotropic Versus Bipolar Functionalized Biomimetic Artificial Basement Membranes and Their Evaluation in Long-Term Human Cell Co-Culture.

    Science.gov (United States)

    Rossi, Angela; Wistlich, Laura; Heffels, Karl-Heinz; Walles, Heike; Groll, Jürgen

    2016-08-01

    In addition to dividing tissues into compartments, basement membranes are crucial as cell substrates and to regulate cellular behavior. The development of artificial basement membranes is indispensable for the ultimate formation of functional engineered tissues; however, pose a challenge due to their complex structure. Herein, biodegradable electrospun polyester meshes are presented, exhibiting isotropic or bipolar bioactivation as a biomimetic and biofunctional model of the natural basement membrane. In a one-step preparation process, reactive star-shaped prepolymer additives, which generate a hydrophilic fiber surface, are electrospun with cell-adhesion-mediating peptides, derived from major components of the basement membrane. Human skin cells adhere to the functionalized meshes, and long-term co-culture experiments confirm that the artificial basement membranes recapitulate and preserve tissue specific functions. Several layers of immortalized human keratinocytes grow on the membranes, differentiating toward the surface and expressing typical epithelial markers. Fibroblasts migrate into the reticular lamina mimicking part of the mesh. Both cells types begin to produce extracellular matrix proteins and to remodel the initial membrane. It is shown at the example of skin that the artificial basement membrane design provokes biomimetic responses of different cell types and can thus be used as basis for the future development of basement membrane containing tissues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Large Signal Model for CMUT Arrays with Arbitrary Membrane Geometries Operating in Non-Collapsed Mode

    Science.gov (United States)

    Satir, Sarp; Zahorian, Jaime; Degertekin, F. Levent

    2014-01-01

    A large signal, transient model has been developed to predict the output characteristics of a CMUT array operated in the non-collapse mode. The model is based on separation of the nonlinear electrostatic voltage-to-force relation and the linear acoustic array response. For linear acoustic radiation and crosstalk effects, the boundary element method is used. The stiffness matrix in the vibroacoustics calculations is obtained using static finite element analysis of a single membrane which can have arbitrary geometry and boundary conditions. A lumped modeling approach is used to reduce the order of the system for modeling the transient nonlinear electrostatic actuation. To accurately capture the dynamics of the non-uniform electrostatic force distribution over the CMUT electrode during large deflections, the membrane electrode is divided into patches shaped to match higher order membrane modes, each introducing a variable to the system model. This reduced order nonlinear lumped model is solved in the time domain using Simulink. The model has two linear blocks to calculate the displacement profile of the electrode patches and the output pressure for a given force distribution over the array, respectively. The force to array displacement block uses the linear acoustic model, and the Rayleigh integral is evaluated to calculate the pressure at any field point. Using the model, the transient transmitted pressure can be simulated for different large signal drive signal configurations. The acoustic model is verified by comparison to harmonic FEA in vacuum and fluid for high and low aspect ratio membranes as well as mass-loaded membranes. The overall Simulink model is verified by comparison to transient 3D FEA and experimental results for different large drive signals; and an example for a phased array simulation is given. PMID:24158297

  15. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi

    2016-02-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  16. Modeling the phenomena of dehydration and flooding of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Gerteisen, Dietmar; Heilmann, Timothy; Ziegler, Christoph

    A one-dimensional, two-phase, transient PEM fuel cell model including gas diffusion layer, cathode catalyst layer and membrane is developed. The electrode is assumed to consist of a network of dispersed Pt/C forming spherically shaped agglomerated zones that are filled with electrolyte. Water is modeled in all three phases: vapor, liquid and dissolved in the ionomer to capture the effect of dehydration of the ionomer as well as flooding of the porous media. The anode is modeled as a sophisticated spatially reduced interface. Motivated by environmental scanning electron microscope (ESEM) images of contact angles for microscopic water droplets on fibers of the gas diffusion layer, we introduce the feature of immobile saturation. A step change of the saturation between the catalyst layer and the gas diffusion layer is modeled based on the assumption of a continuous capillary pressure at the interface. The model is validated against voltammetry experiments under various humidification conditions which all show hysteresis effects in the mass transport limited region. The transient saturation profiles clearly show that insufficient liquid water removal causes pore flooding, which is responsible for the oxygen mass transport limitation at high current density values. The simulated and measured current responses from chronoamperometry experiments are compared and analyzed.

  17. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes.

    Science.gov (United States)

    Giordano, Lorena; Roizard, Denis; Bounaceur, Roda; Favre, Eric

    2016-12-01

    The article describes data concerning the separation performances of polymeric hollow-fiber membranes. The data were obtained using a model for simulating gas separation, described in the research article entitled "Interplay of inlet temperature and humidity on energy penalty for CO 2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process" (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016) [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO 2 separation degree.

  18. Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Tyler Drake

    Full Text Available Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular

  19. Bicelles: A natural 'molecular goniometer' for structural, dynamical and topological studies of molecules in membranes.

    Science.gov (United States)

    Diller, Anna; Loudet, Cécile; Aussenac, Fabien; Raffard, Gérard; Fournier, Sylvie; Laguerre, Michel; Grélard, Axelle; Opella, Stanley J; Marassi, Francesca M; Dufourc, Erick J

    2009-06-01

    Major biological processes occur at the biological membrane. One of the great challenges is to understand the function of chemical or biological molecules inside the membrane; as well of those involved in membrane trafficking. This requires obtaining a complete picture of the in situ structure and dynamics as well as the topology and orientation of these molecules in the membrane lipid bilayer. These led to the creation of several innovative models of biological membranes in order to investigate the structure and dynamics of amphiphilic molecules, as well as integral membrane proteins having single or multiple transmembrane segments. Because the determination of the structure, dynamics and topology of molecules in membranes requires a macroscopic alignment of the system, a new membrane model called 'bicelles' that represents a crossover between lipid vesicles and classical micelles has become very popular due to its property of spontaneous self-orientation in magnetic fields. In addition, crucial factors involved in mimicking natural membranes, such as sample hydration, pH and salinity limits, are easy to control in bicelle systems. Bicelles are composed of mixtures of long chain (14-18 carbons) and short chain phospholipids (6-8 carbons) hydrated up to 98% with buffers and may adopt various morphologies depending on lipid composition, temperature and hydration. We have been developing bicelle systems under the form of nano-discs made of lipids with saturated or biphenyl-containing fatty acyl chains. Depending on the lipid nature, these membranous nano-discs may be macroscopically oriented with their normal perpendicular or parallel to the magnetic field, providing a natural 'molecular goniometer' for structural and topological studies, especially in the field of NMR. Bicelles can also be spun at the magic angle and lead to the 3D structural determination of molecules in membranes.

  20. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB

    OpenAIRE

    Okuda, Suguru; Tokuda, Hajime

    2009-01-01

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detai...

  1. A Cell-Mimicking Structure Converting Analog Volume Changes to Digital Colorimetric Output with Molecular Selectivity.

    Science.gov (United States)

    Zhang, Zijie; Liu, Yibo; Zhang, Xiaohan; Liu, Juewen

    2017-12-13

    We herein report a three-component cell-mimicking structure with a peroxidase-like iron oxide nanozyme as the nucleus, a molecularly imprinted hydrogel shell as cytoplasm, and a lipid bilayer membrane. The structure was characterized by cryo and negative stain TEM and also by a calcein leakage test. By introducing charged monomers, the gel shell can swell or shrink in response to salt concentration. By lowering the salt concentration, the gradual "analog" gel volume change was reflected in a switch-like "digital" colorimetric output by the burst of membrane and oxidation of substrates such as 3,3',5,5'-tetramethylbenzidine (TMB). Controlled access was also achieved by using melittin to insert channels cross the membrane, and selective molecular transport was realized by the molecularly imprinted gel. The functions of each component are coupled, and this sophisticated tripartite structure provides a new platform for modular design of new materials. Our cell-mimicking structure is functional and it is complementary to the current protocell work that aims to understand the origin of life.

  2. Unusual presentation of chondroblastoma mimicking Trevor's disease

    Directory of Open Access Journals (Sweden)

    Y Karkhur

    2017-01-01

    Full Text Available Chondroblastoma is a benign bone tumor, represents 1%–2% of all primary bone tumors, typically seen in patients 10–25-year-old and more common in males. It occurs most frequently in the distal femur, proximal tibia, and proximal humerus. Soft tissue extension is extremely rare. Adjacent joints may develop effusions, but the tumor mass protruding into the joint has never been seen in case of chondroblastoma. We report a rare case of intra-articular chondroblastoma arising from proximal tibia in a 16-year-old boy and growing into the knee joint mimicking an intra-articular osteochondroma.

  3. Acute Myelogenous Leukemia Mimicking Fulminant Periorbital Cellulitis

    Directory of Open Access Journals (Sweden)

    Abbas Bagheri

    2013-01-01

    Full Text Available Purpose: To report a patient who was referred for orbital cellulitis but was finally diagnosed with acute leukemia. Case Report: A 17-year-old boy presented with fever, periorbital erythema and swelling mimicking periorbital cellulitis. He underwent empiric antibiotic therapy. Complete blood counts revealed leukocytosis with a predominance of immature blast cells. Bone marrow aspiration confirmed the diagnosis of acute myelogenous leukemia. Chemotherapy was initiated resulting in resolution of signs and symptoms. Conclusion: Acute leukemia may mimic periorbital cellulitis and must be considered in the differential diagnosis.

  4. Central skeletal sarcoidosis mimicking metastatic disease

    International Nuclear Information System (INIS)

    Talmi, Danit; Smith, Stacy; Mulligan, Michael E.

    2008-01-01

    Sarcoidosis is a systemic disease that histologically typically shows non-caseating granulomas. The most common radiologic finding is hilar and mediastinal adenopathy. Patients with widely disseminated disease may show involvement of the peripheral appendicular skeleton in 1-13% of such cases. A primary skeletal presentation without other manifestations typical of the disease is rare. We present a case of sarcoidosis in a middle-aged Caucasian man in whom the disease presented with widespread lytic lesions in the axial skeleton and long bones, mimicking metastatic disease. There was no involvement of the peripheral skeleton, skin or lungs. (orig.)

  5. Pigmented poroid neoplasm mimicking nodular melanoma.

    Science.gov (United States)

    Mitsuishi, Tsuyoshi; Ansai, Shin-ichi; Ueno, Takashi; Kawana, Seiji

    2010-06-01

    We reported the case of a 92-year-old woman with a pigmented and non-pigmented surface of the pedunculated nodule on her lower leg. Microscopic examination revealed that this nodule consisted of a component of small, dark, homogenous, poroid cells and cuticular cells in the dermis. The histopathological features of the lesion were consistent with poroid neoplasm. Immunohistochemistry showed that HMB-45 and Melan-A were positive in malanocytes and melanophages of the pigmented areas. Unlike most poroid neoplasms, this case showed pigmented lesion mimicked nodular melanoma.

  6. Disseminated peritoneal leiomyomatosis mimicking ovarian torsion

    Directory of Open Access Journals (Sweden)

    Chau-Yang Tyan

    2015-01-01

    Full Text Available The presentation of disseminated peritoneal leiomyomatosis (DPL can be misleading. Herein, we present the case of a 42-year-old nulliparous female who had previously undergone a total hysterectomy and presented with an acute abdomen. A presumptive diagnosis of ovarian torsion was made based on the clinical findings and an ultrasonographic examination. A diagnostic laparoscopy was performed immediately. DPL was subsequently diagnosed based on an intra-operative frozen section during surgical exploration and the final histopathologic examination. This case illustrates an atypical presentation of DPL mimicking ovarian torsion.

  7. Hypertrophic Nonunion Humerus Mimicking an Enchondroma

    Directory of Open Access Journals (Sweden)

    N. K. Magu

    2014-01-01

    Full Text Available Introduction. Although fractures of humeral shaft show excellent results with conservative management, nonunion does occur. Case Report. We bring forth the case of a young male with a 1.5-year-old hypertrophic nonunion of the humerus mimicking an enchondroma. The initial X-ray images of the patient appeared to be an enchondroma, which only on further evaluation and histopathological analysis was diagnosed conclusively to be a hypertrophic nonunion. Discussion. Enchondromas are often incidentally diagnosed benign tumours. It is however not common to misdiagnose a hypertrophic nonunion to be an enchondroma. We present this case to highlight the unique diagnostic dilemma the treating team had to face.

  8. Dural Metastasis Mimicking Meningioma: An Interesting Case

    Directory of Open Access Journals (Sweden)

    Hamzaini Abdul Hamid

    2009-01-01

    Full Text Available Dural metastasis is a rare entity in clinical practice. We report a case of dural metastasis secondary to thyroid carcinoma, which on both preoperative CT and MRI and at surgery had the typical appearance of a meningioma. Histopathological findings confirmed metastatic follicular thyroid carcinoma as a primary site. Although rare, dural metastases can mimic a meningioma. Our experience in this case has led us to consider metastasis as a differential diagnosis even when a meningioma is suspected. We believe that reporting of the case of dural metastasis mimicking a meningioma may help clinicians in future.

  9. Giant Spermatocele Mimicking Hydrocele: A Case Report

    Directory of Open Access Journals (Sweden)

    Hsin-Chih Yeh

    2007-07-01

    Full Text Available Spermatoceles are usually asymptomatic and often found incidentally during physical examination. We report a case of giant spermatocele that mimicked a hydrocele. A 55-year-old man suffered from right scrotal enlargement for several years. As the heavy sensation and scrotal soreness worsened in recent months, he came to our outpatient clinic for help. Hydrocele was suspected due to transilluminating appearance of the scrotal content. Surgical exploration was arranged and a giant spermatocele was found. Total excision of the spermatocele was performed and the patient recovered well. The specimen was sent for pathology and spermatocele with spermatozoa was noted.

  10. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface

    OpenAIRE

    Szundi, I.; Stoeckenius, W.

    1989-01-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lowe...

  11. Interaction of the Alzheimer Aβ(25-35) peptide segment with model membranes.

    Science.gov (United States)

    Cuco, Andreia; Serro, Ana Paula; Farinha, José Paulo; Saramago, Benilde; da Silva, Amélia Gonçalves

    2016-05-01

    Alzheimer's disease is characterized by the presence of amyloid plaques in the brain. The main components of these plaques are the Aβ(1-40) and Aβ(1-42) peptides but the Aβ(25-35) sequence is the most frequently studied fragment because it represents a biologically active region of the longer Aβ peptides. In the present work, the interactions of Aβ(25-35) peptide with model membranes were investigated, taking into consideration the aggregation state of the peptide. Monolayers and liposomes were taken as model membranes with two lipid compositions: the equimolar ternary mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM), and cholesterol (Chol) and the equimolar POPC/SM binary mixture. The interaction of Aβ(25-35) with the monolayers, investigated at low concentrations (0.25-4μM), suggested a three step mechanism: adsorption-monomers or dimers adsorb at the polar region of the lipid monolayer; nucleation-adsorbed peptides act as nucleation sites for higher aggregates; and penetration-these aggregates insert in the hydrophobic region of the monolayer. Chol slightly enhances the peptide-lipid monolayer interaction. The large aggregates nucleated in the bulk solution evidenced a weak interaction with monolayers. The interaction of Aβ(25-35) with liposomes, followed by a Quartz Crystal Microbalance with Dissipation (QCM-D) in a large range of peptide concentrations (10-80μM), was very small, independently of the peptide concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    Science.gov (United States)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  13. Contact behavior modelling and its size effect on proton exchange membrane fuel cell

    Science.gov (United States)

    Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner

    2017-10-01

    Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.

  14. Modelling the biological performance of a side-stream membrane bioreactor using ASM1.

    Science.gov (United States)

    Tian, Ke-Jun; Liu, Xin-Ai; Jiang, Tao; Kennedy, M D; Schippers, J C; Vanrolleghem, P A

    2004-01-01

    Membrane bioreactors (MBRs) are attracting global interest but the mathematical modeling of the biological performance of MBRs remains very limited. This study focuses on the modelling of a side-stream MBR system using Activated Sludge Model No. 1 (ASM1), and comparing the results with the modelling of traditional activated sludge processes. ASM1 parameters relevant for the long-term biological behaviour in MBR systems were calibrated (i.e. Y(H) = 0.72gCOD/gCOD, Y(A) = 0.25gCOD/gN, b(H) = 0.25 d(-1), b(A) = 0.080 d(-1) and f(P) = 0.06), and generally agreed with the parameters in traditional activated sludge processes, with the exception that a higher autotrophic biomass decay rate was observed in the MBR. A sensitivity analysis for steady state operation and DO dynamics suggested that the biological performance of the MBR system (the sludge concentration, effluent quality and the DO dynamics) are very sensitive to the parameters(i.e. Y(H), Y(A), b(H), b(A), micro(maxH) and micro(maxA)), and influent wastewater components(X(I), S(S), X(S), S(NH)).

  15. A molecular model for membrane fusion based on solution studies of an amphiphilic peptide from HIV gp41.

    Science.gov (United States)

    Fujii, G; Horvath, S; Woodward, S; Eiserling, F; Eisenberg, D

    1992-11-01

    The mechanism of protein-mediated membrane fusion and lysis has been investigated by solution-state studies of the effects of peptides on liposomes. A peptide (SI) corresponding to a highly amphiphilic C-terminal segment from the envelope protein (gp41) of the human immunodeficiency virus (HIV) was synthesized and tested for its ability to cause lipid membranes to fuse together (fusion) or to break open (lysis). These effects were compared to those produced by the lytic and fusogenic peptide from bee venom, melittin. Other properties studied included the changes in visible absorbance and mean particle size, and the secondary structure of peptides as judged by CD spectroscopy. Taken together, the observations suggest that protein-mediated membrane fusion is dependent not only on hydrophobic and electrostatic forces but also on the spatial arrangement of the amino acid residues to form an amphiphilic structure that promotes the mixing of the lipids between membranes. A speculative molecular model is proposed for membrane fusion by alpha-helical peptides, and its relationship to the forces involved in protein-membrane interactions is discussed.

  16. Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes.

    Science.gov (United States)

    Ghadiri, Mehdi; Marjani, Azam; Shirazian, Saeed

    2017-06-01

    A mechanistic model was developed in order to predict capture and removal of CO 2 from air using membrane technology. The considered membrane was a hollow-fiber contactor module in which gas mixture containing CO 2 was assumed as feed while 2-amino-2-metyl-1-propanol (AMP) was used as an absorbent. The mechanistic model was developed according to transport phenomena taking into account mass transfer and chemical reaction between CO 2 and amine in the contactor module. The main aim of modeling was to track the composition and flux of CO 2 and AMP in the membrane module for process optimization. For modeling of the process, the governing equations were computed using finite element approach in which the whole model domain was discretized into small cells. To confirm the simulation findings, model outcomes were compared with experimental data and good consistency was revealed. The results showed that increasing temperature of AMP solution increases CO 2 removal in the hollow-fiber membrane contactor.

  17. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    Science.gov (United States)

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-03-14

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Clinical and Histologic Mimickers of Celiac Disease.

    Science.gov (United States)

    Kamboj, Amrit K; Oxentenko, Amy S

    2017-08-17

    Celiac disease is an autoimmune disorder of the small bowel, classically associated with diarrhea, abdominal pain, and malabsorption. The diagnosis of celiac disease is made when there are compatible clinical features, supportive serologic markers, representative histology from the small bowel, and response to a gluten-free diet. Histologic findings associated with celiac disease include intraepithelial lymphocytosis, crypt hyperplasia, villous atrophy, and a chronic inflammatory cell infiltrate in the lamina propria. It is important to recognize and diagnose celiac disease, as strict adherence to a gluten-free diet can lead to resolution of clinical and histologic manifestations of the disease. However, many other entities can present with clinical and/or histologic features of celiac disease. In this review article, we highlight key clinical and histologic mimickers of celiac disease. The evaluation of a patient with serologically negative enteropathy necessitates a carefully elicited history and detailed review by a pathologist. Medications can mimic celiac disease and should be considered in all patients with a serologically negative enteropathy. Many mimickers of celiac disease have clues to the underlying diagnosis, and many have a targeted therapy. It is necessary to provide patients with a correct diagnosis rather than subject them to a lifetime of an unnecessary gluten-free diet.

  19. A classic mimicker of systemic vasculitis.

    Science.gov (United States)

    Moreno-Ariño, Marc; Ortiz-Santamaria, Vera; Deudero Infante, Aída; Ayats Delgado, Montserrat; Novell Teixidó, Francesc

    2016-01-01

    Embolic and constitutional manifestations of intracavitary cardiac tumors are included within the classic mimickers of systemic vasculitis, especially in those in which there are no cardiac manifestations. We present a case report of atrial myxoma in which the patient only presented systemic symptoms and in whom an initial diagnostic approach of systemic vasculitis was made. We also performed a literature search of the cases described. A case report of atrial myxoma with atypical presentation manifested as a systemic disease with no concomitant cardiac symptoms is described. The case report is discussed and 11 cases of atrial myxoma pseudovasculitis described in the literature are reviewed, emphasizing their similarities and differences. Constitutional symptoms and cutaneous manifestations were the most common. Most of the cases showed partial response to glucococorticosteroid treatment, reinforcing the theory of the inflammatory role in its pathogenesis. Mean delayed time to diagnosis was 12.27 months. Atrial myxoma is a systemic vasculitis mimicker, this being difficult to diagnose in the absence of cardiac manifestations. This delay in diagnosis entails serious complications. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  20. Imaging findings of mimickers of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Tae Kyoung Kim

    2015-12-01

    Full Text Available Radiological imaging plays a crucial role in the diagnosis of hepatocellular carcinoma (HCC as the noninvasive diagnosis of HCC in high-risk patients by typical imaging findings alone is widely adopted in major practice guidelines for HCC. While imaging techniques have markedly improved in detecting small liver lesions, they often detect incidental benign liver lesions and non-hepatocellular malignancy that can be misdiagnosed as HCC. The most common mimicker of HCC in cirrhotic liver is nontumorous arterioportal shunts that are seen as focal hypervascular liver lesions on dynamic contrast-enhanced cross-sectional imaging. Rapidly enhancing hemangiomas can be easily misdiagnosed as HCC especially on MR imaging with liver-specific contrast agent. Focal inflammatory liver lesions mimic HCC by demonstrating arterial-phase hypervascularity and subsequent washout on dynamic contrast-enhanced imaging. It is important to recognize the suggestive imaging findings for intrahepatic cholangiocarcinoma (CC as the management of CC is largely different from that of HCC. There are other benign mimickers of HCC such as angiomyolipomas and focal nodular hyperplasia-like nodules. Recognition of their typical imaging findings can reduce false-positive HCC diagnosis.

  1. Ultrasound artifacts mimicking pleural sliding after pneumonectomy.

    Science.gov (United States)

    Cavaliere, Franco; Zamparelli, Roberto; Soave, Maurizio P; Gargaruti, Riccardo; Scapigliati, Andrea; De Paulis, Stefano

    2014-03-01

    To determine the presence of pleural sliding on chest ultrasonography (US) in a series of patients admitted to a surgical intensive care unit (SICU). Prospective, observational study. 16-bed SICU of a University hospital. 8 patients (7 men, 1 woman), aged 64 - 73 years (mean 67.5 yrs). Seven patients underwent pneumonectomy for pulmonary neoplasms; one patient underwent an atypical lung resection after having undergone a pneumonectomy one year before. None. Chest ultrasounds were performed during mechanical ventilation and spontaneous ventilation after endotracheal tube removal. In both examinations, pleural sliding was searched bilaterally in brightness mode (B-mode) and motion mode (M-mode) on the anterior thoracic wall in the least gravitationally dependent areas. During mechanical ventilation, pleural sliding was always absent on the side of the pneumonectomy and present on the other side. During spontaneous ventilation, some artifacts mimicking pleural sliding were noted on the side of the pneumonectomy both in B-mode and M-mode (presence of the seashore sign) in all patients, except for the one patient who had undergone a pneumonectomy one year earlier. Those artifacts became more pronounced during deep breaths. Ultrasound artifacts mimicking pleural sliding may be observed in the absence of the lung and may originate from the activity of intercostal muscles since they become more evident during deep breathing. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Model simulations

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat

  3. Three-dimensional multiphase flow computational fluid dynamics models for proton exchange membrane fuel cell: A theoretical development

    Directory of Open Access Journals (Sweden)

    Jean-Paul Kone

    2017-03-01

    Full Text Available A review of published three-dimensional, computational fluid dynamics models for proton exchange membrane fuel cells that accounts for multiphase flow is presented. The models can be categorized as models for transport phenomena, geometry or operating condition effects, and thermal effects. The influences of heat and water management on the fuel cell performance have been repeatedly addressed, and these still remain two central issues in proton exchange membrane fuel cell technology. The strengths and weaknesses of the models, the modelling assumptions, and the model validation are discussed. The salient numerical features of the models are examined, and an overview of the most commonly used computational fluid dynamic codes for the numerical modelling of proton exchange membrane fuel cells is given. Comprehensive three-dimensional multiphase flow computational fluid dynamic models accounting for the major transport phenomena inside a complete cell have been developed. However, it has been noted that more research is required to develop models that include among other things, the detailed composition and structure of the catalyst layers, the effects of water droplets movement in the gas flow channels, the consideration of phase change in both the anode and the cathode sides of the fuel cell, and dissolved water transport.

  4. An in vitro model of the glomerular capillary wall using electrospun collagen nanofibres in a bioartificial composite basement membrane.

    Directory of Open Access Journals (Sweden)

    Sadie C Slater

    Full Text Available The filtering unit of the kidney, the glomerulus, contains capillaries whose walls function as a biological sieve, the glomerular filtration barrier. This comprises layers of two specialised cells, glomerular endothelial cells (GEnC and podocytes, separated by a basement membrane. Glomerular filtration barrier function, and dysfunction in disease, remains incompletely understood, partly due to difficulties in studying the relevant cell types in vitro. We have addressed this by generation of unique conditionally immortalised human GEnC and podocytes. However, because the glomerular filtration barrier functions as a whole, it is necessary to develop three dimensional co-culture models to maximise the benefit of the availability of these cells. Here we have developed the first two tri-layer models of the glomerular capillary wall. The first is based on tissue culture inserts and provides evidence of cell-cell interaction via soluble mediators. In the second model the synthetic support of the tissue culture insert is replaced with a novel composite bioartificial membrane. This consists of a nanofibre membrane containing collagen I, electrospun directly onto a micro-photoelectroformed fine nickel supporting mesh. GEnC and podocytes grew in monolayers on either side of the insert support or the novel membrane to form a tri-layer model recapitulating the human glomerular capillary in vitro. These models will advance the study of both the physiology of normal glomerular filtration and of its disruption in glomerular disease.

  5. Modeling the Concentration of Volatile and Semivolatile Contaminants in Direct Contact Membrane Distillation (DCMD) Product Water.

    Science.gov (United States)

    Winglee, Judith M; Bossa, Nathan; Rosen, David; Vardner, Jonathan T; Wiesner, Mark R

    2017-11-21

    Direct contact membrane distillation (DCMD) is an emerging water treatment technology that has high salt rejection; however, its commercialization potential for applications such as seawater desalination or industrial wastewater reuse may be limited by low rejection of volatile and semivolatile contaminants. In this manuscript, a contaminant concentration (CC) model describing the transport of volatile and semivolatile contaminants for DCMD systems was developed and validated using data from the bench-scale DCMD treatment of synthetic wastewaters. The DCMD tests showed that the more volatile contaminants (methyl-tert-butyl ether, acetone, pentanone, butanol, and hexanol) accumulated in the permeate collection stream at greater concentrations than in the feed stream. The validated CC model (average normalized root mean squared error ≤11.3%) was then used to evaluate the product water quality from the large-scale DCMD treatment of oil and gas produced waters. The modeled product water contaminant concentrations exceeded the Environmental Protection Agency limits for discharging to publicly owned treatment works. This indicated that DCMD treatment of produced waters may require additional processing to meet discharge requirements.

  6. Borders as membranes :metaphors and models for improved policy in border regions.

    Energy Technology Data Exchange (ETDEWEB)

    Malczynski, Leonard A.; Passell, Howard David; Forster, Craig B. (University of Utah, Salt Lake City, UT); Cockerill, Kristan (Cockerill Consulting, Boone, NC)

    2005-10-01

    Political borders are controversial and contested spaces. In an attempt to better understand movement along and through political borders, this project applied the metaphor of a membrane to look at how people, ideas, and things ''move'' through a border. More specifically, the research team employed this metaphor in a system dynamics framework to construct a computer model to assess legal and illegal migration on the US-Mexico border. Employing a metaphor can be helpful, as it was in this project, to gain different perspectives on a complex system. In addition to the metaphor, the multidisciplinary team utilized an array of methods to gather data including traditional literature searches, an experts workshop, a focus group, interviews, and culling expertise from the individuals on the research team. Results from the qualitative efforts revealed strong social as well as economic drivers that motivate individuals to cross the border legally. Based on the information gathered, the team concluded that legal migration dynamics were of a scope we did not want to consider hence, available demographic models sufficiently capture migration at the local level. Results from both the quantitative and qualitative data searches were used to modify a 1977 border model to demonstrate the dynamic nature of illegal migration. Model runs reveal that current US-policies based on neo-classic economic theory have proven ineffective in curbing illegal migration, and that proposed enforcement policies are also likely to be ineffective. We suggest, based on model results, that improvement in economic conditions within Mexico may have the biggest impact on illegal migration to the U.S. The modeling also supports the views expressed in the current literature suggesting that demographic and economic changes within Mexico are likely to slow illegal migration by 2060 with no special interventions made by either government.

  7. Calcitonin Forms Oligomeric Pore-Like Structures in Lipid Membranes

    Science.gov (United States)

    Diociaiuti, Marco; Polzi, Laura Zanetti; Valvo, Luisa; Malchiodi-Albedi, Fiorella; Bombelli, Cecilia; Gaudiano, Maria Cristina

    2006-01-01

    Calcitonin is a polypeptidic hormone involved in calcium metabolism in the bone. It belongs to the amyloid protein family, which is characterized by the common propensity to aggregate acquiring a β-sheet conformation and include proteins associated with important neurodegenerative diseases. Here we show for the first time, to our knowledge, by transmission electron microscopy (TEM) that salmon-calcitonin (sCT) forms annular oligomers similar to those observed for β-amyloid and α-sinuclein (Alzheimer's and Parkinson's diseases). We also investigated the interaction between sCT and model membranes, such as liposomes, with particular attention to the effect induced by lipid “rafts” made of cholesterol and GM1. We observed, by TEM immunogold labeling of sCT, that protein binding is favored by the presence of rafts. In addition, we found by TEM that sCT oligomers inserted in the membrane have the characteristic pore-like morphology of the amyloid proteins. Circular dichroism experiments revealed an increase in β-content in sCT secondary structure when the protein was reconstituted in rafts mimicking liposomes. Finally, we showed, by spectrofluorimetry experiments, that the presence of sCT allowed Ca2+ entry in rafts mimicking liposomes loaded with the Ca2+-specific fluorophore Fluo-4. This demonstrates that sCT oligomers have ion-channel activity. Our results are in good agreement with recent electrophysiological studies reporting that sCT forms Ca2+-permeable ion channels in planar model membranes. It has been proposed that, beyond the well-known interaction of the monomer with the specific receptor, the formation of Ca2+ channels due to sCT oligomers could represent an extra source of Ca2+ entry in osteoblasts. Structural and functional data reported here support this hypothesis. PMID:16940475

  8. Reduced-Order Dynamic Modeling, Fouling Detection, and Optimal Control of Solar-Powered Direct Contact Membrane Distillation

    KAUST Repository

    Karam, Ayman M.

    2016-12-01

    Membrane Distillation (MD) is an emerging sustainable desalination technique. While MD has many advantages and can be powered by solar thermal energy, its main drawback is the low water production rate. However, the MD process has not been fully optimized in terms of its manipulated and controlled variables. This is largely due to the lack of adequate dynamic models to study and simulate the process. In addition, MD is prone to membrane fouling, which is a fault that degrades the performance of the MD process. This work has three contributions to address these challenges. First, we derive a mathematical model of Direct Contact Membrane Distillation (DCMD), which is the building block for the next parts. Then, the proposed model is extended to account for membrane fouling and an observer-based fouling detection method is developed. Finally, various control strategies are implemented to optimize the performance of the DCMD solar-powered process. In part one, a reduced-order dynamic model of DCMD is developed based on lumped capacitance method and electrical analogy to thermal systems. The result is an electrical equivalent thermal network to the DCMD process, which is modeled by a system of nonlinear differential algebraic equations (DAEs). This model predicts the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both. The second part proposes an extension of the model to account for membrane fouling. An adaptive observer for DAE systems is developed and convergence proof is presented. A method for membrane fouling detection is then proposed based on adaptive observers. Simulation results demonstrate the performance of the membrane fouling detection method. Finally, an optimization problem is formulated to maximize the process efficiency of a solar-powered DCMD. The adapted method is known as Extremum

  9. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface.

    Science.gov (United States)

    Szundi, I; Stoeckenius, W

    1989-08-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lower than the bulk pH and it becomes independent of bulk pH in the deionized membrane suspension. Using an experimental acid titration curve for neutral, lipid-depleted membrane, we converted surface pH into absorption values. The calculated bacteriohodopsin color changes for acidification of purple, and titrations of deionized blue membrane with cations or base agree well with experimental results. No chemical binding is required to reproduce the experimental curves. Surface charge and potential changes in acid, base and cation titrations are calculated and their relation to the color change is discussed. Consistent with structural data, 10 primary phosphate and two basic surface groups per bacteriorhodopsin are sufficient to obtain good agreement between all calculated and experimental curves. The results provide a theoretical basis for our earlier conclusion that the purple-to-blue transition must be attributed to surface phenomena and not to cation binding at specific sites in the protein.

  10. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Mascarade, Jeremy

    2015-01-01

    Tritium is produced in light and heavy water reactor fuel by ternary fission or neutron activation. This by-product is used as fuel in fusion fuel reactors such as JET in Culham or ITER in Cadarache (France). The growing interest of this research area will make the tritium fluxes increase; it is then worth addressing the question of its future whether it will be used or flushed out from liquid and gaseous effluents or waste. This thesis studies the recovery of tritium as fuel for fusion machines by means of packed bed membrane reactor (PBMR). Such a reactor combines catalytic conversion of tritiated water thanks to isotope exchange with hydrogen according to the reversible reaction Q 2 O+H 2 ↔H 2 O+Q 2 (Q=H,D or T) and selective permeation of Q 2 through Pd-based membrane. In fact, palladium has the ability to bond with hydrogen isotopes, creating a selective permeation barrier. In the PBMR, thanks to the reaction products withdrawal, these permeation fluxes drive the heavy water conversion rate, to higher values than those reached in conventional fixed bed reactors (Le Chatelier's law). In order to study PBMRs, the CEA has built a test bench, using deuterium instead of tritium, allowing the analysis of their conversion and separation performances at the laboratory scale. An in-house method has been developed to determine simultaneously hydrogen and water isotopologues content by mass spectrometer analysis. It was experimentally shown that the activity of Ni-based catalyst used in this study was sufficient to allow the isotope exchange reactions to reach their thermodynamic equilibrium in a very short time. In addition, hydrogen permeation flux was shown to follow a Richardson's law. Sensitivity studies performed on the PBMR's main operating parameters revealed that its global performance (i.e. de-deuteration factor) increases with the temperature, the transmembrane pressure difference, the sweep gas flow rate and the residence time in the catalyst

  11. Modeling error and stability of endothelial cytoskeletal membrane parameters based on modeling transendothelial impedance as resistor and capacitor in series.

    Science.gov (United States)

    Bodmer, James E; English, Anthony; Brady, Megan; Blackwell, Ken; Haxhinasto, Kari; Fotedar, Sunaina; Borgman, Kurt; Bai, Er-Wei; Moy, Alan B

    2005-09-01

    Transendothelial impedance across an endothelial monolayer grown on a microelectrode has previously been modeled as a repeating pattern of disks in which the electrical circuit consists of a resistor and capacitor in series. Although this numerical model breaks down barrier function into measurements of cell-cell adhesion, cell-matrix adhesion, and membrane capacitance, such solution parameters can be inaccurate without understanding model stability and error. In this study, we have evaluated modeling stability and error by using a chi(2) evaluation and Levenberg-Marquardt nonlinear least-squares (LM-NLS) method of the real and/or imaginary data in which the experimental measurement is compared with the calculated measurement derived by the model. Modeling stability and error were dependent on current frequency and the type of experimental data modeled. Solution parameters of cell-matrix adhesion were most susceptible to modeling instability. Furthermore, the LM-NLS method displayed frequency-dependent instability of the solution parameters, regardless of whether the real or imaginary data were analyzed. However, the LM-NLS method identified stable and reproducible solution parameters between all types of experimental data when a defined frequency spectrum of the entire data set was selected on the basis of a criterion of minimizing error. The frequency bandwidth that produced stable solution parameters varied greatly among different data types. Thus a numerical model based on characterizing transendothelial impedance as a resistor and capacitor in series and as a repeating pattern of disks is not sufficient to characterize the entire frequency spectrum of experimental transendothelial impedance.

  12. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  13. Modelling of air gap membrane distillation and its application in heavy metals removal

    CSIR Research Space (South Africa)

    Attia, H

    2017-12-01

    Full Text Available , 2011. [3] M. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, Journal of Membrane Science, 285 (2006) 4-29. [4] A. Alkhudhiri, N. Darwish, N. Hilal, Produced water treatment... Science, (2017). [18] A.S. Alsaadi, L. Francis, H. Maab, G.L. Amy, N. Ghaffour, Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies, Journal of Membrane Science, 489 (2015) 73...

  14. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Gábor Balogh

    Full Text Available Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.

  15. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    OpenAIRE

    Szwast Maciej; Szwast Zbigniew

    2015-01-01

    The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing to...

  16. Calibrating a side-stream membrane bioreactor using Activated Sludge Model No. 1.

    Science.gov (United States)

    Jiang, T; Liu, X; Kennedy, M D; Schippers, J C; Vanrolleghem, P A

    2005-01-01

    Membrane bioreactors (MBRs) are attracting global interest but the mathematical modeling of the biological performance of MBRs remains very limited. This study focuses on the modeling of a side-stream MBR system using the Activated Sludge Model No. 1 (ASM1), and compares the results with the modeling of traditional activated sludge processes. ASM1 parameters relevant for the long-term biological behaviour in MBR systems were calibrated (i.e. Y(H) = 0.72 gCOD/gCOD, Y(A) = 0.25 gCOD/gN, b(H) = 0.25 d(-1), b(A) = 0.080 d(-1) and f(p) = 0.06), and generally agreed with the parameters in traditional activated sludge processes, with the exception that a higher autotrophic biomass decay rate was observed in the MBR. Influent wastewater characterization was proven to be a critical step in model calibration, and special care should be taken in characterizing the inert particulate COD (X(I)) concentration in the MBR influent. It appeared that the chemical-biological method was superior to the physical-chemical method. A sensitivity analysis for steady-state operation and DO dynamics suggested that the biological performance of the MBR system (the sludge concentration, effluent quality and the DO dynamics) are very sensitive to the parameters (i.e. Y(H), Y(A), b(H), b(A) micro(maxH) and micro(maxA), and influent wastewater components (X(I), S(s), X(s) and S(NH)).

  17. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    Science.gov (United States)

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  18. Arsenic removal by solar-driven membrane distillation: modeling and experimental investigation with a new flash vaporization module.

    Science.gov (United States)

    Pa, Parimal; Manna, Ajay Kumar; Linnanen, Lassi

    2013-01-01

    A modeling and simulation study was carried out on a new flux-enhancing and solar-driven membrane distillation module for removal of arsenic from contaminated groundwater. The developed new model was validated with rigorous experimental investigations using arsenic-contaminated groundwater. By incorporating flash vaporization dynamics, the model turned out to be substantially different from the existing direct contact membrane distillation models and could successfully predict (with relative error of only 0.042 and a Willmott d-index of 0.997) the performance of such an arsenic removal unit where the existing models exhibited wide variation with experimental findings in the new design. The module with greater than 99% arsenic removal efficiency and greater than 50 L/m2 x h flux could be implemented in arsenic-affected villages in Southeast Asian countries with abundant solar energy, and thus could give relief to millions of affected people. These encouraging results will raise scale-up confidence.

  19. Moisture transfer through the membrane of a cross-flow energy recovery ventilator: Measurement and simple data-driven modeling

    Science.gov (United States)

    CR Boardman; Samuel V. Glass

    2015-01-01

    The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...

  20. Na+/K(+)pump activity in photoreceptors of the blowfly Calliphora : A model analysis based on membrane potential measurements

    NARCIS (Netherlands)

    Gerster, U; Stavenga, DG; Backhaus, W

    Na+/K+-pump activity and intracellular Na+ and K+ concentration changes in blowfly photoreceptors are derived from intracellular potential measurements in vivo with a model based on the Goldman-Hodgkin-Katz theory for membrane currents. The relation between the intracellular Na+ concentration and

  1. Influence of chain rigidity on the conformation of model lipid membranes in the presence of cylindrical nanoparticle inclusions

    Science.gov (United States)

    Diloreto, Chris; Wickham, Robert

    2012-02-01

    We employ real-space self-consistent field theory to study the conformation of model lipid membranes in the presence of solvent and cylindrical nanoparticle inclusions (''peptides''). Whereas it is common to employ a polymeric Gaussian chain model for the lipids, here we model the lipids as persistent, worm-like chains. Our motivation is to develop a more realistic field theory to describe the action of pore-forming anti-microbial peptides that disrupt the bacterial cell membrane. We employ operator-splitting and a pseudo-spectral algorithm, using SpharmonicKit for the chain tangent degrees of freedom, to solve for the worm-like chain propagator. The peptides, modelled using a mask function, have a surface patterned with hydrophobic and hydrophillic patches, but no charge. We examine the role chain rigidity plays in the hydrophobic mismatch, the membrane-mediated interaction between two peptides, the size and structure of pores formed by peptide aggregates, and the free-energy barrier for peptide insertion into the membrane. Our results suggest that chain rigidity influences both the pore structure and the mechanism of pore formation.

  2. Membrane fusion activity of Semliki forest virus in a liposomal model system : Specific inhibition by Zn2+ ions

    NARCIS (Netherlands)

    Corver, J; Snippe, H; Kraaijeveld, C; Wilschut, J

    1997-01-01

    Semliki Forest virus (SFV) has been shown previously to fuse efficiently with cholesterol-and sphingolipid-containing liposomal model membranes in a low-pH-dependent manner. Several steps can be distinguished in this process, including low-pH-induced irreversible binding of the virus to the

  3. Modeling of a Membrane Based Humidifier for Fuel Cell Applications Subject to End-Of-Life Conditions

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Olesen, Anders Christian; Menard, Alan

    2014-01-01

    -based water permeable membrane. Results are presented at nominal BOL-conditions and extreme EOL-conditions. A detailed sub-model incorporating the water absorption/desorption kinetics of Nafion and a novel and accurate representation of the diffusion coefficient of water in Nafion was implemented...

  4. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes.

    Directory of Open Access Journals (Sweden)

    Elisabetta Groppelli

    2017-02-01

    Full Text Available Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.

  5. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants.

    Science.gov (United States)

    Jaggessar, Alka; Shahali, Hesam; Mathew, Asha; Yarlagadda, Prasad K D V

    2017-10-02

    Orthopaedic and dental implants have become a staple of the medical industry and with an ageing population and growing culture for active lifestyles, this trend is forecast to continue. In accordance with the increased demand for implants, failure rates, particularly those caused by bacterial infection, need to be reduced. The past two decades have led to developments in antibiotics and antibacterial coatings to reduce revision surgery and death rates caused by infection. The limited effectiveness of these approaches has spurred research into nano-textured surfaces, designed to mimic the bactericidal properties of some animal, plant and insect species, and their topographical features. This review discusses the surface structures of cicada, dragonfly and butterfly wings, shark skin, gecko feet, taro and lotus leaves, emphasising the relationship between nano-structures and high surface contact angles on self-cleaning and bactericidal properties. Comparison of these surfaces shows large variations in structure dimension and configuration, indicating that there is no one particular surface structure that exhibits bactericidal behaviour against all types of microorganisms. Recent bio-mimicking fabrication methods are explored, finding hydrothermal synthesis to be the most commonly used technique, due to its environmentally friendly nature and relative simplicity compared to other methods. In addition, current proposed bactericidal mechanisms between bacteria cells and nano-textured surfaces are presented and discussed. These models could be improved by including additional parameters such as biological cell membrane properties, adhesion forces, bacteria dynamics and nano-structure mechanical properties. This paper lastly reviews the mechanical stability and cytotoxicity of micro and nano-structures and materials. While the future of nano-biomaterials is promising, long-term effects of micro and nano-structures in the body must be established before nano-textures can

  6. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model

    Science.gov (United States)

    Koga, Shogo; Williams, David S.; Perriman, Adam W.; Mann, Stephen

    2011-09-01

    Although phospholipid bilayers are ubiquitous in modern cells, their impermeability, lack of dynamic properties, and synthetic complexity are difficult to reconcile with plausible pathways of proto-metabolism, growth and division. Here, we present an alternative membrane-free model, which demonstrates that low-molecular-weight mononucleotides and simple cationic peptides spontaneously accumulate in water into microdroplets that are stable to changes in temperature and salt concentration, undergo pH-induced cycles of growth and decay, and promote α-helical peptide secondary structure. Moreover, the microdroplets selectively sequester porphyrins, inorganic nanoparticles and enzymes to generate supramolecular stacked arrays of light-harvesting molecules, nanoparticle-mediated oxidase activity, and enhanced rates of glucose phosphorylation, respectively. Taken together, our results suggest that peptide-nucleotide microdroplets can be considered as a new type of protocell model that could be used to develop novel bioreactors, primitive artificial cells and plausible pathways to prebiotic organization before the emergence of lipid-based compartmentalization on the early Earth.

  7. Amniotic membrane extract ameliorates benzalkonium chloride-induced dry eye in a murine model.

    Science.gov (United States)

    Xiao, Xinye; Luo, Pingping; Zhao, Hui; Chen, Jingyao; He, Hui; Xu, Yuxue; Lin, Zhirong; Zhou, Yueping; Xu, Jianjiang; Liu, Zuguo

    2013-10-01

    Human amniotic membrane (AM) is avascular but contains various beneficial bioactive factors, its extract (AE) is also effective in treating many ocular surface disorders. In this study, we for the first time evaluated the therapeutic effects of AE on dry eye induced by benzalkonium chloride in a BALB/c mouse model. Topical application of AE (1.5 and 3 μg/eye/day) resulted in significantly longer tear break-up time on Day 3 and 6, lower fluorescein staining scores on Day 3, and lower inflammatory index on Day 6. AE reduced corneal epithelial K10 expression, inflammatory infiltration, and levels of TNF-α, IL-1β and IL-6 in BAC treated mice than that in the control mice. Moreover, decreased TUNEL positive