WorldWideScience

Sample records for model interactions test

  1. Interactive comparison of hypothesis tests for statistical model checking

    NARCIS (Netherlands)

    de Boer, Pieter-Tjerk; Reijsbergen, D.P.; Scheinhardt, Willem R.W.

    2015-01-01

    We present a web-based interactive comparison of hypothesis tests as are used in statistical model checking, providing users and tool developers with more insight into their characteristics. Parameters can be modified easily and their influence is visualized in real time; an integrated simulation

  2. Analytical study on model tests of soil-structure interaction

    International Nuclear Information System (INIS)

    Odajima, M.; Suzuki, S.; Akino, K.

    1987-01-01

    Since nuclear power plant (NPP) structures are stiff, heavy and partly-embedded, the behavior of those structures during an earthquake depends on the vibrational characteristics of not only the structure but also the soil. Accordingly, seismic response analyses considering the effects of soil-structure interaction (SSI) are extremely important for seismic design of NPP structures. Many studies have been conducted on analytical techniques concerning SSI and various analytical models and approaches have been proposed. Based on the studies, SSI analytical codes (computer programs) for NPP structures have been improved at JINS (Japan Institute of Nuclear Safety), one of the departments of NUPEC (Nuclear Power Engineering Test Center) in Japan. These codes are soil-spring lumped-mass code (SANLUM), finite element code (SANSSI), thin layered element code (SANSOL). In proceeding with the improvement of the analytical codes, in-situ large-scale forced vibration SSI tests were performed using models simulating light water reactor buildings, and simulation analyses were performed to verify the codes. This paper presents an analytical study to demonstrate the usefulness of the codes

  3. Evaluation of Two Methods for Modeling Measurement Errors When Testing Interaction Effects with Observed Composite Scores

    Science.gov (United States)

    Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C.

    2018-01-01

    Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…

  4. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei

    2011-07-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.

  5. Validation of a Wave-Body Interaction Model by Experimental Tests

    DEFF Research Database (Denmark)

    Ferri, Francesco; Kramer, Morten; Pecher, Arthur

    2013-01-01

    Within the wave energy field, numerical simulation has recently acquired a worldwide consent as being a useful tool, besides physical model testing. The main goal of this work is the validation of a numerical model by experimental results. The numerical model is based on a linear wave-body intera......-body interaction theory, applied for a point absorber wave energy converter. The results show that the ratio floater size/wave amplitude is a key parameter for the validity of the applied theory....

  6. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  7. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  8. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    Science.gov (United States)

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  9. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data

    Directory of Open Access Journals (Sweden)

    Mauricio A. Mazo Lopera

    2017-09-01

    Full Text Available Gene-environment (GE interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma (PPARG gene associated with diabetes.

  10. Test of hadronic interaction models with the KASCADE-Grande muon data

    Directory of Open Access Journals (Sweden)

    Schieler H.

    2013-06-01

    Full Text Available KASCADE-Grande is an air-shower observatory devoted for the detection of cosmic rays with energies in the interval of 1014 – 1018 eV, where the Grande array is responsible for the higher energy range. The experiment comprises different detection systems which allow precise measurements of the charged, electron and muon numbers of extensive air-showers (EAS. These data is employed not only to reconstruct the properties of the primary cosmic-ray particle but also to test hadronic interaction models at high energies. In this contribution, predictions of the muon content of EAS from QGSJET II-2, SIBYLL 2.1 and EPOS 1.99 are confronted with the experimental measurements performed with the KASCADE-Grande experiment in order to test the validity of these hadronic models commonly used in EAS simulations.

  11. Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data

    Directory of Open Access Journals (Sweden)

    Weiqiang Yang

    2017-07-01

    Full Text Available The coupling between dark energy and dark matter provides a possible approach to mitigate the coincidence problem of the cosmological standard model. In this paper, we assumed the interacting term was related to the Hubble parameter, energy density of dark energy, and equation of state of dark energy. The interaction rate between dark energy and dark matter was a constant parameter, which was, Q = 3 H ξ ( 1 + w x ρ x . Based on the Markov chain Monte Carlo method, we made a global fitting on the interacting dark energy model from Planck 2015 cosmic microwave background anisotropy and observational Hubble data. We found that the observational data sets slightly favored a small interaction rate between dark energy and dark matter; however, there was not obvious evidence of interaction at the 1 σ level.

  12. Positive affect predicts avoidance goals in social interaction anxiety: testing a hierarchical model of social goals.

    Science.gov (United States)

    Trew, Jennifer L; Alden, Lynn E

    2012-01-01

    Models of self-regulation suggest that social goals may contribute to interpersonal and affective difficulties, yet little research has addressed this issue in the context of social anxiety. The present studies evaluated a hierarchical model of approach and avoidance in the context of social interaction anxiety, with affect as a mediating factor in the relationship between motivational tendencies and social goals. This model was refined in one undergraduate sample (N = 186) and cross-validated in a second sample (N = 195). The findings support hierarchical relationships between motivational tendencies, social interaction anxiety, affect, and social goals, with higher positive affect predicting fewer avoidance goals in both samples. Implications for the treatment of social interaction anxiety are discussed.

  13. Precision Tests of Electroweak Interactions

    CERN Document Server

    Akhundov, Arif

    2008-01-01

    The status of the precision tests of the electroweak interactions is reviewed in this paper. An emphasis is put on the Standard Model analysis based on measurements at LEP/SLC and the Tevatron. The results of the measurements of the electroweak mixing angle in the NuTeV experiment and the future prospects are discussed.

  14. Test of interaction models up to 40 PeV by studying hadronic cores of EAS

    NARCIS (Netherlands)

    Apel, W.D.; Badea, A.F.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Gils, H.J.; Glasstetter, R.; Haungs, A.; Heck, D.; Hörandel, J.R.; Kampert, K.H.; Klages, H.O.; Mathes, H.J.; Mayer, H.J.; Milke, J.; Oehlschläger, J.; Ostapchenko, S.; Petcu, M.; Pierog, T.; Rebel, H.; Risse, A.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Ulrich, H.; Buren, J. van; Weindl, A.; Wochele, J.; Zabierowski, J.; Collaboration, T.K.

    2007-01-01

    The interpretation of extensive air shower measurements often requires a comparison with shower simulations in the atmosphere. These calculations rely on hadronic interaction models which have to extrapolate into kinematical and energy regions not explored by present-day collider experiments. The

  15. Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter

    CERN Document Server

    Bilki, B.; Schlereth, J.; Xia, L.; Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Eigen, G.; Mikami, Y.; Price, T.; Watson, N.K.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Carloganu, C.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Lima, J.G.R.; Salcido, P.; Zutshi, V.; Boisvert, V.; Green, B.; Misiejuk, A.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cauwenbergh, S.; Tytgat, M.; Zaganidis, N.; Hostachy, J.Y.; Morin, L.; Gadow, K.; Göttlicher, P.; Günter, C.; Krüger, K.; Lutz, B.; Reinecke, M.; Sefkow, F.; Feege, N.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Kaplan, A.; Norbeck, E.; Northacker, D.; Onel, Y.; Kim, E.J.; van Doren, B.; Wilson, G.W.; Wing, M.; Bobchenko, B.; Chadeeva, M.; Chistov, R.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Popova, E.; Gabriel, M.; Kiesling, C.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci-Giannelli, M.; Fleury, J.; Frisson, T.; Kégl, B.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëne, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Matthieu, A.; Mora de Freitas, P.; Videau, H.; Augustin, J.-E.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Götze, M.

    2015-09-11

    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 600,000 selected negatively changed pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the GEANT4 simulation tool kit are compared to this data. Although a reasonable overall description of the data is observed, there are significant quantitative discrepancies in the longitudinal and transverse distributions of reconstructed energy.

  16. Testing object Interactions

    NARCIS (Netherlands)

    Grüner, Andreas

    2010-01-01

    In this thesis we provide a unit testing approach for multi-purposes object-oriented programming languages in the style of Java and C#. Our approach includes the definition of a test specification language which results from extending the programming language with new designated specification

  17. Testing the Standard Model for the electroweak interactions of the heavy quarks

    International Nuclear Information System (INIS)

    Perret, Pascal

    2002-01-01

    The standard model was a solid theoretical construction. It faced successfully all the tests done at LEP between 1989 and 2000 within 90 GeV to 209 GeV range. The thesis describes the precision measurements of the physical parameters in the heavy quark sector and the tests of the electroweak standard model. The work consists in five parts. The first part is dedicated to some theoretical preliminaries. The electroweak Standard Model is briefly reviewed as well as the necessary elements of the study of heavy flavors. Testing the predictions of the Standard Model and Quantum Chromodynamics requires a comprehensive understanding of heavy quarks. In the second part the LEP accelerator and the ALEPH detector are described as well as the lepton identification within ALEPH, particularly of the electrons. The data acquired in the first LEP phase the interest was allowed investigating the properties of b and c heavy quarks, essential in testing the Standard Model. The studies on b quarks were of most interest because these quarks were more easily to be evidenced experimentally, while the insights on Standard Model are more significant. This quark is heavier (m b = 4 to 4.4 GeV/c 2 ), has a longer lifetime (τ b = 1.564 ± 0.014 ps) and presents the most important semileptonic branching ratios (B(b → l) ∼ 11% ). The principal tools used in their studies were the leptons issued from their decays. In more than 80% of the Z 0 → bb-bar events there is at least one lepton (an electron or muon) issued from the direct or secondary decay of a beauty hadron. In the case of charm, 40% of events produce at least one lepton. By taking into account the lepton identification accuracy and the fact that a number of kinetic cuts should be applied to get rid of the too high a background noise (p > 2 or 3 GeV/c), 50% of the leptons are lost. The fraction is however high and additional criteria should be applied in order to increase the amount of interesting events. Hence, a vertex

  18. Modeling Fluid Structure Interaction

    National Research Council Canada - National Science Library

    Benaroya, Haym

    2000-01-01

    The principal goal of this program is on integrating experiments with analytical modeling to develop physics-based reduced-order analytical models of nonlinear fluid-structure interactions in articulated naval platforms...

  19. Materials interaction test summary description

    International Nuclear Information System (INIS)

    Krogness, J.C.

    1980-01-01

    The Materials Interaction Test is designed to provide early scoping data on host rock performance and interaction between nuclear waste canister materials and host repository media under conditions representative of expected disposal environments. Capsules containing these materials were put in a spent fuel assembly and subsequently placed in a disposal test to study behavior in a low-level radiation environment at temperatures expected to range between 300 and 400 0 F. Thermal control capsules are being exposed in laboratory furnaces to allow a determination and separation of thermal and radiation effects. Post-test specimen examinations are planned to determine material property changes and interaction effects and provide data for understanding the effectiveness of host rock, canister, and cladding materials in long-term waste isolation

  20. A Case-Series Test of the Interactive Two-Step Model of Lexical Access: Predicting Word Repetition from Picture Naming

    Science.gov (United States)

    Dell, Gary S.; Martin, Nadine; Schwartz, Myrna F.

    2007-01-01

    Lexical access in language production, and particularly pathologies of lexical access, are often investigated by examining errors in picture naming and word repetition. In this article, we test a computational approach to lexical access, the two-step interactive model, by examining whether the model can quantitatively predict the repetition-error…

  1. Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Pedersen, Thomas

    2015-01-01

    This paper presents an offline approach to analyzing feature interactions in embedded systems. The approach consists of a systematic process to gather the necessary information about system components and their models. The model is first specified in terms of predicates, before being refined to t...... to timed automata. The consistency of the model is verified at different development stages, and the correct linkage between the predicates and their semantic model is checked. The approach is illustrated on a use case from home automation....

  2. Modelling of turbulent hydrocarbon combustion. Test of different reactor concepts for describing the interactions between turbulence and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-12-31

    The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated

  3. The interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.; Arima, A.

    1987-01-01

    The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)

  4. Analysis of the forced vibration test of the Hualien large scale soil-structure interaction model using a flexible volume substructuring method

    International Nuclear Information System (INIS)

    Tang, H.T.; Nakamura, N.

    1995-01-01

    A 1/4-scale cylindrical reactor containment model was constructed in Hualien, Taiwan for foil-structure interaction (SSI) effect evaluation and SSI analysis procedure verification. Forced vibration tests were executed before backfill (FVT-1) and after backfill (FVT-2) to characterize soil-structure system characteristics under low excitations. A number of organizations participated in the pre-test blind prediction and post-test correlation analyses of the forced vibration test using various industry familiar methods. In the current study, correlation analyses were performed using a three-dimensional flexible volume substructuring method. The results are reported and soil property sensitivities are evaluated in the paper. (J.P.N.)

  5. TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig

    Science.gov (United States)

    Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco

    2018-03-01

    Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.

  6. Tests of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data

    Directory of Open Access Journals (Sweden)

    Arteaga-Velázquez J.C.

    2018-01-01

    Full Text Available The KASCADE-Grande observatory was a ground-based air shower array dedicated to study the energy and composition of cosmic rays in the energy interval E = 1 PeV –1 EeV. The experiment consisted of different detector systems which allowed the simultaneous measurement of distinct components of air showers (EAS, such as the muon content. In this contribution, we study the total muon number and the lateral density distribution of muons in EAS detected by KASCADE-Grande as a function of the zenith angle and the total number of charged particles. The attenuation length of the muon content of EAS is also measured. The results are compared with the predictions of the SIBYLL 2.3 high-energy hadronic interaction model.

  7. Ridge Regression for Interactive Models.

    Science.gov (United States)

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are…

  8. Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area.

    Science.gov (United States)

    Meyer, Sebastian; Warnke, Ingeborg; Rössler, Wulf; Held, Leonhard

    2016-05-01

    Spatio-temporal interaction is inherent to cases of infectious diseases and occurrences of earthquakes, whereas the spread of other events, such as cancer or crime, is less evident. Statistical significance tests of space-time clustering usually assess the correlation between the spatial and temporal (transformed) distances of the events. Although appealing through simplicity, these classical tests do not adjust for the underlying population nor can they account for a distance decay of interaction. We propose to use the framework of an endemic-epidemic point process model to jointly estimate a background event rate explained by seasonal and areal characteristics, as well as a superposed epidemic component representing the hypothesis of interest. We illustrate this new model-based test for space-time interaction by analysing psychiatric inpatient admissions in Zurich, Switzerland (2007-2012). Several socio-economic factors were found to be associated with the admission rate, but there was no evidence of general clustering of the cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modeling nonspecific interactions at biological interfaces

    Science.gov (United States)

    White, Andrew D.

    Difficulties in applied biomaterials often arise from the complexities of interactions in biological environments. These interactions can be broadly broken into two categories: those which are important to function (strong binding to a single target) and those which are detrimental to function (weak binding to many targets). These will be referred to as specific and nonspecific interactions, respectively. Nonspecific interactions have been central to failures of biomaterials, sensors, and surface coatings in harsh biological environments. There is little modeling work on studying nonspecific interactions. Modeling all possible nonspecific interactions within a biological system is difficult, yet there are ways to both indirectly model nonspecific interactions and directly model many interactions using machine-learning. This research utilizes bioinformatics, phenomenological modeling, molecular simulations, experiments, and stochastic modeling to study nonspecific interactions. These techniques are used to study the hydration molecules which resist nonspecific interactions, the formation of salt bridges, the chemistry of protein surfaces, nonspecific stabilization of proteins in molecular chaperones, and analysis of high-throughput screening experiments. The common aspect for these systems is that nonspecific interactions are more important than specific interactions. Studying these disparate systems has created a set of principles for resisting nonspecific interactions which have been experimentally demonstrated with the creation and testing of novel materials which resist nonspecific interactions.

  10. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  11. Confirmation test on the dynamic interaction between a model reactor-building foundation and ground in the Sendai Nuclear Power Station

    International Nuclear Information System (INIS)

    Umezu, Hideo; Kisaki, Noboru; Shiota, Mutsumi

    1982-01-01

    On the site of unit 2 (planned) in the Sendai Nuclear Power Station, a model reactor-building foundation of reinforced concrete with diameter of 12 m and height of 5 m was installed. With a vibration generator, its forced vibration tests were carried out in October to December, 1980. Valuable data were able to be obtained on the dynamic interaction between the model foundation and the ground, and also the outlook for the application of theories in hard base rock was obtained. (1) The resonance frequency of the model foundation in horizontal vibration was 35 Hz in both NS and EW directions. (2) Remarkable difference was not observed in the horizontal vibration behavior between NS and EW directions, so that there is not anisotropy in the ground. (3) The model foundation was deformed nearly as a rigid body. (J.P.N.)

  12. Loglinear Rasch model tests

    NARCIS (Netherlands)

    Kelderman, Hendrikus

    1984-01-01

    Existing statistical tests for the fit of the Rasch model have been criticized, because they are only sensitive to specific violations of its assumptions. Contingency table methods using loglinear models have been used to test various psychometric models. In this paper, the assumptions of the Rasch

  13. Multiple Homicide as a Function of Prisonization and Concurrent Instrumental Violence: Testing an Interactive Model--A Research Note

    Science.gov (United States)

    DeLisi, Matt; Walters, Glenn D.

    2011-01-01

    Prisonization (as measured by number of prior incarcerations) and concurrent instrumental offending (as measured by contemporaneous kidnapping, rape, robbery, and burglary offenses) were found to interact in 160 multiple-homicide offenders and 494 single-homicide offenders. Controlling for age, gender, race, criminal history, prior incarcerations,…

  14. Earthquake likelihood model testing

    Science.gov (United States)

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a

  15. Locating Minimal Fault Interaction in Combinatorial Testing

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-01-01

    Full Text Available Combinatorial testing (CT technique could significantly reduce testing cost and increase software system quality. By using the test suite generated by CT as input to conduct black-box testing towards a system, we are able to detect interactions that trigger the system’s faults. Given a test case, there may be only part of all its parameters relevant to the defects in system and the interaction constructed by those partial parameters is key factor of triggering fault. If we can locate those parameters accurately, this will facilitate the software diagnosing and testing process. This paper proposes a novel algorithm named complete Fault Interaction Location (comFIL to locate those interactions that cause system’s failures and meanwhile obtains the minimal set of target interactions in test suite produced by CT. By applying this method, testers can analyze and locate the factors relevant to defects of system more precisely, thus making the process of software testing and debugging easier and more efficient. The results of our empirical study indicate that comFIL performs better compared with known fault location techniques in combinatorial testing because of its improved effectiveness and precision.

  16. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  17. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  18. Strong interactions - quark models

    International Nuclear Information System (INIS)

    Goto, M.; Ferreira, P.L.

    1979-01-01

    The variational method is used for the PSI and upsilon family spectra reproduction from the quark model, through several phenomenological potentials, viz.: linear, linear plus coulomb term and logarithmic. (L.C.) [pt

  19. Modeling Interactive Intelligences

    Science.gov (United States)

    2002-08-01

    New York: Basic Books, 1999. P. 207-10. [5] Piaget , Jean . Play, Dreams, and Imitation in Childhood. New York: Norton, 1962. [6] Dillard, Annie. Living...concepts of reentry and binding. Next, I rely on Jean Piaget’s model of adaptation in order to examine the function of imitation and play in an...rather than metrics should be used. 2. ADAPTATION, SELECTION, IMITATION, AND PLAY Piaget presented adaptive behavior as a combination of accommodation and

  20. An interacting multielectron Anderson model

    CERN Document Server

    Zenk, H

    2003-01-01

    This article is a first tiny step towards a rigorous description of an interacting multielectron system in a random potential of Anderson type. Deterministic spectrum and a Wegner estimate for this model are proven.

  1. Large scale model testing

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Polachova, H.; Stepanek, S.

    1989-01-01

    Fracture mechanics and fatigue calculations for WWER reactor pressure vessels were checked by large scale model testing performed using large testing machine ZZ 8000 (with a maximum load of 80 MN) at the SKODA WORKS. The results are described from testing the material resistance to fracture (non-ductile). The testing included the base materials and welded joints. The rated specimen thickness was 150 mm with defects of a depth between 15 and 100 mm. The results are also presented of nozzles of 850 mm inner diameter in a scale of 1:3; static, cyclic, and dynamic tests were performed without and with surface defects (15, 30 and 45 mm deep). During cyclic tests the crack growth rate in the elastic-plastic region was also determined. (author). 6 figs., 2 tabs., 5 refs

  2. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    related to inaccurate land surface modelling, e.g. enhanced warm bias in warm dry summer months. Coupling the regional climate model to a hydrological model shows the potential of improving the surface flux simulations in dry periods and the 2 m air temperature in general. In the dry periods......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  3. Numerical models as interactive art

    Science.gov (United States)

    Donchyts, G.; Baart, F.; van de Pas, B.; Joling, A.

    2017-12-01

    We capture our understanding of the environment in advanced computer models. We use these numerical models to simulate the growth of deltas, meandering rivers, dune erosion, river floodings, effects of interventions. If presented with care, models can help understand the complexity of our environment and show the beautiful patterns of nature. While the topics are relevant and appealing to the general public the use of numerical models has been limited to technical users. Not many people have appreciations for the pluriform of options, esoteric user interfaces, manual editing of configuration files and extensive jargon. The models are static, you can start them, but then you have to wait, usually hours or more, for the results to become available, not something that you could imagine resulting in an immersive, interactive experience for the general public. How can we go beyond just using results? How can we adapt existing numerical models so they can be used in an interactive environment? How can we touch them and feel them? Here we show how we adapted existing models (Delft3D, Lisflood, XBeach) and reused them in as the basis for interactive exhibitions in museums with an educative goal. We present our structured approach which consists of combining a story, inspiration, a canvas, colors, shapes and interactive elements. We show how the progression from simple presentation forms to interactive art installations.

  4. Embedment Effect test on soil-structure interaction

    International Nuclear Information System (INIS)

    Nasuda, Toshiaki; Akino, Kinji; Izumi, Masanori.

    1991-01-01

    A project consisting of laboratory test and field test has been conducted to clarify the embedment effect on soil-structure interaction. The objective of this project is to obtain the data for improving and preparing seismic analysis codes regarding the behavior of embedded reactor buildings during earthquakes. This project was planned to study the effect of soil-structure interaction using small size soil-structure models as well as the large scale models. The project was started in April, 1986, and is scheduled to end in March, 1994. The laboratory test models and field test models, and the measurement with accelerometers and others are described. As the interim results, the natural frequency and damping factor increased, and the amplitude decreased by the embedment of the test models. Some earthquakes were recorded in a soft rock site. The epicenters of the earthquakes occurred in 1989 are shown. The field tests were carried out in three sites. Two sites were used for the dynamic test with four test models having 8 m x 8 m plane size and 10 m height. One site was used for the static test with one concrete block as a specimen. Two models represent BWR type reactor buildings, and two models represent PWR type buildings. (K.I.)

  5. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...

  6. Automated Security Testing of Web Widget Interactions

    NARCIS (Netherlands)

    Bezemer, C.P.; Mesbah, A.; Van Deursen, A.

    2009-01-01

    This paper is a pre-print of: Cor-Paul Bezemer, Ali Mesbah, and Arie van Deursen. Automated Security Testing of Web Widget Interactions. In Proceedings of the 7th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

  7. Testing the Standard Model

    CERN Document Server

    Riles, K

    1998-01-01

    The Large Electron Project (LEP) accelerator near Geneva, more than any other instrument, has rigorously tested the predictions of the Standard Model of elementary particles. LEP measurements have probed the theory from many different directions and, so far, the Standard Model has prevailed. The rigour of these tests has allowed LEP physicists to determine unequivocally the number of fundamental 'generations' of elementary particles. These tests also allowed physicists to ascertain the mass of the top quark in advance of its discovery. Recent increases in the accelerator's energy allow new measurements to be undertaken, measurements that may uncover directly or indirectly the long-sought Higgs particle, believed to impart mass to all other particles.

  8. Measurement error models with interactions

    Science.gov (United States)

    Midthune, Douglas; Carroll, Raymond J.; Freedman, Laurence S.; Kipnis, Victor

    2016-01-01

    \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document} given \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document} and use it to extend the method of regression calibration to this class of measurement error models. We apply the model to dietary data and test whether self-reported dietary intake includes an interaction between true intake and body mass index. We also perform simulations to compare the model to simpler approximate calibration models. PMID:26530858

  9. The joy of interactive modeling

    Science.gov (United States)

    Donchyts, Gennadii; Baart, Fedor; van Dam, Arthur; Jagers, Bert

    2013-04-01

    The conventional way of working with hydrodynamical models usually consists of the following steps: 1) define a schematization (e.g., in a graphical user interface, or by editing input files) 2) run model from start to end 3) visualize results 4) repeat any of the previous steps. This cycle commonly takes up from hours to several days. What if we can make this happen instantly? As most of the research done using numerical models is in fact qualitative and exploratory (Oreskes et al., 1994), why not use these models as such? How can we adapt models so that we can edit model input, run and visualize results at the same time? More and more, interactive models become available as online apps, mainly for demonstration and educational purposes. These models often simplify the physics behind flows and run on simplified model geometries, particularly when compared with state-of-the-art scientific simulation packages. Here we show how the aforementioned conventional standalone models ("static, run once") can be transformed into interactive models. The basic concepts behind turning existing (conventional) model engines into interactive engines are the following. The engine does not run the model from start to end, but is always available in memory, and can be fed by new boundary conditions, or state changes at any time. The model can be run continuously, per step, or up to a specified time. The Hollywood principle dictates how the model engine is instructed from 'outside', instead of the model engine taking all necessary actions on its own initiative. The underlying techniques that facilitate these concepts are introspection of the computation engine, which exposes its state variables, and control functions, e.g. for time stepping, via a standardized interface, such as BMI (Peckam et. al., 2012). In this work we have used a shallow water flow model engine D-Flow Flexible Mesh. The model was converted from executable to a library, and coupled to the graphical modelling

  10. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  11. Introduction to interacting boson model

    International Nuclear Information System (INIS)

    Goutte, D.

    1986-01-01

    A very simple presentation of the interacting boson model is first given. The two computerized models which are presented allow, with few parameters, to reproduce an impressive quantity of data characterizing the deformed nuclei. Their excitation spectra, the reduced transition probabilities, the quadrupolar moments, the two nucleon transfer experiment results, ... Then a specific application of the model is given: radial extension reproduction of nuclear functions. It is shown first how the electron inelastic scattering allows to measure observables related to these radial functions, the transition charge densities, then, on some examples, how the model allows to reproduce them [fr

  12. Integrating Testing and Interactive Theorem Proving

    Directory of Open Access Journals (Sweden)

    Harsh Raju Chamarthi

    2011-10-01

    Full Text Available Using an interactive theorem prover to reason about programs involves a sequence of interactions where the user challenges the theorem prover with conjectures. Invariably, many of the conjectures posed are in fact false, and users often spend considerable effort examining the theorem prover's output before realizing this. We present a synergistic integration of testing with theorem proving, implemented in the ACL2 Sedan (ACL2s, for automatically generating concrete counterexamples. Our method uses the full power of the theorem prover and associated libraries to simplify conjectures; this simplification can transform conjectures for which finding counterexamples is hard into conjectures where finding counterexamples is trivial. In fact, our approach even leads to better theorem proving, e.g. if testing shows that a generalization step leads to a false conjecture, we force the theorem prover to backtrack, allowing it to pursue more fruitful options that may yield a proof. The focus of the paper is on the engineering of a synergistic integration of testing with interactive theorem proving; this includes extending ACL2 with new functionality that we expect to be of general interest. We also discuss our experience in using ACL2s to teach freshman students how to reason about their programs.

  13. Inverse modeling of cloud-aerosol interactions — Part 2: Sensitivity tests on liquid phase clouds using a Markov Chain Monte Carlo based simulation approach

    NARCIS (Netherlands)

    Partridge, D.G.; Vrugt, J.A.; Tunved, P.; Ekman, A.M.L.; Struthers, H.; Sorooshian, A.

    2012-01-01

    This paper presents a novel approach to investigate cloud-aerosol interactions by coupling a Markov Chain Monte Carlo (MCMC) algorithm to a pseudo-adiabatic cloud parcel model. Despite the number of numerical cloud-aerosol sensitivity studies previously conducted few have used statistical analysis

  14. Comparison of Methods for Estimating and Testing Latent Variable Interactions.

    Science.gov (United States)

    Moulder, Bradley C.; Algina, James

    2002-01-01

    Used simulation to compare structural equation modeling methods for estimating and testing hypotheses about an interaction between continuous variables. Findings indicate that the two-stage least squares procedure exhibited more bias and lower power than the other methods. The Jaccard-Wan procedure (J. Jaccard and C. Wan, 1995) and maximum…

  15. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  16. Sodium-fuel interaction: dropping experiments and subassembly test

    International Nuclear Information System (INIS)

    Holtbecker, H.; Schins, H.; Jorzik, E.; Klein, K.

    1978-01-01

    Nine dropping tests, which bring together 2 to 4 kg of molten UO 2 with 150 l sodium, showed the incoherency and non-violence of these thermal interactions. The pressures can be described by sodium incipient boiling and bubble collapse; the UO 2 fragmentation by thermal stress and bubble collapse impact forces. The mildness of the interaction is principally due to the slowness and incoherency of UO 2 fragmentation. This means that parametric models which assume instantaneous mixing and fragmentation are of no use for the interpretation of dropping experiments. One parametric model, the Caldarola Fuel Coolant Interaction Variable Mass model, is being coupled to the two dimensional time dependent hydrodynamic REXCO-H code. In a first step the coupling is applicated to a monodimensional geometry. A subassembly test is proposed to validate the model. In this test rapid mixing between UO 2 and sodium has to be obtained. Dispersed molten UO 2 fuel is obtained by flashing injected sodium drops inside a UO 2 melt. This flashing is theoretically explained and modelled as a superheat limited explosion. The measured sodium drop dwell times of two experiments are compared to results obtained from the mentioned theory, which is the basis of the Press 2 Code

  17. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  18. an online interactive an online interactive competition model for e

    African Journals Online (AJOL)

    eobe

    AN ONLINE INTERACTIVE COMPETITION MODEL FOR E-LEARNING SYSTEM. P. C. Ezenkwu , et al. Nigerian Journal of Technology. Vol. 34 No. 3, July 2015. 549. Interactive Competition Model for E-learning System .The thrust of the research is the integration of a competition strategy into a social e-learning system in.

  19. Testing a model of science process skills acquisition: An interaction with parents' education, preferred language, gender, science attitude, cognitive development, academic ability, and biology knowledge

    Science.gov (United States)

    Germann, Paul J.

    Path analysis techniques were used to test a hypothesized structural model of direct and indirect causal effects of student variables on science process skills. The model was tested twice using data collected at the beginning and end of the school year from 67 9th- and 10th-grade biology students who lived in a rural Franco-American community in New England. Each student variable was found to have significant effects, accounting for approximately 80% of the variance in science process skills achievement. Academic ability, biology knowledge, and language preference had significant direct effects. There were significant mediated effects by cognitive development, parents' education, and attitude toward science in school. The variables of cognitive development and academic ability had the greatest total effects on science process skills. Implications for practitioners and researchers are discussed.

  20. Microscopic interacting boson model calculations for even–even ...

    Indian Academy of Sciences (India)

    one of the goals of the present study is to test interacting boson model calculations in the mass region of A ∼= 130 by comparing them with some previous experimental and theoretical results. The interacting boson model offers a simple Hamiltonian, capable of describing collective nuclear properties across a wide range of ...

  1. Ship Model Testing

    Science.gov (United States)

    2016-01-15

    zero degrees angle of attack than the conventional foil at eight degrees angle of attack . This increase in lift is believed to be limited to low...Bureau of Shipping (ABS) supported this effort through the purchase of the 60 specimens used in this thesis. Metal Shark boats also provided aluminum...strength of welded aluminum panels. Metal Shark Boats, again, provided the necessary test panels for this effort. The optical extensometer was not

  2. Matrix models with Penner interaction inspired by interacting ...

    Indian Academy of Sciences (India)

    the presence of the double peak only for genus 0 structures, the higher genii behave normally with. N. Comparable behaviour is found in studies involving interactions of RNA with osmolytes and monovalent cations in unfolding experiments. Keywords. Ribonucleic acid; random matrix model; Penner interaction; database.

  3. Shallow foundation model tests in Europe

    Czech Academy of Sciences Publication Activity Database

    Feda, Jaroslav; Simonini, P.; Arslan, U.; Georgiodis, M.; Laue, J.; Pinto, I.

    1999-01-01

    Roč. 2, č. 4 (1999), s. 447-475 ISSN 1436-6517. [Int. Conf. on Soil - Structure Interaction in Urban Civ. Engineering. Darmstadt, 08.10.1999-09.10.1999] R&D Projects: GA MŠk OC C7.10 Keywords : shallow foundations * model tests * sandy subsoil * bearing capacity * settlement Subject RIV: JM - Building Engineering

  4. Discrete choice models for commuting interactions

    DEFF Research Database (Denmark)

    Rouwendal, Jan; Mulalic, Ismir; Levkovich, Or

    An emerging quantitative spatial economics literature models commuting interactions by a gravity equation that is mathematically equivalent to a multinomial logit model. This model is widely viewed as restrictive because of the independence of irrelevant alternatives (IIA) property that links...

  5. Model-Based Security Testing

    Directory of Open Access Journals (Sweden)

    Ina Schieferdecker

    2012-02-01

    Full Text Available Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.

  6. An analytical model for interactive failures

    International Nuclear Information System (INIS)

    Sun Yong; Ma Lin; Mathew, Joseph; Zhang Sheng

    2006-01-01

    In some systems, failures of certain components can interact with each other, and accelerate the failure rates of these components. These failures are defined as interactive failure. Interactive failure is a prevalent cause of failure associated with complex systems, particularly in mechanical systems. The failure risk of an asset will be underestimated if the interactive effect is ignored. When failure risk is assessed, interactive failures of an asset need to be considered. However, the literature is silent on previous research work in this field. This paper introduces the concepts of interactive failure, develops an analytical model to analyse this type of failure quantitatively, and verifies the model using case studies and experiments

  7. Field tests on partial embedment effects (embedment effect tests on soil-structure interaction)

    International Nuclear Information System (INIS)

    Kurimoto, O.; Tsunoda, T.; Inoue, T.; Izumi, M.; Kusakabe, K.; Akino, K.

    1993-01-01

    A series of Model Tests of Embedment Effect on Reactor Buildings has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and lndustry (MITI) of Japan. The nuclear reactor buildings are partially embedded due to conditions for the construction or building arrangement in Japan. It is necessary to verify the partial embedment effects by experiments and analytical studies in order to incorporate the effects in the seismic design. Forced vibration tests, therefore, were performed using a model with several types of embedment. Correlated simulation analyses were also performed and the characteristics of partial embedment effects on soil-structure interaction were evaluated. (author)

  8. Matrix models with Penner interaction inspired by interacting ...

    Indian Academy of Sciences (India)

    2015-01-29

    Jan 29, 2015 ... Then the genus is calculated for every structure and plotted as a function of length. The genus distribution function is compared with the prediction from the nonlinear (NL) model. The specific heat and distribution of structure with temperature calculated from the NL model shows that the NL inter-action is ...

  9. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1979-01-01

    Objective of the Materials Interaction Test (MIT) is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low level neutron fields. Compatibility, structural properties, and chemical transformations will be studied. The multiple test samples are contained within test capsules connected end-to-end to form a test train. Only passive instrumentation has been used to monitor temperatures and record neutron fluence. The test train contains seven capsules: three to test compatibility, two for structural tests, and two for chemical transformation studies. The materials tested are potential candidates for the spent fuel package canister and repository geologies

  10. Semantic models for adaptive interactive systems

    CERN Document Server

    Hussein, Tim; Lukosch, Stephan; Ziegler, Jürgen; Calvary, Gaëlle

    2013-01-01

    Providing insights into methodologies for designing adaptive systems based on semantic data, and introducing semantic models that can be used for building interactive systems, this book showcases many of the applications made possible by the use of semantic models.Ontologies may enhance the functional coverage of an interactive system as well as its visualization and interaction capabilities in various ways. Semantic models can also contribute to bridging gaps; for example, between user models, context-aware interfaces, and model-driven UI generation. There is considerable potential for using

  11. Modelling Multiple Mind-Matter Interaction

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2002-01-01

    Relations between mental and physical aspects of an agent can be of various types. Sensing and acting are among the more commonly modelled types. In agent modelling approaches often this is the only interaction between the physical and mental; other possible types of interactions are abstracted

  12. Superheater hydraulic model test plan

    Energy Technology Data Exchange (ETDEWEB)

    Gabler, M.; Oliva, R.M.

    1973-10-01

    The plan for conducting a hydraulic test on a full scale model of the AI Steam Generator Module design is presented. The model will incorporate all items necessary to simulate the hydraulic performance characteristics of the superheater but will utilize materials other than the 2-1/4 Cr - 1 Mo in its construction in order to minimize costs and expedite schedule. Testing will be performed in the Rockwell International Rocketdyne High Flow Test Facility which is capable of flowing up to 32,00 gpm of water at ambient temperatures. All necessary support instrumentation is also available at this facility.

  13. Hermitian Matrix Model with Plaquette Interaction

    DEFF Research Database (Denmark)

    Chekhov, L.; Kristjansen, C.

    1996-01-01

    We study a hermitian $(n+1)$-matrix model with plaquette interaction, $\\sum_{i=1}^n MA_iMA_i$. By means of a conformal transformation we rewrite the model as an $O(n)$ model on a random lattice with a non polynomial potential. This allows us to solve the model exactly. We investigate the critical...

  14. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    to dynamic ocean waves. The goal of this research project is to develop numerical soil models for computing realistic seabed response in the interacting offshore environment, where ocean waves, seabed and offshore structure highly interact with each other. The seabed soil models developed are based...... as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...... of Computational Fluid Dynamics (CFD) and structural mechanics are available. The interaction in the system is modeled in a 1-way manner: First detailed free surface CFD calculations are executed to obtain a realistic wave field around a given structure. Then the dynamic structural response, due to the motions...

  15. Does interaction matter? Testing whether a confidence heuristic can replace interaction in collective decision-making

    Science.gov (United States)

    Bang, Dan; Fusaroli, Riccardo; Tylén, Kristian; Olsen, Karsten; Latham, Peter E.; Lau, Jennifer Y.F.; Roepstorff, Andreas; Rees, Geraint; Frith, Chris D.; Bahrami, Bahador

    2014-01-01

    In a range of contexts, individuals arrive at collective decisions by sharing confidence in their judgements. This tendency to evaluate the reliability of information by the confidence with which it is expressed has been termed the ‘confidence heuristic’. We tested two ways of implementing the confidence heuristic in the context of a collective perceptual decision-making task: either directly, by opting for the judgement made with higher confidence, or indirectly, by opting for the faster judgement, exploiting an inverse correlation between confidence and reaction time. We found that the success of these heuristics depends on how similar individuals are in terms of the reliability of their judgements and, more importantly, that for dissimilar individuals such heuristics are dramatically inferior to interaction. Interaction allows individuals to alleviate, but not fully resolve, differences in the reliability of their judgements. We discuss the implications of these findings for models of confidence and collective decision-making. PMID:24650632

  16. A Method for Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Le Guilly, Thibaut; Ravn, Anders Peter

    2015-01-01

    This paper presents a method to check for feature interactions in a system assembled from independently developed concurrent processes as found in many reactive systems. The method combines and refines existing definitions and adds a set of activities. The activities describe how to populate the ...... the definitions with models to ensure that all interactions are captured. The method is illustrated on a home automation example with model checking as analysis tool. In particular, the modelling formalism is timed automata and the analysis uses UPPAAL to find interactions....

  17. Two dimensional compass model with Heisenberg interactions

    Science.gov (United States)

    Pires, A. S. T.

    2018-04-01

    We consider a two dimensional compass model with a next and a next near Heisenberg term. The interactions are of two types: frustrated near neighbor compass interactions of amplitudes Jx and Jy, and next and next near neighbor Heisenberg interactions with exchanges J1 and J2 respectively. The Heisenberg interactions are isotropic in spin space, but the compass interactions depend on the bond direction. The ground state of the pure compass model is degenerated with a complex phase diagram. This degeneracy is removed by the Heisenberg terms leading to the arising of a magnetically ordered phase with a preferred direction. We calculate the phase diagrams at zero temperature for the case where, for J2 = 0, we have an antiferromagnetic ground state. We show that varying the value of J2, a magnetically disordered phase can be reached for small values of the compass interactions. We also calculate the critical temperature for a specified value of parameters.

  18. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1991-01-01

    Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data

  19. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  20. Using Interaction Scenarios to Model Information Systems

    DEFF Research Database (Denmark)

    Bækgaard, Lars; Bøgh Andersen, Peter

    The purpose of this paper is to define and discuss a set of interaction primitives that can be used to model the dynamics of socio-technical activity systems, including information systems, in a way that emphasizes structural aspects of the interaction that occurs in such systems. The primitives...

  1. Survey test of canister, geology, and fuel cladding material interactions

    International Nuclear Information System (INIS)

    Krogness, J.C.; Almassy, M.Y.; Cantley, D.A.; Davis, R.B.

    1979-08-01

    A series of Material Interaction Test (MIT) is being conducted. The first test is being conducted in the Dry Surface Storage Demonstration at the EMAD facility on NTS. This paper discusses details of this first test and gives a status report on the MIT series. 17 figures

  2. Interactive test tool for interoperable C-ITS development

    NARCIS (Netherlands)

    Voronov, A.; Englund, C.; Bengtsson, H.H.; Chen, L.; Ploeg, J.; Jongh, J.F.C.M. de; Sluis, H.J.D. van de

    2015-01-01

    This paper presents the architecture of an Interactive Test Tool (ITT) for interoperability testing of Cooperative Intelligent Transport Systems (C-ITS). Cooperative systems are developed by different manufacturers at different locations, which makes interoperability testing a tedious task. Up until

  3. Syndetic model of fundamental interactions

    Directory of Open Access Journals (Sweden)

    Ernest Ma

    2015-02-01

    Full Text Available The standard model of quarks and leptons is extended to connect three outstanding issues in particle physics and astrophysics: (1 the absence of strong CP nonconservation, (2 the existence of dark matter, and (3 the mechanism of nonzero neutrino masses, and that of the first family of quarks and leptons, all in the context of having only one Higgs boson in a renormalizable theory. Some phenomenological implications are discussed.

  4. AIC, BIC, Bayesian evidence against the interacting dark energy model

    International Nuclear Information System (INIS)

    Szydlowski, Marek; Krawiec, Adam; Kurek, Aleksandra; Kamionka, Michal

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)

  5. Functional Modeling of Neural-Glia Interaction

    DEFF Research Database (Denmark)

    Postnov, D.E.; Brazhe, N.A.; Sosnovtseva, Olga

    2012-01-01

    Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network.......Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network....

  6. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  7. Mathematical models for plant-herbivore interactions

    Science.gov (United States)

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  8. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1980-02-01

    Objective of the test is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low-level neutron fields. This document provides a fabrication record of the experiment

  9. Interactions of Model Cell Membranes with Nanoparticles

    Science.gov (United States)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  10. Vector-Interaction-Enhanced Bag Model

    Directory of Open Access Journals (Sweden)

    Mateusz Cierniak

    2018-02-01

    Full Text Available A commonly applied quark matter model in astrophysics is the thermodynamic bag model (tdBAG. The original MIT bag model approximates the effect of quark confinement, but does not explicitly account for the breaking of chiral symmetry, an important property of Quantum Chromodynamics (QCD. It further ignores vector repulsion. The vector-interaction-enhanced bag model (vBag improves the tdBAG approach by accounting for both dynamical chiral symmetry breaking and repulsive vector interactions. The latter is of particular importance to studies of dense matter in beta-equilibriumto explain the two solar mass maximum mass constraint for neutron stars. The model is motivated by analyses of QCD based Dyson-Schwinger equations (DSE, assuming a simple quark-quark contact interaction. Here, we focus on the study of hybrid neutron star properties resulting from the application of vBag and will discuss possible extensions.

  11. Vector-Interaction-Enhanced Bag Model

    Science.gov (United States)

    Cierniak, Mateusz; Klähn, Thomas; Fischer, Tobias; Bastian, Niels-Uwe

    2018-02-01

    A commonly applied quark matter model in astrophysics is the thermodynamic bag model (tdBAG). The original MIT bag model approximates the effect of quark confinement, but does not explicitly account for the breaking of chiral symmetry, an important property of Quantum Chromodynamics (QCD). It further ignores vector repulsion. The vector-interaction-enhanced bag model (vBag) improves the tdBAG approach by accounting for both dynamical chiral symmetry breaking and repulsive vector interactions. The latter is of particular importance to studies of dense matter in beta-equilibriumto explain the two solar mass maximum mass constraint for neutron stars. The model is motivated by analyses of QCD based Dyson-Schwinger equations (DSE), assuming a simple quark-quark contact interaction. Here, we focus on the study of hybrid neutron star properties resulting from the application of vBag and will discuss possible extensions.

  12. Blast Testing and Modelling of Composite Structures

    DEFF Research Database (Denmark)

    Giversen, Søren

    The motivation for this work is based on a desire for finding light weight alternatives to high strength steel as the material to use for armouring in military vehicles. With the use of high strength steel, an increase in the level of armouring has a significant impact on the vehicle weight......-up proved functional and provided consistent data of the panel response. The tests reviled that the sandwich panels did not provide a decrease in panel deflection compared with the monolithic laminates, which was expected due to their higher flexural rigidity. This was found to be because membrane effects...... a pressure distribution on a selected surfaces and has been based on experimental pressure measurement data, and (ii) with a designed 3 step numerical load model, where the blast pressure and FSI (Fluid Structure Interaction) between the pressure wave and modelled panel is modelled numerically. The tested...

  13. Electroweak and Strong Interactions Phenomenology, Concepts, Models

    CERN Document Server

    Scheck, Florian

    2012-01-01

    Electroweak and Strong Interaction: Phenomenology, Concepts, Models, begins with relativistic quantum mechanics and some quantum field theory which lay the foundation for the rest of the text. The phenomenology and the physics of the fundamental interactions are emphasized through a detailed discussion of the empirical fundamentals of unified theories of strong, electromagnetic, and weak interactions. The principles of local gauge theories are described both in a heuristic and a geometric framework. The minimal standard model of the fundamental interactions is developed in detail and characteristic applications are worked out. Possible signals of physics beyond that model, notably in the physics of neutrinos are also discussed. Among the applications scattering on nucleons and on nuclei provide salient examples. Numerous exercises with solutions make the text suitable for advanced courses or individual study. This completely updated revised new edition contains an enlarged chapter on quantum chromodynamics an...

  14. Staging scientific controversies: a gallery test on science museums' interactivity.

    Science.gov (United States)

    Yaneva, Albena; Rabesandratana, Tania Mara; Greiner, Birgit

    2009-01-01

    The "transfer" model in science communication has been addressed critically from different perspectives, while the advantages of the interactive model have been continuously praised. Yet, little is done to account for the specific role of the interactive model in communicating "unfinished science." The traditional interactive methods in museums are not sufficient to keep pace with rapid scientific developments. Interactive exchanges between laypeople and experts are thought mainly through the lens of a dialogue that is facilitated and framed by the traditional "conference room" architecture. Drawing on the results of a small-scale experiment in a gallery space, we argue for the need for a new "architecture of interaction" in museum settings based on art installation and simulation techniques, which will enhance the communication potentials of science museums and will provide conditions for a fruitful even-handed exchange of expert and lay knowledge.

  15. A 'Turing' Test for Landscape Evolution Models

    Science.gov (United States)

    Parsons, A. J.; Wise, S. M.; Wainwright, J.; Swift, D. A.

    2008-12-01

    Resolving the interactions among tectonics, climate and surface processes at long timescales has benefited from the development of computer models of landscape evolution. However, testing these Landscape Evolution Models (LEMs) has been piecemeal and partial. We argue that a more systematic approach is required. What is needed is a test that will establish how 'realistic' an LEM is and thus the extent to which its predictions may be trusted. We propose a test based upon the Turing Test of artificial intelligence as a way forward. In 1950 Alan Turing posed the question of whether a machine could think. Rather than attempt to address the question directly he proposed a test in which an interrogator asked questions of a person and a machine, with no means of telling which was which. If the machine's answer could not be distinguished from those of the human, the machine could be said to demonstrate artificial intelligence. By analogy, if an LEM cannot be distinguished from a real landscape it can be deemed to be realistic. The Turing test of intelligence is a test of the way in which a computer behaves. The analogy in the case of an LEM is that it should show realistic behaviour in terms of form and process, both at a given moment in time (punctual) and in the way both form and process evolve over time (dynamic). For some of these behaviours, tests already exist. For example there are numerous morphometric tests of punctual form and measurements of punctual process. The test discussed in this paper provides new ways of assessing dynamic behaviour of an LEM over realistically long timescales. However challenges remain in developing an appropriate suite of challenging tests, in applying these tests to current LEMs and in developing LEMs that pass them.

  16. Tracer Interaction Effects During Partitioning Tracer Tests for NAPL Detection

    Science.gov (United States)

    Imhoff, P. T.; Pirestani, K.; Jafarpour, Y.; Spivey, K. M.

    2002-05-01

    Partitioning tracer tests have been used in laboratory and field investigations to quantify the amount of nonaqueous phase liquid (NAPL) within porous media. In these tests multiple chemical tracers are typically injected into flowing groundwater: conservative tracers react minimally with the NAPL, while non-conservative tracers partition into the NAPL and exhibit retarded transport. The mean travel times of the conservative and partitioning tracers can be used to estimate the NAPL saturation in the swept zone. When multiple tracers are injected in the system, the tracers themselves change the chemical composition of the NAPL, which may affect partitioning behavior. Although co-tracer interactions have been considered by others, there are no reports of such effects during actual partitioning tracer tests. In this study tracer partitioning was examined in static batch systems and dynamic column experiments using 2,3-dimethyl-2-butanol and 1-hexanol as partitioning tracers and trichloroethylene as the NAPL. Co-tracer effects resulted in nonlinear partitioning of 2,3-dimethyl-2-butanol in batch tests, which increased with increasing tracer concentrations. The UNIFAC model was used to predict tracer activities in the NAPL, and the resulting predictions of tracer partitioning matched the data trends. Column experiments were conducted with these same tracers, and nonlinear tracer partitioning associated with co-tracer effects resulted in underestimation of NAPL mass in some systems. If linear partitioning were assumed, a priori analysis suggested that nonlinear partitioning would result in an overestimation of NAPL saturation. We discuss these observations and suggest guidelines for avoiding co-tracer effects during partitioning tracer tests.

  17. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  18. A Functional Test Platform for the Community Land Model

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang [ORNL; Thornton, Peter E [ORNL; King, Anthony Wayne [ORNL; Steed, Chad A [ORNL; Gu, Lianhong [ORNL; Schuchart, Joseph [ORNL

    2014-01-01

    A functional test platform is presented to create direct linkages between site measurements and the process-based ecosystem model within the Community Earth System Models (CESM). The platform consists of three major parts: 1) interactive user interfaces, 2) functional test model and 3) observational datasets. It provides much needed integration interfaces for both field experimentalists and ecosystem modelers to improve the model s representation of ecosystem processes within the CESM framework without large software overhead.

  19. Cranking model and attenuation of Coriolis interaction

    International Nuclear Information System (INIS)

    Lyutorovich, N.A.

    1987-01-01

    Description of rotational bands of odd deformed nuclei in the self-consistent Cranking model (SCM) is given. Causes of attenuation of the Coriolis interaction in the nuclei investigated are studied, and account of bound of one-particle degrees of freedom with rotation of the Hartree-Fock-Bogolyubov (HFB) self-consistent method is introduced additionally to SCM for qualitative agreement with experimental data. Merits and shortages of SCM in comparison with the quadruparticle-rotor (QR) model are discussed. All know ways for constructing the Hamiltonian QR model (or analog of such Hamiltonian) on the basis of the microscopic theory are shown to include two more approximations besides others: quasi-particle-rotational interaction leading to pair break is taken into account in the second order of the perturbation theory; some exchange diagrams are neglected among diagrams of the second order according to this interaction. If one makes the same approximations in SCM instead of HFB method, then the dependence of level energies on spin obtained in this case is turned out to be close to the results of the QR model. Besides, the problem on renormalization of matrix elements of quasi-rotational interaction occurs in such nonself-consistent approach as in the QR model. In so far as the similar problem does not occur in SCM, one can make the conclusion that the problem of attenuation of Coriolis interaction involves the approximations given above

  20. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  1. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were...... then successfully applied to activity recognition, activity simulation and multi-target tracking. Our method compares favourably with respect to previously reported results using Hidden Markov Models and Relational Particle Filtering....

  2. Turbulence Modeling Validation, Testing, and Development

    Science.gov (United States)

    Bardina, J. E.; Huang, P. G.; Coakley, T. J.

    1997-01-01

    The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

  3. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  4. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  5. Global Quantitative Modeling of Chromatin Factor Interactions

    Science.gov (United States)

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  6. Thermal modelling of Advanced LIGO test masses

    International Nuclear Information System (INIS)

    Wang, H; Dovale Álvarez, M; Mow-Lowry, C M; Freise, A; Blair, C; Brooks, A; Kasprzack, M F; Ramette, J; Meyers, P M; Kaufer, S; O’Reilly, B

    2017-01-01

    High-reflectivity fused silica mirrors are at the epicentre of today’s advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors’ performance. We propose a model of the Advanced LIGO mirrors that introduces an empirical term to account for the radiative heat transfer between the mirror and its surroundings. The mechanical mode frequency is used as a probe for the overall temperature of the mirror. The thermal transient after power build-up in the optical cavities is used to refine and test the model. The model provides a coating absorption estimate of 1.5–2.0 ppm and estimates that 0.3 to 1.3 ppm of the circulating light is scattered onto the ring heater. (paper)

  7. Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function

    DEFF Research Database (Denmark)

    Kirwan, L; Connolly, J; Finn, J A

    2009-01-01

    We develop a modeling framework that estimates the effects of species identity and diversity on ecosystem function and permits prediction of the diversity-function relationship across different types of community composition. Rather than just measure an overall effect of diversity, we separately...... estimate the contributions of different species interactions. This is especially important when both positive and negative interactions occur or where there are patterns in the interactions. Based on different biological assumptions, we can test for different patterns of interaction that correspond...... to the roles of evenness, functional groups, and functional redundancy. These more parsimonious descriptions can be especially useful in identifying general diversity-function relationships in communities with large numbers of species. We provide an example of the application of the modeling framework...

  8. Test model of WWER core

    International Nuclear Information System (INIS)

    Tikhomirov, A. V.; Gorokhov, A. K.

    2007-01-01

    The objective of this paper is creation of precision test model for WWER RP neutron-physics calculations. The model is considered as a tool for verification of deterministic computer codes that enables to reduce conservatism of design calculations and enhance WWER RP competitiveness. Precision calculations were performed using code MCNP5/1/ (Monte Carlo method). Engineering computer package Sapfir 9 5andRC V VER/2/ is used in comparative analysis of the results, it was certified for design calculations of WWER RU neutron-physics characteristic. The object of simulation is the first fuel loading of Volgodon NPP RP. Peculiarities of transition in calculation using MCNP5 from 2D geometry to 3D geometry are shown on the full-scale model. All core components as well as radial and face reflectors, automatic regulation in control and protection system control rod are represented in detail description according to the design. The first stage of application of the model is assessment of accuracy of calculation of the core power. At the second stage control and protection system control rod worth was assessed. Full scale RP representation in calculation using code MCNP5 is time consuming that calls for parallelization of computational problem on multiprocessing computer (Authors)

  9. Building a Model of Infant Social Interaction

    OpenAIRE

    Lewis, Joshua; Deak, Gedeon; Jasso, Hector; Triesch, Jochen

    2010-01-01

    Naturalistic observations of infant/caregiver social attention have yielded rich information about human social develop- ment. However, observational data are expensive, laborious, and reliant on fallible human coders. We model interactions between caregivers and infants using a three dimensional sim- ulation environment in order to gain greater insight into the development of infant attention sharing, specifically gaze fol- lowing. Most models of infant cognition have been only ab- stractly ...

  10. Mosaic anisotropy model for magnetic interactions in mesostructured crystals

    Directory of Open Access Journals (Sweden)

    Abby R. Goldman

    2017-10-01

    Full Text Available We propose a new model for interpreting the magnetic interactions in crystals with mosaic texture called the mosaic anisotropy (MA model. We test the MA model using hematite as a model system, comparing mosaic crystals to polycrystals, single crystal nanoparticles, and bulk single crystals. Vibrating sample magnetometry confirms the hypothesis of the MA model that mosaic crystals have larger remanence (Mr/Ms and coercivity (Hc compared to polycrystalline or bulk single crystals. By exploring the magnetic properties of mesostructured crystalline materials, we may be able to develop new routes to engineering harder magnets.

  11. Spatially balanced topological interaction grants optimal cohesion in flocking models.

    Science.gov (United States)

    Camperi, Marcelo; Cavagna, Andrea; Giardina, Irene; Parisi, Giorgio; Silvestri, Edmondo

    2012-12-06

    Models of self-propelled particles (SPPs) are an indispensable tool to investigate collective animal behaviour. Originally, SPP models were proposed with metric interactions, where each individual coordinates with neighbours within a fixed metric radius. However, recent experiments on bird flocks indicate that interactions are topological: each individual interacts with a fixed number of neighbours, irrespective of their distance. It has been argued that topological interactions are more robust than metric ones against external perturbations, a significant evolutionary advantage for systems under constant predatory pressure. Here, we test this hypothesis by comparing the stability of metric versus topological SPP models in three dimensions. We show that topological models are more stable than metric ones. We also show that a significantly better stability is achieved when neighbours are selected according to a spatially balanced topological rule, namely when interacting neighbours are evenly distributed in angle around the focal individual. Finally, we find that the minimal number of interacting neighbours needed to achieve fully stable cohesion in a spatially balanced model is compatible with the value observed in field experiments on starling flocks.

  12. Sensitivity Analysis of a Physiochemical Interaction Model ...

    African Journals Online (AJOL)

    The mathematical modelling of physiochemical interactions in the framework of industrial and environmental physics usually relies on an initial value problem which is described by a single first order ordinary differential equation. In this analysis, we will study the sensitivity analysis due to a variation of the initial condition ...

  13. Some dynamical aspects of interacting quintessence model

    Indian Academy of Sciences (India)

    Binayak S Choudhury

    2018-03-16

    Mar 16, 2018 ... show the phase-space analysis for the 'best-fit Universe' or concordance model. In our analysis, we observe the existence of late-time scaling attractors. Keywords. Accelerated expansion of the Universe; quintessence; dynamical system; Friedmann–Lemaitre–. Robertson–Walker Universe; interacting ...

  14. A fashion model with social interaction

    Science.gov (United States)

    Nakayama, Shoichiro; Nakamura, Yasuyuki

    2004-06-01

    In general, it is difficult to investigate social phenomena mathematically or quantitatively due to non-linear interactions. Statistical physics can provide powerful methods for studying social phenomena with interactions, and could be very useful for them. In this study, we take a focus on fashion as a social phenomenon with interaction. The social interaction considered here are “bandwagon effect” and “snob effect.” In the bandwagon effect, the correlation between one's behavior and others is positive. People feel fashion weary or boring when it is overly popular. This is the snob effect. It is assumed that the fashion phenomenon is formed by the aggregation of individual's binary choice, that is, the fashion is adopted or not. We formulate the fashion phenomenon as the logit model, which is based on the random utility theory in social science, especially economics. The model derived here basically has the similarity with the pioneering model by Weidlich (Phys. Rep. 204 (1991) 1), which was derived from the master equation, the Langevin equation, or the Fokker-Planck equation. This study seems to give the behavioral or behaviormetrical foundation to his model. As a result of dynamical analysis, it is found that in the case that both the bandwagon effect and the snob effect work, periodic or chaotic behavior of fashion occurs under certain conditions.

  15. A yarn interaction model for circular braiding

    NARCIS (Netherlands)

    van Ravenhorst, J.H.; Akkerman, Remko

    2016-01-01

    Machine control data for the automation of the circular braiding process has been generated using previously published mathematical models that neglect yarn interaction. This resulted in a significant deviation from the required braid angle at mandrel cross-sectional changes, likely caused by an

  16. QSO evolution in the interaction model

    International Nuclear Information System (INIS)

    De Robertis, M.

    1985-01-01

    QSO evolution is investigated according to the interaction hypothesis described most recently by Stockton (1982), in which activity results from an interaction between two galaxies resulting in the transfer of gas onto a supermassive black hole (SBH) at the center of at least one participant. Explicit models presented here for interactions in cluster environments show that a peak QSO population can be formed in this way at zroughly-equal2--3, with little activity prior to this epoch. Calculated space densities match those inferred from observations for this epoch. Substantial density evolution is expected in such models, since, after virialization, conditions in the cores of rich clusters lead to the depletion of gas-rich systems through ram-pressure stripping. Density evolution parameters of 6--12 are easily accounted for. At smaller redshifts, however, QSOs should be found primarily in poor clusters or groups. Probability estimates provided by this model are consistent with local estimates for the observed number of QSOs per interaction. Significant luminosity-dependent evolution might also be expected in these models. It is suggested that the mean SBH mass increases with lookback time, leading to a statistical brightening with redshift. Undoubtedly, both forms of evolution contribute to the overall QSO luminosity function

  17. Phenomenological Model of Hydrophobic and Hydrophilic Interactions

    Science.gov (United States)

    Menshikov, L. I.; Menshikov, P. L.; Fedichev, P. O.

    2017-12-01

    Hydration forces acting between macroscopic bodies at distances L ≤ 3 nm in pure water are calculated based on the phenomenological model of polar liquids. It is shown that depending on the properties of the bodies, the interacting surfaces polarize the liquid differently, and wetting properties of the surfaces are completely characterized by two parameters. If the surfaces are hydrophilic, liquid molecules are polarized at right angles to the surfaces, and the interaction is the short-range repulsion (the forces of interaction decrease exponentially over the characteristic length λ ≈ 0.2 nm). The interaction between the hydrophobic surfaces is more diversified and has been studied less. For L ≤ 3 nm, the interaction exhibits universal properties, while for L ≤ 3 nm, it considerably depends on the properties of the surfaces and on the distances between them, as well as on the composition of the polar liquid. In full agreement with the available experimental results we find that if the interfaces are mostly hydrophobic, then the interaction is attractive and long-range (the interaction forces diminish exponentially with decay length 1.2 nm). In this case, the resultant polarization of water molecules is parallel to the surface. It is shown that hydration forces are determined by nonlinear effects of polarization of the liquid in the bulk or by analogous nonlinearity of the interaction of water with a submerged body. This means that the forces of interaction cannot be calculated correctly in the linear response approximation. The forces acting between hydrophobic or hydrophilic surfaces are of the entropy type or electrostatic, respectively. It is shown that hydrophobic and hydrophilic surfaces for L ≤ 3 nm repel each other. The calculated intensity of their interaction is in agreement with experimental data. We predict the existence of an intermediate regime in which a body cannot order liquid molecules, which results in a much weaker attraction that

  18. Understanding and modelling Man-Machine Interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1991-01-01

    This paper gives an overview of the current state of the art in man machine systems interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to design and analysis of Man-Machine Interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans and their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (author)

  19. Understanding and modelling man-machine interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1996-01-01

    This paper gives an overview of the current state of the art in man-machine system interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to the design and analysis of man-machine interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans an their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (orig.)

  20. Geometrical analysis of the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.

    1983-01-01

    The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)

  1. Model test of boson mappings

    International Nuclear Information System (INIS)

    Navratil, P.; Dobes, J.

    1992-01-01

    Methods of boson mapping are tested in calculations for a simple model system of four protons and four neutrons in single-j distinguishable orbits. Two-body terms in the boson images of the fermion operators are considered. Effects of the seniority v=4 states are thus included. The treatment of unphysical states and the influence of boson space truncation are particularly studied. Both the Dyson boson mapping and the seniority boson mapping as dictated by the similarity transformed Dyson mapping do not seem to be simply amenable to truncation. This situation improves when the one-body form of the seniority image of the quadrupole operator is employed. Truncation of the boson space is addressed by using the effective operator theory with a notable improvement of results

  2. Modeling of MOX Fuel Pellet-Clad Interaction Using ABAQUS

    International Nuclear Information System (INIS)

    Ambrosek, Richard G.; Pedersen, Robert C.; Maple, Amanda

    2002-01-01

    Post-irradiation examination (PIE) has indicated an increase in the outer diameter of fuel pins being irradiated in the Advanced Test Reactor (ATR) for the MOX irradiation program. The diameter increase is the largest in the region between fuel pellets. The fuel pellet was modeled using PATRAN and the model was evaluated using ABAQUS, version 6.2. The results from the analysis indicate the non-uniform clad diameter is caused by interaction between the fuel pellet and the clad. The results also demonstrate that the interaction is not uniform over the pellet axial length, with the largest interaction occurring in the region of the pellet-pellet interface. Results were obtained for an axisymmetric model and for a 1/8 pie shaped segment, using the coupled temperature-displacement solution technique. (authors)

  3. Modeling Molecular Systems at Extreme Pressure by an Extension of the Polarizable Continuum Model (PCM) Based on the Symmetry-Adapted Cluster-Configuration Interaction (SAC-CI) Method: Confined Electronic Excited States of Furan as a Test Case.

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Cammi, Roberto

    2015-05-12

    Novel molecular photochemistry can be developed by combining high pressure and laser irradiation. For studying such high-pressure effects on the confined electronic ground and excited states, we extend the PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (SAC-configuration interaction) methods to the PCM-XP (extreme pressure) framework. By using the PCM-XP SAC/SAC-CI method, molecular systems in various electronic states can be confined by polarizable media in a smooth and flexible way. The PCM-XP SAC/SAC-CI method is applied to a furan (C4H4O) molecule in cyclohexane at high pressure (1-60 GPa). The relationship between the calculated free-energy and cavity volume can be approximately represented with the Murnaghan equation of state. The excitation energies of furan in cyclohexane show blueshifts with increasing pressure, and the extents of the blueshifts significantly depend on the character of the excitations. Particularly large confinement effects are found in the Rydberg states. The energy ordering of the lowest Rydberg and valence states alters under high-pressure. The pressure effects on the electronic structure may be classified into two contributions: a confinement of the molecular orbital and a suppression of the mixing between the valence and Rydberg configurations. The valence or Rydberg character in an excited state is, therefore, enhanced under high pressure.

  4. Modeling of interaction effects in granular systems

    CERN Document Server

    El-Hilo, M; Al-Rsheed, A

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(DELTA E) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(DELTA E) can easily give a temperature-independent behavior of S(T) when these changes give a 1/DELTA E behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur an...

  5. Interacting Dark Energy Models and Observations

    Science.gov (United States)

    Shojaei, Hamed; Urioste, Jazmin

    2017-01-01

    Dark energy is one of the mysteries of the twenty first century. Although there are candidates resembling some features of dark energy, there is no single model describing all the properties of dark energy. Dark energy is believed to be the most dominant component of the cosmic inventory, but a lot of models do not consider any interaction between dark energy and other constituents of the cosmic inventory. Introducing an interaction will change the equation governing the behavior of dark energy and matter and creates new ways to explain cosmic coincidence problem. In this work we studied how the Hubble parameter and density parameters evolve with time in the presence of certain types of interaction. The interaction serves as a way to convert dark energy into matter to avoid a dark energy-dominated universe by creating new equilibrium points for the differential equations. Then we will use numerical analysis to predict the values of distance moduli at different redshifts and compare them to the values for the distance moduli obtained by WMAP (Wilkinson Microwave Anisotropy Probe). Undergraduate Student

  6. Wind turbine wake interactions; results from blind tests

    Science.gov (United States)

    Krogstad, Per-Åge; Sætran, Lars

    2015-06-01

    Results from three "Blind test" Workshops on wind turbine wake modeling are presented. While the first "Blind test" (BT1, 2011) consisted of a single model turbine located in a large wind tunnel, the complexity was increased for each new test in order to see how various models performed. Thus the next "Blind test" (BT2, 2012) had two turbines mounted in-line. This is a crucial test for models intended to predict turbine performances in a wind farm. In the last "Blind test" (BT3, 2013) the two turbines were again mounted in-line, but offset sideways so that the rotor of the downstream turbine only intersected half the wake from the upstream turbine. This case produces high dynamic loads and strong asymmetry in the wake. For each "Blind test" the turbine geometry and wind tunnel environment was specified and the participants were asked to predict the turbine performances, as well as the wake development to five diameters downstream of the second turbine. For the first two tests axisymmetry could be assumed if the influence of the towers was neglected. This was not possible in BT3 and therefore only fully 3D methods could be applied. In all tests the prediction scatter was surprisingly high.

  7. Nonlinear interaction model of subsonic jet noise.

    Science.gov (United States)

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  8. Modeling Users' Experiences with Interactive Systems

    CERN Document Server

    Karapanos, Evangelos

    2013-01-01

    Over the past decade the field of Human-Computer Interaction has evolved from the study of the usability of interactive products towards a more holistic understanding of how they may mediate desired human experiences.  This book identifies the notion of diversity in usersʼ experiences with interactive products and proposes methods and tools for modeling this along two levels: (a) interpersonal diversity in usersʽ responses to early conceptual designs, and (b) the dynamics of usersʼ experiences over time. The Repertory Grid Technique is proposed as an alternative to standardized psychometric scales for modeling interpersonal diversity in usersʼ responses to early concepts in the design process, and new Multi-Dimensional Scaling procedures are introduced for modeling such complex quantitative data. iScale, a tool for the retrospective assessment of usersʼ experiences over time is proposed as an alternative to longitudinal field studies, and a semi-automated technique for the analysis of the elicited exper...

  9. Oil transformation sector modelling: price interactions

    International Nuclear Information System (INIS)

    Maurer, A.

    1992-01-01

    A global oil and oil product prices evolution model is proposed that covers the transformation sector incidence and the final user price establishment together with price interactions between gaseous and liquid hydrocarbons. High disparities among oil product prices in the various consumer zones (North America, Western Europe, Japan) are well described and compared with the low differences between oil supply prices in these zones. Final user price fluctuations are shown to be induced by transformation differences and competition; natural gas market is also modelled

  10. Nuclear interaction model developments in FLUKA

    CERN Document Server

    Fontana, A

    2015-01-01

    A selection of recent improvements in the modeling of nuclear interactions with the FLUKA code is presented. At low energy the new features are related to the emission of secondary particles, to the inclusion of spin-parity effects in the evaporation stage and to the extension of the pre-equilibrium step to the Relativistic Quantum Molecular Dynamics (RQMD) model. At high energy new results from Electro-Magnetic Dissociation (EMD) and cosmogenic neutron production are shown. These results confirm and extend the use of FLUKA in different fields of interest, ranging from the LHC to medical applications.

  11. Nagaoka's atomic model and hyperfine interactions.

    Science.gov (United States)

    Inamura, Takashi T

    2016-01-01

    The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.

  12. An equilibrium approach to modelling social interaction

    Science.gov (United States)

    Gallo, Ignacio

    2009-07-01

    The aim of this work is to put forward a statistical mechanics theory of social interaction, generalizing econometric discrete choice models. After showing the formal equivalence linking econometric multinomial logit models to equilibrium statical mechanics, a multi-population generalization of the Curie-Weiss model for ferromagnets is considered as a starting point in developing a model capable of describing sudden shifts in aggregate human behaviour. Existence of the thermodynamic limit for the model is shown by an asymptotic sub-additivity method and factorization of correlation functions is proved almost everywhere. The exact solution of the model is provided in the thermodynamical limit by finding converging upper and lower bounds for the system's pressure, and the solution is used to prove an analytic result regarding the number of possible equilibrium states of a two-population system. The work stresses the importance of linking regimes predicted by the model to real phenomena, and to this end it proposes two possible procedures to estimate the model's parameters starting from micro-level data. These are applied to three case studies based on census type data: though these studies are found to be ultimately inconclusive on an empirical level, considerations are drawn that encourage further refinements of the chosen modelling approach.

  13. Experimental tests of the standard model

    International Nuclear Information System (INIS)

    Nodulman, L.

    1998-01-01

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of α EM in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G F , most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered

  14. Experimental tests of the standard model.

    Energy Technology Data Exchange (ETDEWEB)

    Nodulman, L.

    1998-11-11

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of {alpha}{sub EM} in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G{sub F}, most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered.

  15. Tests of electroweak interactions at CERN's LEP Collider

    Science.gov (United States)

    Fearnley, T. A.

    1995-08-01

    Precision measurements of electroweak interactions at the Z0 energy are performed at four experiments at the Large Electron Positron (LEP) Collider at CERN in Geneva, Switzerland. The large amount of data obtained from 1989 until today allows detailed comparisons with the predictions made by the Standard Model. Within the experimental errors the agreement with the Standard Model is good. Fits to the LEP data allow an indirect determination of the mass of the top quark: Mt=173+12+18-13-20 GeV, assuming a Higgs boson mass of 300 GeV. The first errors reflect the experimental errors (systematic and statistical) on the measurements. The second errors correspond to the variation of the central value when varying the Higgs mass between 60 and 1000 GeV. This paper reviews the results of the measurements of electroweak interactions, and compares the results with predictions made by the Standard Model.

  16. 46 CFR 154.431 - Model test.

    Science.gov (United States)

    2010-10-01

    ...(c). (b) Analyzed data of a model test for the primary and secondary barrier of the membrane tank... Model test. (a) The primary and secondary barrier of a membrane tank, including the corners and joints...

  17. Pre-relaxation in weakly interacting models

    Science.gov (United States)

    Bertini, Bruno; Fagotti, Maurizio

    2015-07-01

    We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.

  18. Ferromagnetic Potts models with multisite interaction

    Science.gov (United States)

    Schreiber, Nir; Cohen, Reuven; Haber, Simi

    2018-03-01

    We study the q -state Potts model with four-site interaction on a square lattice. Based on the asymptotic behavior of lattice animals, it is argued that when q ≤4 the system exhibits a second-order phase transition and when q >4 the transition is first order. The q =4 model is borderline. We find 1 /lnq to be an upper bound on Tc, the exact critical temperature. Using a low-temperature expansion, we show that 1 /(θ lnq ) , where θ >1 is a q -dependent geometrical term, is an improved upper bound on Tc. In fact, our findings support Tc=1 /(θ lnq ) . This expression is used to estimate the finite correlation length in first-order transition systems. These results can be extended to other lattices. Our theoretical predictions are confirmed numerically by an extensive study of the four-site interaction model using the Wang-Landau entropic sampling method for q =3 ,4 ,5 . In particular, the q =4 model shows an ambiguous finite-size pseudocritical behavior.

  19. Modeling disordered protein interactions from biophysical principles.

    Directory of Open Access Journals (Sweden)

    Lenna X Peterson

    2017-04-01

    Full Text Available Disordered protein-protein interactions (PPIs, those involving a folded protein and an intrinsically disordered protein (IDP, are prevalent in the cell, including important signaling and regulatory pathways. IDPs do not adopt a single dominant structure in isolation but often become ordered upon binding. To aid understanding of the molecular mechanisms of disordered PPIs, it is crucial to obtain the tertiary structure of the PPIs. However, experimental methods have difficulty in solving disordered PPIs and existing protein-protein and protein-peptide docking methods are not able to model them. Here we present a novel computational method, IDP-LZerD, which models the conformation of a disordered PPI by considering the biophysical binding mechanism of an IDP to a structured protein, whereby a local segment of the IDP initiates the interaction and subsequently the remaining IDP regions explore and coalesce around the initial binding site. On a dataset of 22 disordered PPIs with IDPs up to 69 amino acids, successful predictions were made for 21 bound and 18 unbound receptors. The successful modeling provides additional support for biophysical principles. Moreover, the new technique significantly expands the capability of protein structure modeling and provides crucial insights into the molecular mechanisms of disordered PPIs.

  20. Comments on interactions in the SUSY models

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker; Mandal, Bhabani Prasad [Banaras Hindu University, Department of Physics, Varanasi (India); Reshetnyak, Alexander [Institute of Strength Physics and Materials Science of SB RAS, Tomsk (Russian Federation)

    2016-07-15

    We consider special supersymmetry (SUSY) transformations with m generators /leftarrow s{sub α}, for some class of models and study the physical consequences when making the Grassmann-odd transformations to form an Abelian supergroup with finite parameters and a set of group-like elements with finite parameters being functionals of the field variables. The SUSY-invariant path integral measure within conventional quantization scheme leads to the appearance of the Jacobian under a change of variables generated by such SUSY transformations, which is explicitly calculated. The Jacobian implies, first of all, the appearance of trivial interactions in the transformed action, and, second, the presence of a modified Ward identity which reduces to the standard Ward identities in the case of constant parameters. We examine the case of the N = 1 and N = 2 supersymmetric harmonic oscillators to illustrate the general concept by a simple free model with (1, 1) physical degrees of freedom. It is shown that the interaction terms U{sub tr} have a corresponding SUSY-exact form: U{sub tr} = (V{sub (1)} /leftarrow s; V{sub (2)} /leftarrow anti s /leftarrow s) generated naturally under such generalized formulation. We argue that the case of a non-trivial interaction cannot be obtained in such a way. (orig.)

  1. Model-based testing for software safety

    NARCIS (Netherlands)

    Gurbuz, Havva Gulay; Tekinerdogan, Bedir

    2017-01-01

    Testing safety-critical systems is crucial since a failure or malfunction may result in death or serious injuries to people, equipment, or environment. An important challenge in testing is the derivation of test cases that can identify the potential faults. Model-based testing adopts models of a

  2. ADDIE Model Application Promoting Interactive Multimedia

    Science.gov (United States)

    Baharuddin, B.

    2018-02-01

    This paper presents the benefits of interactive learning in a vocational high school, which is developed by Research and Developmet (R&D) method. The questionnaires, documentations, and instrument tests are used to obtain data and it is analyzed by descriptive statistic. The results show the students’ competence is generated up to 80.00 %, and the subject matter aspects of the content is up to 90.00 %. The learning outcomes average is 85. This type media fulfils the proposed objective which can enhance the learning outcome.

  3. Feed forward neural networks modeling for K-P interactions

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2003-01-01

    Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data

  4. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  5. Vehicle rollover sensor test modeling

    NARCIS (Netherlands)

    McCoy, R.W.; Chou, C.C.; Velde, R. van de; Twisk, D.; Schie, C. van

    2007-01-01

    A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension

  6. The interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.; Van Isacker, P.

    1990-01-01

    The interacting boson-fermion model has become in recent years the standard model for the description of atomic nuclei with an odd number of protons and/or neutrons. This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. The book addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed. The book is the first comprehensive treatment of the subject and will appeal to both theoretical and experimental physicists. The large number of explicit formulas for level energies, electromagnetic transition rates and intensities of transfer reactions presented in the book provide a simple but detailed way to analyze experimental data. This book can also be used as a textbook for advanced graduate students

  7. Development of a Fluid Structures Interaction Test Technique for Fabrics

    Science.gov (United States)

    Zilliac, Gregory G.; Heineck, James T.; Schairer, Edward T.; Mosher, Robert N.; Garbeff, Theodore Joseph

    2012-01-01

    Application of fluid structures interaction (FSI) computational techniques to configurations of interest to the entry, descent and landing (EDL) community is limited by two factors - limited characterization of the material properties for fabrics of interest and insufficient experimental data to validate the FSI codes. Recently ILC Dover Inc. performed standard tests to characterize the static stress-strain response of four candidate fabrics for use in EDL applications. The objective of the tests described here is to address the need for a FSI dataset for CFD validation purposes. To reach this objective, the structural response of fabrics was measured in a very simple aerodynamic environment with well controlled boundary conditions. Two test series were undertaken. The first series covered a range of tunnel conditions and the second focused on conditions that resulted in fabric panel buckling.

  8. Reduced order modeling of fluid/structure interaction.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert

    2009-11-01

    This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.

  9. A flexible Bayesian model for studying gene-environment interaction.

    Directory of Open Access Journals (Sweden)

    Kai Yu

    2012-01-01

    Full Text Available An important follow-up step after genetic markers are found to be associated with a disease outcome is a more detailed analysis investigating how the implicated gene or chromosomal region and an established environment risk factor interact to influence the disease risk. The standard approach to this study of gene-environment interaction considers one genetic marker at a time and therefore could misrepresent and underestimate the genetic contribution to the joint effect when one or more functional loci, some of which might not be genotyped, exist in the region and interact with the environment risk factor in a complex way. We develop a more global approach based on a Bayesian model that uses a latent genetic profile variable to capture all of the genetic variation in the entire targeted region and allows the environment effect to vary across different genetic profile categories. We also propose a resampling-based test derived from the developed Bayesian model for the detection of gene-environment interaction. Using data collected in the Environment and Genetics in Lung Cancer Etiology (EAGLE study, we apply the Bayesian model to evaluate the joint effect of smoking intensity and genetic variants in the 15q25.1 region, which contains a cluster of nicotinic acetylcholine receptor genes and has been shown to be associated with both lung cancer and smoking behavior. We find evidence for gene-environment interaction (P-value = 0.016, with the smoking effect appearing to be stronger in subjects with a genetic profile associated with a higher lung cancer risk; the conventional test of gene-environment interaction based on the single-marker approach is far from significant.

  10. Optimal Scaling of Interaction Effects in Generalized Linear Models

    Science.gov (United States)

    van Rosmalen, Joost; Koning, Alex J.; Groenen, Patrick J. F.

    2009-01-01

    Multiplicative interaction models, such as Goodman's (1981) RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are suitable only for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of…

  11. Interaction of Mastoparan with Model Membranes

    Science.gov (United States)

    Haloot, Justin

    2010-10-01

    The use of antimicrobial agents began during the 20th century to reduce the effects of infectious diseases. Since the 1990s, antimicrobial resistance has become an ever-increasing global problem. Our laboratory recently found that small antimicrobial peptides (AMPs) have potent antimicrobial activity against a wide range of Gram-negative and Gram-positive organisms including antibiotic resistant organisms. These AMPs are potential therapeutic agents against the growing problem of antimicrobial resistance. AMPs are small peptides produced by plants, insects and animals. Several hypotheses concede that these peptides cause some type of structural perturbations and increased membrane permeability in bacteria however, how AMPs kill bacteria remains unclear. The goal of this study was to design an assay that would allow us to evaluate and monitor the pore forming ability of an AMP, Mastoparan, on model membrane structures called liposomes. Development of this model will facilitate the study of how mastoparan and related AMPs interact with the bacterial membrane.

  12. Convex Modeling of Interactions with Strong Heredity.

    Science.gov (United States)

    Haris, Asad; Witten, Daniela; Simon, Noah

    2016-01-01

    We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set.

  13. Calogero model with Yukawa-like interaction

    International Nuclear Information System (INIS)

    Kessabi, Mohammed; Saidi, El Hassan; Sebbata, Hanane

    2006-01-01

    We study an extension of one-dimensional Calogero model involving strongly coupled and electrically charged particles. Besides Calogero term g2x 2 , there is an extra factor described by a Yukawa-like coupling modeling short distance interactions. Mimicking Calogero analysis and using developments in formal series of the wave function Ψ(x) factorized as x - bar Φ(x) with -bar (-bar -1)=g, we develop a technique to approach the spectrum of the generalized system and show that information on full spectrum is captured by Φ(x) and Φ ' '(x) at the singular point x=0 of the potential. Convergence of ∫dx|Ψ(x)| 2 requires -bar >-12 and is shown to be sensitive to the zero mode of Φ(x) at x=0

  14. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  15. Repetition-based Interactive Facade Modeling

    KAUST Repository

    AlHalawani, Sawsan

    2012-07-01

    Modeling and reconstruction of urban environments has gained researchers attention throughout the past few years. It spreads in a variety of directions across multiple disciplines such as image processing, computer graphics and computer vision as well as in architecture, geoscience and remote sensing. Having a virtual world of our real cities is very attractive in various directions such as entertainment, engineering, governments among many others. In this thesis, we address the problem of processing a single fa cade image to acquire useful information that can be utilized to manipulate the fa cade and generate variations of fa cade images which can be later used for buildings\\' texturing. Typical fa cade structures exhibit a rectilinear distribution where in windows and other elements are organized in a grid of horizontal and vertical repetitions of similar patterns. In the firt part of this thesis, we propose an efficient algorithm that exploits information obtained from a single image to identify the distribution grid of the dominant elements i.e. windows. This detection method is initially assisted with the user marking the dominant window followed by an automatic process for identifying its repeated instances which are used to define the structure grid. Given the distribution grid, we allow the user to interactively manipulate the fa cade by adding, deleting, resizing or repositioning the windows in order to generate new fa cade structures. Having the utility for the interactive fa cade is very valuable to create fa cade variations and generate new textures for building models. Ultimately, there is a wide range of interesting possibilities of interactions to be explored.

  16. A simple model for studying interacting networks

    Science.gov (United States)

    Liu, Wenjia; Jolad, Shivakumar; Schmittmann, Beate; Zia, R. K. P.

    2011-03-01

    Many specific physical networks (e.g., internet, power grid, interstates), have been characterized in considerable detail, but in isolation from each other. Yet, each of these networks supports the functions of the others, and so far, little is known about how their interactions affect their structure and functionality. To address this issue, we consider two coupled model networks. Each network is relatively simple, with a fixed set of nodes, but dynamically generated set of links which has a preferred degree, κ . In the stationary state, the degree distribution has exponential tails (far from κ), an attribute which we can explain. Next, we consider two such networks with different κ 's, reminiscent of two social groups, e.g., extroverts and introverts. Finally, we let these networks interact by establishing a controllable fraction of cross links. The resulting distribution of links, both within and across the two model networks, is investigated and discussed, along with some potential consequences for real networks. Supported in part by NSF-DMR-0705152 and 1005417.

  17. Testing of constitutive models in LAME.

    Energy Technology Data Exchange (ETDEWEB)

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of ensuring that the model continues to behave correctly. A second purpose of a test suite for constitutive models is that it gives application code developers confidence that the constitutive models work correctly. This is extremely important since any analyst that uses an application code for an engineering analysis will associate a constitutive model in LAME with the application code, not LAME. Therefore, ensuring the correct implementation of constitutive models is essential for application code teams. A third purpose of a constitutive model test suite is that it provides analysts with example problems that they can look at to understand the behavior of a specific model. Since the choice of a constitutive model, and the properties that are used in that model, have an enormous effect on the results of an

  18. The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1989-01-01

    The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  19. The Space Station photovoltaic panels plasma interaction test program - Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1990-01-01

    The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  20. Remote Control and Testing of the Interactive TV-Decoder

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    1995-12-01

    Full Text Available The article deals with assembling and application of a complex sequential circuit VHDL (VHSIC (Very High-Speed Integrated Circuit Hardware Description Language model. The circuit model is a core of a cryptographic device for the signal encoding and decoding of discreet transmissions by TV-cable net. The cryptographic algorithm is changable according to the user's wishes. The principles of creation and example implementations are presented in the article. The behavioural model is used to minimize mistakes in the ASICs (Application Specific Integrated Circuits. The circuit implementation uses the FPGA (Field Programmable Gate Array technology. The diagnostics of the circuit is based on remote testing by the IEEE Std 1149.1-1990. The VHDL model of diagnostic subsystem is created as an orthogonal model in relation to the cryptographic circuit VHDL model.

  1. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  2. Modelling and Testing of Friction in Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2007-01-01

    Knowledge about friction is still limited in forging. The theoretical models applied presently for process analysis are not satisfactory compared to the advanced and detailed studies possible to carry out by plastic FEM analyses and more refined models have to be based on experimental testing....... The paper presents an overview of tests reported in literature and gives examples on the authors own test results....

  3. Modelling social interaction as perceptual crossing: an investigation into the dynamics of the interaction process

    Science.gov (United States)

    Froese, Tom; Di Paolo, Ezequiel A.

    2010-03-01

    This paper continues efforts to establish a mutually informative dialogue between psychology and evolutionary robotics in order to investigate the dynamics of social interaction. We replicate a recent simulation model of a minimalist experiment in perceptual crossing and confirm the results with significantly simpler artificial agents. A series of psycho-physical tests of their behaviour informs a hypothetical circuit model of their internal operation. However, a detailed study of the actual internal dynamics reveals this circuit model to be unfounded, thereby offering a tale of caution for those hypothesising about sub-personal processes in terms of behavioural observations. In particular, it is shown that the behaviour of the agents largely emerges out of the interaction process itself rather than being an individual achievement alone. We also extend the original simulation model in two novel directions in order to test further the extent to which perceptual crossing between agents can self-organise in a robust manner. These modelling results suggest new hypotheses that can become the basis for further psychological experiments.

  4. Sediment interactions in a new ocean model

    International Nuclear Information System (INIS)

    Camplin, W.C.; Gurbutt, P.A.

    1986-01-01

    A new ocean model has been developed jointly by the Ministry of Agriculture, Fisheries and Food (MAFF) and the National Radiological Protection Board (NRPB). It has been used in 1985 for the Nuclear Energy Agency (NEA) review of the NE Atlantic site for low-level radioactive waste disposal. The circulation model, which covers the world's oceans, is overlaid with a sediment model, which includes particle interactions in the ocean interior and in the seabed. The ocean interior processes feature movements with water, two particle size ranges, equilibrium distribution coefficients, gravitational settling and dissolution during descent. In the seabed there is a stack of compartments consisting of an interface between bottom waters and the seabed surface, a well mixed or bioturbated layer, a diffusive layer and a sediment sink from which activity does not return. The processes connecting the seabed compartments are burial, bioturbation and pore water diffusion. Model predictions for an arbitrary release from the dump site are presented. Distribution coefficients are shown to be an important factor in determining water concentrations. (author)

  5. Experimentally testing the standard cosmological model

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  6. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  7. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  8. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2015-11-01

    Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.

  9. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  10. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  11. Atomic Action Refinement in Model Based Testing

    NARCIS (Netherlands)

    van der Bijl, H.M.; Rensink, Arend; Tretmans, G.J.

    2007-01-01

    In model based testing (MBT) test cases are derived from a specification of the system that we want to test. In general the specification is more abstract than the implementation. This may result in 1) test cases that are not executable, because their actions are too abstract (the implementation

  12. A model for optimal constrained adaptive testing

    NARCIS (Netherlands)

    van der Linden, Willem J.; Reese, Lynda M.

    1997-01-01

    A model for constrained computerized adaptive testing is proposed in which the information in the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum

  13. A model for optimal constrained adaptive testing

    NARCIS (Netherlands)

    van der Linden, Willem J.; Reese, Lynda M.

    2001-01-01

    A model for constrained computerized adaptive testing is proposed in which the information on the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum

  14. Traceability in Model-Based Testing

    Directory of Open Access Journals (Sweden)

    Mathew George

    2012-11-01

    Full Text Available The growing complexities of software and the demand for shorter time to market are two important challenges that face today’s IT industry. These challenges demand the increase of both productivity and quality of software. Model-based testing is a promising technique for meeting these challenges. Traceability modeling is a key issue and challenge in model-based testing. Relationships between the different models will help to navigate from one model to another, and trace back to the respective requirements and the design model when the test fails. In this paper, we present an approach for bridging the gaps between the different models in model-based testing. We propose relation definition markup language (RDML for defining the relationships between models.

  15. Single particle degrees of freedom in the interacting boson model

    NARCIS (Netherlands)

    Scholten, O.

    1985-01-01

    An overview is given of different aspects of the Interacting Boson Fermion Model, the extension of the interacting Boson Model to odd mass nuclei. The microscopic model for the coupling of single-particle degrees of freedom to the system of bosons is outlined and the interaction between the bosons

  16. Optimal Scaling of Interaction Effects in Generalized Linear Models

    NARCIS (Netherlands)

    J.M. van Rosmalen (Joost); A.J. Koning (Alex); P.J.F. Groenen (Patrick)

    2007-01-01

    textabstractMultiplicative interaction models, such as Goodman's RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are only suitable for data sets with two or three predictor variables. Here, we discuss an

  17. Tin Whisker Testing and Modeling

    Science.gov (United States)

    2015-11-01

    Center for Advanced Life Cycle Engineering, University of Maryland CTE Coefficient of Thermal Expansion DAU Defense Acquisition University DI...below 2.0% PCB Printed Circuit Board synonymous with PWB PWB Printed Wiring Board synonymous with PCB PCTC Simulated power cycling thermal cycling ...DoD focused tin whisker risk assessments and whisker growth mechanisms (long term testing, corrosion/oxidation in humidity, and thermal cycling

  18. Neutron matter with a model interaction

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2000-01-01

    An infinite system of neutrons interacting by a model pair potential is considered. We investigate a case when this potential is sufficiently strong attractive, so that its scattering length a tends to infinity, a →-∞. It appeared, that if the structure of the potential is simple enough, including no finite parameters, reliable evidences can be presented that such a system is completely unstable at any finite density. The incompressibility as a function of the density is negative, reaching zero value when the density tends to zero. If the potential contains a sufficiently strong repulsive core then the system possesses an equilibrium density. The main features of a theory describing such systems are considered. (orig.)

  19. Neutron matter with a model interaction

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; A.F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Shaginyan, V.R. [Petersburg Institute of Nuclear Physics, 188350 Gatchina (Russian Federation); Department of Physics, University of Washington, Seattle, WA 98195 (United States)

    2000-05-01

    An infinite system of neutrons interacting by a model pair potential is considered. We investigate a case when this potential is sufficiently strong attractive, so that its scattering length a tends to infinity, a {yields}-{infinity}. It appeared, that if the structure of the potential is simple enough, including no finite parameters, reliable evidences can be presented that such a system is completely unstable at any finite density. The incompressibility as a function of the density is negative, reaching zero value when the density tends to zero. If the potential contains a sufficiently strong repulsive core then the system possesses an equilibrium density. The main features of a theory describing such systems are considered. (orig.)

  20. Interaction of elaiophylin with model bilayer membrane

    Science.gov (United States)

    Genova, J.; Dencheva-Zarkova, M.

    2017-01-01

    Elaiophylin is a new macrodiolide antibiotic, which is produced by the Streptomyces strains [1]. It displays biological activities against Gram-positive bacteria and fungi. The mode of action of this antibiotic has been attributed to an alteration of the membrane permeability. When this antibiotic is inserted into the bilayer membranes destabilization of the membrane and formation of ion-penetrable channels is observed. The macrodiolide antibiotic forms stable cation selective ion channels in synthetic lipid bilayer membranes. The aim of this work was to study the interactions of Elaiophylin with model bilayer membranes and to get information on the mechanical properties of lipid bilayers in presence of this antibiotic. Patch-clamp technique [2] were used in the study

  1. Statistical Tests for Mixed Linear Models

    CERN Document Server

    Khuri, André I; Sinha, Bimal K

    2011-01-01

    An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a

  2. The effects of angelica essential oil in social interaction and hole-board tests.

    Science.gov (United States)

    Min, Li; Chen, Si Wei; Li, Wei Jing; Wang, Rui; Li, Yu Lei; Wang, Wen Juan; Mi, Xiao Juan

    2005-08-01

    In our previous studies, we have demonstrated the anxiolytic effects of angelica essential oil in three anxiety models using mice. This study aimed to characterize the similar behavior effects of angelica essential oil in the social interaction test of anxiety and the hole-board test of exploration and locomotor activity in rats. These results indicate that angelica essential oil possessed a wide range of anxiolytic properties. In the social interaction test, angelica essential oil decreased aggressive behaviors at the doses of 21 and 42 mg/kg, while the doses of 21 and 42 mg/kg significantly increased social interaction time of the high light, unfamiliar test condition and 21 mg/kg could also prolong social interaction time of the high light, familiar test condition. In the hole-board test, angelica essential oil at 10.5 mg/kg significantly increased head-dipping counts and duration. Thus, our findings suggest the potential usefulness of angelica essential oil against various types of anxiety-related disorders and social failure.

  3. Results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.; Komine, Kuniaki; Matsumoto, Tomoyuki; Costello, J.F.

    1998-05-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed by the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed

  4. Linear Logistic Test Modeling with R

    Science.gov (United States)

    Baghaei, Purya; Kubinger, Klaus D.

    2015-01-01

    The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…

  5. Field testing of bioenergetic models

    International Nuclear Information System (INIS)

    Nagy, K.A.

    1985-01-01

    Doubly labeled water provides a direct measure of the rate of carbon dioxide production by free-living animals. With appropriate conversion factors, based on chemical composition of the diet and assimilation efficiency, field metabolic rate (FMR), in units of energy expenditure, and field feeding rate can be estimated. Validation studies indicate that doubly labeled water measurements of energy metabolism are accurate to within 7% in reptiles, birds, and mammals. This paper discusses the use of doubly labeled water to generate empirical models for FMR and food requirements for a variety of animals

  6. Interaction between Harmane and Nicotinic in the Passive Avoidance Test

    Directory of Open Access Journals (Sweden)

    M Piri

    2011-01-01

    Full Text Available Introduction & Objective: A number of β-carboline alkaloids such as harmane are naturally present in the human food chain. Furthermore, some plants which contain β-carboline have behavioral effects such as hallucination. In the present study, the effect of intra-dorsal hippocampus injection of nicotinic receptor agonist on memory impairment induced by harmane was examined in mice. Materials & Methods: This study was conducted at Shahid Beheshti University in 2009. Two hundred and forty mice were anesthetized with intra-peritoneal injection of ketamine hydrochloride, plus xylazine which afterwards were placed in a stereotaxic apparatus. Two cannuale were placed in the CA1 regions of the dorsal hippocampus. All animals were allowed to recover for a total week before beginning of the behavioral testing. After that, the animals were trained in a step-down type inhibitory avoidance task and tested 24 hours after training to measure step-down latency as a scale of memory. Results: Pre-training and post-training, intra-peritoneal injection of harmane impairs inhibitory avoidance memory, but pre-testing injection of harmane did not alter memory retrieval. Pre-testing administration of high dose of nicotine (0.5 µg/mice, intra-CA1 decreased memory retrieval. On the other hand, pre-test intra-CA1 injection of ineffective doses of nicotine (0.1 and 2.5 µg/mice fully reversed harmane induced impairment of memory. Conclusion: The present results indicated that complex interaction exists between nicotinic receptor of dorsal hippocampus and the impairment of inhibitory avoidance memory induced by harmane.

  7. Institute for Multiscale Modeling of Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham

    2009-12-26

    The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.

  8. Spectron: Graphical Model for Interacting With Timbre

    Directory of Open Access Journals (Sweden)

    Daniel Gómez

    2009-06-01

    Full Text Available The algorithms for creating and manipulating sound by electronic or digital means have grown in number and complexity since the creation of the first analog synthesizers. The techniques for visualizing these synthesis models have not increasingly grown with synthesizers, neither in hardware nor in software. In this paper, the possibilities to graphically represent and control timbre are presented, based on displaying the parameters involved in its synthesis model. A very simple data set was extracted from a commercial subtractive synthesizer and analyzed in two different approaches, dimensionality reduction and abstract data visualization. The results of these two different approaches were used as leads to design a synthesizer prototype: the Spectron synthesizer. This prototype uses an Amplitude vs. Frequency graphic as it´s main interface to give information about the timbre and to interact with it, it´s control offers a simplification in the amount of variables of a classic oscillator and expands its possibilities to generate additional timbre.

  9. Testing theory of binary evolution with interacting binary stars

    Science.gov (United States)

    Ergma, E.; Sarna, M. J.

    2002-01-01

    Of particular interest to us is the study of mass loss and its influence on the evolution of a binary systems. For this we use theoretical evolutionary models, which include: mass accretion, mass loss, novae explosion, super--efficient wind, and mixing processes. To test our theoretical prediction we proposed to determine the 12C / 13C ratio via measurements of the 12CO and 13CO bands around 2.3 micron. The available observations (Exter at al. 2001, in preparation) show good agreement with the theoretical predictions (Sarna 1992), for Algol-type binaries. Our preliminary estimates of the isotopic ratios for pre-CV's and CV's (Catalan et al. 2000, Dhillon et al. 2001) agree with the theoretical predictions from the common--envelope binary evolution models by Sarna et al. (1995). For the SXT we proposed (Ergma & Sarna 2001) similar observational test, which has not been done yet.

  10. Biglan Model Test Based on Institutional Diversity.

    Science.gov (United States)

    Roskens, Ronald W.; Creswell, John W.

    The Biglan model, a theoretical framework for empirically examining the differences among subject areas, classifies according to three dimensions: adherence to common set of paradigms (hard or soft), application orientation (pure or applied), and emphasis on living systems (life or nonlife). Tests of the model are reviewed, and a further test is…

  11. Precision test of charge independence of hadronic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.

    1986-10-01

    Broken symmetries are among the richest sources of information about the fundamental interactions: the renewed interest in the study of isospin non-conservation by strong forces is closely related to the effort of understanding some properties of nuclear systems in terms of their basic degrees of freedom. The hope is to be able to relate the pattern of the dynamical breaking of this symmetry to the mass spectrum of light quarks: to this purpose a more detailed phenomenological knowledge must be provided by a new generation of experiments. These considerations motivated a precision test of charge independence of strong nuclear interactions through a measurement of the parameters ..delta..A/sub y//sub 0/(theta) = A/sub y//sub 0/(theta,/sup 3/H) - A/sub y//sub 0/(theta,/sup 3/He), (the difference in analyzing power), and R identical with dsigma(theta/sup 3/H)/dsigma(theta,/sup 3/He) for the two reactions: vector p + d ..-->.. /sup 3/H + ..pi../sup +/, vector p + d ..-->.. /sup 3/He + ..pi../sup 0/. The observable ..delta..A/sub y//sub 0/ is particularly relevant as it probes the spin dependent term of the symmetry breaking interaction, on which so far almost no empirical evidence is available. The experiment has been performed at the Los Alamos Meson Physics Facility, using the N-type polarized proton beam (T/sub vector p/ = 733 MeV), and detecting the charged heavy particle in the HRS magnetic spectrometer. The final results are: ..delta..A/sub y//sub 0/ = A/sub y//sub 0/(/sup 3/H) - A/sub y//sub 0/(/sup 3/He) = 0.3930 - 0.3996 = -0.0066 +- 0.0040 +- (0.0018) and R = 2.193 +- 0.007 +- (0.027), where the first errors are statistical and the second systematic. 107 refs., 23 tabs., 63 figs.

  12. Precision test of charge independence of hadronic interactions

    International Nuclear Information System (INIS)

    Artuso, M.

    1986-10-01

    Broken symmetries are among the richest sources of information about the fundamental interactions: the renewed interest in the study of isospin non-conservation by strong forces is closely related to the effort of understanding some properties of nuclear systems in terms of their basic degrees of freedom. The hope is to be able to relate the pattern of the dynamical breaking of this symmetry to the mass spectrum of light quarks: to this purpose a more detailed phenomenological knowledge must be provided by a new generation of experiments. These considerations motivated a precision test of charge independence of strong nuclear interactions through a measurement of the parameters ΔA/sub y/ 0 (θ) = A/sub y/ 0 (θ, 3 H) - A/sub y/ 0 (θ, 3 He), (the difference in analyzing power), and R identical with dσ(θ 3 H)/dσ(θ, 3 He) for the two reactions: vector p + d → 3 H + π + , vector p + d → 3 He + π 0 . The observable ΔA/sub y/ 0 is particularly relevant as it probes the spin dependent term of the symmetry breaking interaction, on which so far almost no empirical evidence is available. The experiment has been performed at the Los Alamos Meson Physics Facility, using the N-type polarized proton beam (T/sub vector p/ = 733 MeV), and detecting the charged heavy particle in the HRS magnetic spectrometer. The final results are: ΔA/sub y/ 0 = A/sub y/ 0 ( 3 H) - A/sub y/ 0 ( 3 He) = 0.3930 - 0.3996 = -0.0066 +- 0.0040 +- (0.0018) and R = 2.193 +- 0.007 +- (0.027), where the first errors are statistical and the second systematic. 107 refs., 23 tabs., 63 figs

  13. TESTING GARCH-X TYPE MODELS

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    2017-01-01

    We present novel theory for testing for reduction of GARCH-X type models with an exogenous (X) covariate to standard GARCH type models. To deal with the problems of potential nuisance parameters on the boundary of the parameter space as well as lack of identification under the null, we exploit...... a noticeable property of specific zero-entries in the inverse information of the GARCH-X type models. Specifically, we consider sequential testing based on two likelihood ratio tests and as demonstrated the structure of the inverse information implies that the proposed test neither depends on whether...

  14. Testing Expected Shortfall Models for Derivative Positions

    NARCIS (Netherlands)

    Kerkhof, F.L.J.; Melenberg, B.; Schumacher, J.M.

    2003-01-01

    In this paper we test several risk management models for computing expected shortfall for one-period hedge errors of hedged derivatives positions.Contrary to value-at-risk, expected shortfall cannot be tested using the standard binomial test, since we need information of the distribution in the

  15. The Couplex test cases: models and lessons

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeat, A. [Lyon-1 Univ., MCS, 69 - Villeurbanne (France); Kern, M. [Institut National de Recherches Agronomiques (INRA), 78 - Le Chesnay (France); Schumacher, S.; Talandier, J. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

    2003-07-01

    The Couplex test cases are a set of numerical test models for nuclear waste deep geological disposal simulation. They are centered around the numerical issues arising in the near and far field transport simulation. They were used in an international contest, and are now becoming a reference in the field. We present the models used in these test cases, and show sample results from the award winning teams. (authors)

  16. The Couplex test cases: models and lessons

    International Nuclear Information System (INIS)

    Bourgeat, A.; Kern, M.; Schumacher, S.; Talandier, J.

    2003-01-01

    The Couplex test cases are a set of numerical test models for nuclear waste deep geological disposal simulation. They are centered around the numerical issues arising in the near and far field transport simulation. They were used in an international contest, and are now becoming a reference in the field. We present the models used in these test cases, and show sample results from the award winning teams. (authors)

  17. Novel Likelihood Ratio Tests for Screening Gene-Gene and Gene-Environment Interactions with Unbalanced Repeated-Measures Data

    Science.gov (United States)

    Ko, Yi-An; Saha-Chaudhuri, Paramita; Park, Sung Kyun; Vokonas, Pantel Steve; Mukherjee, Bhramar

    2013-01-01

    There has been extensive literature on modeling gene-gene interaction (GGI) and gene-environment interaction (GEI) in case-control studies with limited literature on statistical methods for GGI and GEI in longitudinal cohort studies. We borrow ideas from the classical two-way analysis of variance (ANOVA) literature to address the issue of robust modeling of interactions in repeated-measures studies. While classical interaction models proposed by Tukey and Mandel have interaction structures as a function of main effects, a newer class of models, additive main effects and multiplicative interaction (AMMI) models, do not have similar restrictive assumptions on the interaction structure. AMMI entails a singular value decomposition of the cell residual matrix after fitting the additive main effects and has been shown to perform well across various interaction structures. We consider these models for testing GGI and GEI from two perspectives: likelihood ratio test based on cell means and a regression based approach using individual observations. Simulation results indicate that both approaches for AMMI models lead to valid tests in terms of maintaining the type I error rate, with the regression approach having better power properties. The performance of these models was evaluated across different interaction structures and 12 common epistasis patterns. In summary, AMMI model is robust with respect to misspecified interaction structure and is a useful screening tool for interaction even in the absence of main effects. We use the proposed methods to examine the interplay between the hemochromatosis gene and cumulative lead exposure on pulse pressure in the Normative Aging Study. PMID:23798480

  18. Tree-Based Global Model Tests for Polytomous Rasch Models

    Science.gov (United States)

    Komboz, Basil; Strobl, Carolin; Zeileis, Achim

    2018-01-01

    Psychometric measurement models are only valid if measurement invariance holds between test takers of different groups. Global model tests, such as the well-established likelihood ratio (LR) test, are sensitive to violations of measurement invariance, such as differential item functioning and differential step functioning. However, these…

  19. An Approach to Model Based Testing of Multiagent Systems

    Directory of Open Access Journals (Sweden)

    Shafiq Ur Rehman

    2015-01-01

    Full Text Available Autonomous agents perform on behalf of the user to achieve defined goals or objectives. They are situated in dynamic environment and are able to operate autonomously to achieve their goals. In a multiagent system, agents cooperate with each other to achieve a common goal. Testing of multiagent systems is a challenging task due to the autonomous and proactive behavior of agents. However, testing is required to build confidence into the working of a multiagent system. Prometheus methodology is a commonly used approach to design multiagents systems. Systematic and thorough testing of each interaction is necessary. This paper proposes a novel approach to testing of multiagent systems based on Prometheus design artifacts. In the proposed approach, different interactions between the agent and actors are considered to test the multiagent system. These interactions include percepts and actions along with messages between the agents which can be modeled in a protocol diagram. The protocol diagram is converted into a protocol graph, on which different coverage criteria are applied to generate test paths that cover interactions between the agents. A prototype tool has been developed to generate test paths from protocol graph according to the specified coverage criterion.

  20. Simplified Human-Robot Interaction: Modeling and Evaluation

    Directory of Open Access Journals (Sweden)

    Balazs Daniel

    2013-10-01

    Full Text Available In this paper a novel concept of human-robot interaction (HRI modeling is proposed. Including factors like trust in automation, situational awareness, expertise and expectations a new user experience framework is formed for industrial robots. Service Oriented Robot Operation, proposed in a previous paper, creates an abstract level in HRI and it is also included in the framework. This concept is evaluated with exhaustive tests. Results prove that significant improvement in task execution may be achieved and the new system is more usable for operators with less experience with robotics; personnel specific for small and medium enterprises (SMEs.

  1. Test-driven modeling of embedded systems

    DEFF Research Database (Denmark)

    Munck, Allan; Madsen, Jan

    2015-01-01

    To benefit maximally from model-based systems engineering (MBSE) trustworthy high quality models are required. From the software disciplines it is known that test-driven development (TDD) can significantly increase the quality of the products. Using a test-driven approach with MBSE may have...... a similar positive effect on the quality of the system models and the resulting products and may therefore be desirable. To define a test-driven model-based systems engineering (TD-MBSE) approach, we must define this approach for numerous sub disciplines such as modeling of requirements, use cases......, scenarios, behavior, architecture, etc. In this paper we present a method that utilizes the formalism of timed automatons with formal and statistical model checking techniques to apply TD-MBSE to the modeling of system architecture and behavior. The results obtained from applying it to an industrial case...

  2. Hydraulic Model Tests on Modified Wave Dragon

    DEFF Research Database (Denmark)

    Hald, Tue; Lynggaard, Jakob

    A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University and in the following this mo...

  3. Model tests for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Stoever, R.

    1975-01-01

    Investigations with models of reactor pressure vessels are used to check results of three dimensional calculation methods and to predict the behaviour of the prototype. Model tests with 1:50 elastic pressure vessel models and with a 1:5 prestressed concrete pressure vessel are described and experimental results are presented. (orig.) [de

  4. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures.

    Science.gov (United States)

    Kerrien, E; Yureidini, A; Dequidt, J; Duriez, C; Anxionnat, R; Cotin, S

    2017-01-01

    Endovascular interventions can benefit from interactive simulation in their training phase but also during pre-operative and intra-operative phases if simulation scenarios are based on patient data. A key feature in this context is the ability to extract, from patient images, models of blood vessels that impede neither the realism nor the performance of simulation. This paper addresses both the segmentation and reconstruction of the vasculature from 3D Rotational Angiography data, and adapted to simulation: An original tracking algorithm is proposed to segment the vessel tree while filtering points extracted at the vessel surface in the vicinity of each point on the centerline; then an automatic procedure is described to reconstruct each local unstructured point set as a skeleton-based implicit surface (blobby model). The output of successively applying both algorithms is a new model of vasculature as a tree of local implicit models. The segmentation algorithm is compared with Multiple Hypothesis Testing (MHT) algorithm (Friman et al., 2010) on patient data, showing its greater ability to track blood vessels. The reconstruction algorithm is evaluated on both synthetic and patient data and demonstrate its ability to fit points with a subvoxel precision. Various tests are also reported where our model is used to simulate catheter navigation in interventional neuroradiology. An excellent realism, and much lower computational costs are reported when compared to triangular mesh surface models. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  6. Experimental and modeling evidence of appendicularian-ciliate interactions

    DEFF Research Database (Denmark)

    Lombard, Fabien; Eloire, D.; Gobet, A.

    Interactions between appendicularians and ciliates were observed over the life span of Oikopleura dioica in laboratory cultures and clarified with the use of mathematical modeling and microscopic observations. Complex interactions including competition, parasitism, predation, and histophagy...

  7. Experimental and modeling evidence of appendicularian-ciliate interactions

    DEFF Research Database (Denmark)

    Lombard, Fabien; Eloire, Damien; Gobet, Angelique

    2010-01-01

    Interactions between appendicularians and ciliates were observed over the life span of Oikopleura dioica in laboratory cultures and clarified with the use of mathematical modeling and microscopic observations. Complex interactions including competition, parasitism, predation, and histophagy...

  8. Thole's interacting polarizability model in computational chemistry practice

    NARCIS (Netherlands)

    deVries, AH; vanDuijnen, PT; Zijlstra, RWJ; Swart, M

    Thole's interacting polarizability model to calculate molecular polarizabilities from interacting atomic polarizabilities is reviewed and its major applications in computational chemistry are illustrated. The applications include prediction of molecular polarizabilities, use in classical expressions

  9. Thematic Apperception Test: an original proposal for interaction analysis

    Directory of Open Access Journals (Sweden)

    Doriana Dipaola

    2015-12-01

    Full Text Available The TAT as projective technique gives the opportunity to explore the inner world and the intra-psychic functioning, as well as the objectual representations and the prevailing thinking processes. Our hypothesis is that the TAT could also be deployed as a valid tool in the analysis of inter-personal functioning, specifically within the couple. From this assumption originates our proposal for an original methodology of TAT deployment and reading, which integrates the classical individual TAT methodology with the Common Rorschach method suggested by Willi. The goal is to experiment a parallel utilisation of the test that could contribute to the understanding of personalities and of how these intertwine in couple interaction. “In the relationship with the partner, the personality takes new shapes, given personality and character traits are strengthened, while others lose importance”, (Theodore Lidz, in Willi, 1990. The couple TAT presupposes a sequence of pictures proposed following procedures identical to the Common Rorschach ones to the single individuals at first and then to the couple. From the initial individual task follows the one of building a commonly shared history starting from the stimulus. The suggested methodology shall be exemplified through the presentation of clinical cases belonging to the research sample. The comprehension of the inter-personal dynamic, in a common task, could allow to explore the ways in which conflict expresses itself, the roles and prospects for collaboration, the “generativity” of the couple and the management of affects and anxieties in the interaction and could be successfully deployed as a tool in the context of couple counselling.

  10. Functionalized anatomical models for EM-neuron Interaction modeling

    Science.gov (United States)

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2016-06-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.

  11. Model-based testing for embedded systems

    CERN Document Server

    Zander, Justyna; Mosterman, Pieter J

    2011-01-01

    What the experts have to say about Model-Based Testing for Embedded Systems: "This book is exactly what is needed at the exact right time in this fast-growing area. From its beginnings over 10 years ago of deriving tests from UML statecharts, model-based testing has matured into a topic with both breadth and depth. Testing embedded systems is a natural application of MBT, and this book hits the nail exactly on the head. Numerous topics are presented clearly, thoroughly, and concisely in this cutting-edge book. The authors are world-class leading experts in this area and teach us well-used

  12. A simple parametric model selection test

    OpenAIRE

    Susanne M. Schennach; Daniel Wilhelm

    2014-01-01

    We propose a simple model selection test for choosing among two parametric likelihoods which can be applied in the most general setting without any assumptions on the relation between the candidate models and the true distribution. That is, both, one or neither is allowed to be correctly speci fied or misspeci fied, they may be nested, non-nested, strictly non-nested or overlapping. Unlike in previous testing approaches, no pre-testing is needed, since in each case, the same test statistic to...

  13. Evaluating user interactions with clinical information systems: a model based on human-computer interaction models.

    Science.gov (United States)

    Despont-Gros, Christelle; Mueller, Henning; Lovis, Christian

    2005-06-01

    This article proposes a model for dimensions involved in user evaluation of clinical information systems (CIS). The model links the dimensions in traditional CIS evaluation and the dimensions from the human-computer interaction (HCI) perspective. In this article, variables are defined as the properties measured in an evaluation, and dimensions are defined as the factors contributing to the values of the measured variables. The proposed model is based on a two-step methodology with: (1) a general review of information systems (IS) evaluations to highlight studied variables, existing models and frameworks, and (2) a review of HCI literature to provide the theoretical basis to key dimensions of user evaluation. The review of literature led to the identification of eight key variables, among which satisfaction, acceptance, and success were found to be the most referenced. Among those variables, IS acceptance is a relevant candidate to reflect user evaluation of CIS. While their goals are similar, the fields of traditional CIS evaluation, and HCI are not closely connected. Combining those two fields allows for the development of an integrated model which provides a model for summative and comprehensive user evaluation of CIS. All dimensions identified in existing studies can be linked to this model and such an integrated model could provide a new perspective to compare investigations of different CIS systems.

  14. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  15. Assessing Spurious Interaction Effects in Structural Equation Modeling

    Science.gov (United States)

    Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming

    2015-01-01

    Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…

  16. A rumor transmission model with various contact interactions.

    Science.gov (United States)

    Kawachi, Kazuki; Seki, Motohide; Yoshida, Hiraku; Otake, Yohei; Warashina, Katsuhide; Ueda, Hiroshi

    2008-07-07

    We consider a rumor transmission model with various contact interactions and explore what effect such interactions have on the spread of a rumor, in particular whether they can explain the rumor recursion. Through mathematical analysis and computer simulations, we conjecture that rumor recursion remains a major challenge to mathematical models of rumors beyond our model proposed here.

  17. Backfill-waste interactions in repository simulating tests

    International Nuclear Information System (INIS)

    Sasaki, N.; Komarneni, S.; Scheetz, B.E.; Roy, R.

    1982-01-01

    Candidate backfill materials such as montmorillonite and clinoptilolite with and without the presence of simulated nuclear waste solids such as borosilicate glass, glass ceramic, sintered ceramic and supercalcine ceramic were investigated under repository simulating conditions (=300 0 C and 30MPa). Experiments were conducted under semi-wet as well as wet repository conditions. Montmorillonite and clinoptilolite did not seem to alter under both semi-wet and wet repository conditions as determined by XRD. However, the above backfill materials reacted extensively with wastes under both conditions. They altered to feldspar (oligoclase) in the presence of borosilicate glass and to analcime in the presence of particular ceramics under both semi-wet and wet repository conditions. Alteration of montmorillonite could not be detected either in the presence of the glass ceramic or supercalcine ceramic under both repository conditions. However, clinoptilolite altered to analcime in the presence of glass ceramic or supercalcine ceramic under wet repository conditions. Reactions of backfill materials with simulated wastes immobilized waste elements such as Cs, Mo, etc., by forming new phases such as analcime, oligoclase and powellite. In fact, analyses of product solutions from interaction runs indicated that the presence of backfill materials during the alteration of waste solids served to drastically reduce the concentration of some radionuclides in solutions. These results suggest that properly selected backfills can provide the simplest and most effective chemical (or thermodynamic) engineered barrier in an intelligently designed multibarrier system. Moreover, they indicate that the μ, P, and T in the usual leach tests are such that results of such tests cannot have any value in evaluating waste form behavior under repository conditions. 3 figures, 5 tables

  18. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    Science.gov (United States)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  19. Physical modelling of interactions between interfaces and turbulence; Modelisation physique des interactions entre interfaces et turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Toutant, A

    2006-12-15

    The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)

  20. Model-based automated testing of critical PLC programs.

    CERN Document Server

    Fernández Adiego, B; Tournier, J-C; González Suárez, V M; Bliudze, S

    2014-01-01

    Testing of critical PLC (Programmable Logic Controller) programs remains a challenging task for control system engineers as it can rarely be automated. This paper proposes a model based approach which uses the BIP (Behavior, Interactions and Priorities) framework to perform automated testing of PLC programs developed with the UNICOS (UNified Industrial COntrol System) framework. This paper defines the translation procedure and rules from UNICOS to BIP which can be fully automated in order to hide the complexity of the underlying model from the control engineers. The approach is illustrated and validated through the study of a water treatment process.

  1. Quantum dynamics modeled by interacting trajectories

    Science.gov (United States)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  2. Evaluating Frugivore-fruit Interactions Using Avian Eye Modelling.

    Science.gov (United States)

    Fadzly, Nik; Burns, Kevin C; Zuharah, Wan Fatma

    2013-12-01

    Fruit phenotypes are often hypothesised to be affected by selection by frugivores. Here, we tested two hypotheses concerning frugivore-fruit interactions from the perspective of fruit colours. We measured the spectral properties of 26 fruits and the associated leaves of plants from 2 islands in New Zealand. Visual observations were also performed to record the birds that fed on the fruits. First, we tested the fruit-foliage hypothesis, where fruit colours are assumed to be evolutionarily constrained by their own leaf colour to maximise colour contrast and fruit conspicuousness. We ran a null model analysis comparing fruit colour contrast using an avian eye model. Second, we tested the frugivore specificity hypothesis, where specific fruit colours are thought to be connected with a specific bird frugivore. We performed a regression on the number of bird visits against the fruit colour in tetrahedral colour space based on an avian eye calculation using Mantel's test. The results show that fruit colours are not constrained by their own leaf colours. There is also no relationship or pattern suggesting a link between a specific fruit colour and specific bird visitors. We suggest that although fruit colour is one of the most highly discussed components, it is not the most important single deciding factor in frugivore fruit selection.

  3. Oxide-metal corium-concrete interaction test in the Vulcano facility

    International Nuclear Information System (INIS)

    Journeau, Ch.; Piluso, P.; Haquet, J.F.; Saretta, S.; Boccaccio, E.; Bonnet, J.M.

    2007-01-01

    Corium is likely to melt through the vessel and interact with the reactor pit concrete. Corium is made of a UO 2 -rich oxidic part, in which most of the decay heat is dissipated, and of a metallic part, mainly molten steel. An experiment has been set up in the Vulcano facility in which oxidic and metallic mixtures are molten in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Pre-calculations with the TOLBIAC-ICB corium-concrete interaction code based on the phase segregation model have provided valuable information for the dimensioning of this test: a thick metallic layer (>10 kg or 4 cm) has been chosen in order to obtain significant cavity ablation profiles depending on the selected heat transfer and stratification models. Stratification of the two liquid phases is predicted to occur in less than 10 minutes. In September 2006, the experiment was performed in the Vulcano facility. The corium was made of about 15 kg of steel at 1700 C and 30 kg of oxides (70% UO 2 , 16 % ZrO 2 and 14% concrete load) above 2000 C. It was poured in a limestone-rich concrete. This concrete type was selected for the first test, since the ablation is isotropic except for the initial transient, during oxidic corium-concrete interaction tests. 32 kW of induction power have been provided to the pool during the 4-hour test. The destruction of in-concrete thermocouples indicates that ablation was first mainly radial then became isotropic. This is quite similar to the ablation progression observed during previous tests with oxidic corium interacting with this type of concrete. Important 'volcanic activity' has been observed at the corium pool surface, compared to the previous oxidic corium experiments at Vulcano. (authors)

  4. Gene-based testing of interactions in association studies of quantitative traits.

    Directory of Open Access Journals (Sweden)

    Li Ma

    Full Text Available Various methods have been developed for identifying gene-gene interactions in genome-wide association studies (GWAS. However, most methods focus on individual markers as the testing unit, and the large number of such tests drastically erodes statistical power. In this study, we propose novel interaction tests of quantitative traits that are gene-based and that confer advantage in both statistical power and biological interpretation. The framework of gene-based gene-gene interaction (GGG tests combine marker-based interaction tests between all pairs of markers in two genes to produce a gene-level test for interaction between the two. The tests are based on an analytical formula we derive for the correlation between marker-based interaction tests due to linkage disequilibrium. We propose four GGG tests that extend the following P value combining methods: minimum P value, extended Simes procedure, truncated tail strength, and truncated P value product. Extensive simulations point to correct type I error rates of all tests and show that the two truncated tests are more powerful than the other tests in cases of markers involved in the underlying interaction not being directly genotyped and in cases of multiple underlying interactions. We applied our tests to pairs of genes that exhibit a protein-protein interaction to test for gene-level interactions underlying lipid levels using genotype data from the Atherosclerosis Risk in Communities study. We identified five novel interactions that are not evident from marker-based interaction testing and successfully replicated one of these interactions, between SMAD3 and NEDD9, in an independent sample from the Multi-Ethnic Study of Atherosclerosis. We conclude that our GGG tests show improved power to identify gene-level interactions in existing, as well as emerging, association studies.

  5. Modeling a Small Punch Testing Device

    Directory of Open Access Journals (Sweden)

    S. Habibi

    2014-04-01

    Full Text Available A small punch test of a sample in miniature is implemented in order to estimate the ultimate load of CrMoV ductile steel. The objective of this study is to model the ultimate tensile strength and ultimate load indentation according to the geometrical parameters of the SPT using experimental data. A comparison of the model obtained with the two models (European code of practice and method of Norris and Parker allows the design and dimensioning of an indentation device that meets the practical constraints. Implemented as a Matlab program, allows the investigation of new combinations of test variables.

  6. Modelling microbial interactions and food structure in predictive microbiology

    NARCIS (Netherlands)

    Malakar, P.K.

    2002-01-01

    Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.

    Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of

  7. Results of thermal interaction tests for various materials performed in the Ispra tank facility

    International Nuclear Information System (INIS)

    Fasoli-Stella, P.; Holtbecker, H.; Jorzik, E.; Schlittenhardt, P.; Thoma, U.

    A test facility for fuel/coolant thermal interaction measurements is described together with recent improvements of the melting oven design, the instrumentation and the collection and cleaning of the debris. The formation of a UO 2 crust on the melting crucible is investigated theoretically taking into account the heat losses during transport of the crucible from the oven to the reaction chamber. Experimental results for the systems steel-sodium, steel-water and UO 2 -sodium are presented and discussed with respect to particle size distribution and appearence of the debris. A sodium/fuel interaction model is introduced in the hydrodynamic REXCO-H-code. The results of test calculations are dealt with

  8. Monte Carlo Computational Modeling of Atomic Oxygen Interactions

    Science.gov (United States)

    Banks, Bruce A.; Stueber, Thomas J.; Miller, Sharon K.; De Groh, Kim K.

    2017-01-01

    which has the capability to tune the interactions of how the atomic oxygen reacts, scatters, or recombines on polymer or nonreactive surfaces. In addition to the specification of atomic oxygen arrival details, a total of 15 atomic oxygen interaction parameters have been identified as necessary to properly simulate observed interactions and resulting polymer erosion that have been observed in LEO. The tuning of the Monte Carlo model has been accomplished by adjusting interaction parameters so the erosion patterns produced by the model match those from several actual LEO space experiments. Surface texturing in LEO can also be predicted by the model. Such comparison of space tests with ground laboratory experiments have enabled confidence in ground laboratory lifetime prediction of protected polymers. Results of Monte Carlo tuning, examples of surface texturing and undercutting erosion prediction, and several examples of how the model can be used to predict other LEO and Mars orbital space results are presented.

  9. Observation-Based Modeling for Model-Based Testing

    NARCIS (Netherlands)

    Kanstrén, T.; Piel, E.; Gross, H.G.

    2009-01-01

    One of the single most important reasons that modeling and modelbased testing are not yet common practice in industry is the perceived difficulty of making the models up to the level of detail and quality required for their automated processing. Models unleash their full potential only through

  10. Kinematic tests of exotic flat cosmological models

    International Nuclear Information System (INIS)

    Charlton, J.C.; Turner, M.S.; NASA/Fermilab Astrophysics Center, Batavia, IL)

    1987-01-01

    Theoretical prejudice and inflationary models of the very early universe strongly favor the flat, Einstein-de Sitter model of the universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the universe which posses a smooth component of energy density. The kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings is studied in detail. The observational tests which can be used to discriminate between these models are also discussed. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations. 58 references

  11. Kinematic tests of exotic flat cosmological models

    International Nuclear Information System (INIS)

    Charlton, J.C.; Turner, M.S.

    1986-05-01

    Theoretical prejudice and inflationary models of the very early Universe strongly favor the flat, Einstein-deSitter model of the Universe. At present the observational data conflict with this prejudice. This conflict can be resolved by considering flat models of the Universe which possess a smooth component by energy density. We study in detail the kinematics of such models, where the smooth component is relativistic particles, a cosmological term, a network of light strings, or fast-moving, light strings. We also discuss the observational tests which can be used to discriminate between these models. These tests include the magnitude-redshift, lookback time-redshift, angular size-redshift, and comoving volume-redshift diagrams and the growth of density fluctuations

  12. Human Birth Weight and Reproductive Immunology: Testing for Interactions between Maternal and Offspring KIR and HLA-C Genes.

    Science.gov (United States)

    Clark, Michelle M; Chazara, Olympe; Sobel, Eric M; Gjessing, Håkon K; Magnus, Per; Moffett, Ashley; Sinsheimer, Janet S

    2016-01-01

    Maternal and offspring cell contact at the site of placentation presents a plausible setting for maternal-fetal genotype (MFG) interactions affecting fetal growth. We test hypotheses regarding killer cell immunoglobulin-like receptor (KIR) and HLA-C MFG effects on human birth weight by extending the quantitative MFG (QMFG) test. Until recently, association testing for MFG interactions had limited applications. To improve the ability to test for these interactions, we developed the extended QMFG test, a linear mixed-effect model that can use multi-locus genotype data from families. We demonstrate the extended QMFG test's statistical properties. We also show that if an offspring-only model is fit when MFG effects exist, associations can be missed or misattributed. Furthermore, imprecisely modeling the effects of both KIR and HLA-C could result in a failure to replicate if these loci's allele frequencies differ among populations. To further illustrate the extended QMFG test's advantages, we apply the extended QMFG test to a UK cohort study and the Norwegian Mother and Child Cohort (MoBa) study. We find a significant KIR-HLA-C interaction effect on birth weight. More generally, the QMFG test can detect genetic associations that may be missed by standard genome-wide association studies for quantitative traits. © 2017 S. Karger AG, Basel.

  13. A Method for Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Le Guilly, Thibaut; Ravn, Anders Peter

    2015-01-01

    This paper presents a method to check for feature interactions in a system assembled from independently developed concurrent processes as found in many reactive systems. The method combines and refines existing definitions and adds a set of activities. The activities describe how to populate the ...

  14. Open Interactivity: A Model for Audience Agency

    Directory of Open Access Journals (Sweden)

    Charlotte Gould

    2018-04-01

    Full Text Available Artists have increasingly acknowledged the role of the audience as collaborators both in the construction of meaning (Bathes, 1977, through subjective experience (Dewey, 1934 and in contributing to the creative act by externalising the work. (Duchamp Lucy Lippard identifies 1966-72 as a period where artists turned increasingly towards the audience, representing a "dematerialization of the art object" (Lippard, 1997 through "Happenings" and "Fluxus" movements. Digital media has facilitated this trajectory, implicit in the interactive computer interface (Manovich, 2005, but interactivity per se may offer no more than a series of choices put forward by the artist (Daniels, 2011. Interactivity represents interplay between artist and audience (Dinka, 1996 and is potentially a process of audience empowerment to offer agency, defined as real and creative choice (Browning, 1964. Public screen installation "Peoples Screen" Guangzhou, linking China to Perth Australia (Sermon & Gould, 2015 offered a partnership between artist and audience to co-create content though playful narratives and active engagement in a drama that unfolds using improvisation and play. Initially visitors enjoy observing the self on the screen but audiences quickly start to interact with the environment and other participants. Immersed in play they lose a sense of the self (Callois, 2011 and enter a virtual third space where possibilities for creativity and direction of play are limitless. The self becomes an avatar where the audience can inhabit "the other" thereby exploring alternative realities through ludic play, promoting tolerance and empathy and developing collective memory.

  15. Molecular Sieve Bench Testing and Computer Modeling

    Science.gov (United States)

    Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.

    1995-01-01

    The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.

  16. 1-g model loading tests: methods and results

    Czech Academy of Sciences Publication Activity Database

    Feda, Jaroslav

    1999-01-01

    Roč. 2, č. 4 (1999), s. 371-381 ISSN 1436-6517. [Int.Conf. on Soil - Structure Interaction in Urban Civ. Engineering. Darmstadt, 08.10.1999-09.10.1999] R&D Projects: GA MŠk OC C7.10 Keywords : shallow foundation * model tests * sandy subsoil * bearing capacity * subsoil failure * volume deformation Subject RIV: JM - Building Engineering

  17. Contemporary Ecological Interactions Improve Models of Past Trait Evolution.

    Science.gov (United States)

    Hutchinson, Matthew C; Gaiarsa, Marília P; Stouffer, Daniel B

    2018-02-20

    Despite the fact that natural selection underlies both traits and interactions, evolutionary models often neglect that ecological interactions may, and in many cases do, influence the evolution of traits. Here, we explore the interdependence of ecological interactions and functional traits in the pollination associations of hawkmoths and flowering plants. Specifically, we develop an adaptation of the Ornstein-Uhlenbeck model of trait evolution that allows us to study the influence of plant corolla depth and observed hawkmoth-plant interactions on the evolution of hawkmoth proboscis length. Across diverse modelling scenarios, we find that the inclusion of contemporary interactions can provide a better description of trait evolution than the null expectation. Moreover, we show that the pollination interactions provide more-likely models of hawkmoth trait evolution when interactions are considered at increasingly finescale groups of hawkmoths. Finally, we demonstrate how the results of best-fit modelling approaches can implicitly support the association between interactions and trait evolution that our method explicitly examines. In showing that contemporary interactions can provide insight into the historical evolution of hawkmoth proboscis length, we demonstrate the clear utility of incorporating additional ecological information to models designed to study past trait evolution.

  18. Seismic soil-structure interaction: Analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1986-01-01

    A method for nonlinear dynamic effective stress analysis applicable to soil-structure interaction problems is introduced. Full interaction including slip between structure and foundation is taken into account and the major factors that must be considered when computing dynamic soil response are included. An experimental investigation using simulated earthquake tests on centrifuged geotechnical models was conducted to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. The centrifuge tests were conducted in the Geotechnical Centrifuge at Cambridge University, England. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results clearly show the pronounced effect of increasing pore water pressures on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress nonlinear analysis. On the basis of preliminary results, it appears that the effects of pore water pressure can be predicted. (orig.)

  19. Comparison between tests and analyses for ground-foundation models

    International Nuclear Information System (INIS)

    Moriyama, Ken-ichi; Hibino, Hirosi; Izumi, Masanori; Kiya, Yukiharu.

    1991-01-01

    The laboratory tests were carried out on two ground models made of silicone rubber (hard and soft ground models) and a foundation model made of aluminum in order to confirm the embedment effects on soil-structure interaction system experimentally. The detail of the procedure and the results of the test are described in the companion paper. Up till now, the analytical studies on the embedment effect on seismic response of buildings have been performed in recent years and the analysis tools have been used in the seismic design procedure of the nuclear power plant facilities. The embedment effects on soil-structure interaction system are confirmed by the simulation analysis and the verification of analysis tools are investigated through the simulation analysis in this paper. The following conclusions can be drawn from comparison between laboratory test results and analysis results. (1) The effects of embedment, such as increase in the impedance functions and the rotational component of foundation input motions, were clarified by the simulation analyses and laboratory tests. (2) The analysis results of axisymmetric FEM showed good agreement with processed test results by means of the transient response to eliminate the reflected waves and the analysis tools were confirmed experimentally. (3) The excavated portion of the soil affected the foundation input motion rather than the impedance function since there was little difference between the impedance functions obtained by wave propagation theory and those obtained by the axisymmetric FEM and the rotational component of the foundation input motions increased significantly. (J.P.N.)

  20. User Interaction Modeling and Profile Extraction in Interactive Systems: A Groupware Application Case Study.

    Science.gov (United States)

    Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L

    2017-07-20

    A relevant goal in human-computer interaction is to produce applications that are easy to use and well-adjusted to their users' needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system.

  1. Accuracy tests of the tessellated SLBM model

    International Nuclear Information System (INIS)

    Ramirez, A L; Myers, S C

    2007-01-01

    We have compared the Seismic Location Base Model (SLBM) tessellated model (version 2.0 Beta, posted July 3, 2007) with the GNEMRE Unified Model. The comparison is done on a layer/depth-by-layer/depth and layer/velocity-by-layer/velocity comparison. The SLBM earth model is defined on a tessellation that spans the globe at a constant resolution of about 1 degree (Ballard, 2007). For the tests, we used the earth model in file ''unified( ) iasp.grid''. This model contains the top 8 layers of the Unified Model (UM) embedded in a global IASP91 grid. Our test queried the same set of nodes included in the UM model file. To query the model stored in memory, we used some of the functionality built into the SLBMInterface object. We used the method get InterpolatedPoint() to return desired values for each layer at user-specified points. The values returned include: depth to the top of each layer, layer velocity, layer thickness and (for the upper-mantle layer) velocity gradient. The SLBM earth model has an extra middle crust layer whose values are used when Pg/Lg phases are being calculated. This extra layer was not accessed by our tests. Figures 1 to 8 compare the layer depths, P velocities and P gradients in the UM and SLBM models. The figures show results for the three sediment layers, three crustal layers and the upper mantle layer defined in the UM model. Each layer in the models (sediment1, sediment2, sediment3, upper crust, middle crust, lower crust and upper mantle) is shown on a separate figure. The upper mantle P velocity and gradient distribution are shown on Figures 7 and 8. The left and center images in the top row of each figure is the rendering of depth to the top of the specified layer for the UM and SLBM models. When a layer has zero thickness, its depth is the same as that of the layer above. The right image in the top row is the difference between in layer depth for the UM and SLBM renderings. The left and center images in the bottom row of the figures are

  2. Testing advanced driver assistance systems with the interactive driving simulator; Erprobung von Fahrerassistenzsystemen mit dem Interactive Driving Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichs, A.; Grosse-Kappenberg, S.; Happe, J. [Zentrum fuer Lern- und Wissensmanagement und Lehrstuhl Informatik im Maschinenbau ZLW/IMA der RWTH Aachen (Germany)

    2005-07-01

    The Centre for Learning and Knowledge Management and Department of Computer Science in Engineering of the Technical University Aachen has developed a truck driving simulator which combines a driving simulation as well as traffic flow calculations to the interactive Driving Simulator (InDriveS). In real-time the effects of the driver's behaviour on the surrounding traffic are considered and vice versa. The integrative part of InDriveS is a software-in-the-loop and hardware-in-the-loop development environment. By means of this tool, all phases of development (Analysis, Design, Modelling, Simulation, Implementation as well as Testing and Evaluation) of new vehicle technologies, e.g. Information and Assistance Systems, can be realised in consideration of the road traffic and the driver's behaviour. (orig.)

  3. Testing odorant-receptor interaction theories in humans through discrimination of isotopomers

    Directory of Open Access Journals (Sweden)

    Mara Andrione

    2017-12-01

    Full Text Available Odour reception takes place on the olfactory receptor neuron membrane, where molecular receptors interact with volatile odorant molecules. This interaction is classically thought to rely on chemical and structural features of the odorant, e.g. size, shape, functional groups. However, this model does not allow formulating a correct prediction for the smell of an odorant, suggesting that other molecular properties may play a role in the odour transduction process. An alternative model of olfaction maintains that odorant receptors can probe not only the structural and chemical features, but also the molecular vibration spectrum of the odorants. This constitutes the so-called vibration model of olfaction. According to this model, two isotopomers of the same molecule, i.e. two forms of the same molecule, one unaltered and one in which one or more hydrogen atoms are substituted with deuterium – which are therefore structurally and chemically identical, but with different molecular vibration spectra – would interact differently with an olfactory receptor, producing different olfactory perceptions in the brain. Here, we report on a duo-trio discrimination experiment conducted on human subjects, testing isotopomer pairs that have recently been shown to be differentially encoded in the honeybee brain.

  4. Unit testing, model validation, and biological simulation.

    Science.gov (United States)

    Sarma, Gopal P; Jacobs, Travis W; Watts, Mark D; Ghayoomie, S Vahid; Larson, Stephen D; Gerkin, Richard C

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  5. Point Process Modeling for Directed Interaction Networks

    Science.gov (United States)

    2011-10-01

    Enron corporation between 1998 and 2002. These e-mail interaction data give rise to the following questions: Homophily To what extent are traits shared...methods Our example analysis uses publicly available data from the Enron e-mail corpus (Cohen, 2009), a large subset of the e-mail messages sent within...the Enron corporation between 1998 and 2002, and made public as the result of a subpoena by the U.S. Federal Energy Regulatory Commission during an

  6. Variable amplitude fatigue, modelling and testing

    International Nuclear Information System (INIS)

    Svensson, Thomas.

    1993-01-01

    Problems related to metal fatigue modelling and testing are here treated in four different papers. In the first paper different views of the subject are summarised in a literature survey. In the second paper a new model for fatigue life is investigated. Experimental results are established which are promising for further development of the mode. In the third paper a method is presented that generates a stochastic process, suitable to fatigue testing. The process is designed in order to resemble certain fatigue related features in service life processes. In the fourth paper fatigue problems in transport vibrations are treated

  7. Learning probabilistic document template models via interaction

    Science.gov (United States)

    Ahmadullin, Ildus; Damera-Venkata, Niranjan

    2013-03-01

    Document aesthetics measures are key to automated document composition. Recently we presented a probabilistic document model (PDM) which is a micro-model for document aesthetics based on a probabilistic modeling of designer choice in document design. The PDM model comes with efficient layout synthesis algorithms once the aesthetic model is defined. A key element of this approach is an aesthetic prior on the parameters of a template encoding aesthetic preferences for template parameters. Parameters of the prior were required to be chosen empirically by designers. In this work we show how probabilistic template models (and hence the PDM cost function) can be learnt directly by observing a designer making design choices in composing sample documents. From such training data our learning approach can learn a quality measure that can mimic some of the design tradeoffs a designer makes in practice.

  8. Five challenges in modelling interacting strain dynamics

    Directory of Open Access Journals (Sweden)

    Paul S. Wikramaratna

    2015-03-01

    Full Text Available Population epidemiological models where hosts can be infected sequentially by different strains have the potential to help us understand many important diseases. Researchers have in recent years started to develop and use such models, but the extra layer of complexity from multiple strains brings with it many technical challenges. It is therefore hard to build models which have realistic assumptions yet are tractable. Here we outline some of the main challenges in this area. First we begin with the fundamental question of how to translate from complex small-scale dynamics within a host to useful population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity accumulates over multiple exposures.

  9. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  10. Tritium transfer in pigs - A model test

    Energy Technology Data Exchange (ETDEWEB)

    Melintescu, A.; Galeriu, D. [Horia Hulubei National Inst. for Physics and Nuclear Engineering, Dept. of Life and Environmental Physics, 407 Atomistilor St., Bucharest-Magurele, RO-077125 (Romania)

    2008-07-15

    In the frame of IAEA EMRAS (Environmental Modelling for Radiation Safety) programme, there was developed a scenario for models ' testing starting with unpublished data for a sow fed with OBT for 84 days. The scenario includes model predictions for the dynamics of tritium in urine and faeces and HTO and OBT in organs at sacrifice. There have been done two inter-comparison exercises and most of the models succeeded to give predictions better than a factor 3 to 5, excepting faeces. There has been done an analysis of models' structure, performance and limits in order to be able to build a model of moderate complexity with a reliable predictive power, able to be applied for human dosimetry, also, when OBT data are missing. (authors)

  11. Damage modeling in Small Punch Test specimens

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Cuesta, I.I.; Peñuelas, I.

    2016-01-01

    Ductile damage modeling within the Small Punch Test (SPT) is extensively investigated. The capabilities ofthe SPT to reliably estimate fracture and damage properties are thoroughly discussed and emphasis isplaced on the use of notched specimens. First, different notch profiles are analyzed....... Furthermore,Gurson-Tvergaard-Needleman model predictions from a top-down approach are employed to gain insightinto the mechanisms governing crack initiation and subsequent propagation in small punch experiments.An accurate assessment of micromechanical toughness parameters from the SPT...

  12. Physical Activity and Bone Accretion: Isotemporal Modeling and Genetic Interactions.

    Science.gov (United States)

    Mitchell, Jonathan A; Chesi, Alessandra; McCormack, Shana E; Cousminer, Diana L; Kalkwarf, Heidi J; Lappe, Joan M; Gilsanz, Vicente; Oberfield, Sharon E; Shepherd, John A; Kelly, Andrea; Grant, Struan F A; Zemel, Babette S

    2018-02-20

    To determine if replacing time spent in high and low impact physical activity (PA) predicts changes in pediatric bone mineral density (BMD) and content (BMC). We analyzed data from the longitudinal Bone Mineral Density in Childhood Study (N=2,337 with up to 7 visits). The participants were aged 5-19 years at baseline, 51.2% were female and 80.6% were non-Black. Spine, total hip, and femoral neck areal BMD (aBMD) and total body less head (TBLH) BMC Z-scores were calculated. Hours per day (h/d) spent in high and low impact PA were self-reported. Standard covariate adjusted (partition model) and time allocation sensitive isotemporal substitution modeling frameworks were applied to linear mixed models. Statistical interactions with sex, self-reported ancestry, age and bone fragility genetic scores (percentage of aBMD lowering alleles carried) were tested. In standard models, high impact PA was positively associated with bone Z-score at all four skeletal sites (e.g., TBLH-BMC Z-score: beta=0.05, P=2.0x10), whereas low impact PA was not associated with any of the bone Z-scores. In isotemporal substitution models, replacing 1 h/d of low-for-high impact PA was associated with higher bone Z-scores (e.g., TBLH-BMC Z-score: beta=0.06, P=2.9x10). Conversely, replacing 1 h/d of high-for-low impact PA was associated with lower bone Z-scores (e.g., TBLH-BMC Z-score: beta=-0.06, P=2.9x10). The substitution associations were similar for each sex and ancestry group, and for those with higher and lower genetic scores for bone fragility (P-interactions >0.05), but increased in strength among the older adolescents (P-age interactions <0.05). Time sensitive models suggest that replacing low impact PA for high impact PA would be beneficial for the growing skeleton in the majority of children.

  13. CFD approach to modeling of core-concrete interaction

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: A large attention is given to research behavior of concrete structures at high mechanical and thermal loadings, which those suffer at the severe accidents on Nuclear Power Plants with core melting and falling of the molten corium mass into reactor shaft. There are enough programs for analysis of heat and mass transfer processes at interaction of the molten corium with concrete. Most known among them CORCON and WECHSL, which were developed more than twenty years ago, allow considering a quasi-stationary phase decomposition of concrete and the some transition regimes. In opposing to the mentioned codes a new more generalized mathematical model and software are developed for modeling of a wide range of the heat and mass transfer processes under study of the molten core-concrete interaction. The developed mathematical model is based on the Navier-Stokes equations with variable properties with taking into account of a density jump under melting of concrete together with a heat transfer equation. The offered numerical technique is based on modern algorithms with small scheme diffusion, whose discrete approximations are constructed with use of finite-volume methods and the fully staggered grids. The developed software corresponds to modern level of development of computers and takes into account all phenomenology, used by mentioned codes, and allows to simulate the such phenomena and processes as: multidimensional heat transfer in concrete for modeling of transients for an intermediate thermal flux to concrete; direct erosion of concrete at a quasi-stationary regime of interaction with molten fuel masses; heat and mass transfer in corium and convective intermixing in a melt of corium with taking into account of its stratification on two layers of the metal and oxide components and heat transfer by radiation in a cavity of the reactor shaft; change physical properties of corium at concrete decomposition and release in corium of its

  14. Interaction between subducting plates: results from numerical and analogue modeling

    Science.gov (United States)

    Kiraly, Agnes; Capitanio, Fabio A.; Funiciello, Francesca; Faccenna, Claudio

    2016-04-01

    The tectonic setting of the Alpine-Mediterranean area is achieved during the late Cenozoic subduction, collision and suturing of several oceanic fragments and continental blocks. In this stage, processes such as interactions among subducting slabs, slab migrations and related mantle flow played a relevant role on the resulting tectonics. Here, we use numerical models to first address the mantle flow characteristic in 3D. During the subduction of a single plate the strength of the return flow strongly depends on the slab pull force, that is on the plate's buoyancy, however the physical properties of the slab, such as density, viscosity or width, do not affect largely the morphology of the toroidal cell. Instead, dramatic effects on the geometry and the dynamics of the toroidal cell result in models where the thickness of the mantle is varied. The vertical component of the vorticity vector is used to define the characteristic size of the toroidal cell, which is ~1.2-1.3 times the mantle depth. This latter defines the range of viscous stress propagation through the mantle and consequent interactions with other slabs. We thus further investigate on this setup where two separate lithospheric plates subduct in opposite sense, developing opposite polarities and convergent slab retreat, and model different initial sideways distance between the plates. The stress profiles in time illustrate that the plates interacts when slabs are at the characteristic distance and the two slabs toroidal cells merge. Increased stress and delayed slab migrations are the results. Analogue models of double-sided subduction show similar maximum distance and allow testing the additional role of stress propagated through the plates. We use a silicon plate subducting on its two opposite margins, which is either homogeneous or comprises oceanic and continental lithospheres, differing in buoyancy. The modeling results show that the double-sided subduction is strongly affected by changes in plate

  15. Java Test Driver Generation from Object-Oriented Interaction Traces

    NARCIS (Netherlands)

    M.M. Bonsangue (Marcello); F.S. de Boer (Frank); A. Gruener; M. Steffen

    2009-01-01

    htmlabstractIn the context of test-driven development for object-oriented programs, mock objects are increasingly used for unit testing. Several Java mock object frameworks exist, which all have in common that mock objects, realizing the test environment, are directly specied at the Java program

  16. Testing Departure from Additivity in Tukey’s Model using Shrinkage: Application to a Longitudinal Setting

    Science.gov (United States)

    Ko, Yi-An; Mukherjee, Bhramar; Smith, Jennifer A.; Park, Sung Kyun; Kardia, Sharon L.R.; Allison, Matthew A.; Vokonas, Pantel S.; Chen, Jinbo; Diez-Roux, Ana V.

    2014-01-01

    While there has been extensive research developing gene-environment interaction (GEI) methods in case-control studies, little attention has been given to sparse and efficient modeling of GEI in longitudinal studies. In a two-way table for GEI with rows and columns as categorical variables, a conventional saturated interaction model involves estimation of a specific parameter for each cell, with constraints ensuring identifiability. The estimates are unbiased but are potentially inefficient because the number of parameters to be estimated can grow quickly with increasing categories of row/column factors. On the other hand, Tukey’s one degree of freedom (df) model for non-additivity treats the interaction term as a scaled product of row and column main effects. Due to the parsimonious form of interaction, the interaction estimate leads to enhanced efficiency and the corresponding test could lead to increased power. Unfortunately, Tukey’s model gives biased estimates and low power if the model is misspecified. When screening multiple GEIs where each genetic and environmental marker may exhibit a distinct interaction pattern, a robust estimator for interaction is important for GEI detection. We propose a shrinkage estimator for interaction effects that combines estimates from both Tukey’s and saturated interaction models and use the corresponding Wald test for testing interaction in a longitudinal setting. The proposed estimator is robust to misspecification of interaction structure. We illustrate the proposed methods using two longitudinal studies — the Normative Aging Study and the Multi-Ethnic Study of Atherosclerosis. PMID:25112650

  17. Genotype x environment interaction in cowpea by mixed models

    Directory of Open Access Journals (Sweden)

    Leonardo Castelo Branco Carvalho

    Full Text Available ABSTRACT Several methods have been proposed to measure effects of genotype × environment interaction (G×E on various traits of interest of plant species, such as grain yield. Among these methods, mixed models using the Restricted Maximum Likelihood (REML-Best Linear Unbiased Prediction (BLUP procedure with random genotype effects have been reported as advantageous, since they allow the obtaining of actual genotypic values for cultivation and use. The objective of this work was to evaluate the response of grain yield to different locations and years, and the effects of G×E on the performance of cowpea genotypes by the methodology of mixed models. Twenty genotypes were evaluated under rainfed conditions in 47 locations in 2010, 2011 and 2012 using randomized block design. After joint analysis, the genotypes adaptability and stability patterns within and between years were tested by the Harmonic Mean of Relative Performance of Genetic Values (HMRPGV statistics. The analysis within the years showed highly significant effects of the genotype × location interaction in all the years evaluated. The results of the joint analysis presented highly significant effects (. ≤0.01 of the genotype, and triple interaction (genotype × location × year (. ≤0.001, denoting a strong effect of the G×E on the genotype performances. The HMRPGV analysis was adequate to identify superior genotypes, highlighting the MNC02-676F-3, MNC03-737F-5-1, MNC03-737F-5-9, BRS-Tumucumaque, and BRS-Guariba as the genotypes with best stability and highest grain yield. The selection of these genotypes resulted in a new average yield (1,402 kg ha-1 which is higher than that obtained by selection based only on the phenotype (1,230 kg ha-1.

  18. SPSS and SAS programming for the testing of mediation models.

    Science.gov (United States)

    Dudley, William N; Benuzillo, Jose G; Carrico, Mineh S

    2004-01-01

    Mediation modeling can explain the nature of the relation among three or more variables. In addition, it can be used to show how a variable mediates the relation between levels of intervention and outcome. The Sobel test, developed in 1990, provides a statistical method for determining the influence of a mediator on an intervention or outcome. Although interactive Web-based and stand-alone methods exist for computing the Sobel test, SPSS and SAS programs that automatically run the required regression analyses and computations increase the accessibility of mediation modeling to nursing researchers. To illustrate the utility of the Sobel test and to make this programming available to the Nursing Research audience in both SAS and SPSS. The history, logic, and technical aspects of mediation testing are introduced. The syntax files sobel.sps and sobel.sas, created to automate the computation of the regression analysis and test statistic, are available from the corresponding author. The reported programming allows the user to complete mediation testing with the user's own data in a single-step fashion. A technical manual included with the programming provides instruction on program use and interpretation of the output. Mediation modeling is a useful tool for describing the relation between three or more variables. Programming and manuals for using this model are made available.

  19. Study of the Deformation/Interaction Model: How Interactions Increase the Reaction Barrier

    Directory of Open Access Journals (Sweden)

    Zhiling Liang

    2018-01-01

    Full Text Available The interactions (including weak interactions between dienophiles and dienes play an important role in the Diels-Alder reaction. To elucidate the influence of these interactions on the reactivity, a popular DFT functional and a variational DFT functional corrected with dispersion terms are used to investigate different substituent groups incorporated on the dienophiles and dienes. The bond order is used to track the trajectory of the cycloaddition reaction. The deformation/interaction model is used to obtain the interaction energy from the reactant complex to the inflection point until reaching the saddle point. The interaction energy initially increases with a decrease in the interatomic distance, reaching a maximum value, but then decreases when the dienophiles and dienes come closer. Reduced density gradient and chemical energy component analysis are used to analyse the interaction. Traditional transition state theory and variational transition state theory are used to obtain the reaction rates. The influence of tunneling on the reaction rate is also discussed.

  20. External models of frictional interaction dynamics

    Science.gov (United States)

    Tyurin, A. E.; Ismailov, G. M.; Ikonnikova, K. V.; Sarkisov, Y. S.

    2017-10-01

    This investigation suggests a method used to determine the evolution of metallic wear and friction by sliding. The friction of steel moving over brass was taken as an example. The problem of external dynamics friction is investigated through the definition of the dynamic characteristics such as damping factor and natural frequency. Some certain automatic control methods were applied for sliding friction contact, including parametric identification, ARX simulation and Newton’s dynamic equation. The suggested approach allows using amplitude-frequency characteristics to assess the dynamic factors (coefficients) under friction interaction. The research findings indicate that the proposed method allows monitoring the evolution of metallic wear and friction.

  1. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  2. Functional modeling of neural-glial interaction

    DEFF Research Database (Denmark)

    Postnov, D.E.; Ryazanova, L.S.; Sosnovtseva, Olga

    2007-01-01

    We propose a generalized mathematical model for a small neural-glial ensemble. The model incorporates subunits of the tripartite synapse that includes a presynaptic neuron, the synaptic terminal itself, a postsynaptic neuron, and a glial cell. The glial cell is assumed to be activated via two...... different pathways: (i) the fast increase of intercellular [K+] produced by the spiking activity of the postsynaptic neuron, and (ii) the slow production of a mediator triggered by the synaptic activity. Our model predicts the long-term potentiation of the postsynaptic neuron as well as various [Ca2...

  3. Testing of a steel containment vessel model

    International Nuclear Information System (INIS)

    Luk, V.K.; Hessheimer, M.F.; Matsumoto, T.; Komine, K.; Costello, J.F.

    1997-01-01

    A mixed-scale containment vessel model, with 1:10 in containment geometry and 1:4 in shell thickness, was fabricated to represent an improved, boiling water reactor (BWR) Mark II containment vessel. A contact structure, installed over the model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. This paper describes the pretest preparations and the conduct of the high pressure test of the model performed on December 11-12, 1996. 4 refs., 2 figs

  4. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...

  5. Binomial test models and item difficulty

    NARCIS (Netherlands)

    van der Linden, Willem J.

    1979-01-01

    In choosing a binomial test model, it is important to know exactly what conditions are imposed on item difficulty. In this paper these conditions are examined for both a deterministic and a stochastic conception of item responses. It appears that they are more restrictive than is generally

  6. Testing spatial heterogeneity with stock assessment models

    DEFF Research Database (Denmark)

    Jardim, Ernesto; Eero, Margit; Silva, Alexandra

    2018-01-01

    This paper describes a methodology that combines meta-population theory and stock assessment models to gain insights about spatial heterogeneity of the meta-population in an operational time frame. The methodology was tested with stochastic simulations for different degrees of connectivity betwee...

  7. Comparison of Think-Aloud and Constructive Interaction in Usability Testing with Children

    DEFF Research Database (Denmark)

    Als, Benedikte Skibsted; Jensen, Janne Jul; Skov, Mikael B.

    2005-01-01

    Constructive interaction provides natural thinking-aloud as test subjects collaborate to solve tasks. Since children may face difficulties in following instructions for a standard think-aloud test, constructive interaction has been suggested as evaluation method when usability testing with children...

  8. Utilitarian supersymmetric gauge model of particle interactions

    International Nuclear Information System (INIS)

    Ma, Ernest

    2010-01-01

    A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.

  9. Preliminary model for core/concrete interactions

    International Nuclear Information System (INIS)

    Murfin, W.B.

    1977-08-01

    A preliminary model is described for computing the rate of penetration of concrete by a molten LWR core. Among the phenomena included are convective stirring of the melt by evolved gases, admixture of concrete decomposition products to the melt, chemical reactions, radiative heat loss, and variation of heat transfer coefficients with local pressure. The model is most applicable to a two-phase melt (metallic plus oxidic) having a fairly high metallic content

  10. Vector condensate model of electroweak interactions

    International Nuclear Information System (INIS)

    Cynolter, G.; Pocsik, G.

    1997-01-01

    Motivated by the fact that the Higgs is not seen, a new version of the standard model is proposed where the scalar doublet is replaced by a vector doublet and its neutral member forms a nonvanishing condensate. Gauge fields are coupled to the new vector fields B in a gauge invariant way leading to mass terms for the gauge fields by condensation. The model is presented and some implications are discussed. (K.A.)

  11. Pedagogical Interaction in High School, the Structural and Functional Model of Pedagogical Interaction

    Science.gov (United States)

    Semenova, Larissa A.; Kazantseva, Anastassiya I.; Sergeyeva, Valeriya V.; Raklova, Yekaterina M.; Baiseitova, Zhanar B.

    2016-01-01

    The study covers the problems of pedagogical technologies and their experimental implementation in the learning process. The theoretical aspects of the "student-teacher" interaction are investigated. A structural and functional model of pedagogical interaction is offered, which determines the conditions for improving pedagogical…

  12. A local model of light interaction with transparent crystalline media.

    Science.gov (United States)

    Debelov, Victor A; Kozlov, Dmitry S

    2013-08-01

    The paper is devoted to the derivation of a bidirectional distribution function for crystals, which specifies all outgoing rays for a ray coming to the boundary of two transparent crystalline media with different optical properties, i.e., a particular mineral, directions of optical axes if they exist, and other features. A local model of interaction based on the notion of polarized light ray is introduced, which is specified by a geometric ray, its polarization state, light intensity, and so on. The computational algorithm that is suggested allows computing the directions and other properties of all (up to four) outgoing rays. In this paper, isotropic, uniaxial, and biaxial crystals are processed in a similar manner. The correctness of the model is validated by comparison of photos of real uniaxial crystals with corresponding computed images. The case of biaxial crystals is validated by testing the effect of conical refraction. Specifications of a series of tests devoted to rendering of optically different objects is presented also.

  13. Testing Parametric versus Semiparametric Modelling in Generalized Linear Models

    NARCIS (Netherlands)

    Härdle, W.K.; Mammen, E.; Müller, M.D.

    1996-01-01

    We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.

  14. Ferromagnetic interaction model of activity level in workplace communication

    Science.gov (United States)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  15. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  16. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de

  17. Design, testing, and delivery of an interactive graphics display subsystem

    Science.gov (United States)

    Holmes, B.

    1973-01-01

    An interactive graphics display system was designed to be used in locating components on a printed circuit card and outputting data concerning their thermal values. The manner in which this was accomplished in terms of both hardware and software is described. An analysis of the accuracy of this approach is also included.

  18. Tests for genetic interactions in type 1 diabetes

    DEFF Research Database (Denmark)

    Morahan, Grant; Mehta, Munish; James, Ian

    2011-01-01

    Interactions between genetic and environmental factors lead to immune dysregulation causing type 1 diabetes and other autoimmune disorders. Recently, many common genetic variants have been associated with type 1 diabetes risk, but each has modest individual effects. Familial clustering of type 1 ...

  19. Prospective Tests on Biological Models of Acupuncture

    Directory of Open Access Journals (Sweden)

    Charles Shang

    2009-01-01

    Full Text Available The biological effects of acupuncture include the regulation of a variety of neurohumoral factors and growth control factors. In science, models or hypotheses with confirmed predictions are considered more convincing than models solely based on retrospective explanations. Literature review showed that two biological models of acupuncture have been prospectively tested with independently confirmed predictions: The neurophysiology model on the long-term effects of acupuncture emphasizes the trophic and anti-inflammatory effects of acupuncture. Its prediction on the peripheral effect of endorphin in acupuncture has been confirmed. The growth control model encompasses the neurophysiology model and suggests that a macroscopic growth control system originates from a network of organizers in embryogenesis. The activity of the growth control system is important in the formation, maintenance and regulation of all the physiological systems. Several phenomena of acupuncture such as the distribution of auricular acupuncture points, the long-term effects of acupuncture and the effect of multimodal non-specific stimulation at acupuncture points are consistent with the growth control model. The following predictions of the growth control model have been independently confirmed by research results in both acupuncture and conventional biomedical sciences: (i Acupuncture has extensive growth control effects. (ii Singular point and separatrix exist in morphogenesis. (iii Organizers have high electric conductance, high current density and high density of gap junctions. (iv A high density of gap junctions is distributed as separatrices or boundaries at body surface after early embryogenesis. (v Many acupuncture points are located at transition points or boundaries between different body domains or muscles, coinciding with the connective tissue planes. (vi Some morphogens and organizers continue to function after embryogenesis. Current acupuncture research suggests a

  20. Comparison of interactive video test performance to overall class performance in a biomechanics course

    Science.gov (United States)

    Bennett, Guinevere S.

    2018-01-01

    Objective: This study compared interactive video test performance and students' overall class performance. The hypothesis was that there would be a difference in video test performance compared to overall class performance. Methods: A total of 30 students participated in the pilot study from a master's level biomechanics course. Students completed four interactive video tests using EduCanon; content of videos included base of support, lever systems, scapulohumeral rhythm, and postural analysis. This content was reviewed with class discussion after completion of the interactive video test. The tests administered counted toward the participation portion of the final student grade. Student performance on the EduCanon interactive video test was compared to overall class grade using a paired t-test. Results: All 30 students completed the 4 EduCanon interactive video tests. Final class grades were greater compared to cumulative EduCanon test performance. There was no difference between performance using interactive video testing compared to students' overall class performance (t[29] = −1.43, p = .16). Conclusion: The results of this study did not support improved student assessment performance with incorporation of interactive video testing in the classroom environment. Continued research into new testing strategies is recommended to identify additional effective testing in the classroom. PMID:29227719

  1. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  2. INTERACTIVE SIMULATIONS FOR DEMOS, EXHIBITIONS AND AS A TESTING PLATFORM FOR DESIGNERS

    Directory of Open Access Journals (Sweden)

    FEIDYEU ILIESCU Christian

    2016-11-01

    Full Text Available An interactive simulation is made by combining 3D graphics with the capabilities offered by the simulator in order to obtain valuable results to the design process or for communicating with potential clients through promotion. We can significantly reduce production costs, test products in multiple new scenarios in a short timeframe or to reduce the usage time of dedicated simulation software by using Autodesk Inventor along with Blender 3D. Although the models’ fidelity decreases as they’re converted for use in simulations, it is enough for solving potential problems that arise during modelling as well as for implementing commercial presentations.

  3. A Statistical Model for Soliton Particle Interaction in Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans; Truelsen, J.

    1986-01-01

    A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....

  4. The Ising Model with Long-Range Interactions

    Directory of Open Access Journals (Sweden)

    Alexander A. Biryukov

    2015-09-01

    Full Text Available The phase transition in the two-dimensional and three-dimensional Ising models with long-range spin interactions are studied with the Monte–Carlo method. The interaction region between spins is characterized by the radius $R$. Results based on numerical simulations have shown the critical temperature $T_c$ dependence from the spin interaction radius $R$. Analytical function $T_{c}(R$ approximating this dependence is designed.

  5. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Gesztesy, F.; Seba, P.

    1987-01-01

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  6. A Method to Test Model Calibration Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    2016-08-26

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then the calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.

  7. Parametric Testing of Launch Vehicle FDDR Models

    Science.gov (United States)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  8. The Interaction of Humor and Anxiety in Academic Test Situations.

    Science.gov (United States)

    Brown, Alan S.; Itzig, Jerry M.

    The effects of humorous test questions on test performance of high and low-anxious college students was investigated. It was hypothesized that humor should reduce the anxiety level of high-anxious subjects, and thus improve their performance, while having little effect on low-anxious subjects. Students were assigned to a low or high-anxious group…

  9. Persistence Heterogeneity Testing in Panels with Interactive Fixed Effects

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre; Velasco, Carlos

    for correction. We develop tests of homogeneity of dynamics, including the degree of integration, that have no trivial power under local departures from the null hypothesis of a non-negligible fraction of cross-section units. A simulation study shows that our estimates and test have good performance even...

  10. Observational consequences of a dark interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M. de, E-mail: campos@if.uff.b [Roraima Federal University (UFRR), Paricarana, Boa Vista, RO (Brazil). Physics Dept.

    2010-12-15

    We study a model with decay of dark energy and creation of the dark matter particles. We integrate the field equations and find the transition redshift where the evolution process of the universe change the accelerated expansion, and discuss the luminosity distance, acoustic oscillations and the state finder parameters. (author)

  11. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  12. Volume Sculpting: Intuitive, Interactive 3D Shape Modelling

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    A system for interactive modelling of 3D shapes on a computer is presented. The system is intuitive and has a flat learning curve. It is especially well suited to the creation of organic shapes and shapes of complex topology. The interaction is simple; the user can either add new shape features...

  13. Object interaction competence model v. 2.0

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Schulte, C.

    2013-01-01

    Teaching and learning object oriented programming has to take into account the specific object oriented characteristics of program execution, namely the interaction of objects during runtime. Prior to the research reported in this article, we have developed a competence model for object interaction...

  14. An Online Interactive Competition Model for E-Learning System ...

    African Journals Online (AJOL)

    This paper presents an Online Interactive Competition Model for E-learning System. The system allows a student to connect and interact with other students on the courses they offer in a semester using both synchronous and asynchronous computer-mediated communication mechanisms. Each course lecturer e-supervises ...

  15. Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng

    2007-01-01

    Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...

  16. Levels of Interaction Provided by Online Distance Education Models

    Science.gov (United States)

    Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet

    2017-01-01

    Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…

  17. Seismic soil structure interaction: analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1985-01-01

    A method for non-linear dynamic effective stress analysis is introduced which is applicable to soil-structure interaction problems. Full interaction including slip between structure and foundation is taken into account and the major factors are included which must be considered when computing dynamic soil response. An experimental investigation was conducted using simulated earthquake tests on centrifuged geotechnical models in order to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically-induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results show clearly the pronounced effect that increasing pore water pressures have on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress non-linear analysis. Based on preliminary results, it appears that the pore water pressure effects can be predicted

  18. Formal modelling techniques in human-computer interaction

    NARCIS (Netherlands)

    de Haan, G.; de Haan, G.; van der Veer, Gerrit C.; van Vliet, J.C.

    1991-01-01

    This paper is a theoretical contribution, elaborating the concept of models as used in Cognitive Ergonomics. A number of formal modelling techniques in human-computer interaction will be reviewed and discussed. The analysis focusses on different related concepts of formal modelling techniques in

  19. Quark compound bag (QCB) model and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1983-01-01

    Quark degrees of freedom are treated in the NN system in the framework of the QCB model. The resulting QCB potential is in agreement with experimental data. P-matrix analysis inherent to the QCB model is discussed in detail. Applications of the QCB model are given including the weak NN interaction

  20. Matrix models of RNA folding with external interactions: A review

    Indian Academy of Sciences (India)

    Abstract. The matrix model of (simplified) RNA folding with an external linear interaction in the action of the partition function is reviewed. The important results for structure combinatorics of the model are discussed and analysed in terms of the already existing models.

  1. CORCON: a computer program for modelling molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete is being developed to provide a capability for making quantitative estimates of reactor fuel-melt accidents. The principal phenomenological models, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. A code test comparison calculation is discussed

  2. Contrast media: interactions with other drugs and clinical tests

    International Nuclear Information System (INIS)

    Morcos, Sameh K.; Exley, C.M.; Thomsen, Henrik S.

    2005-01-01

    Many patients with multiple medical problems who are receiving a variety of drugs are investigated with imaging techniques which require intravascular contrast media. The Contrast Media Safety Committee of the European Society of Urogenital Radiology therefore decided to review the literature and to draw up simple guidelines on interactions between contrast media and other drugs. An extensive literature search was carried out and summarized in a report. Based on the available information, simple guidelines have been drawn up. The report and guidelines were discussed at the 11th European Symposium on Urogenital Radiology in Santiago de Compostela. Contrast media may interact with other drugs, and may interfere with isotope studies and biochemical measurements. Awareness of the patient drug history is important to avoid potential hazards. Simple guidelines are presented. (orig.)

  3. Host-parasite interactions: a litmus test for ocean acidification?

    Science.gov (United States)

    MacLeod, Colin D; Poulin, Robert

    2012-09-01

    The effects of ocean acidification (OA) on marine species and ecosystems have received significant scientific attention in the past 10 years. However, to date, the effects of OA on host-parasite interactions have been largely ignored. As parasites play a multidimensional role in the regulation of marine population, community, and ecosystem dynamics, this knowledge gap may result in an incomplete understanding of the consequences of OA. In addition, the impact of stressors associated with OA on host-parasite interactions may serve as an indicator of future changes to the biodiversity of marine systems. This opinion article discusses the potential effects of OA on host and parasite species and proposes the use of parasites as bioindicators of OA disturbance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Temperature Buffer Test. Final THM modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan [Clay Technology AB, Lund (Sweden); Ledesma, Alberto; Jacinto, Abel [UPC, Universitat Politecnica de Catalunya, Barcelona (Spain)

    2012-01-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code{sub B}right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code{sub B}right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to

  5. Temperature Buffer Test. Final THM modelling

    International Nuclear Information System (INIS)

    Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan; Ledesma, Alberto; Jacinto, Abel

    2012-01-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code B right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code B right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to

  6. Study on competitive interaction models in Cayley tree

    International Nuclear Information System (INIS)

    Moreira, J.G.M.A.

    1987-12-01

    We propose two kinds of models in the Cayley tree to simulate Ising models with axial anisotropy in the cubic lattice. The interaction in the direction of the anisotropy is simulated by the interaction along the branches of the tree. The interaction in the planes perpendicular to the anisotropy direction, in the first model, is simulated by interactions between spins in neighbour branches of the same generation arising from same site of the previous generation. In the second model, the simulation of the interaction in the planes are produced by mean field interactions among all spins in sites of the same generation arising from the same site of the previous generations. We study these models in the limit of infinite coordination number. First, we analyse a situation with antiferromagnetic interactions along the branches between first neighbours only, and we find the analogous of a metamagnetic Ising model. In the following, we introduce competitive interactions between first and second neighbours along the branches, to simulate the ANNNI model. We obtain one equation of differences which relates the magnetization of one generation with the magnetization of the two previous generations, to permit a detailed study of the modulated phase region. We note that the wave number of the modulation, for one fixed temperature, changes with the competition parameter to form a devil's staircase with a fractal dimension which increases with the temperature. We discuss the existence of strange atractors, related to a possible caothic phase. Finally, we show the obtained results when we consider interactions along the branches with three neighbours. (author)

  7. Modelling of energetic molecule-surface interactions

    International Nuclear Information System (INIS)

    Kerford, M.

    2000-09-01

    This thesis contains the results of molecular dynamics simulations of molecule-surface interactions, looking particularly at fullerene molecules and carbon surfaces. Energetic impacts of fullerene molecules on graphite create defect craters. The relationship between the parameters of the impacting molecule and the parameters of the crater axe examined and found to be a function of the energy and velocity of the impacting molecule. Less energetic fullerene molecules can be scattered from a graphite surface and the partitioning of energy after a scattering event is investigated. It is found that a large fraction of the kinetic energy retained after impact is translational energy, with a small fraction of rotational energy and a number of vibrational modes. At impact energies where the surface is not broken and at normal incidence, surface waves axe seen to occur. These waves axe used to develop a method of desorbing molecules from a graphite surface without damage to either the surface or the molecules being desorbed. A number of fullerene molecules are investigated and ways to increase the desorption yield are examined. It is found that this is a successful technique for desorbing large numbers of intact molecules from graphite. This technique could be used for desorbing intact molecules into a gas phase for mass spectrometric analysis. (author)

  8. Electroweak interactions in the Standard Model

    CERN Document Server

    Pich, Antonio

    1993-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures :1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separation of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl.3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  9. Dynamical generation of interaction in an exactly solvable model

    International Nuclear Information System (INIS)

    Avdeev, L.V.; Chizhov, M.V.

    1984-01-01

    The dynamical generation of interaction in the chiral-invariant Gross-Neveu model leads to an asymptotically free charge behaviour and a correlation between coupling constants. The known exact solution possesses similar properties

  10. A simultaneous equations model of fiscal policy interactions

    NARCIS (Netherlands)

    Allers, Maarten A.; Elhorst, J. Paul

    Existing studies of fiscal policy interactions are based on single equation (SE) models of either taxation or expenditures, without specifying the underlying social welfare function, without taking account of budget constraints and without allowing for cost differences between jurisdictions. Taking

  11. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    Science.gov (United States)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required

  12. Business model stress testing : A practical approach to test the robustness of a business model

    NARCIS (Netherlands)

    Haaker, T.I.; Bouwman, W.A.G.A.; Janssen, W; de Reuver, G.A.

    Business models and business model innovation are increasingly gaining attention in practice as well as in academic literature. However, the robustness of business models (BM) is seldom tested vis-à-vis the fast and unpredictable changes in digital technologies, regulation and markets. The

  13. Preliminary Test for Constitutive Models of CAP

    International Nuclear Information System (INIS)

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul; Ha, Sang Jun; Choi, Hoon

    2010-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  14. Preliminary Test for Constitutive Models of CAP

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Ha, Sang Jun; Choi, Hoon [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper

  15. Divergence-based tests for model diagnostic

    Czech Academy of Sciences Publication Activity Database

    Hobza, Tomáš; Esteban, M. D.; Morales, D.; Marhuenda, Y.

    2008-01-01

    Roč. 78, č. 13 (2008), s. 1702-1710 ISSN 0167-7152 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MTM2006-05693 Institutional research plan: CEZ:AV0Z10750506 Keywords : goodness of fit * devergence statistics * GLM * model checking * bootstrap Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.445, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/hobza-divergence-based%20tests%20for%20model%20diagnostic.pdf

  16. Overload prevention in model supports for wind tunnel model testing

    Directory of Open Access Journals (Sweden)

    Anton IVANOVICI

    2015-09-01

    Full Text Available Preventing overloads in wind tunnel model supports is crucial to the integrity of the tested system. Results can only be interpreted as valid if the model support, conventionally called a sting remains sufficiently rigid during testing. Modeling and preliminary calculation can only give an estimate of the sting’s behavior under known forces and moments but sometimes unpredictable, aerodynamically caused model behavior can cause large transient overloads that cannot be taken into account at the sting design phase. To ensure model integrity and data validity an analog fast protection circuit was designed and tested. A post-factum analysis was carried out to optimize the overload detection and a short discussion on aeroelastic phenomena is included to show why such a detector has to be very fast. The last refinement of the concept consists in a fast detector coupled with a slightly slower one to differentiate between transient overloads that decay in time and those that are the result of aeroelastic unwanted phenomena. The decision to stop or continue the test is therefore conservatively taken preserving data and model integrity while allowing normal startup loads and transients to manifest.

  17. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    OpenAIRE

    Simão, Mariana; Mora-Rodriguez, Jesus; Ramos, Helena

    2015-01-01

    The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI) are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC) using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation...

  18. Phase space analysis of some interacting Chaplygin gas models

    Energy Technology Data Exchange (ETDEWEB)

    Khurshudyan, M. [Academy of Sciences of Armenia, Institute for Physical Research, Ashtarak (Armenia); Tomsk State University of Control Systems and Radioelectronics, Laboratory for Theoretical Cosmology, Tomsk (Russian Federation); Tomsk State Pedagogical University, Department of Theoretical Physics, Tomsk (Russian Federation); Myrzakulov, R. [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan)

    2017-02-15

    In this paper we discuss a phase space analysis of various interacting Chaplygin gas models in general relativity. Linear and nonlinear sign changeable interactions are considered. For each case appropriate late time attractors of field equations are found. The Chaplygin gas is one of the dark fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter. (orig.)

  19. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    Science.gov (United States)

    2014-09-30

    Arctic sea ice has experienced since at least the beginning of the satellite era are believed to be caused by ice - albedo temperature feedback...dimensional (2D) ocean surface wave interactions with sea ice in a contemporary 3D Arctic ice /ocean model. To accomplish this primary goal, the objectives...of how ocean waves and sea ice interact, for use in operational models of the Arctic Basin and the adjacent seas ; – improve the forecasting

  20. Observational Tests of Magnetospheric Accretion Models in Young Stars

    Directory of Open Access Journals (Sweden)

    Johns–Krull Christopher M.

    2014-01-01

    Full Text Available Magnetically controlled accretion of disk material onto the surface of Classical T Tauri stars is the dominant paradigm in our understanding of how these young stars interact with their surrounding disks. These stars provide a powerful test of magnetically controlled accretion models since all of the relevant parameters, including the magnetic field strength and geometry, are in principle measureable. Both the strength and the field geometry are key for understanding how these stars interact with their disks. This talk will focus on recent advances in magnetic field measurements on a large number of T Tauri stars, as well as very recent studies of the accretion rates onto a sample of young stars in NGC 2264 with known rotation periods. We discuss how these observations provide critical tests of magnetospheric accretion models which predict a rotational equilibrium is reached. We find good support for the model predictions once the complex geometry of the stellar magnetic field is taken into account. We will also explore how the observations of the accretion properties of the 2264 cluster stars can be used to test emerging ideas on how magnetic fields on young stars are generated and organized as a function of their internal structure (i.e. the presence of a radiative core. We do not find support for the hypothesis that large changes in the magentic field geometry occur when a radiative core appears in these young stars.

  1. Human-Robot Interaction Reconfigurable Test Environment: Optimizing the Human Interface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human-Robot Interaction Reconfigurable Test Environment (HRI-RTE) integrates a grid-based, reconfigurable test arena and an operator workstation with...

  2. Designing and Assessing Interactive Systems Using Task Models

    OpenAIRE

    Palanque, Philippe; Martinie, Célia; Winckler, Marco

    2017-01-01

    Part 6: Courses; International audience; This two-part course takes a practical approach to introduce the principles, methods and tools in task modelling. Part 1: A non-technical introduction demonstrates that task models support successful design of interactive systems. Part 2: A more technical interactive hands-on exercise of how to “do it right”, such as: How to go from task analysis to task models? How to assess (through analysis and simulation) that a task model is correct? How to identi...

  3. Improved simulation of groundwater - surface water interaction in catchment models

    Science.gov (United States)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  4. Identification of interactions using model-based multifactor dimensionality reduction.

    Science.gov (United States)

    Gola, Damian; König, Inke R

    2016-01-01

    Common complex traits may involve multiple genetic and environmental factors and their interactions. Many methods have been proposed to identify these interaction effects, among them several machine learning and data mining methods. These are attractive for identifying interactions because they do not rely on specific genetic model assumptions. To handle the computational burden arising from an exhaustive search, including all possible combinations of factors, filter methods try to select promising factors in advance. Model-based multifactor dimensionality reduction (MB-MDR), a semiparametric machine learning method allowing adjustment for confounding variables and lower level effects, is applied to Genetic Analysis Workshop 19 (GAW19) data to identify interaction effects on different traits. Several filtering methods based on the nearest neighbor algorithm are assessed in terms of compatibility with MB-MDR. Single nucleotide polymorphism (SNP) rs859400 shows a significant interaction effect (corrected p value <0.05) with age on systolic blood pressure (SBP). We identified 23 SNP-SNP interaction effects on hypertension status (HS), 42 interaction effects on SBP, and 26 interaction effects on diastolic blood pressure (DBP). Several of these SNPs are in strong linkage disequilibrium (LD). Three of the interaction effects on HS are identified in filtered subsets. The considered filtering methods seem not to be appropriate to use with MB-MDR. LD pruning is further quality control to be incorporated, which can reduce the combinatorial burden by removing redundant SNPs.

  5. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  6. Two-Sample Tests for High-Dimensional Linear Regression with an Application to Detecting Interactions.

    Science.gov (United States)

    Xia, Yin; Cai, Tianxi; Cai, T Tony

    2018-01-01

    Motivated by applications in genomics, we consider in this paper global and multiple testing for the comparisons of two high-dimensional linear regression models. A procedure for testing the equality of the two regression vectors globally is proposed and shown to be particularly powerful against sparse alternatives. We then introduce a multiple testing procedure for identifying unequal coordinates while controlling the false discovery rate and false discovery proportion. Theoretical justifications are provided to guarantee the validity of the proposed tests and optimality results are established under sparsity assumptions on the regression coefficients. The proposed testing procedures are easy to implement. Numerical properties of the procedures are investigated through simulation and data analysis. The results show that the proposed tests maintain the desired error rates under the null and have good power under the alternative at moderate sample sizes. The procedures are applied to the Framingham Offspring study to investigate the interactions between smoking and cardiovascular related genetic mutations important for an inflammation marker.

  7. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin

    2017-11-24

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  8. Dynamical system analysis of interacting models

    Science.gov (United States)

    Carneiro, S.; Borges, H. A.

    2018-01-01

    We perform a dynamical system analysis of a cosmological model with linear dependence between the vacuum density and the Hubble parameter, with constant-rate creation of dark matter. We show that the de Sitter spacetime is an asymptotically stable critical point, future limit of any expanding solution. Our analysis also shows that the Minkowski spacetime is an unstable critical point, which eventually collapses to a singularity. In this way, such a prescription for the vacuum decay not only predicts the correct future de Sitter limit, but also forbids the existence of a stable Minkowski universe. We also study the effect of matter creation on the growth of structures and their peculiar velocities, showing that it is inside the current errors of redshift space distortions observations.

  9. Element-specific density profiles in interacting biomembrane models

    International Nuclear Information System (INIS)

    Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Gochev, Georgi; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg

    2017-01-01

    Surface interactions involving biomembranes, such as cell–cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure–distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces. (paper)

  10. [Interaction between continuous variables in logistic regression model].

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-Sun; Tse, Lap Ah; Wang, Xiao-rong; Fu, Zhen-ming

    2010-07-01

    Rothman argued that interaction estimated as departure from additivity better reflected the biological interaction. In a logistic regression model, the product term reflects the interaction as departure from multiplicativity. So far, literature on estimating interaction regarding an additive scale using logistic regression was only focusing on two dichotomous factors. The objective of the present report was to provide a method to examine the interaction as departure from additivity between two continuous variables or between one continuous variable and one categorical variable. We used data from a lung cancer case-control study among males in Hong Kong as an example to illustrate the bootstrap re-sampling method for calculating the corresponding confidence intervals. Free software R (Version 2.8.1) was used to estimate interaction on the additive scale.

  11. Movable scour protection. Model test report

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, R.

    2002-07-01

    This report presents the results of a series of model tests with scour protection of marine structures. The objective of the model tests is to investigate the integrity of the scour protection during a general lowering of the surrounding seabed, for instance in connection with movement of a sand bank or with general subsidence. The scour protection in the tests is made out of stone material. Two different fractions have been used: 4 mm and 40 mm. Tests with current, with waves and with combined current and waves were carried out. The scour protection material was placed after an initial scour hole has evolved in the seabed around the structure. This design philosophy has been selected because the situation often is that the scour hole starts to generate immediately after the structure has been placed. It is therefore difficult to establish a scour protection at the undisturbed seabed if the scour material is placed after the main structure. Further, placing the scour material in the scour hole increases the stability of the material. Two types of structure have been used for the test, a Monopile and a Tripod foundation. Test with protection mats around the Monopile model was also carried out. The following main conclusions have emerged form the model tests with flat bed (i.e. no general seabed lowering): 1. The maximum scour depth found in steady current on sand bed was 1.6 times the cylinder diameter, 2. The minimum horizontal extension of the scour hole (upstream direction) was 2.8 times the cylinder diameter, corresponding to a slope of 30 degrees, 3. Concrete protection mats do not meet the criteria for a strongly erodible seabed. In the present test virtually no reduction in the scour depth was obtained. The main problem is the interface to the cylinder. If there is a void between the mats and the cylinder, scour will develop. Even with the protection mats that are tightly connected to the cylinder, scour is expected to develop as long as the mats allow for

  12. Shaking table test and analysis of embedded structure soil interaction considering input motion

    International Nuclear Information System (INIS)

    Matsushima, Y.; Mizuno, H.; Machida, N.; Sato, K.; Okano, H.

    1987-01-01

    The dynamic interaction between soil and structure is decomposed into inertial interaction (II) and kinematic interaction (KI). II denotes the interaction due to inertial force applied on foundations. KI denotes the interaction of massless foundations subjected to seismic waves. Forced vibration tests by exciters are not enough to evaluate the complete soil-structure interaction due to the lack of KI. To clarify the effects of KI on the seismic response of structure, the authors intended to carry out shaking table tests of the interaction between the soil and the embedded structure. A method to decompose II and KI is introduced which reveals the construction of embedment effects. Finally, the authors discuss the validity of three kinds of simulation analyses, that is, two-dimensional, approximate three-dimensional and rigorous three-dimensional analyses, comparing with the test results

  13. Alternative test models for skin aging research.

    Science.gov (United States)

    Nakamura, Motoki; Haarmann-Stemmann, Thomas; Krutmann, Jean; Morita, Akimichi

    2018-02-25

    Increasing ethical concerns regarding animal experimentation have led to the development of various alternative methods based on the 3Rs (Refinement, Reduction, and Replacement), first described by Russell and Burch in 1959. Cosmetic and skin aging research are particularly susceptible to concerns related to animal testing. In addition to animal welfare reasons, there are scientific and economic reasons to reduce and avoid animal experiments. Importantly, animal experiments may not reflect findings in humans mainly because of the differences of architectures and immune responses between animal skin and human skin. Here we review the shift from animal testing to the development and application of alternative non-animal based methods and the necessity and benefits of this shift. Some specific alternatives to animal models are discussed, including biochemical approaches, two-dimensional and three-dimensional cell cultures, and volunteer studies, as well as future directions, including genome-based research and the development of in silico computer simulations of skin models. Among the in vitro methods, three-dimensional reconstructed skin models are highly popular and useful alternatives to animal models however still have many limitations. With careful selection and skillful handling, these alternative methods will become indispensable for modern dermatology and skin aging research. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Computer-aided system for interactive psychomotor testing

    Science.gov (United States)

    Selivanova, Karina G.; Ignashchuk, Olena V.; Koval, Leonid G.; Kilivnik, Volodymyr S.; Zlepko, Alexandra S.; Sawicki, Daniel; Kalizhanova, Aliya; Zhanpeisova, Aizhan; Smailova, Saule

    2017-08-01

    Nowadays research of psychomotor actions has taken a special place in education, sports, medicine, psychology etc. Development of computer system for psychomotor testing could help solve many operational problems in psychoneurology and psychophysiology and also determine the individual characteristics of fine motor skills. This is particularly relevant issue when it comes to children, students, athletes for definition of personal and professional features. The article presents the dynamics of a developing psychomotor skills and application in the training process of means. The results of testing indicated their significant impact on psychomotor skills development.

  15. A combination test for detection of gene-environment interaction in cohort studies.

    Science.gov (United States)

    Coombes, Brandon; Basu, Saonli; McGue, Matt

    2017-07-01

    Identifying gene-environment (G-E) interactions can contribute to a better understanding of disease etiology, which may help researchers develop disease prevention strategies and interventions. One big criticism of studying G-E interaction is the lack of power due to sample size. Studies often restrict the interaction search to the top few hundred hits from a genome-wide association study or focus on potential candidate genes. In this paper, we test interactions between a candidate gene and an environmental factor to improve power by analyzing multiple variants within a gene. We extend recently developed score statistic based genetic association testing approaches to the G-E interaction testing problem. We also propose tests for interaction using gene-based summary measures that pool variants together. Although it has recently been shown that these summary measures can be biased and may lead to inflated type I error, we show that under several realistic scenarios, we can still provide valid tests of interaction. These tests use significantly less degrees of freedom and thus can have much higher power to detect interaction. Additionally, we demonstrate that the iSeq-aSum-min test, which combines a gene-based summary measure test, iSeq-aSum-G, and an interaction-based summary measure test, iSeq-aSum-I, provides a powerful alternative to test G-E interaction. We demonstrate the performance of these approaches using simulation studies and illustrate their performance to study interaction between the SNPs in several candidate genes and family climate environment on alcohol consumption using the Minnesota Center for Twin and Family Research dataset. © 2017 WILEY PERIODICALS, INC.

  16. BIOMOVS test scenario model comparison using BIOPATH

    International Nuclear Information System (INIS)

    Grogan, H.A.; Van Dorp, F.

    1986-07-01

    This report presents the results of the irrigation test scenario, presented in the BIOMOVS intercomparison study, calculated by the computer code BIOPATH. This scenario defines a constant release of Tc-99 and Np-237 into groundwater that is used for irrigation. The system of compartments used to model the biosphere is based upon an area in northern Switzerland and is essentially the same as that used in Projekt Gewaehr to assess the radiological impact of a high level waste repository. Two separate irrigation methods are considered, namely ditch and overhead irrigation. Their influence on the resultant activities calculated in the groundwater, soil and different foodproducts, as a function of time, is evaluated. The sensitivity of the model to parameter variations is analysed which allows a deeper understanding of the model chain. These results are assessed subjectively in a first effort to realistically quantify the uncertainty associated with each calculated activity. (author)

  17. Testing substellar models with dynamical mass measurements

    Directory of Open Access Journals (Sweden)

    Liu M.C.

    2011-07-01

    Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.

  18. Statistical tests of simple earthquake cycle models

    Science.gov (United States)

    Devries, Phoebe M. R.; Evans, Eileen

    2016-01-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM ~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  19. Development of an interactive friction model for the prediction of lubricant breakdown behaviour during sliding wear

    OpenAIRE

    Wang, L

    2016-01-01

    In this paper, a novel interactive friction-lubricant thickness model was developed to predict the evolution of coefficient of friction and the useful life of lubricant film. The developed model was calibrated by experimental results determined from pin-on-disc tests. For these experiments, a grease lubricant was applied on a Tungsten Carbide ball which slides against a disc made from AA6082 Aluminium alloy. In the pin-on-disc tests, the lubricant film thickness decreased with time during sin...

  20. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    model being correct is computed through a likelihood function for each model.  The study presented a simple technique to introduce additional models into the system using deterministic acceleration which basically defines the dynamics of the system.  Therefore, based on this value more motion models can...

  1. Species Coexistence in Nitrifying Chemostats: A Model of Microbial Interactions

    Directory of Open Access Journals (Sweden)

    Maxime Dumont

    2016-12-01

    Full Text Available In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB or nitrite-oxidizing bacteria (NOB of a nitrification reactor—operated continuously over 525 days with varying inputs—were assigned using a mathematical modeling approach together with the monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a chemostat model that does not explicitly include only the resources’ dynamics (different forms of soluble nitrogen but also explicitly takes into account microbial inter- and intra-species interactions for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained with and without interactions has shown that such interactions permit the coexistence of two competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition for ammonium and nitrite, respectively. These interactions are analyzed and discussed.

  2. Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model

    International Nuclear Information System (INIS)

    Stotler, D.P.

    2005-01-01

    The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model

  3. Effects of Strength of Accent on an L2 Interactive Lecture Listening Comprehension Test

    Science.gov (United States)

    Ockey, Gary J.; Papageorgiou, Spiros; French, Robert

    2016-01-01

    This article reports on a study which aimed to determine the effect of strength of accent on listening comprehension of interactive lectures. Test takers (N = 21,726) listened to an interactive lecture given by one of nine speakers and responded to six comprehension items. The test taker responses were analyzed with the Rasch computer program…

  4. An interactive style of the testing database production for EIS

    Directory of Open Access Journals (Sweden)

    Milan Mišovič

    2006-01-01

    Full Text Available Using a progressive Information Technology for development of Software Modules for Enterprise Information Systems brings a lot of practical and theoretical problems. One of them is a verification of results achieved in Life Cycle Stages, especially in the analysis stage. Instead of a very deep theoretical approach we can use quite practical testing by means of a testing database. Such testing database has to be constructed gradually from the Data Flow Diagram by a special algorithm.This article introduces a formal description of the entity population and entity states. There is suggested to deal with fragments of the DFD that are produced with respect to the event set. This DFD event fragment is refined to transactions and their elementary functions. There is defined a transaction path in every transaction. By means of a special state equation system is generally defined conception of a correct functional processing of entities going along a selected transaction path. Solutions of such state equation systems are platform for getting a testing database.

  5. On the thermoluminescent interactive multiple-trap system (IMTS) model: is it a simple model?

    International Nuclear Information System (INIS)

    Gil T, M. I.; Perez C, L.; Cruz Z, E.; Furetta, C.; Roman L, J.

    2016-10-01

    In the thermally stimulated luminescence phenomenon, named thermoluminescence (Tl), the electrons and holes generated by the radiation-matter interaction can be trapped by the metastable levels in the band gap of the solid. Following, the electron can be thermally releases into the conduction band and a radiatively recombination with hole close to the recombination center occurred and the glow curve is emitted. However, the complex mechanism of trapping and thermally releases occurred in the band gap of solid. Some models, such as; first, second and general-order kinetics, have been well established to explain the behaviour of the glow curves and their defects recombination mechanism. In this work, expressions for and Interactive Multiple-Trap System model (IMTS) was obtained assuming: a set of discrete electron traps (active traps At), another set of thermally disconnected trap (TDT) and a recombination center (Rc) too. A numerical analysis based on the Levenberg-Marquardt method in conjunction with an implicit Rosenbrock method was taken into account to simulate the glow curve. The numerical method was tested through synthetic Tl glow curves for a wide range of trap parameters. The activation energy and kinetics order were determined using values from the General Order Kinetics (GOK) model as entry data to IMTS model. This model was tested using the experimental glow curves obtained from Ce or Eu-doped MgF 2 (LiF) polycrystals samples. Results shown that the IMTS model can predict more accurately the behavior of the Tl glow curves that those obtained by the GOK modified by Rasheedy and by the Mixed Order Kinetics model. (Author)

  6. On the thermoluminescent interactive multiple-trap system (IMTS) model: is it a simple model?

    Energy Technology Data Exchange (ETDEWEB)

    Gil T, M. I.; Perez C, L. [UNAM, Facultad de Quimica, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Cruz Z, E.; Furetta, C.; Roman L, J., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2016-10-15

    In the thermally stimulated luminescence phenomenon, named thermoluminescence (Tl), the electrons and holes generated by the radiation-matter interaction can be trapped by the metastable levels in the band gap of the solid. Following, the electron can be thermally releases into the conduction band and a radiatively recombination with hole close to the recombination center occurred and the glow curve is emitted. However, the complex mechanism of trapping and thermally releases occurred in the band gap of solid. Some models, such as; first, second and general-order kinetics, have been well established to explain the behaviour of the glow curves and their defects recombination mechanism. In this work, expressions for and Interactive Multiple-Trap System model (IMTS) was obtained assuming: a set of discrete electron traps (active traps At), another set of thermally disconnected trap (TDT) and a recombination center (Rc) too. A numerical analysis based on the Levenberg-Marquardt method in conjunction with an implicit Rosenbrock method was taken into account to simulate the glow curve. The numerical method was tested through synthetic Tl glow curves for a wide range of trap parameters. The activation energy and kinetics order were determined using values from the General Order Kinetics (GOK) model as entry data to IMTS model. This model was tested using the experimental glow curves obtained from Ce or Eu-doped MgF{sub 2}(LiF) polycrystals samples. Results shown that the IMTS model can predict more accurately the behavior of the Tl glow curves that those obtained by the GOK modified by Rasheedy and by the Mixed Order Kinetics model. (Author)

  7. Strongly interacting matter at high densities with a soliton model

    Science.gov (United States)

    Johnson, Charles Webster

    1998-12-01

    One of the major goals of modern nuclear physics is to explore the phase diagram of strongly interacting matter. The study of these 'extreme' conditions is the primary motivation for the construction of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory which will accelerate nuclei to a center of mass (c.m.) energy of about 200 GeV/nucleon. From a theoretical perspective, a test of quantum chromodynamics (QCD) requires the expansion of the conditions examined from one phase point to the entire phase diagram of strongly-interacting matter. In the present work we focus attention on what happens when the density is increased, at low excitation energies. Experimental results from the Brookhaven Alternating Gradient Synchrotron (AGS) indicate that this regime may be tested in the 'full stopping' (maximum energy deposition) scenario achieved at the AGS having a c.m. collision energy of about 2.5 GeV/nucleon for two equal- mass heavy nuclei. Since the solution of QCD on nuclear length-scales is computationally prohibitive even on today's most powerful computers, progress in the theoretical description of high densities has come through the application of models incorporating some of the essential features of the full theory. The simplest such model is the MIT bag model. We use a significantly more sophisticated model, a nonlocal confining soliton model developed in part at Kent. This model has proven its value in the calculation of the properties of individual mesons and nucleons. In the present application, the many-soliton problem is addressed with the same model. We describe nuclear matter as a lattice of solitons and apply the Wigner-Seitz approximation to the lattice. This means that we consider spherical cells with one soliton centered in each, corresponding to the average properties of the lattice. The average density is then varied by changing the size of the Wigner-Seitz cell. To arrive at a solution, we need to solve a coupled set of

  8. Conditional random field modelling of interactions between findings in mammography

    Science.gov (United States)

    Kooi, Thijs; Mordang, Jan-Jurre; Karssemeijer, Nico

    2017-03-01

    Recent breakthroughs in training deep neural network architectures, in particular deep Convolutional Neural Networks (CNNs), made a big impact on vision research and are increasingly responsible for advances in Computer Aided Diagnosis (CAD). Since many natural scenes and medical images vary in size and are too large to feed to the networks as a whole, two stage systems are typically employed, where in the first stage, small regions of interest in the image are located and presented to the network as training and test data. These systems allow us to harness accurate region based annotations, making the problem easier to learn. However, information is processed purely locally and context is not taken into account. In this paper, we present preliminary work on the employment of a Conditional Random Field (CRF) that is trained on top the CNN to model contextual interactions such as the presence of other suspicious regions, for mammography CAD. The model can easily be extended to incorporate other sources of information, such as symmetry, temporal change and various patient covariates and is general in the sense that it can have application in other CAD problems.

  9. Modeling Wood Encroachment in Abandoned Grasslands in the Eifel National Park - Model Description and Testing.

    Directory of Open Access Journals (Sweden)

    Silvana Hudjetz

    Full Text Available The degradation of natural and semi-natural landscapes has become a matter of global concern. In Germany, semi-natural grasslands belong to the most species-rich habitat types but have suffered heavily from changes in land use. After abandonment, the course of succession at a specific site is often difficult to predict because many processes interact. In order to support decision making when managing semi-natural grasslands in the Eifel National Park, we built the WoodS-Model (Woodland Succession Model. A multimodeling approach was used to integrate vegetation dynamics in both the herbaceous and shrub/tree layer. The cover of grasses and herbs was simulated in a compartment model, whereas bushes and trees were modelled in an individual-based manner. Both models worked and interacted in a spatially explicit, raster-based landscape. We present here the model description, parameterization and testing. We show highly detailed projections of the succession of a semi-natural grassland including the influence of initial vegetation composition, neighborhood interactions and ungulate browsing. We carefully weighted the single processes against each other and their relevance for landscape development under different scenarios, while explicitly considering specific site conditions. Model evaluation revealed that the model is able to emulate successional patterns as observed in the field as well as plausible results for different population densities of red deer. Important neighborhood interactions such as seed dispersal, the protection of seedlings from browsing ungulates by thorny bushes, and the inhibition of wood encroachment by the herbaceous layer, have been successfully reproduced. Therefore, not only a detailed model but also detailed initialization turned out to be important for spatially explicit projections of a given site. The advantage of the WoodS-Model is that it integrates these many mutually interacting processes of succession.

  10. Seepage Calibration Model and Seepage Testing Data

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM is developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA (see upcoming REV 02 of CRWMS M and O 2000 [153314]), which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model (see BSC 2003 [161530]). The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross Drift to obtain the permeability structure for the seepage model; (3) to use inverse modeling to calibrate the SCM and to estimate seepage-relevant, model-related parameters on the drift scale; (4) to estimate the epistemic uncertainty of the derived parameters, based on the goodness-of-fit to the observed data and the sensitivity of calculated seepage with respect to the parameters of interest; (5) to characterize the aleatory uncertainty

  11. Seepage Calibration Model and Seepage Testing Data

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-17

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM is developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA (see upcoming REV 02 of CRWMS M&O 2000 [153314]), which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model (see BSC 2003 [161530]). The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross Drift to obtain the permeability structure for the seepage model; (3) to use inverse modeling to calibrate the SCM and to estimate seepage-relevant, model-related parameters on the drift scale; (4) to estimate the epistemic uncertainty of the derived parameters, based on the goodness-of-fit to the observed data and the sensitivity of calculated seepage with respect to the parameters of interest; (5) to characterize the aleatory uncertainty of

  12. Monitoring and modeling human interactions with ecosystems

    Science.gov (United States)

    Milesi, Cristina

    With rapidly increasing consumption rates and global population, there is a growing interest in understanding how to balance human activities with the other components of the Earth system. Humans alter ecosystem functioning with land cover changes, greenhouse gas emissions and overexploitation of natural resources. On the other side, climate and its inherent interannual variability drive global Net Primary Productivity (NPP), the base of energy for all trophic levels, shaping humans' distribution on the land surface and their sensitivity to natural and accelerated patterns of variation in ecosystem processes. In this thesis, I analyzed anthropogenic influences on ecosystems and ecosystems impacts on humans through a multi-scale approach. Anthropogenic influences were analyzed with a special focus on urban ecosystems, the living environment of nearly half of the global population and almost 90% of the population in the industrialized countries. A poorly quantified aspect of urban ecosystems is the biogeochemistry of urban vegetation, intensively managed through fertilization and irrigation. In chapter 1, adapting the ecosystem model Biome-BGC, I simulated the growth of turf grasses across the United States, and estimated their potential impact on the continental water and carbon budget. Using a remote sensing-based approach, I also developed a methodology to estimate the impact of land cover changes due to urbanization on the regional photosynthetic capacity (chapter 2), finding that low-density urbanization can retain high levels of net primary productivity, although at the expense of inefficient sprawl. One of the feedbacks of urbanization is the urban heat island effect, which I analyzed in conjunction with a remote sensing based estimate of fractional impervious surface area, showing how this is related to increases in land surface temperatures, independently from geographic location and population density (chapter 3). Finally, in chapter 4, I described the

  13. Thurstonian models for sensory discrimination tests as generalized linear models

    DEFF Research Database (Denmark)

    Brockhoff, Per B.; Christensen, Rune Haubo Bojesen

    2010-01-01

    as a so-called generalized linear model. The underlying sensory difference 6 becomes directly a parameter of the statistical model and the estimate d' and it's standard error becomes the "usual" output of the statistical analysis. The d' for the monadic A-NOT A method is shown to appear as a standard...... linear contrast in a generalized linear model using the probit link function. All methods developed in the paper are implemented in our free R-package sensR (http://www.cran.r-project.org/package=sensR/). This includes the basic power and sample size calculations for these four discrimination tests...

  14. Polyphenols and β-glucan interactions through linear adsorption models

    Directory of Open Access Journals (Sweden)

    Š. Ukić

    2016-01-01

    Full Text Available The aim of this work was to obtain information about interactions between polyphenols and β-glucan through linear adsorption equilibrium models. Polyphenolic compounds can interact with various food ingredients such as carbohydrates, proteins and lipids and these interactions can affect polyphenol bioactivities. Interactions can be studied through the adsorption process at a constant temperature and adsorption isotherms can be obtained. In this work the interactions between polyphenols like gallic acid, cyanidin-3-galactoside and cyanidin-3-glucoside and β-glucan as a natural dietary fiber were studied through the Freundlich's, Langmuir's, Dubinin-Radushkevich's, Tempkin's and Hill's models. The adsorption was carried out through model solutions of different concentrations of polyphenols and β-glucan for 16 hours at 25 °C. After the adsorption, the unadsorbed polyphenols were separated from the adsorbed ones by ultrafiltration. Concentrations of the unadsorbed polyphenols were determined by the spectrophotometric Folin-Ciocalteu method for gallic acid, and the pH differential method for cyanidin-3-galactoside and cyanidin-3-glucoside. The results of adsorption isotherm parameters showed that adsorption between all polyphenols and β-glucan were physical, and all interactions were favorized. Gallic acid showed the highest maximum adsorption capacity onto β-glucan. This study showed that information about interactions between polyphenols and dietary fibers can be obtained through the linear adsorption equilibrium isotherms.

  15. Optimization of mathematical models for soil structure interaction

    International Nuclear Information System (INIS)

    Vallenas, J.M.; Wong, C.K.; Wong, D.L.

    1993-01-01

    Accounting for soil-structure interaction in the design and analysis of major structures for DOE facilities can involve significant costs in terms of modeling and computer time. Using computer programs like SASSI for modeling major structures, especially buried structures, requires the use of models with a large number of soil-structure interaction nodes. The computer time requirements (and costs) increase as a function of the number of interaction nodes to the third power. The added computer and labor cost for data manipulation and post-processing can further increase the total cost. This paper provides a methodology to significantly reduce the number of interaction nodes. This is achieved by selectively increasing the thickness of soil layers modeled based on the need for the mathematical model to capture as input only those frequencies that can actually be transmitted by the soil media. The authors have rarely found that a model needs to capture frequencies as high as 33 Hz. Typically coarser meshes (and a lesser number of interaction nodes) are adequate

  16. Galaxy Zoo: Mergers - Dynamical models of interacting galaxies

    Science.gov (United States)

    Holincheck, Anthony J.; Wallin, John F.; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M.; Bamford, Steven; Keel, William C.; Parrish, Michael

    2016-06-01

    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of citizen scientists, we sample 105 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the simulation parameters generated by the project. They are now publicly available in electronic format at http://data.galaxyzoo.org/mergers.html. Though our best-fitting model parameters are not an exact match to previously published models, our method for determining uncertainty measurements will aid future comparisons between models. The dynamical clocks from our models agree with previous results of the time since the onset of star formation from starburst models in interacting systems and suggest that tidally induced star formation is triggered very soon after closest approach.

  17. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    Science.gov (United States)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  18. Cosmological model of interacting phantom and Yang–Mills fields

    Indian Academy of Sciences (India)

    equation previously considered in FRW cosmology [30–34], we generalize the model investigated in [30] in the case of interacting phantom and YM fields. This allows us to obtain some exact solutions for the accelerated expansion of FRW cosmological model. Besides, we derive the induced potentials of phantom field ...

  19. Precision Tests of the Electroweak Interaction using Trapped Atoms and Ions

    Energy Technology Data Exchange (ETDEWEB)

    Melconian, Daniel George [Texas A & M Univ., College Station, TX (United States)

    2017-06-21

    The objective of the proposed research is to study fundamental aspects of the electroweak interaction via precision measurements in beta decay to test our current understanding of fundamental particles and forces as contained in the so-called "Standard Model" of particle physics. By comparing elegant experiments to rigorous theoretical predictions, we will either confirm the Standard Model to a higher degree and rule out models which seek to extend it, or find evidence of new physics and help guide theorists in developing the New Standard Model. The use of ion and neutral atom traps at radioactive ion beam facilities has opened up a new vista in precision low-energy nuclear physics experiments. Traps provide an ideal source of decaying atoms: they can be extremely cold (~1 mK); they are compact (~1 mm^3); and perhaps most importantly, the daughter particles escape with negligible distortions to their momenta in a scattering-free, open environment. The project is taking advantage of these technologies and applying them to precision beta-decay studies at radioactive beam facilities. The program consists of two complementary efforts: 1) Ion traps are an extremely versatile tool for purifying, cooling and bunching low-energy beams of short-lived nuclei. A large-bore (210~mm) superconducting 7-Tesla solenoid is at the heart of a Penning trap system for which there is a dedicated beamline at T-REX, the upgraded radioactive beam facility at the Cyclotron Institute, Texas A&M University. In addition to providing a general-purpose decay station, the flagship program for this system is measuring the ft-values and beta-neutrino correlation parameters from isospin T=2 superallowed beta-delayed proton decays, complimenting and expanding the already strong program in fundamental interactions at the Institute. 2) A magneto-optical trap is being used at the TRIUMF Neutral Atom Trap facility to observe the (un)polarized angular distribution parameters of isotopes of potassium. We

  20. Interactive Coherence-Based Façade Modeling

    KAUST Repository

    Musialski, Przemyslaw

    2012-05-01

    We propose a novel interactive framework for modeling building facades from images. Our method is based on the notion of coherence-based editing which allows exploiting partial symmetries across the facade at any level of detail. The proposed workflow mixes manual interaction with automatic splitting and grouping operations based on unsupervised cluster analysis. In contrast to previous work, our approach leads to detailed 3d geometric models with up to several thousand regions per facade. We compare our modeling scheme to others and evaluate our approach in a user study with an experienced user and several novice users.

  1. Consistency test of the standard model

    International Nuclear Information System (INIS)

    Pawlowski, M.; Raczka, R.

    1997-01-01

    If the 'Higgs mass' is not the physical mass of a real particle but rather an effective ultraviolet cutoff then a process energy dependence of this cutoff must be admitted. Precision data from at least two energy scale experimental points are necessary to test this hypothesis. The first set of precision data is provided by the Z-boson peak experiments. We argue that the second set can be given by 10-20 GeV e + e - colliders. We pay attention to the special role of tau polarization experiments that can be sensitive to the 'Higgs mass' for a sample of ∼ 10 8 produced tau pairs. We argue that such a study may be regarded as a negative selfconsistency test of the Standard Model and of most of its extensions

  2. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992......). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment...

  3. A Model for Molten Fuel-Coolant Interaction during Melt Slumping in a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, Manohar Singh; Siefken, Larry James

    1999-10-01

    This paper describes a simple fuel melt slumping model to replace the current parametric model in SCDAP/RELAP5. Specifically, a fuel-coolant interaction (FCI) model is developed to analyze the slumping molten fuel, molten fuel breakup, heat transfer to coolant, relocation of the molten droplets, size of a partially solidified particles that settle to the bottom of the lower plenum, and melt-plenum interaction, if any. Considering our objectives, the molten fuel jet breakup model, and fuel droplets Lagrangian model as included in a code TEXAS-V with Eulerian thermal hydraulics for water and steam from SCDAP/RELAP5 were used. The model was assessed with experimental data from MAGICO-2000 tests performed at University of California at Santa Barbara, and FARO Test L-08 performed at Joint Research Center, Ispra, Italy. The comparison was found satisfactory.

  4. Seepage Calibration Model and Seepage Testing Data

    International Nuclear Information System (INIS)

    Finsterle, S.

    2004-01-01

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross-Drift to obtain the permeability structure for the seepage model

  5. Seepage Calibration Model and Seepage Testing Data

    Energy Technology Data Exchange (ETDEWEB)

    S. Finsterle

    2004-09-02

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross

  6. Model-independent tests of cosmic gravity.

    Science.gov (United States)

    Linder, Eric V

    2011-12-28

    Gravitation governs the expansion and fate of the universe, and the growth of large-scale structure within it, but has not been tested in detail on these cosmic scales. The observed acceleration of the expansion may provide signs of gravitational laws beyond general relativity (GR). Since the form of any such extension is not clear, from either theory or data, we adopt a model-independent approach to parametrizing deviations to the Einstein framework. We explore the phase space dynamics of two key post-GR functions and derive a classification scheme, and an absolute criterion on accuracy necessary for distinguishing classes of gravity models. Future surveys will be able to constrain the post-GR functions' amplitudes and forms to the required precision, and hence reveal new aspects of gravitation.

  7. Astronomical bounds on a cosmological model allowing a general interaction in the dark sector

    Science.gov (United States)

    Pan, Supriya; Mukerjee, Ankan; Banerjee, Narayan

    2018-03-01

    Non-gravitational interaction between two barotropic dark fluids, namely the pressureless dust and the dark energy in a spatially flat Friedmann-Lemaître-Robertson-Walker model has been discussed. It is shown that for the interactions which are linear in terms the energy densities of the dark components and their first order derivatives, the net energy density is governed by a second order differential equation with constant coefficients. Taking a generalized interaction, which includes a number of already known interactions as special cases, the dynamics of the universe is described for three types of the dark energy equation of state, namely that of interacting quintessence, interacting vacuum energy density and interacting phantom. The models have been constrained using the standard cosmological probes, Supernovae type Ia data from joint light curve analysis and the observational Hubble parameter data. Two geometric tests, the cosmographic studies and the Om diagnostic have been invoked so as to ascertain the behaviour of the present model vis-a-vis the ΛCDM model. We further discussed the interacting scenarios taking into account the thermodynamic considerations.

  8. Interactive Documentary: A Production Model for Nonfiction Multimedia Narratives

    Science.gov (United States)

    Choi, Insook

    This paper presents an interactive production model for nonfiction multimedia, referred to as interactive documentary. We discuss the design of ontologies for authoring interactive documentary. A working prototype supports the use of reasoning for retrieving, composing, and displaying media resources in real-time. A GUI is designed to facilitate concept-based navigation which enables queries across media resources of diverse types. A dual-root-node data design links ontological reasoning with metadata, which provides a method for defining hybrid semantic-quantitative relationships. Our application focuses on archiving and retrieving non-text based media resources. The system architecture supports sensory-rich display feedback with real time interactivity for navigating documents’ space. We argue an experience of narratives evolves through the performitivity in the interactive narrative structure when the constituents are mediated by common ontology. The consequential experience identifies a renewed practice of oral tradition where the accumulative sensorial propositions inform narratives, such as in performance practice.

  9. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction.

    Science.gov (United States)

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S

    2015-07-13

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors' behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants' specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive , and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants' behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods.

  10. Interaction Model of Mental Disability (IMMD) based on ICIDH

    OpenAIRE

    YAMANE, Hiroshi

    2001-01-01

    I propose an "Interaction Model of Mental Disability (IMMD)". Several models based on ICIDH are being proposed and tested around the world focusing on different aspects of disability. Though ICIDH is an inclusive model in health services, social security, insurance, education, and so on, the remarkable point of IMMD is to visualize the mutual relation of mental disability (impairment, disability and handicap) and other factors (environmental factors, personal factors). IMMD is a practical reh...

  11. Interactive, process-oriented climate modeling with CLIMLAB

    Science.gov (United States)

    Rose, B. E. J.

    2016-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The Jupyter Notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields.

  12. Exactly solvable models of proton and neutron interacting bosons

    International Nuclear Information System (INIS)

    Lerma, S.H.; Errea, B.; Dukelsky, J.; Pittel, S.; Van Isacker, P.

    2006-01-01

    We describe a class of exactly-solvable models of interacting bosons based on the algebra SO(3, 2). Each copy of the algebra represents a system of neutron and proton bosons in a given bosonic level interacting via a pairing interaction. The model that includes s and d bosons is a specific realization of the IBM2, restricted to the transition regime between vibrational and γ-soft nuclei. By including additional copies of the algebra, we can generate proton-neutron boson models involving other boson degrees of freedom, while still maintaining exact solvability. In each of these models, we can study not only the states of maximal symmetry, but also those of mixed symmetry, albeit still in the vibrational to γ-soft transition regime. Furthermore, in each of these models we can study some features of F-spin symmetry breaking. We report systematic calculations as a function of the pairing strength for models based on s,d, and g bosons and on s,d, and f bosons. The formalism of exactly-solvable models based on the SO(3, 2) algebra is not limited to systems of proton and neutron bosons, however, but can also be applied to other scenarios that involve two species of interacting bosons

  13. ExEP yield modeling tool and validation test results

    Science.gov (United States)

    Morgan, Rhonda; Turmon, Michael; Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Liu, Xiang Cate; Nunez, Paul

    2017-09-01

    EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR.

  14. Literature review of models on tire-pavement interaction noise

    Science.gov (United States)

    Li, Tan; Burdisso, Ricardo; Sandu, Corina

    2018-04-01

    Tire-pavement interaction noise (TPIN) becomes dominant at speeds above 40 km/h for passenger vehicles and 70 km/h for trucks. Several models have been developed to describe and predict the TPIN. However, these models do not fully reveal the physical mechanisms or predict TPIN accurately. It is well known that all the models have both strengths and weaknesses, and different models fit different investigation purposes or conditions. The numerous papers that present these models are widely scattered among thousands of journals, and it is difficult to get the complete picture of the status of research in this area. This review article aims at presenting the history and current state of TPIN models systematically, making it easier to identify and distribute the key knowledge and opinions, and providing insight into the future research trend in this field. In this work, over 2000 references related to TPIN were collected, and 74 models were reviewed from nearly 200 selected references; these were categorized into deterministic models (37), statistical models (18), and hybrid models (19). The sections explaining the models are self-contained with key principles, equations, and illustrations included. The deterministic models were divided into three sub-categories: conventional physics models, finite element and boundary element models, and computational fluid dynamics models; the statistical models were divided into three sub-categories: traditional regression models, principal component analysis models, and fuzzy curve-fitting models; the hybrid models were divided into three sub-categories: tire-pavement interface models, mechanism separation models, and noise propagation models. At the end of each category of models, a summary table is presented to compare these models with the key information extracted. Readers may refer to these tables to find models of their interest. The strengths and weaknesses of the models in different categories were then analyzed. Finally

  15. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  16. General quadrupole shapes in the Interacting Boson Model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs

  17. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  18. General quadrupole shapes in the Interacting Boson Model

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs.

  19. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS.

    Energy Technology Data Exchange (ETDEWEB)

    TOMAS,R.FISCHER,W.JAIN,A.LUO,Y.PILAT,F.

    2004-07-05

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability.

  20. Phase transitions for Ising model with four competing interactions

    International Nuclear Information System (INIS)

    Ganikhodjaev, N.N.; Rozikov, U.A.

    2004-11-01

    In this paper we consider an Ising model with four competing interactions (external field, nearest neighbor, second neighbors and triples of neighbors) on the Cayley tree of order two. We show that for some parameter values of the model there is phase transition. Our second result gives a complete description of periodic Gibbs measures for the model. We also construct uncountably many non-periodic extreme Gibbs measures. (author)

  1. Modeling and Testing Landslide Hazard Using Decision Tree

    Directory of Open Access Journals (Sweden)

    Mutasem Sh. Alkhasawneh

    2014-01-01

    Full Text Available This paper proposes a decision tree model for specifying the importance of 21 factors causing the landslides in a wide area of Penang Island, Malaysia. These factors are vegetation cover, distance from the fault line, slope angle, cross curvature, slope aspect, distance from road, geology, diagonal length, longitude curvature, rugosity, plan curvature, elevation, rain perception, soil texture, surface area, distance from drainage, roughness, land cover, general curvature, tangent curvature, and profile curvature. Decision tree models are used for prediction, classification, and factors importance and are usually represented by an easy to interpret tree like structure. Four models were created using Chi-square Automatic Interaction Detector (CHAID, Exhaustive CHAID, Classification and Regression Tree (CRT, and Quick-Unbiased-Efficient Statistical Tree (QUEST. Twenty-one factors were extracted using digital elevation models (DEMs and then used as input variables for the models. A data set of 137570 samples was selected for each variable in the analysis, where 68786 samples represent landslides and 68786 samples represent no landslides. 10-fold cross-validation was employed for testing the models. The highest accuracy was achieved using Exhaustive CHAID (82.0% compared to CHAID (81.9%, CRT (75.6%, and QUEST (74.0% model. Across the four models, five factors were identified as most important factors which are slope angle, distance from drainage, surface area, slope aspect, and cross curvature.

  2. Real and financial interacting markets: A behavioral macro-model

    International Nuclear Information System (INIS)

    Naimzada, Ahmad; Pireddu, Marina

    2015-01-01

    Highlights: •We propose a model in which the real sector and the stock market interact. •In the stock market there are optimistic and pessimistic fundamentalists. •We detect the mechanisms through which instabilities get transmitted between markets. •In order to perform such analysis, we introduce the “interaction degree approach”. •We show the effects of increasing the interaction degree between the two markets. -- Abstract: In the present paper we propose a model in which the real side of the economy, described via a Keynesian good market approach, interacts with the stock market with heterogeneous speculators, i.e., optimistic and pessimistic fundamentalists, that respectively overestimate and underestimate the reference value due to a belief bias. Agents may switch between optimism and pessimism according to which behavior is more profitable. To the best of our knowledge, this is the first contribution considering both real and financial interacting markets and an evolutionary selection process for which an analytical study is performed. Indeed, employing analytical and numerical tools, we detect the mechanisms and the channels through which the stability of the isolated real and financial sectors leads to instability for the two interacting markets. In order to perform such analysis, we introduce the “interaction degree approach”, which allows us to study the complete three-dimensional system by decomposing it into two subsystems, i.e., the isolated financial and real markets, easier to analyze, that are then linked through a parameter describing the interaction degree between the two markets. We derive the stability conditions both for the isolated markets and for the whole system with interacting markets. Next, we show how to apply the interaction degree approach to our model. Among the various scenarios we are led to analyze, the most interesting one is that in which the isolated markets are stable, but their interaction is destabilizing

  3. A model with interaction of dark components and recent observational data

    Science.gov (United States)

    Pan, Supriya; Sharov, German S.

    2017-12-01

    In the proposed model with interaction between dark energy and dark matter, we consider cosmological scenarios with different equations of state (wd) for dark energy. For both constant and variable equation of state, we analyse solutions for dark energy and dark matter in seven variants of the model. We investigate exact analytic solutions for wd = constant equation of state and several variants of the model for variable wd. These scenarios are tested with the current astronomical data from Type Ia supernovae, baryon acoustic oscillations, Hubble parameter H(z) and the cosmic microwave background radiation. Finally, we make a statistical comparison of our interacting model with Λ cold dark matter as well as with some other well-known non-interacting cosmological models.

  4. Interaction effects in a microscopic quantum wire model with strong spin-orbit interaction

    Science.gov (United States)

    Winkler, G. W.; Ganahl, M.; Schuricht, D.; Evertz, H. G.; Andergassen, S.

    2017-06-01

    We investigate the effect of strong interactions on the spectral properties of quantum wires with strong Rashba spin-orbit (SO) interaction in a magnetic field, using a combination of matrix product state and bosonization techniques. Quantum wires with strong Rashba SO interaction and magnetic field exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread experimental and theoretical attention due to their unusual physical properties, among which are spin-dependent transport, or a topological superconducting phase when under the proximity effect of an s-wave superconductor. As a microscopic model for the quantum wire we study an extended Hubbard model with SO interaction and Zeeman field. We obtain spin resolved spectral densities from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions increase the pseudo gap at k = 0 and thus also enhance the Majorana-supporting phase and stabilize the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low energy spiral Luttinger liquid result, obtained from field theoretical calculations. With interactions, the optical conductivity is dominated by an excotic excitation of a bound soliton-antisoliton pair known as a breather state. We visualize the oscillating motion of the breather state, which could provide the route to their experimental detection in e.g. cold atom experiments.

  5. An R package "VariABEL" for genome-wide searching of potentially interacting loci by testing genotypic variance heterogeneity

    Directory of Open Access Journals (Sweden)

    Struchalin Maksim V

    2012-01-01

    Full Text Available Abstract Background Hundreds of new loci have been discovered by genome-wide association studies of human traits. These studies mostly focused on associations between single locus and a trait. Interactions between genes and between genes and environmental factors are of interest as they can improve our understanding of the genetic background underlying complex traits. Genome-wide testing of complex genetic models is a computationally demanding task. Moreover, testing of such models leads to multiple comparison problems that reduce the probability of new findings. Assuming that the genetic model underlying a complex trait can include hundreds of genes and environmental factors, testing of these models in genome-wide association studies represent substantial difficulties. We and Pare with colleagues (2010 developed a method allowing to overcome such difficulties. The method is based on the fact that loci which are involved in interactions can show genotypic variance heterogeneity of a trait. Genome-wide testing of such heterogeneity can be a fast scanning approach which can point to the interacting genetic variants. Results In this work we present a new method, SVLM, allowing for variance heterogeneity analysis of imputed genetic variation. Type I error and power of this test are investigated and contracted with these of the Levene's test. We also present an R package, VariABEL, implementing existing and newly developed tests. Conclusions Variance heterogeneity analysis is a promising method for detection of potentially interacting loci. New method and software package developed in this work will facilitate such analysis in genome-wide context.

  6. Model-Based Software Testing for Object-Oriented Software

    Science.gov (United States)

    Biju, Soly Mathew

    2008-01-01

    Model-based testing is one of the best solutions for testing object-oriented software. It has a better test coverage than other testing styles. Model-based testing takes into consideration behavioural aspects of a class, which are usually unchecked in other testing methods. An increase in the complexity of software has forced the software industry…

  7. An Opinion Interactive Model Based on Individual Persuasiveness.

    Science.gov (United States)

    Zhou, Xin; Chen, Bin; Liu, Liang; Ma, Liang; Qiu, Xiaogang

    2015-01-01

    In order to study the formation process of group opinion in real life, we put forward a new opinion interactive model based on Deffuant model and its improved models in this paper because current models of opinion dynamics lack considering individual persuasiveness. Our model has following advantages: firstly persuasiveness is added to individual's attributes reflecting the importance of persuasiveness, which means that all the individuals are different from others; secondly probability is introduced in the course of interaction which simulates the uncertainty of interaction. In Monte Carlo simulation experiments, sensitivity analysis including the influence of randomness, initial persuasiveness distribution, and number of individuals is studied at first; what comes next is that the range of common opinion based on the initial persuasiveness distribution can be predicted. Simulation experiment results show that when the initial values of agents are fixed, no matter how many times independently replicated experiments, the common opinion will converge at a certain point; however the number of iterations will not always be the same; the range of common opinion can be predicted when initial distribution of opinion and persuasiveness are given. As a result, this model can reflect and interpret some phenomena of opinion interaction in realistic society.

  8. lmerTest Package: Tests in Linear Mixed Effects Models

    DEFF Research Database (Denmark)

    Kuznetsova, Alexandra; Brockhoff, Per B.; Christensen, Rune Haubo Bojesen

    2017-01-01

    by providing p values for tests for fixed effects. We have implemented the Satterthwaite's method for approximating degrees of freedom for the t and F tests. We have also implemented the construction of Type I - III ANOVA tables. Furthermore, one may also obtain the summary as well as the anova table using...

  9. An interactive model of auditory-motor speech perception.

    Science.gov (United States)

    Liebenthal, Einat; Möttönen, Riikka

    2017-12-18

    Mounting evidence indicates a role in perceptual decoding of speech for the dorsal auditory stream connecting between temporal auditory and frontal-parietal articulatory areas. The activation time course in auditory, somatosensory and motor regions during speech processing is seldom taken into account in models of speech perception. We critically review the literature with a focus on temporal information, and contrast between three alternative models of auditory-motor speech processing: parallel, hierarchical, and interactive. We argue that electrophysiological and transcranial magnetic stimulation studies support the interactive model. The findings reveal that auditory and somatomotor areas are engaged almost simultaneously, before 100 ms. There is also evidence of early interactions between auditory and motor areas. We propose a new interactive model of auditory-motor speech perception in which auditory and articulatory somatomotor areas are connected from early stages of speech processing. We also discuss how attention and other factors can affect the timing and strength of auditory-motor interactions and propose directions for future research. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Probabilistic models of population evolution scaling limits, genealogies and interactions

    CERN Document Server

    Pardoux, Étienne

    2016-01-01

    This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications. Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtai...

  11. Ecosystem management via interacting models of political and ecological processes

    Directory of Open Access Journals (Sweden)

    Haas, T. C.

    2004-01-01

    Full Text Available The decision to implement environmental protection options is a political one. Political realities may cause a country to not heed the most persuasive scientific analysis of an ecosystem's future health. A predictive understanding of the political processes that result in ecosystem management decisions may help guide ecosystem management policymaking. To this end, this article develops a stochastic, temporal model of how political processes influence and are influenced by ecosystem processes. This model is realized in a system of interacting influence diagrams that model the decision making of a country's political bodies. These decisions interact with a model of the ecosystem enclosed by the country. As an example, a model for Cheetah (Acinonyx jubatus management in Kenya is constructed and fitted to decision and ecological data.

  12. Interpretation and calculations for the first series of tests for the ARTEMIS program (corium-concrete interaction with simulating materials)

    International Nuclear Information System (INIS)

    Michel, B.; Cranga, M.

    2009-01-01

    The ARTEMIS experimental program is devoted to the study of corium/concrete interaction performed using simulating materials. The aim of the first series of tests was to study the phenomenology of the corium/concrete interaction, in particular at the interface between the liquid pool and the concrete, versus the heat dissipated in the pool and gas velocity. During this first series of tests, six 1D tests were performed. This interpretation of the experimental results shows that, if gas velocity and heat flux are sufficiently low, a stable crust, made of solid accumulations, builds up at the beginning of the interaction whereas the pool remains liquid. These solid masses are not melted or dissolved afterwards. They are not in thermodynamic equilibrium with the pool. In addition, the quantity of these solid masses depends on the initial superheat of the pool and has a significant impact on the progress of the interaction. If the conditions of crust build-up are not satisfied, the pool is in a semi-solid state. This report identifies the validity limits of a corium/concrete interface description based on the equilibrium phase segregation model and has led to the establishment of the basic features of a new model, suitable for this test series. This consists in considering the solid masses built up at the beginning of the interaction only as thermal resistance. This model has been successfully tested for the 5 reliable tests, using the MEDICIS module of the ASTEC code. The correlation between the experimental results and the calculations confirms this interpretation

  13. Mathematical Modelling of Biomechanical Interactions between Backpack and Bearer during Load Carriage

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2013-01-01

    Full Text Available This paper proposes a three-dimensional mathematical model of the biomechanical interactions between backpack and bearer during load carriage. The model considers both the coupled pack motions, which follow the torso, and also the longitudinal compliance and damping in the backpack suspension. The pack interaction forces and moments, acting on the bearer, are determined from kinematic relationships, equations of motion, and a dynamic pack suspension model. The parameters of the pack suspension model were identified from test data obtained using a load carriage test rig. Output from the load carriage mathematical model has been compared with measurement data during human gait and conclusions drawn with regard to the validity of the proposed approach.

  14. Optimization Model for Web Based Multimodal Interactive Simulations.

    Science.gov (United States)

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  15. Modelling the interaction between flooding events and economic growth

    Directory of Open Access Journals (Sweden)

    J. Grames

    2015-06-01

    Full Text Available Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014. These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  16. Effect of three body interaction in the Hamiltonian of the interacting bosons model

    International Nuclear Information System (INIS)

    Nunes, C.A.A.

    1987-01-01

    The interacting boson model algebra is analysed on the basis of group theory. Through the topological properties of the groups a geometry is associated and the fundamental state of the nucleus is obtained. Calculations were carried out for 102 Ru and 168 Er. (A.C.A.S.) [pt

  17. Interactive Reliability Model for Whisker-toughened Ceramics

    Science.gov (United States)

    Palko, Joseph L.

    1993-01-01

    Wider use of ceramic matrix composites (CMC) will require the development of advanced structural analysis technologies. The use of an interactive model to predict the time-independent reliability of a component subjected to multiaxial loads is discussed. The deterministic, three-parameter Willam-Warnke failure criterion serves as the theoretical basis for the reliability model. The strength parameters defining the model are assumed to be random variables, thereby transforming the deterministic failure criterion into a probabilistic criterion. The ability of the model to account for multiaxial stress states with the same unified theory is an improvement over existing models. The new model was coupled with a public-domain finite element program through an integrated design program. This allows a design engineer to predict the probability of failure of a component. A simple structural problem is analyzed using the new model, and the results are compared to existing models.

  18. Experimental Tests of the Algebraic Cluster Model

    Science.gov (United States)

    Gai, Moshe

    2018-02-01

    The Algebraic Cluster Model (ACM) of Bijker and Iachello that was proposed already in 2000 has been recently applied to 12C and 16O with much success. We review the current status in 12C with the outstanding observation of the ground state rotational band composed of the spin-parity states of: 0+, 2+, 3-, 4± and 5-. The observation of the 4± parity doublet is a characteristic of (tri-atomic) molecular configuration where the three alpha- particles are arranged in an equilateral triangular configuration of a symmetric spinning top. We discuss future measurement with electron scattering, 12C(e,e’) to test the predicted B(Eλ) of the ACM.

  19. Pharmacokinetic-pharmacodynamic model of the antihypertensive interaction between telmisartan and hydrochlorothiazide in spontaneously hypertensive rats.

    Science.gov (United States)

    Hao, Kun; Chen, Yuancheng; Zhao, Xiaoping; Liu, Xiaoquan

    2014-08-01

    The goal of this study was to establish an integrated indirect response pharmacokinetic-pharmacodynamic model between telmisartan and hydrochlorothiazide to describe the antihypertensive interaction of these two drugs in spontaneously hypertensive rats. The blood pressure and plasma concentrations were measured by the tail-cuff test and high performance liquid chromatography-mass spectrometry, respectively, in spontaneously hypertensive rats. The current pharmacokinetic-pharmacodynamic model was based on the non-competitive pharmacodynamic interaction of two drugs acting on different physiological processes. This model was able to acquire the temporal changes in drug concentration and blood pressure after administration of telmisartan or hydrochlorothiazide. The noncompetitive pharmacodynamic interaction assumed that the decreased blood pressure was attributed to the inhibitory function of telmisartan and stimulatory function of hydrochlorothiazide after administration of these two drugs. There was no significant pharmacokinetic change of telmisartan and hydrochlorothiazide in the different groups tested. The model predicted a synergistic pharmacodynamic interaction when telmisartan was administered in combination with hydrochlorothiazide, which was notably stronger than if the effects were additive. The results showed that the presented pharmacokinetic-pharmacodynamic model was suitable for describing the antihypertensive interaction between telmisartan and hydrochlorothiazide. © 2014 Royal Pharmaceutical Society.

  20. Heat transfer modelling of pulsed laser-tissue interaction

    Science.gov (United States)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  1. Spoken language interaction with model uncertainty: an adaptive human-robot interaction system

    Science.gov (United States)

    Doshi, Finale; Roy, Nicholas

    2008-12-01

    Spoken language is one of the most intuitive forms of interaction between humans and agents. Unfortunately, agents that interact with people using natural language often experience communication errors and do not correctly understand the user's intentions. Recent systems have successfully used probabilistic models of speech, language and user behaviour to generate robust dialogue performance in the presence of noisy speech recognition and ambiguous language choices, but decisions made using these probabilistic models are still prone to errors owing to the complexity of acquiring and maintaining a complete model of human language and behaviour. In this paper, a decision-theoretic model for human-robot interaction using natural language is described. The algorithm is based on the Partially Observable Markov Decision Process (POMDP), which allows agents to choose actions that are robust not only to uncertainty from noisy or ambiguous speech recognition but also unknown user models. Like most dialogue systems, a POMDP is defined by a large number of parameters that may be difficult to specify a priori from domain knowledge, and learning these parameters from the user may require an unacceptably long training period. An extension to the POMDP model is described that allows the agent to acquire a linguistic model of the user online, including new vocabulary and word choice preferences. The approach not only avoids a training period of constant questioning as the agent learns, but also allows the agent actively to query for additional information when its uncertainty suggests a high risk of mistakes. The approach is demonstrated both in simulation and on a natural language interaction system for a robotic wheelchair application.

  2. Kinetic modelization of water-rock interaction processes

    International Nuclear Information System (INIS)

    Pena, J.; Gimeno, M.J.

    1994-01-01

    A review of basic concepts in kinetics of low temperature natural systems is given: elementary and overall reactions, steady state and reaction mechanism, sequential reactions, parallel reactions and rate-determining step, temperature dependence of rate constant and principle of detailed balancing. The current status of kinetics modeling of water/rock interaction is treated. The comparison of the mean life of the processes with the residence time of the water in the system is very useful to decide the application or not of the kinetics treatment to the water/rock interaction processes. The right application of the kinetics treatment to the water/rock interaction needs the knowledge of the magnitude of the surface through which the water/rock reaction take place and its variation with time. Two ways to treat kinetically the water/rock interaction are the Mass Transfer method and the quasi-stationary state method

  3. Animal models of gene-environment interactions in schizophrenia.

    Science.gov (United States)

    Ayhan, Yavuz; Sawa, Akira; Ross, Christopher A; Pletnikov, Mikhail V

    2009-12-07

    The pathogenesis of schizophrenia and related mental illnesses likely involves multiple interactions between susceptibility genes of small effects and environmental factors. Gene-environment interactions occur across different stages of neurodevelopment to produce heterogeneous clinical and pathological manifestations of the disease. The main obstacle for mechanistic studies of gene-environment interplay has been the paucity of appropriate experimental systems for elucidating the molecular pathways that mediate gene-environment interactions relevant to schizophrenia. Recent advances in psychiatric genetics and a plethora of experimental data from animal studies allow us to suggest a new approach to gene-environment interactions in schizophrenia. We propose that animal models based on identified genetic mutations and measurable environment factors will help advance studies of the molecular mechanisms of gene-environment interplay.

  4. TWIST- The TRIUMF weak interaction symmetry test the Michel parameters from {mu}{sup +} decay

    Energy Technology Data Exchange (ETDEWEB)

    Rodning, N.L.; Andersson, W.; Davydov, Y.; Depommier, P.; Doornbos, J.; Faszer, W.; Gagliardi, C.A.; Gaponenko, A.; Gill, D.R.; Green, P.W.; Gumplinger, P.; Hardy, J.C.; Hasinoff, M.; Helmer, R.; Henderson, R.; Kitching, P.; Koetke, D.D.; Korkmaz, E.; Khruchinsky, A.; Maas, D.; Macdonald, J.A.; MacDonald, R.; Manweiler, R.; Marshall, G.; Mathie, T.; Musser, J.R.; Nord, P.; Olin, A.; Openshaw, R.; Ottewell, D.; Porcelli, T.; Poutissou, J-M.; Poutissou, R.; Price, G.; Quraan, M.; Schaapman, J.; Selivanov, V.; Sheffer, G.; Shin, B.; Sobratee, F.; Soukup, J.; Stanislaus, T.D.S.; Stinson, G.; Tacik, R.; Torokhov, V.; Tribble, R.E.; Vasiliev, M.A.; Walter, H-C.; Wang, S-C.; Wright, D

    2001-04-01

    We propose to make the first high precision measurements of nearly the entire differential spectrum (in energy and angle) of positrons from the decay of polarized muons. The main goal of the experiment is the precise testing of the (V - A) structure of electroweak interactions in the framework of the SU(2){sub L} x U(1) model. Highly polarized 'surface' {mu}{sup +} from the TRIUMF M13 beamline will enter a large volume, high field superconducting magnet on axis and will stop in a thin target at its center. The e{sup +} from the muon decay will be precisely tracked in the magnetic field using small-cell planar drift chambers. This spectrometer has been simulated with GEANT and EGS4 and has been demonstrated to meet the precision requirements.

  5. Interactive Rapid Dose Assessment Model (IRDAM): user's guide

    International Nuclear Information System (INIS)

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This User's Guide provides instruction in the setup and operation of the equipment necessary to run IRDAM. Instructions are also given on how to load the magnetic disks and access the interactive part of the program. Two other companion volumes to this one provide additional information on IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios

  6. Computerized Classification Testing with the Rasch Model

    Science.gov (United States)

    Eggen, Theo J. H. M.

    2011-01-01

    If classification in a limited number of categories is the purpose of testing, computerized adaptive tests (CATs) with algorithms based on sequential statistical testing perform better than estimation-based CATs (e.g., Eggen & Straetmans, 2000). In these computerized classification tests (CCTs), the Sequential Probability Ratio Test (SPRT) (Wald,…

  7. An exotic k-essence interpretation of interactive cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-01-15

    We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or, briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type (MHR) of dark energy, where the equations of state are not constant. With the kinetic function F = 1 + mx and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of an exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL). (orig.)

  8. A more general interacting model of holographic dark energy

    International Nuclear Information System (INIS)

    Yu Fei; Zhang Jingfei; Lu Jianbo; Wang Wei; Gui Yuanxing

    2010-01-01

    So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energy density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning the cosmic expansion depend on the introduced numerical parameters which are also constrained. The more general interacting model inherits the features of the previous ones of HDE, keeping the consistency of the theory.

  9. Interactions between cask components and content of packaging for the transport of radioactive material during drop tests

    International Nuclear Information System (INIS)

    Quercetti, T.; Ballheimer, V.; Zeisler, P.; Mueller, K.

    2003-01-01

    This paper describes the analytical, numerical and experimental investigations on the phenomenon of interactions between cask components and content of packages for the transport of radioactive material during drop tests required according to the IAEA Regulations for the Safe Transport of Radioactive Material. Radial and axial gaps between cask components and content are usually necessary for thermal reasons but larger gaps can exist because of the geometrical dimensions of the specified content. Consequently interactions between content and cask components (lid system, cask body, etc.) are possible and can not be excluded during drop tests. Interactions in this context are relative movements between cask and content which are mainly due to elastic spring effects after releasing the cask for the free drop. These relative movements can cause interior collisions between content and cask during the main impact of the package onto the unyielding target. Drop tests with various types of Type A and Type B packages fully instrumented with strain gauges and accelerometers showed that these interactions respectively interior collisions can be considerable relating to high forces acting on cask lids, lid bolts and the content. Of course the real quantitative consequences of the interactions depend upon different conditions, among others the drop orientation, the design characteristics of the impact limiters, the dimensions of the gaps, the material characteristics of the contents, etc. . In order to investigate more precisely the phenomenon of interactions BAM carried out finite element calculations for the named casks using the ABAQUS/ Standard and ABAQUS/ Explicit computer code comparing them with results obtained from experiments. Additionally, tests with a simplified model instrumented with accelerometers were carried out accompanied by finite element calculations and analytical calculations using MATHEMATICA. The investigations on the mentioned phenomena of interaction

  10. Configuration mixing in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Bouldjedri, A [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria); Van Isacker, P [GANIL, BP 55027, F-14076 Caen cedex 5 (France); Zerguine, S [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2005-11-01

    A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit.

  11. Bilingual Parents' Modeling of Pragmatic Language Use in Multiparty Interactions

    Science.gov (United States)

    Tare, Medha; Gelman, Susan A.

    2011-01-01

    Parental input represents an important source of language socialization. Particularly in bilingual contexts, parents may model pragmatic language use and metalinguistic strategies to highlight language differences. The present study examines multiparty interactions involving 28 bilingual English- and Marathi-speaking parent-child pairs in the…

  12. Representing climate, disturbance, and vegetation interactions in landscape models

    Science.gov (United States)

    Robert E. Keane; Donald McKenzie; Donald A. Falk; Erica A.H. Smithwick; Carol Miller; Lara-Karena B. Kellogg

    2015-01-01

    The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special...

  13. Prey – predator model on the interaction between the drawdown ...

    African Journals Online (AJOL)

    Groundwater is a major source of water for irrigation purposes and for sustainable growth of Agricultural development. In this paper we formulated a mathematical model to analyse the interaction between the Draw-down levels in an unconfined aquifer with maize yield, using the parameters; aquifer recharged rate α, rate of ...

  14. Sensitivity analysis of physiochemical interaction model: which pair ...

    African Journals Online (AJOL)

    The mathematical modelling of physiochemical interactions in the framework of industrial and environmental physics usually relies on an initial value problem which is described by a deterministic system of first order ordinary differential equations. In this paper, we considered a sensitivity analysis of studying the qualitative ...

  15. Finite element modeling of intermuscular interactions and myofascial force transmission

    NARCIS (Netherlands)

    Yucesoy, C.A.; Koopman, Hubertus F.J.M.; Huijing, P.A.J.B.M.; Grootenboer, H.J.

    2001-01-01

    A finite element muscle model to study the principles of intermuscular myofascial force transmission is developed. The results obtained explain force differences at the distal and proximal tendons of muscles that have mechanical interaction. This is in agreement with experimental findings in other

  16. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ-free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  17. An Interactive Multimedia Based Instruction in Experimental Modelling

    DEFF Research Database (Denmark)

    Knudsen, Morten; Nielsen, J.N.; Østergaard, J.

    1997-01-01

    A CD-ROM based interactive multimedia instruction in experimental modelling for Danish Engineering School teachers is described. The content is based on a new sensitivity approach for direct estimation of physical parameters in linear and nonlinear dynamic systems. The presentation is inspired...

  18. Geometry of coexistence in the interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Frank, A.; Vargas, C.E.

    2004-01-01

    The Interacting Boson Model (IBM) with configuration mixing is applied to describe the phenomenon of coexistence in nuclei. The analysis suggests that the IBM with configuration mixing, used in conjunction with a (matrix) coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei

  19. Weak interactions physics: from its birth to the eletroweak model

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1987-01-01

    A review of the evolution of weak interaction physics from its beginning (Fermi-Majorana-Perrin) to the eletroweak model (Glashow-Weinberg-Salam). Contributions from Brazilian physicists are specially mentioned as well as the first prediction of electroweak-unification, of the neutral intermediate vector Z 0 and the first approximate value of the mass of the W-bosons. (Author) [pt

  20. A Viscous-Inviscid Interaction Model for Rotor Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino; Sørensen, Jens Nørkær

    1994-01-01

    A numerical model for the viscous-inviscid interactive computations ofrotor flows is presented. The basic methodology for deriving the outer inviscid solution is a fully three-dimensional boundary element method.The inner viscous domain, i.e. the boundary layer, is described by the two-dimensiona...

  1. Computational modeling of the sugar-lectin interaction.

    Science.gov (United States)

    Neumann, Dirk; Lehr, Claus-Michael; Lenhof, Hans-Peter; Kohlbacher, Oliver

    2004-03-03

    In the last few years numerous experimental studies have shed light onto the details of the lectin-carbohydrate interaction. X-ray crystallography and NMR spectroscopy have been used to elucidate the structures of lectins, sugars, and their complexes. In addition, an increasing number of experimental methods has been employed to determine the thermodynamic and kinetic parameters of the binding process. Based on this experimental data, computational methods have been developed to model and predict these interactions. A plethora of techniques from Molecular Modeling and Computational Chemistry have been applied to the problem and current models achieve high-quality predictions. These successes are based on both new theoretical approaches and reliable experimental data. The aim of the present article is to outline the most relevant computational and experimental methods applied in the field of lectin-carbohydrate interaction and to give an overview of the current state of the art in the modeling of these interactions with a focus on plant lectins.

  2. Cosmological model of interacting phantom and Yang–Mills fields

    Indian Academy of Sciences (India)

    In this paper, we consider a model of interacting phantom and Yang–Mills (YM) fields by assuming dilaton-type coupling. Using the specific solution for YM equation previously found by the author, we obtain simple exact solutions for the accelerated expansion of the Friedmann–Robertson–Walker (FRW) cosmological ...

  3. An interactive web-based extranet system model for managing ...

    African Journals Online (AJOL)

    The methodology of the special software to be developed involved the collections of main modern tools and technologies, such as Apache Web Server, PHP and MySQL which can work on any platform, such as windows and Linus. Keywords: Extranet-Model, Interactive, Web-Based, Students, Academic, Records ...

  4. Multi-physics fluid-structure interaction modelling software

    CSIR Research Space (South Africa)

    Malan, AG

    2008-11-01

    Full Text Available The CSIR reseachers developed a new ground-breaking sofware modelling technlogies to be used in the design of safe and efficient next-generation aircraft. The field of Fluid-structure interaction (FIS) covers a massive range of engineering problems...

  5. Geometric interpretation for the interacting-boson-fermion model

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.

    1988-08-11

    A geometric oriented approach for studying the interacting-boson-fermion model for odd-A nuclei is presented. A deformed single-particle hamiltonian is derived by means of an algebraic Born-Oppenheimer treatment. Observables concerning spectrum and transitions are calculated for the case of a single-j fermion coupled to a prolate core charge boson number and arbitrary deformations.

  6. A geometric interpretation for the interacting-boson-fermion model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1988-01-01

    A geometric oriented approach for studying the interacting-boson-fermion model for odd-A nuclei is presented. A deformed single-particle hamiltonian is derived by means of an algebraic Born-Oppenheimer treatment. Observables concerning spectrum and transitions are calculated for the case of a single-j fermion coupled to a prolate core charge boson number and arbitrary deformations

  7. Interactive computer graphics for bio-stereochemical modelling

    Indian Academy of Sciences (India)

    Proc, Indian Acad. Sci., Vol. 87 A (Chem. Sci.), No. 4, April 1978, pp. 95-113, (e) printed in India. Interactive computer graphics for bio-stereochemical modelling. ROBERT REIN, SHLOMONIR, KAREN HAYDOCK and. ROBERTD MACELROY. Department of Experimental Pathology, Roswell Park Memorial Institute,. 666 Elm ...

  8. Acoustic interactions between an altitude test facility and jet engine plumes: Theory and experiments

    Science.gov (United States)

    Ahuja, K. K.; Jones, R. R., III; Tam, C. K.; Massey, K. C.; Fleming, A. J.

    1992-01-01

    The overall objective of the described effort was to develop an understanding of the physical mechanisms involved in the flow/acoustic interactions experienced in full-scale altitude engine test facilities. This is done by conducting subscale experiments and through development of a theoretical model. Model cold jet experiments with an axisymmetric convergent nozzle are performed in a test setup that stimulates a supersonic jet exhausting into a cylindrical diffuser. The measured data consist of detailed flow visualization data and acoustic spectra for a free and a ducted plume. It is shown that duct resonance is most likely responsible by theoretical calculations. Theoretical calculations also indicate that the higher discrete tones observed in the measurements are related to the screech phenomena. Limited experiments on the sensitivity of a free 2-D, C-D nozzle to externally imposed sound are also presented. It is shown that a 2-D, C-D nozzle with a cutback is less excitable than a 2-D C-D nozzle with no cutback. At a pressure ratio of 1.5 unsteady separation from the diverging walls of the nozzle is noticed. This separation switches from one wall to the opposite wall thus providing an unsteady deflection of the plume. It is shown that this phenomenon is related to the venting provided by the cutback section.

  9. Modeling attacker-defender interactions in information networks.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michael Joseph

    2010-09-01

    The simplest conceptual model of cybersecurity implicitly views attackers and defenders as acting in isolation from one another: an attacker seeks to penetrate or disrupt a system that has been protected to a given level, while a defender attempts to thwart particular attacks. Such a model also views all non-malicious parties as having the same goal of preventing all attacks. But in fact, attackers and defenders are interacting parts of the same system, and different defenders have their own individual interests: defenders may be willing to accept some risk of successful attack if the cost of defense is too high. We have used game theory to develop models of how non-cooperative but non-malicious players in a network interact when there is a substantial cost associated with effective defensive measures. Although game theory has been applied in this area before, we have introduced some novel aspects of player behavior in our work, including: (1) A model of how players attempt to avoid the costs of defense and force others to assume these costs; (2) A model of how players interact when the cost of defending one node can be shared by other nodes; and (3) A model of the incentives for a defender to choose less expensive, but less effective, defensive actions.

  10. A person fit test for IRT models for polytomous items

    NARCIS (Netherlands)

    Glas, Cornelis A.W.; Dagohoy, A.V.

    2007-01-01

    A person fit test based on the Lagrange multiplier test is presented for three item response theory models for polytomous items: the generalized partial credit model, the sequential model, and the graded response model. The test can also be used in the framework of multidimensional ability

  11. Baryons and baryonic matter in four-fermion interaction models

    Energy Technology Data Exchange (ETDEWEB)

    Urlichs, K.

    2007-02-23

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon

  12. Hysteretic Models Considering Axial-Shear-Flexure Interaction

    Science.gov (United States)

    Ceresa, Paola; Negrisoli, Giorgio

    2017-10-01

    Most of the existing numerical models implemented in finite element (FE) software, at the current state of the art, are not capable to describe, with enough reliability, the interaction between axial, shear and flexural actions under cyclic loading (e.g. seismic actions), neglecting crucial effects for predicting the nature of the collapse of reinforced concrete (RC) structural elements. Just a few existing 3D volume models or fibre beam models can lead to a quite accurate response, but they are still computationally inefficient for typical applications in earthquake engineering and also characterized by very complex formulation. Thus, discrete models with lumped plasticity hinges may be the preferred choice for modelling the hysteretic behaviour due to cyclic loading conditions, in particular with reference to its implementation in a commercial software package. These considerations lead to this research work focused on the development of a model for RC beam-column elements able to consider degradation effects and interaction between the actions under cyclic loading conditions. In order to develop a model for a general 3D discrete hinge element able to take into account the axial-shear-flexural interaction, it is necessary to provide an implementation which involves a corrector-predictor iterative scheme. Furthermore, a reliable constitutive model based on damage plasticity theory is formulated and implemented for its numerical validation. Aim of this research work is to provide the formulation of a numerical model, which will allow implementation within a FE software package for nonlinear cyclic analysis of RC structural members. The developed model accounts for stiffness degradation effect and stiffness recovery for loading reversal.

  13. Improving science and mathematics education with computational modelling in interactive engagement environments

    Science.gov (United States)

    Neves, Rui Gomes; Teodoro, Vítor Duarte

    2012-09-01

    A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.

  14. Semantic Interaction for Sensemaking: Inferring Analytical Reasoning for Model Steering.

    Science.gov (United States)

    Endert, A; Fiaux, P; North, C

    2012-12-01

    Visual analytic tools aim to support the cognitively demanding task of sensemaking. Their success often depends on the ability to leverage capabilities of mathematical models, visualization, and human intuition through flexible, usable, and expressive interactions. Spatially clustering data is one effective metaphor for users to explore similarity and relationships between information, adjusting the weighting of dimensions or characteristics of the dataset to observe the change in the spatial layout. Semantic interaction is an approach to user interaction in such spatializations that couples these parametric modifications of the clustering model with users' analytic operations on the data (e.g., direct document movement in the spatialization, highlighting text, search, etc.). In this paper, we present results of a user study exploring the ability of semantic interaction in a visual analytic prototype, ForceSPIRE, to support sensemaking. We found that semantic interaction captures the analytical reasoning of the user through keyword weighting, and aids the user in co-creating a spatialization based on the user's reasoning and intuition.

  15. Reexploration of interacting holographic dark energy model: cases of interaction term excluding the Hubble parameter

    Science.gov (United States)

    Li, Hai-Li; Zhang, Jing-Fei; Feng, Lu; Zhang, Xin

    2017-12-01

    In this paper, we make a deep analysis for the five typical interacting holographic dark energy models with the interaction terms Q=3β H0ρ _{de}, Q=3β H0ρ c, Q=3β H0(ρ _{de}+ρ _c), Q=3β H0√{ρ _{de}ρ _c}, and Q=3β H0ρ _{de}ρ c/ρ _{de+ρ _c}, respectively. We obtain observational constraints on these models by using the type Ia supernova data (the Joint Light-Curve Analysis sample), the cosmic microwave background data (Planck 2015 distance priors), the baryon acoustic oscillations data, and the direct measurement of the Hubble constant. We find that the values of χ _min^2 for all the five models are almost equal (around 699), indicating that the current observational data equally favor these IHDE models. In addition, a comparison with the cases of an interaction term involving the Hubble parameter H is also made.

  16. Tests of the left-right electroweak model at linear collider

    OpenAIRE

    Huitu, K.; Maalampi, J.; Pandita, P. N.; Puolamaki, K.; Raidal, M.; Romanenko, N.

    1999-01-01

    The left-right model is a gauge theory of electroweak interactions based on the gauge symmetry SU(2)_R . The main motivations for this model are that it gives an explanation for the parity violation of weak interactions, provides a mechanism (see-saw) for generating neutrino masses, and has B-L as a gauge symmetry. The quark-lepton symmetry in weak interactions is also maintained in this theory. The model has many predictions one can directly test at a TeV-scale linear collider. We will consi...

  17. Identifying and modeling the structural discontinuities of human interactions

    Science.gov (United States)

    Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo

    2017-04-01

    The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.

  18. The Challenge of Grounding Planning in Simulation with an Interactive Model Development Environment

    Science.gov (United States)

    Clement, Bradley J.; Frank, Jeremy D.; Chachere, John M.; Smith, Tristan B.; Swanson, Keith J.

    2011-01-01

    A principal obstacle to fielding automated planning systems is the difficulty of modeling. Physical systems are modeled conventionally based on specification documents and the modeler's understanding of the system. Thus, the model is developed in a way that is disconnected from the system's actual behavior and is vulnerable to manual error. Another obstacle to fielding planners is testing and validation. For a space mission, generated plans must be validated often by translating them into command sequences that are run in a simulation testbed. Testing in this way is complex and onerous because of the large number of possible plans and states of the spacecraft. Though, if used as a source of domain knowledge, the simulator can ease validation. This paper poses a challenge: to ground planning models in the system physics represented by simulation. A proposed, interactive model development environment illustrates the integration of planning and simulation to meet the challenge. This integration reveals research paths for automated model construction and validation.

  19. Effect of Soil-Structure Interaction on Seismic Performance of Long-Span Bridge Tested by Dynamic Substructuring Method

    Directory of Open Access Journals (Sweden)

    Zhenyun Tang

    2017-01-01

    Full Text Available Because of the limitations of testing facilities and techniques, the seismic performance of soil-structure interaction (SSI system can only be tested in a quite small scale model in laboratory. Especially for long-span bridge, a smaller tested model is required when SSI phenomenon is considered in the physical test. The scale effect resulting from the small scale model is always coupled with the dynamic performance, so that the seismic performance of bridge considering SSI effect cannot be uncovered accurately by the traditional testing method. This paper presented the implementation of real-time dynamic substructuring (RTDS, involving the combined use of shake table array and computational engines for the seismic simulation of SSI. In RTDS system, the bridge with soil-foundation system is divided into physical and numerical substructures, in which the bridge is seen as physical substructures and the remaining part is seen as numerical substructures. The interface response between the physical and numerical substructures is imposed by shake table and resulting reaction force is fed back to the computational engine. The unique aspect of the method is to simulate the SSI systems subjected to multisupport excitation in terms of a larger physical model. The substructuring strategy and the control performance associated with the real-time substructuring testing for SSI were performed. And the influence of SSI on a long-span bridge was tested by this novel testing method.

  20. Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations

    Science.gov (United States)

    Drucker, Nick; Jones, Phillip N.

    2012-01-01

    Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.

  1. Crystal-chemical model of atomic interactions. Pt. 1

    International Nuclear Information System (INIS)

    Aslanov, L.A.

    1988-01-01

    A crystal-chemical model of atomic interactions has been suggested to explain the diversity of inorganic structure types, their translational symmetry, and other basic characteristics. The model is based on the concepts of the minimum potential energy of a crystal and energy contributions to the total energy of a crystal which come not only from the first coordination sphere but also from the second, third and subsequent coordination spheres. The minimum potential energy is provided by coordination spheres in the shape of the Platonic regular solids or Archemedean semiregular solids and also by polyhedra having triangular faces. The model is applicable to materials with different types of chemical bonding - metals, nonmetals (diamond), ionic compounds and substances with van der Waals atomic interactions. (orig.)

  2. A model of interacting strings and the Hagedorn phase transition

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-03-01

    In this letter we introduce a model of interacting string in which the usual ideal gas approximations are not made. The model is constructed in analogy with nucleation models, the formation of droplets in a supersaturate gas. We consider the strings to be interacting and their number not fixed. The equilibrium configuration is the one for which the time derivatives of the number of strings in the various energies vanishes. We evaluate numerically the equilibrium configurations for various values of the energy density. We find that a density of order one in planck units there is a sharp transition, from a 'gas' phase in which there are many strings, all in the massless or first few excited states, to a 'liquid' phase in which all strings have coalesced into one (or few) highly excited string. (author). 14 refs, 4 figs

  3. Effect of Suddenly Turning on Interactions in the Luttinger Model

    Science.gov (United States)

    Cazalilla, M. A.

    2006-10-01

    The evolution of correlations in the exactly solvable Luttinger model (a model of interacting fermions in one dimension) after a suddenly switched-on interaction is analytically studied. When the model is defined on a finite-size ring, zero-temperature correlations are periodic in time. However, in the thermodynamic limit, the system relaxes algebraically towards a stationary state which is well described, at least for some simple correlation functions, by the generalized Gibbs ensemble recently introduced by Rigol et al. (cond-mat/0604476). The critical exponent that characterizes the decay of the one-particle correlation function is different from the known equilibrium exponents. Experiments for which these results can be relevant are also discussed.

  4. Large scale sodium interactions. Part 2. Preliminary test results for limestone concrete

    International Nuclear Information System (INIS)

    Smaardyk, J.E.; Sutherland, H.J.; King, D.L.; Dahlgren, D.A.

    1977-01-01

    Any sodium cooled reactor system must consider the interaction of hot sodium with cell liners, and given either a failed liner or a hypothetical core disruptive accident, the interaction of hot sodium with concrete. The data base available for safety assessments involving these interactions is limited, especially for the concrete and failed liner interactions. To better understand what happens when hot sodium comes in contact with concrete, a series of tests is being carried out to investigate sodium-concrete reactions under conditions which are similar to actual reactor accident conditions. Tests cover the cases of sodium spills on bare concrete and on cells with defective steel liners. Specific objectives have been to obtain a complete description of the sodium/concrete interaction including heat balance, gas evolution and flow, movement and heat generation of the reaction zone, reaction product formation, and the layering or movement of the products

  5. Ising models of strongly coupled biological networks with multivariate interactions

    Science.gov (United States)

    Merchan, Lina; Nemenman, Ilya

    2013-03-01

    Biological networks consist of a large number of variables that can be coupled by complex multivariate interactions. However, several neuroscience and cell biology experiments have reported that observed statistics of network states can be approximated surprisingly well by maximum entropy models that constrain correlations only within pairs of variables. We would like to verify if this reduction in complexity results from intricacies of biological organization, or if it is a more general attribute of these networks. We generate random networks with p-spin (p > 2) interactions, with N spins and M interaction terms. The probability distribution of the network states is then calculated and approximated with a maximum entropy model based on constraining pairwise spin correlations. Depending on the M/N ratio and the strength of the interaction terms, we observe a transition where the pairwise approximation is very good to a region where it fails. This resembles the sat-unsat transition in constraint satisfaction problems. We argue that the pairwise model works when the number of highly probable states is small. We argue that many biological systems must operate in a strongly constrained regime, and hence we expect the pairwise approximation to be accurate for a wide class of problems. This research has been partially supported by the James S McDonnell Foundation grant No.220020321.

  6. MESOI: an interactive Lagrangian trajectory puff diffusion model

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.; Athey, G.F.

    1981-12-01

    MESOI is an interactive Lagrangian trajectory puff diffusion model based on an earlier model by Start and Wendell at the Air Resources Laboratory Field Office at Idaho Falls, Idaho. Puff trajectories are determined using spatially and temporally varying wind fields. Diffusion in the puffs is computed as a function of distance traveled and atmospheric stability. Exposures are computed at nodes of a 31 by 31 grid. There is also provision for interpolation of short term exposures at off-grid locations. This report discusses: the theoretical bases of the model, the numerical approach used in the model, and the sensitivity and accuracy of the model. It contains a description of the computer program and a listing of the code. MESOI is written in FORTRAN. A companion report (Athey, Allwine and Ramsdell, 1981) contains a user's guide to MESOI and documents utility programs that maintain the data files needed by the model.

  7. Mathematical models and methods of localized interaction theory

    CERN Document Server

    Bunimovich, AI

    1995-01-01

    The interaction of the environment with a moving body is called "localized" if it has been found or assumed that the force or/and thermal influence of the environment on each body surface point is independent and can be determined by the local geometrical and kinematical characteristics of this point as well as by the parameters of the environment and body-environment interactions which are the same for the whole surface of contact.Such models are widespread in aerodynamics and gas dynamics, covering supersonic and hypersonic flows, and rarefied gas flows. They describe the influence of light

  8. Kinetic models in spin chemistry. 1. The hyperfine interaction

    DEFF Research Database (Denmark)

    Mojaza, M.; Pedersen, J. B.

    2012-01-01

    Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described...... with a very good approximation. The crucial points are: to represents the quantum coherent oscillations by first order rate constants, and to determine the number of kinetic channels corresponding to a given interaction. We consider a radical pair system with spin selective reactions and calculate the spin...

  9. A model of interaction between anticorruption authority and corruption groups

    Energy Technology Data Exchange (ETDEWEB)

    Neverova, Elena G.; Malafeyef, Oleg A. [Saint-Petersburg State University, Saint-Petersburg, Russia, 35, Universitetskii prospekt, Petrodvorets, 198504 Email:elenaneverowa@gmail.com, malafeyevoa@mail.ru (Russian Federation)

    2015-03-10

    The paper provides a model of interaction between anticorruption unit and corruption groups. The main policy functions of the anticorruption unit involve reducing corrupt practices in some entities through an optimal approach to resource allocation and effective anticorruption policy. We develop a model based on Markov decision-making process and use Howard’s policy-improvement algorithm for solving an optimal decision strategy. We examine the assumption that corruption groups retaliate against the anticorruption authority to protect themselves. This model was implemented through stochastic game.

  10. Interacting ghost dark energy models with variable G and Λ

    Science.gov (United States)

    Sadeghi, J.; Khurshudyan, M.; Movsisyan, A.; Farahani, H.

    2013-12-01

    In this paper we consider several phenomenological models of variable Λ. Model of a flat Universe with variable Λ and G is accepted. It is well known, that varying G and Λ gives rise to modified field equations and modified conservation laws, which gives rise to many different manipulations and assumptions in literature. We will consider two component fluid, which parameters will enter to Λ. Interaction between fluids with energy densities ρ1 and ρ2 assumed as Q = 3Hb(ρ1+ρ2). We have numerical analyze of important cosmological parameters like EoS parameter of the composed fluid and deceleration parameter q of the model.

  11. A model of interaction between anticorruption authority and corruption groups

    International Nuclear Information System (INIS)

    Neverova, Elena G.; Malafeyef, Oleg A.

    2015-01-01

    The paper provides a model of interaction between anticorruption unit and corruption groups. The main policy functions of the anticorruption unit involve reducing corrupt practices in some entities through an optimal approach to resource allocation and effective anticorruption policy. We develop a model based on Markov decision-making process and use Howard’s policy-improvement algorithm for solving an optimal decision strategy. We examine the assumption that corruption groups retaliate against the anticorruption authority to protect themselves. This model was implemented through stochastic game

  12. Exactly solvable relativistic model with the anomalous interaction

    Science.gov (United States)

    Ferraro, Elena; Messina, Antonino; Nikitin, A. G.

    2010-04-01

    A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov model.

  13. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  14. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  15. Web-based Interactive Landform Simulation Model - Grand Canyon

    Science.gov (United States)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  16. Accelerated testing statistical models, test plans, and data analysis

    CERN Document Server

    Nelson, Wayne B

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "". . . a goldmine of knowledge on accelerated life testing principles and practices . . . one of the very few capable of advancing the science of reliability. It definitely belongs in every bookshelf on engineering.""-Dev G.

  17. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    Science.gov (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue

  18. Efficient two-step testing of gene-gene interactions in genome-wide association studies.

    Science.gov (United States)

    Lewinger, Juan Pablo; Morrison, John L; Thomas, Duncan C; Murcray, Cassandra E; Conti, David V; Li, Dalin; Gauderman, W James

    2013-07-01

    Exhaustive testing of all possible SNP pairs in a genome-wide association study (GWAS) generally yields low power to detect gene-gene (G × G) interactions because of small effect sizes and stringent requirements for multiple-testing correction. We introduce a new two-step procedure for testing G × G interactions in case-control GWAS to detect interacting single nucleotide polymorphisms (SNPs) regardless of their marginal effects. In an initial screening step, all SNP pairs are tested for gene-gene association in the combined sample of cases and controls. In the second step, the pairs that pass the screening are followed up with a traditional test for G × G interaction. We show that the two-step method is substantially more powerful to detect G × G interactions than the exhaustive testing approach. For example, with 2,000 cases and 2,000 controls, the two-step method can have more than 90% power to detect an interaction odds ratio of 2.0 compared to less than 50% power for the exhaustive testing approach. Moreover, we show that a hybrid two-step approach that combines our newly proposed two-step test and the two-step test that screens for marginal effects retains the best power properties of both. The two-step procedures we introduce have the potential to uncover genetic signals that have not been previously identified in an initial single-SNP GWAS. We demonstrate the computational feasibility of the two-step G × G procedure by performing a G × G scan in the asthma GWAS of the University of Southern California Children's Health Study. © 2013 WILEY PERIODICALS, INC.

  19. Testing GxG interactions between coinfecting microbial parasite genotypes within hosts

    Directory of Open Access Journals (Sweden)

    Rebecca D Schulte

    2014-05-01

    Full Text Available Host-parasite interactions represent one of the strongest selection pressures in nature. They are often governed by genotype-specific (GxG interactions resulting in host genotypes that differ in resistance and parasite genotypes that differ in virulence depending on the antagonist’s genotype. Another type of GxG interactions, which is often neglected but which certainly influences host-parasite interactions, are those between coinfecting parasite genotypes. Mechanistically, within-host parasite interactions may range from competition for limited host resources to cooperation for more efficient host exploitation. The exact type of interaction, i.e. whether competitive or cooperative, is known to affect life-history traits such as virulence. However, the latter has been shown for chosen genotype combinations only, not considering whether the specific genotype combination per se may influence the interaction (i.e. GxG interactions. Here, we want to test for the presence of GxG interactions between coinfections of the bacterium Bacillus thuringiensis infecting the nematode Caenorhabditis elegans by combining two non-pathogenic and five pathogenic strains in all possible ways. Furthermore, we evaluate whether the type of interaction, reflected by the direction of virulence change of multiple compared to single infections, is genotype-specific. Generally, we found no indication for GxG interactions between non-pathogenic and pathogenic bacterial strains, indicating that virulence of pathogenic strains is equally affected by both non-pathogenic strains. Specific genotype combinations, however, differ in the strength of virulence change, indicating that the interaction type between coinfecting parasite strains and thus the virulence mechanism is specific for different genotype combinations. Such interactions are expected to influence host-parasite interactions and to have strong implications for coevolution.

  20. Systems-level modeling of cancer-fibroblast interaction.

    Directory of Open Access Journals (Sweden)

    Raymond C Wadlow

    2009-09-01

    Full Text Available Cancer cells interact with surrounding stromal fibroblasts during tumorigenesis, but the complex molecular rules that govern these interactions remain poorly understood thus hindering the development of therapeutic strategies to target cancer stroma. We have taken a mathematical approach to begin defining these rules by performing the first large-scale quantitative analysis of fibroblast effects on cancer cell proliferation across more than four hundred heterotypic cell line pairings. Systems-level modeling of this complex dataset using singular value decomposition revealed that normal tissue fibroblasts variably express at least two functionally distinct activities, one which reflects transcriptional programs associated with activated mesenchymal cells, that act either coordinately or at cross-purposes to modulate cancer cell proliferation. These findings suggest that quantitative approaches may prove useful for identifying organizational principles that govern complex heterotypic cell-cell interactions in cancer and other contexts.

  1. Experimental investigations and modelling of sodium-concrete interaction

    International Nuclear Information System (INIS)

    Schultheiss, G.F.; Deeg, H.J.

    1990-01-01

    The use of sodium as a coolant in liquid metal fast breeder reactors, fusion reactors, and solar plants requires special consideration of its chemical reactivity and related safety problems in the case of sodium leckage. On contact between hot sodium and concrete an interaction takes place resulting in energy release and hydrogen generation, which may contribute to containment loading by pressurization in a hypothetical accident situation. For this reason, sodium-concrete interactions were investigated experimentally and theoretically. The experiments revealed important effects of quartzitic material within the concrete and of the sodium temperature on the interaction mechanisms, the energy release and the consequent hydrogen production. The numerical model shows good agreement with the experimental results. (orig.) [de

  2. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    Science.gov (United States)

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo

    2016-01-01

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970

  3. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    Directory of Open Access Journals (Sweden)

    Jaime Cuevas

    2017-01-01

    Full Text Available The phenomenon of genotype × environment (G × E interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects ( u that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP and Gaussian (Gaussian kernel, GK. The other model has the same genetic component as the first model ( u plus an extra component, f, that captures random effects between environments that were not captured by the random effects u . We used five CIMMYT data sets (one maize and four wheat that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u   and   f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u .

  4. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

    Science.gov (United States)

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo

    2017-01-05

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.

  5. Bayesian Test of Significance for Conditional Independence: The Multinomial Model

    Directory of Open Access Journals (Sweden)

    Pablo de Morais Andrade

    2014-03-01

    Full Text Available Conditional independence tests have received special attention lately in machine learning and computational intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of probabilistic graphical models, which includes Bayesian network models, conditional independence tests are especially important for the task of learning the probabilistic graphical model structure from data. In this paper, we propose the full Bayesian significance test for tests of conditional independence for discrete datasets. The full Bayesian significance test is a powerful Bayesian test for precise hypothesis, as an alternative to the frequentist’s significance tests (characterized by the calculation of the p-value.

  6. Melt water interaction tests. PREMIX tests PM10 and PM11

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, A.; Schuetz, W.; Will, H. [Forschungszentrum Karlsruhe Inst. fuer Reaktorsicherheit, Karlsruhe (Germany)

    1998-01-01

    A series of experiments is being performed in the PREMIX test facility in which the mixing behaviour is investigated of a hot alumina melt discharged into water. The major parameters have been: the melt mass, the number of nozzles, the distance between the nozzle and the water, and the depth of the water. The paper describes the last two tests in which 20 kg of melt were released through one and three nozzles, respectively, directly into the water whose depth was 500 mm. The melt penetration and the associated phenomena of mixing are described by means of high-speed films and various measurements. The steam production and, subsequently, the pressure increased markedly only after the melt had reached the bottom of the pool. Spreading of the melt across the bottom caused violent boiling in both tests. Whereas the boiling lasted for minutes in the single-jet test, a steam explosion occurred in the triple-jet test about one second after the start of melt penetration. (author)

  7. Modeling Information Accumulation in Psychological Tests Using Item Response Times

    Science.gov (United States)

    Ranger, Jochen; Kuhn, Jörg-Tobias

    2015-01-01

    In this article, a latent trait model is proposed for the response times in psychological tests. The latent trait model is based on the linear transformation model and subsumes popular models from survival analysis, like the proportional hazards model and the proportional odds model. Core of the model is the assumption that an unspecified monotone…

  8. Analysis and application of opinion model with multiple topic interactions.

    Science.gov (United States)

    Xiong, Fei; Liu, Yun; Wang, Liang; Wang, Ximeng

    2017-08-01

    To reveal heterogeneous behaviors of opinion evolution in different scenarios, we propose an opinion model with topic interactions. Individual opinions and topic features are represented by a multidimensional vector. We measure an agent's action towards a specific topic by the product of opinion and topic feature. When pairs of agents interact for a topic, their actions are introduced to opinion updates with bounded confidence. Simulation results show that a transition from a disordered state to a consensus state occurs at a critical point of the tolerance threshold, which depends on the opinion dimension. The critical point increases as the dimension of opinions increases. Multiple topics promote opinion interactions and lead to the formation of macroscopic opinion clusters. In addition, more topics accelerate the evolutionary process and weaken the effect of network topology. We use two sets of large-scale real data to evaluate the model, and the results prove its effectiveness in characterizing a real evolutionary process. Our model achieves high performance in individual action prediction and even outperforms state-of-the-art methods. Meanwhile, our model has much smaller computational complexity. This paper provides a demonstration for possible practical applications of theoretical opinion dynamics.

  9. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  10. Status of molten fuel coolant interaction studies and theoretical modelling work at IGCAR

    International Nuclear Information System (INIS)

    Rao, P.B.; Singh, Om Pal; Singh, R.S.

    1994-01-01

    The status of Molten Fuel Coolant Interaction (MFCI) studies is reviewed and some of the important observations made are presented. A new model for MFCI that is developed at IGCAR by considering the various mechanisms in detail is described. The model is validated and compared with the available experimental data and theoretical work at different stages of its development. Several parametric studies that are carried using this model are described. The predictions from this model have been found to be satisfactory, considering the complexity of the MFCI. A need for more comprehensive and MFCI-specific experimental tests is brought out. (author)

  11. Putting hydrological modelling practice to the test

    NARCIS (Netherlands)

    Melsen, Lieke Anna

    2017-01-01

    Six steps can be distinguished in the process of hydrological modelling: the perceptual model (deciding on the processes), the conceptual model (deciding on the equations), the procedural model (get the code to run on a computer), calibration (identify the parameters), evaluation (confronting

  12. Quantitative Modeling of Human-Environment Interactions in Preindustrial Time

    Science.gov (United States)

    Sommer, Philipp S.; Kaplan, Jed O.

    2017-04-01

    Quantifying human-environment interactions and anthropogenic influences on the environment prior to the Industrial revolution is essential for understanding the current state of the earth system. This is particularly true for the terrestrial biosphere, but marine ecosystems and even climate were likely modified by human activities centuries to millennia ago. Direct observations are however very sparse in space and time, especially as one considers prehistory. Numerical models are therefore essential to produce a continuous picture of human-environment interactions in the past. Agent-based approaches, while widely applied to quantifying human influence on the environment in localized studies, are unsuitable for global spatial domains and Holocene timescales because of computational demands and large parameter uncertainty. Here we outline a new paradigm for the quantitative modeling of human-environment interactions in preindustrial time that is adapted to the global Holocene. Rather than attempting to simulate agency directly, the model is informed by a suite of characteristics describing those things about society that cannot be predicted on the basis of environment, e.g., diet, presence of agriculture, or range of animals exploited. These categorical data are combined with the properties of the physical environment in coupled human-environment model. The model is, at its core, a dynamic global vegetation model with a module for simulating crop growth that is adapted for preindustrial agriculture. This allows us to simulate yield and calories for feeding both humans and their domesticated animals. We couple this basic caloric availability with a simple demographic model to calculate potential population, and, constrained by labor requirements and land limitations, we create scenarios of land use and land cover on a moderate-resolution grid. We further implement a feedback loop where anthropogenic activities lead to changes in the properties of the physical

  13. Interaction in Spoken Word Recognition Models: Feedback Helps

    Science.gov (United States)

    Magnuson, James S.; Mirman, Daniel; Luthra, Sahil; Strauss, Ted; Harris, Harlan D.

    2018-01-01

    Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly without feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis. PMID:29666593

  14. Interaction in Spoken Word Recognition Models: Feedback Helps

    Directory of Open Access Journals (Sweden)

    James S. Magnuson

    2018-04-01

    Full Text Available Human perception, cognition, and action requires fast integration of bottom-up signals with top-down knowledge and context. A key theoretical perspective in cognitive science is the interactive activation hypothesis: forward and backward flow in bidirectionally connected neural networks allows humans and other biological systems to approximate optimal integration of bottom-up and top-down information under real-world constraints. An alternative view is that online feedback is neither necessary nor helpful; purely feed forward alternatives can be constructed for any feedback system, and online feedback could not improve processing and would preclude veridical perception. In the domain of spoken word recognition, the latter view was apparently supported by simulations using the interactive activation model, TRACE, with and without feedback: as many words were recognized more quickly without feedback as were recognized faster with feedback, However, these simulations used only a small set of words and did not address a primary motivation for interaction: making a model robust in noise. We conducted simulations using hundreds of words, and found that the majority were recognized more quickly with feedback than without. More importantly, as we added noise to inputs, accuracy and recognition times were better with feedback than without. We follow these simulations with a critical review of recent arguments that online feedback in interactive activation models like TRACE is distinct from other potentially helpful forms of feedback. We conclude that in addition to providing the benefits demonstrated in our simulations, online feedback provides a plausible means of implementing putatively distinct forms of feedback, supporting the interactive activation hypothesis.

  15. Design, analysis, and testing of a hybrid scale structural dynamic model of a Space Station

    Science.gov (United States)

    Gronet, Marc J.; Crawley, Edward F.; Allen, Bradley R.

    1989-01-01

    The impracticality of testing the fully-assembled on-orbit configurations of future large erectable space platforms fosters an increased reliance on other means for verifying predicted structural dynamic performance. One option is scale modeling. This paper discusses the design of a hybrid scale dynamic test model of the Freedom Space Station and its associated suspension system. Hybrid scaling laws are reviewed, followed by scale factor trades, component design examples, and an analytical evaluation of the overall model fidelity. Component and subassembly test results from a six-bay hybrid scale model truss are presented. Potential interactions of gravity and the suspension system with the free-free dynamics of the scale model are investigated. Suspension system design parameters, such as the number, location, mass, and stiffness of the suspension devices are traded to minimize undesirable interactions and form the basis for an overall suspension system concept for the scale model.

  16. LCT-coil design: Mechanical interaction between composite winding and steel casing under various test conditions

    International Nuclear Information System (INIS)

    Dolensky, B.; Messemer, G.; Zehlein, H.; Erb, J.

    1981-01-01

    Finite element computations for the structural design of the large superconducting toroidal field coil contributed by EURATOM to the Large Coil Test Facility (LCTF) at ORNL, USA were performed at KfK, using the ASKA code. The layout of the coil must consider different types of requirements: firstly, an optimal D-shaped contour minimizing circumferential stress gradients under normal operation in the toroidal arrangement must be defined. Secondly, the three-dimensional real design effects due to the actual support conditions, manufacturing tolerances etc. must be mastered for different basic operational and failure load cases. And, thirdly, the design must stand a single coil qualification test in the TOSKA-facility at KfK, Karlsruhe, FRG, before it is plugged into the LCTF. The emphasis of the paper is three-pronged according to these requirements: i) the 3D magnetic body forces as well as the underlying magnetic fields as computed by the HEDO-code are described. ii) The mechanical interaction between casing and winding as given elsewhere in terms of high stress regions, gaps, slide movements and contact forces for various load cases representing the LCTF test conditions is illustrated here by a juxtaposition of the operational deformations and stresses within the LCTF and the TOSKA. iii) Particular effects like the restraint imposed by a corset-type reinforcement of the coil in the TOSKA test facility to limit the breathing deformation are parametrically studied. Moreover, the possibilities to derive scaling laws which make essential results transferable to larger coils by extracting a 1D mechanical response from the 3D finite element model is also demonstrated. (orig./GG)

  17. Behavioral interactions of simvastatin and fluoxetine in tests of anxiety and depression

    Directory of Open Access Journals (Sweden)

    Santos T

    2012-10-01

    Full Text Available Tainaê Santos,1 Monaliza Marizete Baungratz,1 Suellen Priscila Haskel,2 Daniela Delwing de Lima,3 Júlia Niehues da Cruz,4 Débora Delwing Dal Magro,5 José Geraldo Pereira da Cruz51Department of Medicine, 2Department of Physiotherapy, Regional University of Blumenau, Santa Catarina, Brazil; 3Department of Pharmacy, University of Joinville Region, Santa Catarina, Brazil; 4Department of Medicine, University of the Extreme South of Santa Catarina, Santa Catarina, Brazil; 5Department of Natural Sciences, Regional University of Blumenau, Santa Catarina, BrazilAbstract: Simvastatin inhibits 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway, and is widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of simvastatin extend to the central nervous system. The effects of simvastatin combined with fluoxetine provide an exciting and potential paradigm to decreased anxiety and depression. Thus, the present paper investigates the possibility of synergistic interactions between simvastatin and fluoxetine in models of anxiety and depression. We investigated the effects of subchronically administered simvastatin (1 or 10 mg/kg/day combined with fluoxetine (2 or 10 mg/kg at 24, 5, and 1 hour on adult rats before conducting behavioral tests. The results indicate that simvastatin and/or fluoxetine treatment reduces anxiety-like behaviors in the elevated plus-maze and open-field tests. Our results showed that simvastatin and/or fluoxetine induced a significant increase in the swimming activity during the forced swimming test (antidepressant effect, with a concomitant increase in climbing time in simvastatin-treated animals only (noradrenergic activation. We hypothesize that anxiolytic and antidepressant effects of simvastatin and/or fluoxetine produce their behavioral effects through similar mechanisms and provide

  18. Modeling the intracellular pathogen-immune interaction with cure rate

    Science.gov (United States)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by

  19. SeiVis: An Interactive Visual Subsurface Modeling Application.

    Science.gov (United States)

    Hollt, T; Freiler, W; Gschwantner, F; Doleisch, H; Heinemann, G; Hadwiger, M

    2012-12-01

    The most important resources to fulfill today's energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches.

  20. SeiVis: An interactive visual subsurface modeling application

    KAUST Repository

    Hollt, Thomas

    2012-12-01

    The most important resources to fulfill today’s energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches. © 2012 IEEE.

  1. Interactive Modelling of Shapes Using the Level-Set Method

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2002-01-01

    In this paper, we propose a technique for intuitive, interactive modelling of {3D} shapes. The technique is based on the Level-Set Method which has the virtue of easily handling changes to the topology of the represented solid. Furthermore, this method also leads to sculpting operations that are ......In this paper, we propose a technique for intuitive, interactive modelling of {3D} shapes. The technique is based on the Level-Set Method which has the virtue of easily handling changes to the topology of the represented solid. Furthermore, this method also leads to sculpting operations...... which are suitable for shape modelling are proposed. However, normally these would result in tools that would a ect the entire model. To facilitate local changes to the model, we introduce a windowing scheme which constrains the {LSM} to a ect only a small part of the model. The {LSM} based sculpting...... tools have been incorporated in our sculpting system which also includes facilities for volumetric {CSG} and several techniques for visualization....

  2. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    Science.gov (United States)

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  3. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  4. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  5. Dipolar interaction and demagnetizing effects in magnetic nanoparticle dispersions: Introducing the mean-field interacting superparamagnet model

    Science.gov (United States)

    Sánchez, F. H.; Mendoza Zélis, P.; Arciniegas, M. L.; Pasquevich, G. A.; Fernández van Raap, M. B.

    2017-04-01

    Aiming to analyze relevant aspects of interacting magnetic nanoparticle systems (frequently called interacting superparamagnets), a model is built from magnetic dipolar interaction and demagnetizing mean-field concepts. By making reasonable simplifying approximations, a simple and useful expression for effective demagnetizing factors is achieved, which allows the analysis of uniform and nonuniform spatial distributions of nanoparticles, in particular the occurrence of clustering. This expression is a function of demagnetizing factors associated with specimen shape and clusters shape, and of the mean distances between near neighbor nanoparticles and between clusters, relative to the characteristic sizes of each of these two types of objects, respectively. The model explains effects of magnetic dipolar interactions, such as the observation of apparent nanoparticle magnetic moments smaller than real ones and approaching to zero as temperature decreases. It is shown that by performing a minimum set of experimental determinations along principal directions of geometrically well-defined specimens, model application allows retrieval of nanoparticle intrinsic properties, like mean volume, magnetic moment, and susceptibility in the absence of interactions. It also permits the estimation of mean interparticle and intercluster relative distances, as well as mean values of demagnetizing factors associated with clusters shape. An expression for average magnetic dipolar energy per nanoparticle is also derived, which is a function of specimen effective demagnetizing factor and magnetization. Experimental test of the model was performed by analysis of results reported in the literature and of original results reported here. The first case corresponds to oleic-acid-coated 8-nm magnetite particles dispersed in PEGDA-600 polymer, and the second one to polyacrilic-acid-coated 13-nm magnetite particles dispersed in PVA solutions from which ferrogels were later produced by a physical

  6. The transverse spin-1 Ising model with random interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, Touria [Department of Physics, Faculty of Sciences, University of Moulay Ismail, B.P. 11201 Meknes (Morocco)], E-mail: touria582004@yahoo.fr; Saber, Mohammed [Department of Physics, Faculty of Sciences, University of Moulay Ismail, B.P. 11201 Meknes (Morocco); Dpto. Fisica Aplicada I, EUPDS (EUPDS), Plaza Europa, 1, San Sebastian 20018 (Spain)

    2009-01-15

    The phase diagrams of the transverse spin-1 Ising model with random interactions are investigated using a new technique in the effective field theory that employs a probability distribution within the framework of the single-site cluster theory based on the use of exact Ising spin identities. A model is adopted in which the nearest-neighbor exchange couplings are independent random variables distributed according to the law P(J{sub ij})=p{delta}(J{sub ij}-J)+(1-p){delta}(J{sub ij}-{alpha}J). General formulae, applicable to lattices with coordination number N, are given. Numerical results are presented for a simple cubic lattice. The possible reentrant phenomenon displayed by the system due to the competitive effects between exchange interactions occurs for the appropriate range of the parameter {alpha}.

  7. Stochastic modeling of mode interactions via linear parabolized stability equations

    Science.gov (United States)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  8. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  9. Numerical time-domain modelling of hoof-ground interaction during the stance phase.

    Science.gov (United States)

    Behnke, R

    2017-11-09

    Hoof-ground interaction impacts on the health and performance characteristics of horses. Due to complex interactions between hoof and ground during the stance phase, previous experimentally dominated studies concentrated on subproblems of the phenomena observed. A multidisciplinary methodology with mathematical modelling, material testing and in vivo experimental measurements seems promising. With the help of a mathematical approach, this contribution aims to explain from a biomechanical point of view the phenomena observed during experimental investigations (hoof acceleration, interacting forces) and aims to contribute to an overall experimental-mathematical multidisciplinary approach. In silico modelling of hoof-ground interaction (limb, hoof and horizontally unbounded ground). Hoof-ground interaction is represented by a time-domain finite element model including the limb, the hoof and the unbounded representation of the ground via the scaled boundary finite element method to capture radiation damping during the stance phase. Motoric forces (driving forces) of the horse during locomotion are included. Numerical model results for acceleration-time relations (hoof) at different trotting velocities are compared with previously published acceleration-time relations and show qualitative agreement. From the model approach, power loss due to different ground properties and ground damping is computed in combination with the maximum limb force during the stance phase. Intentionally, a simplified model approach for the material and structural representation of the limb, the hoof and the ground in terms of material features and spatial resolution has been used for this study, which might be the basis for a model refinement in terms of contact properties as well as the integration of bone and joint structures. The comparison to experimentally obtained results demonstrates the applicability of the model, which, in turn, enables an insight into the processes taking place

  10. A Mesoscopic Model for Protein-Protein Interactions in Solution

    OpenAIRE

    Lund, Mikael; Jönsson, Bo

    2003-01-01

    Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...

  11. Modeling Fluid-Structure Interaction in ANSYS Workbench

    Science.gov (United States)

    2016-08-31

    Briefing Charts 3. DATES COVERED (From - To) 31 August 2016 – 03 October 2016 4. TITLE AND SUBTITLE Modeling Fluid-Structure Interaction in ANSYS Workbench...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 D IS TR IB U TI O N S TA TE M EN T A .A pp ro ve d fo rp ub lic re le as e; di st rib

  12. Centrifuge modelling of seismic soil structure interaction effects

    International Nuclear Information System (INIS)

    Ghosh, B.; Madabhushi, S.P.G.

    2007-01-01

    Proper understanding of the role of unbounded soil in the evaluation of dynamic soil structure interaction (SSI) problem is very important for structures used in the nuclear industry. In this paper, the results from a series of dynamic centrifuge tests are reported. These tests were performed on different types of soil stratifications supporting a rigid containment structure. Test results indicate that accelerations transmitted to the structure's base are dependent on the stiffness degradation in the supporting soil. Steady build up of excess pore pressure leads to softening of the soil, which decreases the shear modulus and shear strength and subsequently changes the dynamic responses. It is also shown that the presence of the structure reduces the translational component of the input base motion and induces rocking of the structure. The test results are compared with some standard formulae used for evaluating interaction in the various building codes. It was concluded that the dynamic shear modulus values used should be representative of the site conditions and can vary dramatically due to softening. Damping values used are still very uncertain and contain many factors, which cannot be accounted in the experiments. It is emphasized that simplified design processes are important to gain an insight into the behaviour of the physical mechanism but for a complete understanding of the SSI effects sophisticated methods are necessary to account for non-linear behaviour of the soil material

  13. A validation study of a stochastic model of human interaction

    Science.gov (United States)

    Burchfield, Mitchel Talmadge

    The purpose of this dissertation is to validate a stochastic model of human interactions which is part of a developmentalism paradigm. Incorporating elements of ancient and contemporary philosophy and science, developmentalism defines human development as a progression of increasing competence and utilizes compatible theories of developmental psychology, cognitive psychology, educational psychology, social psychology, curriculum development, neurology, psychophysics, and physics. To validate a stochastic model of human interactions, the study addressed four research questions: (a) Does attitude vary over time? (b) What are the distributional assumptions underlying attitudes? (c) Does the stochastic model, {-}N{intlimitssbsp{-infty}{infty}}varphi(chi,tau)\\ Psi(tau)dtau, have utility for the study of attitudinal distributions and dynamics? (d) Are the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein theories applicable to human groups? Approximately 25,000 attitude observations were made using the Semantic Differential Scale. Positions of individuals varied over time and the logistic model predicted observed distributions with correlations between 0.98 and 1.0, with estimated standard errors significantly less than the magnitudes of the parameters. The results bring into question the applicability of Fisherian research designs (Fisher, 1922, 1928, 1938) for behavioral research based on the apparent failure of two fundamental assumptions-the noninteractive nature of the objects being studied and normal distribution of attributes. The findings indicate that individual belief structures are representable in terms of a psychological space which has the same or similar properties as physical space. The psychological space not only has dimension, but individuals interact by force equations similar to those described in theoretical physics models. Nonlinear regression techniques were used to estimate Fermi-Dirac parameters from the data. The model explained a high degree

  14. Computational modeling of RNA 3D structures and interactions.

    Science.gov (United States)

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Inelastic soliton-soliton interaction in coninin models

    International Nuclear Information System (INIS)

    Simonov, Yu.A.; Veselov, A.I.

    1980-01-01

    The field equations with nonlinearity proportional to |PSI|sup(-α)PSI, α>0 (model 1 of Simonov-Tjon) are solved in one spatial dimension with initial conditions corresponding to two colliding solitons. One or several breathers are generated during the collision process and the solitons remain stable after collision. An extensive study is done of the collision process and the breather generation for different values of the interaction parameter α, velocities and relative phase in the initial state. In addition the collision of two breathers is considered. Some comparative study of one dimensional model of the Werle type is also done

  16. Optimization of morphing flaps based on fluid structure interaction modeling

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Akay, Busra

    2018-01-01

    This article describes the design optimization of morphing trailing edge flaps for wind turbines with ‘smart blades’. A high fidelity Fluid Structure Interaction (FSI) simulation framework is utilized, comprised of 2D Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) models....... A coupled aero-structural simulation of a 10% chordwise length morphing trailing edge flap for a 4 MW wind turbine rotor is carried out and response surfaces are produced with respect to the flap internal geometry design parameters for the design conditions. Surrogate model based optimization is applied...

  17. RESPONSE OF PLANT-BACTERIA INTERACTION MODELS TO NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Giuliano Degrassi

    2012-07-01

    Full Text Available The aim of this study was to evaluate the possibility of using some models developed to study the plant-bacteria interaction mechanisms for the assessment of the impact of chronic exposure to nanoparticles. Rice-associated bacteria showed that some models are sensitive to the presence of NPs and allow a quantification of the effects. Further work needs to be performed in order to set appropriate reference baselines and standards to assess the impact of NPs on the proposed biological systems.

  18. Statistical Model of the 2001 Czech Census for Interactive Presentation

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Hora, Jan; Boček, Pavel; Somol, Petr; Pudil, Pavel

    Vol. 26, č. 4 (2010), s. 1-23 ISSN 0282-423X R&D Projects: GA ČR GA102/07/1594; GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Interactive statistical model * census data presentation * distribution mixtures * data modeling * EM algorithm * incomplete data * data reproduction accuracy * data mining Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.492, year: 2010 http://library.utia.cas.cz/separaty/2010/RO/grim-0350513.pdf

  19. Cognitive Emotional Regulation Model in Human-Robot Interaction

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-01-01

    Full Text Available This paper integrated Gross cognitive process into the HMM (hidden Markov model emotional regulation method and implemented human-robot emotional interaction with facial expressions and behaviors. Here, energy was the psychological driving force of emotional transition in the cognitive emotional model. The input facial expression was translated into external energy by expression-emotion mapping. Robot’s next emotional state was determined by the cognitive energy (the stimulus after cognition and its own current emotional energy’s size and source’s position. The two random quantities in emotional transition process—the emotional family and the specific emotional state in the AVS (arousal-valence-stance 3D space—were used to simulate human emotion selection. The model had been verified by an emotional robot with 10 degrees of freedom and more than 100 kinds of facial expressions. Experimental results show that the emotional regulation model does not simply provide the typical classification and jump in terms of a set of emotional labels but that it operates in a 3D emotional space enabling a wide range of intermediary emotional states to be obtained. So the robot with cognitive emotional regulation model is more intelligent and real; moreover it can give full play to its emotional diversification in the interaction.

  20. Characterization and modeling of nonlinear hydrophobic interaction chromatographic systems.

    Science.gov (United States)

    Nagrath, Deepak; Xia, Fang; Cramer, Steven M

    2011-03-04

    A general rate model was employed in concert with a preferential interaction quadratic adsorption isotherm for the characterization of HIC resins and the prediction of solute behavior in these separation systems. The results indicate that both pore and surface diffusion play an important role in protein transport in HIC resins. The simulated and experimental solute profiles were compared for two model proteins, lysozyme and lectin, for both displacement and gradient modes of chromatography. Our results indicate that a modeling approach using the generate rate model and preferential interaction isotherm can accurately predict the shock layer response in both gradient and displacement chromatography in HIC systems. While pore and surface diffusion played a major role and were limiting steps for proteins, surface diffusion was seen to play less of a role for the displacer. The results demonstrate that this modeling approach can be employed to describe the behavior of these non-linear HIC systems, which may have implications for the development of more efficient preparative HIC separations. Copyright © 2011 Elsevier B.V. All rights reserved.