WorldWideScience

Sample records for model including single

  1. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  2. Group-Level EEG-Processing Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models.

    Science.gov (United States)

    Frömer, Romy; Maier, Martin; Abdel Rahman, Rasha

    2018-01-01

    Here we present an application of an EEG processing pipeline customizing EEGLAB and FieldTrip functions, specifically optimized to flexibly analyze EEG data based on single trial information. The key component of our approach is to create a comprehensive 3-D EEG data structure including all trials and all participants maintaining the original order of recording. This allows straightforward access to subsets of the data based on any information available in a behavioral data structure matched with the EEG data (experimental conditions, but also performance indicators, such accuracy or RTs of single trials). In the present study we exploit this structure to compute linear mixed models (LMMs, using lmer in R) including random intercepts and slopes for items. This information can easily be read out from the matched behavioral data, whereas it might not be accessible in traditional ERP approaches without substantial effort. We further provide easily adaptable scripts for performing cluster-based permutation tests (as implemented in FieldTrip), as a more robust alternative to traditional omnibus ANOVAs. Our approach is particularly advantageous for data with parametric within-subject covariates (e.g., performance) and/or multiple complex stimuli (such as words, faces or objects) that vary in features affecting cognitive processes and ERPs (such as word frequency, salience or familiarity), which are sometimes hard to control experimentally or might themselves constitute variables of interest. The present dataset was recorded from 40 participants who performed a visual search task on previously unfamiliar objects, presented either visually intact or blurred. MATLAB as well as R scripts are provided that can be adapted to different datasets.

  3. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  4. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  5. Political violence and child adjustment in Northern Ireland: Testing pathways in a social-ecological model including single-and two-parent families.

    Science.gov (United States)

    Cummings, E Mark; Schermerhorn, Alice C; Merrilees, Christine E; Goeke-Morey, Marcie C; Shirlow, Peter; Cairns, Ed

    2010-07-01

    Moving beyond simply documenting that political violence negatively impacts children, we tested a social-ecological hypothesis for relations between political violence and child outcomes. Participants were 700 mother-child (M = 12.1 years, SD = 1.8) dyads from 18 working-class, socially deprived areas in Belfast, Northern Ireland, including single- and two-parent families. Sectarian community violence was associated with elevated family conflict and children's reduced security about multiple aspects of their social environment (i.e., family, parent-child relations, and community), with links to child adjustment problems and reductions in prosocial behavior. By comparison, and consistent with expectations, links with negative family processes, child regulatory problems, and child outcomes were less consistent for nonsectarian community violence. Support was found for a social-ecological model for relations between political violence and child outcomes among both single- and two-parent families, with evidence that emotional security and adjustment problems were more negatively affected in single-parent families. The implications for understanding social ecologies of political violence and children's functioning are discussed.

  6. Political violence and child adjustment in Northern Ireland: Testing pathways in a social ecological model including single and two-parent families

    Science.gov (United States)

    Cummings, E. Mark; Schermerhorn, Alice C.; Merrilees, Christine E.; Goeke-Morey, Marcie C.; Shirlow, Peter; Cairns, Ed

    2013-01-01

    Moving beyond simply documenting that political violence negatively impacts children, a social ecological hypothesis for relations between political violence and child outcomes was tested. Participants were 700 mother-child (M=12.1years, SD=1.8) dyads from 18 working class, socially deprived areas in Belfast, Northern Ireland, including single- and two-parent families. Sectarian community violence was associated with elevated family conflict and children’s reduced security about multiple aspects of their social environment (i.e., family, parent-child relations, and community), with links to child adjustment problems and reductions in prosocial behavior. By comparison, and consistent with expectations, links with negative family processes, child regulatory problems and child outcomes were less consistent for nonsectarian community violence. Support was found for a social ecological model for relations between political violence and child outcomes among both single and two parent families, with evidence that emotional security and adjustment problems were more negatively affected in single-parent families. The implications for understanding social ecologies of political violence and children’s functioning are discussed. PMID:20604605

  7. Quantitative occupational risk model: Single hazard

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Aneziris, O.N.; Bellamy, L.J.; Ale, B.J.M.; Oh, J.

    2017-01-01

    A model for the quantification of occupational risk of a worker exposed to a single hazard is presented. The model connects the working conditions and worker behaviour to the probability of an accident resulting into one of three types of consequence: recoverable injury, permanent injury and death. Working conditions and safety barriers in place to reduce the likelihood of an accident are included. Logical connections are modelled through an influence diagram. Quantification of the model is based on two sources of information: a) number of accidents observed over a period of time and b) assessment of exposure data of activities and working conditions over the same period of time and the same working population. Effectiveness of risk reducing measures affecting the working conditions, worker behaviour and/or safety barriers can be quantified through the effect of these measures on occupational risk. - Highlights: • Quantification of occupational risk from a single hazard. • Influence diagram connects working conditions, worker behaviour and safety barriers. • Necessary data include the number of accidents and the total exposure of worker • Effectiveness of risk reducing measures is quantified through the impact on the risk • An example illustrates the methodology.

  8. Studying Validity of Single-Fluid Model in Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Gu Jian-Fa; Fan Zheng-Feng; Dai Zhen-Sheng; Ye Wen-Hua; Pei Wen-Bing; Zhu Shao-Ping

    2014-01-01

    The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path λ, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/λ is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results. (physics of gases, plasmas, and electric discharges)

  9. Actuator assembly including a single axis of rotation locking member

    Science.gov (United States)

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  10. A constitutive model for the forces of a magnetic bearing including eddy currents

    Science.gov (United States)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  11. A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time

    Science.gov (United States)

    Vijayashree, M.; Uthayakumar, R.

    2017-09-01

    Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.

  12. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  13. Integrating the augmented SCOR model and the ISO 15288 life cycle model into a single logistic model

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2010-07-01

    Full Text Available using the Supply Chain Operations Reference (SCOR) model. The SANDF indicated that the augmented SCOR model (Bean, Schmitz and Engelbrecht, 2009) should be extended into a single logistics process which should include a life-cycle perspective...

  14. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility

    Directory of Open Access Journals (Sweden)

    M. D. Petters

    2008-10-01

    Full Text Available The ability of a particle to serve as a cloud condensation nucleus in the atmosphere is determined by its size, hygroscopicity and its solubility in water. Usually size and hygroscopicity alone are sufficient to predict CCN activity. Single parameter representations for hygroscopicity have been shown to successfully model complex, multicomponent particles types. Under the assumption of either complete solubility, or complete insolubility of a component, it is not necessary to explicitly include that component's solubility into the single parameter framework. This is not the case if sparingly soluble materials are present. In this work we explicitly account for solubility by modifying the single parameter equations. We demonstrate that sensitivity to the actual value of solubility emerges only in the regime of 2×10−1–5×10−4, where the solubility values are expressed as volume of solute per unit volume of water present in a saturated solution. Compounds that do not fall inside this sparingly soluble envelope can be adequately modeled assuming they are either infinitely soluble in water or completely insoluble.

  15. Single-tier city logistics model for single product

    Science.gov (United States)

    Saragih, N. I.; Nur Bahagia, S.; Suprayogi; Syabri, I.

    2017-11-01

    This research develops single-tier city logistics model which consists of suppliers, UCCs, and retailers. The problem that will be answered in this research is how to determine the location of UCCs, to allocate retailers to opened UCCs, to assign suppliers to opened UCCs, to control inventory in the three entities involved, and to determine the route of the vehicles from opened UCCs to retailers. This model has never been developed before. All the decisions will be simultaneously optimized. Characteristic of the demand is probabilistic following a normal distribution, and the number of product is single.

  16. Extracting Models in Single Molecule Experiments

    Science.gov (United States)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  17. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  18. 42 CFR 137.327 - May multiple projects be included in a single construction project agreement?

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false May multiple projects be included in a single construction project agreement? 137.327 Section 137.327 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF...-GOVERNANCE Construction Project Assumption Process § 137.327 May multiple projects be included in a single...

  19. Spin models for the single molecular magnet Mn12-AC

    Science.gov (United States)

    Al-Saqer, Mohamad A.

    2005-11-01

    The single molecular magnet (SMM) Mn12-AC attracted the attention of scientists since the discovery of its magnetic hystereses which are accompanied by sudden jumps in magnetic moments at low temperature. Unlike conventional bulk magnets, hysteresis in SMMs is of molecular origin. This qualifies them as candidates for next generation of high density storage media where a molecule which is at most few nanometers in size can be used to store a bit of information. However, the jumps in these hystereses, due to spin tunneling, can lead to undesired loss of information. Mn12-AC molecule contains twelve magnetic ions antiferromagnetically coupled by exchanges leading to S = 10 ground state manifold. The magnetic ions are surrounded by ligands which isolate them magnetically from neighboring molecules. The lowest state of S = 9 manifold is believed to lie at about 40 K above the ground state. Therefore, at low temperatures, the molecule is considered as a single uncoupled moment of spin S = 10. Such model has been used widely to understand phenomena exhibited by the molecule at low temperatures including the tunneling of its spin, while a little attention has been paid for the multi-spin nature of the molecule. Using the 8-spin model, we demonstrate that in order to understand the phenomena of tunneling, a full spin description of the molecule is required. We utilized a calculation scheme where a fraction of energy levels are used in the calculations and the influence of levels having higher energy is neglected. From the dependence of tunnel splittings on the number of states include, we conclude that models based on restricting the number of energy levels (single-spin and 8-spin models) lead to unreliable results of tunnel splitting calculations. To attack the full 12-spin model, we employed the Davidson algorithm to calculated lowest energy levels produced by exchange interactions and single ion anisotropies. The model reproduces the anisotropy properties at low

  20. Single-channel model for steady thermal-hydraulic analysis in nuclear reactor

    International Nuclear Information System (INIS)

    Zhang Xiaoying; Huang Yuanyuan

    2010-01-01

    This article established a single-channel model for steady analysis in the reactor and an example of thermal-hydraulic analysis was made by using this model, including the Maximum heat flux density of fuel element, enthalpy, Coolant flow, various kinds of pressure drop, enthalpy increase in average tube and thermal tube. I also got the Coolant temperature distribution and the fuel element temperature distribution and analysis of the final result. The results show that some relevant parameters which we got in this paper are well coincide with the actual operating parameters. It is also show that the single-channel model can be used to the steady thermal-hydraulic analysis. (authors)

  1. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  2. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    Science.gov (United States)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  3. Modelling transport in single electron transistor

    International Nuclear Information System (INIS)

    Dinh Sy Hien; Huynh Lam Thu Thao; Le Hoang Minh

    2009-01-01

    We introduce a model of single electron transistor (SET). Simulation programme of SET is used as the exploratory tool in order to gain better understanding of process and device physics. This simulator includes a graphic user interface (GUI) in Matlab. The SET was simulated using GUI in Matlab to get current-voltage (I-V) characteristics. In addition, effects of device capacitance, bias, temperature on the I-V characteristics were obtained. In this work, we review the capabilities of the simulator of the SET. Typical simulations of the obtained I-V characteristics of the SET are presented.

  4. Bisimulation for Single-Agent Plausibility Models

    DEFF Research Database (Denmark)

    Andersen, Mikkel Birkegaard; Bolander, Thomas; van Ditmarsch, H.

    2013-01-01

    define a proper notion of bisimulation, and prove that bisimulation corresponds to logical equivalence on image-finite models. We relate our results to other epistemic notions, such as safe belief and degrees of belief. Our results imply that there are only finitely many non-bisimilar single......-agent epistemic plausibility models on a finite set of propositions. This gives decidability for single-agent epistemic plausibility planning....

  5. Non-symmetric approach to single-screw expander and compressor modeling

    Science.gov (United States)

    Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.

    2017-08-01

    Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.

  6. Assessing Model Characterization of Single Source ...

    Science.gov (United States)

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci

  7. Variance Function Partially Linear Single-Index Models1.

    Science.gov (United States)

    Lian, Heng; Liang, Hua; Carroll, Raymond J

    2015-01-01

    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

  8. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  9. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  10. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing; Sun, Shuyu

    2016-01-01

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  11. Understanding Single Adulthood.

    Science.gov (United States)

    Stein, Peter J.

    The life styles and life chances of the unmarried include elements of choices. Singles may be grouped and characterized according to whether their status may be considered stable or temporary. A life cycle, or continuum model of singlehood is reviewed, including its different factors, or phases. A new model for singles is proposed--a life spiral…

  12. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  13. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  14. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...

  15. On the single-mass model of the vocal folds

    International Nuclear Information System (INIS)

    Howe, M S; McGowan, R S

    2010-01-01

    An analysis is made of the fluid-structure interactions necessary to support self-sustained oscillations of a single-mass mechanical model of the vocal folds subject to a nominally steady subglottal overpressure. The single-mass model of Fant and Flanagan is re-examined and an analytical representation of vortex shedding during 'voiced speech' is proposed that promotes cooperative, periodic excitation of the folds by the glottal flow. Positive feedback that sustains glottal oscillations is shown to occur during glottal contraction, when the flow separates from the 'trailing edge' of the glottis producing a low-pressure 'suction' force that tends to pull the folds together. Details are worked out for flow that can be regarded as locally two-dimensional in the glottal region. Predictions of free-streamline theory are used to model the effects of quasi-static variations in the separation point on the glottal wall. Numerical predictions are presented to illustrate the waveform of the sound radiated towards the mouth from the glottis. The theory is easily modified to include feedback on the glottal flow of standing acoustic waves, both in the vocal tract beyond the glottis and in the subglottal region. (invited paper)

  16. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  17. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  18. Graphical models for inferring single molecule dynamics

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruben L

    2010-10-01

    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  19. Modeling and simulation of single-event effect in CMOS circuit

    International Nuclear Information System (INIS)

    Yue Suge; Zhang Xiaolin; Zhao Yuanfu; Liu Lin; Wang Hanning

    2015-01-01

    This paper reviews the status of research in modeling and simulation of single-event effects (SEE) in digital devices and integrated circuits. After introducing a brief historical overview of SEE simulation, different level simulation approaches of SEE are detailed, including material-level physical simulation where two primary methods by which ionizing radiation releases charge in a semiconductor device (direct ionization and indirect ionization) are introduced, device-level simulation where the main emerging physical phenomena affecting nanometer devices (bipolar transistor effect, charge sharing effect) and the methods envisaged for taking them into account are focused on, and circuit-level simulation where the methods for predicting single-event response about the production and propagation of single-event transients (SETs) in sequential and combinatorial logic are detailed, as well as the soft error rate trends with scaling are particularly addressed. (review)

  20. Factors affecting GEBV accuracy with single-step Bayesian models.

    Science.gov (United States)

    Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng

    2018-01-01

    A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

  1. Improving the Amazonian Hydrologic Cycle in a Coupled Land-Atmosphere, Single Column Model

    Science.gov (United States)

    Harper, A. B.; Denning, S.; Baker, I.; Prihodko, L.; Branson, M.

    2006-12-01

    We have coupled a land-surface model, the Simple Biosphere Model (SiB3), to a single column of the Colorado State University General Circulation Model (CSU-GCM) in the Amazon River Basin. This is a preliminary step in the broader goal of improved simulation of Basin-wide hydrology. A previous version of the coupled model (SiB2) showed drought and catastrophic dieback of the Amazon rain forest. SiB3 includes updated soil hydrology and root physiology. Our test area for the coupled single column model is near Santarem, Brazil, where measurements from the km 83 flux tower in the Tapajos National Forest can be used to evaluate model output. The model was run for 2001 using NCEP2 Reanalysis as driver data. Preliminary results show that the updated biosphere model coupled to the GCM produces improved simulations of the seasonal cycle of surface water balance and precipitation. Comparisons of the diurnal and seasonal cycles of surface fluxes are also being made.

  2. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.

    Science.gov (United States)

    Delorme, Arnaud; Makeig, Scott

    2004-03-15

    We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.

  3. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    Science.gov (United States)

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  4. A single-column model intercomparison on the stratocumulus representation in present-day and future climate

    NARCIS (Netherlands)

    Dal Gesso, S.; Van der Dussen, J.J.; Siebesma, A.P.; De Roode, S.R.; Boutle, I.A.; Kamae, Y.; Roehrig, R.; Vial, J.

    2015-01-01

    Six Single-Column Model (SCM) versions of climate models are evaluated on the basis of their representation of the dependence of the stratocumulus-topped boundary layer regime on the free tropospheric thermodynamic conditions. The study includes two idealized experiments corresponding to the

  5. Single toxin dose-response models revisited

    Energy Technology Data Exchange (ETDEWEB)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu [Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH03756 (United States); Glaholt, SP, E-mail: sglaholt@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States); Kyker-Snowman, E, E-mail: ek2002@wildcats.unh.edu [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH03824 (United States); Shaw, JR, E-mail: joeshaw@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Chen, CY, E-mail: Celia.Y.Chen@dartmouth.edu [Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States)

    2017-01-01

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.

  6. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...... of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind...

  7. Unified Probabilistic Models for Face Recognition from a Single Example Image per Person

    Institute of Scientific and Technical Information of China (English)

    Pin Liao; Li Shen

    2004-01-01

    This paper presents a new technique of unified probabilistic models for face recognition from only one single example image per person. The unified models, trained on an obtained training set with multiple samples per person, are used to recognize facial images from another disjoint database with a single sample per person. Variations between facial images are modeled as two unified probabilistic models: within-class variations and between-class variations. Gaussian Mixture Models are used to approximate the distributions of the two variations and exploit a classifier combination method to improve the performance. Extensive experimental results on the ORL face database and the authors' database (the ICT-JDL database) including totally 1,750facial images of 350 individuals demonstrate that the proposed technique, compared with traditional eigenface method and some well-known traditional algorithms, is a significantly more effective and robust approach for face recognition.

  8. Reliability of multi-model and structurally different single-model ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Yokohata, Tokuta [National Institute for Environmental Studies, Center for Global Environmental Research, Tsukuba, Ibaraki (Japan); Annan, James D.; Hargreaves, Julia C. [Japan Agency for Marine-Earth Science and Technology, Research Institute for Global Change, Yokohama, Kanagawa (Japan); Collins, Matthew [University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter (United Kingdom); Jackson, Charles S.; Tobis, Michael [The University of Texas at Austin, Institute of Geophysics, 10100 Burnet Rd., ROC-196, Mail Code R2200, Austin, TX (United States); Webb, Mark J. [Met Office Hadley Centre, Exeter (United Kingdom)

    2012-08-15

    The performance of several state-of-the-art climate model ensembles, including two multi-model ensembles (MMEs) and four structurally different (perturbed parameter) single model ensembles (SMEs), are investigated for the first time using the rank histogram approach. In this method, the reliability of a model ensemble is evaluated from the point of view of whether the observations can be regarded as being sampled from the ensemble. Our analysis reveals that, in the MMEs, the climate variables we investigated are broadly reliable on the global scale, with a tendency towards overdispersion. On the other hand, in the SMEs, the reliability differs depending on the ensemble and variable field considered. In general, the mean state and historical trend of surface air temperature, and mean state of precipitation are reliable in the SMEs. However, variables such as sea level pressure or top-of-atmosphere clear-sky shortwave radiation do not cover a sufficiently wide range in some. It is not possible to assess whether this is a fundamental feature of SMEs generated with particular model, or a consequence of the algorithm used to select and perturb the values of the parameters. As under-dispersion is a potentially more serious issue when using ensembles to make projections, we recommend the application of rank histograms to assess reliability when designing and running perturbed physics SMEs. (orig.)

  9. Mixture of Regression Models with Single-Index

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2016-01-01

    In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for...

  10. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin

    2013-01-01

    Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was......, on the other hand, lighter than the single-step method....

  11. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  12. Improvement in genetic evaluation of female fertility in dairy cattle using multiple-trait models including milk production traits

    DEFF Research Database (Denmark)

    Sun, C; Madsen, P; Lund, M S

    2010-01-01

    This study investigated the improvement in genetic evaluation of fertility traits by using production traits as secondary traits (MILK = 305-d milk yield, FAT = 305-d fat yield, and PROT = 305-d protein yield). Data including 471,742 records from first lactations of Denmark Holstein cows, covering...... the years of inseminations during first lactations from 1995 to 2004, were analyzed. Six fertility traits (i.e., interval in days from calving to first insemination, calving interval, days open, interval in days from first to last insemination, numbers of inseminations per conception, and nonreturn rate...... stability and predictive ability than single-trait models for all the fertility traits, except for nonreturn rate within 56 d after first service. The stability and predictive ability for the model including MILK or PROT were similar to the model including all 3 milk production traits and better than...

  13. The reverse effects of random perturbation on discrete systems for single and multiple population models

    International Nuclear Information System (INIS)

    Kang, Li; Tang, Sanyi

    2016-01-01

    Highlights: • The discrete single species and multiple species models with random perturbation are proposed. • The complex dynamics and interesting bifurcation behavior have been investigated. • The reverse effects of random perturbation on discrete systems have been discussed and revealed. • The main results can be applied for pest control and resources management. - Abstract: The natural species are likely to present several interesting and complex phenomena under random perturbations, which have been confirmed by simple mathematical models. The important questions are: how the random perturbations influence the dynamics of the discrete population models with multiple steady states or multiple species interactions? and is there any different effects for single species and multiple species models with random perturbation? To address those interesting questions, we have proposed the discrete single species model with two stable equilibria and the host-parasitoid model with Holling type functional response functions to address how the random perturbation affects the dynamics. The main results indicate that the random perturbation does not change the number of blurred orbits of the single species model with two stable steady states compared with results for the classical Ricker model with same random perturbation, but it can strength the stability. However, extensive numerical investigations depict that the random perturbation does not influence the complexities of the host-parasitoid models compared with the results for the models without perturbation, while it does increase the period of periodic orbits doubly. All those confirm that the random perturbation has a reverse effect on the dynamics of the discrete single and multiple population models, which could be applied in reality including pest control and resources management.

  14. Beta-Poisson model for single-cell RNA-seq data analyses.

    Science.gov (United States)

    Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Rantalainen, Mattias; Pawitan, Yudi

    2016-07-15

    Single-cell RNA-sequencing technology allows detection of gene expression at the single-cell level. One typical feature of the data is a bimodality in the cellular distribution even for highly expressed genes, primarily caused by a proportion of non-expressing cells. The standard and the over-dispersed gamma-Poisson models that are commonly used in bulk-cell RNA-sequencing are not able to capture this property. We introduce a beta-Poisson mixture model that can capture the bimodality of the single-cell gene expression distribution. We further integrate the model into the generalized linear model framework in order to perform differential expression analyses. The whole analytical procedure is called BPSC. The results from several real single-cell RNA-seq datasets indicate that ∼90% of the transcripts are well characterized by the beta-Poisson model; the model-fit from BPSC is better than the fit of the standard gamma-Poisson model in > 80% of the transcripts. Moreover, in differential expression analyses of simulated and real datasets, BPSC performs well against edgeR, a conventional method widely used in bulk-cell RNA-sequencing data, and against scde and MAST, two recent methods specifically designed for single-cell RNA-seq data. An R package BPSC for model fitting and differential expression analyses of single-cell RNA-seq data is available under GPL-3 license at https://github.com/nghiavtr/BPSC CONTACT: yudi.pawitan@ki.se or mattias.rantalainen@ki.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Tests of the single-pion exchange model

    International Nuclear Information System (INIS)

    Treiman, S.B.; Yang, C.N.

    1983-01-01

    The single-pion exchange model (SPEM) of high-energy particle reactions provides an attractively simple picture of seemingly complex processes and has accordingly been much discussed in recent times. The purpose of this note is to call attention to the possibility of subjecting the model to certain tests precisely in the domain where the model stands the best chance of making sense

  16. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response

    Science.gov (United States)

    Caricato, Marco

    2018-04-01

    We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.

  17. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...

  18. Finite Element Modeling and Analysis of Nonlinear Impact and Frictional Motion Responses Including Fluid—Structure Coupling Effects

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    1997-01-01

    Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.

  19. Replica Analysis for Portfolio Optimization with Single-Factor Model

    Science.gov (United States)

    Shinzato, Takashi

    2017-06-01

    In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.

  20. Low-order models of a single-screw expander for organic Rankine cycle applications

    Science.gov (United States)

    Ziviani, D.; Desideri, A.; Lemort, V.; De Paepe, M.; van den Broek, M.

    2015-08-01

    Screw-type volumetric expanders have been demonstrated to be a suitable technology for organic Rankine cycle (ORC) systems because of higher overall effectiveness and good part-load behaviour over other positive displacement machines. An 11 kWe single-screw expander (SSE) adapted from an air compressor has been tested in an ORC test-rig operating with R245fa as working fluid. A total of 60 steady-steady points have been obtained at four different rotational speeds of the expander in the range between 2000 rpm and 3300 rpm. The maximum electrical power output and overall isentropic effectiveness measured were 7.3 kW and 51.9%, respectively. In this paper, a comparison between two low-order models is proposed in terms of accuracy of the predictions, the robustness of the model and the computational time. The first model is the Pacejka equation-based model and the second is a semi-empirical model derived from a well-known scroll expander model and modified to include the geometric aspects of a single screw expander. The models have been calibrated with the available steady-state measurement points by identifying the proper parameters.

  1. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  2. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  3. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2014-01-01

    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  4. A single grain approach applied to modelling recrystallization kinetics in a single-phase metal

    NARCIS (Netherlands)

    Chen, S.P.; Zwaag, van der S.

    2004-01-01

    A comprehensive model for the recrystallization kinetics is proposed which incorporates both microstructure and the textural components in the deformed state. The model is based on the single-grain approach proposed previously. The influence of the as-deformed grain orientation, which affects the

  5. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation

    Science.gov (United States)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.

  6. Comparing single- and dual-process models of memory development.

    Science.gov (United States)

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2017-11-01

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  7. Considering dominance in reduced single-step genomic evaluations.

    Science.gov (United States)

    Ertl, J; Edel, C; Pimentel, E C G; Emmerling, R; Götz, K-U

    2018-06-01

    Single-step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single-step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the single-step model and with different reduced single-step models. Including more relatives of genotyped cows in the reduced single-step model resulted in a better agreement of results with the single-step model. Accuracies of genetic values were largest with single-step and smallest with reduced single-step when only the cows genotyped were modelled. The results indicate that a reduced single-step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. © 2018 Blackwell Verlag GmbH.

  8. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    Science.gov (United States)

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  9. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  10. On the Predictiveness of Single-Field Inflationary Models

    CERN Document Server

    Burgess, C.P.; Trott, Michael

    2014-01-01

    We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for $A_s$, $r$ and $n_s$ are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in prin...

  11. Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.

    Science.gov (United States)

    Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2017-01-01

    The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. CT-QMC-simulations on the single impurity Anderson model with a superconducting bath

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Florian; Pruschke, Thomas [Institut fuer theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2016-07-01

    Coupling a heavy fermion impurity to a superconducting lead induces a competition between the Kondo effect and superconductivity in the low temperature regime. This situation has been modeled with a single impurity Anderson model, where the normal state bath is replaced by a BCS-type superconducting bath in mean field approximation. We study this model using a continuous-time quantum Monte Carlo hybridization expansion algorithm. Results include the impurity Green's functions as well as the corresponding spectral functions obtained from analytic continuation. Two side bands are observed which we discuss in the light of Yu-Shiba-Rusinov states.

  13. Experiments and modeling of single plastic particle conversion in suspension

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Wu, Hao; Grévain, Damien

    2018-01-01

    Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded...... against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non–isothermal models under typical...

  14. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling.

    Science.gov (United States)

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

    2016-05-01

    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

  15. Modeling and Stability Assessment of Single-Phase Grid Synchronization Techniques

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vasquez, Juan

    2018-01-01

    (GSTs) is of vital importance. This task is most often based on obtaining a linear time-invariant (LTI) model for the GST and applying standard stability tests to it. Another option is modeling and dynamics/stability assessment of GSTs in the linear time-periodic (LTP) framework, which has received...... a very little attention. In this letter, the procedure of deriving the LTP model for single-phase GSTs is first demonstrated. The accuracy of the LTP model in predicting the GST dynamic behavior and stability is then evaluated and compared with that of the LTI one. Two well-known single-phase GSTs, i...

  16. THE BERTRAND MODEL OF THE SINGLE MARKET

    Directory of Open Access Journals (Sweden)

    Vadasan Ioana

    2010-12-01

    Full Text Available Starting with the signification of the rationality hypothesis when the agent’s contentment is directly affected by the other agents’ decisions, the theory of games defines solutions for solving different situations of conflict. The economic actors have different behaviours of the Single Market. Oligopoly strategic behaviours were analysed by the Bertrand model. The two types revealed in the work show that strategic interactions are sensitive to the companies’ features, products and markets. Regarding the situation when we have an oligopoly competition, the companies make interdependent decisions in the environment affected by risk and uncertainty of the Single Market. For this reason it is an opportunity to study the structure of oligopoly type of of the Single Market with the aid of non – cooperative games.

  17. A single product perishing inventory model with demand interaction

    African Journals Online (AJOL)

    The paper describes a single perishing product inventory model in which ... continuous review inventory models have been studied recently by Yadavalli et al ...... stochastic inventory system with lost sales, Stochastic Analysis and Applications ...

  18. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available implementations of the DLM are however not very versatile in terms of geometries that can be modeled. The ZONA6 code offers a versatile surface panel body model including a separated wake model, but uses a pressure panel method for lifting surfaces. This paper...

  19. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    Science.gov (United States)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  20. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE).

    Science.gov (United States)

    Moretti, Rocco; Lyskov, Sergey; Das, Rhiju; Meiler, Jens; Gray, Jeffrey J

    2018-01-01

    The Rosetta molecular modeling software package provides a large number of experimentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers, with new protocols being added continually. While freely available to academic users, external usage is limited by the need for expertise in the Unix command line environment. To make Rosetta protocols available to a wider audience, we previously created a web server called Rosetta Online Server that Includes Everyone (ROSIE), which provides a common environment for hosting web-accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification format, one that permits easier implementation of Rosetta protocols. Whereas the previous format required creating multiple separate files in different locations, the new format allows specification of the protocol in a single file. This new, simplified protocol specification has more than doubled the number of Rosetta protocols available under ROSIE. These new applications include pK a determination, lipid accessibility calculation, ribonucleic acid redesign, protein-protein docking, protein-small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding peptide determination, and mapping small molecule binding sites. ROSIE is freely available to academic users at http://rosie.rosettacommons.org. © 2017 The Protein Society.

  1. Single-particle properties of the Hubbard model in a novel three-pole approximation

    Science.gov (United States)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We study the 2D Hubbard model using the Composite Operator Method within a novel three-pole approximation. Motivated by the long-standing experimental puzzle of the single-particle properties of the underdoped cuprates, we include in the operatorial basis, together with the usual Hubbard operators, a field describing the electronic transitions dressed by the nearest-neighbor spin fluctuations, which play a crucial role in the unconventional behavior of the Fermi surface and of the electronic dispersion. Then, we adopt this approximation to study the single-particle properties in the strong coupling regime and find an unexpected behavior of the van Hove singularity that can be seen as a precursor of a pseudogap regime.

  2. Electrical and optical 3D modelling of light-trapping single-photon avalanche diode

    Science.gov (United States)

    Zheng, Tianzhe; Zang, Kai; Morea, Matthew; Xue, Muyu; Lu, Ching-Ying; Jiang, Xiao; Zhang, Qiang; Kamins, Theodore I.; Harris, James S.

    2018-02-01

    Single-photon avalanche diodes (SPADs) have been widely used to push the frontier of scientific research (e.g., quantum science and single-molecule fluorescence) and practical applications (e.g., Lidar). However, there is a typical compromise between photon detection efficiency and jitter distribution. The light-trapping SPAD has been proposed to break this trade-off by coupling the vertically incoming photons into a laterally propagating mode while maintaining a small jitter and a thin Si device layer. In this work, we provide a 3D-based optical and electrical model based on practical fabrication conditions and discuss about design parameters, which include surface texturing, photon injection position, device area, and other features.

  3. Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics

    Directory of Open Access Journals (Sweden)

    Darren J. Goossens

    2016-02-01

    Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.

  4. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting

    International Nuclear Information System (INIS)

    Yan, Wentao; Ge, Wenjun; Qian, Ya; Lin, Stephen; Zhou, Bin; Liu, Wing Kam; Lin, Feng; Wagner, Gregory J.

    2017-01-01

    Metallic powder bed-based additive manufacturing technologies have many promising attributes. The single track acts as one fundamental building unit, which largely influences the final product quality such as the surface roughness and dimensional accuracy. A high-fidelity powder-scale model is developed to predict the detailed formation processes of single/multiple-track defects, including the balling effect, single track nonuniformity and inter-track voids. These processes are difficult to observe in experiments; previous studies have proposed different or even conflicting explanations. Our study clarifies the underlying formation mechanisms, reveals the influence of key factors, and guides the improvement of fabrication quality of single tracks. Additionally, the manufacturing processes of multiple tracks along S/Z-shaped scan paths with various hatching distance are simulated to further understand the defects in complex structures. The simulations demonstrate that the hatching distance should be no larger than the width of the remelted region within the substrate rather than the width of the melted region within the powder layer. Thus, single track simulations can provide valuable insight for complex structures.

  5. Fractional single-phase-lagging heat conduction model for describing anomalous diffusion

    Directory of Open Access Journals (Sweden)

    T.N. Mishra

    2016-03-01

    Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.

  6. Spatial and frequency domain ring source models for the single muscle fiber action potential

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  7. EVALUATION OF A FAST-RESPONSE URBAN WIND MODEL - COMPARISON TO SINGLE-BUILDING WIND TUNNEL DATA

    International Nuclear Information System (INIS)

    E.R. PARDYJAK; M.J. BROWN

    2001-01-01

    Prediction of the 3-dimensional flow field around buildings and other obstacles is important for a number of applications, including urban air quality studies, the tracking of plumes from accidental releases of toxic air contaminants, indoor/outdoor air pollution problems, and thermal comfort assessments. Various types of computational fluid dynamics (CFD) models have been used for determining the flow fields around buildings (e.g., Reisner et al., 1998; Eichhorn et al., 1988). Comparisons to measurements show that these models work reasonably well for the most part (e.g., Ehrhard et al., 2 ; Johnson and Hunter, 1998; Murakami, 1997). However, CFD models are computationally intensive and for some applications turn-around time is of the essence. For example, planning and assessment studies in which hundreds of cases must be analyzed or emergency response scenarios in which plume transport must be computed quickly. Several fast-response dispersion models of varying levels of fidelity have been developed to explicitly account for the effects of a single building or groups of buildings (e.g., UDM - Hall et al. (2000), NRC-Ramsdell and Fosmire (1995), CBP-3 - Yamartino and Wiegand (1986), APRAC - Daerdt et al. (1973)). Although a few of these models include the Hotchkiss and Harlow (1973) analytical solution for potential flow in a notch to describe the velocity field within an urban canyon, in general, these models do not explicitly compute the velocity field around groups of buildings. The EPA PRIME model (Schulman et al., 2000) has been empirically derived to provide streamlines around a single isolated building

  8. A single-system model predicts recognition memory and repetition priming in amnesia.

    Science.gov (United States)

    Berry, Christopher J; Kessels, Roy P C; Wester, Arie J; Shanks, David R

    2014-08-13

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. Copyright © 2014 the authors 0270-6474/14/3410963-12$15.00/0.

  9. Simplification and Validation of a Spectral-Tensor Model for Turbulence Including Atmospheric Stability

    Science.gov (United States)

    Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.

    2018-02-01

    A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.

  10. An accurate behavioral model for single-photon avalanche diode statistical performance simulation

    Science.gov (United States)

    Xu, Yue; Zhao, Tingchen; Li, Ding

    2018-01-01

    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  11. Block Empirical Likelihood for Longitudinal Single-Index Varying-Coefficient Model

    Directory of Open Access Journals (Sweden)

    Yunquan Song

    2013-01-01

    Full Text Available In this paper, we consider a single-index varying-coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to longitudinal single-index varying-coefficient model, and prove a nonparametric version of Wilks’ theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.

  12. Simulating the 2012 High Plains Drought Using Three Single Column Model Versions of the Community Earth System Model (SCM-CESM)

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2014-12-01

    observational data from the AmeriFlux tower network for the same period. Understanding the large and small-scale land-atmosphere feedbacks is very important for drought, and results from this research will give some insight to the feedbacks GCMs may produce when atmospheric and land surface heterogeneity are included within a single modeling framework.

  13. CFD simulations and reduced order modeling of a refrigerator compartment including radiation effects

    International Nuclear Information System (INIS)

    Bayer, Ozgur; Oskay, Ruknettin; Paksoy, Akin; Aradag, Selin

    2013-01-01

    Highlights: ► Free convection in a refrigerator is simulated including radiation effects. ► Heat rates are affected drastically when radiation effects are considered. ► 95% of the flow energy can be represented by using one spatial POD mode. - Abstract: Considering the engineering problem of natural convection in domestic refrigerator applications, this study aims to simulate the fluid flow and temperature distribution in a single commercial refrigerator compartment by using the experimentally determined temperature values as the specified constant wall temperature boundary conditions. The free convection in refrigerator applications is evaluated as a three-dimensional (3D), turbulent, transient and coupled non-linear flow problem. Radiation heat transfer mode is also included in the analysis. According to the results, taking radiation effects into consideration does not change the temperature distribution inside the refrigerator significantly; however the heat rates are affected drastically. The flow inside the compartment is further analyzed with a reduced order modeling method called Proper Orthogonal Decomposition (POD) and the energy contents of several spatial and temporal modes that exist in the flow are examined. The results show that approximately 95% of all the flow energy can be represented by only using one spatial mode

  14. Genomic prediction in a nuclear population of layers using single-step models.

    Science.gov (United States)

    Yan, Yiyuan; Wu, Guiqin; Liu, Aiqiao; Sun, Congjiao; Han, Wenpeng; Li, Guangqi; Yang, Ning

    2018-02-01

    Single-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip. Four traits were analyzed, i.e., body weight at 28 wk (BW28), egg weight at 28 wk (EW28), laying rate at 38 wk (LR38), and Haugh unit at 36 wk (HU36). In predicting offsprings, individuals from generation 1 to 3 were used as training data and females from generation 4 were used as validation set. The accuracies of predicted breeding values by pedigree BLUP (PBLUP), genomic BLUP (GBLUP), SSGBLUP and single-step blending (SSBlending) were compared for both genotyped and ungenotyped individuals. For genotyped females, GBLUP performed no better than PBLUP because of the small size of training data, while the 2 single-step models predicted more accurately than the PBLUP model. The average predictive ability of SSGBLUP and SSBlending were 16.0% and 10.8% higher than the PBLUP model across traits, respectively. Furthermore, the predictive abilities for ungenotyped individuals were also enhanced. The average improvements of prediction abilities were 5.9% and 1.5% for SSGBLUP and SSBlending model, respectively. It was concluded that single-step models, especially the SSGBLUP model, can yield more accurate prediction of genetic merits and are preferable for practical implementation of genomic selection in layers. © 2017 Poultry Science Association Inc.

  15. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  16. An optical channel modeling of a single mode fiber

    Science.gov (United States)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  17. Relay model for recruiting alcohol dependent patients in general hospitals--a single-blind pragmatic randomized trial

    DEFF Research Database (Denmark)

    Schwarz, Anne-Sophie; Bilberg, Randi; Bjerregaard, Lene Berit Skov

    2016-01-01

    - The Relay Model. METHOD/DESIGN: The study is a single-blind pragmatic randomized controlled trial including patients admitted to the hospital. The study group (n = 500) will receive an intervention, and the control group (n = 500) will be referred to treatment by usual procedures. All patients complete......://register.clinicaltrials.gov/by identifier: RESCueH_Relay NCT02188043 Project Relay Model for Recruiting Alcohol Dependent Patients in General Hospitals (TRN Registration: 07/09/2014)....

  18. A single quark effective potential model

    International Nuclear Information System (INIS)

    Bodmann, B.E.J.; Vasconcellos, C.A.Z.

    1994-01-01

    In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)

  19. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  20. Single-Index Additive Vector Autoregressive Time Series Models

    KAUST Repository

    LI, YEHUA; GENTON, MARC G.

    2009-01-01

    We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided

  1. SPICE Modeling of Single-Grain Si TFTs using BSIMSOI

    NARCIS (Netherlands)

    Baiano, A.; Ishihara, R.; Saputra, N.; Long, J.; Karaki, N.; Inoue, S.; Metselaar, W.; Beenakker, C.I.M.

    2007-01-01

    Single Grain Thin-film transistors (SG-TFTs) fabricated inside a location-controlled grain by µ-Czochralski process have as high as SOI performance. To model them, BSIMSOI with a proper modification of the mobility is proposed. The model has been verified for n- and p-channel DC and low frequency AC

  2. Modelling a single phase voltage controlled rectifier using Laplace transforms

    Science.gov (United States)

    Kraft, L. Alan; Kankam, M. David

    1992-01-01

    The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.

  3. A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models

    Science.gov (United States)

    Holsman, Kirstin K.; Ianelli, James; Aydin, Kerim; Punt, André E.; Moffitt, Elizabeth A.

    2016-12-01

    Multi-species statistical catch at age models (MSCAA) can quantify interacting effects of climate and fisheries harvest on species populations, and evaluate management trade-offs for fisheries that target several species in a food web. We modified an existing MSCAA model to include temperature-specific growth and predation rates and applied the modified model to three fish species, walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias), from the eastern Bering Sea (USA). We fit the model to data from 1979 through 2012, with and without trophic interactions and temperature effects, and use projections to derive single- and multi-species biological reference points (BRP and MBRP, respectively) for fisheries management. The multi-species model achieved a higher over-all goodness of fit to the data (i.e. lower negative log-likelihood) for pollock and Pacific cod. Variability from water temperature typically resulted in 5-15% changes in spawning, survey, and total biomasses, but did not strongly impact recruitment estimates or mortality. Despite this, inclusion of temperature in projections did have a strong effect on BRPs, including recommended yield, which were higher in single-species models for Pacific cod and arrowtooth flounder that included temperature compared to the same models without temperature effects. While the temperature-driven multi-species model resulted in higher yield MBPRs for arrowtooth flounder than the same model without temperature, we did not observe the same patterns in multi-species models for pollock and Pacific cod, where variability between harvest scenarios and predation greatly exceeded temperature-driven variability in yield MBRPs. Annual predation on juvenile pollock (primarily cannibalism) in the multi-species model was 2-5 times the annual harvest of adult fish in the system, thus predation represents a strong control on population dynamics that exceeds temperature

  4. Business models for full service energy renovation of single-family houses in Nordic countries

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif; Haavik, Trond; Aabrekk, Synnøve; Svendsen, Svend; Vanhoutteghem, Lies; Paiho, Satu; Ala-Juusela, Mia

    2013-01-01

    Highlights: ► In the Nordic countries there is significant primary energy saving potential in single-family houses from 1970s. ► There are several behavioral, economical and market related hindrances to adoption of energy efficiency measures. ► One-stop-shop business models to offer full service energy renovation packages are slowly emerging. ► Marketing strategies and policy measures are required to promote full service energy renovation of single-family house. - Abstract: In Nordic countries significant primary energy saving potential exists in houses built before 1980. These old houses need to be renovated, which provides an opportunity for implementation of energy efficiency measures. However, there are several economic and market hindrances and the renovation markets are dominated by handicraft-based individual solutions. In this paper we have analyzed the opportunities for implementation of one-stop-shop business models where an overall contractor offers full-service renovation packages including consulting, independent energy audit, renovation work, follow-up (independent quality control and commissioning) and financing. A comparative assessment of emerging business models in the Nordic countries shows that different types of actors can provide such a service. Financing is included in some models. There are differences in how customers are contacted, while the similarities are on how the service is provided. Even though there is strong business potential for one-stop-shop energy renovation concept, still it has been somewhat difficult to start or run such a business. Various options to overcome the hindrances to promote energy efficient renovation of detached houses are discussed

  5. Incorporating single-side sparing in models for predicting parotid dose sparing in head and neck IMRT

    International Nuclear Information System (INIS)

    Yuan, Lulin; Wu, Q. Jackie; Yin, Fang-Fang; Yoo, David; Jiang, Yuliang; Ge, Yaorong

    2014-01-01

    Purpose: Sparing of single-side parotid gland is a common practice in head-and-neck (HN) intensity modulated radiation therapy (IMRT) planning. It is a special case of dose sparing tradeoff between different organs-at-risk. The authors describe an improved mathematical model for predicting achievable dose sparing in parotid glands in HN IMRT planning that incorporates single-side sparing considerations based on patient anatomy and learning from prior plan data. Methods: Among 68 HN cases analyzed retrospectively, 35 cases had physician prescribed single-side parotid sparing preferences. The single-side sparing model was trained with cases which had single-side sparing preferences, while the standard model was trained with the remainder of cases. A receiver operating characteristics (ROC) analysis was performed to determine the best criterion that separates the two case groups using the physician's single-side sparing prescription as ground truth. The final predictive model (combined model) takes into account the single-side sparing by switching between the standard and single-side sparing models according to the single-side sparing criterion. The models were tested with 20 additional cases. The significance of the improvement of prediction accuracy by the combined model over the standard model was evaluated using the Wilcoxon rank-sum test. Results: Using the ROC analysis, the best single-side sparing criterion is (1) the predicted median dose of one parotid is higher than 24 Gy; and (2) that of the other is higher than 7 Gy. This criterion gives a true positive rate of 0.82 and a false positive rate of 0.19, respectively. For the bilateral sparing cases, the combined and the standard models performed equally well, with the median of the prediction errors for parotid median dose being 0.34 Gy by both models (p = 0.81). For the single-side sparing cases, the standard model overestimates the median dose by 7.8 Gy on average, while the predictions by the combined

  6. BALANCED SCORECARDS EVALUATION MODEL THAT INCLUDES ELEMENTS OF ENVIRONMENTAL MANAGEMENT SYSTEM USING AHP MODEL

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2010-03-01

    Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.

  7. Double-gate junctionless transistor model including short-channel effects

    International Nuclear Information System (INIS)

    Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A

    2015-01-01

    This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)

  8. Model for safety reports including descriptive examples

    International Nuclear Information System (INIS)

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  9. Modelling of Vortex-Induced Loading on a Single-Blade Installation Setup

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Heinz, Joachim Christian

    2016-01-01

    the same procedure. The reference time series were significantly different, depending on the inflow angle. This made the modelling of all the time series with a single and relatively simple engineering model challenging. In order to find model parameters, optimizations were carried out, based on the root-mean-square......Vortex-induced integral loading fluctuations on a single suspended blade at various inflow angles were modeled in the presents work by means of stochastic modelling methods. The reference time series were obtained by 3D DES CFD computations carried out on the DTU 10MW reference wind turbine blade...... varied depending on the inflow angle. None the less, the modelled and reference time series showed a satisfactory general agreement in terms of their visual and frequency characteristics. This indicated that the proposed method is suitable to model loading fluctuations on suspended blades....

  10. Modelling a linear PM motor including magnetic saturation

    NARCIS (Netherlands)

    Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.

    2002-01-01

    The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important

  11. Modeling single cell antibody excretion on a biosensor

    NARCIS (Netherlands)

    Stojanovic, Ivan; Baumgartner, W.; van der Velden, T.J.G.; Terstappen, Leonardus Wendelinus Mathias Marie; Schasfoort, Richardus B.M.

    2016-01-01

    We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed

  12. Multi products single machine economic production quantity model with multiple batch size

    Directory of Open Access Journals (Sweden)

    Ata Allah Taleizadeh

    2011-04-01

    Full Text Available In this paper, a multi products single machine economic order quantity model with discrete delivery is developed. A unique cycle length is considered for all produced items with an assumption that all products are manufactured on a single machine with a limited capacity. The proposed model considers different items such as production, setup, holding, and transportation costs. The resulted model is formulated as a mixed integer nonlinear programming model. Harmony search algorithm, extended cutting plane and particle swarm optimization methods are used to solve the proposed model. Two numerical examples are used to analyze and to evaluate the performance of the proposed model.

  13. A single model procedure for tank calibration function estimation

    International Nuclear Information System (INIS)

    York, J.C.; Liebetrau, A.M.

    1995-01-01

    Reliable tank calibrations are a vital component of any measurement control and accountability program for bulk materials in a nuclear reprocessing facility. Tank volume calibration functions used in nuclear materials safeguards and accountability programs are typically constructed from several segments, each of which is estimated independently. Ideally, the segments correspond to structural features in the tank. In this paper the authors use an extension of the Thomas-Liebetrau model to estimate the entire calibration function in a single step. This procedure automatically takes significant run-to-run differences into account and yields an estimate of the entire calibration function in one operation. As with other procedures, the first step is to define suitable calibration segments. Next, a polynomial of low degree is specified for each segment. In contrast with the conventional practice of constructing a separate model for each segment, this information is used to set up the design matrix for a single model that encompasses all of the calibration data. Estimation of the model parameters is then done using conventional statistical methods. The method described here has several advantages over traditional methods. First, modeled run-to-run differences can be taken into account automatically at the estimation step. Second, no interpolation is required between successive segments. Third, variance estimates are based on all the data, rather than that from a single segment, with the result that discontinuities in confidence intervals at segment boundaries are eliminated. Fourth, the restrictive assumption of the Thomas-Liebetrau method, that the measured volumes be the same for all runs, is not required. Finally, the proposed methods are readily implemented using standard statistical procedures and widely-used software packages

  14. Protein single-model quality assessment by feature-based probability density functions.

    Science.gov (United States)

    Cao, Renzhi; Cheng, Jianlin

    2016-04-04

    Protein quality assessment (QA) has played an important role in protein structure prediction. We developed a novel single-model quality assessment method-Qprob. Qprob calculates the absolute error for each protein feature value against the true quality scores (i.e. GDT-TS scores) of protein structural models, and uses them to estimate its probability density distribution for quality assessment. Qprob has been blindly tested on the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-NOVEL server. The official CASP result shows that Qprob ranks as one of the top single-model QA methods. In addition, Qprob makes contributions to our protein tertiary structure predictor MULTICOM, which is officially ranked 3rd out of 143 predictors. The good performance shows that Qprob is good at assessing the quality of models of hard targets. These results demonstrate that this new probability density distribution based method is effective for protein single-model quality assessment and is useful for protein structure prediction. The webserver of Qprob is available at: http://calla.rnet.missouri.edu/qprob/. The software is now freely available in the web server of Qprob.

  15. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  16. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  17. Modeling and optimization of the single-leg multi-fare class ...

    African Journals Online (AJOL)

    This paper presents a static overbooking model for a single-leg multi-fare class flight. A realistic distribution of no-show data in modeling the cost function was considered using data collected from the Ethiopian airlines. The overbooking model developed considers the interaction (i.e. the transfer of an extra passenger in a ...

  18. Single pion production in neutrino-nucleon interactions

    Science.gov (United States)

    Kabirnezhad, M.

    2018-01-01

    This work represents an extension of the single pion production model proposed by Rein [Z. Phys. C 35, 43 (1987)., 10.1007/BF01561054]. The model consists of resonant pion production and nonresonant background contributions coming from three Born diagrams in the helicity basis. The new work includes lepton mass effects, and nonresonance interaction is described by five diagrams based on a nonlinear σ model. This work provides a full kinematic description of single pion production in the neutrino-nucleon interactions, including resonant and nonresonant interactions in the helicity basis, in order to study the interference effect.

  19. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  20. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  1. Semiclassical model for single-particle transitions in nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Milek, B.; Joint Inst. for Nuclear Research, Dubna; Technische Univ., Dresden; Reif, R.; Pham Khan Van; Revai, J.

    1990-04-01

    A previously elaborated semiclassical one-body model for the dynamics of a single particle, moving in two potentials, in heavy-ion reactions or in fissioning systems has been extended with respect to the inclusion of angular momenta and more realistic separable potentials. The collective relative motion is assumed to proceed along a trajectory which is calculated from classical equations of motion including conservative and phenomenological friction forces. The formalism has been derived involving three-dimensional trajectories for symmetric as well as for asymmetric nucleus-nucleus systems. The model allows for the calculation of correct quantum mechanical transition amplitudes to final bound and continuum states. It has been applied for the investigation of the excitation of a neutron during a fission process, covering also non-statistical differential emission probabilities. From the numerical calculations, using parameters adapted to 252 Cf(sf), one can conclude that in the underlying model without 'sudden' processes the energy spectrum consists of two parts. The low lying component is created in the neck region while a high lying part seems to be governed mainly by the dynamics of the underlying collective motion rather than by the specific initial conditions. (orig.)

  2. A transient single particle model under FCI conditions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; SHANG Zhi; XU Ji-Jun

    2005-01-01

    The paper is focused on the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Based on the continuity, momentum and energy equations of the vapor film, a transient two-dimensional single particle model has been established. This paper contains a detailed description of HPMC (High-temperature Particle Moving in Coolant) model for studying some aspects of the premixing stage of fuel-coolant interactions (FCIs). The transient process of high-temperature particles moving in coolant can be simulated. Comparisons between the experiment results and the calculations using HPMC model demonstrate that HPMC model achieves a good agreement in predicting the time-varying characteristic of high-temperature spheres moving in coolant.

  3. A toy model for single field open inflation

    International Nuclear Information System (INIS)

    Vaudrevange, Pascal M.; Westphal, Alexander

    2012-05-01

    Inflation in an open universe produced by Coleman-De Luccia (CDL) tunneling induces a friction term that is strong enough to allow for successful small-field inflation in models that would otherwise suffer from a severe overshoot problem. In this paper, we present a polynomial scalar potential which allows for a full analysis. This provides a simple model of single-field open inflation on a small-field inflection point after tunneling. We present numerical results and compare them with analytic approximations.

  4. Robust model-based analysis of single-particle tracking experiments with Spot-On

    Science.gov (United States)

    Grimm, Jonathan B; Lavis, Luke D

    2018-01-01

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163

  5. Study of a diffusion flamelet model, with preferential diffusion effects included

    NARCIS (Netherlands)

    Delhaye, S.; Somers, L.M.T.; Bongers, H.; Oijen, van J.A.; Goey, de L.P.H.; Dias, V.

    2005-01-01

    The non-premixed flamelet model of Peters [1] (model1), which does not include preferential diffusion effects is investigated. Two similar models are presented, but without the assumption of unity Lewis numbers. One of these models was derived by Peters & Pitsch [2] (model2), while the other one was

  6. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  7. Single, Integrated, Service-Centric Model of Military Health System Governance

    Science.gov (United States)

    of the research is to establish what the model of governance of the Military Health System should be. That, with other recommendations, should be the...foundation for the impending transformation. The research found that the model of governance should be a single service model with regional health...commands that support the geographic combatant commander (GCC). With an organization based on the presented model of governance , the Military Health

  8. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  9. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  10. Exclusive queueing model including the choice of service windows

    Science.gov (United States)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  11. Single-Index Additive Vector Autoregressive Time Series Models

    KAUST Repository

    LI, YEHUA

    2009-09-01

    We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.

  12. Time domain system identification of longitudinal dynamics of single rotor model helicopter using sidpac

    International Nuclear Information System (INIS)

    Khaizer, A.N.; Hussain, I.

    2015-01-01

    This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft) toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach. (author)

  13. A stochastic model for magnetic dynamics in single-molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, R., E-mail: rlruiz@ifi.unicamp.br [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Almeida, P.T. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Vaz, M.G.F. [Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói (RJ) (Brazil); Novak, M.A. [Instituto de Física - Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (RJ) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)

    2016-04-01

    Hysteresis and magnetic relaxation curves were performed on double well potential systems with quantum tunneling possibility via stochastic simulations. Simulation results are compared with experimental ones using the Mn{sub 12} single-molecule magnet, allowing us to introduce time dependence in the model. Despite being a simple simulation model, it adequately reproduces the phenomenology of a thermally activated quantum tunneling and can be extended to other systems with different parameters. Assuming competition between the reversal modes, thermal (over) and tunneling (across) the anisotropy barrier, a separation of classical and quantum contributions to relaxation time can be obtained. - Highlights: • Single-molecule magnets are modeled using a simple stochastic approach. • Simulation reproduces thermally-activated tunnelling magnetization reversal features. • The time is introduced in hysteresis and relaxation simulations. • We can separate the quantum and classical contributions to decay time.

  14. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    Science.gov (United States)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model

  15. DeepQA: Improving the estimation of single protein model quality with deep belief networks

    OpenAIRE

    Cao, Renzhi; Bhattacharya, Debswapna; Hou, Jie; Cheng, Jianlin

    2016-01-01

    Background Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. Results We introduce a novel single-model quality assessment method DeepQA based on deep belie...

  16. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2017-01-01

    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  17. Interpolation solution of the single-impurity Anderson model

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1990-10-01

    The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs

  18. TD-S-HF single determinantal reaction theory and the description of many-body processes, including fission

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.

    1979-01-01

    The restrictions implied for the time dependent many-body reaction theory by the (TDHF) single determinantal assumption are explored by constructive analysis. A restructured TD-S-HF reaction theory is modelled, not after the initial-value form of the Schroedinger reaction theory, but after the (fully equivalent) S-matrix form, under the conditions that only self-consistent TDHF solutions occur in the theory, every wave function obeys the fundamental statistical interpretation of quantum mechanics, and the theory reduces to the exact Schroedinger theory for exact solutions which are single determinantal. All of these conditions can be accomodated provided that the theory is interpreted on a time-averaged basis, i.e., physical constants of the Schroedinger theory which are time-dependent in the TDHF theory, are interpreted in TD-S-HF in terms of their time averaged values. The resulting reaction theory, although formulated heuristically, prescribes a well defined and unambiguous calculational program which, although somewhat more demanding technically than the conventional initial-value TDHF method, is nevertheless more consonant with first principles, structurally and mechanistically. For its physical predictions do not depend upon the precise location of the distant measuring apparatus, and are in no way influenced by the spurious cross channel correlations which arise whenever the description of many reaction channels is imposed upon one single-determinantal solution. For nuclear structure physics, the TDHF-eigenfunctions provide the first plausible description of exact eigenstates in the time-dependent framework; moreover, they are unencumbered by any restriction to small amplitudes. 14 references

  19. A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller

    International Nuclear Information System (INIS)

    Zinet, Matthieu; Rulliere, Romuald; Haberschill, Philippe

    2012-01-01

    Highlights: ► Dynamic simulation of a new recirculation single-effect H 2 O/LiBr absorption chiller is developed. ► The chiller is driven by two heat sources and exclusively cooled by the ambient air. ► Heat and mass transfer in the absorber and the desorber are described according to a detailed physical model. ► Analyse of the dynamic behaviour of the chiller after sudden changes in operation. - Abstract: A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film evaporator–absorber, uses mixed recirculation and is exclusively cooled by the ambient air. Heat and mass transfer in the evaporator–absorber and in the desorber are described according to a physical model for vapour absorption based on Nusselt’s film theory. The other heat exchangers are handled using a simplified approach based on the NTU-effectiveness method. The model is then used to analyze the chiller response to a step drop of the heat recovery circuit flow rate, and to a sudden reduction of the cooling need in the conditioned space. In the latter case, a basic temperature regulation system is simulated. In both simulations, the performance of the chiller is well represented and consistent with expectations.

  20. Effective single scattering albedo estimation using regional climate model

    CSIR Research Space (South Africa)

    Tesfaye, M

    2011-09-01

    Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...

  1. Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)

    Science.gov (United States)

    Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.

    2015-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research

  2. Structural Model for Antisocial Behavior: Generalization to Single-Mother Families.

    Science.gov (United States)

    Baldwin, David V.; Skinner, Martie L.

    1989-01-01

    The purpose of this study was to replicate the "basic training" structural model in Patterson's (1982) coercion theory, extending its scope to single-mother families with younger (six- to eight-year-old) boys. Significance of the successful replication was seen to lie in implications for the generalizability of the model across family…

  3. Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?

    Science.gov (United States)

    Turner, Joseph A.; Babcock, Russell C.; Hovey, Renae; Kendrick, Gary A.

    2018-05-01

    Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8-1). Total agreement between classifiers was high at the broadest level of classification (75-80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19-45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers.

  4. A Forward Dynamic Modelling Investigation of Cause-and-Effect Relationships in Single Support Phase of Human Walking

    Directory of Open Access Journals (Sweden)

    Michael McGrath

    2015-01-01

    Full Text Available Mathematical gait models often fall into one of two categories: simple and complex. There is a large leap in complexity between model types, meaning the effects of individual gait mechanisms get overlooked. This study investigated the cause-and-effect relationships between gait mechanisms and resulting kinematics and kinetics, using a sequence of mathematical models of increasing complexity. The focus was on sagittal plane and single support only. Starting with an inverted pendulum (IP, extended to include a HAT (head-arms-trunk segment and an actuated hip moment, further complexities were added one-by-one. These were a knee joint, an ankle joint with a static foot, heel rise, and finally a swing leg. The presence of a knee joint and an ankle moment (during foot flat were shown to largely influence the initial peak in the vertical GRF curve. The second peak in this curve was achieved through a combination of heel rise and the presence of a swing leg. Heel rise was also shown to reduce errors in the horizontal GRF prediction in the second half of single support. The swing leg is important for centre-of-mass (CM deceleration in late single support. These findings provide evidence for the specific effects of each gait mechanism.

  5. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.

    Science.gov (United States)

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound.

  6. Modeling decision-making in single- and multi-modal medical images

    Science.gov (United States)

    Canosa, R. L.; Baum, K. G.

    2009-02-01

    This research introduces a mode-specific model of visual saliency that can be used to highlight likely lesion locations and potential errors (false positives and false negatives) in single-mode PET and MRI images and multi-modal fused PET/MRI images. Fused-modality digital images are a relatively recent technological improvement in medical imaging; therefore, a novel component of this research is to characterize the perceptual response to these fused images. Three different fusion techniques were compared to single-mode displays in terms of observer error rates using synthetic human brain images generated from an anthropomorphic phantom. An eye-tracking experiment was performed with naÃve (non-radiologist) observers who viewed the single- and multi-modal images. The eye-tracking data allowed the errors to be classified into four categories: false positives, search errors (false negatives never fixated), recognition errors (false negatives fixated less than 350 milliseconds), and decision errors (false negatives fixated greater than 350 milliseconds). A saliency model consisting of a set of differentially weighted low-level feature maps is derived from the known error and ground truth locations extracted from a subset of the test images for each modality. The saliency model shows that lesion and error locations attract visual attention according to low-level image features such as color, luminance, and texture.

  7. Connecting single-stock assessment models through correlated survival

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard; Nielsen, Anders; Thygesen, Uffe Høgsbro

    2017-01-01

    times. We propose a simple alternative. In three case studies each with two stocks, we improve the single-stock models, as measured by Akaike information criterion, by adding correlation in the cohort survival. To limit the number of parameters, the correlations are parameterized through...... the corresponding partial correlations. We consider six models where the partial correlation matrix between stocks follows a band structure ranging from independent assessments to complex correlation structures. Further, a simulation study illustrates the importance of handling correlated data sufficiently...... by investigating the coverage of confidence intervals for estimated fishing mortality. The results presented will allow managers to evaluate stock statuses based on a more accurate evaluation of model output uncertainty. The methods are directly implementable for stocks with an analytical assessment and do...

  8. Modeling Rabbit Responses to Single and Multiple Aerosol ...

    Science.gov (United States)

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  9. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  10. Modeling the dynamics of single-bubble sonoluminescence

    International Nuclear Information System (INIS)

    Vignoli, Lucas L; De Barros, Ana L F; Thomé, Roberto C A; Nogueira, A L M A; Paschoal, Ricardo C; Rodrigues, Hilário

    2013-01-01

    Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of one bubble or many bubbles of gas inside a liquid medium, giving rise to the terms single-bubble and multi-bubble sonoluminescence (SBSL and MBSL). In recent years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light-emission mechanism (especially in the case of SBSL). In this paper, we do not address this more complicated specific issue, but only present a simple model describing the dynamical behavior of the sonoluminescent bubble in the SBSL case. Using simple numerical techniques within the Matlab software package, we discuss solutions that consider various possibilities for some of the parameters involved: liquid compressibility, surface tension, viscosity and type of gas. The model may be used for an introductory study of SL on undergraduate or graduate physics courses, and as a clarifying example of a physical system exhibiting large nonlinearity. (paper)

  11. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.

    2002-01-01

    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  12. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    Science.gov (United States)

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  13. RELAP5-3D Code Includes ATHENA Features and Models

    International Nuclear Information System (INIS)

    Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.

    2006-01-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF 6 , xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)

  14. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    NARCIS (Netherlands)

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.

    2013-01-01

    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  15. Finite state projection based bounds to compare chemical master equation models using single-cell data

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  16. Emission-line diagnostics of nearby H II regions including interacting binary populations

    Science.gov (United States)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  17. Mechanistic modelling of the drying behaviour of single pharmaceutical granules

    DEFF Research Database (Denmark)

    Thérèse F.C. Mortier, Séverine; Beer, Thomas De; Gernaey, Krist

    2012-01-01

    The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six...... phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, b. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance...

  18. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    Science.gov (United States)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  19. Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies.

    Science.gov (United States)

    McManus, I C; Davison, Angus; Armour, John A L

    2013-06-01

    Right- and left-handedness run in families, show greater concordance in monozygotic than dizygotic twins, and are well described by single-locus Mendelian models. Here we summarize a large genome-wide association study (GWAS) that finds no significant associations with handedness and is consistent with a meta-analysis of GWASs. The GWAS had 99% power to detect a single locus using the conventional criterion of P < 5 × 10(-8) for the single locus models of McManus and Annett. The strong conclusion is that handedness is not controlled by a single genetic locus. A consideration of the genetic architecture of height, primary ciliary dyskinesia, and intelligence suggests that handedness inheritance can be explained by a multilocus variant of the McManus DC model, classical effects on family and twins being barely distinguishable from the single locus model. Based on the ENGAGE meta-analysis of GWASs, we estimate at least 40 loci are involved in determining handedness. © 2013 New York Academy of Sciences.

  20. APOLLO: a quality assessment service for single and multiple protein models.

    Science.gov (United States)

    Wang, Zheng; Eickholt, Jesse; Cheng, Jianlin

    2011-06-15

    We built a web server named APOLLO, which can evaluate the absolute global and local qualities of a single protein model using machine learning methods or the global and local qualities of a pool of models using a pair-wise comparison approach. Based on our evaluations on 107 CASP9 (Critical Assessment of Techniques for Protein Structure Prediction) targets, the predicted quality scores generated from our machine learning and pair-wise methods have an average per-target correlation of 0.671 and 0.917, respectively, with the true model quality scores. Based on our test on 92 CASP9 targets, our predicted absolute local qualities have an average difference of 2.60 Å with the actual distances to native structure. http://sysbio.rnet.missouri.edu/apollo/. Single and pair-wise global quality assessment software is also available at the site.

  1. Performance analysis and dynamic modeling of a single-spool turbojet engine

    Science.gov (United States)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  2. A discrete dislocation–transformation model for austenitic single crystals

    International Nuclear Information System (INIS)

    Shi, J; Turteltaub, S; Remmers, J J C; Van der Giessen, E

    2008-01-01

    A discrete model for analyzing the interaction between plastic flow and martensitic phase transformations is developed. The model is intended for simulating the microstructure evolution in a single crystal of austenite that transforms non-homogeneously into martensite. The plastic flow in the untransformed austenite is simulated using a plane-strain discrete dislocation model. The phase transformation is modeled via the nucleation and growth of discrete martensitic regions embedded in the austenitic single crystal. At each instant during loading, the coupled elasto-plasto-transformation problem is solved using the superposition of analytical solutions for the discrete dislocations and discrete transformation regions embedded in an infinite homogeneous medium and the numerical solution of a complementary problem used to enforce the actual boundary conditions and the heterogeneities in the medium. In order to describe the nucleation and growth of martensitic regions, a nucleation criterion and a kinetic law suitable for discrete regions are specified. The constitutive rules used in discrete dislocation simulations are supplemented with additional evolution rules to account for the phase transformation. To illustrate the basic features of the model, simulations of specimens under plane-strain uniaxial extension and contraction are analyzed. The simulations indicate that plastic flow reduces the average stress at which transformation begins, but it also reduces the transformation rate when compared with benchmark simulations without plasticity. Furthermore, due to local stress fluctuations caused by dislocations, martensitic systems can be activated even though transformation would not appear to be favorable based on the average stress. Conversely, the simulations indicate that the plastic hardening behavior is influenced by the reduction in the effective austenitic grain size due to the evolution of transformation. During cyclic simulations, the coupled plasticity

  3. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  4. Reliability–based economic model predictive control for generalised flow–based networks including actuators’ health–aware capabilities

    Directory of Open Access Journals (Sweden)

    Grosso Juan M.

    2016-09-01

    Full Text Available This paper proposes a reliability-based economic model predictive control (MPC strategy for the management of generalised flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamical allocation of safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the case study considered.

  5. Stochastic models for spike trains of single neurons

    CERN Document Server

    Sampath, G

    1977-01-01

    1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic de...

  6. Collisional-radiative model including recombination processes for W27+ ion★

    Science.gov (United States)

    Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro

    2017-10-01

    We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  7. Is the mental wellbeing of young Australians best represented by a single, multidimensional or bifactor model?

    Science.gov (United States)

    Hides, Leanne; Quinn, Catherine; Stoyanov, Stoyan; Cockshaw, Wendell; Mitchell, Tegan; Kavanagh, David J

    2016-07-30

    Internationally there is a growing interest in the mental wellbeing of young people. However, it is unclear whether mental wellbeing is best conceptualized as a general wellbeing factor or a multidimensional construct. This paper investigated whether mental wellbeing, measured by the Mental Health Continuum-Short Form (MHC-SF), is best represented by: (1) a single-factor general model; (2) a three-factor multidimensional model or (3) a combination of both (bifactor model). 2220 young Australians aged between 16 and 25 years completed an online survey including the MHC-SF and a range of other wellbeing and mental ill-health measures. Exploratory factor analysis supported a bifactor solution, comprised of a general wellbeing factor, and specific group factors of psychological, social and emotional wellbeing. Confirmatory factor analysis indicated that the bifactor model had a better fit than competing single and three-factor models. The MHC-SF total score was more strongly associated with other wellbeing and mental ill-health measures than the social, emotional or psychological subscale scores. Findings indicate that the mental wellbeing of young people is best conceptualized as an overarching latent construct (general wellbeing) to which emotional, social and psychological domains contribute. The MHC-SF total score is a valid and reliable measure of this general wellbeing factor. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Modeling of 1-D nitrate transport in single layer soils | Dike | Journal ...

    African Journals Online (AJOL)

    The transport of nitrate in laboratory single soil columns of sand, laterite and clay were investigated after 21 days. The 1-D contaminant transport model by Notodarmojo et al (1991) for single layer soils were calibrated and verified using field data collected from a refuse dump site at avu, owerri, Imo state. The experimental ...

  9. Theoretical performance model for single image depth from defocus.

    Science.gov (United States)

    Trouvé-Peloux, Pauline; Champagnat, Frédéric; Le Besnerais, Guy; Idier, Jérôme

    2014-12-01

    In this paper we present a performance model for depth estimation using single image depth from defocus (SIDFD). Our model is based on an original expression of the Cramér-Rao bound (CRB) in this context. We show that this model is consistent with the expected behavior of SIDFD. We then study the influence on the performance of the optical parameters of a conventional camera such as the focal length, the aperture, and the position of the in-focus plane (IFP). We derive an approximate analytical expression of the CRB away from the IFP, and we propose an interpretation of the SIDFD performance in this domain. Finally, we illustrate the predictive capacity of our performance model on experimental data comparing several settings of a consumer camera.

  10. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    KAUST Repository

    Li, Jun

    2013-09-01

    We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.

  11. Protein structural model selection by combining consensus and single scoring methods.

    Directory of Open Access Journals (Sweden)

    Zhiquan He

    Full Text Available Quality assessment (QA for predicted protein structural models is an important and challenging research problem in protein structure prediction. Consensus Global Distance Test (CGDT methods assess each decoy (predicted structural model based on its structural similarity to all others in a decoy set and has been proved to work well when good decoys are in a majority cluster. Scoring functions evaluate each single decoy based on its structural properties. Both methods have their merits and limitations. In this paper, we present a novel method called PWCom, which consists of two neural networks sequentially to combine CGDT and single model scoring methods such as RW, DDFire and OPUS-Ca. Specifically, for every pair of decoys, the difference of the corresponding feature vectors is input to the first neural network which enables one to predict whether the decoy-pair are significantly different in terms of their GDT scores to the native. If yes, the second neural network is used to decide which one of the two is closer to the native structure. The quality score for each decoy in the pool is based on the number of winning times during the pairwise comparisons. Test results on three benchmark datasets from different model generation methods showed that PWCom significantly improves over consensus GDT and single scoring methods. The QA server (MUFOLD-Server applying this method in CASP 10 QA category was ranked the second place in terms of Pearson and Spearman correlation performance.

  12. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the proposed approach, all switching states are tested in each switching period to achieve the control objectives. However, since the number of the switching states in single-phase inverter...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  13. Thermal asymmetry model of single slope single basin solar still with sponge liner

    Directory of Open Access Journals (Sweden)

    Shanmugan Sengottain

    2014-01-01

    Full Text Available An attempt has been made to propose a thermal asymmetry model for single slope basin type solar still with sponge liner of different thickness (3cm, 5cm, and 10cm in the basin. Two different color sponge liners have been used i.e., yellow and black. In the proposed design, a suitable dripping arrangement has been designed and used to pour water drop by drop over the sponge liner instead of sponge liner in stagnant saline water in the basin. The special arrangement overcomes the dryness of the sponge during peak sunny hours. The performance of the system with black color sponge of 3cm thickness shows better result with an output of 5.3 kg/m2 day and the proposed model have used to find the thermal asymmetries during the working hours of the still.

  14. Magnetotransport in (Ga,Mn)As on the verge of the single domain model

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Christoph; Dreher, Lukas; Daeubler, Joachim; Donhauser, Daniela; Glunk, Michael; Schoch, Wladimir; Schwaiger, Stephan; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2009-07-01

    We investigate the limits of the single-domain model in (Ga,Mn)As by performing detailed angle- and field-dependent magnetotransport measurements in samples with differing magnetic anisotropies. For this purpose, a series of (Ga,Mn)As layers with Mn concentrations of {proportional_to}5% was grown by low-temperature molecular-beam epitaxy on relaxed (In,Ga)As/GaAs templates with different In-concentrations, realizing different strain conditions from compressive to tensile. In past investigations we have elucidated the strain dependence of the magnetic anisotropy and of the anisotropic magnetoresistance employing a single-domain model. In order to analyze the break-down of the single-domain model, we now study in detail magnetization reversal processes by sweeping an external magnetic field along selected axes. The magnetic-field sweeps are compared with a series of angle-dependent magnetotransport measurements, carried out at weak external magnetic fields.

  15. A continuum model for the anisotropic creep of single crystal nickel-based superalloys

    International Nuclear Information System (INIS)

    Prasad, Sharat C.; Rajagopal, K.R.; Rao, I.J.

    2006-01-01

    In this paper, we extend the constitutive theory developed by Prasad et al. [Prasad SC, Rao IJ, Rajagopal KR. A continuum model for the creep of single crystal nickel-base superalloys. Acta Mater 2005;53(3):669-79], to describe the creep anisotropy associated with crystallographic orientation in single crystal nickel-based superalloys. The constitutive theory is cast within a general thermodynamic framework that has been developed to describe the response of materials capable of existing in multiple stress free configurations ('natural configurations'). Central to the theory is the prescription of the forms for the stored energy and rate of dissipation functions. The stored energy reflects the fact that the elastic response exhibits cubic symmetry. The model takes into account the fact that the symmetry of single crystals does not change with inelastic deformation. The rate of dissipation function is also chosen to be anisotropic, in that it reflects invariance to transformations that belong to the cubic symmetry group. The model is used to simulate uniaxial creep of single crystal nickel-based superalloy CMSX-4 for loading along the , and orientations. The predictions of the theory agree well with the experimental data

  16. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections

    Science.gov (United States)

    Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang

    2016-04-01

    Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric

  17. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2018-01-01

    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  18. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    Science.gov (United States)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  19. Determination of particle-release conditions in microfiltration: A simple single-particle model tested on a model membrane

    NARCIS (Netherlands)

    Kuiper, S.; van Rijn, C.J.M.; Nijdam, W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2000-01-01

    A simple single-particle model was developed for cross-flow microfiltration with microsieves. The model describes the cross-flow conditions required to release a trapped spherical particle from a circular pore. All equations are derived in a fully analytical way without any fitting parameters. For

  20. New Physics in Single-Top Production

    CERN Document Server

    Kind, OM; The ATLAS collaboration

    2013-01-01

    In this presentation for TOP 2013 the latest results on searches of physics beyond the Standard Model using single-top signatures from CDF, CMS, D0 and ATLAS are collected. This includes searches for unknown resonances like W' or b*, measurements of the W helicity fractions and top polarisation in single-top events, as well as tests for CP violation, FCNC or anomalous weak couplings.

  1. Field Quality Study of a 1-m-Long Single-Aperture 11-T Nb$_3$Sn Dipole Model for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G. [Fermilab; DiMarco, J. [Fermilab; Andreev, N. [Fermilab; Apollinari, G. [Fermilab; Auchmann, B. [CERN; Barzi, E. [Fermilab; Bossert, R. [Fermilab; Fiscarelli, L. [CERN; Karppinen, M. [CERN; Nobrega, F. [Fermilab; Novitski, I. [Fermilab; Rossi, L. [CERN; Smekens, D. [CERN; Turrioni, D. [Fermilab; Velev, G. V. [Fermilab; Zlobin, A. V. [Fermilab

    2014-01-01

    FNAL and CERN are carrying out a joint R&D program with the goal of building a 5.5-m-long twin-aperture 11-T Nb_3Sn dipole prototype that is suitable for installation in the LHC. An important part of the program is the development and test of a series of short single-aperture and twin-aperture dipole models with a nominal field of 11 T at the LHC operation current of 11.85 kA and 20% margin. This paper presents the results of magnetic measurements of a 1-m-long single-aperture Nb_3Sn dipole model fabricated and tested recently at FNAL, including geometrical field harmonics and effects of coil magnetization and iron yoke saturation.

  2. Discrete dislocation plasticity modeling of short cracks in single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic

  3. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  4. Corpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons

    NARCIS (Netherlands)

    Jin, Fengping; Yuan, Shengjun; De Raedt, Hans; Michielsen, Kristel; Miyashita, Seiji

    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The

  5. Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory.

    Science.gov (United States)

    Zhang, Cen

    2016-04-22

    Single top production processes at hadron colliders provide information on the relation between the top quark and the electroweak sector of the standard model. We compute the next-to-leading order QCD corrections to the three main production channels: t-channel, s-channel, and tW associated production, in the standard model including operators up to dimension six. The calculation can be matched to parton shower programs and can therefore be directly used in experimental analyses. The QCD corrections are found to significantly impact the extraction of the current limits on the operators, because both of an improved accuracy and a better precision of the theoretical predictions. In addition, the distributions of some of the key discriminating observables are modified in a nontrivial way, which could change the interpretation of measurements in terms of UV complete models.

  6. Extending Primitive Spatial Data Models to Include Semantics

    Science.gov (United States)

    Reitsma, F.; Batcheller, J.

    2009-04-01

    Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.

  7. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi; Yu, Bo; Sun, Shuyu

    2017-01-01

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions

  8. The effects of video modeling in teaching functional living skills to persons with ASD: A meta-analysis of single-case studies.

    Science.gov (United States)

    Hong, Ee Rea; Ganz, Jennifer B; Mason, Rose; Morin, Kristi; Davis, John L; Ninci, Jennifer; Neely, Leslie C; Boles, Margot B; Gilliland, Whitney D

    2016-10-01

    Many individuals with autism spectrum disorders (ASD) show deficits in functional living skills, leading to low independence, limited community involvement, and poor quality of life. With development of mobile devices, utilizing video modeling has become more feasible for educators to promote functional living skills of individuals with ASD. This article aims to review the single-case experimental literature and aggregate results across studies involving the use of video modeling to improve functional living skills of individuals with ASD. The authors extracted data from single-case experimental studies and evaluated them using the Tau-U effect size measure. Effects were also differentiated by categories of potential moderators and other variables, including age of participants, concomitant diagnoses, types of video modeling, and outcome measures. Results indicate that video modeling interventions are overall moderately effective with this population and dependent measures. While significant differences were not found between categories of moderators and other variables, effects were found to be at least moderate for most of them. It is apparent that more single-case experiments are needed in this area, particularly with preschool and secondary-school aged participants, participants with ASD-only and those with high-functioning ASD, and for video modeling interventions addressing community access skills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.

    Directory of Open Access Journals (Sweden)

    Artémis Llamosi

    2016-02-01

    Full Text Available Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation. Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.

  10. [Compared Markov with fractal models by using single-channel experimental and simulation data].

    Science.gov (United States)

    Lan, Tonghan; Wu, Hongxiu; Lin, Jiarui

    2006-10-01

    The gating mechanical kinetical of ion channels has been modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and kinetic rate constants connecting these states are constant, the transition rate constants among the states is independent both of time and of the previous channel activity. It is assumed in Liebovitch's fractal model that the channel exists in an infinite number of energy states, consequently, transitions from one conductance state to another would be governed by a continuum of rate constants. In this paper, a statistical comparison is presented of Markov and fractal models of ion channel gating, the analysis is based on single-channel data from ion channel voltage-dependence K+ single channel of neuron cell and simulation data from three-states Markov model.

  11. Comparison on genomic predictions using GBLUP models and two single-step blending methods with different relationship matrices in the Nordic Holstein population

    DEFF Research Database (Denmark)

    Gao, Hongding; Christensen, Ole Fredslund; Madsen, Per

    2012-01-01

    Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may...... not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16......) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted...

  12. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.

    Science.gov (United States)

    Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire

    2017-11-01

    Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  13. Water surface modeling from a single viewpoint video.

    Science.gov (United States)

    Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip

    2013-07-01

    We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.

  14. Dynamic Human Body Modeling Using a Single RGB Camera.

    Science.gov (United States)

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  15. DeepQA: improving the estimation of single protein model quality with deep belief networks.

    Science.gov (United States)

    Cao, Renzhi; Bhattacharya, Debswapna; Hou, Jie; Cheng, Jianlin

    2016-12-05

    Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful deep learning tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/ .

  16. Single progenitor model for GW150914 and GW170104

    Science.gov (United States)

    D'Orazio, Daniel J.; Loeb, Abraham

    2018-04-01

    The merger of stellar-mass black holes (BHs) is not expected to generate detectable electromagnetic (EM) emission. However, the gravitational wave (GW) events GW150914 and GW170104, detected by the Laser Interferometer Gravitational Wave Observatory to be the result of merging, ˜60 M⊙ binary black holes (BBHs), each have claimed coincident gamma-ray emission. Motivated by the intriguing possibility of an EM counterpart to BBH mergers, we construct a model that can reproduce the observed EM and GW signals for GW150914- and GW170104-like events, from a single-star progenitor. Following Loeb [Astrophys. J. Lett. 819, L21 (2016), 10.3847/2041-8205/819/2/L21], we envision a massive, rapidly rotating star within which a rotating-bar instability fractures the core into two overdensities that fragment into clumps which merge to form BHs in a tight binary with arbitrary spin-orbit alignment. Once formed, the BBH inspirals due to gas and gravitational-wave drag until tidal forces trigger strong feeding of the BHs with the surrounding stellar-density gas about 10 sec before merger. The resulting giga-Eddington accretion peak launches a jet that breaks out of the progenitor star and drives a powerful outflow that clears the gas from the orbit of the binary within 1 sec, preserving the vacuum GW waveform in the Laser Interferometer Gravitational Wave Observatory band. The single-progenitor scenario predicts the existence of variability of the gamma-ray burst, modulated at the ˜0.2 sec chirping period of the BBH due to relativistic Doppler boost. The jet breakout should be accompanied by a low-luminosity supernova. Finally, because the BBHs of the single-progenitor model do not exist at large separations, they will not be detectable in the low-frequency gravitational-wave band of the Laser Interferometer Space Antenna. Hence, the single-progenitor BBHs will be unambiguously discernible from BBHs formed through alternate, double-progenitor evolution scenarios.

  17. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2006-03-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  18. A macroscopic model for magnetic shape-memory single crystals

    Czech Academy of Sciences Publication Activity Database

    Bessoud, A. L.; Kružík, Martin; Stefanelli, U.

    2013-01-01

    Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magnetostriction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-a macroscopic model for magnetic shape- memory single crystals.pdf

  19. FUNDAMENTAL ASPECTS OF EPISODIC ACCRETION CHEMISTRY EXPLORED WITH SINGLE-POINT MODELS

    International Nuclear Information System (INIS)

    Visser, Ruud; Bergin, Edwin A.

    2012-01-01

    We explore a set of single-point chemical models to study the fundamental chemical aspects of episodic accretion in low-mass embedded protostars. Our goal is twofold: (1) to understand how the repeated heating and cooling of the envelope affects the abundances of CO and related species; and (2) to identify chemical tracers that can be used as a novel probe of the timescales and other physical aspects of episodic accretion. We develop a set of single-point models that serve as a general prescription for how the chemical composition of a protostellar envelope is altered by episodic accretion. The main effect of each accretion burst is to drive CO ice off the grains in part of the envelope. The duration of the subsequent quiescent stage (before the next burst hits) is similar to or shorter than the freeze-out timescale of CO, allowing the chemical effects of a burst to linger long after the burst has ended. We predict that the resulting excess of gas-phase CO can be observed with single-dish or interferometer facilities as evidence of an accretion burst in the past 10 3 -10 4 yr.

  20. Modeling and analysis of energy quantization effects on single electron inverter performance

    Science.gov (United States)

    Dan, Surya Shankar; Mahapatra, Santanu

    2009-08-01

    In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.

  1. Limitations of Single Slice Dynamic Contrast Enhanced MR in Pharmacokinetic Modeling of Bone Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Toms, Andoni P. (Dept. of Radiology, The Norfolk and Norwich Univ. Hospital, Norwich, Norfolk (United Kingdom)); White, Lawrence M.; Bleakney, Robert R. (Dept. of Medical Imaging, Mount Sinai Hospital, Toronto, ON (Canada)); Kandel, Rita (Dept. of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON (Canada)); Noseworthy, Michael (Health Sciences Centre, Faculty of Health Sciences, McMaster Univ., Hamilton, ON (Canada)); Lee, Shepstone (Institute of Health, Univ. of East Anglia, Norwich, Norfolk (United Kingdom)); Blackstein, Martin E. (Dept. of Oncology, Mount Sinai Hospital, Toronto, ON (Canada)); Wunder, Jay (Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON (Canada))

    2009-06-15

    Background: Single slice dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) appears to provide perfusion data about sarcomas in vivo that correlate with tumor necrosis on equivalent pathological sections. However, sarcomas are heterogeneous and therefore single slice DCE-MRI may not correlate with total tumor necrosis. Purpose: To determine whether changes in pharmacokinetic modeling of DCE-MRI, during chemotherapy for primary bone sarcomas correlated with histological measures of total tumor necrosis. Material and Methods: Twelve patients with appendicular primary bone sarcomas were included in the study. Each patient had DCE-MRI before, and after completion, of pre-operative chemotherapy. The mean arterial slope (A), endothelial permeability coefficient (Ktrans), and extravascular extracellular volume (Ve) were derived from each data set using a modified two compartment pharmacokinetic model. Total tumor necrosis rates were compared with changes in A, Ktrans, and Ve. Results: Six patients had total tumor necrosis of =90% and six had a measure of <90%. The median percentage changes in A, Ktrans, and Ve for the =90% necrosis group were -52.5% (-83 to 6), -66% (-82 to 26), and 23.5% (-26 to 40), respectively. For the <90% necrosis group, A = - 35% (-75 to 132), Ktrans= - 53 (-66 to 149) and Ve= - 14.5% (-42 to 40). One patient with >90% necrosis had increases in all three measures. Comparison of the two groups generated P-values of 0.699 for A, 0.18 for Ktrans, and 0.31 for Ve. Conclusion: There was no statistically significant correlation between changes in pharmacokinetic perfusion parameters and total tumor necrosis. When using single slice DCE-MRI heterogeneous histology of primary bone sarcomas and repair mediated angiogenesis might both be confounding factors

  2. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.

    Science.gov (United States)

    Sun, Zhe; Wang, Ting; Deng, Ke; Wang, Xiao-Feng; Lafyatis, Robert; Ding, Ying; Hu, Ming; Chen, Wei

    2018-01-01

    Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study cellular and molecular processes at single cell resolution. Among existing technologies, the recently developed droplet-based platform enables efficient parallel processing of thousands of single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). Despite the technology advances, statistical methods and computational tools are still lacking for analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering large-scale single cell transcriptomic data are still under-explored. We developed DIMM-SC, a Dirichlet Mixture Model for clustering droplet-based Single Cell transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq experiments and characterizes variations across different cell clusters via a Dirichlet mixture prior. We performed comprehensive simulations to evaluate DIMM-SC and compared it with existing clustering methods such as K-means, CellTree and Seurat. In addition, we analyzed public scRNA-Seq datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation studies and real data applications demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and much lower clustering variability compared to other existing clustering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify the clustering uncertainty for each single cell, facilitating rigorous statistical inference and biological interpretations, which are typically unavailable from existing clustering methods. DIMM-SC has been implemented in a user-friendly R package with a detailed tutorial available on www.pitt.edu/∼wec47/singlecell.html. wei.chen@chp.edu or hum@ccf.org. Supplementary data are available at Bioinformatics online. © The Author

  3. Application of the Single Hardening Model in the Finite Element Program ABAQUS

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    model, developed by Lade and Kim (Kim & Lade 1988, Lade & Kim 1988a, Lade & Kim 1988b) is implemented as a user defined material module, UMAT, in the commercial finite element program, ABAQUS. The advantages of the Single Hardening Model Iie in its ability to predict elastic and plastic displacements...

  4. Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress.

    Science.gov (United States)

    Perrine, Shane A; Eagle, Andrew L; George, Sophie A; Mulo, Kostika; Kohler, Robert J; Gerard, Justin; Harutyunyan, Arman; Hool, Steven M; Susick, Laura L; Schneider, Brandy L; Ghoddoussi, Farhad; Galloway, Matthew P; Liberzon, Israel; Conti, Alana C

    2016-04-15

    Appropriate animal models of posttraumatic stress disorder (PTSD) are needed because human studies remain limited in their ability to probe the underlying neurobiology of PTSD. Although the single prolonged stress (SPS) model is an established rat model of PTSD, the development of a similarly-validated mouse model emphasizes the benefits and cross-species utility of rodent PTSD models and offers unique methodological advantages to that of the rat. Therefore, the aims of this study were to develop and describe a SPS model for mice and to provide data that support current mechanisms relevant to PTSD. The mouse single prolonged stress (mSPS) paradigm, involves exposing C57Bl/6 mice to a series of severe, multimodal stressors, including 2h restraint, 10 min group forced swim, exposure to soiled rat bedding scent, and exposure to ether until unconsciousness. Following a 7-day undisturbed period, mice were tested for cue-induced fear behavior, effects of paroxetine on cue-induced fear behavior, extinction retention of a previously extinguished fear memory, dexamethasone suppression of corticosterone (CORT) response, dorsal hippocampal glucocorticoid receptor protein and mRNA expression, and prefrontal cortex glutamate levels. Exposure to mSPS enhanced cue-induced fear, which was attenuated by oral paroxetine treatment. mSPS also disrupted extinction retention, enhanced suppression of stress-induced CORT response, increased mRNA expression of dorsal hippocampal glucocorticoid receptors and decreased prefrontal cortex glutamate levels. These data suggest that the mSPS model is a translationally-relevant model for future PTSD research with strong face, construct, and predictive validity. In summary, mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the prefrontal cortex

  5. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  6. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  7. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects

    International Nuclear Information System (INIS)

    Gupta, Santosh K.; Baishya, Srimanta

    2013-01-01

    A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate (CSG) MOSFETs has been developed. Based on this a subthreshold drain current model has also been derived. This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model. The fringing gate capacitances taken into account are outer fringe capacitance, inner fringe capacitance, overlap capacitance, and sidewall capacitance. The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily. (semiconductor devices)

  8. Single-file water as a one-dimensional Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Koefinger, Juergen [Laboratory of Chemical Physics, Bldg 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Dellago, Christoph, E-mail: koefingerj@mail.nih.go [Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria)

    2010-09-15

    We show that single-file water in nanopores can be viewed as a one-dimensional (1D) Ising model, and we investigate, on the basis of this, the static dielectric response of a chain of hydrogen-bonded water molecules to an external field. To achieve this, we use a recently developed dipole lattice model that accurately captures the free energetics of nanopore water. In this model, the total energy of the system can be expressed as the sum of the effective interactions of chain ends and orientational defects. Neglecting these interactions, we essentially obtain the 1D Ising model, which allows us to derive analytical expressions for the free energy as a function of the total dipole moment and for the dielectric susceptibility. Our expressions, which agree very well with simulation results, provide the basis for the interpretation of future dielectric spectroscopy experiments on water-filled nanopore membranes.

  9. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi

    2017-01-25

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

  10. Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD

    Directory of Open Access Journals (Sweden)

    Rimenez R. Souza

    2017-09-01

    Full Text Available The endurance of memories of emotionally arousing events serves the adaptive role of minimizing future exposure to danger and reinforcing rewarding behaviors. However, following a traumatic event, a subset of individuals suffers from persistent pathological symptoms such as those seen in posttraumatic stress disorder (PTSD. Despite the availability of pharmacological treatments and evidence-based cognitive behavioral therapy, a considerable number of PTSD patients do not respond to the treatment, or show partial remission and relapse of the symptoms. In controlled laboratory studies, PTSD patients show deficient ability to extinguish conditioned fear. Failure to extinguish learned fear could be responsible for the persistence of PTSD symptoms such as elevated anxiety, arousal, and avoidance. It may also explain the high non-response and dropout rates seen during treatment. Animal models are useful for understanding the pathophysiology of the disorder and the development of new treatments. This review examines studies in a rodent model of PTSD with the goal of identifying behavioral and physiological factors that predispose individuals to PTSD symptoms. Single prolonged stress (SPS is a frequently used rat model of PTSD that involves exposure to several successive stressors. SPS rats show PTSD-like symptoms, including impaired extinction of conditioned fear. Since its development by the Liberzon lab in 1997, the SPS model has been referred to by more than 200 published papers. Here we consider the findings of these studies and unresolved questions that may be investigated using the model.

  11. A roller chain drive model including contact with guide-bars

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.

    2004-01-01

    A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...... and the sprocket centre, i.e. a constraint is added when such distance is less than the pitch radius. The unilateral kinematic constraint is removed when its associated constraint reaction force, applied on the roller, is in the direction of the root of the sprocket teeth. In order to improve the numerical...

  12. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  13. Including policy and management in socio-hydrology models: initial conceptualizations

    Science.gov (United States)

    Hermans, Leon; Korbee, Dorien

    2017-04-01

    Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.

  14. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  15. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology

    Science.gov (United States)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison

    2016-11-01

    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  16. A reanalysis of a behavioral intervention to prevent incident HIV infections: Including indirect effects in modeling outcomes of Project EXPLORE

    Science.gov (United States)

    Eaton, Lisa A.; Kalichman, Seth C.; Kenny, David A.; Harel, Ofer

    2013-01-01

    Background Project EXPLORE -- a large-scale, behavioral intervention tested among men who have sex with men (MSM) at-risk for HIV infection --was generally deemed as ineffective in reducing HIV incidence. Using novel and more precise data analytic techniques we reanalyzed Project EXPLORE by including both direct and indirect paths of intervention effects. Methods Data from 4,296 HIV negative MSM who participated in Project EXPLORE, which included ten sessions of behavioral risk reduction counseling completed from 1999-2005, were included in the analysis. We reanalyzed the data to include parameters that estimate the overtime effects of the intervention on unprotected anal sex and the over-time effects of the intervention on HIV status mediated by unprotected anal sex simultaneously in a single model. Results We found the indirect effect of intervention on HIV infection through unprotected anal sex to be statistically significant up through 12 months post-intervention, OR=.83, 95% CI=.72-.95. Furthermore, the intervention significantly reduced unprotected anal sex up through 18 months post-intervention, OR=.79, 95% CI=.63-.99. Discussion Our results reveal effects not tested in the original model that offer new insight into the effectiveness of a behavioral intervention for reducing HIV incidence. Project EXPLORE demonstrated that when tested against an evidence-based, effective control condition can result in reductions in rates of HIV acquisition at one year follow-up. Findings highlight the critical role of addressing behavioral risk reduction counseling in HIV prevention. PMID:23245226

  17. Should researchers use single indicators, best indicators, or multiple indicators in structural equation models?

    Directory of Open Access Journals (Sweden)

    Hayduk Leslie A

    2012-10-01

    Full Text Available Abstract Background Structural equation modeling developed as a statistical melding of path analysis and factor analysis that obscured a fundamental tension between a factor preference for multiple indicators and path modeling’s openness to fewer indicators. Discussion Multiple indicators hamper theory by unnecessarily restricting the number of modeled latents. Using the few best indicators – possibly even the single best indicator of each latent – encourages development of theoretically sophisticated models. Additional latent variables permit stronger statistical control of potential confounders, and encourage detailed investigation of mediating causal mechanisms. Summary We recommend the use of the few best indicators. One or two indicators are often sufficient, but three indicators may occasionally be helpful. More than three indicators are rarely warranted because additional redundant indicators provide less research benefit than single indicators of additional latent variables. Scales created from multiple indicators can introduce additional problems, and are prone to being less desirable than either single or multiple indicators.

  18. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    OpenAIRE

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  19. Single-objective vs. multi-objective autocalibration in modelling total suspended solids and phosphorus in a small agricultural watershed with SWAT.

    Science.gov (United States)

    Rasolomanana, Santatriniaina Denise; Lessard, Paul; Vanrolleghem, Peter A

    2012-01-01

    To obtain greater precision in modelling small agricultural watersheds, a shorter simulation time step is beneficial. A daily time step better represents the dynamics of pollutants in the river and provides more realistic simulation results. However, with a daily evaluation performance, good fits are rarely obtained. With the Shuffled Complex Evolution (SCE) method embedded in the Soil and Water Assessment Tool (SWAT), two calibration approaches are available, single-objective or multi-objective optimization. The goal of the present study is to evaluate which approach can improve the daily performance with SWAT, in modelling flow (Q), total suspended solids (TSS) and total phosphorus (TP). The influence of weights assigned to the different variables included in the objective function has also been tested. The results showed that: (i) the model performance depends not only on the choice of calibration approach, but essentially on the influential parameters; (ii) the multi-objective calibration estimating at once all parameters related to all measured variables is the best approach to model Q, TSS and TP; (iii) changing weights does not improve model performance; and (iv) with a single-objective optimization, an excellent water quality modelling performance may hide a loss of performance of predicting flows and unbalanced internal model components.

  20. A Novel Model Predictive Control for Single-Phase Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2017-01-01

    Single-phase grid-connected inverters with LCL filter are widely used to connect photovoltaic systems to the utility grid. Among the existing control schemes, predictive control methods are faster and more accurate but also more complicated to implement. Recently, the Model Predictive Control (MPC......) algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the MPC approach, all switching states are considered in each switching period to achieve the control objectives. However, since the number of switching states in single-phase inverters is small......, the inverter output current has a high Total Harmonic Distortions (THD). In order to reduce this, this paper presents an improved MPC for single-phase grid-connected inverters. In the proposed approach, the switching algorithm is changed and the number of the switching states is increased by means of virtual...

  1. Modeling single versus multiple systems in implicit and explicit memory.

    Science.gov (United States)

    Starns, Jeffrey J; Ratcliff, Roger; McKoon, Gail

    2012-04-01

    It is currently controversial whether priming on implicit tasks and discrimination on explicit recognition tests are supported by a single memory system or by multiple, independent systems. In a Psychological Review article, Berry and colleagues used mathematical modeling to address this question and provide compelling evidence against the independent-systems approach. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Modelling and simulation of multiple single - phase induction motor in parallel connection

    Directory of Open Access Journals (Sweden)

    Sujitjorn, S.

    2006-11-01

    Full Text Available A mathematical model for parallel connected n-multiple single-phase induction motors in generalized state-space form is proposed in this paper. The motor group draws electric power from one inverter. The model is developed by the dq-frame theory and was tested against four loading scenarios in which satisfactory results were obtained.

  3. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    OpenAIRE

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  4. How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters

    Science.gov (United States)

    Nunez, Michael D.; Vandekerckhove, Joachim; Srinivasan, Ramesh

    2016-01-01

    Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects. PMID:28435173

  5. How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters.

    Science.gov (United States)

    Nunez, Michael D; Vandekerckhove, Joachim; Srinivasan, Ramesh

    2017-02-01

    Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects.

  6. Developing a Model for Optimizing Inventory of Repairable Items at Single Operating Base

    OpenAIRE

    Le, Tin

    2016-01-01

    The use of EOQ model in inventory management is popular. However, EOQ models has many disadvantages, especially, when the model is applied to manage repairable items. In order to deal with high-cost and repairable items, Craig C. Sherbrooke introduced a model in his book “Optimal Inventory Modeling of Systems: Multi-Echelon Techniques”. The research focus is to implement and develop a program to execute the single-site in-ventory model for repairable items. The model helps to significantl...

  7. Test Results Of A Single Aperture Dipole Model Magnet For LHC

    CERN Document Server

    Shintomi, T; Higashi, N; Kimura, N; Ogitsu, T; Tanaka, K; Terashima, A; Tsuchiya, K; Yamamoto, A; Orikasa, A; Makishima, K; Siegel, N; Leroy, D; Perin, R

    1999-01-01

    The 56 mm single aperture superconducting dipole model with a 5-block coil configuration was reassembled and tested to investigate the full support of electromagnetic forces using a high-manganese steel collar structure without $9 mechanical contribution from an iron yoke. The reassembled model, which has a gap between the high manganese steel collar and the horizontally split iron yoke, reached a central field of 9 tesla (93554330f short sample) at the first

  8. A structurally based analytic model of growth and biomass dynamics in single species stands of conifers

    Science.gov (United States)

    Robin J. Tausch

    2015-01-01

    A theoretically based analytic model of plant growth in single species conifer communities based on the species fully occupying a site and fully using the site resources is introduced. Model derivations result in a single equation simultaneously describes changes over both, different site conditions (or resources available), and over time for each variable for each...

  9. A Single Mode Study of a Quasi-Geostrophic Convection-Driven Dynamo Model

    Science.gov (United States)

    Plumley, M.; Calkins, M. A.; Julien, K. A.; Tobias, S.

    2017-12-01

    Planetary magnetic fields are thought to be the product of hydromagnetic dynamo action. For Earth, this process occurs within the convecting, turbulent and rapidly rotating outer core, where the dynamics are characterized by low Rossby, low magnetic Prandtl and high Rayleigh numbers. Progress in studying dynamos has been limited by current computing capabilities and the difficulties in replicating the extreme values that define this setting. Asymptotic models that embrace these extreme parameter values and enforce the dominant balance of geostrophy provide an option for the study of convective flows with actual relevance to geophysics. The quasi-geostrophic dynamo model (QGDM) is a multiscale, fully-nonlinear Cartesian dynamo model that is valid in the asymptotic limit of low Rossby number. We investigate the QGDM using a simplified class of solutions that consist of a single horizontal wavenumber which enforces a horizontal structure on the solutions. This single mode study is used to explore multiscale time stepping techniques and analyze the influence of the magnetic field on convection.

  10. Deexcitation of single excited nuclei in the QMD model

    International Nuclear Information System (INIS)

    Mueller, W.; Begemann-Blaich, M.; Aichelin, J.

    1992-10-01

    We investigate the emission pattern of a single excited nucleus in the QMD model and compare the results with several statistical and phenomenological models. We find that the number of intermediate mass fragments as a function of the excitation energy is in very good agreement with the results of statistical models in which the emission pattern is governed by phase space only. This allows two conclusions: (a) The microscopic dynamical description of the disintegration of static excited nuclei in the QMD yields directly the emission pattern expected from phase space decay. This is the case despite of the fact that nuclear level densities are not given directly but are modeled semiclassically by the nucleon-nucleon interaction. Thus there is no need to supplement the QMD calculations by an additional evaporation model. (b) Differences between the QMD results and the data are not due to insufficiencies in the description of the disintegration of excited systems. Thus other possible reasons, like a substantial change of the free cross section in the nuclear environment have to be investigated. (orig.)

  11. Progress Towards an LES Wall Model Including Unresolved Roughness

    Science.gov (United States)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  12. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  13. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  14. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  15. Constitutive modeling of creep behavior in single crystal superalloys: Effects of rafting at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ya-Nan, E-mail: fanyn12@mails.tsinghua.edu.cn; Shi, Hui-Ji, E-mail: shihj@mail.tsinghua.edu.cn; Qiu, Wen-Hui

    2015-09-17

    Rafting and creep modeling of single crystal superalloys at high temperatures are important for the safety assessment and life prediction in practice. In this research, a new model has been developed to describe the rafting evolution and incorporated into the Cailletaud single crystal plasticity model to simulate the creep behavior. The driving force of rafting is assumed to be the relaxation of the strain energy, and it is calculated with the local stress state, a superposition of the external and misfit stress tensors. In addition, the isotropic coarsening is introduced by the cube root dependence of the microstructure periodicity on creep time based on Ostwal ripening. Then the influence of rafting on creep deformation is taken into account as the Orowan stress in the single crystal plasticity model. The capability of the proposed model is validated with creep experiments of CMSX-4 at 950 °C and 1050 °C. It is able to predict the rafting direction at complex loading conditions and evaluate the channel width during rafting. For [001] tensile creep tests, good agreement has been shown between the model predictions and experimental results at different temperatures and stress levels. The creep acceleration can be captured with this model and is attributed to the microstructure degradation caused by the precipitate coarsening.

  16. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2010-12-01

    With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific

  17. Assessment of TRAC-PF1/MOD3 Mark-22 assembly model using SRL ''A'' tank single-assembly flow experiments

    International Nuclear Information System (INIS)

    Fischer, S.R.; Lam, K.; Lin, J.C.

    1991-01-01

    This paper summarizes the results of an assessment of our TRAC-PF1/MOD3 Mark-22 prototype fuel assembly model against single-assembly data obtained from the ''A'' Tank single-assembly tests that were performed at the Savannah River Laboratory. We felt the data characterize prototypic assembly behavior over a range of air-water flow conditions of interest for loss-of-coolant accident (LOCA) calculations. This study was part of a benchmarking effort performed to evaluate and validate a multiple-assembly, full-plant model that is being developed by Los Alamos National Laboratory to study various aspects of the Savannah River plant operating conditions, including LOCA transients, using TRAC-PF1/MOD3 Version 1.10. The results of this benchmarking effort demonstrate that TRAC-PF1/MOD3 is capable pf calculating plenum conditions and assembly flows during conditions thought to be typical of the Emergency Cooling System (ECS) phase of a LOCA. 10 refs., 12 fig

  18. Learning Layouts for Single-Page Graphic Designs.

    Science.gov (United States)

    O'Donovan, Peter; Agarwala, Aseem; Hertzmann, Aaron

    2014-08-01

    This paper presents an approach for automatically creating graphic design layouts using a new energy-based model derived from design principles. The model includes several new algorithms for analyzing graphic designs, including the prediction of perceived importance, alignment detection, and hierarchical segmentation. Given the model, we use optimization to synthesize new layouts for a variety of single-page graphic designs. Model parameters are learned with Nonlinear Inverse Optimization (NIO) from a small number of example layouts. To demonstrate our approach, we show results for applications including generating design layouts in various styles, retargeting designs to new sizes, and improving existing designs. We also compare our automatic results with designs created using crowdsourcing and show that our approach performs slightly better than novice designers.

  19. Clarifying the use of aggregated exposures in multilevel models: self-included vs. self-excluded measures.

    Directory of Open Access Journals (Sweden)

    Etsuji Suzuki

    Full Text Available Multilevel analyses are ideally suited to assess the effects of ecological (higher level and individual (lower level exposure variables simultaneously. In applying such analyses to measures of ecologies in epidemiological studies, individual variables are usually aggregated into the higher level unit. Typically, the aggregated measure includes responses of every individual belonging to that group (i.e. it constitutes a self-included measure. More recently, researchers have developed an aggregate measure which excludes the response of the individual to whom the aggregate measure is linked (i.e. a self-excluded measure. In this study, we clarify the substantive and technical properties of these two measures when they are used as exposures in multilevel models.Although the differences between the two aggregated measures are mathematically subtle, distinguishing between them is important in terms of the specific scientific questions to be addressed. We then show how these measures can be used in two distinct types of multilevel models-self-included model and self-excluded model-and interpret the parameters in each model by imposing hypothetical interventions. The concept is tested on empirical data of workplace social capital and employees' systolic blood pressure.Researchers assume group-level interventions when using a self-included model, and individual-level interventions when using a self-excluded model. Analytical re-parameterizations of these two models highlight their differences in parameter interpretation. Cluster-mean centered self-included models enable researchers to decompose the collective effect into its within- and between-group components. The benefit of cluster-mean centering procedure is further discussed in terms of hypothetical interventions.When investigating the potential roles of aggregated variables, researchers should carefully explore which type of model-self-included or self-excluded-is suitable for a given situation

  20. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under...... the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature...

  1. Single image interpolation via adaptive nonlocal sparsity-based modeling.

    Science.gov (United States)

    Romano, Yaniv; Protter, Matan; Elad, Michael

    2014-07-01

    Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.

  2. Dataset for Phase I randomized clinical trial for safety and tolerability of GET 73 in single and repeated ascending doses including preliminary pharmacokinetic parameters.

    Science.gov (United States)

    Haass-Koffler, Carolina L; Goodyear, Kimberly; Long, Victoria M; Tran, Harrison H; Loche, Antonella; Cacciaglia, Roberto; Swift, Robert M; Leggio, Lorenzo

    2017-12-01

    The data in this article outline the methods used for the administration of GET 73 in the first time-in-human manuscript entitled "Phase I randomized clinical trial for the safety, tolerability and preliminary pharmacokinetics of the mGluR5 negative allosteric modulator GET 73 following single and repeated doses in healthy male volunteers" (Haass-Koffler et al., 2017) [1]. Data sets are provided in two different manners. The first series of tables provided includes procedural information about the experiments conducted. The next series of tables provided includes Pharmacokinetic (PK) parameters for GET 73 and its main metabolite MET 2. This set of data is comprised by two experiments: Experiment 1 references a single ascending dose administration of GET 73 and Experiment 2 references a repeated ascending dose administration of GET 73.

  3. Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling

    Science.gov (United States)

    Mariano, Adrian V.; Grossmann, John M.

    2010-11-01

    Reflectance-domain methods convert hyperspectral data from radiance to reflectance using an atmospheric compensation model. Material detection and identification are performed by comparing the compensated data to target reflectance spectra. We introduce two radiance-domain approaches, Single atmosphere Adaptive Cosine Estimator (SACE) and Multiple atmosphere ACE (MACE) in which the target reflectance spectra are instead converted into sensor-reaching radiance using physics-based models. For SACE, known illumination and atmospheric conditions are incorporated in a single atmospheric model. For MACE the conditions are unknown so the algorithm uses many atmospheric models to cover the range of environmental variability, and it approximates the result using a subspace model. This approach is sometimes called the invariant method, and requires the choice of a subspace dimension for the model. We compare these two radiance-domain approaches to a Reflectance-domain ACE (RACE) approach on a HYDICE image featuring concealed materials. All three algorithms use the ACE detector, and all three techniques are able to detect most of the hidden materials in the imagery. For MACE we observe a strong dependence on the choice of the material subspace dimension. Increasing this value can lead to a decline in performance.

  4. On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model

    Directory of Open Access Journals (Sweden)

    Shu-Nan Li

    2016-11-01

    Full Text Available Thermodynamics problems for the single-phase-lagging (SPL model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral.

  5. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  6. Cavity design for single-frequency Yb:YAB microchip lasers

    International Nuclear Information System (INIS)

    Burns, P.; Dawes, J.M.; Piper, J.A.

    2000-01-01

    Full text: We have proposed a cavity configuration for compact, stable, single-frequency operation in Yb:YAB. Modelling of the cavity output in the infrared and green has shown that sufficient mode discrimination can be achieved within the tuning range of the crystal. Experiments are planned to demonstrate efficient single longitudinal mode infrared operation of the devices that can be extended to include the self-frequency-doubled output. Details of the modelling and preliminary results will be presented at the conference

  7. Non-degenerate single-particle energies in the Ginocchio model

    International Nuclear Information System (INIS)

    Leviatan, A.; Kirson, M.W.

    1984-01-01

    A one-body operator expressing the breaking of the degeneracy of the single-nucleon energies is added to the pairing interaction of the Ginocchio model. This operator couples states inside the model's SD space to states outside it. The influence of this coupling on the effective interaction in the SD space and the possibility of expressing the results in terms of renormalization of parameters in the fermion hamiltonian or the IBM are investigated. The effective interaction is found to be almost diagonal in seniority, while splitting the previously-degenerate seniority multiplets. Appropriately renormalized Ginocchio and IBM hamiltonians can approximately reproduce the results, but fermion-number dependence of the hamiltonian parameters and explicit three-body interactions are needed to reproduce the computed effects exactly. (orig.)

  8. Non-degenerate single-particle energies in the Ginocchio model

    International Nuclear Information System (INIS)

    Leviatan, A.; Kirson, M.W.

    1983-07-01

    A one-body operator expressing the breaking of the degeneracy of the single-nucleon energies is added to the pairing interaction of the Ginocchio model. This operator couples states inside the model's S-D space to states outside it. The influence of this coupling on the effective interaction in the S-D space and the possibility of expressing the results in terms of renormalization of parameters in the fermion hamiltonian or the IBM are investigated. The effective interaction is found to be almost diagonal in seniority, while splitting the previously-degenerate seniority multiplets. Appropiately renormalized Ginocchio and IBM hamiltonians can approximately reproduce the results, but fermion-number dependence of the hamiltonian parameters and explicit three-body interactions are needed to reproduce the computed effects exactly. (author)

  9. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  10. Evaluating Change in Behavioral Preferences: Multidimensional Scaling Single-Ideal Point Model

    Science.gov (United States)

    Ding, Cody

    2016-01-01

    The purpose of the article is to propose a multidimensional scaling single-ideal point model as a method to evaluate changes in individuals' preferences under the explicit methodological framework of behavioral preference assessment. One example is used to illustrate the approach for a clear idea of what this approach can accomplish.

  11. A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons.

    Directory of Open Access Journals (Sweden)

    Dimitrios V Vavoulis

    Full Text Available Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm, often in combination with a local search method (such as gradient descent in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a

  12. The Sort on Radioactive Waste Type model: A method to sort single-shell tanks into characteristic groups. Revision 1

    International Nuclear Information System (INIS)

    Hill, J.G.; Simpson, B.C.

    1994-08-01

    The Sort on Radioactive Waste Type (SORWT) model presents a method to categorize Hanford Site single-shell tanks (SSTs) into groups of tanks expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. This model has identified 29 different waste-type groups encompassing 135 of the 149 SSTs and 93% of the total waste volume in SSTs. The remaining 14 SSTs and associated wastes could not be grouped according to the established criteria and were placed in an ungrouped category. This letter report will detail the assumptions and methodologies used to develop the SORWT model and present the grouping results. Included with this report is a brief description and approximate compositions of the single-shell tank waste types. In the near future, the validity of the predicted groups will be statistically tested using analysis of variance of characterization data obtained from recent (post-1989) core sampling and analysis activities. In addition, the SORWT model will be used to project the nominal waste characteristics of entire waste type groups that have some recent characterization data available. These subsequent activities will be documented along with these initial results in a comprehensive, formal PNL report cleared for public release by September 1994

  13. A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment

    Science.gov (United States)

    Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.; hide

    2013-01-01

    Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.

  14. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-01-01

    potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical

  15. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

    Science.gov (United States)

    Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.

    2017-01-01

    Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892

  16. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  17. Theory of single-spin inelastic tunneling spectroscopy.

    Science.gov (United States)

    Fernández-Rossier, J

    2009-06-26

    I show that recent experiments of inelastic scanning tunneling spectroscopy of single and a few magnetic atoms are modeled with a phenomenological spin-assisted tunneling Hamiltonian so that the inelastic dI/dV line shape is related to the spin spectral weight of the magnetic atom. This accounts for the spin selection rules and dI/dV spectra observed experimentally for single Fe and Mn atoms deposited on Cu2N. In the case of chains of Mn atoms it is found necessary to include both first and second-neighbor exchange interactions as well as single-ion anisotropy.

  18. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  19. RELAP-7 Progress Report: A Mathematical Model for 1-D Compressible, Single-Phase Flow Through a Branching Junction

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-14

    In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an active component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].

  20. Hydrologic Model Development and Calibration: Contrasting a Single- and Multi-Objective Approach for Comparing Model Performance

    Science.gov (United States)

    Asadzadeh, M.; Maclean, A.; Tolson, B. A.; Burn, D. H.

    2009-05-01

    Hydrologic model calibration aims to find a set of parameters that adequately simulates observations of watershed behavior, such as streamflow, or a state variable, such as snow water equivalent (SWE). There are different metrics for evaluating calibration effectiveness that involve quantifying prediction errors, such as the Nash-Sutcliffe (NS) coefficient and bias evaluated for the entire calibration period, on a seasonal basis, for low flows, or for high flows. Many of these metrics are conflicting such that the set of parameters that maximizes the high flow NS differs from the set of parameters that maximizes the low flow NS. Conflicting objectives are very likely when different calibration objectives are based on different fluxes and/or state variables (e.g., NS based on streamflow versus SWE). One of the most popular ways to balance different metrics is to aggregate them based on their importance and find the set of parameters that optimizes a weighted sum of the efficiency metrics. Comparing alternative hydrologic models (e.g., assessing model improvement when a process or more detail is added to the model) based on the aggregated objective might be misleading since it represents one point on the tradeoff of desired error metrics. To derive a more comprehensive model comparison, we solved a bi-objective calibration problem to estimate the tradeoff between two error metrics for each model. Although this approach is computationally more expensive than the aggregation approach, it results in a better understanding of the effectiveness of selected models at each level of every error metric and therefore provides a better rationale for judging relative model quality. The two alternative models used in this study are two MESH hydrologic models (version 1.2) of the Wolf Creek Research basin that differ in their watershed spatial discretization (a single Grouped Response Unit, GRU, versus multiple GRUs). The MESH model, currently under development by Environment

  1. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  2. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  3. Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply

    Science.gov (United States)

    Van Der Meer, Frans P.; Davila, Carlos G.

    2012-01-01

    The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.

  4. Non-identical particle femtoscopy in models with single freeze-out

    International Nuclear Information System (INIS)

    Kisiel, Adam

    2007-01-01

    We present femtoscopic results from hydrodynamics-inspired thermal models with single freeze-out. Non-identical particle femtoscopy is studied and compared to results of identical particle correlations. Special emphasis is put on shifts between average space-time emission points of non-identical particles of different masses. They are found to be sensitive to both the spatial shift coming from radial flow, as well as average emission time difference coming from the resonance decays. The Terminator Monte-Carlo program was chosen for this study because it realistically models both of these effects. In order to analyze the results we present and test the methodology of non-identical particle correlations. (author)

  5. Adult Mouse DRG Explant and Dissociated Cell Models to Investigate Neuroplasticity and Responses to Environmental Insults Including Viral Infection.

    Science.gov (United States)

    Fornaro, Michele; Sharthiya, Harsh; Tiwari, Vaibhav

    2018-03-09

    This protocol describes an ex vivo model of mouse-derived dorsal root ganglia (DRG) explant and in vitro DRG-derived co-culture of dissociated sensory neurons and glial satellite cells. These are useful and versatile models to investigate a variety of biological responses associated with physiological and pathological conditions of the peripheral nervous system (PNS) ranging from neuron-glial interaction, neuroplasticity, neuroinflammation, and viral infection. The usage of DRG explant is scientifically advantageous compared to simplistic single cells models for multiple reasons. For instance, as an organotypic culture, the DRG explant allows ex vivo transfer of an entire neuronal network including the extracellular microenvironment that play a significant role in all the neuronal and glial functions. Further, DRG explants can also be maintained ex vivo for several days and the culture conditions can be perturbed as desired. In addition, the harvested DRG can be further dissociated into an in vitro co-culture of primary sensory neurons and satellite glial cells to investigate neuronal-glial interaction, neuritogenesis, axonal cone interaction with the extracellular microenvironment, and more general, any aspect associated with the neuronal metabolism. Therefore, the DRG-explant system offers a great deal of flexibility to study a wide array of events related to biological, physiological, and pathological conditions in a cost-effective manner.

  6. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  7. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  8. Near infra-red spectroscopy quantitative modelling of bivalve protein, lipid and glycogen composition using single-species versus multi-species calibration and validation sets

    Science.gov (United States)

    Bartlett, Jill K.; Maher, William A.; Purss, Matthew B. J.

    2018-03-01

    aggregated multi-species models include a greater range of bivalve composition, greater application to different bivalve species and reduced need to extensively sample individual species, that is required for obtain robust single species NIRS models.

  9. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    Science.gov (United States)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  10. Coexisting chaotic attractors in a single neuron model with adapting feedback synapse

    International Nuclear Information System (INIS)

    Li Chunguang; Chen Guanrong

    2005-01-01

    In this paper, we consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra

  11. A single-equation study of US petroleum consumption: The role of model specificiation

    International Nuclear Information System (INIS)

    Jones, C.T.

    1993-01-01

    The price responsiveness of US petroleum consumption began to attract a great deal of attention following the unexpected and substantial oil price increases of 1973-74. There have been a number of large, multi-equation econometric studies of US energy demand since then which have focused primarily on estimating short run and long run price and income elasticities of individual energy resources (coal, oil, natural gas ampersand electricity) for various consumer sectors (residential, industrial, commercial). Following these early multi-equation studies there have been several single-equation studies of aggregate US petroleum consumption. When choosing an economic model specification for a single-equation study of aggregate US petroleum consumption, an easily estimated model that will provide unbiased price and income elasticity estimates and yield accurate forecasts is needed. Using Hendry's general-to-simple specification search technique and annual data to obtain a restricted, data-acceptable simplification of a general ADL model yielded GNP and short run price elasticities near the consensus estimates, but a long run price elasticity substantially smaller than existing estimates. Comparisons with three other seemingly acceptable simple-to-general models showed that popular model specifications often involve untested, unacceptable parameter restrictions. These models may also demonstrate poorer forecasting performance. Based on results, the general-to-simple approach appears to offer a more accurate methodology for generating superior forecast models of petroleum consumption and other energy use patterns

  12. Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply

    Science.gov (United States)

    VanDerMeer, Frans P.; Davila, Carlos G.

    2013-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks

  13. Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2015-01-01

    In the present paper, single-wake dynamics have been studied both experimentally and numerically. The use of pulsed lidar measurements allows for validation of basic dynamic wake meandering modeling assumptions. Wake center tracking is used to estimate the wake advection velocity experimentally...... fairly well in the far wake but lacks accuracy in the outer region of the near wake. An empirical relationship, relating maximum wake induction and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Furthermore, a new empirical model for single...

  14. The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models

    International Nuclear Information System (INIS)

    Cederwall, R.T.; Rodriques, D.J.; Krueger, S.K.; Randall, D.A.

    1999-01-01

    The Single-Column Model (SCM) Working Group (WC) and the Cloud Working Group (CWG) in the Atmospheric Radiation Measurement (ARM) Program have begun a collaboration with the GEWEX Cloud System Study (GCSS) WGs. The forcing data sets derived from the special ARM radiosonde measurements made during the SCM Intensive Observation Periods (IOPs), the wealth of cloud and related data sets collected by the ARM Program, and the ARM infrastructure support of the SCM WG are of great value to GCSS. In return, GCSS brings the efforts of an international group of cloud system modelers to bear on ARM data sets and ARM-related scientific questions. The first major activity of the ARM-GCSS collaboration is a model intercomparison study involving SCMs and cloud system models (CSMs), also known as cloud-resolving or cloud-ensemble models. The SCM methodologies developed in the ARM Program have matured to the point where an intercomparison will help identify the strengths and weaknesses of various approaches. CSM simulations will bring much additional information about clouds to evaluate cloud parameterizations used in the SCMs. CSMs and SCMs have been compared successfully in previous GCSS intercomparison studies for tropical conditions. The ARM Southern Great Plains (SGP) site offers an opportunity for GCSS to test their models in continental, mid-latitude conditions. The Summer 1997 SCM IOP has been chosen since it provides a wide range of summertime weather events that will be a challenging test of these models

  15. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...

  16. Aggregated Demand Modelling Including Distributed Generation, Storage and Demand Response

    OpenAIRE

    Marzooghi, Hesamoddin; Hill, David J.; Verbic, Gregor

    2014-01-01

    It is anticipated that penetration of renewable energy sources (RESs) in power systems will increase further in the next decades mainly due to environmental issues. In the long term of several decades, which we refer to in terms of the future grid (FG), balancing between supply and demand will become dependent on demand actions including demand response (DR) and energy storage. So far, FG feasibility studies have not considered these new demand-side developments for modelling future demand. I...

  17. Independent screening for single-index hazard rate models with ultrahigh dimensional features

    DEFF Research Database (Denmark)

    Gorst-Rasmussen, Anders; Scheike, Thomas

    2013-01-01

    can be viewed as the natural survival equivalent of correlation screening. We state conditions under which the method admits the sure screening property within a class of single-index hazard rate models with ultrahigh dimensional features and describe the generally detrimental effect of censoring...

  18. Multiobjective Optimization Modeling Approach for Multipurpose Single Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Iosvany Recio Villa

    2018-04-01

    Full Text Available The water resources planning and management discipline recognizes the importance of a reservoir’s carryover storage. However, mathematical models for reservoir operation that include carryover storage are scarce. This paper presents a novel multiobjective optimization modeling framework that uses the constraint-ε method and genetic algorithms as optimization techniques for the operation of multipurpose simple reservoirs, including carryover storage. The carryover storage was conceived by modifying Kritsky and Menkel’s method for reservoir design at the operational stage. The main objective function minimizes the cost of the total annual water shortage for irrigation areas connected to a reservoir, while the secondary one maximizes its energy production. The model includes operational constraints for the reservoir, Kritsky and Menkel’s method, irrigation areas, and the hydropower plant. The study is applied to Carlos Manuel de Céspedes reservoir, establishing a 12-month planning horizon and an annual reliability of 75%. The results highly demonstrate the applicability of the model, obtaining monthly releases from the reservoir that include the carryover storage, degree of reservoir inflow regulation, water shortages in irrigation areas, and the energy generated by the hydroelectric plant. The main product is an operational graph that includes zones as well as rule and guide curves, which are used as triggers for long-term reservoir operation.

  19. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NARCIS (Netherlands)

    Neggers, R.A.J.; Ackerman, Andrew S.; Angevine, W. M.; Bazile, Eric; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; cheng, A; van der Dussen, J.J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H; Cheedela, S. K.; Larson, V. E.; Lefebvre, Marie Pierre; Lock, A. P.; Meyer, N. R.; de Roode, S.R.; de Rooy, WC; Sandu, I; Xiao, H; Xu, K. M.

    2017-01-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using

  20. Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver

    International Nuclear Information System (INIS)

    Montes, María J.; Barbero, Rubén; Abbas, Rubén; Rovira, Antonio

    2016-01-01

    Highlights: • A thermal model for a single-tube Fresnel receiver has been developed. • A comparative analysis based on different design parameters, has been carried out. • A comparative analysis based on different working fluids, has been carried out. • The receiver thermal performance is characterized by energy and exergy efficiencies. - Abstract: Although most of recent commercial Solar Thermal Power Plants (STPP) installed worldwide are parabolic trough plants, it seems that Linear Fresnel Collectors (LFC) are becoming an attractive option to generate electricity from solar radiation. Contrary to parabolic trough collectors, the design of LFC receivers has many degrees of freedom, and two basic designs can be found in the literature: single-tube and multi-tube design. This article studies the single-tube design, for which a thermal model has been developed. This model has been thought to be accurate enough to characterize the heat transfer in a non-elementary geometry and flexible enough to support changes of the characteristic parameters in the receiver design. The thermal model proposed is based on a two-dimensional, steady-state energy balance, in the receiver cross section and along its length. One of the features of the model is the characterization of the convective and radiative heat transfer in the receiver cavity, as it is not an elementary geometry. Another feature is the possibility of studying the receiver performance with different working fluids, both single-phase or two-phase. At last, the receiver performance has been characterized by means of the energy and exergy efficiency. Both variables are important for a complete receiver thermal analysis, as will be shown in the paper. The model has been first applied to the comparative study of the thermal performance of LFC receivers based on the value of some parameters: selective coating emissivity in the tube and inlet fluid thermal properties, for the case of using water/steam. As a second

  1. Unified Model of Dynamic Forced Barrier Crossing in Single Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Friddle, R W

    2007-06-21

    Thermally activated barrier crossing in the presence of an increasing load can reveal kinetic rate constants and energy barrier parameters when repeated over a range of loading rates. Here we derive a model of the mean escape force for all relevant loading rates--the complete force spectrum. Two well-known approximations emerge as limiting cases; one of which confirms predictions that single-barrier spectra should converge to a phenomenological description in the slow loading limit.

  2. A new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.; Park, C.; Yang, S.; Morris, S.; Do, V.; Tasch, F.

    1992-01-01

    We have developed a new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon. This paper reports that this new model is based on the dual Pearson semi-empirical implant depth profile model and the UT-MARLOWE Monte Carlo boron ion implantation model. This new model can predict with very high computational efficiency two-dimensional as-implanted boron profiles as a function of energy, dose, tilt angle, rotation angle, masking edge orientation, and masking edge thickness

  3. An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals.

    Science.gov (United States)

    Latash, M L; Goodman, S R

    1994-01-01

    The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.

  4. Constitutive and life modeling of single crystal blade alloys for root attachment analysis

    Science.gov (United States)

    Meyer, T. G.; Mccarthy, G. J.; Favrow, L. H.; Anton, D. L.; Bak, Joe

    1988-01-01

    Work to develop fatigue life prediction and constitutive models for uncoated attachment regions of single crystal gas turbine blades is described. At temperatures relevant to attachment regions, deformation is dominated by slip on crystallographic planes. However, fatigue crack initiation and early crack growth are not always observed to be crystallographic. The influence of natural occurring microporosity will be investigated by testing both hot isostatically pressed and conventionally cast PWA 1480 single crystal specimens. Several differnt specimen configurations and orientations relative to the natural crystal axes are being tested to investigate the influence of notch acuity and the material's anisotropy. Global and slip system stresses in the notched regions were determined from three dimensional stress analyses and will be used to develop fatigue life prediction models consistent with the observed lives and crack characteristics.

  5. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-03-15

    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the π and σ + π plasmon energies.

  6. Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization

    International Nuclear Information System (INIS)

    Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.

    2016-01-01

    Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4  J K −1 .

  7. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  8. Using sea surface temperatures to improve performance of single dynamical downscaling model in flood simulation under climate change

    Science.gov (United States)

    Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.

    2017-12-01

    There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.

  9. S5-4: Formal Modeling of Affordance in Human-Included Systems

    Directory of Open Access Journals (Sweden)

    Namhun Kim

    2012-10-01

    Full Text Available In spite of it being necessary for humans to consider modeling, analysis, and control of human-included systems, it has been considered a challenging problem because of the critical role of humans in complex systems and of humans' capability of executing unanticipated actions–both beneficial and detrimental ones. Thus, to provide systematic approaches to modeling human actions as a part of system behaviors, a formal modeling framework for human-involved systems in which humans play a controlling role based on their perceptual information is presented. The theory of affordance provides definitions of human actions and their associated properties; Finite State Automata (FSA based modeling is capable of mapping nondeterministic humans into computable components in the system representation. In this talk, we investigate the role of perception in human actions in the system operation and examine the representation of perceptual elements in affordance-based modeling formalism. The proposed framework is expected to capture the natural ways in which humans participate in the system as part of its operation. A human-machine cooperative manufacturing system control example and a human agent simulation example will be introduced for the illustrative purposes at the end of the presentation.

  10. Model independent approach to the single photoelectron calibration of photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, R.; Grandi, L.; Guardincerri, Y.; Wester, T.

    2017-08-01

    The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions about the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.

  11. A single-particle calculation of the FEL-Cerenkov gain

    International Nuclear Information System (INIS)

    Dattoli, G.; Doria, A.; Gallerano, G.P.; Renieri, A.; Schettini, G.; Torre, A.

    1988-01-01

    In this work it is shown that the basic FEL-Cerenkov dynamics can be modelled using a pendulumlike equation in close analogy with FEL undulator case. The analysis, including the inhomogeneous broadening effects, is worked out in the hypothesis of single-slab geometry. Two-dimensional motion dynamics effects are also included

  12. A new approach to the extraction of single exponential diode model parameters

    Science.gov (United States)

    Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.

    2018-06-01

    A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.

  13. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  14. Dataset for Phase I randomized clinical trial for safety and tolerability of GET 73 in single and repeated ascending doses including preliminary pharmacokinetic parameters

    Directory of Open Access Journals (Sweden)

    Carolina L. Haass-Koffler

    2017-12-01

    Full Text Available The data in this article outline the methods used for the administration of GET 73 in the first time-in-human manuscript entitled “Phase I randomized clinical trial for the safety, tolerability and preliminary pharmacokinetics of the mGluR5 negative allosteric modulator GET 73 following single and repeated doses in healthy male volunteers” (Haass-Koffler et al., 2017 [1]. Data sets are provided in two different manners. The first series of tables provided includes procedural information about the experiments conducted. The next series of tables provided includes Pharmacokinetic (PK parameters for GET 73 and its main metabolite MET 2. This set of data is comprised by two experiments: Experiment 1 references a single ascending dose administration of GET 73 and Experiment 2 references a repeated ascending dose administration of GET 73. Keywords: Glutamate receptor subtype 5 (mGlu5, Allosteric modulator, GET 73, Safety, Tolerability

  15. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS for 6-week body weight in broiler chickens

    Directory of Open Access Journals (Sweden)

    Huiyu eWang

    2014-05-01

    Full Text Available The purpose of this study was to compare results obtained from various methodologies for genome-wide association studies, when applied to real data, in terms of number and commonality of regions identified and their genetic variance explained, computational speed, and possible pitfalls in interpretations of results. Methodologies include: two iteratively reweighted single-step genomic BLUP procedures (ssGWAS1 and ssGWAS2, a single-marker model (CGWAS, and BayesB. The ssGWAS methods utilize genomic breeding values (GEBVs based on combined pedigree, genomic and phenotypic information, while CGWAS and BayesB only utilize phenotypes from genotyped animals or pseudo-phenotypes. In this study, ssGWAS was performed by converting GEBVs to SNP marker effects. Unequal variances for markers were incorporated for calculating weights into a new genomic relationship matrix. SNP weights were refined iteratively. The data was body weight at 6 weeks on 274,776 broiler chickens, of which 4553 were genotyped using a 60k SNP chip. Comparison of genomic regions was based on genetic variances explained by local SNP regions (20 SNPs. After 3 iterations, the noise was greatly reduced of ssGWAS1 and results are similar to that of CGWAS, with 4 out of the top 10 regions in common. In contrast, for BayesB, the plot was dominated by a single region explaining 23.1% of the genetic variance. This same region was found by ssGWAS1 with the same rank, but the amount of genetic variation attributed to the region was only 3%. These finding emphasize the need for caution when comparing and interpreting results from various methods, and highlight that detected associations, and strength of association, strongly depends on methodologies and details of implementations. BayesB appears to overly shrink regions to zero, while overestimating the amount of genetic variation attributed to the remaining SNP effects. The real world is most likely a compromise between methods and remains to

  16. Multi-view 3D human pose estimation combining single-frame recovery, temporal integration and model adaptation

    NARCIS (Netherlands)

    Hofmann, K.M.; Gavrilla, D.M.

    2009-01-01

    We present a system for the estimation of unconstrained 3D human upper body movement from multiple cameras. Its main novelty lies in the integration of three components: single frame pose recovery, temporal integration and model adaptation. Single frame pose recovery consists of a hypothesis

  17. BioModels: expanding horizons to include more modelling approaches and formats.

    Science.gov (United States)

    Glont, Mihai; Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Malik-Sheriff, Rahuman S; Chelliah, Vijayalakshmi; Le Novère, Nicolas; Hermjakob, Henning

    2018-01-04

    BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer

    International Nuclear Information System (INIS)

    Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat

    2009-01-01

    The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for

  19. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  20. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  1. Single-server blind quantum computation with quantum circuit model

    Science.gov (United States)

    Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting

    2018-06-01

    Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

  2. Effect of the Sport Education Tactical Model on Coeducational and Single Gender Game Performance

    Science.gov (United States)

    Pritchard, Tony; McCollum, Starla; Sundal, Jacqueline; Colquit, Gavin

    2014-01-01

    Physical education teachers are faced with a decision when teaching physical activities in schools. What type of instructional model should be used, and should classes be coeducational or single gender? The current study had two purposes. The first purpose investigated the effectiveness of the sport education tactical model (SETM) during game play…

  3. Ferrimagnetic Properties of Bond Dilution Mixed Blume-Capel Model with Random Single-Ion Anisotropy

    International Nuclear Information System (INIS)

    Liu Lei; Yan Shilei

    2005-01-01

    We study the ferrimagnetic properties of spin 1/2 and spin-1 systems by means of the effective field theory. The system is considered in the framework of bond dilution mixed Blume-Capel model (BCM) with random single-ion anisotropy. The investigation of phase diagrams and magnetization curves indicates the existence of induced magnetic ordering and single or multi-compensation points. Special emphasis is placed on the influence of bond dilution and random single-ion anisotropy on normal or induced magnetic ordering states and single or multi-compensation points. Normal magnetic ordering states take on new phase diagrams with increasing randomness (bond and anisotropy), while anisotropy induced magnetic ordering states are always occurrence no matter whether concentration of anisotropy is large or small. Existence and disappearance of compensation points rely strongly on bond dilution and random single-ion anisotropy. Some results have not been revealed in previous papers and predicted by Neel theory of ferrimagnetism.

  4. GAMMA RAYS FROM THE TYCHO SUPERNOVA REMNANT: MULTI-ZONE VERSUS SINGLE-ZONE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Atoyan, Armen [Department of Mathematics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada); Dermer, Charles D., E-mail: atoyan@mathstat.concordia.ca, E-mail: charles.dermer@nrl.navy.mil [Code 7653, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2012-04-20

    Recent Fermi and VERITAS observations of the prototypical Type Ia supernova remnant (SNR) Tycho have discovered {gamma}-rays with energies E in the range 0.4 GeV {approx}< E {approx}< 10 TeV. Crucial for the theory of Galactic cosmic-ray origin is whether the {gamma}-rays from SNRs are produced by accelerated hadrons (protons and ions) or by relativistic electrons. Here we show that strong constraints on the leptonic model imposed in the framework of the commonly used single-zone model are essentially removed if the analysis of the broadband radiation spectrum of Tycho is done in the two-zone (or, in general, multi-zone) approach, which is likely to apply to every SNR. Importantly, we show that the single-zone approach may underpredict the {gamma}-ray fluxes by an order of magnitude. A hadronic model can, however, also fit the detected {gamma}-ray spectrum. The difference between {gamma}-ray fluxes of hadronic and leptonic origins becomes significant only at {approx}<300 MeV, which could be revealed by spectral measurements of Tycho and other SNRs at these energies.

  5. Primordial non-Gaussianities in single field inflationary models with non-trivial initial states

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Sina; Flanagan, Éanna É., E-mail: sb933@cornell.edu, E-mail: eef3@cornell.edu [Department of Physics, Cornell University, Ithaca, NY 14853 (United States)

    2014-10-01

    We compute the non-Gaussianities that arise in single field, slow roll inflationary models arising from arbitrary homogeneous initial states, as well as subleading contributions to the power spectrum. Non Bunch-Davies vacuum initial states can arise if the transition to the single field, slow roll inflation phase occurs only shortly before observable modes left the horizon. They can also arise from new physics at high energies that has been integrated out. Our general result for the bispectrum exhibits several features that were previously seen in special cases.

  6. Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model

    Science.gov (United States)

    Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.

    2011-09-01

    Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.

  7. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  8. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  9. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  10. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    Science.gov (United States)

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  11. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  12. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  13. Modelling of creep curves of Ni3Ge single crystals

    Science.gov (United States)

    Starenchenko, V. A.; Starenchenko, S. V.; Pantyukhova, O. D.; Solov'eva, Yu V.

    2015-01-01

    In this paper the creep model of alloys with L12 superstructure is presented. The creep model is based on the idea of the mechanisms superposition connected with the different elementary deformation processes. Some of them are incident to the ordered structure L12 (anomalous mechanisms), others are typical to pure metals with the fcc structure (normal mechanisms): the accumulation of thermal APBs by means of the intersection of moving dislocations; the formation of APB tubes; the multiplication of superdislocations; the movement of single dislocations; the accumulation of point defects, such as vacancies and interstitial atoms; the accumulation APBs at the climb of edge dislocations. This model takes into account the experimental facts of the wetting antiphase boundaries and emergence of the disordered phase within the ordered phase. The calculations of the creep curves are performed under different conditions. This model describes different kinds of the creep curves and demonstrates the important meaning of the deformation superlocalisation leading to the inverse creep. The experimental and theoretical results coincide rather well.

  14. Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies

    Science.gov (United States)

    Ringe, Emilie

    Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many

  15. Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl-Ishlinskii model.

    Science.gov (United States)

    Zang, Xizhe; Liu, Yixiang; Heng, Shuai; Lin, Zhenkun; Zhao, Jie

    2017-01-01

    High-performance position control of pneumatic artificial muscles is limited by their inherent nonlinearity and hysteresis. This study aims to model the length/pressure hysteresis of a single pneumatic artificial muscle and to realize its accurate position tracking control with forward hysteresis compensation. The classical Prandtl-Ishlinskii model is widely used in hysteresis modelling and compensation. But it is only effective for symmetric hysteresis. Therefore, a modified Prandtl-Ishlinskii model is built to characterize the asymmetric length/pressure hysteresis of a single pneumatic artificial muscle, by replacing the classical play operators with two more flexible elementary operators to independently describe the ascending branch and descending branch of hysteresis loops. On the basis, a position tracking controller, which is composed of cascade forward hysteresis compensation and simple proportional pressure controller, is designed for the pneumatic artificial muscle. Experiment results show that the MPI model can reproduce the length/pressure hysteresis of the pneumatic artificial muscle, and the proposed controller for the pneumatic artificial muscle can track the reference position signals with high accuracy. By modelling the length/pressure hysteresis with the modified Prandtl-Ishlinskii model and using its inversion for compensation, precise position control of a single pneumatic artificial muscle is achieved.

  16. A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction

    International Nuclear Information System (INIS)

    Wu, Xuedong; Zhu, Zhiyu; Su, Xunliang; Fan, Shaosheng; Du, Zhaoping; Chang, Yanchao; Zeng, Qingjun

    2015-01-01

    Wind speed prediction is one important methods to guarantee the wind energy integrated into the whole power system smoothly. However, wind power has a non–schedulable nature due to the strong stochastic nature and dynamic uncertainty nature of wind speed. Therefore, wind speed prediction is an indispensable requirement for power system operators. Two new approaches for hourly wind speed prediction are developed in this study by integrating the single multiplicative neuron model and the iterated nonlinear filters for updating the wind speed sequence accurately. In the presented methods, a nonlinear state–space model is first formed based on the single multiplicative neuron model and then the iterated nonlinear filters are employed to perform dynamic state estimation on wind speed sequence with stochastic uncertainty. The suggested approaches are demonstrated using three cases wind speed data and are compared with autoregressive moving average, artificial neural network, kernel ridge regression based residual active learning and single multiplicative neuron model methods. Three types of prediction errors, mean absolute error improvement ratio and running time are employed for different models’ performance comparison. Comparison results from Tables 1–3 indicate that the presented strategies have much better performance for hourly wind speed prediction than other technologies. - Highlights: • Developed two novel hybrid modeling methods for hourly wind speed prediction. • Uncertainty and fluctuations of wind speed can be better explained by novel methods. • Proposed strategies have online adaptive learning ability. • Proposed approaches have shown better performance compared with existed approaches. • Comparison and analysis of two proposed novel models for three cases are provided

  17. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.

    Science.gov (United States)

    Sengar, A; Kuipers, J A M; van Santen, Rutger A; Padding, J T

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  18. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    Science.gov (United States)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  19. Single-shot spiral imaging at 7 T.

    Science.gov (United States)

    Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P

    2018-03-25

    The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Electropolishing on single-cell: (TESLA, Reentrant and Low Loss shapes) Comsol modelling

    International Nuclear Information System (INIS)

    Bruchon, M.

    2007-01-01

    In the framework of improvement of cavity electropolishing, modelling permits to evaluate some parameters not easily accessible by experiments and can also help us to guide them. Different laboratories (DESY, Fermilab) work on electro or chemical polishing modelling with different approaches and softwares. At CEA Saclay, COMSOL software is used to model horizontal electropolishing of cavity in two dimensions. The goal of this study has been motivated by improvement of our electropolishing setup by modifying the arrival of the acid. The influence of a protuberant cathode has been evaluated and compared for different shapes of single cell cavities: TESLA, ILC Low Loss (LL ILC ), and ILC Reentrant (RE ILC ). (author)

  1. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.

    Science.gov (United States)

    Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike

    2017-11-01

    This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.

  2. Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes

    International Nuclear Information System (INIS)

    Xin, R.C.; Dong, Z.F.; Ebadian, M.A.

    1996-01-01

    In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically

  3. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  4. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-08-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  5. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    International Nuclear Information System (INIS)

    Zhuang, Zhi; Yoshimura, Hideyuki; Aizawa, Mamoru

    2013-01-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel

  6. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Zhi, E-mail: zhuang@meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Yoshimura, Hideyuki, E-mail: hyoshi@isc.meiji.ac.jp [Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Aizawa, Mamoru, E-mail: mamorua@isc.meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan)

    2013-07-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel.

  7. Model of a single mode energy harvester and properties for optimal power generation

    International Nuclear Information System (INIS)

    Liao Yabin; Sodano, Henry A

    2008-01-01

    The process of acquiring the energy surrounding a system and converting it into usable electrical energy is termed power harvesting. In the last few years, the field of power harvesting has experienced significant growth due to the ever increasing desire to produce portable and wireless electronics with extended life. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their finite energy supply, which necessitates their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and covert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. The development of energy harvesting systems is greatly facilitated by an accurate model to assist in the design of the system. This paper will describe a theoretical model of a piezoelectric based energy harvesting system that is simple to apply yet provides an accurate prediction of the power generated around a single mode of vibration. Furthermore, this model will allow optimization of system parameters to be studied such that maximal performance can be achieved. Using this model an expression for the optimal resistance and a parameter describing the energy harvesting efficiency will be presented and evaluated through numerical simulations. The second part of this paper will present an experimental validation of the model and optimal parameters

  8. Single unit approaches to human vision and memory.

    Science.gov (United States)

    Kreiman, Gabriel

    2007-08-01

    Research on the visual system focuses on using electrophysiology, pharmacology and other invasive tools in animal models. Non-invasive tools such as scalp electroencephalography and imaging allow examining humans but show a much lower spatial and/or temporal resolution. Under special clinical conditions, it is possible to monitor single-unit activity in humans when invasive procedures are required due to particular pathological conditions including epilepsy and Parkinson's disease. We review our knowledge about the visual system and visual memories in the human brain at the single neuron level. The properties of the human brain seem to be broadly compatible with the knowledge derived from animal models. The possibility of examining high-resolution brain activity in conscious human subjects allows investigators to ask novel questions that are challenging to address in animal models.

  9. The fractal dimension of cell membrane correlates with its capacitance: A new fractal single-shell model

    Science.gov (United States)

    Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.

    2010-01-01

    The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103

  10. Dipole model analysis of highest precision HERA data, including very low Q"2's

    International Nuclear Information System (INIS)

    Luszczak, A.; Kowalski, H.

    2016-12-01

    We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low χ region, using fully correlated errors. We show, that these highest precision data are very well described within the dipole model framework starting from Q"2 values of 3.5 GeV"2 to the highest values of Q"2=250 GeV"2. To analyze the saturation effects we evaluated the data including also the very low 0.35< Q"2 GeV"2 region. The fits including this region show a preference of the saturation ansatz.

  11. Single top quarks and dark matter

    Science.gov (United States)

    Pinna, Deborah; Zucchetta, Alberto; Buckley, Matthew R.; Canelli, Florencia

    2017-08-01

    Processes with dark matter interacting with the standard model fermions through new scalars or pseudoscalars with flavor-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavored quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavor violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by 30% up to a factor of two, depending on the mass assumed for the mediator particle.

  12. Addressing challenges in single species assessments via a simple state-space assessment model

    DEFF Research Database (Denmark)

    Nielsen, Anders

    Single-species and age-structured fish stock assessments still remains the main tool for managing fish stocks. A simple state-space assessment model is presented as an alternative to (semi) deterministic procedures and the full parametric statistical catch at age models. It offers a solution...... to some of the key challenges of these models. Compared to the deterministic procedures it solves a list of problems originating from falsely assuming that age classified catches are known without errors and allows quantification of uncertainties of estimated quantities of interest. Compared to full...

  13. A speech production model including the nasal Cavity

    DEFF Research Database (Denmark)

    Olesen, Morten

    In order to obtain articulatory analysis of speech production the model is improved. the standard model, as used in LPC analysis, to a large extent only models the acoustic properties of speech signal as opposed to articulatory modelling of the speech production. In spite of this the LPC model...... is by far the most widely used model in speech technology....

  14. Single-particle Schroedinger fluid. I. Formulation

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1976-01-01

    The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth

  15. Robotic Laparoendoscopic Single-site Retroperitioneal Renal Surgery: Initial Investigation of a Purpose-built Single-port Surgical System.

    Science.gov (United States)

    Maurice, Matthew J; Ramirez, Daniel; Kaouk, Jihad H

    2017-04-01

    Robotic single-site retroperitoneal renal surgery has the potential to minimize the morbidity of standard transperitoneal and multiport approaches. Traditionally, technological limitations of non-purpose-built robotic platforms have hindered the application of this approach. To assess the feasibility of retroperitoneal renal surgery using a new purpose-built robotic single-port surgical system. This was a preclinical study using three male cadavers to assess the feasibility of the da Vinci SP1098 surgical system for robotic laparoendoscopic single-site (R-LESS) retroperitoneal renal surgery. We used the SP1098 to perform retroperitoneal R-LESS radical nephrectomy (n=1) and bilateral partial nephrectomy (n=4) on the anterior and posterior surfaces of the kidney. Improvements unique to this system include enhanced optics and intelligent instrument arm control. Access was obtained 2cm anterior and inferior to the tip of the 12th rib using a novel 2.5-cm robotic single-port system that accommodates three double-jointed articulating robotic instruments, an articulating camera, and an assistant port. The primary outcome was the technical feasibility of the procedures, as measured by the need for conversion to standard techniques, intraoperative complications, and operative times. All cases were completed without the need for conversion. There were no intraoperative complications. The operative time was 100min for radical nephrectomy, and the mean operative time was 91.8±18.5min for partial nephrectomy. Limitations include the preclinical model, the small sample size, and the lack of a control group. Single-site retroperitoneal renal surgery is feasible using the latest-generation SP1098 robotic platform. While the potential of the SP1098 appears promising, further study is needed for clinical evaluation of this investigational technology. In an experimental model, we used a new robotic system to successfully perform major surgery on the kidney through a single small

  16. Improving access in gastroenterology: The single point of entry model for referrals

    Science.gov (United States)

    Novak, Kerri L; Van Zanten, Sander Veldhuyzen; Pendharkar, Sachin R

    2013-01-01

    In 2005, a group of academic gastroenterologists in Calgary (Alberta) adopted a centralized referral intake system known as central triage. This system provided a single point of entry model (SEM) for referrals rather than the traditional system of individual practitioners managing their own referrals and queues. The goal of central triage was to improve wait times and referral management. In 2008, a similar system was developed in Edmonton at the University of Alberta Hospital (Edmonton, Alberta). SEMs have subsequently been adopted by numerous subspecialties throughout Alberta. There are many benefits of SEMs including improved access and reduced wait times. Understanding and measuring complex patient flow systems is key to improving access, and centralized intake systems provide an opportunity to better understand total demand and system bottlenecks. This knowledge is particularly important for specialties such as gastroenterology (GI), in which demand exceeds supply. While it is anticipated that SEMs will reduce wait times for GI care in Canada, the lack of sufficient resources to meet the demand for GI care necessitates additional strategies. PMID:24040629

  17. Improving Access in Gastroenterology: The Single Point of Entry Model for Referrals

    Directory of Open Access Journals (Sweden)

    Kerri L Novak

    2013-01-01

    Full Text Available In 2005, a group of academic gastroenterologists in Calgary (Alberta adopted a centralized referral intake system known as central triage. This system provided a single point of entry model (SEM for referrals rather than the traditional system of individual practitioners managing their own referrals and queues. The goal of central triage was to improve wait times and referral management. In 2008, a similar system was developed in Edmonton at the University of Alberta Hospital (Edmonton, Alberta. SEMs have subsequently been adopted by numerous subspecialties throughout Alberta. There are many benefits of SEMs including improved access and reduced wait times. Understanding and measuring complex patient flow systems is key to improving access, and centralized intake systems provide an opportunity to better understand total demand and system bottlenecks. This knowledge is particularly important for specialties such as gastroenterology (GI, in which demand exceeds supply. While it is anticipated that SEMs will reduce wait times for GI care in Canada, the lack of sufficient resources to meet the demand for GI care necessitates additional strategies.

  18. Improving access in gastroenterology: the single point of entry model for referrals.

    Science.gov (United States)

    Novak, Kerri; Veldhuyzen Van Zanten, Sander; Pendharkar, Sachin R

    2013-11-01

    In 2005, a group of academic gastroenterologists in Calgary (Alberta) adopted a centralized referral intake system known as central triage. This system provided a single point of entry model (SEM) for referrals rather than the traditional system of individual practitioners managing their own referrals and queues. The goal of central triage was to improve wait times and referral management. In 2008, a similar system was developed in Edmonton at the University of Alberta Hospital (Edmonton, Alberta). SEMs have subsequently been adopted by numerous subspecialties throughout Alberta. There are many benefits of SEMs including improved access and reduced wait times. Understanding and measuring complex patient flow systems is key to improving access, and centralized intake systems provide an opportunity to better understand total demand and system bottlenecks. This knowledge is particularly important for specialties such as gastroenterology (GI), in which demand exceeds supply. While it is anticipated that SEMs will reduce wait times for GI care in Canada, the lack of sufficient resources to meet the demand for GI care necessitates additional strategies.

  19. Development and validation of double and single Wiebe function for multi-injection mode Diesel engine combustion modelling for hardware-in-the-loop applications

    International Nuclear Information System (INIS)

    Maroteaux, Fadila; Saad, Charbel; Aubertin, Fabrice

    2015-01-01

    Highlights: • Modelling of Diesel engine combustion with multi-injection mode was conducted. • Double and single Wiebe correlations for pilot, main and post combustion processes were calibrated. • Ignition delay time correlations have been developed and calibrated using experimental data for each injection. • The complete in-cylinder model has been applied successfully to real time simulations on HiL test bed. - Abstract: The improvement of Diesel engine performances in terms of fuel consumption and pollutant emissions has a huge impact on management system and diagnostic procedure. Validation and testing of engine performances can benefit from the use of theoretical models, for the reduction of development time and costs. Hardware in the Loop (HiL) test bench is a suitable way to achieve these objectives. However, the increasing complexity of management systems rises challenges for the development of very reduced physical models able to run in real time applications. This paper presents an extension of a previously developed phenomenological Diesel combustion model suitable for real time applications on a HiL test bench. In the earlier study, the modelling efforts have been targeted at high engine speeds with a very short computational time window, and where the engine operates with single injection. In the present work, a modelling of in-cylinder processes at low and medium engine speeds with multi-injection is performed. In order to reach an adequate computational time, the combustion progress during the pilot and main injection periods has been treated through a double Wiebe function, while the post combustion period has required a single Wiebe function. This paper describes the basic system models and their calibration and validation against experimental data. The use of the developed correlations of Wiebe coefficients and ignition delay times for each combustion phase, included in the in-cylinder crank angle global model, is applied for the prediction

  20. An accurate mobility model for the I-V characteristics of n-channel enhancement-mode MOSFETs with single-channel boron implantation

    International Nuclear Information System (INIS)

    Chingyuan Wu; Yeongwen Daih

    1985-01-01

    In this paper an analytical mobility model is developed for the I-V characteristics of n-channel enhancement-mode MOSFETs, in which the effects of the two-dimensional electric fields in the surface inversion channel and the parasitic resistances due to contact and interconnection are included. Most importantly, the developed mobility model easily takes the device structure and process into consideration. In order to demonstrate the capabilities of the developed model, the structure- and process-oriented parameters in the present mobility model are calculated explicitly for an n-channel enhancement-mode MOSFET with single-channel boron implantation. Moreover, n-channel MOSFETs with different channel lengths fabricated in a production line by using a set of test keys have been characterized and the measured mobilities have been compared to the model. Excellent agreement has been obtained for all ranges of the fabricated channel lengths, which strongly support the accuracy of the model. (author)

  1. Reliable Dual Tensor Model Estimation in Single and Crossing Fibers Based on Jeffreys Prior

    Science.gov (United States)

    Yang, Jianfei; Poot, Dirk H. J.; Caan, Matthan W. A.; Su, Tanja; Majoie, Charles B. L. M.; van Vliet, Lucas J.; Vos, Frans M.

    2016-01-01

    Purpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior is based on the Fisher information matrix and enables the assessment whether two tensors are mandatory to describe the data. The method is compared to Maximum Likelihood Estimation (MLE) of the dual tensor model and to FSL’s ball-and-stick approach. Results Monte Carlo experiments demonstrated that JARD’s volume fractions correlated well with the ground truth for single and crossing fiber configurations. In single fiber configurations JARD automatically reduced the volume fraction of one compartment to (almost) zero. The variance in fractional anisotropy (FA) of the main tensor component was thereby reduced compared to MLE. JARD and MLE gave a comparable outcome in data simulating crossing fibers. On brain data, JARD yielded a smaller spread in FA along the corpus callosum compared to MLE. Tract-based spatial statistics demonstrated a higher sensitivity in detecting age-related white matter atrophy using JARD compared to both MLE and the ball-and-stick approach. Conclusions The proposed framework offers accurate and precise estimation of diffusion properties in single and dual fiber regions. PMID:27760166

  2. Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    NARCIS (Netherlands)

    Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.

    2015-01-01

    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a

  3. Impact of covariate models on the assessment of the air pollution-mortality association in a single- and multipollutant context.

    Science.gov (United States)

    Sacks, Jason D; Ito, Kazuhiko; Wilson, William E; Neas, Lucas M

    2012-10-01

    With the advent of multicity studies, uniform statistical approaches have been developed to examine air pollution-mortality associations across cities. To assess the sensitivity of the air pollution-mortality association to different model specifications in a single and multipollutant context, the authors applied various regression models developed in previous multicity time-series studies of air pollution and mortality to data from Philadelphia, Pennsylvania (May 1992-September 1995). Single-pollutant analyses used daily cardiovascular mortality, fine particulate matter (particles with an aerodynamic diameter ≤2.5 µm; PM(2.5)), speciated PM(2.5), and gaseous pollutant data, while multipollutant analyses used source factors identified through principal component analysis. In single-pollutant analyses, risk estimates were relatively consistent across models for most PM(2.5) components and gaseous pollutants. However, risk estimates were inconsistent for ozone in all-year and warm-season analyses. Principal component analysis yielded factors with species associated with traffic, crustal material, residual oil, and coal. Risk estimates for these factors exhibited less sensitivity to alternative regression models compared with single-pollutant models. Factors associated with traffic and crustal material showed consistently positive associations in the warm season, while the coal combustion factor showed consistently positive associations in the cold season. Overall, mortality risk estimates examined using a source-oriented approach yielded more stable and precise risk estimates, compared with single-pollutant analyses.

  4. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    KAUST Repository

    Li, Jun; Calo, Victor M.

    2013-01-01

    models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational

  5. The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses

    International Nuclear Information System (INIS)

    Gao Shujing; Chen Lansun

    2005-01-01

    In this paper, we propose an exploited single-species discrete model with stage structure for the dynamics in a fish population for which births occur in a single pulse once per time period. Using the stroboscopic map, we obtain an exact cycle of the system, and obtain the threshold conditions for its stability. Bifurcation diagrams are constructed with the birth rate as the bifurcation parameter, and these are observed to display complex dynamic behaviors, including chaotic bands with period windows, pitch-fork and tangent bifurcation. This suggests that birth pulse provides a natural period or cyclicity that makes the dynamical behavior more complex. Moreover, we show that the timing of harvesting has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. An interesting result is obtained that, after the birth pulse, the earlier culling the mature fish, the larger harvest can tolerate

  6. Application and validation of Cox regression models in a single-center series of double kidney transplantation.

    Science.gov (United States)

    Santori, G; Fontana, I; Bertocchi, M; Gasloli, G; Magoni Rossi, A; Tagliamacco, A; Barocci, S; Nocera, A; Valente, U

    2010-05-01

    A useful approach to reduce the number of discarded marginal kidneys and to increase the nephron mass is double kidney transplantation (DKT). In this study, we retrospectively evaluated the potential predictors for patient and graft survival in a single-center series of 59 DKT procedures performed between April 21, 1999, and September 21, 2008. The kidney recipients of mean age 63.27 +/- 5.17 years included 16 women (27%) and 43 men (73%). The donors of mean age 69.54 +/- 7.48 years included 32 women (54%) and 27 men (46%). The mean posttransplant dialysis time was 2.37 +/- 3.61 days. The mean hospitalization was 20.12 +/- 13.65 days. Average serum creatinine (SCr) at discharge was 1.5 +/- 0.59 mg/dL. In view of the limited numbers of recipient deaths (n = 4) and graft losses (n = 8) that occurred in our series, the proportional hazards assumption for each Cox regression model with P DKT (P = .043), and SCr 6 months post-DKT (P = .017). All significant univariate models for graft survival passed the Schoenfeld test. A final multivariate model retained SCr at 6 months (beta = 1.746, P = .042) and donor SCr (beta = .767, P = .090). In our analysis, SCr at 6 months seemed to emerge from both univariate and multivariate Cox models as a potential predictor of graft survival among DKT. Multicenter studies with larger recipient populations and more graft losses should be performed to confirm our findings. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    Science.gov (United States)

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  8. Modeling a space-based quantum link that includes an adaptive optics system

    Science.gov (United States)

    Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.

    2017-10-01

    Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.

  9. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    International Nuclear Information System (INIS)

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs

  10. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    Science.gov (United States)

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model

  11. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  12. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  13. Effects of Singapore's Model Method on Elementary Student Problem Solving Performance: Single Subject Research

    Science.gov (United States)

    Mahoney, Kevin

    2012-01-01

    This research investigation examined the effects of Singapore's Model Method, also known as "model drawing" or "bar modeling" on the word problem-solving performance of American third and fourth grade students. Employing a single-case design, a researcher-designed teaching intervention was delivered to a child in third…

  14. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  15. Inverse modeling of multicomponent reactive transport through single and dual porosity media

    Science.gov (United States)

    Samper, Javier; Zheng, Liange; Fernández, Ana María; Montenegro, Luis

    2008-06-01

    Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX ( Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.

  16. Use of single-representative reverse-engineered surface-models for RSA does not affect measurement accuracy and precision.

    Science.gov (United States)

    Seehaus, Frank; Schwarze, Michael; Flörkemeier, Thilo; von Lewinski, Gabriela; Kaptein, Bart L; Jakubowitz, Eike; Hurschler, Christof

    2016-05-01

    Implant migration can be accurately quantified by model-based Roentgen stereophotogrammetric analysis (RSA), using an implant surface model to locate the implant relative to the bone. In a clinical situation, a single reverse engineering (RE) model for each implant type and size is used. It is unclear to what extent the accuracy and precision of migration measurement is affected by implant manufacturing variability unaccounted for by a single representative model. Individual RE models were generated for five short-stem hip implants of the same type and size. Two phantom analyses and one clinical analysis were performed: "Accuracy-matched models": one stem was assessed, and the results from the original RE model were compared with randomly selected models. "Accuracy-random model": each of the five stems was assessed and analyzed using one randomly selected RE model. "Precision-clinical setting": implant migration was calculated for eight patients, and all five available RE models were applied to each case. For the two phantom experiments, the 95%CI of the bias ranged from -0.28 mm to 0.30 mm for translation and -2.3° to 2.5° for rotation. In the clinical setting, precision is less than 0.5 mm and 1.2° for translation and rotation, respectively, except for rotations about the proximodistal axis (RSA can be achieved and are not biased by using a single representative RE model. At least for implants similar in shape to the investigated short-stem, individual models are not necessary. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:903-910, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Safe distance car-following model including backward-looking and its stability analysis

    Science.gov (United States)

    Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin

    2013-03-01

    The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

  18. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  19. Modeling the Sedimentary Infill of Lakes in the East African Rift: A Case Study of Multiple versus Single Rift Basin Segments

    Science.gov (United States)

    Zhang, C.; Scholz, C. A.

    2016-12-01

    The sedimentary basins in the East African Rift are considered excellent modern examples for investigating sedimentary infilling and evolution of extensional systems. Some lakes in the western branch of the rift have formed within single-segment systems, and include Lake Albert and Lake Edward. The largest and oldest lakes developed within multi-segment systems, and these include Lake Tanganyika and Lake Malawi. This research aims to explore processes of erosion and sedimentary infilling of the catchment area in single-segment rift (SSR) and multi-segment rift (MSR) systems. We consider different conditions of regional precipitation and evaporation, and assess the resulting facies architecture through forward modeling, using state-of-the-art commercial basin modeling software. Dionisos is a three-dimensional numerical stratigraphic forward modeling software program, which simulates basin-scale sediment transport based on empirical water- and gravity-driven diffusion equations. It was classically used to quantify the sedimentary architecture and basin infilling of both marine siliciclastic and carbonate environments. However, we apply this approach to continental rift basin environments. In this research, two scenarios are developed, one for a MSR and the other for a SSR. The modeled systems simulate the ratio of drainage area and lake surface area observed in modern Lake Tanganyika and Lake Albert, which are examples of MSRs and SSRs, respectively. The main parameters, such as maximum subsidence rate, water- and gravity-driven diffusion coefficients, rainfall, and evaporation, are approximated using these real-world examples. The results of 5 million year model runs with 50,000 year time steps show that MSRs are characterized by a deep water lake with relatively modest sediment accumulation, while the SSRs are characterized by a nearly overfilled lake with shallow water depths and thick sediment accumulation. The preliminary modeling results conform to the features

  20. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM

    Science.gov (United States)

    Porod, W.; Staub, F.

    2012-11-01

    We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the

  1. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  2. A new first-order turbulence mixing model for the stable atmospheric boundary-layer: development and testing in large-eddy and single column models

    Science.gov (United States)

    Huang, J.; Bou-Zeid, E.; Golaz, J.

    2011-12-01

    Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.

  3. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  4. Models of epidemics: when contact repetition and clustering should be included

    Directory of Open Access Journals (Sweden)

    Scholz Roland W

    2009-06-01

    Full Text Available Abstract Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave

  5. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

    International Nuclear Information System (INIS)

    Lemonnier, H.; Hervieu, E.

    1991-01-01

    Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

  6. Using forecast modelling to evaluate treatment effects in single-group interrupted time series analysis.

    Science.gov (United States)

    Linden, Ariel

    2018-05-11

    Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to "interrupt" the level and/or trend of that outcome. ITSA is commonly evaluated using methods which may produce biased results if model assumptions are violated. In this paper, treatment effects are alternatively assessed by using forecasting methods to closely fit the preintervention observations and then forecast the post-intervention trend. A treatment effect may be inferred if the actual post-intervention observations diverge from the forecasts by some specified amount. The forecasting approach is demonstrated using the effect of California's Proposition 99 for reducing cigarette sales. Three forecast models are fit to the preintervention series-linear regression (REG), Holt-Winters (HW) non-seasonal smoothing, and autoregressive moving average (ARIMA)-and forecasts are generated into the post-intervention period. The actual observations are then compared with the forecasts to assess intervention effects. The preintervention data were fit best by HW, followed closely by ARIMA. REG fit the data poorly. The actual post-intervention observations were above the forecasts in HW and ARIMA, suggesting no intervention effect, but below the forecasts in the REG (suggesting a treatment effect), thereby raising doubts about any definitive conclusion of a treatment effect. In a single-group ITSA, treatment effects are likely to be biased if the model is misspecified. Therefore, evaluators should consider using forecast models to accurately fit the preintervention data and generate plausible counterfactual forecasts, thereby improving causal inference of treatment effects in single-group ITSA studies. © 2018 John Wiley & Sons, Ltd.

  7. Multi-Objective Dynamic Economic Dispatch of Microgrid Systems Including Vehicle-to-Grid

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2015-05-01

    Full Text Available Based on the characteristics of electric vehicles (EVs, this paper establishes the load models of EVs under the autonomous charging mode and the coordinated charging and discharging mode. Integrating the EVs into a microgrid system which includes wind turbines (WTs, photovoltaic arrays (PVs, diesel engines (DEs, fuel cells (FCs and a storage battery (BS, this paper establishes multi-objective economic dispatch models of a microgrid, including the lowest operating cost, the least carbon dioxide emissions, and the lowest pollutant treatment cost. After converting the multi-objective functions to a single objective function by using the judgment matrix method, we analyze the dynamic economic dispatch of the microgrid system including vehicle-to-grid (V2G with an improved particle swarm optimization algorithm under different operation control strategies. With the example system, the proposed models and strategies are verified and analyzed. Simulation results show that the microgrid system with EVs under the coordinated charging and discharging mode has better operation economics than the autonomous charging mode. Meanwhile, the greater the load fluctuation is, the higher the operating cost of the microgrid system is.

  8. Modeling the Activity of Single Genes

    Science.gov (United States)

    Mjolsness, Eric; Gibson, Michael

    1999-01-01

    the key questions in gene regulation are: What genes are expressed in a certain cell at a certain time? How does gene expression differ from cell to cell in a multicellular organism? Which proteins act as transcription factors, i.e., are important in regulating gene expression? From questions like these, we hope to understand which genes are important for various macroscopic processes. Nearly all of the cells of a multicellular organism contain the same DNA. Yet this same genetic information yields a large number of different cell types. The fundamental difference between a neuron and a liver cell, for example, is which genes are expressed. Thus understanding gene regulation is an important step in understanding development. Furthermore, understanding the usual genes that are expressed in cells may give important clues about various diseases. Some diseases, such as sickle cell anemia and cystic fibrosis, are caused by defects in single, non-regulatory genes; others, such as certain cancers, are caused when the cellular control circuitry malfunctions - an understanding of these diseases will involve pathways of multiple interacting gene products. There are numerous challenges in the area of understanding and modeling gene regulation. First and foremost, biologists would like to develop a deeper understanding of the processes involved, including which genes and families of genes are important, how they interact, etc. From a computation point of view, there has been embarrassingly little work done. In this chapter there are many areas in which we can phrase meaningful, non-trivial computational questions, but questions that have not been addressed. Some of these are purely computational (what is a good algorithm for dealing with a model of type X) and others are more mathematical (given a system with certain characteristics, what sort of model can one use? How does one find biochemical parameters from system-level behavior using as few experiments as possible?). In

  9. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Science.gov (United States)

    Yilmaz, Hayriye; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2015-01-01

    The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs. PMID:28347035

  10. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-05-01

    Full Text Available The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807, with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs.

  11. An explanation for the multiplicative and the additive dose-effect relationship with the single-hit model

    International Nuclear Information System (INIS)

    Kottbauer, M.M.; Fleck, C.M.; Schoellnberger, H.

    1997-01-01

    For solid tumors and for leukemia the excess cancer rate after a single radiation dose D is different. The multiplicative model describes the excess solid tumor probability rate which is proportional to the background rate of cancer and dependent on dose D. The additive model describes the excess probability rate for leukaemia which is proportional to the dose D but unrelated to the spontaneous rate of cancer. A second great difference between the two models is the duration of the increased cancer probability rate. The multiplicative mode predicts that the additional cancer risk persist the whole lifetime after exposure and the additive model predicts excess risk over a period of time. With the Single-hit model (SHM) which is a multistage cancer model both dose-response relationships can be described. It will be shown that only small differences in the derivation will lead to the different relationships. We then analyze the incidence data of leukemia (1950-1987) and of all solid tumors (1958-1987) of the atomic bomb survivors. (author)

  12. SOFT COMPUTING SINGLE HIDDEN LAYER MODELS FOR SHELF LIFE PREDICTION OF BURFI

    Directory of Open Access Journals (Sweden)

    Sumit Goyal

    2012-05-01

    Full Text Available Burfi is an extremely popular sweetmeat, which is prepared by desiccating the standardized water buffalo milk. Soft computing feedforward single layer models were developed for predicting the shelf life of burfi stored at 30g.C. The data of the product relating to moisture, titratable acidity, free fatty acids, tyrosine, and peroxide value were used as input variables, and the overall acceptability score as output variable. The results showed excellent agreement between the experimental and the predicted data, suggesting that the developed soft computing model can alternatively be used for predicting the shelf life of burfi.

  13. Probabilistic Modeling of Updating Epistemic Uncertainty In Pile Capacity Prediction With a Single Failure Test Result

    Directory of Open Access Journals (Sweden)

    Indra Djati Sidi

    2017-12-01

    Full Text Available The model error N has been introduced to denote the discrepancy between measured and predicted capacity of pile foundation. This model error is recognized as epistemic uncertainty in pile capacity prediction. The statistics of N have been evaluated based on data gathered from various sites and may be considered only as a eneral-error trend in capacity prediction, providing crude estimates of the model error in the absence of more specific data from the site. The results of even a single load test to failure, should provide direct evidence of the pile capacity at a given site. Bayes theorem has been used as a rational basis for combining new data with previous data to revise assessment of uncertainty and reliability. This study is devoted to the development of procedures for updating model error (N, and subsequently the predicted pile capacity with a results of single failure test.

  14. CDW-EIS model for single-electron capture in ion-atom collisions involving multielectronic targets

    International Nuclear Information System (INIS)

    Abufager, P N; MartInez, A E; Rivarola, R D; Fainstein, P D

    2004-01-01

    A generalization of the continuum distorted wave eikonal initial state (CDW-EIS) approximation, for the description of single-electron capture in ion-atom collisions involving multielectronic targets is presented. This approximation is developed within the framework of the independent electron model taking particular care of the representation of the bound and continuum target states. Total cross sections for single-electron capture from the K-shell of He, Ne and Ar noble gases by impact of bare ions are calculated. Present results are compared to previous CDW-EIS ones and to experimental data

  15. Individual single-site travel cost model for Czech paradise geopark

    Directory of Open Access Journals (Sweden)

    Jan Špaček

    2013-01-01

    Full Text Available Geotourism is a new phenomenon, which has emerged in the tourism literature during the past two decades, and whose meaning suffered from global census. Geotourism is still a new discipline and relatively little has been written about its demand side, demonstrated by a lack of studies in the literature This article studies the recreational value of geotourism areas, and focuses on the first geopark in the Czech Republic, namely the Czech Paradise Geopark. To assess the recreational value the travel cost method is applied, specifically the individual travel cost model. The necessary research data was gathered through intensive tourist surveys conducted in the study area. Data gathered in the respondents’ survey served to determine the consumer surplus as a measure of recreational value and to develop the single site travel cost model. The dependent variable in the conducted model is the number of visits in the area and among the independent variables, studied age, education, travel cost, family status, economic activity and income. The results were subsequently compared to findings in the available literature, research works and case studies.

  16. Mathematical modeling of a single stage ultrasonically assisted distillation process.

    Science.gov (United States)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan; Abdullah, Tuan Amran Tuan; Nasef, Mohamed M; Ali, Mohamad W

    2015-05-01

    The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The role of model-based methods in the development of single scan techniques

    International Nuclear Information System (INIS)

    Laruelle, Marc

    2000-01-01

    Single scan techniques are highly desirable for clinical trials involving radiotracers because they increase logistical feasibility, improve patient compliance, and decrease the cost associated with the study. However, the information derived from single scans usually are biased by factors unrelated to the process of interest. Therefore, identification of these factors and evaluation of their impact on the proposed outcome measure is important. In this paper, the impact of confounding factors on single scan measurements is illustrated by discussing the effect of between-subject or between-condition differences in radiotracer plasma clearance on normalized activity ratios (specific to nonspecific ratios) in the tissue of interest. Computer simulation based on kinetic analyses are presented to demonstrate this effect. It is proposed that the presence of this and other confounding factors should not necessarily preclude clinical trials based on single scan techniques. First, knowledge of the distribution of plasma clearance values in a sample of the investigated population allows researchers to assign limits to this potential bias. This information can be integrated in the power analysis. Second, the impact of this problem will vary according to the characteristic of the radiotracer, and this information can be used in the development and selection of the radiotracer. Third, simple modification of the experimental design (such as administration of the radiotracer as a bolus, followed by constant infusion, rather than as a single bolus) might remove this potential confounding factor and allow appropriate quantification within the limits of a single scanning session. In conclusion, model-based kinetic characterization of radiotracer distribution and uptake is critical to the design and interpretation of clinical trials based on single scan techniques

  18. Optimum parameters in a model for tumour control probability, including interpatient heterogeneity: evaluation of the log-normal distribution

    International Nuclear Information System (INIS)

    Keall, P J; Webb, S

    2007-01-01

    The heterogeneity of human tumour radiation response is well known. Researchers have used the normal distribution to describe interpatient tumour radiosensitivity. However, many natural phenomena show a log-normal distribution. Log-normal distributions are common when mean values are low, variances are large and values cannot be negative. These conditions apply to radiosensitivity. The aim of this work was to evaluate the log-normal distribution to predict clinical tumour control probability (TCP) data and to compare the results with the homogeneous (δ-function with single α-value) and normal distributions. The clinically derived TCP data for four tumour types-melanoma, breast, squamous cell carcinoma and nodes-were used to fit the TCP models. Three forms of interpatient tumour radiosensitivity were considered: the log-normal, normal and δ-function. The free parameters in the models were the radiosensitivity mean, standard deviation and clonogenic cell density. The evaluation metric was the deviance of the maximum likelihood estimation of the fit of the TCP calculated using the predicted parameters to the clinical data. We conclude that (1) the log-normal and normal distributions of interpatient tumour radiosensitivity heterogeneity more closely describe clinical TCP data than a single radiosensitivity value and (2) the log-normal distribution has some theoretical and practical advantages over the normal distribution. Further work is needed to test these models on higher quality clinical outcome datasets

  19. Present State of the Single and Twin Aperture Short Dipole Model Program for the LHC

    CERN Document Server

    Andreyev, N I; Kurtyka, T; Leroy, D; Oberli, L R; Perini, D; Russenschuck, Stephan; Siegel, N; Siemko, A; Tommasini, D; Vanenkov, I; Walckiers, L; Weterings, W

    1998-01-01

    The LHC model program for main dipoles is based on the design, fabrication and testing at CERN of a number of single and twin aperture 1m long magnets. So far, a number of single aperture models, each with specific characteristics, were tested at 2 K at a rate of about one per month. These magnets are the main tool used to check coil performance as a function of design and assembly options in view of optimizing and finalizing choices of components and procedures. Initial quenching field levels of 8.8 T were obtained and the short sample limit of the cable at 1.9 K was reached corresponding to a central bore field of 10 T. A few twin aperture dipole models were also built and tested, using the same structural components as for the long magnets which are now being built in industry. The paper discusses the main characteristics of the models built so far, the instrumentation developed to date and the experience obtained. Finally it describes the plans aimed at continuing a vigorous program to provide input to th...

  20. A simple shear limited, single size, time dependent flocculation model

    Science.gov (United States)

    Kuprenas, R.; Tran, D. A.; Strom, K.

    2017-12-01

    This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.

  1. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  2. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  3. A probabilistic cell model in background corrected image sequences for single cell analysis

    Directory of Open Access Journals (Sweden)

    Fieguth Paul

    2010-10-01

    Full Text Available Abstract Background Methods of manual cell localization and outlining are so onerous that automated tracking methods would seem mandatory for handling huge image sequences, nevertheless manual tracking is, astonishingly, still widely practiced in areas such as cell biology which are outside the influence of most image processing research. The goal of our research is to address this gap by developing automated methods of cell tracking, localization, and segmentation. Since even an optimal frame-to-frame association method cannot compensate and recover from poor detection, it is clear that the quality of cell tracking depends on the quality of cell detection within each frame. Methods Cell detection performs poorly where the background is not uniform and includes temporal illumination variations, spatial non-uniformities, and stationary objects such as well boundaries (which confine the cells under study. To improve cell detection, the signal to noise ratio of the input image can be increased via accurate background estimation. In this paper we investigate background estimation, for the purpose of cell detection. We propose a cell model and a method for background estimation, driven by the proposed cell model, such that well structure can be identified, and explicitly rejected, when estimating the background. Results The resulting background-removed images have fewer artifacts and allow cells to be localized and detected more reliably. The experimental results generated by applying the proposed method to different Hematopoietic Stem Cell (HSC image sequences are quite promising. Conclusion The understanding of cell behavior relies on precise information about the temporal dynamics and spatial distribution of cells. Such information may play a key role in disease research and regenerative medicine, so automated methods for observation and measurement of cells from microscopic images are in high demand. The proposed method in this paper is capable

  4. Multi input single output model predictive control of non-linear bio-polymerization process

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-05-15

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.

  5. Investigation of the single layer model of GPS ionospheric data processing using IRI-90 and the attached diffusive equilibrium model of plasmaspheric electron density

    Directory of Open Access Journals (Sweden)

    L. Bànyai

    1997-06-01

    Full Text Available The single layer model of GPS ionospheric data processing is compared with the International Reference Ionosphere í 1990 and the attached Diffusive Equilibrium model of Plasmasphere (IRI-90+DEP which proved to be a good supplement to GPS data processing. These models can be used to estimate the single layer height and to improve the mapping function in day-time. The code delays estimated from IRI-90+DEP models are compared with GPS measurements carried out by TurboRogue receiver. These models can be used to estimate the preliminary receiver biases especially in the case of cross-correlation tracking mode. The practical drawback of the IRI-90 model is the sharp discontinuity of the ion components during sunset and sunrise at an elevation of 1000 km, because it also causes a sharp discontinuity in the TEC values computed from the DEP model. The GPS data may be a good source to improve the topside region of the IRI model estimating smooth TEC transition before and after sunrise in the plasmasphere.

  6. Primordial black holes from single field models of inflation

    CERN Document Server

    Garcia-Bellido, Juan

    Primordial black holes (PBH) have been shown to arise from high peaks in the matter power spectra of multi-field models of inflation. Here we show, with a simple toy model, that it is also possible to generate a peak in the curvature power spectrum of single-field inflation. We assume that the effective dynamics of the inflaton field presents a near-inflection point which slows down the field right before the end of inflation and gives rise to a prominent spike in the fluctuation power spectrum at scales much smaller than those probed by Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations. This peak will give rise, upon reentry during the radiation era, to PBH via gravitational collapse. The mass and abundance of these PBH is such that they could constitute the totality of the Dark Matter today. We satisfy all CMB and LSS constraints and predict a very broad range of PBH masses. Some of these PBH are light enough that they will evaporate before structure formation, leaving behind a ...

  7. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    Science.gov (United States)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  8. The model of children's social adjustment under the gender-roles absence in single-parent families.

    Science.gov (United States)

    Chen, I-Jun; Zhang, Hailun; Wei, Bingsi; Guo, Zeyao

    2018-01-14

    This study aimed to evaluate the effects of the gender-role types and child-rearing gender-role attitude of the single-parents, as well as their children's gender role traits and family socio-economic status, on social adjustment. We recruited 458 pairs of single parents and their children aged 8-18 by purposive sampling. The research tools included the Family Socio-economic Status Questionnaire, Sex Role Scales, Parental Child-rearing Gender-role Attitude Scale and Social Adjustment Scale. The results indicated: (a) single mothers' and their daughters' feminine traits were both higher than their masculine traits, and sons' masculine traits were higher than their feminine traits; the majority gender-role type of single parents and their children was androgyny; significant differences were found between children's gender-role types depending on different raiser, the proportion of girls' masculine traits raised by single fathers was significantly higher than those who were raised by single mothers; (b) family socio-economic status and single parents' gender-role types positively influenced parental child-rearing gender-role attitude, which in turn, influenced the children's gender traits, and further affected children's social adjustment. © 2018 International Union of Psychological Science.

  9. Predictive Modelling of Concentration of Dispersed Natural Gas in a Single Room

    Directory of Open Access Journals (Sweden)

    Abdulfatai JIMOH

    2009-07-01

    Full Text Available This paper aimed at developing a mathematical model equation to predict the concentration of natural gas in a single room. The model equation was developed by using theoretical method of predictive modelling. The model equation developed is as given in equation 28. The validity of the developed expression was tested through the simulation of experimental results using computer software called MathCAD Professional. Both experimental and simulated results were found to be in close agreement. The statistical analysis carried out through the correlation coefficients for the results of experiment 1, 2, 3 and 4 were found to be 0.9986, 1.0000, 0.9981 and 0.9999 respectively, which imply reasonable close fittings between the experimental and simulated concentrations of dispersed natural gas within the room. Thus, the model equation developed can be considered a good representation of the phenomena that occurred when there is a leakage or accidental release of such gas within the room.

  10. A unitarized meson model including color Coulomb interaction

    International Nuclear Information System (INIS)

    Metzger, Kees.

    1990-01-01

    Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs

  11. When ab ≠ c - c': published errors in the reports of single-mediator models.

    Science.gov (United States)

    Petrocelli, John V; Clarkson, Joshua J; Whitmire, Melanie B; Moon, Paul E

    2013-06-01

    Accurate reports of mediation analyses are critical to the assessment of inferences related to causality, since these inferences are consequential for both the evaluation of previous research (e.g., meta-analyses) and the progression of future research. However, upon reexamination, approximately 15% of published articles in psychology contain at least one incorrect statistical conclusion (Bakker & Wicherts, Behavior research methods, 43, 666-678 2011), disparities that beget the question of inaccuracy in mediation reports. To quantify this question of inaccuracy, articles reporting standard use of single-mediator models in three high-impact journals in personality and social psychology during 2011 were examined. More than 24% of the 156 models coded failed an equivalence test (i.e., ab = c - c'), suggesting that one or more regression coefficients in mediation analyses are frequently misreported. The authors cite common sources of errors, provide recommendations for enhanced accuracy in reports of single-mediator models, and discuss implications for alternative methods.

  12. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    Science.gov (United States)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  13. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    Science.gov (United States)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  14. Measurement of Single-top Quark Production with ATLAS Data

    CERN Document Server

    Holzbauer, J L

    2011-01-01

    Single-top production processes have been studied using 0.7 fb-1 of data from 7 TeV center-of-mass energy proton-proton collisions collected with the ATLAS detector at the LHC. Single-top is electroweak top production and the standard model includes three production modes. Each contains a Wtb vertex, allowing the possibility of a direct measurement of the CKM matrix element |Vtb|. Single-top could also be sensitive to new physics, such as flavor changing neutral currents or heavy W' bosons. Using cut-based selections, a limit of < 39.1 pb is set for dilepton Wt production and < 26.5 pb for s-channel production. For the t-channel measurement, both cut-based and neural network analyses are performed and the cross-section is measured to be 90 +32 -22 pb, where 65 +28 -19 pb is expected according to standard model.

  15. Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

    Directory of Open Access Journals (Sweden)

    Omid Noori-Kalkhoran

    2016-10-01

    Full Text Available Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model. In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code’s results.

  16. Simulation of containment pressurization in a large break-loss of coolant accident using single-cell and multicell models and CONTAIN code

    International Nuclear Information System (INIS)

    Kalkahoran, Omid Noori; Ahangari, Rohollah; Shirani, Amir Saied

    2016-01-01

    Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results

  17. Simulation of containment pressurization in a large break-loss of coolant accident using single-cell and multicell models and CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Kalkahoran, Omid Noori; Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

  18. An investigation of subchannel analysis models for single-phase and two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun

    1996-01-01

    The governing equations and lateral transport modelings of subchannel analysis code, which is the most widely used tool for the analysis of thermal hydraulics fields in reactor cores, have been thoroughly investigated in this study. The procedure for the derivation of subchannel integral balance equations from the local instantaneous phase equations was investigated by stages. The characteristics of governing equations according to the treatment of phase velocity were studies, and the equations based on the drift-flux equilibrium formulation have been derived. Turbulent mixing and void drift modeling, which affect considerably to the accuracy of subchannel analysis code, have been reviewed. In addition, some representative modelings of single-phase and two-phase turbulent mixing models have been introduced. (author). 5 tabs., 4 figs., 16 refs.

  19. Monte Carlo simulations of lattice models for single polymer systems

    Science.gov (United States)

    Hsu, Hsiao-Ping

    2014-10-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N ˜ O(10^4). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and sqrt{10}, we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.

  20. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  1. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    Science.gov (United States)

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  3. Assembling three-dimensional nanostructures on metal surfaces with a reversible vertical single-atom manipulation: A theoretical modeling

    International Nuclear Information System (INIS)

    Yang Tianxing; Ye Xiang; Huang Lei; Xie Yiqun; Ke Sanhuang

    2012-01-01

    Highlights: ► We simulate the reversible vertical single-atom manipulations on several metal surfaces. ► We propose a method to predict whether a reversible vertical single-atom manipulation can be successful on several metal surfaces. ► A 3-dimensional Ni nanocluster is assembled on the Ni(1 1 1) surface using a Ni trimer-apex tip. - Abstract: We propose a theoretical model to show that pulling up an adatom from an atomic step requires a weaker force than from the flat surfaces of Al(0 0 1), Ni(1 1 1), Pt(1 1 0) and Au(1 1 0). Single adatom in the atomic step can be extracted vertically by a trimer-apex tip while can be released to the flat surface. This reversible vertical manipulation can then be used to fabricate a supported three-dimensional (3D) nanostructure on the Ni(1 1 1) surface. The present modeling can be used to predict whether the reversible vertical single-atom manipulation and thus the assembling of 3D nanostructures can be achieved on a metal surface.

  4. Stochastic modelling of a single ion channel: an alternating renewal approach with application to limited time resolution.

    Science.gov (United States)

    Milne, R K; Yeo, G F; Edeson, R O; Madsen, B W

    1988-04-22

    Stochastic models of ion channels have been based largely on Markov theory where individual states and transition rates must be specified, and sojourn-time densities for each state are constrained to be exponential. This study presents an approach based on random-sum methods and alternating-renewal theory, allowing individual states to be grouped into classes provided the successive sojourn times in a given class are independent and identically distributed. Under these conditions Markov models form a special case. The utility of the approach is illustrated by considering the effects of limited time resolution (modelled by using a discrete detection limit, xi) on the properties of observable events, with emphasis on the observed open-time (xi-open-time). The cumulants and Laplace transform for a xi-open-time are derived for a range of Markov and non-Markov models; several useful approximations to the xi-open-time density function are presented. Numerical studies show that the effects of limited time resolution can be extreme, and also highlight the relative importance of the various model parameters. The theory could form a basis for future inferential studies in which parameter estimation takes account of limited time resolution in single channel records. Appendixes include relevant results concerning random sums and a discussion of the role of exponential distributions in Markov models.

  5. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Science.gov (United States)

    Günay, E.

    2016-04-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  6. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    International Nuclear Information System (INIS)

    Günay, E.

    2016-01-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  7. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Energy Technology Data Exchange (ETDEWEB)

    Günay, E. [Gazi University, Mechanical Engineering Department, 06570, Ankara (Turkey)

    2016-04-21

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  8. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

    DEFF Research Database (Denmark)

    Ma, Junpeng; Song, Wensheng; Wang, Xiongfei

    2018-01-01

    The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

  9. A simple analytical model of single-event upsets in bulk CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Sogoyan, Armen V.; Chumakov, Alexander I.; Smolin, Anatoly A., E-mail: aasmol@spels.ru; Ulanova, Anastasia V.; Boruzdina, Anna B.

    2017-06-01

    During the last decade, multiple new methods of single event upset (SEU) rate prediction for aerospace systems have been proposed. Despite different models and approaches being employed in these methods, they all share relatively high usage complexity and require information about a device that is not always available to an end user. This work presents an alternative approach to estimating SEU cross-section as a function of linear energy transfer (LET) that can be further developed into a method of SEU rate prediction. The goal is to propose a simple, yet physics-based, approach with just two parameters that can be used even in situations when only a process node of the device is known. The developed approach is based on geometrical interpretation of SEU cross-section and an analytical solution to the diffusion problem obtained for a simplified IC topology model. A good fit of the model to the experimental data encompassing 7 generations of SRAMs is demonstrated.

  10. A simple analytical model of single-event upsets in bulk CMOS

    International Nuclear Information System (INIS)

    Sogoyan, Armen V.; Chumakov, Alexander I.; Smolin, Anatoly A.; Ulanova, Anastasia V.; Boruzdina, Anna B.

    2017-01-01

    During the last decade, multiple new methods of single event upset (SEU) rate prediction for aerospace systems have been proposed. Despite different models and approaches being employed in these methods, they all share relatively high usage complexity and require information about a device that is not always available to an end user. This work presents an alternative approach to estimating SEU cross-section as a function of linear energy transfer (LET) that can be further developed into a method of SEU rate prediction. The goal is to propose a simple, yet physics-based, approach with just two parameters that can be used even in situations when only a process node of the device is known. The developed approach is based on geometrical interpretation of SEU cross-section and an analytical solution to the diffusion problem obtained for a simplified IC topology model. A good fit of the model to the experimental data encompassing 7 generations of SRAMs is demonstrated.

  11. Electromagnetically induced transparency and reduced speeds for single photons in a fully quantized model

    International Nuclear Information System (INIS)

    Purdy, Thomas; Ligare, Martin

    2003-01-01

    We introduce a simple model for electromagnetically induced transparency in which all fields are treated quantum mechanically. We study a system of three separated atoms at fixed positions in a one-dimensional multimode optical cavity. The first atom serves as the source for a single spontaneously emitted photon; the photon scatters from a three-level 'Λ'-configuration atom which interacts with an additional single-mode field coupling two of the atomic levels; the third atom serves as a detector of the total transmitted field. We find an analytical solution for the quantum dynamics. From the quantum amplitude describing the excitation of the detector atom we extract information that provides exact single-photon analogues to wave delays predicted by semi-classical theories. We also find complementary information in the expectation value of the electric field intensity operator

  12. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    International Nuclear Information System (INIS)

    Steenbakkers, Rudi J A; Schieber, Jay D; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi–Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated. (paper)

  13. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  14. Single chip camera active pixel sensor

    Science.gov (United States)

    Shaw, Timothy (Inventor); Pain, Bedabrata (Inventor); Olson, Brita (Inventor); Nixon, Robert H. (Inventor); Fossum, Eric R. (Inventor); Panicacci, Roger A. (Inventor); Mansoorian, Barmak (Inventor)

    2003-01-01

    A totally digital single chip camera includes communications to operate most of its structure in serial communication mode. The digital single chip camera include a D/A converter for converting an input digital word into an analog reference signal. The chip includes all of the necessary circuitry for operating the chip using a single pin.

  15. Including model uncertainty in risk-informed decision making

    International Nuclear Information System (INIS)

    Reinert, Joshua M.; Apostolakis, George E.

    2006-01-01

    Model uncertainties can have a significant impact on decisions regarding licensing basis changes. We present a methodology to identify basic events in the risk assessment that have the potential to change the decision and are known to have significant model uncertainties. Because we work with basic event probabilities, this methodology is not appropriate for analyzing uncertainties that cause a structural change to the model, such as success criteria. We use the risk achievement worth (RAW) importance measure with respect to both the core damage frequency (CDF) and the change in core damage frequency (ΔCDF) to identify potentially important basic events. We cross-check these with generically important model uncertainties. Then, sensitivity analysis is performed on the basic event probabilities, which are used as a proxy for the model parameters, to determine how much error in these probabilities would need to be present in order to impact the decision. A previously submitted licensing basis change is used as a case study. Analysis using the SAPHIRE program identifies 20 basic events as important, four of which have model uncertainties that have been identified in the literature as generally important. The decision is fairly insensitive to uncertainties in these basic events. In three of these cases, one would need to show that model uncertainties would lead to basic event probabilities that would be between two and four orders of magnitude larger than modeled in the risk assessment before they would become important to the decision. More detailed analysis would be required to determine whether these higher probabilities are reasonable. Methods to perform this analysis from the literature are reviewed and an example is demonstrated using the case study

  16. SISTEM KONTROL OTOMATIK DENGAN MODEL SINGLE-INPUT-DUAL-OUTPUT DALAM KENDALI EFISIENSI UMUR-PEMAKAIAN INSTRUMEN

    Directory of Open Access Journals (Sweden)

    S.N.M.P. Simamora

    2014-10-01

    Full Text Available Efficiency condition occurs when the value of the used outputs compared to the resource total that has been used almost close to the value 1 (absolute environment. An instrument to achieve efficiency if the power output level has decreased significantly in the life of the instrument used, if it compared to the previous condition, when the instrument is not equipped with additional systems (or proposed model improvement. Even more effective if the inputs model that are used in unison to achieve a homogeneous output. On this research has been designed and implemented the automatic control system for models of single input-dual-output, wherein the sampling instruments used are lamp and fan. Source voltage used is AC (alternate-current and tested using quantitative research methods and instrumentation (with measuring instruments are observed. The results obtained demonstrate the efficiency of the instrument experienced a significant current model of single-input-dual-output applied separately instrument trials such as lamp and fan when it compared to the condition or state before. And the result show that the design has been built, can also run well.

  17. Solute transport and extraction by a single root in unsaturated soils: model development and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaisoo; Sung, Kijune; Corapcioglu, M. Yavuz; Drew, Malcolm C

    2004-09-01

    A contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using {sup 14}C-TNT. Model parameters were acquired from the experiments in the single-root system and were used to simulate total TNT concentration in soil, providing the average concentrations in the rhizosphere and bulk soil as well as root and leaf compartments. Because the existing RCF (root concentration factor) and TSCF (transpiration stream concentration factor) equations based on log K{sub ow} (octanol-water partition coefficient) were not correlated to TNT uptake, a new term, root uptake rate (R{sub ur}), and a new T{sub scf} equation, based on the experimental data, were introduced in the proposed model. The results from both modeling and experimental studies showed higher concentrations of TNT in the rhizosphere than in the bulk soil, because mass transported from the surrounding soil into the rhizosphere was higher than that by root uptake.

  18. Children and adolescents' internal models of food-sharing behavior include complex evaluations of contextual factors.

    Science.gov (United States)

    Markovits, Henry; Benenson, Joyce F; Kramer, Donald L

    2003-01-01

    This study examined internal representations of food sharing in 589 children and adolescents (8-19 years of age). Questionnaires, depicting a variety of contexts in which one person was asked to share a resource with another, were used to examine participants' expectations of food-sharing behavior. Factors that were varied included the value of the resource, the relation between the two depicted actors, the quality of this relation, and gender. Results indicate that internal models of food-sharing behavior showed systematic patterns of variation, demonstrating that individuals have complex contextually based internal models at all ages, including the youngest. Examination of developmental changes in use of individual patterns is consistent with the idea that internal models reflect age-specific patterns of interactions while undergoing a process of progressive consolidation.

  19. Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network.

    Science.gov (United States)

    Urtnasan, Erdenebayar; Park, Jong-Uk; Joo, Eun-Yeon; Lee, Kyoung-Joung

    2018-04-23

    In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F 1 -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.

  20. Numerical modelling of micro-machining of f.c.c. single crystal: Influence of strain gradients

    KAUST Repository

    Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.

    2014-01-01

    of orthogonal micro-machining of f.c.c. single crystal copper was developed. The model was implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine VUMAT. Strain-gradient crystal-plasticity and conventional crystal

  1. Development of the numerical model for reactive transport of radionuclide and bacteria in the single fractured rock

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Baik, Min Hoon

    2010-12-01

    On the aspects of safety case of HLW deep geological disposal system, recently, many researchers in the world have been actively studying about the bacterial effects on the radionuclide transport in the fractured rock. However, the domestic research level related on the area is still insufficient. Therefore, the objective of the research is to introduce the theory and development process of the numerical model, which was newly developed to examine the bacterial effects on the radionuclide transport in the single fractured rock, and to test the model by simulating in some imaginary conditions. From the verification by comparing the simulation results with analytical solution considering only solute transport and rock diffusion, the Pearson's correlation coefficient was greater than 0.99 which demonstrates the accuracy of the model. Since the simulation in the model domain of the single fractured core rock resulted in well-matched mass-balances for all solutes, the robustness and stability of the model could be proved again. Therefore, it is expected that the report can guide the potential model users and can be a referring material for a model developer who is trying to expand and/or update the model

  2. Single top t-channel

    CERN Document Server

    Faltermann, Nils

    2017-01-01

    The production of single top quarks allows to study the interplay of top quark physics and the electroweak sector of the standard model. Deviations from predictions can be a hint for physics beyond the standard model. The t-channel is the dominant production mode for single top quarks at the LHC. This talk presents the latest measurements from the ATLAS and CMS collaborations.

  3. A Modified Model Reference Adaptive Control for a Single Motor of Latch Type Control Element Drive Mechanism

    International Nuclear Information System (INIS)

    Park, Bae Jeong

    2016-01-01

    A modified Model Reference Adaptive Control (MRAC) for a single motor of latch type Control Element Drive Mechanism (CEDM) is described herein. The CEDM has complicated dynamic characteristics including electrical, mechanical, and magnetic effects. The previous control system has utilized a Proportional-Integral (PI) controller, and the control performance is limited according to nonlinear dynamic characteristics and environmental conditions. The modified MRAC using system identification (ID) technique improves the control performance in the operating condition such as model parameter variation and environmental condition change. The modified MRAC using the identified reference model with feed-forward gain and 180Hz noise reduction filter presents better performance under normal and/or abnormal condition. The simplified reference model can make H/W implementation more practical on the viewpoint of less computation and good performance. Actually, the CEDM controller shall be capable of controlling 101 control element assemblies (CEAs) individually in the nuclear power plant. Because the load conditions and the environmental condition around the 101 CEAs are all different minutely, the proposed modified MRAC can be a good practice. The modified MRAC controller will be applied in the real nuclear power plant later and this will overcome some weak point of PI controller

  4. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  5. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  6. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    Science.gov (United States)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  7. Graft function assessment in mouse models of single- and dual- kidney transplantation.

    Science.gov (United States)

    Wang, Lei; Wang, Ximing; Jiang, Shan; Wei, Jin; Buggs, Jacentha; Fu, Liying; Zhang, Jie; Liu, Ruisheng

    2018-05-23

    Animal models of kidney transplantation (KTX) are widely used in studying immune response of hosts to implanted grafts. Additionally, KTX can be used in generating kidney-specific knockout animal models by transplantation of kidneys from donors with global knockout of a gene to wild type recipients or vise verse. Dual kidney transplantation (DKT) provides a more physiological environment for recipients than single kidney transplantation (SKT). However, DKT in mice is rare due to technical challenges. In this study, we successfully performed DKT in mice and compared the hemodynamic response and graft function with SKT. The surgical time, complications and survival rate of DKT were not significantly different from SKT, where survival rates were above 85%. Mice with DKT showed less injury and quicker recovery with lower plasma creatinine (Pcr) and higher GFR than SKT mice (Pcr = 0.34 and 0.17 mg/dl in DKT vs. 0.50 and 0.36 mg/dl in SKT at 1 and 3 days, respectively; GFR = 215 and 131 µl/min for DKT and SKT, respectively). In addition, the DKT exhibited better renal functional reserve and long-term outcome of renal graft function than SKT based on the response to acute volume expansion. In conclusion, we have successfully generated a mouse DKT model. The hemodynamic responses of DKT better mimic physiological situations with less kidney injury and better recovery than SKT because of reduced confounding factors such as single nephron hyperfiltration. We anticipate DKT in mice will provide an additional tool for evaluation of renal significance in physiology and disease.

  8. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

    KAUST Repository

    Li, Yehua

    2010-06-01

    We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

  9. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

    KAUST Repository

    Li, Yehua; Wang, Naisyin; Carroll, Raymond J.

    2010-01-01

    We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

  10. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  11. An investigation of single diffractive p-Be, p-Al, and p-W interactions within the Dual Parton Model

    International Nuclear Information System (INIS)

    Ranft, J.; Roesler, S.

    1994-01-01

    Single diffractive proton-beryllium, -aluminium, and -tungsten interactions are studied within the framework of the Dual Parton Model. Their implementation into the Monte-Carlo event generator DTUNUC is described, and the main features of single diffractive particle production are discussed, comparing them to recent experimental results. Furthermore, single diffractive hadron-nucleus cross sections are calculated using the Glauber theory and the influence of hadronic cross section fluctuations is investigated. (author). 17 refs., 3 figs., 2 tabs

  12. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  13. Child Sexual Abuse and Adult Romantic Adjustment: Comparison of Single- and Multiple-Indicator Measures

    Science.gov (United States)

    Godbout, Natacha; Sabourin, Stephane; Lussier, Yvan

    2009-01-01

    This study compared the usefulness of single- and multiple-indicator strategies in a model examining the role of child sexual abuse (CSA) to predict later marital satisfaction through attachment and psychological distress. The sample included 1,092 women and men from a nonclinical population in cohabiting or marital relationships. The single-item…

  14. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Defraene, Gilles; Van den Bergh, Laura; Al-Mamgani, Abrahim; Haustermans, Karin; Heemsbergen, Wilma; Van den Heuvel, Frank; Lebesque, Joos V.

    2012-01-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011–0.013) clinical factor was “previous abdominal surgery.” As second significant (p = 0.012–0.016) factor, “cardiac history” was included in all three rectal bleeding fits, whereas including “diabetes” was significant (p = 0.039–0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003–0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D 50 . Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions

  15. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Defraene, Gilles, E-mail: gilles.defraene@uzleuven.be [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Van den Bergh, Laura [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Al-Mamgani, Abrahim [Department of Radiation Oncology, Erasmus Medical Center - Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Haustermans, Karin [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Heemsbergen, Wilma [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Van den Heuvel, Frank [Radiation Oncology Department, University Hospitals Leuven, Leuven (Belgium); Lebesque, Joos V. [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2012-03-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints

  16. Mortality in single fathers compared with single mothers and partnered parents: a population-based cohort study.

    Science.gov (United States)

    Chiu, Maria; Rahman, Farah; Vigod, Simone; Lau, Cindy; Cairney, John; Kurdyak, Paul

    2018-03-01

    Single parent families, including families headed by single fathers, are becoming increasingly common around the world. Previous evidence suggests that single parenthood is associated with adverse health outcomes and increased mortality; however, most studies have focused on single mothers, with little known about the health of single fathers. This study aimed to examine mortality in a large population-based sample of Canadian single fathers compared with single mothers and partnered fathers and mothers. We used a representative sample of 871 single fathers, 4590 single mothers, 16 341 partnered fathers, and 18 688 partnered mothers from the Canadian Community Health Survey (cycles 2001-12; earliest survey date: Sept 5, 2000; latest survey date: Dec 24, 2012). We anonymously linked survey participants to health administrative database records to ascertain health status at baseline and mortality from survey date up to Oct 28, 2016. We included individuals who were aged 15 years or older, living in a household with one or more biological or adopted child younger than 25 years, and living in Ontario, and we excluded those who left Ontario during the study period or had data discrepancies. Single parents were defined as those who were divorced, separated, widowed, or single, never-married, and non-cohabitating, and partnered parents were defined as those who were married or common-law partners. We investigated differences in mortality using Cox proportional hazards models with adjustment for sociodemographic, lifestyle, and clinical factors. Median follow-up was 11·10 years (IQR 7·36-13·54). Mortality in single fathers (5·8 per 1000 person-years) was three-times higher than rates in single mothers (1·74 per 1000 person-years) and partnered fathers (1·94 per 1000 person-years). Single fathers had a significantly higher adjusted risk of dying than both single mothers (hazard ratio [HR] 2·49, 95% CI 1·20-5·15; p=0·01) and partnered fathers (2·06, 1·11-3

  17. WE-AB-207B-10: On Spinal Nerve Toxicity from Single-Session SAbR in Pigs and the Translation of Small Animal NTCP Models

    Energy Technology Data Exchange (ETDEWEB)

    Hrycushko, B; Medin, P [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: The incidence of peripheral neuropathy has risen with increased utilization of SAbR. There is no consensus regarding the dose-tolerance of the peripheral nervous system. In 2015, we commenced an investigation to test the hypotheses that single-session irradiation to the pig spinal nerves exhibit a similar dose-tolerance as that of the spinal cord and that a dose-length effect exists. This work evaluates the direct application of small animal NTCP models to both large animal spinal cord and preliminary peripheral nerve data. Methods: To date, 16 of 25 Yucatan minipigs have received single-session SAbR to a 1.5cm length and 4 of 25 have received irradiation to a 0.5cm length of left-sided C6-C8 spinal nerves. Toxicity related gait change has been observed in 13 animals (9 from the long length group and 4 from the short). This preliminary data is overlaid on several dose-response models which have been fit to rodent spinal cord tolerance experiments. Model parameters define a toxicity profile between a completely serial or parallel behaving organ. Adequacy of model application, including how length effects are handled, to published minipig spinal cord dose-response data and to preliminary peripheral nerve response data was evaluated through residual analysis. Results: No rodent-derived dose-response models were directly applicable to all pig data for the different lengths irradiated. Several models fit the long-length irradiated spinal cord data well, with the more serial-like models fitting best. Preliminary data on the short-length irradiation suggests no length effect exists, disproving our hypothesis. Conclusion: Direct application of small-animal NTCP models to pig data suggests dose-length effect predictions from small animal data may not translate clinically. However, the small animal models used have not considered dose heterogeneity and it is expected that including the low-to-mid dose levels in the penumbral region will improve this match. This work

  18. WE-AB-207B-10: On Spinal Nerve Toxicity from Single-Session SAbR in Pigs and the Translation of Small Animal NTCP Models

    International Nuclear Information System (INIS)

    Hrycushko, B; Medin, P

    2016-01-01

    Purpose: The incidence of peripheral neuropathy has risen with increased utilization of SAbR. There is no consensus regarding the dose-tolerance of the peripheral nervous system. In 2015, we commenced an investigation to test the hypotheses that single-session irradiation to the pig spinal nerves exhibit a similar dose-tolerance as that of the spinal cord and that a dose-length effect exists. This work evaluates the direct application of small animal NTCP models to both large animal spinal cord and preliminary peripheral nerve data. Methods: To date, 16 of 25 Yucatan minipigs have received single-session SAbR to a 1.5cm length and 4 of 25 have received irradiation to a 0.5cm length of left-sided C6-C8 spinal nerves. Toxicity related gait change has been observed in 13 animals (9 from the long length group and 4 from the short). This preliminary data is overlaid on several dose-response models which have been fit to rodent spinal cord tolerance experiments. Model parameters define a toxicity profile between a completely serial or parallel behaving organ. Adequacy of model application, including how length effects are handled, to published minipig spinal cord dose-response data and to preliminary peripheral nerve response data was evaluated through residual analysis. Results: No rodent-derived dose-response models were directly applicable to all pig data for the different lengths irradiated. Several models fit the long-length irradiated spinal cord data well, with the more serial-like models fitting best. Preliminary data on the short-length irradiation suggests no length effect exists, disproving our hypothesis. Conclusion: Direct application of small-animal NTCP models to pig data suggests dose-length effect predictions from small animal data may not translate clinically. However, the small animal models used have not considered dose heterogeneity and it is expected that including the low-to-mid dose levels in the penumbral region will improve this match. This work

  19. An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations

    International Nuclear Information System (INIS)

    Coolen, F.P.A.

    1997-01-01

    This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables

  20. On modeling biomolecular–surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces

    International Nuclear Information System (INIS)

    Akdim, B; Pachter, R; Day, P N; Kim, S S; Naik, R R

    2012-01-01

    In this work we explored the selectivity of single nucleobases towards adsorption on chiral single-wall carbon nanotubes (SWCNTs) by density functional theory calculations. Specifically, the adsorption of molecular models of guanine (G), adenine (A), thymine (T), and cytosine (C), as well as of AT and GC Watson–Crick (WC) base pairs on chiral SWCNT C(6, 5), C(9, 1) and C(8, 3) model structures, was analyzed in detail. The importance of correcting the exchange–correlation functional for London dispersion was clearly demonstrated, yet limitations in modeling such interactions by considering the SWCNT as a molecular model may mask subtle effects in a molecular–macroscopic material system. The trend in the calculated adsorption energies of the nucleobases on same diameter C(6, 5) and C(9, 1) SWCNT surfaces, i.e. G > A > T > C, was consistent with related computations and experimental work on graphitic surfaces, however contradicting experimental data on the adsorption of single-strand short homo-oligonucleotides on SWCNTs that demonstrated a trend of G > C > A > T (Albertorio et al 2009 Nanotechnology 20 395101). A possible role of electrostatic interactions in this case was partially captured by applying the effective fragment potential method, emphasizing that the interplay of the various contributions in modeling nonbonded interactions is complicated by theoretical limitations. Finally, because the calculated adsorption energies for Watson–Crick base pairs have shown little effect upon adsorption of the base pair farther from the surface, the results on SWCNT sorting by salmon genomic DNA could be indicative of partial unfolding of the double helix upon adsorption on the SWCNT surface. (paper)

  1. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  2. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment II.

    Science.gov (United States)

    Liu, Meng; Wang, Ke

    2010-12-07

    This is a continuation of our paper [Liu, M., Wang, K., 2010. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment, J. Theor. Biol. 264, 934-944]. Taking both white noise and colored noise into account, a stochastic single-species model under regime switching in a polluted environment is studied. Sufficient conditions for extinction, stochastic nonpersistence in the mean, stochastic weak persistence and stochastic permanence are established. The threshold between stochastic weak persistence and extinction is obtained. The results show that a different type of noise has a different effect on the survival results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means

    Science.gov (United States)

    Polak, Marike; De Rooij, Mark; Heiser, Willem J.

    2012-01-01

    In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) "criterion…

  4. The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    Science.gov (United States)

    Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E

    2015-04-01

    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.

  5. Single bunch beam breakup in linacs and BNS damping

    International Nuclear Information System (INIS)

    Toyomasu, Takanori

    1991-12-01

    We study a single-bunch beam breakup (BBU) problem by a macro-particle model. We consider both the BBU solution and the Landau damping solution which includes the Balakin-Novokhatsky-Smirnov (BNS) damping. In the BBU solution, we get an analytic solution which includes both the Chao-Richter-Yao solution and the two-particle model solution and which agrees well with simulation. The solution can also be used in a multi-bunch case. In the Landau damping solution, we can be see the mechanism of Landau damping formally and can get some insights into BNS damping. We confirm that a two-particle model criterion for BNS damping is a good one. We expect that the two-particle model criterion is represented by the first order interaction in Landau damping solution of a macro-particle model. (author)

  6. Evaluation of meteorological parameters over a coniferous forest in a single-column chemistry-climate model

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Klemm, O.; Rappenglück, B.; Valverde-Canossa, J.

    2006-01-01

    The simulated micrometerology by a single-column chemistry-climate model (SCM) has been evaluated by comparison with BEWA2000 field campaign measurements over a coniferous forest, July-August 2001. This comparison indicates the limitations in the representation of the SCM's micrometeorological

  7. Peristaltic modes of a single vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Kojo, Toru; Suganuma, Hideo; Tsumura, Kyosuke

    2007-01-01

    Using the Abelian Higgs model, we study the radial excitations of single vortex and their propagation modes along the vortex line. We call such beyond-stringy modes peristaltic modes of single vortex. With the profile of the static vortex, we derive the vortex-induced potential, i.e., single-particle potential for the Higgs and the photon field fluctuations around the static vortex, and investigate the coherently propagating fluctuations which correspond to the vibration of the vortex. We derive, analyze, and numerically solve the field equations of the Higgs and the photon field fluctuations around the static vortex with various Ginzburg-Landau parameter κ and topological charge n. Around the Bogomol'nyi-Prasad-Sommerfield value or critical coupling κ 2 =1/2, there appears a significant correlation between the Higgs and the photon field fluctuations mediated by the static vortex. As a result, for κ 2 =1/2, we find the characteristic new-type discrete pole of the peristaltic mode corresponding to the quasibound state of coherently fluctuating fields and the static vortex. We investigate its excitation energy, correlation energy of coherent fluctuations, spatial distributions, and the resulting magnetic flux behavior in detail. Our investigation covers not only usual type-II vortices with n=1 but also type-I and type-II vortices with n set-membership sign Z for the application to various general systems where the vortexlike objects behave as the essential degrees of freedom

  8. Application of RADSAFE to Model Single Event Upset Response of a 0.25 micron CMOS SRAM

    Science.gov (United States)

    Warren, Kevin M.; Weller, Robert A.; Sierawski, Brian; Reed, Robert A.; Mendenhall, Marcus H.; Schrimpf, Ronald D.; Massengill, Lloyd; Porter, Mark; Wilkerson, Jeff; LaBel, Kenneth A.; hide

    2006-01-01

    The RADSAFE simulation framework is described and applied to model Single Event Upsets (SEU) in a 0.25 micron CMOS 4Mbit Static Random Access Memory (SRAM). For this circuit, the RADSAFE approach produces trends similar to those expected from classical models, but more closely represents the physical mechanisms responsible for SEU in the SRAM circuit.

  9. Single-incision total laparoscopic hysterectomy

    Directory of Open Access Journals (Sweden)

    Sinha Rakesh

    2011-01-01

    Full Text Available Single-incision laparoscopic surgery is an alternative to conventional multiport laparoscopy. Single-access laparoscopy using a transumbilical port affords maximum cosmetic benefits because the surgical incision is hidden in the umbilicus. The advantages of single-access laparoscopic surgery may include less bleeding, infection, and hernia formation and better cosmetic outcome and less pain. The disadvantages and limitations include longer surgery time, difficulty in learning the technique, and the need for specialized instruments. Ongoing refinement of the surgical technique and instrumentation is likely to expand its role in gynecologic surgery in the future. We perform single-incision total laparoscopic hysterectomy using three ports in the single transumbilical incision.

  10. A note on the conditional density estimate in single functional index model

    OpenAIRE

    2010-01-01

    Abstract In this paper, we consider estimation of the conditional density of a scalar response variable Y given a Hilbertian random variable X when the observations are linked with a single-index structure. We establish the pointwise and the uniform almost complete convergence (with the rate) of the kernel estimate of this model. As an application, we show how our result can be applied in the prediction problem via the conditional mode estimate. Finally, the estimation of the funct...

  11. Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions.

    Directory of Open Access Journals (Sweden)

    Fahmi F Muhammad

    Full Text Available In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp and ideality factor (n, while thermal parameters can be defined by the cells temperature (T. A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc, open circuit voltage (Voc, fill factor (FF and efficiency (η is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance.

  12. Uncovering the single top: observation of electroweak top quark production

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Jorge Armando [Michigan State Univ., East Lansing, MI (United States)

    2009-01-01

    The top quark is generally produced in quark and anti-quark pairs. However, the Standard Model also predicts the production of only one top quark which is mediated by the electroweak interaction, known as 'Single Top'. Single Top quark production is important because it provides a unique and direct way to measure the CKM matrix element Vtb, and can be used to explore physics possibilities beyond the Standard Model predictions. This dissertation presents the results of the observation of Single Top using 2.3 fb-1 of Data collected with the D0 detector at the Fermilab Tevatron collider. The analysis includes the Single Top muon+jets and electron+jets final states and employs Boosted Decision Tress as a method to separate the signal from the background. The resulting Single Top cross section measurement is: (1) σ(p$\\bar{p}$→ tb + X, tqb + X) = 3.74-0.74+0.95 pb, where the errors include both statistical and systematic uncertainties. The probability to measure a cross section at this value or higher in the absence of signal is p = 1.9 x 10-6. This corresponds to a standard deviation Gaussian equivalence of 4.6. When combining this result with two other analysis methods, the resulting cross section measurement is: (2) σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.94 ± 0.88 pb, and the corresponding measurement significance is 5.0 standard deviations.

  13. Characterizing single-molecule FRET dynamics with probability distribution analysis.

    Science.gov (United States)

    Santoso, Yusdi; Torella, Joseph P; Kapanidis, Achillefs N

    2010-07-12

    Probability distribution analysis (PDA) is a recently developed statistical tool for predicting the shapes of single-molecule fluorescence resonance energy transfer (smFRET) histograms, which allows the identification of single or multiple static molecular species within a single histogram. We used a generalized PDA method to predict the shapes of FRET histograms for molecules interconverting dynamically between multiple states. This method is tested on a series of model systems, including both static DNA fragments and dynamic DNA hairpins. By fitting the shape of this expected distribution to experimental data, the timescale of hairpin conformational fluctuations can be recovered, in good agreement with earlier published results obtained using different techniques. This method is also applied to studying the conformational fluctuations in the unliganded Klenow fragment (KF) of Escherichia coli DNA polymerase I, which allows both confirmation of the consistency of a simple, two-state kinetic model with the observed smFRET distribution of unliganded KF and extraction of a millisecond fluctuation timescale, in good agreement with rates reported elsewhere. We expect this method to be useful in extracting rates from processes exhibiting dynamic FRET, and in hypothesis-testing models of conformational dynamics against experimental data.

  14. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  15. Single-particle properties of N = 12 to N = 20 silicon isotopes within the dispersive optical model

    Science.gov (United States)

    Bespalova, O. V.; Ermakova, T. A.; Klimochkina, A. A.; Spasskaya, T. I.

    2017-09-01

    Experimental neutron and proton single-particle energies in N = 12 to N = 20 silicon isotopes and data on neutron and proton scattering by nuclei of the isotope 28Si are analyzed on the basis of the dispersive optical model. Good agreement with available experimental data was attained. The occupation probabilities calculated for the single-particle states in question suggest a parallel-type filling of the 1 d and 2 s 1/2 neutron states in the isotopes 26,28,30,32,34Si. The single-particle spectra being considered are indicative of the closure of the Z = 14 proton subshell in the isotopes 30,32,34Si and the N = 20 neutron shell.

  16. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-05-01

    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  17. The Sun-Duffey mass effluents calculation model applied to bottom reflooding tests of a single tube performed at the CDTN

    International Nuclear Information System (INIS)

    Ladeira, L.C.D.; Rezende, H.C.

    1993-01-01

    A simple generalized model, developed by K.H. Sun and R.B. Duffey, is applied in this work to calculate the ratio of mass effluents during bottom reflooding of a single tube carried out at the CDTN/CNEN. The results of the benchmark experiments indicate that the accuracy on mass effluence ratio prediction can be within 15% by using the Sun-Duffey model. The reasonable agreement obtained between experimental data and model predictions suggest that it could be used for analysis of single tube reflood tests, in similar conditions. (author)

  18. A comparison of single column model simulations of summertime midlatitude continental convection

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, Steven [Pacific Northwest National Laboratory, Richland, Washington (United States); Randall, David [Department of Atmospospheric Science, Colorado State University, Fort Collins, Colorado (United States); Xu, Kuan-Man [Department of Atmospospheric Science, Colorado State University, Fort Collins, Colorado (United States); Cederwall, Richard [Lawrence Livermore National Laboratory, Livermore, California (United States); Cripe, Douglas [Department of Atmospospheric Science, Colorado State University, Fort Collins, Colorado (United States); Hack, James [National Center for Atmospheric Research, Boulder, Colorado (United States); Iacobellis, Sam [Scripps Institution of Oceanography, University of California, La Jolla (United States); Klein, Stephen [Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey (United States); Krueger, Steven [Department of Meterology, University of Utah, Salt Lake City, Utah (United States); Lohmann, Ulrike [Department of Physics and Oceanography, Dalhousie University, Halifax, Nova Scotia (Canada)] (and others)

    2000-01-27

    Eleven different single-column models (SCMs) and one cloud ensemble model (CEM) are driven by boundary conditions observed at the Atmospheric Radiation Measurement (ARM) program southern Great Plains site for a 17 day period during the summer of 1995. Comparison of the model simulations reveals common signatures identifiable as products of errors in the boundary conditions. Intermodel differences in the simulated temperature, humidity, cloud, precipitation, and radiative fluxes reflect differences in model resolution or physical parameterizations, although sensitive dependence on initial conditions can also contribute to intermodel differences. All models perform well at times but poorly at others. Although none of the SCM simulations stands out as superior to the others, the simulation by the CEM is in several respects in better agreement with the observations than the simulations by the SCMs. Nudging of the simulated temperature and humidity toward observations generally improves the simulated cloud and radiation fields as well as the simulated temperature and humidity but degrades the precipitation simulation for models with large temperature and humidity biases without nudging. Although some of the intermodel differences have not been explained, others have been identified as model problems that can be or have been corrected as a result of the comparison. (c) 2000 American Geophysical Union.

  19. A comparison of single column model simulations of summertime midlatitude continental convection

    International Nuclear Information System (INIS)

    Ghan, Steven; Randall, David; Xu, Kuan-Man; Cederwall, Richard; Cripe, Douglas; Hack, James; Iacobellis, Sam; Klein, Stephen; Krueger, Steven; Lohmann, Ulrike

    2000-01-01

    Eleven different single-column models (SCMs) and one cloud ensemble model (CEM) are driven by boundary conditions observed at the Atmospheric Radiation Measurement (ARM) program southern Great Plains site for a 17 day period during the summer of 1995. Comparison of the model simulations reveals common signatures identifiable as products of errors in the boundary conditions. Intermodel differences in the simulated temperature, humidity, cloud, precipitation, and radiative fluxes reflect differences in model resolution or physical parameterizations, although sensitive dependence on initial conditions can also contribute to intermodel differences. All models perform well at times but poorly at others. Although none of the SCM simulations stands out as superior to the others, the simulation by the CEM is in several respects in better agreement with the observations than the simulations by the SCMs. Nudging of the simulated temperature and humidity toward observations generally improves the simulated cloud and radiation fields as well as the simulated temperature and humidity but degrades the precipitation simulation for models with large temperature and humidity biases without nudging. Although some of the intermodel differences have not been explained, others have been identified as model problems that can be or have been corrected as a result of the comparison. (c) 2000 American Geophysical Union

  20. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  1. Do single women value early retirement more than single men?

    DEFF Research Database (Denmark)

    Danø, Anne Møller; Ejrnæs, Mette; Husted, Leif

    2005-01-01

    and health are important determinants of the retirement decision. Furthermore, we find substantial gender differences in the retirement pattern. Healthy single women value retirement more than healthy single men and are willing to reduce their disposable income to 74% of their previous income while men......The focus of this paper is to analyse why a large fraction of single elderly people choose to retire early. A structural model directly based on the individual decision of labour supply is estimated on a sample of singles, where singles are defined as those who are living alone. We find that income...... are willing to reduce the income to 81%. Men's retirement decision is mainly influenced by income and health, whereas women's retirement decision is also affected by education and unemployment experience...

  2. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    Science.gov (United States)

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  3. A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems

    Directory of Open Access Journals (Sweden)

    Sangram Bana

    2016-11-01

    Full Text Available In order to predict the performance of a PV system, a reliable and accurate simulation design of PV systems before being installed is a necessity. The present study concerns the development of single and double diode model of solar PV system and ensures the best suited model under specific environmental condition for accurate performance prediction. The information provided in the manufacturers’ data sheet is not sufficient for developing a Simulink based single and double diode models of PV module. These parameters are crucial to predict accurate performance of a PV module. These parameters of the proposed solar PV models have been calculated using an efficient iterative technique. This paper compares the simulation results of both the models with manufacturer’s data sheet to investigate the accuracy and validity. A MATLAB/Simulink based comparative performance analysis of these models under inconsistent atmospheric conditions and the effect of variations in model parameters has been carried out. Despite the simplicity, these models are highly sensitive and respond to a slight variation in temperature and insolation. It is observed that double diode PV model is more accurate under low intensity insolation or shading condition. The performance evaluation of the models under present study will be helpful to understand the I-V curves, which will enable us in predicting the solar PV system power production under variable input conditions.

  4. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark

    2016-02-10

    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  5. Reliability modelling for wear out failure period of a single unit system

    OpenAIRE

    Arekar, Kirti; Ailawadi, Satish; Jain, Rinku

    2012-01-01

    The present paper deals with two time-shifted density models for wear out failure period of a single unit system. The study, considered the time-shifted Gamma and Normal distributions. Wear out failures occur as a result of deterioration processes or mechanical wear and its probability of occurrence increases with time. A failure rate as a function of time deceases in an early failure period and it increases in wear out period. Failure rates for time shifted distributions and expression for m...

  6. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Analyses of the energy-dependent single separable potential models for the NN scattering

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Beghi, L.

    1981-08-01

    Starting from a systematic study of the salient features regarding the quantum-mechanical two-particle scattering off an energy-dependent (ED) single separable potential and its connection with the rank-2 energy-independent (EI) separable potential in the T-(K-) amplitude formulation, the present status of the ED single separable potential models due to Tabakin (M1), Garcilazo (M2) and Ahmad (M3) has been discussed. It turned out that the incorporation of a self-consistent optimization procedure improves considerably the results of the 1 S 0 and 3 S 1 scattering phase shifts for the models (M2) and (M3) up to the CM wave number q=2.5 fm -1 , although the extrapolation of the results up to q=10 fm -1 reveals that the two models follow the typical behaviour of the well-known super-soft core potentials. It has been found that a variant of (M3) - i.e. (M4) involving one more parameter - gives the phase shifts results which are generally in excellent agreement with the data up to q=2.5 fm -1 and the extrapolation of the results for the 1 S 0 case in the higher wave number range not only follows the corresponding data qualitatively but also reflects a behaviour similar to the Reid soft core and Hamada-Johnston potentials together with a good agreement with the recent [4/3] Pade fits. A brief discussion regarding the features resulting from the variations in the ED parts of all the four models under consideration and their correlations with the inverse scattering theory methodology concludes the paper. (author)

  8. Global stability for infectious disease models that include immigration of infected individuals and delay in the incidence

    Directory of Open Access Journals (Sweden)

    Chelsea Uggenti

    2018-03-01

    Full Text Available We begin with a detailed study of a delayed SI model of disease transmission with immigration into both classes. The incidence function allows for a nonlinear dependence on the infected population, including mass action and saturating incidence as special cases. Due to the immigration of infectives, there is no disease-free equilibrium and hence no basic reproduction number. We show there is a unique endemic equilibrium and that this equilibrium is globally asymptotically stable for all parameter values. The results include vector-style delay and latency-style delay. Next, we show that previous global stability results for an SEI model and an SVI model that include immigration of infectives and non-linear incidence but not delay can be extended to systems with vector-style delay and latency-style delay.

  9. Adverse selection without single crossing

    DEFF Research Database (Denmark)

    Schottmüller, Christoph

    2015-01-01

    The single-crossing assumption simplifies the analysis of screening models as local incentive compatibility becomes sufficient for global incentive compatibility. If single crossing is violated, global incentive compatibility constraints have to be taken into account. This paper studies monotone...... solutions in a screening model that allows a one-time violation of single crossing. The results show that local and non-local incentive constraints distort the solution in opposite directions. Therefore, the optimal decision might involve distortions above as well as below the first-best decision...

  10. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament.

    Science.gov (United States)

    Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G

    2004-02-01

    The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.

  11. Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot

    Science.gov (United States)

    Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao

    2018-01-01

    This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.

  12. A new method for explicit modelling of single failure event within different common cause failure groups

    International Nuclear Information System (INIS)

    Kančev, Duško; Čepin, Marko

    2012-01-01

    Redundancy and diversity are the main principles of the safety systems in the nuclear industry. Implementation of safety components redundancy has been acknowledged as an effective approach for assuring high levels of system reliability. The existence of redundant components, identical in most of the cases, implicates a probability of their simultaneous failure due to a shared cause—a common cause failure. This paper presents a new method for explicit modelling of single component failure event within multiple common cause failure groups simultaneously. The method is based on a modification of the frequently utilised Beta Factor parametric model. The motivation for development of this method lays in the fact that one of the most widespread softwares for fault tree and event tree modelling as part of the probabilistic safety assessment does not comprise the option for simultaneous assignment of single failure event to multiple common cause failure groups. In that sense, the proposed method can be seen as an advantage of the explicit modelling of common cause failures. A standard standby safety system is selected as a case study for application and study of the proposed methodology. The results and insights implicate improved, more transparent and more comprehensive models within probabilistic safety assessment.

  13. Simulation analysis of a wind farm with different aggregated models

    DEFF Research Database (Denmark)

    Li, H.; Wang, H.; Zhao, B.

    2011-01-01

    Based on a wind farm including wind turbines with squirrel cage induction generators (SCIGs), different aggregated models of a wind farm, such as a single weighted average model, a reduced-order re-scaled model, a parameter transformed model and a single weighted arithmetic model were presented, ...

  14. Single-process versus multiple-strategy models of decision making: evidence from an information intrusion paradigm.

    Science.gov (United States)

    Söllner, Anke; Bröder, Arndt; Glöckner, Andreas; Betsch, Tilmann

    2014-02-01

    When decision makers are confronted with different problems and situations, do they use a uniform mechanism as assumed by single-process models (SPMs) or do they choose adaptively from a set of available decision strategies as multiple-strategy models (MSMs) imply? Both frameworks of decision making have gathered a lot of support, but only rarely have they been contrasted with each other. Employing an information intrusion paradigm for multi-attribute decisions from givens, SPM and MSM predictions on information search, decision outcomes, attention, and confidence judgments were derived and tested against each other in two experiments. The results consistently support the SPM view: Participants seemingly using a "take-the-best" (TTB) strategy do not ignore TTB-irrelevant information as MSMs would predict, but adapt the amount of information searched, choose alternative choice options, and show varying confidence judgments contingent on the quality of the "irrelevant" information. The uniformity of these findings underlines the adequacy of the novel information intrusion paradigm and comprehensively promotes the notion of a uniform decision making mechanism as assumed by single-process models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Modelling and control of a microgrid including photovoltaic and wind generation

    Science.gov (United States)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  16. Modeling condom-use stage of change in low-income, single, urban women.

    Science.gov (United States)

    Morrison-Beedy, Dianne; Carey, Michael P; Lewis, Brian P

    2002-04-01

    This study was undertaken to identify and test a model of the cognitive antecedents to condom use stage of change in low-income, single, urban women. A convenience sample of 537 women (M=30 years old) attending two urban primary health care settings in western New York State anonymously completed questionnaires based primarily on two leading social-cognitive models, the transtheoretical model and the information-motivation-behavioral skills model. We used structural equation modeling to examine the direct and indirect effects of HIV-related knowledge, social norms of discussing HIV risk and prevention, familiarity with HIV-infected persons, general readiness to change sexual behaviors, perceived vulnerability to HIV, and pros and cons of condom use on condom-use stage of change. The results indicated two models that differ by partner type. Condom-use stage of change in women with steady main partners was influenced most by social norms and the pros of condom use. Condom-use stage of change in women with "other" types (multiple, casual, or new) of sexual partners was influenced by HIV-related knowledge, general readiness to change sexual behaviors, and the pros of condom use. These findings suggest implications for developing gender-relevant HIV-prevention interventions. Copyright 2002 Wiley Periodicals, Inc.

  17. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun

    2013-01-01

    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  18. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  19. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

    Science.gov (United States)

    Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.

    2014-11-01

    In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

  20. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

    International Nuclear Information System (INIS)

    Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.

    2014-01-01

    In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

  1. Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method

    International Nuclear Information System (INIS)

    Yu, Guangbin; Tang, Chaolong; Song, Jinhui; Lu, Wenqiang

    2014-01-01

    Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial

  2. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)

    2014-05-07

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  3. Development of realistic concrete models including scaling effects

    International Nuclear Information System (INIS)

    Carpinteri, A.

    1989-09-01

    Progressive cracking in structural elements of concrete is considered. Two simple models are applied, which, even though different, lead to similar predictions for the fracture behaviour. Both Virtual Crack Propagation Model and Cohesive Limit Analysis (Section 2), show a trend towards brittle behaviour and catastrophical events for large structural sizes. A numerical Cohesive Crack Model is proposed (Section 3) to describe strain softening and strain localization in concrete. Such a model is able to predict the size effects of fracture mechanics accurately. Whereas for Mode I, only untieing of the finite element nodes is applied to simulate crack growth, for Mixed Mode a topological variation is required at each step (Section 4). In the case of the four point shear specimen, the load vs. deflection diagrams reveal snap-back instability for large sizes. By increasing the specimen sizes, such instability tends to reproduce the classical LEFM instability. Remarkable size effects are theoretically predicted and experimentally confirmed also for reinforced concrete (Section 5). The brittleness of the flexural members increases by increasing size and/or decreasing steel content. On the basis of these results, the empirical code rules regarding the minimum amount of reinforcement could be considerably revised

  4. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    Science.gov (United States)

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  5. The Sort on Radioactive Waste Type Model: A method to sort single-shell tanks into characteristics groups

    International Nuclear Information System (INIS)

    Hill, J.G.; Anderson, G.S.; Simpson, B.C.

    1995-02-01

    The Sort on Radioactive Waste Type (SORWT) Model is a method to categorize Hanford Site single-shell tanks (SSTS) into groups of tanks expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. The model has identified 24 different waste-type groups encompassing 133 of the 149 SSTs and 93% of the total waste volume in SSTS. The remaining 16 SSTs and associated wastes could not be grouped. according to the established criteria and were placed in an ungrouped category. A detailed statistical verification study has been conducted that employs analysis of variance (ANOVA) and the core sample analysis data collected since 1989. These data cover eight tanks and five SORWT groups. The verification study showed that these five SORWT groups are highly statistically significant; they represent approximately 10% of the total waste volume and 26% of the total sludge volume in SSTS. Future sampling recommendations based on the SORWT Model results include 32 core samples from 16 tanks and 18 auger samples from six tanks. Combining these data with the existing body of information will form the basis for characterizing 98 SSTs (66%). These 98 SSTs represent 78% of the total waste volume, 61% of the total sludge volume, and 88 % of the salt cake volume

  6. Application for Single Price Auction Model (SPA) in AC Network

    Science.gov (United States)

    Wachi, Tsunehisa; Fukutome, Suguru; Chen, Luonan; Makino, Yoshinori; Koshimizu, Gentarou

    This paper aims to develop a single price auction model with AC transmission network, based on the principle of maximizing social surplus of electricity market. Specifically, we first formulate the auction market as a nonlinear optimization problem, which has almost the same form as the conventional optimal power flow problem, and then propose an algorithm to derive both market clearing price and trade volume of each player even for the case of market-splitting. As indicated in the paper, the proposed approach can be used not only for the price evaluation of auction or bidding market but also for analysis of bidding strategy, congestion effect and other constraints or factors. Several numerical examples are used to demonstrate effectiveness of our method.

  7. Single Motherhood, Alcohol Dependence, and Smoking During Pregnancy: A Propensity Score Analysis.

    Science.gov (United States)

    Waldron, Mary; Bucholz, Kathleen K; Lian, Min; Lessov-Schlaggar, Christina N; Miller, Ruth Huang; Lynskey, Michael T; Knopik, Valerie S; Madden, Pamela A F; Heath, Andrew C

    2017-09-01

    Few studies linking single motherhood and maternal smoking during pregnancy consider correlated risk from problem substance use beyond history of smoking and concurrent use of alcohol. In the present study, we used propensity score methods to examine whether the risk of smoking during pregnancy associated with single motherhood is the result of potential confounders, including alcohol dependence. Data were drawn from mothers participating in a birth cohort study of their female like-sex twin offspring (n = 257 African ancestry; n = 1,711 European or other ancestry). We conducted standard logistic regression models predicting smoking during pregnancy from single motherhood at twins' birth, followed by propensity score analyses comparing single-mother and two-parent families stratified by predicted probability of single motherhood. In standard models, single motherhood predicted increased risk of smoking during pregnancy in European ancestry but not African ancestry families. In propensity score analyses, rates of smoking during pregnancy were elevated in single-mother relative to two-parent European ancestry families across much of the spectrum a priori risk of single motherhood. Among African ancestry families, within-strata comparisons of smoking during pregnancy by single-mother status were nonsignificant. These findings highlight single motherhood as a unique risk factor for smoking during pregnancy in European ancestry mothers, over and above alcohol dependence. Additional research is needed to identify risks, beyond single motherhood, associated with smoking during pregnancy in African ancestry mothers.

  8. Descriptive models for single-jet sluicing of sludge waste

    International Nuclear Information System (INIS)

    Erian, F.F.; Mahoney, L.A.; Terrones, G.

    1997-12-01

    Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better

  9. Assessment of the aerosol optics component of the coupled WRF-CMAQ model using CARES field campaign data and a single column model

    Science.gov (United States)

    Gan, Chuen Meei; Binkowski, Francis; Pleim, Jonathan; Xing, Jia; Wong, David; Mathur, Rohit; Gilliam, Robert

    2015-08-01

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) - Community Multiscale Air Quality (CMAQ) model. This campaign included comprehensive measurements of aerosol composition and optical properties at two ground sites and aloft from instrumentation on-board two aircraft. A single column model (SCM) was developed to evaluate the accuracy and consistency of the coupled model using both observation and model information. Two cases (June 14 and 24, 2010) are examined in this study. The results show that though the coupled WRF-CMAQ estimates of aerosol extinction were underestimated relative to these measurements, when measured concentrations and characteristics of ambient aerosols were used as input to constrain the SCM calculations, the estimated extinction profiles agreed well with aircraft observations. One of the possible causes of the WRF-CMAQ extinction errors is that the simulated sea-salt (SS) in the accumulation mode in WRF-CMAQ is very low in both cases while the observations indicate a considerable amount of SS. Also, a significant amount of organic carbon (OC) is present in the measurement. However, in the current WRF-CMAQ model all OC is considered to be insoluble whereas most secondary organic aerosol is water soluble. In addition, the model does not consider external mixing and hygroscopic effects of water soluble OC which can impact the extinction calculations. In conclusion, the constrained SCM results indicate that the scattering portion of the aerosol optics calculations is working well, although the absorption calculation could not be effectively evaluated. However, a few factors such as greatly underestimated accumulation mode SS, misrepresentation of water soluble OC, and incomplete mixing state representation in the full coupled model

  10. Can Single-Reference Coupled Cluster Theory Describe Static Correlation?

    Science.gov (United States)

    Bulik, Ireneusz W; Henderson, Thomas M; Scuseria, Gustavo E

    2015-07-14

    While restricted single-reference coupled cluster theory truncated to singles and doubles (CCSD) provides very accurate results for weakly correlated systems, it usually fails in the presence of static or strong correlation. This failure is generally attributed to the qualitative breakdown of the reference, and can accordingly be corrected by using a multideterminant reference, including higher-body cluster operators in the ansatz, or allowing symmetry breaking in the reference. None of these solutions are ideal; multireference coupled cluster is not black box, including higher-body cluster operators is computationally demanding, and allowing symmetry breaking leads to the loss of good quantum numbers. It has long been recognized that quasidegeneracies can instead be treated by modifying the coupled cluster ansatz. The recently introduced pair coupled cluster doubles (pCCD) approach is one such example which avoids catastrophic failures and accurately models strong correlations in a symmetry-adapted framework. Here, we generalize pCCD to a singlet-paired coupled cluster model (CCD0) intermediate between coupled cluster doubles and pCCD, yielding a method that possesses the invariances of the former and much of the stability of the latter. Moreover, CCD0 retains the full structure of coupled cluster theory, including a fermionic wave function, antisymmetric cluster amplitudes, and well-defined response equations and density matrices.

  11. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    Science.gov (United States)

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  12. From single molecule fluctuations to muscle contraction: a Brownian model of A.F. Huxley's hypotheses.

    Directory of Open Access Journals (Sweden)

    Lorenzo Marcucci

    Full Text Available Muscular force generation in response to external stimuli is the result of thermally fluctuating, cyclical interactions between myosin and actin, which together form the actomyosin complex. Normally, these fluctuations are modelled using transition rate functions that are based on muscle fiber behaviour, in a phenomenological fashion. However, such a basis reduces the predictive power of these models. As an alternative, we propose a model which uses direct single molecule observations of actomyosin fluctuations reported in the literature. We precisely estimate the actomyosin potential bias and use diffusion theory to obtain a brownian ratchet model that reproduces the complete cross-bridge cycle. The model is validated by simulating several macroscopic experimental conditions, while its interpretation is compatible with two different force-generating scenarios.

  13. Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models

    Science.gov (United States)

    Nilsaz-Dezfouli, Hamid; Abu-Bakar, Mohd Rizam; Arasan, Jayanthi; Adam, Mohd Bakri; Pourhoseingholi, Mohamad Amin

    2017-01-01

    In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time distribution or proportionality of hazard. Therefore, attention must be paid in developing nonlinear models with less restrictive assumptions. Artificial neural network (ANN) models are primarily useful in prediction when nonlinear approaches are required to sift through the plethora of available information. The applications of ANN models for prognostic and diagnostic classification in medicine have attracted a lot of interest. The applications of ANN models in modelling the survival of patients with gastric cancer have been discussed in some studies without completely considering the censored data. This study proposes an ANN model for predicting gastric cancer survivability, considering the censored data. Five separate single time-point ANN models were developed to predict the outcome of patients after 1, 2, 3, 4, and 5 years. The performance of ANN model in predicting the probabilities of death is consistently high for all time points according to the accuracy and the area under the receiver operating characteristic curve. PMID:28469384

  14. Subsurface Flow Modeling in Single and Dual Continuum Anisotropic Porous Media using the Multipoint Flux Approximation Method

    KAUST Repository

    Negara, Ardiansyah

    2015-05-01

    Anisotropy of hydraulic properties of the subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that undergo during the longer geologic time scale. With respect to subsurface reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on driving forces like the pressure gradient and gravity but also on the principal directions of anisotropy. Therefore, there has been a great deal of motivation to consider anisotropy into the subsurface flow and transport models. In this dissertation, we present subsurface flow modeling in single and dual continuum anisotropic porous media, which include the single-phase groundwater flow coupled with the solute transport in anisotropic porous media, the two-phase flow with gravity effect in anisotropic porous media, and the natural gas flow in anisotropic shale reservoirs. We have employed the multipoint flux approximation (MPFA) method to handle anisotropy in the flow model. The MPFA method is designed to provide correct discretization of the flow equations for general orientation of the principal directions of the permeability tensor. The implementation of MPFA method is combined with the experimenting pressure field approach, a newly developed technique that enables the solution of the global problem breaks down into the solution of multitude of local problems. The numerical results of the study demonstrate the significant effects of anisotropy of the subsurface formations. For the single-phase groundwater flow coupled with the solute transport modeling in anisotropic porous media, the results shows the strong impact of anisotropy on the pressure field and the migration of the solute concentration. For the two-phase flow modeling with gravity effect in anisotropic porous media, it is observed that the buoyancy-driven flow, which emerges due to the density differences between the

  15. A summary of some beam-beam models

    International Nuclear Information System (INIS)

    Chao, A.W.

    1989-01-01

    Two categories of theoretical models for the beam-beam interaction are reviewed: the linear-lens models and the single-resonance models. In a linear-lens model, the beam-beam force is linearized and represented by a localized linear lens. Analyses of incoherent single particle effects can be performed exactly in these models by using matrix techniques. Although the results do not agree with the experimental observations in many respects, the linear-lens models constitute a starting point of our understanding of the beam-beam interaction. In the single-resonance models, one is concerned with the possible incoherent instabilities as the betatron tune of some of the particles is close to a certain rational number. It is assumed in these models that one and only one such rational number dominates the single-particle beam-beam effects. It is found that static single resonances cannot explain many of the experimental results. Some attempts have been made to modify the static single-resonance theory by including some mechanisms for diffusive tune fluctuations or periodic tune modulations. These modified single-resonance models have met only with some limited qualitative success. 21 refs., 13 figs

  16. Statistical methodology for discrete fracture model - including fracture size, orientation uncertainty together with intensity uncertainty and variability

    Energy Technology Data Exchange (ETDEWEB)

    Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))

    2009-11-15

    the lineament scale (k{sub t} = 2) on the other, addresses the issue of the nature of the transition. We develop a new 'mechanistic' model that could help in modeling why and where this transition can occur. The transition between both regimes would occur for a fracture length of 1-10 m and even at a smaller scale for the few outcrops that follow the self-similar density model. A consequence for the disposal issue is that the model that is likely to apply in the 'blind' scale window between 10-100 m is the self-similar model as it is defined for large-scale lineaments. The self-similar model, as it is measured for some outcrops and most lineament maps, is definitely worth being investigated as a reference for scales above 1-10 m. In the rest of the report, we develop a methodology for incorporating uncertainty and variability into the DFN modeling. Fracturing properties arise from complex processes which produce an intrinsic variability; characterizing this variability as an admissible variation of model parameter or as the division of the site into subdomains with distinct DFN models is a critical point of the modeling effort. Moreover, the DFN model encompasses a part of uncertainty, due to data inherent uncertainties and sampling limits. Both effects must be quantified and incorporated into the DFN site model definition process. In that context, all available borehole data including recording of fracture intercept positions, pole orientation and relative uncertainties are used as the basis for the methodological development and further site model assessment. An elementary dataset contains a set of discrete fracture intercepts from which a parent orientation/density distribution can be computed. The elementary bricks of the site, from which these initial parent density distributions are computed, rely on the former Single Hole Interpretation division of the boreholes into sections whose local boundaries are expected to reflect - locally - geology

  17. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  18. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  19. Single Molecule Analysis Research Tool (SMART: an integrated approach for analyzing single molecule data.

    Directory of Open Access Journals (Sweden)

    Max Greenfeld

    Full Text Available Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.

  20. Effects of post-Kyoto policy on the Swiss national economy - Analysis using a single-country equilibrium model

    International Nuclear Information System (INIS)

    2009-08-01

    This final report elaborated for the Swiss Federal Office for the Environment (FOEN) deals with questions concerning Swiss climate policy after 2012. In 2012, existing climate legislation as defined in CO 2 emission legislation is to be revised and brought in line with European legislation on greenhouse gases. The paper presents and discusses the proposals of the Swiss government that are to make Switzerland climate-neutral. These questions include how high a steering-tax must be in order to provide a 20% reduction in CO 2 emissions, which effects on the economy in general (BIP) and on particular sectors are to be expected, how households will be affected and how large the positive secondary side-effects are. The methods used in the study and their limitations are examined. In particular, a dynamic, single-country equilibrium model is introduced and various scenarios are discussed