WorldWideScience

Sample records for model detector systems

  1. A framework of modeling detector systems for computed tomography simulations

    Science.gov (United States)

    Youn, H.; Kim, D.; Kim, S. H.; Kam, S.; Jeon, H.; Nam, J.; Kim, H. K.

    2016-01-01

    Ultimate development in computed tomography (CT) technology may be a system that can provide images with excellent lesion conspicuity with the patient dose as low as possible. Imaging simulation tools have been cost-effectively used for these developments and will continue. For a more accurate and realistic imaging simulation, the signal and noise propagation through a CT detector system has been modeled in this study using the cascaded linear-systems theory. The simulation results are validated in comparisons with the measured results using a laboratory flat-panel micro-CT system. Although the image noise obtained from the simulations at higher exposures is slightly smaller than that obtained from the measurements, the difference between them is reasonably acceptable. According to the simulation results for various exposure levels and additive electronic noise levels, x-ray quantum noise is more dominant than the additive electronic noise. The framework of modeling a CT detector system suggested in this study will be helpful for the development of an accurate and realistic projection simulation model.

  2. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  3. Modeling detector response in solid-state systems for radiation therapy and radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Hugtenburg, R.P. [School of Physics and Astronomy, University of Birmingham, B15 2TT, UK (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH, UK (United Kingdom)

    2006-07-01

    In order for the many advantageous properties of solid-state dosimeters to be realised in clinic, strategies must be evolved for the calibration of detector systems for an ever expanding range of radiation sources including spectrally complex and mixed radiation fields. Monte Carlo models of the source and detector systems provide a means to account in a precise way for energy absorbed in the detector allowing for primary and secondary radiation processes including multiple scattering. Solid- state dosimeters including Si diodes, MOSFET, diamond detectors and doped optical fibres have been calibrated for dose in monoenergetic synchrotron X-rays in the range 5-50 keV, for quasi monoenergetic X-rays sources from 20-200 keV and for megavoltage X-ray and proton sources, such as are used in radical radiation therapy. With careful consideration of the elemental composition of the detector it is possible to achieve high quality agreement (2-3%) between measurement and Monte Carlo models of the variation of the detector response over a wide energy range. This information is needed in radiation therapy dosimetry where, for large external X-ray beams, detectors see a mixture of high energy primary photons and low energy (e.g. Compton scattered and pair-production-annihilation) photons. Typically, for solid-state detectors, different cavity theories are required for the two energy groups. In addition, high-Z constituents in detectors lead to an enhanced photoelectric absorption, which in the case of pure silicon detectors is up to 8 times greater than the tissue equivalent response. Information from maps of the elemental composition in the detectors, obtained via XRF and PIXE, is used in the models. Monte Carlo models are also being developed for contributions to the response from electron transport, including the microdosimetric response of detectors. Current Monte Carlo codes are able to handle large variations in density that typify tissue equivalent gas

  4. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  5. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  6. An Analysis of the Control Hierarchy Modeling of the CMS Detector Control System

    CERN Document Server

    Ling Hwong, Yi

    2010-01-01

    The supervisory level of the Detector Control System (DCS) of the CMS experiment is implemented using Finite State Machines (FSM), which model the behaviors and control the operations of all the sub-detectors and support services. The FSM tree of the whole CMS experiment consists of more than 30.000 nodes. An analysis of a system of such size is a complex task but is a crucial step towards the improvement of the overall performance of the FSM system. This paper presents the analysis of the CMS FSM system using the micro Common Representation Language 2 (mcrl2) methodology. Individual mCRL2 models are obtained for the FSM systems of the CMS sub-detectors using the ASF+SDF automated translation tool. Different mCRL2 operations are applied to the mCRL2 models. A mCRL2 simulation tool is used to closer examine the system. Visualization of a system based on the exploration of its state space is enabled with a mCRL2 tool. Requirements such as command and state propagation are expressed using modal mu-calculus and c...

  7. Modeling of serial data acquisition structure for GEM detector system in Matlab

    Science.gov (United States)

    Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Chernyshova, Maryna; Kasprowicz, Grzegorz; Krawczyk, Rafal D.; Wojenski, Andrzej; Zabolotny, Wojciech; Byszuk, Adrian

    2016-09-01

    This article presents method of modeling in Matlab hardware architecture dedicated for FPGA created by languages like VHDL or Verilog. Purposes of creating such type of model with its advantages and disadvantages are described. Rules presented in this article were exploited to create model of Serial Data Acquisition algorithm used in X-ray GEM detector system. Result were compared to real working model implemented in VHDL. After testing of basic structure, other two structures were modeled to see influence parameters of the structure on its behavior.

  8. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  9. GRAVITY detector systems

    Science.gov (United States)

    Mehrgan, Leander H.; Finger, Gert; Eisenhauer, Frank; Panduro, Johana

    2016-08-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the K-band. It will combine the AO corrected beams of the four VLT telescopes. In total, the GRAVITY instrument uses five eAPD detectors four for the infrared wavefront sensors of each telescope and one for the fringe tracker. In addition two Hawaii2RG arrays are installed, one for the acquisition camera and one for the spectrometer. The SAPHIRA eAPD array is a newly developed near-infrared detector with sub-electron noise performance at frame rates > 1Kfps. For all seven detectors the ESO common controller, NGC, is used. This paper presents an overview and comparison of GRAVITY detector systems and their final performances at the telescope

  10. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  11. Efficient system modeling for a small animal PET scanner with tapered DOI detectors.

    Science.gov (United States)

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-21

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  12. The AFP Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  13. Detector Control System of Tile Calorimeter

    CERN Document Server

    Arabidze, G; The ATLAS collaboration

    2009-01-01

    The subject of this presentation is to describe the Detector Control System (DCS) implementation for Tile Calorimeter sub-detector. It describes hardware layout and software components for main, infrastructure related and sub-detector calibration systems. It discusses implementation of the top level software Finite State Machine (FSM)and discusses state models of FSM objects. Presentation shows usage of Configuration and Conditions Data Bases, for Tile Calorimeter DCS.

  14. Modelling of the Optical Detector System in a Compact Disc Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle;

    2003-01-01

    The cross-couplings between focus and radial tracking servos in compact disc players are important, but the optical cross couplings are not well described in the literature. In this paper an optical model of a compact disc player based on the three beam single foucault detector principle is found......, which includes the cross couplings between focus and radial loops....

  15. SU-E-T-475: An Accurate Linear Model of Tomotherapy MLC-Detector System for Patient Specific Delivery QA

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Mo, X; Chen, M; Olivera, G; Parnell, D; Key, S; Lu, W [21st Century Oncology, Madison, WI (United States); Reeher, M [21st Century Oncology, Naples, FL (United States); Galmarini, D [21st Century Oncology, Fort Myers, FL (United States)

    2014-06-01

    Purpose: An accurate leaf fluence model can be used in applications such as patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is known that the total fluence is not a linear combination of individual leaf fluence due to leakage-transmission, tongue-and-groove, and source occlusion effect. Here we propose a method to model the nonlinear effects as linear terms thus making the MLC-detector system a linear system. Methods: A leaf pattern basis (LPB) consisting of no-leaf-open, single-leaf-open, double-leaf-open and triple-leaf-open patterns are chosen to represent linear and major nonlinear effects of leaf fluence as a linear system. An arbitrary leaf pattern can be expressed as (or decomposed to) a linear combination of the LPB either pulse by pulse or weighted by dwelling time. The exit detector responses to the LPB are obtained by processing returned detector signals resulting from the predefined leaf patterns for each jaw setting. Through forward transformation, detector signal can be predicted given a delivery plan. An equivalent leaf open time (LOT) sinogram containing output variation information can also be inversely calculated from the measured detector signals. Twelve patient plans were delivered in air. The equivalent LOT sinograms were compared with their planned sinograms. Results: The whole calibration process was done in 20 minutes. For two randomly generated leaf patterns, 98.5% of the active channels showed differences within 0.5% of the local maximum between the predicted and measured signals. Averaged over the twelve plans, 90% of LOT errors were within +/−10 ms. The LOT systematic error increases and shows an oscillating pattern when LOT is shorter than 50 ms. Conclusion: The LPB method models the MLC-detector response accurately, which improves patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is sensitive enough to detect systematic LOT errors as small as 10 ms.

  16. A system model for pinhole SPECT simulating edge penetration, detector, and pinhole response and non-uniform attenuation

    Science.gov (United States)

    Wietholt, Christian; Hsiao, Ing-Tsung; Chen, Chin-Tu

    2007-03-01

    Small animal SPECT using low energy photons of I-125 and approaching resolutions of microscopic levels, imaging parameters such as pinhole edge penetration, detector blur, geometric response, detector and pinhole misalignment, and gamma photon attenuation and scatter can have increasingly noticeable and/or adverse effects on reconstructed image quality. Iterative reconstruction algorithms, the widelyaccepted standard for emission tomography, allow modeling of such parameters through a system matrix. For this Monte Carlo simulation study, non-uniform attenuation correction was added to the existing system model. The model was constructed using ray-tracing and further included corrections for edge penetration, detector blur, and geometric aperture response. For each ray passing through different aperture locations, this method attenuates a voxel's contribution to a detector element along the photon path, which is then weighted according to a pinhole penetration model. To lower the computational and memory expenses, symmetry along the detector axes and an incremental storage scheme for the system model were used. For evaluating the nonuniform attenuation correction method, 3 phantoms were designed of which projection images were simulated using Monte Carlo methods. The first phantom was used to examined skin artifacts, the second to simulate attenuation by bone, and the third to generate artifacts of an air-filled space surrounded by soft tissue. In reconstructions without attenuation correction, artifacts were observed with up to a 40% difference in activity. These could be corrected using the implemented method, although in one case overcorrection occurred. Overall, attenuation correction improved reconstruction accuracy of the radioisotope distribution in the presence of structural differences.

  17. Novel Photo-Detectors and Photo-Detector Systems

    OpenAIRE

    Danilov, M.

    2008-01-01

    Recent developments in photo-detectors and photo-detector systems are reviewed. The main emphasis is made on Silicon Photo-Multipliers (SiPM) - novel and very attractive photo-detectors. Their main features are described. Properties of detectors manufactured by different producers are compared. Different applications are discussed including calorimeters, muon detection, tracking, Cherenkov light detection, and time of flight measurements.

  18. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  19. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR  <  0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29  ±  0.01, over-estimating stenosis severity as compared to 0.42  ±  0.01 (p  <  0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50  ±  0.04 falsely indicating an actionable ischemic condition in a healthy

  20. Exact modeling of lineshape and wavenumber variations for off-axis detectors in Fourier transform spectrometers (FTS) sensor systems

    Science.gov (United States)

    Niple, E.; Pires, A.; Poultney, S. K.

    1983-01-01

    The utilization of detector arrays in the focal planes of FTS sensor systems allows simultaneous spectral and spatial measurements. However, spectral lineshapes and wavenumber locations depend upon the size and location of the detector elements with respect to the Haidinger fringe pattern of the FTS sensor. These spectral distortions can be generalized as a shift and shape change of the FTS sensor lineshape. Depending on the distortions that can be tolerated, a degree of field-widening can be obtained for a given Haidinger fringe pattern. An exact model for predicting the FTS lineshape distortions is presented. The model is applied to several contemporary applications in order to quantify the magnitude of distortions to be expected.

  1. CLICdet: The post-CDR CLIC detector model

    CERN Document Server

    Alipour Tehrani, Niloufar; Cure, Benoit; Dannheim, Dominik; Duarte Ramos, Fernando; Elsener, Konrad; Gaddi, Andrea; Gerwig, Hubert; Green, Steven; Grefe, Christian; Hynds, Daniel; Klempt, Wolfgang; Linssen, Lucie; Nikiforou, Nikiforos; Nurnberg, Andreas Matthias; Marshall, John Stuart; Petric, Marko; Redford, Sophie; Roloff, Philipp Gerhard; Sailer, Andre; Sefkow, Felix; Sicking, Eva; Siegrist, Nicolas; Simon, Frank Richard; Simoniello, Rosa; Spannagel, Simon; Sroka, Szymon Krzysztof; Strom, Lars Rickard; Weber, Matthias Artur

    2017-01-01

    A new model for the CLIC detector has been defined based on lessons learnt while working with the CDR detector models and after a series of simulation studies. The new model, dubbed "CLICdet", also incorporates the experience from various R&D activities linked to a future experiment at CLIC. This note describes the studies and thoughts leading to the new detector model, and gives details on all of its sub-detector systems.

  2. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  3. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  4. The ATLAS Detector Safety System

    CERN Multimedia

    Helfried Burckhart; Kathy Pommes; Heidi Sandaker

    The ATLAS Detector Safety System (DSS) has the mandate to put the detector in a safe state in case an abnormal situation arises which could be potentially dangerous for the detector. It covers the CERN alarm severity levels 1 and 2, which address serious risks for the equipment. The highest level 3, which also includes danger for persons, is the responsibility of the CERN-wide system CSAM, which always triggers an intervention by the CERN fire brigade. DSS works independently from and hence complements the Detector Control System, which is the tool to operate the experiment. The DSS is organized in a Front- End (FE), which fulfills autonomously the safety functions and a Back-End (BE) for interaction and configuration. The overall layout is shown in the picture below. ATLAS DSS configuration The FE implementation is based on a redundant Programmable Logical Crate (PLC) system which is used also in industry for such safety applications. Each of the two PLCs alone, one located underground and one at the s...

  5. The CMS Detector Power System

    CERN Document Server

    Lusin, S

    2008-01-01

    The power system for the on-detector electronics of the CMS Experiment comprises approximately 12000 low voltage channels, with a total power requirement of 1.1 MVA. The radiation environment inside the CMS experimental cavern combined with an ambient magnetic field (reaching up to 1.3 kGauss at the detector periphery) severely limit the available choices of low voltage supplies, effectively ruling out the use of commercial off-the-shelf DC power supplies. Typical current requirements at the CMS detector front end range from 1A-30A per channel at voltages ranging between 1.25V and 8V. This requires in turn that the final stage of the low voltage power supply be located on the detector periphery. Power to the CMS front-end electronics is stabilized by a 2 MVA uninterruptible power supply (UPS) located in a CMS surface building. This UPS isolates the CMS detector from disturbances on the local power grid and provides for 2 minutes of autonomy following a power failure, allowing for an orderly shutdown of detect...

  6. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  7. Metal detector system

    Science.gov (United States)

    Lee, R. D.

    1970-01-01

    Signal voltage resulting from the disturbance of an electromagnetic field within the volume of a sensitive area is compared with a reference ac voltage for polarity information, which identifies the material. System output amplitude and polarity indicate approximate size and type of metal, respectively.

  8. The CMS Detector Control System

    CERN Document Server

    Gomez-Reino Garrido, Robert

    2009-01-01

    The Compact Muon Solenoid (CMS) experiment at CERN is one of the Large Hadron Collider multi-purpose experiments. Its large subsystems size sum up to around 6 million Detector Control System (DCS) channels to be supervised. A cluster of ~100 servers is needed to provide the required processing resources. To cope with such a size a scalable approach has been chosen factorizing the DCS system as much as possible. CMS DCS has made a clear division between its computing resources and functionality by creating a computing framework allowing for plugging in functional components. DCS components are developed by the subsystems expert groups while the computing infrastructure is developed centrally. To ease the component development task, a framework based on PVSSII [1] has been developed by the CERN Joint Controls Project [2] (JCOP). This paper describes the current status of CMS Detector Control System, giving an overview of the DCS computing infrastructure, the integration of DCS subsystem functional components an...

  9. Acquisition System and Detector Interface for Power Pulsed Detectors

    Science.gov (United States)

    Cornat, Rémi; CALICE Colaboration

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  10. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  11. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  12. Detector of Optical Vortices as the Main Element of the System of Data Transfer: Principles of Operation, Numerical Model, and Influence of Noise and Atmospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Valerii Aksenov

    2012-01-01

    Full Text Available The method is proposed of optical vortex topological charge detection along with a design of a corresponding detector. The developed technique is based on measurements of light field intensity. Mathematical model simulating performance of the detector is described in the paper, and results of numerical experiments are presented which illustrate recognition of a vortex in a turbulent medium and in the presence of amplitude and phase noise in the registered radiation. Influence of shifts of the system optical axis on precision of registration is also considered in the paper.

  13. The Tilecal/ATLAS detector control system

    CERN Document Server

    Tomasio Pina, João Antonio

    2004-01-01

    Tilecal is the barrel hadronic calorimeter of the ATLAS detector that is presently being built at CERN to operate at the LHC accelerator. The main task of the Tilecal detector control system (DCS) is to enable the coherent and safe operation of the detector. All actions initiated by the operator and all errors, warnings, and alarms concerning the hardware of the detector are handled by DCS. The DCS has to continuously monitor all operational parameters, give warnings and alarms concerning the hardware of the detector. The DCS architecture consists of a distributed back-end (BE) system running on PC's and different front-end (FE) systems. The implementation of the BE will he achieved with a commercial supervisory control and data acquisition system (SCADA) and the FE instrumentation will consist on a wide variety of equipment. The connection between the FE and BE is provided by fieldbus or L

  14. Daya Bay Antineutrino Detector Gas System

    CERN Document Server

    Band, H R; Chu, M-C; Heeger, K M; Kwok, M W; Shih, K; Wise, T; Xiao, Q

    2012-01-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya...

  15. Modeling of Demining Scenarios Using Metal Detectors

    Directory of Open Access Journals (Sweden)

    John Fernando Vargas Buitrago

    2014-08-01

    Full Text Available This paper presents an analytical model and a numerical model that uses the finite element method to simulate demining scenarios using metal detectors. Using the analytical model, simulations of typical demining scenarios with varying parameters were executed. In addition, an analysis was made that aids in clearly understanding the effect of the scenario variables on a Continuous Wave metal detector response. In order to experimentally validate the numerical model, a Continuous Wave metal detector prototype was built to obtain experimental data. The numerical method can also be used to simulate demining scenarios with high metallic content landmines.

  16. RADIOXENON MEASUREMENTS WITH THE PHOSWATCH DETECTOR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Wolfgang; Warburton, William K.; Fallu-Labruyere, A.; Sabourov, K.; Cooper, Matthew W.; McIntyre, Justin I.; Gleyzer, A.; Bean, Marc; Korpach, E.; Ungar, R. Kurt; Zhang, W.; Mekarski, P.; Ward, Rebecca; Biegalski, S.; Haas, Derek A.

    2009-09-22

    Many of the radioxenon detector systems used in the International Monitoring System and in other applications employ beta/gamma coincidence detection to achieve high sensitivity. In these systems, the coincidence detection is implemented by requiring simultaneous signals from separate beta and gamma detectors. While very sensitive to small amounts of radioxenon, this approach requires careful calibration and gain matching of several detectors and photomultiplier tubes. An alternative approach is the use of a phoswich detector in which beta-gamma coincidences are detected by pulse shape analysis. The phoswich requires only a single photomultiplier tube and thus is easier to set up and calibrate, and can be assembled into a more compact and robust system. In the past, we have developed a COTS detector system, named PhosWatch, which consists of a CsI(Tl)/BC-404 phoswich detector, digital readout electronics, and on-board software to perform the pulse shape analysis. Several units of this system have been manufactured and are now evaluated at several radioxenon research laboratories. In this paper, we will report results from production tests and some of the evaluations, including a side-by-side comparison of a SAUNA detector and a PhosWatch system using atmospheric radioxenon samples. In addition, we will show initial results obtained with a higher speed version of the readout electronics, digitizing at 500 MHz and thus able to better resolve the fast pulses from the BC-404.

  17. Electromechanically cooled germanium radiation detector system

    Science.gov (United States)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  18. Global Atmospheric Models for Cosmic Ray Detectors

    CERN Document Server

    Will, Martin

    2014-01-01

    The knowledge of atmospheric parameters -- such as temperature, pressure, and humidity -- is very important for a proper reconstruction of air showers, especially with the fluorescence technique. The Global Data Assimilation System (GDAS) provides altitude-dependent profiles of these state variables of the atmosphere and several more. Every three hours, a new data set on 23 constant pressure level plus an additional surface values is available for the entire globe. These GDAS data are now used in the standard air shower reconstruction of the Pierre Auger Observatory. The validity of the data was verified by comparisons with monthly models that were averaged from on-site meteorological radio soundings and weather station measurements obtained at the Observatory in Malarg\\"ue. Comparisons of reconstructions using the GDAS data and the monthly models are also presented. Since GDAS is a global model, the data can potentially be used for other cosmic and gamma ray detectors. Several studies were already performed ...

  19. Electrothermal Model of Kinetic Inductance Detectors

    CERN Document Server

    Thomas, Christopher N; Goldie, David J

    2014-01-01

    An electrothermal model of Kinetic Inductance Detectors (KIDs) is described. The non-equilibrium state of the resonator's quasiparticle system is characterized by an effective temperature, which because of readout-power heating is higher than that of the bath. By balancing the flow of energy into the quasiparticle system, it is possible to calculate the steady-state large-signal, small-signal and noise behaviour. Resonance-curve distortion and hysteretic switching appear naturally within the framework. It is shown that an electrothermal feedback process exists, which affects all aspects of behaviour. It is also shown that generation-recombination noise can be interpreted in terms of the thermal fluctuation noise in the effective thermal conductance that links the quasiparticle and phonon systems of the resonator. Because the scheme is based on electrothermal considerations, multiple elements can be added to simulate the behaviour of complex devices, such as resonators on membranes, again taking into account r...

  20. Cascaded-systems analysis of sandwich x-ray detectors

    Science.gov (United States)

    Kim, D. W.; Kim, J.; Yun, S.; Youn, H.; Kim, H. K.

    2016-12-01

    Active sandwich-like multilayer detectors have been developed, and their potential for motion-artifact-free dual-energy x-ray imaging at a single exposure has been demonstrated in the material decomposition context. Since the sandwich detector uses the x-ray beam transmittance through the front layer, direct x-ray interaction within photodiodes in the front layer is unavoidable, and which can increase noise in the front detector images. Similar direct x-ray interaction can also occur in the rear detector layer. To obtain a better contrast performance, an additional filter layer can be placed between the two detector layers. However, this filter layer can increase adversely noise in images obtained from the rear detector layer by reducing the number of x-ray photons reaching it. A theoretical model, which can describe the signal-to-noise performance of the sandwich detector as functions of various design parameters, has been developed by using a linear cascaded-systems theory. From the cascaded-systems analysis, the direct x-ray interaction increases noise at the high spatial frequencies where the number of secondary quanta lessens. The intermediate filter layer enhances the contribution of additive electronic noise in the overall noise performance of the rear detector layer. The detailed cascaded-systems analysis on the x-ray sandwich detectors are reported in comparisons with the measured noise-power spectra and detective quantum efficiencies. The developed model will be useful for a better design and practical use of a sandwich detector for single-shot dual-energy imaging.

  1. The CMS Tracker Detector Control System

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf Shah, S. [University of California, Santa Barbara, CA (United States)], E-mail: yousaf.shah@cern.ch; Tsirou, Andromachi; Verdini, Piero Giorgio [CERN, Geneva (Switzerland); Hartmann, Frank [University of Karlsruhe, Karlsruhe (Germany); Masetti, Lorenzo [CERN, Geneva (Switzerland); Dirkes, Guido H. [University of Karlsruhe, Karlsruhe (Germany); Stringer, Robert [University of California, Riverside, CA (United States); Fahrer, Manuel [CERN, Geneva (Switzerland)

    2009-06-01

    The Compact Muon Solenoid DCS (CMS) Silicon Strip Tracker is by far the largest detector ever built in micro-strip technology. It has an active surface area of 198 m{sup 2} consisting of 15,148 silicon modules with 9,316,352 readout channels read via 75,376 Analog Pipeline Voltage (APV) front-end chips and a total of 24,244 sensors. The Detector Control System (DCS) for the Tracker is a distributed control system that operates {approx}2000 power supplies for the silicon modules and also monitors its environmental sensors. The DCS receives information from about 10{sup 3} environmental probes (temperature and humidity sensors) located inside the detector's volume and values from these probes are driven through the Programmable Logic Controllers (PLC) of the Detector Safety System (DSS). A total of 10{sup 5} parameters are read out from the dedicated chips in the front-end electronics of the detector via the data acquisition system, and a total of 10{sup 5} parameters are read from the power supply modules. All these parameters are monitored, evaluated and correlated with the detector layout; actions are taken under specific conditions. The hardware for DCS consists of 10 PCs and 10 PLC systems that are continuously running the necessary control and safety routines. The DCS is a fundamental tool for the Tracker operation and its safety.

  2. The CMS Tracker Detector Control System

    Science.gov (United States)

    Yousaf Shah, S.; Tsirou, Andromachi; Verdini, Piero Giorgio; Hartmann, Frank; Masetti, Lorenzo; Dirkes, Guido H.; Stringer, Robert; Fahrer, Manuel

    2009-06-01

    The Compact Muon Solenoid DCS (CMS) Silicon Strip Tracker is by far the largest detector ever built in micro-strip technology. It has an active surface area of 198 m 2 consisting of 15,148 silicon modules with 9,316,352 readout channels read via 75,376 Analog Pipeline Voltage (APV) front-end chips and a total of 24,244 sensors. The Detector Control System (DCS) for the Tracker is a distributed control system that operates ˜2000 power supplies for the silicon modules and also monitors its environmental sensors. The DCS receives information from about 10 3 environmental probes (temperature and humidity sensors) located inside the detector's volume and values from these probes are driven through the Programmable Logic Controllers (PLC) of the Detector Safety System (DSS). A total of 10 5 parameters are read out from the dedicated chips in the front-end electronics of the detector via the data acquisition system, and a total of 10 5 parameters are read from the power supply modules. All these parameters are monitored, evaluated and correlated with the detector layout; actions are taken under specific conditions. The hardware for DCS consists of 10 PCs and 10 PLC systems that are continuously running the necessary control and safety routines. The DCS is a fundamental tool for the Tracker operation and its safety.

  3. High precision detector robot arm system

    Science.gov (United States)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  4. High precision detector robot arm system

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  5. GEO600 Online Detector Characterization System

    CERN Document Server

    Balasubramanian, R; Churches, D; Cokelaer, T

    2005-01-01

    A world-wide network of interferometric gravitational wave detectors is currently operational. The detectors in the network are still in their commissioning phase and are expected to achieve their design sensitivity over the next year or so. Each detector is a complex instrument involving many subsystems and each subsystem is a source of noise at the output of the detector. Therefore, in addition to recording the main gravitational wave data channel at the output of the interferometer, the state of each detector subsystem is monitored and recorded. This subsidiary data is both large in volume as well as complex in nature. We require an online monitoring and analysis tool which can process all the data channels for various noise artefacts and summarize the results of the analysis in a manner that can be accessed and interpreted conveniently. In this paper we describe the GEO600 Online Detector Characterization System (GODCS), which is the tool that is being used to monitor the output of the GEO600 gravitationa...

  6. Modeling and design of X-rays bidimensional detectors; Modelagem e projeto de detectores bidimensionais para radiacao-X

    Energy Technology Data Exchange (ETDEWEB)

    Quisbert, Elmer Paz Alcon

    2000-03-01

    In this work has been developed the scintillating fiber optic and semiconductor devices based 2-D detector design, modeling and performance evaluation using Monte Carlo methods, for high X-ray energy range (10-140 kV) radiography and tomography applications. These processes allowed us, also, the imaging system parameters and components optimization and appropriate detector design. The model estimated the detectors performance parameters (DQE, MTF and SNR), and radiation risk (in terms of mean absorbed dose in the patient) and to show up how the sequence of physical processes in X-ray detection influence the performance of this imaging PFOC detectors. In this way, the modeling of the detector includes the statistics of the spatial distribution of absorbed X-rays and of X-ray to light conversion, its transmission, and the light quanta conversion into electrons. Also contributions to noise from the detection system chain is included, mainly the CCD detector ambient noise. Performance prediction, based on calculation taken from simulations, illustrates how such detectors meet the exacting requirements of some medical and industrial applications. Also, it is envisaged that our modeling procedure of the imaging system will be suitable not only for investigating how the system components should be best designed but for CT and RD system performance prediction. The powerful techniques would enable us to give advice for future development, in this field, in search of more dose-efficient imaging systems. (author)

  7. A fast encoding system for microstrip detectors

    CERN Document Server

    Laptev, V D; CERN. Geneva

    1992-01-01

    The data acquisition system that has been proposed for LHC MSGC, is based on the 9-bit VLSI FASTPLEX and is able of performing the following on-line functions: preliminary amplification of the detector signal; analogue-to-digital conversion; and digital delay of the "first in - first out" (FiFo) type.

  8. Shock Detector for SURF model

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  9. Shock Detector for SURF model

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  10. Modeling of germanium detector and its sourceless calibration

    Directory of Open Access Journals (Sweden)

    Steljić Milijana

    2008-01-01

    Full Text Available The paper describes the procedure of adapting a coaxial high-precision germanium detector to a device with numerical calibration. The procedure includes the determination of detector dimensions and establishing the corresponding model of the system. In order to achieve a successful calibration of the system without the usage of standard sources, Monte Carlo simulations were performed to determine its efficiency and pulse-height response function. A detailed Monte Carlo model was developed using the MCNP-5.0 code. The obtained results have indicated that this method represents a valuable tool for the quantitative uncertainty analysis of radiation spectrometers and gamma-ray detector calibration, thus minimizing the need for the deployment of radioactive sources.

  11. Standard Model measurements with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hassani Samira

    2015-01-01

    Full Text Available Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of √s = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions.

  12. An XML generic detector description system and geometry editor for the ATLAS detector at the LHC

    CERN Document Server

    Chevalier, L; The ATLAS collaboration; Meyer, J

    2012-01-01

    On this poster we give an overview on a system which was developed to describe the ATLAS muon spectrometer in software. The functionality of the generic XML detector description system (AGDD, ATLAS Generic Detector Description) based on a series of parsers and converters which build a generic, transient geometry model is pointed out and it is explained how it is linked to commonly used geometry descriptions like Geant4, the ATLAS GeoModel or Root TGeo. We particularly focus on visual representations and especially stress that PERSINT amongst other crucial features permits a comfortable way for debugging. Finally we present next to a simple example a visualisation of the current XML implementation of the ATLAS muon spectrometer.

  13. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. Here, I present the detector...

  14. Status of the CMS Detector Control System

    CERN Document Server

    Bauer, Gerry; Bouffet, Olivier; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Ciganek, Marek; Cittolin, Sergio; Jose Antonio Coarasa; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Yi Ling Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Andrei Cristian Spataru; Sumorok, Konstanty

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC operational mode. CMS sub-detectors' bias voltages are set depending on the machine mode and particle beam conditions. An operator provided with a small set of screens supervises the system status summarized from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency by minimizing the time required by sub detectors to prepare for physics data taking. From the infrastructure point of view the DCS will be subject to extensive modifications in 2012. The current rack mounted control PCs will be exchanged by a redundant pair of DELL Blade systems. Thes...

  15. Position Ring System using Anger Type Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joel S. Karp, principal investigator

    2004-12-14

    The overall objective of our project was to develop PET scanners and imaging techniques that achieve high performance and excellent image quality. Our approach was based upon 3-D imaging (no septa) with position-sensitive Anger-logic detectors, whereby the encoding ratio of resolution elements to number of photo-multiplier tube channels is very high. This design led to a series of PET systems that emphasized cost-effectiveness and practicality in a clinical environment.

  16. The Compact Muon Solenoid Detector Control System

    CERN Document Server

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  17. The system test of the ZEUS microvertex detector: calibration and digitisation of the detector signals

    Energy Technology Data Exchange (ETDEWEB)

    Adler, V.

    2002-09-01

    reliably. The signal-to-noise ratio is approx. 14.6 for the middle part of the MVD. The digitisation of the detector signals is described in detail in Chap. 6. The simulation model is introduced and tested with the system test data after customising the signal height. Since the free simulation parameters obtained from the test beam measurements do not describe the data, they are reevaluated from the system test data. The used method is explained, and the simulation is refined by defining a set of new parameters. The new digitisation procedure describes the system test data better for various control distributions. The simulation reaches a resolution of 26.7 {mu}m in describing a given particle impact position. The simulation model is rather successful, but also some remaining problems are revealed. (orig.)

  18. Detector Control System for the AFP detector in ATLAS experiment at CERN

    CERN Document Server

    Banas, Elzbieta; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector project consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of...

  19. Determining MTF of digital detector system with Monte Carlo simulation

    Science.gov (United States)

    Jeong, Eun Seon; Lee, Hyung Won; Nam, Sang Hee

    2005-04-01

    We have designed a detector based on a-Se(amorphous Selenium) and done simulation the detector with Monte Carlo method. We will apply the cascaded linear system theory to determine the MTF for whole detector system. For direct comparison with experiment, we have simulated 139um pixel pitch and used simulated X-ray tube spectrum.

  20. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly Marie

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to supress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will descri...

  1. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  2. Model-based optoacoustic inversion with arbitrary-shape detectors.

    Science.gov (United States)

    Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel

    2011-07-01

    Optoacoustic imaging enables mapping the optical absorption of biological tissue using optical excitation and acoustic detection. Although most image-reconstruction algorithms are based on the assumption of a detector with an isotropic sensitivity, the geometry of the detector often leads to a response with spatially dependent magnitude and bandwidth. This effect may lead to attenuation or distortion in the recorded signal and, consequently, in the reconstructed image. Herein, an accurate numerical method for simulating the spatially dependent response of an arbitrary-shape acoustic transducer is presented. The method is based on an analytical solution obtained for a two-dimensional line detector. The calculated response is incorporated in the forward model matrix of an optoacoustic imaging setup using temporal convolution, and image reconstruction is performed by inverting the matrix relation. The method was numerically and experimentally demonstrated in two dimensions for both flat and focused transducers and compared to the spatial-convolution method. In forward simulations, the developed method did not suffer from the numerical errors exhibited by the spatial-convolution method. In reconstruction simulations and experiments, the use of both temporal-convolution and spatial-convolution methods lead to an enhancement in resolution compared to a reconstruction with a point detector model. However, because of its higher modeling accuracy, the temporal-convolution method achieved a noise figure approximated three times lower than the spatial-convolution method. The demonstrated performance of the spatial-convolution method shows it is a powerful tool for reducing reconstruction artifacts originating from the detector finite size and improving the quality of optoacoustic reconstructions. Furthermore, the method may be used for assessing new system designs. Specifically, detectors with nonstandard shapes may be investigated.

  3. Portable radiation detector and mapping system

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-12-31

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate, and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a global positioning system (GPS) on flash memory cards. The recorded information is then transferred to a laptop computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system records spectra from a NaI(Tl) gamma-ray detector or an enriched {sup 6}Li doped glass neutron scintillator. Standard Geographic Information System (GIS) software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River site (SRS) using RADMAPS. The ability to provide rapid field data should be of use in treaty verification, safeguards, decontamination, and nuclear weapons dismantlement.

  4. Construction of a GeogDetector-based model system to indicate the potential occurrence of grasshoppers in Inner Mongolia steppe habitats.

    Science.gov (United States)

    Shen, J; Zhang, N; Gexigeduren; He, B; Liu, C-Y; Li, Y; Zhang, H-Y; Chen, X-Y; Lin, H

    2015-06-01

    Grasshopper plagues have seriously disturbed grassland ecosystems in Inner Mongolia, China. The accurate prediction of grasshopper infestations and control of grasshopper plagues have become urgent needs. We sampled 234, 342, 335, and 369 plots in Xianghuangqi County of Xilingol League in 2010, 2011, 2012, and 2013, respectively, and measured the density of the most dominant grasshopper species, Oedaleus decorus asiaticus, and the latitude, longitude, and associated relatively stable habitat factors at each plot. We used Excel-GeogDetector software to explore the effects of individual habitat factors and the two-factor interactions on grasshopper density. We estimated the membership of each grasshopper density rank and determined the weights of each habitat category. These results were used to construct a model system evaluating grasshopper habitat suitability. The results showed that our evaluation system was reliable and the fuzzy evaluation scores of grasshopper habitat suitability were good indicators of potential occurrence of grasshoppers. The effects of the two-factor interactions on grasshopper density were greater than the effects of any individual factors. O. d. asiaticus was most likely to be found at elevations of 1300-1400 m, flat terrain or slopes of 4-6°, typical chestnut soil with 70-80% sand content in the top 5 cm of soil, and medium-coverage grassland. The species preferred temperate bunchgrass steppe dominated by Stipa krylovii and Cleistogenes squarrosa. These findings may be used to improve models to predict grasshopper occurrence and to develop management guidelines to control grasshopper plagues by changing habitats.

  5. CASTOR detector. Model, objectives and simulated performance

    Energy Technology Data Exchange (ETDEWEB)

    Angelis, A. L. S.; Mavromanolakis, G.; Panagiotou, A. D. [University of Athens, Nuclear and Particle Physics Division, Athens (Greece); Aslanoglou, X.; Nicolis, N. [Ioannina Univ., Ioannina (Greece). Dept. of Physics; Bartke, J.; Gladysz-Dziadus, E. [Institute of Nuclear Physics, Cracow (Poland); Lobanov, M.; Erine, S.; Kharlov, Y.V.; Bogolyubsky, M.Y. [Institute for High Energy Physics, Protvino (Russian Federation); Kurepin, A.B.; Chileev, K. [Institute for Nuclear Research, Moscow (Russian Federation); Wlodarczyk, Z. [Pedagogical University, Institute of Physics, Kielce (Poland)

    2001-10-01

    It is presented a phenomenological model describing the formation and evolution of a Centauro fireball in the baryon-rich region in nucleus-nucleus interactions in the upper atmosphere and at the LHC. The small particle multiplicity and imbalance of electromagnetic and hadronic content characterizing a Centauro event and also the strongly penetrating particles (assumed to be strangelets) frequently accompanying them can be naturally explained. It is described the CASTOR calorimeter, a sub detector of the ALICE experiment dedicated to the search for Centauro in the very forward, baryon-rich region of central Pb+Pb collisions at the LHC. The basic characteristics and simulated performance of the calorimeter are presented.

  6. The CMS Tracker Detector Control System

    CERN Document Server

    Masetti, Lorenzo; Shah, S Y; Stringer, Robert

    2009-01-01

    The CMS Silicon Strip Tracker Detector Control System is a distributed software which ensures the safe and coherent operation of the detector, by controlling approximate to 2000 power supplies for the silicon modules and by monitoring-more than 1000 environmental sensors. In this paper we first present the architecture of the control system and the characteristics of the controlled hardware, then we discuss some general strategies adopted in the implementation. We propose a method to give an effective representation for the state of a large but homogeneous system, stressing the necessity to provide the user with some quantitative information and presenting an effective algorithm to keep this information updated in real time. We also present the advantages of a new approach for the automatic analysis and recovery from error conditions via a wizard that relieves the experts from unnecessary and time-wasting work. The tracker was chosen as a use-case in a framework for automatic 3D GUI prototyping: some prelimin...

  7. Design and Implementation of the ATLAS Detector Control System

    CERN Document Server

    Boterenbrood, H; Cook, J; Filimonov, V; Hallgren, B I; Heubers, W P J; Khomoutnikov, V; Ryabov, Yu; Varela, F

    2004-01-01

    The overall dimensions of the ATLAS experiment and its harsh environment, due to radiation and magnetic field, represent new challenges for the implementation of the Detector Control System. It supervises all hardware of the ATLAS detector, monitors the infrastructure of the experiment, and provides information exchange with the LHC accelerator. The system must allow for the operation of the different ATLAS sub-detectors in stand-alone mode, as required for calibration and debugging, as well as the coherent and integrated operation of all sub-detectors for physics data taking. For this reason, the Detector Control System is logically arranged to map the hierarchical organization of the ATLAS detector. Special requirements are placed onto the ATLAS Detector Control System because of the large number of distributed I/O channels and of the inaccessibility of the equipment during operation. Standardization is a crucial issue for the design and implementation of the control system because of the large variety of e...

  8. The Evaporative Cooling System for the ATLAS Inner Detector

    CERN Document Server

    Aitree, D; Anderssen, E C; Akhnazarov, V; Apsimon, R J; Barclay, P; Batchelor, L E; Bates, R L; Battistin, M; Bendotti, J; Berry, S; Bitadze, A; Bizzel, J P; Bonneau, P; Bosteels, Michel; Butterworth, J M; Butterworth, S; Carter, A A; Carter, J R; Catinaccio, A; Corbaz, F; Danielsson, H O; Danilevich, E; Dixon, N; Dixon, S D; Doherty, F; Dorholt, O; Doubrava, M; Egorov, I; Egorov, K; Einsweiler, K; Falou, A C; Feraudet, P; Ferrari, P; Fowler, K; Fraser, J T; French, R S; Galuska, M; Gannaway, F; Gariano, G; Gibson, M D; Gilchriese, M G D; Giugni, D; Godlewski, J; Gousakov, I; Górski, B; Hallewell, G D; Hartman, N; Hawkings, R J; Haywood, S J; Hessey, N P; Infante, S; Jackson, J N; Jones, T J; Kaplon, J; Katunin, S; Lindsay, S; Luisa, L; Massol, N; McEwan, F; McMahon, S J; Menot, C; Mistry, J; Morris, J; Muskett, D M; Nagai, K; Nichols, A; Nicholson, R; Nickerson, R B; Nielsen, S L; Nordahl, P E; Olcese, M; Parodi, M; Pérez-Gómez, F; Pernegger, H; Perrin, E; Rossi, L P; Rovani, A; Ruscino, E; Sandaker, H; Smith, A; Sopko, V; Stapnes, S; Stodulski, M; Tarrant, J; Thadome, J; Tovey, D; Turala, M; Tyndel, M; Vacek, V; van der Kraaij, E; Viehhauser, G H A; Vigeolas, E; Wells, P S; Wenig, S; Werneke, P

    2008-01-01

    This paper describes the evaporative system used to cool the silicon detector structures of the inner detector sub-detectors of the ATLAS experiment at the CERN Large Hadron Collider. The motivation for an evaporative system, its design and construction are discussed. In detail the particular requirements of the ATLAS inner detector, technical choices and the qualification and manufacture of final components are addressed. Finally results of initial operational tests are reported. Although the entire system described, the paper focuses on the on-detector aspects. Details of the evaporative cooling plant will be discussed elsewhere.

  9. Development of large-area CZT detector systems

    Science.gov (United States)

    Kuvvetli, Irfan; Budtz-Joergensen, Carl C.; Westergaard, Niels J.; Jonasson, Per; van Pamelen, Mike A.; Reglero, Victor; Eyles, Christopher J.; Neubert, Torsten

    1999-10-01

    DSRI has initiated a development program of CZT x-ray and gamma ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as so-called drift detectors. For the electronic readout, modern ASIC chips were investigated. Modular design and the low power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed.

  10. Unattended Sensor System with CLYC Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.; Hoff, Jonathan E.; Knudson, Christa K.; Landgren, Peter C.; Lee, Samantha F.; McDonald, Benjamin S.; Pfund, David M.; Redding, Rebecca L.; Smart, John E.; Taubman, Matthew S.; Torres-Torres, Carlos R.; Wiseman, Clinton G.

    2016-06-21

    We have developed a next-generation unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.3 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterization results, and compare the performance to stock NaI:Tl and 3He detectors.

  11. Evaluation of HPGe detector efficiency for point sources using virtual point detector model

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M.A. [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81747-73441 (Iran, Islamic Republic of); Abdi, M.R., E-mail: r.abdi@phys.ui.ac.i [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81747-73441 (Iran, Islamic Republic of); Kamali, M., E-mail: m.kamali@chem.ui.ac.i [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Chemical Processes Research Department, Engineering Research Center, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mostajaboddavati, M.; Zare, M.R. [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81747-73441 (Iran, Islamic Republic of)

    2011-02-15

    The concept of a virtual point detector (VPD) has been developed and validated in the past for Ge(Li) and HPGe detectors. In the present research, a new semi-empirical equation involving photon energy and source-virtual point detector distance for the efficiency of point sources by HPGe detectors is introduced , which is based on the VPD model. The calculated efficiencies for both coaxial and off-axis geometries by this equation are in good agreement with experimental data. The estimated uncertainties are less than 4%.

  12. Parametric modelling of cardiac system multiple measurement signals: an open-source computer framework for performance evaluation of ECG, PCG and ABP event detectors.

    Science.gov (United States)

    Homaeinezhad, M R; Sabetian, P; Feizollahi, A; Ghaffari, A; Rahmani, R

    2012-02-01

    The major focus of this study is to present a performance accuracy assessment framework based on mathematical modelling of cardiac system multiple measurement signals. Three mathematical algebraic subroutines with simple structural functions for synthetic generation of the synchronously triggered electrocardiogram (ECG), phonocardiogram (PCG) and arterial blood pressure (ABP) signals are described. In the case of ECG signals, normal and abnormal PQRST cycles in complicated conditions such as fascicular ventricular tachycardia, rate dependent conduction block and acute Q-wave infarctions of inferior and anterolateral walls can be simulated. Also, continuous ABP waveform with corresponding individual events such as systolic, diastolic and dicrotic pressures with normal or abnormal morphologies can be generated by another part of the model. In addition, the mathematical synthetic PCG framework is able to generate the S4-S1-S2-S3 cycles in normal and in cardiac disorder conditions such as stenosis, insufficiency, regurgitation and gallop. In the PCG model, the amplitude and frequency content (5-700 Hz) of each sound and variation patterns can be specified. The three proposed models were implemented to generate artificial signals with varies abnormality types and signal-to-noise ratios (SNR), for quantitative detection-delineation performance assessment of several ECG, PCG and ABP individual event detectors designed based on the Hilbert transform, discrete wavelet transform, geometric features such as area curve length (ACLM), the multiple higher order moments (MHOM) metric, and the principal components analysed geometric index (PCAGI). For each method the detection-delineation operating characteristics were obtained automatically in terms of sensitivity, positive predictivity and delineation (segmentation) error rms and checked by the cardiologist. The Matlab m-file script of the synthetic ECG, ABP and PCG signal generators are available in the Appendix.

  13. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  14. Rate equation modelling and investigation of quantum cascade detector characteristics

    Science.gov (United States)

    Saha, Sumit; Kumar, Jitendra

    2016-10-01

    A simple precise transport model has been proposed using rate equation approach for the characterization of a quantum cascade detector. The resonant tunneling transport is incorporated in the rate equation model through a resonant tunneling current density term. All the major scattering processes are included in the rate equation model. The effect of temperature on the quantum cascade detector characteristics has been examined considering the temperature dependent band parameters and the carrier scattering processes. Incorporation of the resonant tunneling process in the rate equation model improves the detector performance appreciably and reproduces the detector characteristics within experimental accuracy.

  15. Embedded controller for GEM detector readout system

    Science.gov (United States)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  16. Analysis of detector performance in a gigahertz clock rate quantum key distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Patrick J; Collins, Robert J; Hiskett, Philip A; GarcIa-MartInez, MarIa-Jose; Krichel, Nils J; McCarthy, Aongus; Tanner, Michael G; O' Connor, John A; Natarajan, Chandra M; Hadfield, Robert H; Buller, Gerald S [Scottish Universities Physics Alliance and School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Miki, Shigehito; Sasaki, Masahide; Wang, Zhen; Fujiwara, Mikio [National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-kitamachi, Koganei, Tokyo 184-8795 (Japan); Rech, Ivan; Ghioni, Massimo; Gulinatti, Angelo [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Townsend, Paul D, E-mail: G.S.Buller@hw.ac.uk [Tyndall National Institute and Department of Physics, University College Cork, Cork (Ireland)

    2011-07-15

    We present a detailed analysis of a gigahertz clock rate environmentally robust phase-encoded quantum key distribution (QKD) system utilizing several different single-photon detectors, including the first implementation of an experimental resonant cavity thin-junction silicon single-photon avalanche diode. The system operates at a wavelength of 850 nm using standard telecommunications optical fibre. A general-purpose theoretical model for the performance of QKD systems is presented with reference to these experimental results before predictions are made about realistic detector developments in this system. We discuss, with reference to the theoretical model, how detector operating parameters can be further optimized to maximize key exchange rates.

  17. System Electronics for the ATLAS Upgraded Strip Detector

    CERN Document Server

    Affolder, T; The ATLAS collaboration; Clark, A; Dabrowskic, W; Dewitt, J; Diez Cornell, S; Dressdant, N; Fadeyev, V; Farthouat, P; Ferrere, D; Greenall, A; Grillo, A; Kaplon, J; Key-Charriere, M; La Marra, D; Lipeles, E; Lynn, D; Newcomer, M; Pereirab, F; Phillips, P; Spencer, E; Swientekc, K; Warren, M; Weidberg, A

    2013-01-01

    The basic concept of the front-end system of the Silicon Strip Detector in the Atlas Detector upgraded for the HL-LHC is being elaborated and proposed. The readout electronics of this new detector is based on front-end chips (ABC130), Hybrid Controller chips (HCC) and End of Stave Controller chips (EOSC). This document defines the basic functionality of the front-end system and of the different ASICs.

  18. Scale model of the ALICE detector arrives from India.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    A 1:10 scale model of the ALICE detector, designed and built in India, has arrived at CERN. Photo 01: Members of the ALICE Technical Board pictured with the detector model in building 40. Photos 02 03: (left to right) Christian Fabjan, ALICE technical coordinator; Yogendra Viyogi, Photon Multiplicity Detector (PMD) project leader and ALICE representative from the Variable Energy Cyclotron Centre (VECC), Calcutta; and Jurgen Schukraft, spokesperson for the ALICE collaboration.

  19. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    Science.gov (United States)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  20. The detector safety system for LHC experiments

    CERN Document Server

    Schmeling, Sascha; Lüders, S; Morpurgo, Giulio

    2004-01-01

    The Detector Safety System (DSS), currently being developed at CERN under the auspices of the Joint Controls Project (JCOP), will be responsible for assuring the protection of equipment for the four Large Hadron Collider (LHC)**1 experiments. Thus, the DSS will require a high degree of both availability and reliability. After evaluation of various possible solutions, a prototype is being built based on a redundant Siemens PLC**2 front-end, to which the safety- critical part of the DSS task is delegated. This is then supervised by a PVSS**3 SCADA**4 system via an OPC**5 server. The PLC front-end is capable of running autonomously and of automatically taking predefined protective actions whenever required. The supervisory layer provides the operator with a status display and with limited online reconfiguration capabilities. Configuration of the code running in the PLCs will be completely data driven via the contents of a "configuration database." Thus, the DSS can easily adapt to the different and constantly ev...

  1. Optimal Filtering Algorithm-Based Multiuser Detector for Fast Fading CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A multiuser detector was developed for fast fading code-division multiple-access systems by representing the channels as a system with the multiplicative noise (SMN) model and then using the known optimal filtering algorithm for the SMN for multiuser detection (MUD). This multiuser detector allows the channel response to be stochastic in one symbol duration, which can be regarded as an effective method of MUD for fast fading CDMA systems. Performance analyses show that the multiuser detector is theoretically valid for CDMA systems over fast fading channels. Simulations show that the multiuser detector performs better than the Kalman filter-based multiuser detector with a faster convergence rate and lower bit error rate.

  2. The Muon system of the run II D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov,; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech.

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  3. Integrated outburst detector sensor-model tests

    Institute of Scientific and Technical Information of China (English)

    DZIURZY(N)SKI Wac(I)aw; WASILEWSKI Stanis(I)aw

    2011-01-01

    Outbursts of methane and rocks are,similarly to rock bursts,the biggest hazards in deep mines and are equally difficult to predict.The violent process of the outburst itself,along with the scale and range of hazards following the rapid discharge of gas and rocks,requires solutions which would enable quick and unambiguous detection of the hazard,immediate power supply cut-off and evacuation of personnel from potentially hazardous areas.For this purpose,an integrated outburst detector was developed.Assumed functions of the sensor which was equipped with three measuring and detection elements:a chamber for constant measurement of methane concentration,pressure sensor and microphone.Tests of the sensor model were carried out to estimate the parameters which characterize the dynamic properties of the sensor.Given the impossibility of carrying out the full scale experimental outburst,the sensor was tested during the methane and coal dust explosions in the testing gallery at KD Barbara.The obtained results proved that the applied solutions have been appropriate.

  4. Preliminary studies for the LHCb vertex detector vacuum system

    CERN Document Server

    Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo

    2000-01-01

    We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.

  5. Security issues of quantum cryptographic systems with imperfect detectors

    Science.gov (United States)

    Burenkov, Viacheslav

    The laws of quantum physics can be used to secure communications between two distant parties in a scheme called quantum key distribution (QKD), even against a technologically unlimited eavesdropper. While the theoretical security of QKD has been proved rigorously, current implementations of QKD are generally insecure. In particular, mathematical models of devices, such as detectors, do not accurately describe their real-life behaviour. Such seemingly insignificant discrepancies can compromise the security of the entire scheme, especially as novel detector technologies are being developed with little regard for potential vulnerabilities. In this thesis, we study how detector imperfections can impact the security of QKD and how to overcome such technological limitations. We first analyze the security of a high-speed QKD system with finite detector dead time tau. We show that the previously reported sifting approaches are not guaranteed to be secure in this regime. More specifically, Eve can induce a basis-dependent detection efficiency at the receiver's end. Modified key sifting schemes that are basis-independent, and thus secure in the presence of dead time and an active eavesdropper, are discussed and compared. It is shown that the maximum key generation rate is 1/(2tau) for passive basis selection, and 1/tau for active basis selection. The security analysis is also extended to the decoy state BB84 protocol. We then study a relatively new type of single-photon detector called the superconducting nanowire single-photon detector (SNSPD), and discover some unexpected behaviour. We report an afterpulsing effect present when the SNSPD is operated in the high bias current regime. In our standard set-up, the afterpulsing is most likely to occur at around 180 ns following a detection event, for both real counts and dark counts. We characterize the afterpulsing behaviour and speculate that it is not due to the SNSPD itself but rather the associated read-out circuit. We also

  6. Line profile modelling for multi-pixel CZT detectors

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Rao, A. R.; Bhattacharya, D.; Mithun, N. P. S.; Bhalerao, V.

    2016-07-01

    Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).

  7. Detector Control System for CMS RPC at GIF++

    CERN Document Server

    Gul, Muhammad

    2016-01-01

    In the framework of the High Luminosity LHC upgrade program, the CMS muon groupbuilt several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data.

  8. Detector Control System of the ATLAS Tile Calorimeter

    CERN Document Server

    Arabidze, G; The ATLAS collaboration; Ribeiro, G; Santos, H; Vinagre, F

    2011-01-01

    The main task of the ATLAS Tile calorimeter Detector Control System (DCS) is to enable the coherent and safe operation of the calorimeter. All actions initiated by the operator, as well as all errors, warnings and alarms concerning the hardware of the detector are handled by DCS. The Tile calorimeter DCS controls and monitors mainly the low voltage and high voltage power supply systems, but it is also interfaced with the infrastructure (cooling system and racks), the calibration systems, the data acquisition system, configuration and conditions databases and the detector safety system. The system has been operational since the beginning of LHC operation and has been extensively used in the operation of the detector. In the last months effort was directed to the implementation of automatic recovery of power supplies after trips. Current status, results and latest developments will be presented.

  9. Modeling of the substrate influence on multielement THz detector operation

    CERN Document Server

    Sakhno, M; Sizov, F

    2015-01-01

    The development of THz multielement uncooled imagers based on focal plane arrays (FPAs) requires an optimization of the system parameters to achieve a homogeneous sensitivity of the array elements. Results of numerical simulation of the eight-element linear array of planar antennas with detecting elements, on a substrate of finite dimensions are presented. We establish how the substrate thickness h and the relative permittivity epsilon influence antenna pattern and antenna-detector matching for each element. We show that the antenna pattern depends on the detector position more than the antenna-detector impedance matching. The gain of array elements, the antenna-detector matching, and the homogeneity of the detector sensitivity can be simultaneously optimized by the proper choice of the substrate thickness h and the relative permittivity epsilon. We show that multielement systems with large substrate thickness and high relative permittivity are not suitable for the imaging system implementation. To achieve un...

  10. Highly versatile computer-controlled television detector system

    Science.gov (United States)

    Kalata, K.

    1982-01-01

    A description is presented of a television detector system which has been designed to accommodate a wide range of applications. It is currently being developed for use in X-ray diffraction, X-ray astrophysics, and electron microscopy, but it is also well suited for astronomical observations. The image can be integrated in a large, high-speed memory system, in the memory of a computer system, or the target of the TV tube or CCD array. The detector system consists of a continuously scanned, intensified SIT vidicon with scan and processing electronics which generate a digital image that is integrated in the detector memory. Attention is given to details regarding the camera system, scan control and image processing electronics, the memory system, and aspects of detector performance.

  11. Research on application of several tracking detectors in APT system

    Science.gov (United States)

    Liu, Zhi

    2006-01-01

    APT system is the key technology in free space optical communication system, and acquisition and tracking detector is the key component in PAT system. There are several candidate detectors that can be used in PAT system, such as CCD, QAPD and CMOS Imager etc. The characteristics of these detectors are quite different, ie the structures and the working schemes. This paper gives thoroughly compare of the usage and working principle of CCD and CMOS imager, and discuss the key parameters like tracking error, noise analyses, power analyses etc. Conclusion is given at the end of this paper that CMOS imager is a good candidate detector for PAT system in free space optical communication system.

  12. The detector system of the Daya Bay reactor neutrino experiment

    Science.gov (United States)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  13. A general detector testing system using cosmic rays

    CERN Document Server

    Zhu, Chengguang

    2013-01-01

    A cosmic ray hodoscope with two-dimensional spacial sensitivity and good time resolution has been developed. The system is designed to use the cosmic muons as probes to test the performances of charged particle sensitive detectors. This paper will present the structure of this system, the timing calibration and the resulted performance of this system. The results of the test of the prototype electron detector for LHAASO project are presented as well.

  14. Compensating for Channel Fading in DS-CDMA Communication Systems Employing ICA Neural Network Detectors

    Directory of Open Access Journals (Sweden)

    David Overbye

    2005-06-01

    Full Text Available In this paper we examine the impact of channel fading on the bit error rate of a DS-CDMA communication system. The system employs detectors that incorporate neural networks effecting methods of independent component analysis (ICA, subspace estimation of channel noise, and Hopfield type neural networks. The Rayleigh fading channel model is used. When employed in a Rayleigh fading environment, the ICA neural network detectors that give superior performance in a flat fading channel did not retain this superior performance. We then present a new method of compensating for channel fading based on the incorporation of priors in the ICA neural network learning algorithms. When the ICA neural network detectors were compensated using the incorporation of priors, they give significantly better performance than the traditional detectors and the uncompensated ICA detectors. Keywords: CDMA, Multi-user Detection, Rayleigh Fading, Multipath Detection, Independent Component Analysis, Prior Probability Hebbian Learning, Natural Gradient

  15. The tracking system of the AFP detector.

    CERN Document Server

    Dyndal, M; The ATLAS collaboration

    2014-01-01

    AFP is a project to extend the diffractive physics programme of the ATLAS experiment by installing new detectors that will be able to tag forward protons scattered at a very small angles. In this talk I will present the status of AFP silicon tracker development: sensor qualification, actual design of mechanics and Geant4 simulation results with integrated ATLAS forward region description.

  16. A Novel Stochastic Blind Adaptive Multiuser Detector for CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Blind adaptive multiuser detector has become a research hotspot in recent years due to a number of advantages, but many blind adaptive algorithms involve low convergence rate. This paper presents a novel stochastic blind adaptive multiuser detector without requiring training sequences, which needs only two system parameters: the signature sequence of the desired user i, si and the variance of the additive white Gaussian noise (AWGN),σ2. Simulation results show that by reasonably choosing time varying step size, the proposed detector can not only improve the convergence rate, but also reduce the limiting NSE (Normalized Squared Error) values, so it can effectively increase the performance of the system.

  17. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  18. The Detector Control Systems for the CMS Resistive Plate Chamber

    CERN Document Server

    Paolucci, P; Gómez-Reino, R; Viviani, C; Shahzad, R; Khurshid, T

    2010-01-01

    The Resistive Plate Chamber system is composed by 912 double-gap chambers equipped with about $10^4$ front-end boards. The correct and safe operation of the RPC system requires a sophisticated and complex online Detector Control System, able to monitor and control 2$\\cdot10^4$ hardware devices distributed on an area of about 5000 m$^2$. The RPC DCS acquires, monitors and stores about $10^5$ parameters coming from the detector, the electronics, the power system, the gas, and cooling systems. The DCS system and the first results, obtained during the 2007 and 2008 CMS cosmic runs, will be described in this paper.

  19. Model-based detection of synthetic bat echolocation calls using an energy threshold detector for initialization.

    Science.gov (United States)

    Skowronski, Mark D; Fenton, M Brock

    2008-05-01

    Detection of echolocation calls is fundamental to quantitative analysis of bat acoustic signals. Automated methods of detection reduce the subjectivity of hand labeling of calls and speed up the detection process in an accurate and repeatable manner. A model-based detector was initialized using a baseline energy threshold detector, removing the need for hand labels to train the model, and shown to be superior to the baseline detector using synthetic calls in two experiments: (1) an artificial environment and (2) a field playback setting. Synthetic calls using a piecewise exponential frequency modulation function from five hypothetical species were employed to control the signal-to-noise ratio (SNR) in each experiment and to provide an absolute ground truth to judge detector performance. The model-based detector outperformed the baseline detector by 2.5 dB SNR in the artificial environment and 1.5 dB SNR in the field playback setting. Atmospheric absorption was measured for the synthetic calls, and 1.5 dB increased the effective detection radius by between 1 and 7 m depending on species. The results demonstrate that hand labels are not necessary for training detection models and that model-based detectors significantly increase the range of detection for a recording system.

  20. Iterative optimisation of Monte Carlo detector models using measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Marzocchi, O., E-mail: olaf@marzocchi.net [European Patent Office, Rijswijk (Netherlands); Leone, D., E-mail: debora.leone@kit.edu [Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-04-11

    This work proposes a new technique to optimise the Monte Carlo models of radiation detectors, offering the advantage of a significantly lower user effort and therefore an improved work efficiency compared to the prior techniques. The method consists of four steps, two of which are iterative and suitable for automation using scripting languages. The four steps consist in the acquisition in the laboratory of measurement data to be used as reference; the modification of a previously available detector model; the simulation of a tentative model of the detector to obtain the coefficients of a set of linear equations; the solution of the system of equations and the update of the detector model. Steps three and four can be repeated for more accurate results. This method avoids the “try and fail” approach typical of the prior techniques.

  1. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  2. Adaptive Multiuser Detectors for DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Paul Jean Etienne Jeszensky

    2006-02-01

    Full Text Available This work makes a review of the main Adaptives Multi-user Detectors (MuD-Adpt for Direct Sequence - Code Division Multiple Access (DS-CDMA systems. The MuD-Adpt based on Minimum Mean Square Error (MMSE and Decorrelator (MuD-Dec are focused. Multi-user detectors show great resistance to the near-far effect and combat effectively the Multiple Access Interference (MAI. Comparative numeric results characterize the substantial performance improvement of those detectors in relation to the matched filter conventional receiver (Conv.

  3. Modelling of scintillator based flat-panel detectors with Monte-Carlo simulations

    Science.gov (United States)

    Reims, N.; Sukowski, F.; Uhlmann, N.

    2011-01-01

    Scintillator based flat panel detectors are state of the art in the field of industrial X-ray imaging applications. Choosing the proper system and setup parameters for the vast range of different applications can be a time consuming task, especially when developing new detector systems. Since the system behaviour cannot always be foreseen easily, Monte-Carlo (MC) simulations are keys to gain further knowledge of system components and their behaviour for different imaging conditions. In this work we used two Monte-Carlo based models to examine an indirect converting flat panel detector, specifically the Hamamatsu C9312SK. We focused on the signal generation in the scintillation layer and its influence on the spatial resolution of the whole system. The models differ significantly in their level of complexity. The first model gives a global description of the detector based on different parameters characterizing the spatial resolution. With relatively small effort a simulation model can be developed which equates the real detector regarding signal transfer. The second model allows a more detailed insight of the system. It is based on the well established cascade theory, i.e. describing the detector as a cascade of elemental gain and scattering stages, which represent the built in components and their signal transfer behaviour. In comparison to the first model the influence of single components especially the important light spread behaviour in the scintillator can be analysed in a more differentiated way. Although the implementation of the second model is more time consuming both models have in common that a relatively small amount of system manufacturer parameters are needed. The results of both models were in good agreement with the measured parameters of the real system.

  4. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    Science.gov (United States)

    Lehmann, N.; Karagounis, M.; Kersten, S.; Zeitnitz, C.

    2016-11-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  5. Radioxenon detector calibration spike production and delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P.; Cameron, Ian M.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.; Kriss, Aaron A.; Lidey, Lance S.; Mendez, Jennifer M.; Prinke, Amanda M.; Riedmann, Robin A.

    2016-03-01

    Abstract Beta-Gamma coincidence radioxenon detectors must be calibrated for each of the four-radioxenon isotopes (135Xe, 133Xe, 133mXe, and 131mXe). Without a proper calibration, there is potential for the misidentification of the amount of each isotope detected. It is important to accurately determine the amount of each radioxenon isotope, as the ratios can be used to distinguish between an anthropogenic source and a nuclear explosion. We have developed a xenon calibration system (XeCalS) that produces calibration spikes of known activity and pressure for field calibration of detectors. The activity concentrations of these calibration spikes are measured using a beta-gamma coincidence detector and a high purity germanium (HPGe) detector. We will present the results from the development and commissioning of XeCalS, along with the future plans for a portable spike implementation system.

  6. Position Adaptive Measurement Model for Double-four Quadrant Photoelectric Detector

    Institute of Scientific and Technical Information of China (English)

    DANG Li-ping; LIU Jun-hua; TANG Shu-gang; LIU Hong-fei

    2006-01-01

    A modeling method of the support vector machine combined with matrix optics is considered; a complete new measurement model for double-four quadrant photoelectric detector is built. According to the analysis of the received light spot size and its motion with the changes of the defocusing amount of detector photosensitive surface and the detector position attitude in the optical path, a mathematic expression of photoelectrical conversion is given, which can be applicable to random setting position of the detector at any time. Based on least square support vector machine (LS SVM), the mapping relationship among the output signal linear characteristic parameters (zero neighborhood gradient and intercept), the defocusing amount of the detector and the installation position attitude angle is established. Thus, the multiple dimensional high accuracy measuring and adjusting control system can be left out, and adaptive measurement of the detector parameters can be realized. Compared with existed measurement model and method, the presented model has the advantages of more clear physical meaning, closer to work mechanism of detector, acquiring more complete sample data and wiping out the dead spots or bad spots in measurement. And the accuracy of displacement measurement is increased to 3 μm. At the same time, this measurement mode provides a technical shortcut for three-dimensional small angle measurement.

  7. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    Science.gov (United States)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  8. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  9. On Availability of a Series system with Imperfect Detectors

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    1982-07-01

    Full Text Available An n-unit series system with exponential distributions for life-times and repair-time has been considered. Each unit is equipped with a detector to detect failures. Detectors are subject to two failure modes: viz. (i instantaneous failure i.e. it fails at the time of need when a unit fails; (ii gradual failure i.e. it fails and gives false alarm for system failure. Steady-state availability of the system is obtained by studying the underlying system equations. Behavior of steady-state unavailability has also been studied analytically.

  10. The digital trigger system for the RED-100 detector

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, P. P., E-mail: ddr727@yandex.ru; Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Efremenko, Yu. V.; Kaplin, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides a high efficiency of response even to low-energy events are considered.

  11. A scintillator purification system for the Borexino solar neutrino detector

    Science.gov (United States)

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.; Loeser, F.; McCarty, K.; McKinsey, D.; Nelson, A.; Pocar, A.; Salvo, C.; Schimizzi, D.; Shutt, T.; Sonnenschein, A.

    2008-03-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system that combines distillation, water extraction, gas stripping, and filtration. This paper describes the principles of operation, design, and construction of that purification system, and reviews the requirements and methods to achieve system cleanliness and leak-tightness.

  12. Development of a proton Computed Tomography Detector System

    CERN Document Server

    Naimuddin, Md; Blazey, G; Boi, S; Dyshkant, A; Erdelyi, B; Hedin, D; Johnson, E; Krider, J; Rukalin, V; Uzunyan, S A; Zutshi, V; Fordt, R; Sellberg, G; Rauch, J E; Roman, M; Rubinov, P; Wilson, P

    2015-01-01

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantageous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  13. Development of a proton Computed Tomography Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Naimuddin, Md. [Delhi U.; Coutrakon, G. [Northern Illinois U.; Blazey, G. [Northern Illinois U.; Boi, S. [Northern Illinois U.; Dyshkant, A. [Northern Illinois U.; Erdelyi, B. [Northern Illinois U.; Hedin, D. [Northern Illinois U.; Johnson, E. [Northern Illinois U.; Krider, J. [Northern Illinois U.; Rukalin, V. [Northern Illinois U.; Uzunyan, S. A. [Northern Illinois U.; Zutshi, V. [Northern Illinois U.; Fordt, R. [Fermilab; Sellberg, G. [Fermilab; Rauch, J. E. [Fermilab; Roman, M. [Fermilab; Rubinov, P. [Fermilab; Wilson, P. [Fermilab

    2016-02-04

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  14. Development of a proton Computed Tomography detector system

    Science.gov (United States)

    Naimuddin, Md.; Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.; Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.

    2016-02-01

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  15. Data acquisition system for segmented reactor antineutrino detector

    Science.gov (United States)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  16. The Detector Calibration System for the CUORE cryogenic bolometer array

    CERN Document Server

    Cushman, J S; Davis, C J; Ejzak, L; Lenz, D; Lim, K E; Heeger, K M; Maruyama, R H; Nucciotti, A; Sangiorgio, S; Wise, T

    2016-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operated underground at 10~mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning...

  17. The Detector System for the Stratospheric Kinetic Inductance Polarimeter (SKIP)

    CERN Document Server

    Johnson, B R; Araujo, D; Bradford, K J; Chapman, D; Didier, J; Doyle, S; Eriksen, H K; Flanigan, D; Groppi, C; Hillbrand, S; Jones, G; Limon, M; Mauskopf, P; McCarrick, H; Miller, A; Mroczkowski, T; Reichborn-Kjennerud, B; Smiley, B; Sobrin, J; Wehus, I K; Zmuidzinas, J

    2013-01-01

    We discuss the detector system for the Stratospheric Kinetic Inductance Polarimeter (SKIP). SKIP is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1133 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKIDs). The LEKIDs will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical ...

  18. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  19. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  20. Cooling and shielding systems for infrared detectors - requirements and limits.

    Science.gov (United States)

    Wiecek, B

    2005-01-01

    This paper presents three main cooling systems used for infrared detectors. At first thermoelectric devices are discussed. They allow cooling down the detector with low efficiency and not to the very low temperature. They do not generate any vibrations and therefore are suitable for thermal detectors, where the microphone effect can decrease their performance. Photon detectors need to be cooled down even to 77K or better. The only way to have such deep cooling is to use the cooler based on thermodynamic cycle such as Stirling one. With the high efficiency one can easily obtain cryogenic temperature for a detector. The electromagnetic noise and vibration generation are the main disadvantages of using such devices. Joule-Thomson effect during gas expansion is 3rdcooling system discussed in the paper. It is highly effective process, used for gas liquefaction too. The working gas is being removed during cooling into the atmosphere, so the need of continuous supplying with compressed one, what makes this system very difficult for remote applications. In the paper, simple calculations are presented to illustrate the advantages and disadvantages of the different cooling systems.

  1. Modeling of the Substrate Influence on Multielement THz Detector Operation

    Science.gov (United States)

    Sakhno, M.; Gumenjuk-Sichevska, J.; Sizov, F.

    2014-09-01

    The development of THz multielement uncooled imagers based on focal plane arrays (FPAs) requires an optimization of the system parameters to achieve a homogeneous sensitivity of the array elements. Results of numerical simulation of the eight-element linear array of planar antennas with detecting elements, on a substrate of finite dimensions are presented. We establish how the substrate thickness h and the relative permittivity ɛ r influence antenna pattern and antenna-detector matching for each element. We show that the antenna pattern depends on the detector position more than the antenna - detector impedance matching. The gain of array elements, the antenna-detector matching, and the homogeneity of the detector sensitivity can be simultaneously optimized by the proper choice of the substrate thickness h and the relative permittivity ɛ r . We show that multielement systems with large substrate thickness and high relative permittivity are not suitable for the imaging system implementation. To achieve uniform multielement system sensitivity, substrates with low permittivity ( ɛ r corruption.

  2. Sub-millimeter wave frequency heterodyne detector system

    Science.gov (United States)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2010-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  3. The detector control system of the ATLAS experiment

    CERN Document Server

    Barriuso Poy, A; Burckhart, H J; Cook, J; Filimonov, V; Franz, S; Gutzwiller, O; Hallgren, B; Khomutnikov, V; Schlenker, S; Varela, F

    2008-01-01

    The ATLAS experiment is one of the experiments at the Large Hadron Collider, constructed to study elementary particle interactions in collisions of high-energy proton beams. The individual detector components as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision using operator commands, reads, processes and archives the operational parameters of the detector, allows for error recognition and handling, manages the communication with external control systems, and provides a synchronization mechanism with the physics data acquisition system. Given the enormous size and complexity of ATLAS, special emphasis was put on the use of standardized hardware and software components enabling efficient development and long-term maintainability of the DCS over the lifetime of the experiment. Currently, the DCS is being used successfully during the experiment commissioning phase.

  4. Pixel detector system development at Diamond Light Source

    Science.gov (United States)

    Marchal, J.; Horswell, I.; Gimenez, E. N.; Tartoni, N.

    2010-10-01

    Hybrid pixel detectors consisting of an array of silicon photodiodes bump-bonded to CMOS read-out chips provide high signal-to-noise ratio and high dynamic range compared to CCD-based detectors and Image Plates. These detector features are important for SAXS experiments where a wide range of intensities are present in the images. For time resolved SAXS experiments, high frame rates are compulsory. The latest CMOS read-out chip developed by the MEDIPIX collaboration provides high frame rate and continuous acquisition mode. A read-out system for an array of MEDIPIX3 sensors is under development at Diamond Light Source. This system will support a full resolution frame rate of 1 kHz at a pixel counter depth of 12-bit and a frame rate of 30 kHz at a counter depth of 1 bit. Details concerning system design and MEDIPIX sensors characterization are presented.

  5. Validation studies of the ATLAS pixel detector control system

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)]. E-mail: schultes@physik.uni-wuppertal.de; Becks, Karl-Heinz [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Flick, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Henss, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Imhaeuser, Martin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kersten, Susanne [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kind, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Lantzsch, Kerstin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Maettig, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Reeves, Kendall [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Weingarten, Jens [University of Bonn, Nussallee 12, 53115 Bonn (Germany)

    2006-09-01

    The ATLAS pixel detector consists of 1744 identical silicon pixel modules arranged in three barrel layers providing coverage for the central region, and three disk layers on either side of the primary interaction point providing coverage of the forward regions. Once deployed into the experiment, the detector will employ optical data transfer, with the requisite powering being provided by a complex system of commercial and custom-made power supplies. However, during normal performance and production tests in the laboratory, only single modules are operated and electrical readout is used. In addition, standard laboratory power supplies are used. In contrast to these normal tests, the data discussed here were obtained from a multi-module assembly which was powered and read out using production items: the optical data path, the final design power supply system using close to final services, and the Detector Control System (DCS)

  6. [Flat-panel detectors in X-ray systems].

    Science.gov (United States)

    Spahn, M; Heer, V; Freytag, R

    2003-05-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography,mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method. For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications. Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography. Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods.

  7. Wide dynamic range acquisition system for innovative radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Petasecca, M., E-mail: mauro.menichelli@pg.infn.i [Istituto Nazionale di Fisica Nucleare, Via A. Pascoli, 06123 Perugia (Italy); MAPRAD S.r.l., via Colombo 19/I, 06127 Perugia (Italy); University of Wollongong, Northfields Av., 2500 Wollongong, NSW (Australia); Alpat, B.; Ambrosi, G.; Menichelli, M.; Papi, A. [Istituto Nazionale di Fisica Nucleare, Via A. Pascoli, 06123 Perugia (Italy); Cirrone, P.; Ferrera, F.; Figuera, P.; Finocchiaro, P.; Lattuada, M.; Rifuggiato, D. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Bizzarri, F.; Blasko, S.; Caraffini, D.; Renzi, F. [MAPRAD S.r.l., via Colombo 19/I, 06127 Perugia (Italy); Denizli, H. [Abant izzet Baysal Universitesi, Bolu (Turkey)

    2010-05-21

    There is particular interest to develop low-noise and wide dynamic range data acquisition systems for silicon detectors in view of using the same acquisition readout electronics for a wide range of application fields like monitoring and characterization of radiation sources or particle beams. In the framework of a research project for the qualification of Components Off The Shelf (COTS) for their use in space, research groups from INFN-Perugia, INFN-LNS and from MAPRAD have developed a fully automated, remote controllable, wide dynamic range acquisition system for silicon strip or pixelated detectors. Its design and a basic description of the performance are given here.

  8. Analysis of the trigger system of the ALFA detectors

    CERN Document Server

    Guerrero Llorente, Alonso

    2015-01-01

    During the CERN Summer Student Programme 2015 two different projects were carried out. Both related with the ALFA subdetector in ATLAS and its trigger system. The frst, and main, project aimed to do an study of the trigger effciency of the ALFA detector at $\\sqrt{s}=8 TeV$ and $\\beta^* = 90m$. The results can be found fully explained in the ATLAS note: "Trigger effciency for the ALFA detector at $\\sqrt{s}=8 TeV$ and $\\beta^* = 90m$". A secondary task consisted on systematical tests of new chips for an update of the ALFA trigger system.

  9. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    Science.gov (United States)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  10. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O' CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  11. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  12. Modeling effects of common molecular contaminants on the Euclid infrared detectors

    Science.gov (United States)

    Holmes, W.; McKenney, C.; Barbier, R.; Cho, H.; Cillis, A.; Clemens, J.-C.; Dawson, O.; Delo, G.; Ealet, A.; Feizi, A.; Ferraro, N.; Foltz, R.; Goodsall, T.; Hickey, M.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Lotkin, G.; Maciaszek, T.; McClure, S.; Miko, L.; Nguyen, L.; Pravdo, S.; Prieto, E.; Powers, T.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Waczynski, A.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    Cleanliness specifications for infrared detector arrays are usually so stringent that effects are neglibile. However, the specifications determine only the level of particulates and areal density of molecular layer on the surface, but the chemical composition of these contaminants are not specified. Here, we use a model to assess the impact on system quantum efficiency from possible contaminants that could accidentally transfer or cryopump to the detector during instrument or spacecraft testing and on orbit operation. Contaminant layers thin enough to meet typical specifications, < 0.5μgram/cm2, have a negligible effect on the net quantum efficiency of the detector, provided that the contaminant does not react with the detector surface, Performance impacts from these contaminant plating onto the surface become important for thicknesses 5 - 50μgram/cm2. Importantly, detectable change in the "ripple" of the anti reflection coating occurs at these coverages and can enhance the system quantum efficiency. This is a factor 10 less coverage for which loss from molecular absorption lines is important. Thus, should contamination be suspected during instrument test or flight, detailed modelling of the layer on the detector and response to very well known calibrations sources would be useful to determine the impact on detector performance.

  13. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence

    Science.gov (United States)

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-01

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  14. A model of the high count rate performance of NaI(Tl)-based PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wear, J.A.; Karp, J.S.; Freifelder, R. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Radiology; Mankoff, D.A. [Univ. of Washington, Seattle, WA (United States). Dept. of Radiology; Muehllehner, G. [UGM Medical Systems, Philadelphia, PA (United States)

    1998-06-01

    A detailed model of the response of large-area NaI(Tl) detectors used in PET and their triggering and data acquisition electronics has been developed. This allows one to examine the limitations of the imaging system`s performance due to degradation in the detector performance from light pile-up and deadtime from triggering and event processing. Comparisons of simulation results to measurements from the HEAD PENN-PET scanner have been performed to validate the Monte Carlo model. The model was then used to predict improvements in the high count rate performance of the HEAD PENN-PET scanner using different signal integration times, light response functions, and detectors.

  15. Implementation of the Control System for the LHCb Muon Detector

    CERN Document Server

    Pinci, Davide; Chiodi, Giacomo; Iacoangeli, Francesco; Nobrega, Rafael; Rinaldi, Walter

    2007-01-01

    The Muon Detector of LHCb will be equipped with 1368 Multi- Wire Proportional Chambers and 24 Triple-GEM Detectors. Within the Framework of the CERN Control System Project, using PVSS as the main tool, we are developing an instrument to manage the Muon System of LHCb. Adjustment and monitoring of High and Low Voltage power supplies, on-line diagnostics and ne tuning of the Front-End read-out devices, data acquisition from the gas system and the monitoring of pressure and temperature of the experimental hall are being implemented. The system will also look after long term data archiving and alert handling. The Control System performance is currently under evaluation in a cosmic ray station. Built as a nal quality control of the LHCb Multi-Wire Proportional Chambers, allowing acquisition of data from as many as 600 Front-End readout channels, the cosmic ray station is fully managed by means of a Control System prototype.

  16. Re-evaluation of Galileo Energetic Particle Detector data - a correction model and comparison to semiconductor detector dead-layer sensitivity losses using SRIM

    Science.gov (United States)

    Lee-Payne, Zoe Hannah

    2016-10-01

    The Energetic Particle Detector launched in 1989 on the Galileo satellite took data on the Jovian Particle environment for 8 years before its demise. Over the course of the mission the detectors in the Composition Measurement System (CMS) have visibly decayed with higher mass particles, specifically oxygen and sulphur, reading far lower energies at later epochs. By considering the non-steady accumulation of damage in the detector, as well as the operation of the priority channel data recording system in place on the EPD, an evolving correction can be made. The recalibration significance can be validated using a model of dead layer build-up in semiconductor detectors, based on SRIM results. The final aim is to assign an estimation dead-layer depth during the mission data recordings.

  17. Modeling the impact of uncertainty in detector specification on efficiency values of a HPGe detector using ANGLE software

    OpenAIRE

    Miller Maurice; Voutchkov Mitko

    2013-01-01

    The objective of this study is to model the impact of uncertainties in the engineering specifications of a typical p-type HPGe detector on the efficiency values when the measured soil sample is in contact geometry with the detector. We introduce a parameter named the normalized sensitivity impact which allows a comparative analysis to be made of the impact of the detector specification uncertainties and develop a correction factor table for the most important parameters. The areas of th...

  18. MMSE Multiuser Detector Alleviating Edge Effect in Asynchronous DS-CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    WANGLing; JIAOLicheng; TAOHaihong; LIUFang

    2005-01-01

    Multiuser detection is a key technique in DS-CDMA systems. At the base station, the received signal is the compositive signal transmitted by active users in the system over asynchronous channels, the Multiple access interference (MAI) components of which is more serious than that in synchronous systems. In this paper, based on the compact matrix signal model of the asynchronous system, a MMSE (Minimum mean square error) Multiuser detector alleviating edge effect (MMSEAEE) with low complexity is proposed. The asymptotic efficiency, near-far effect resistance and computational complexity of the multiuser detector are analyzed qualitatively. Finally, the bit error rate is simulated via plentiful Monte Carlo numerical experiments. With performance analysis and numerical simulation, it is shown that MMSEAEE with low complexity offers significant performance improvement over some existing popular detectors in eliminating multiple access interference and near-far resistance.

  19. Managing Infrastructure in the ALICE Detector Control System

    CERN Document Server

    Lechman, M; Bond, P M; Chochula, P.Ch; Kurepin, A N; Pinazza, O; Rosinsky, P; Kurepin, A N; Pinazza, O

    2014-01-01

    The main role of the ALICE Detector Control System (DCS) is to ensure safe and efficient operation of one of the large high energy physics experiments at CERN. The DCS design is based on the commercial SCADA software package WinCC Open Architecture.

  20. 14 CFR 29.1203 - Fire detector systems.

    Science.gov (United States)

    2010-01-01

    ... detector systems. (a) For each turbine engine powered rotorcraft and Category A reciprocating engine... fire zones and in the combustor, turbine, and tailpipe sections of turbine installations (whether or... affected by any oil, water, other fluids, or fumes that might be present. (d) There must be means to...

  1. A VLSI System-on-Chip for Particle Detectors

    CERN Document Server

    AUTHOR|(CDS)2078019

    In this thesis I present a System-on-Chip (SoC) I designed to oer a self- contained, compact data acquisition platform for micromegas detector mon- itoring. I carried on my work within the RD-51 collab oration of CERN. With a companion ADC, my architecture is capable to acquire the signal from a detector electro de, pro cess the data and p erform monitoring tests. The SoC is built around on a custom 8-bit micropro cessor with internal mem- ory resources and emb eds the p eripherals to b e interf...

  2. Miniature Intelligent Wireless Fire Detector System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a wireless intelligent dual-band photodetector system for advanced fire detection/recognition, combining UV/IR III...

  3. The LUCID detector ATLAS luminosity monitor and its electronic system

    Science.gov (United States)

    Manghi, F. Lasagni

    2016-07-01

    In 2015 LHC is starting a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely rebuilt, both the detector and the electronics, in order to cope with the new running conditions. The new detector electronics features a new read-out board (LUCROD) for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and a revisited LUMAT board for combination of signals from the two detectors. This note describes the new board design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  4. Characterization and modeling of a low background HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Dokania, N.; Singh, V.; Mathimalar, S. [India-based Neutrino Observatory, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nanal, V., E-mail: nanal@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Pal, S.; Pillay, R.G. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 (India)

    2014-05-01

    A high efficiency, low background counting setup has been made at TIFR consisting of a special HPGe detector (∼70%) surrounded by a low activity copper+lead shield. Detailed measurements are performed with point and extended geometry sources to obtain a complete response of the detector. An effective model of the detector has been made with GEANT4 based Monte Carlo simulations which agrees with experimental data within 5%. This setup will be used for qualification and selection of radio-pure materials to be used in a cryogenic bolometer for the study of Neutrinoless Double Beta Decay in {sup 124}Sn as well as for other rare event studies. Using this setup, radio-impurities in the rock sample from India-based Neutrino Observatory (INO) site have been estimated.

  5. Characterization and modeling of a low background HPGe detector

    CERN Document Server

    Dokania, N; Mathimalar, S; Nanal, V; Pal, S; Pillay, R G

    2013-01-01

    A high efficiency, low background counting setup has been made at TIFR consisting of a special HPGe detector ($\\sim$70$\\%$) surrounded by a low activity copper+lead shield. Detailed measurements are performed with point and extended geometry sources to obtain a complete response of the detector. An effective model of the detector has been made with GEANT4 based Monte Carlo simulations which agrees with experimental data within 5$\\%$. This setup will be used for qualification and selection of radio-pure materials to be used in a cryogenic bolometer for the study of Neutrinoless Double Beta Decay in $^{124}$Sn as well as for other rare event studies. Using this setup, radio-impurities in the rock sample from India-based Neutrino Observatory (INO) site have been estimated.

  6. Integrated real time bowel sound detector for artificial pancreas systems

    Directory of Open Access Journals (Sweden)

    Khandaker A. Al Mamun

    2016-03-01

    Full Text Available This paper reports an ultra-low power real time bowel sound detector with integrated feature extractor for physiologic measure of meal instances in artificial pancreas devices. The system can aid in improving long term diabetic patient care and consists of a front end detector and signal processing unit. The front end detector transduces the initial bowel sound recorded from a piezoelectric sensor into a voltage signal. The signal processor uses a feature extractor to determine whether a bowel sound is detected. The feature extractor consists of a low noise, low power signal front-end, peak and trough locator, signal slope and width detector, digitizer, and bowel pulse locator. The system was fabricated in a standard 0.18 μm CMOS process, and the bowel sound detection system was characterized and verified with experimentally recorded bowel sounds. The integrated instrument consumes 53 μW of power from a 1 V supply in a 0.96 mm2 area, and is suitable for integration with portable devices.

  7. Investigation of the hadronic interaction models using WILLI detector

    CERN Document Server

    Mitrica, B; Petcu, M; Saftoiu, A; Toma, G; Duma, M; Rebel, H; Haungs, A; Sima, O

    2010-01-01

    The WILLI detector, built in IFIN-HH Bucharest, in collaboration with KIT Karlsruhe, is a rotatable modular detector for measuring charge ratio for cosmic muons with energy $<$ 1 GeV. It is under construction a mini-array for measuring the muon charge ratio in Extensive Air Showers. The EAS simulations have been performed with CORSIKA code. The values of the muon flux, calculated with semi-analytical formula, and simulated with CORSIKA code, based on DPMJET and QGSJET models for the hadronic interactions, are compared with the experimental data determined with WILLI detector. No significant differences between the two models and experimental data are observed. The measurements of the muon charge ratio for different angles-of-incidence, (performed with WILLI detector) shows an asymmetry due to the influence of magnetic field on muons trajectory; the values are in agreement with the simulations based on DPMJET hadronic interaction model. The simulations of muon charge ratio in EAS performed with CORSIKA code...

  8. Initial studies in the modelling of position resolving cryogenic detectors

    CERN Document Server

    Ashby, J V; Greenough, C S

    2002-01-01

    In this paper, we describe some results in the modelling of a Cryogenic Detector. These detectors use the heat generated from an X-ray event to determine the event's time and position. The model makes the basic assumption that the heat transport can be represented through by linear diffusion process and that the times at which the temperature changes reach the edge sensors can be used to determine the position of the event. The paper develops a finite element model of the device and performs a series of numerical experiments. The results of these experiments are compared with a simple analytic model. Two methods of determining the event position are presented: one based on an analytic solution and a second using neural network.

  9. Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector

    OpenAIRE

    Acernese, F.; Amico, P.; Alshourbagy, M.; Antonucci, F. (Fausta); Aoudia, S.; Astone, P.; Avino, S; Babusci, D.; Ballardin, G; Barone, F.; Barsotti, L.; Barsuglia, M.; Bauer, Th.S.; Beauville, F.; Bigotta, S.

    2007-01-01

    International audience; Virgo is an experiment aiming at the detection of gravitational waves emitted by astrophysical sources. Its detector, based on a 3km arms interferometer, is a complex setup which requires several digital control loops running up to 10kHz, an accurate and reliable central timing system and an efficient data acquisition, all of them being distributed over 3km. We overview here the main hardware and software components developed for the data acquisition system (DAQ) and i...

  10. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Moles-Valls, R

    2008-01-01

    The ATLAS experiment is equipped with a tracking system for c harged particles built on two technologies: silicon and drift tube base detectors. These kind of detectors compose the ATLAS Inner Detector (ID). The Alignment of the ATLAS ID tracking s ystem requires the determination of almost 36000 degrees of freedom. From the tracking point o f view, the alignment parameters should be know to a few microns precision. This permits to att ain optimal measurements of the parameters of the charged particles trajectories, thus ena bling ATLAS to achieve its physics goals. The implementation of the alignment software, its framewor k and the data flow will be discussed. Special attention will be paid to the recent challenges wher e large scale computing simulation of the ATLAS detector has been performed, mimicking the ATLAS o peration, which is going to be very important for the LHC startup scenario. The alignment r esult for several challenges (real cosmic ray data taking and computing system commissioning) will be...

  11. The detector calibration system for the CUORE cryogenic bolometer array

    Science.gov (United States)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  12. Forward muon system for the D/Ø detector upgrade

    Science.gov (United States)

    Abramov, V.; Alexeev, G.; Babintsev, V.; Baldin, B.; Butler, J.; Beutel, D.; Bezzubov, V.; Bojko, N.; Burtovoi, V.; Chekulaev, S.; Chi, E.; Denisov, D.; Denisov, S.; Diehl, T.; Dodonov, V.; Dyshkant, A.; Eroshin, O.; Evdokimov, V.; Galyaev, A.; Goncharov, P.; Gornushkin, Yu.; Green, D.; Gurzhiev, S.; Haggerty, H.; Hanlet, P.; Hansen, S.; Hedin, D.; Ito, A.; Johns, K.; Kalinin, A.; Kostritskiy, A.; Kozelov, A.; Kozlovski, E.; Leitner, R.; Lokajíček, M.; Los, S.; Malyshev ∗, V.; Mayorov, A.; Medovikov, V.; Mokhov, N.; Nozdrin, A.; Pisarev, I.; Pospíšil, S.; Raskowski, J.; Sabirov, B.; Šimák, V.; Smith, G.; Stefanik, A.; Stoianova, D.; Suk, M.; Tokmenin, V.; Vaniov, V.; Volkov, A.; Vorobiev, A.; Vrba, V.; Williams, R.; Wood, D.; Yatsunenko, Yu.; Yoffe, F.; Zimin, S.

    1998-12-01

    The design and main parameters of the completly redesigned DØ Forward Angle MUon System (FAMUS: 1.0<| η|<2.0) for the next high luminosity Tevatron Collider run are reported. Results of the studies of trigger scintillation counters based on fast scintillator Bicron 404A and WLS bars SOFZ-105 are presented. We report about results of test beam studies of prototype counters including minimum ionizing particles detection efficiency, time resolution and amplitude response. Radiation ageing of scintillating materials for the doses up to 1 Mrad, phototubes magnetic shielding in the fields of up to 700 G and ageing of phototubes are presented. Mini-Drift Tubes (MDTs) are chosen as FAMUS tracking detectors. The detector is a drift wire chamber with a metallic cathode. The detector operates in proportional mode with a fast freon-methane gas mixture to provide high drift velocity, adequate counting rate and low ageing. A description of the performance of the MDT is given. Studies of two prototypes in test beams were performed at FNAL and JINR. Obtained coordinate accuracy is around 0.5 mm r.m.s. All tests show robustness of MDT as tracking detector of the new muon system for a long period in high DØ background radiation conditions.

  13. Focal-plane detector system for the KATRIN experiment

    CERN Document Server

    Amsbaugh, J F; Beglarian, A; Bergmann, T; Bichsel, H; Bodine, L I; Bonn, J; Boyd, N M; Burritt, T H; Chaoui, Z; Chilingaryan, S; Corona, T J; Doe, P J; Dunmore, J A; Enomoto, S; Fischer, J; Formaggio, J A; Fränkle, F M; Furse, D; Gemmeke, H; Glück, F; Harms, F; Harper, G C; Hartmann, J; Howe, M A; Kaboth, A; Kelsey, J; Knauer, M; Kopmann, A; Leber, M L; Martin, E L; Middleman, K J; Myers, A W; Oblath, N S; Parno, D S; Peterson, D A; Petzold, L; Phillips, D G; Renschler, P; Robertson, R G H; Schwarz, J; Steidl, M; Tcherniakhovski, D; Thümmler, T; Van Wechel, T D; VanDevender, B A; Vöcking, S; Wall, B L; Wierman, K L; Wilkerson, J F; Wüstling, S

    2014-01-01

    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an extreme high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance, both before and after its final installation.

  14. Focal-plane detector system for the KATRIN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Amsbaugh, J.F. [Center for Experimental Nuclear Physics and Astrophysics, Department of Physics, University of Washington, Seattle, WA 98195 (United States); Barrett, J. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Beglarian, A.; Bergmann, T. [Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Bichsel, H.; Bodine, L.I. [Center for Experimental Nuclear Physics and Astrophysics, Department of Physics, University of Washington, Seattle, WA 98195 (United States); Bonn, J. [Institute of Physics, Johannes Gutenberg-Universität Mainz, 55099 Mainz (Germany); Boyd, N.M.; Burritt, T.H. [Center for Experimental Nuclear Physics and Astrophysics, Department of Physics, University of Washington, Seattle, WA 98195 (United States); Chaoui, Z. [Laboratory of Optoelectronics and Devices, University of Setif, UFA Setif, Setif 19000 (Algeria); Chilingaryan, S. [Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Corona, T.J. [Department of Physics, University of North Carolina, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Doe, P.J.; Dunmore, J.A.; Enomoto, S. [Center for Experimental Nuclear Physics and Astrophysics, Department of Physics, University of Washington, Seattle, WA 98195 (United States); Formaggio, J.A. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fränkle, F.M. [Department of Physics, University of North Carolina, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Furse, D. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2015-04-01

    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  15. CASTOR detector Model, objectives and simulated performance

    CERN Document Server

    Angelis, Aris L S; Bartke, Jerzy; Bogolyubsky, M Yu; Chileev, K; Erine, S; Gladysz-Dziadus, E; Kharlov, Yu V; Kurepin, A B; Lobanov, M O; Maevskaya, A I; Mavromanolakis, G; Nicolis, N G; Panagiotou, A D; Sadovsky, S A; Wlodarczyk, Z

    2001-01-01

    We present a phenomenological model describing the formation and evolution of a Centauro fireball in the baryon-rich region in nucleus-nucleus interactions in the upper atmosphere and at the LHC. The small particle multiplicity and imbalance of electromagnetic and hadronic content characterizing a Centauro event and also the strongly penetrating particles (assumed to be strangelets) frequently accompanying them can be naturally explained. We describe the CASTOR calorimeter, a subdetector of the ALICE experiment dedicated to the search for Centauro in the very forward, baryon-rich region of central Pb+Pb collisions at the LHC. The basic characteristics and simulated performance of the calorimeter are presented. (22 refs).

  16. a Theoretical Model of a Superheated Liquid Droplet Neutron Detector.

    Science.gov (United States)

    Harper, Mark Joseph

    Neutrons can interact with the atoms in superheated liquid droplets which are suspended in a viscous matrix material, resulting in the formation of charged recoil ions. These ions transfer energy to the liquid, sometimes resulting in the droplets vaporizing and producing observable bubbles. Devices employing this mechanism are known as superheated liquid droplet detectors, or bubble detectors. The basis of bubble detector operation is identical to that of bubble chambers, which have been well characterized by researchers such as Wilson, Glaser, Seitz, and others since the 1950's. Each of the microscopic superheated liquid droplets behaves like an independent bubble chamber. This dissertation presents a theoretical model which considers the three principal aspects of detector operation: nuclear reactions, charged particle energy deposition, and thermodynamic bubble formation. All possible nuclear reactions were examined and those which could reasonably result in recoil ions sufficiently energetic to vaporize a droplet were analyzed in detail. Feasible interactions having adequate cross sections include elastic and inelastic scattering, n-proton, and n-alpha reactions. Ziegler's TRansport of Ions in Matter (TRIM) code was used to calculate the ions' stopping powers in various compounds based on the ionic energies predicted by standard scattering distributions. If the ions deposit enough energy in a small enough volume then the entire droplet will vaporize without further energy input. Various theories as to the vaporization of droplets by ionizing radiation were studied and a novel method of predicting the critical (minimum) energy was developed. This method can be used to calculate the minimum required stopping power for the ion, from which the threshold neutron energy is obtainable. Experimental verification of the model was accomplished by measuring the response of two different types of bubble detectors to monoenergetic thermal neutrons, as well as to neutrons

  17. 46 CFR 108.407 - Detectors for electric fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1)...

  18. Experimental bounds on collapse models from gravitational wave detectors

    Science.gov (United States)

    Carlesso, Matteo; Bassi, Angelo; Falferi, Paolo; Vinante, Andrea

    2016-12-01

    Wave function collapse models postulate a fundamental breakdown of the quantum superposition principle at the macroscale. Therefore, experimental tests of collapse models are also fundamental tests of quantum mechanics. Here, we compute the upper bounds on the collapse parameters, which can be inferred by the gravitational wave detectors LIGO, LISA Pathfinder, and AURIGA. We consider the most widely used collapse model, the continuous spontaneous localization (CSL) model. We show that these experiments exclude a huge portion of the CSL parameter space, the strongest bound being set by the recently launched space mission LISA Pathfinder. We also rule out a proposal for quantum-gravity-induced decoherence.

  19. The SoLid anti-neutrino detector's readout system

    Science.gov (United States)

    Arnold, L.; Beaumont, W.; Cussans, D.; Newbold, D.; Ryder, N.; Weber, A.

    2017-02-01

    The SoLid collaboration have developed an intelligent readout system to reduce their 3200 silicon photomultiplier detector's data rate by a factor of 10000 whilst maintaining high efficiency for storing data from anti-neutrino interactions. The system employs an FPGA-level waveform characterisation to trigger on neutron signals. Following a trigger, data from a space-time region of interest around the neutron will be read out using the IPbus protocol. In these proceedings the design of the readout system is explained and results showing the performance of a prototype version of the system are presented.

  20. Modeling the intensity and polarization response of planar bolometric detectors.

    Science.gov (United States)

    Thomas, Christopher N; Withington, Stafford; Chuss, David T; Wollack, Edward J; Moseley, S Harvey

    2010-05-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behavior precisely. We have studied the intensity and polarization response of free-space bolometers and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behavior. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behavior. The ability to model easily the intensity, polarization, and straylight characteristics of electrically small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  1. Equivalent-circuit modeling of a MEMS phase detector for phase-locked loop applications

    Science.gov (United States)

    Han, Juzheng; Liao, Xiaoping

    2016-05-01

    This paper presents an equivalent-circuit model of a MEMS phase detector and deals with its application in phase-locked loops (PLLs). Due to the dc voltage output of the MEMS phase detector, the low-pass filter which is essential in a conventional PLL can be omitted. Thus, the layout area can be miniaturized and the consumed power can be saved. The signal transmission inside the phase detector is realized in circuit model by waveguide modules while the electric-thermal-electric conversion is illustrated in circuit term based on analogies between thermal and electrical variables. Losses are taken into consideration in the modeling. Measurement verifications for the phase detector model are conducted at different input powers 11, 14 and 17 dBm at 10 GHz. The maximum discrepancies between the simulated and measured results are 0.14, 0.42 and 1.13 mV, respectively. A new structure of PLL is constructed by connecting the presented model directly to a VCO module in the simulation platform. It allows to model the transient behaviors of the PLL at both locked and out of lock conditions. The VCO output frequency is revealed to be synchronized with the reference frequency within the hold range. All the modeling and simulation are performed in Advanced Design System (ADS) software.

  2. Detector module development for the CBM Silicon Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Lymanets, Anton [Physikalisches Institut, Universitaet Tuebingen (Germany); Collaboration: CBM-Collaboration

    2013-07-01

    The central detector of the CBM experiment at FAIR, the Silicon Tracking System (STS), is being designed to reconstruct hundreds of charged particles produced at rates up to 10 MHz in interactions of ion beams of up to 45 AGeV projectile energies with nuclear targets. The building block of the tracking system is a module suitable for a low-mass detector construction. In a module, the basic functional unit of the STS, radiation tolerant microstrip sensors are read out through low-mass multi-line cables with self-triggering front-end electronics located at the periphery of the system. Light-weight carbon fibre support structures will carry 10 of such modules and build up the STS stations. In the presentation, the concept of the detector module construction is presented. Quality assurance tests under development for the module components (double-sided silicon microstrip sensors, stacked polyimide microcables, front-end ASICs and boards) and the assembled structures are discussed.

  3. the LHC Compact Muon Solenoid experiment detector control system

    CERN Document Server

    Gomez-Reino Garrido, Robert

    2011-01-01

    The Compact Muon Solenoid (CMS) experiment at CERN is a multi-purpose experiment designed to exploit the physics of proton-proton collisions at the Large Hadron Collider collision energy (14TeV at centre of mass) over the full range of expected luminosities (up to 1034cm-2s-1). CMS detector control system (DCS) responsibility is to ensure a safe, correct and efficient operation of the detector so that high quality physics data can be recorded. The system is also required to make possible that inexperienced shifters can operate the detector and a small crew of experts can take care of the maintenance of its software and hardware infrastructure. The DCS large subsystems size sum up to more than a million parameters that need to be supervised. A cluster of roughly 100 servers is used to provide the required processing resources. A scalable approach has been chosen factorizing the DCS system as much as possible. CMS DCS has made clear division between its computing resources and functionality by creating a comput...

  4. FELIX - the new detector readout system for the ATLAS experiment

    CERN Document Server

    AUTHOR|(SzGeCERN)754725; The ATLAS collaboration; Anderson, John Thomas; Borga, Andrea; Boterenbrood, Hendrik; Chen, Hucheng; Chen, Kai; Drake, Gary; Donszelmann, Mark; Francis, David; Gorini, Benedetto; Guest, Daniel; Lanni, Francesco; Lehmann Miotto, Giovanna; Levinson, Lorne; Roich, Alexander; Schreuder, Frans Philip; Schumacher, J\\"orn; Vandelli, Wainer; Vermeulen, Jos; Wu, Weihao; Zhang, Jinlong

    2016-01-01

    From the ATLAS Phase-I upgrade and onward, new or upgraded detectors and trigger systems will be interfaced to the data acquisition, detector control and timing (TTC) systems by the Front-End Link eXchange (FELIX). FELIX is the core of the new ATLAS Trigger/DAQ architecture. Functioning as a router between custom serial links and a commodity network, FELIX is implemented by server PCs with commodity network interfaces and PCIe cards with large FPGAs and many high speed serial fiber transceivers. By separating data transport from data manipulation, the latter can be done by software in commodity servers attached to the network. Replacing traditional point-to-point links between Front-end components and the DAQ system by a switched network, FELIX provides scaling, flexibility uniformity and upgradability. Different Front-end data types or different data sources can be routed to different network endpoints that handle that data type or source: e.g. event data, configuration, calibration, detector control, monito...

  5. A minimum bit error-rate detector for amplify and forward relaying systems

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2012-05-01

    In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.

  6. Linear modeling of single-shot dual-energy x-ray imaging using a sandwich detector

    Science.gov (United States)

    Kim, J.; Kim, D. W.; Kim, S. H.; Yun, S.; Youn, H.; Jeon, H.; Kim, H. K.

    2017-01-01

    For single-shot dual-energy (DE) imaging, a sandwich detector typically consists of a thin front detector and a thick rear detector. Therefore, the spatial-resolution characteristics of the two detectors are different, and as a result, weighted subtraction of the corresponding two images gives rise to edge-enhancement characteristics in the resulting DE images. This is a unique characteristic of single-shot DE imaging compared to the conventional dual-shot DE imaging which uses the same detector to acquire low- and high-energy images. Using a linear-systems theory, in this paper, we show that the modulation-transfer function (MTF) of a sandwich detector is a weighted average of contributions from each MTF characteristic of two detector layers forming the sandwich detector. The MTF results obtained using the developed model are validated with those measured directly from single-shot DE images for an edge-knife phantom. Weighting larger than at least 0.5 in DE reconstruction gives an enhancement in DE MTF at mid and high spatial frequencies compared to the MTFs obtained from each detector layer. The behavior of the linear model as a function of weighting factor used for DE reconstruction is discussed in comparisons with numerical simulations.

  7. FELIX : The new detector readout system for the ATLAS experiment

    CERN Document Server

    Ryu, Soo; The ATLAS collaboration

    2016-01-01

    After the Phase-I upgrade and onward, the Front-End Link eXchange (FELIX) system will be the interface between the data handling system and the detector front-end electronics and trigger electronics at the ATLAS experiment. FELIX will function as a router between custom serial links and a commodity switch network which will use standard technologies (Ethernet or Infiniband) to communicate with data collecting and processing components. The system architecture of FELIX will be described and the results of the demonstrator program currently in progress will be presented.

  8. FELIX: The new detector readout system for the ATLAS experiment

    CERN Document Server

    Ryu, Soo; The ATLAS collaboration

    2017-01-01

    After the Phase-I upgrade and onward, the Front-End Link eXchange (FELIX) system will be the interface between the data handling system and the detector front-end electronics and trigger electronics at the ATLAS experiment. FELIX will function as a router between custom serial links and a commodity switch network which will use standard technologies (Ethernet or Infiniband) to communicate with data collecting and processing components. The system architecture of FELIX will be described and the results of the demonstrator program currently in progress will be presented.

  9. Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation

    Science.gov (United States)

    Khorsandi, Behrooz

    There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.

  10. The Control System for the CMS Strip Tracking Detector

    CERN Document Server

    Fahrer, Manuel; Chen, Jie; Dierlamm, Alexander; Frey, Martin; Masetti, Lorenzo; Militaru, Otilia; Shah, Yousaf; Stringer, Robert; Tsirou, Andromachi

    2008-01-01

    The Tracker of the CMS silicon strip tracking detector covers a surface of 206 m2. 9648128 channels are available on 75376 APV front-end chips on 15232 modules, built of 24328 silicon sensors. The power supply of the detector modules is split up in 1944 power supplies with two low voltage for front end power and two high voltage channels each for the bias voltage of the silicon sensors. In addition 356 low voltage channels are needed to power the control chain. The tracker will run at -20°C at low relative humidity for at least 10 years. The Tracker Control System handles all interdependencies of control, low and high voltages, as well as fast ramp downs in case of higher than allowed temperatures or currents in the detector and experimental cavern problems. This is ensured by evaluating $10^{4}$ power supply parameters, $10^{3}$ information from Tracker Safety System and $10^{5}$ information from the tracker front end.

  11. Silicon microstrip detectors for future tracker alignment systems

    Energy Technology Data Exchange (ETDEWEB)

    Bassignana, D., E-mail: daniela.bassignana@imb-cnm.csic.e [IMB-CNM-CSIC Bellaterra, Barcelona (Spain); Pellegrini, G.; Lozano, M. [IMB-CNM-CSIC Bellaterra, Barcelona (Spain); Fernandez, M.; Vila, I.; Virto, A.; Jaramillo, R.; Munoz, F.J. [Instituto de Fisica de Cantabria, Santander (Spain)

    2011-02-01

    The next experiments at particles colliders will demand stability of the tracking systems to the level of few microns. The available technology cannot provide a supporting structure able to guarantee this degree of stability in working condition, when environmental changes will misalign the detectors out of their nominal position. Based on the successful experience of AMS and CMS tracker systems, we propose to use infrared laser beams traversing consecutive layers of silicon detectors to align them with respect to the beams. For such a laser track to reach the last sensor, high transmittance of microstrip sensors to infrared (IR) light is needed. We simulated the passage of a coherent beam of light through a microstrips detector and we identified the minimum set of changes to the design and technology that boost its transmittance while still respecting its tracking capabilities. The first prototypes are in process at IMB-CNM clean room facilities. We held the fabrication process at an intermediate step and we performed the first measurements of transmittance and reflectance on the sensors.

  12. Acquisition and control command system for power pulsed detectors

    CERN Document Server

    Cornat, R; Magniette, F

    2014-01-01

    A DAQ system is developed within the SiW-Ecal ILC collaboration. It provides a flexible and scalable architecture, compound of four parts. A detector interface (DIF) extracting data from front-end electronics and sending them as packets. Two levels of data concentration, control clock and fast command fanout. The two cards, named DCC and GDCC, use respectively FastEthernet and GigaEthernet. A software suite (named Calicoes) allows to control the DAQ and the detector chips and to acquire data from GigaEthernet. It also includes programs for decoding frontend readout to various formats, and also dispatching and aggregating data. Overall architecture, performance in test beam and prospects for use with hundreds of thousands channels are discussed.

  13. Interaction region design and auxiliary detector systems for an EIC

    Directory of Open Access Journals (Sweden)

    Petti R.

    2016-01-01

    Full Text Available There are a number of exciting physics opportunities at a future electron-ion collider facility. One possible design for such a facility is eRHIC, where the current RHIC facility located at Brookhaven National Lab would be transformed into an electron-ion collider. It is imperative for a seamless integration of auxiliary detector systems into the interaction region design to have a machine that meets the needs for the planned physics analyses, as well as take into account the space constraints due to the tunnel geometry and the necessary beam line elements. In this talk, we describe the current ideas for integrating a luminosity detector, electron polarimeter, roman pots, and a low Q2-tagger into the interaction region for eRHIC.

  14. Field Testing of a Portable Radiation Detector and Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  15. New focal plane detector system for the broad range spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, T.P.

    1984-01-01

    A focal plane detector system consisting of a vertical drift chamber, parallel plate avalanche counters, and an ionization chamber with segmented anodes has been installed in the Broad Range Spectrometer at the Holifield Facility at Oak Ridge. The system, which has been designed for use with light-heavy ions with energies ranging from 10 to 25 MeV/amu, has a position resolution of approx. 0.1 mm, a scattering angle resolution of approx. 3 mrad, and a mass resolution of approx. 1/60.

  16. Vacuum and cryogenic system for the MUSE detectors

    Science.gov (United States)

    Lizon, J. L.; Accardo, M.; Gojak, Domingo; Reiss, Roland; Kern, Lothar

    2012-09-01

    MUSE with its 24 detectors distributed over an eight square meter vertical area was requiring a well engineered and extremely reliable cryogenic system. The solution should also use a technology proven to be compatible with the very high sensitivity of the VLT interferometer. A short introduction reviews the various available technologies to cool these 24 chips down to 160 K. The first part of the paper presents the selected concept insisting on the various advantages offered by LN2. In addition to the purely vacuum and cryogenic aspects we highlight some of the most interesting features given by the control system based on a PLC.

  17. APD detector electronics for the NSTX Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Johnson; B.P. LeBlanc; D.L. Long; G. Renda

    2000-08-07

    An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of {approximately}25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration.

  18. Physics Detector Simulation Facility Phase II system software description

    Energy Technology Data Exchange (ETDEWEB)

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment.

  19. Detailed behavioral modeling of bang-bang phase detectors

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Andreani, Pietro; Keil, U. D.

    2006-01-01

    In this paper, the metastability of current-mode logic (CML) latches and flip-flops is studied in detail. Based on the results of this analysis, a behavioral model of bang-bang phase detectors (BBPDs) is proposed, which is able to reliably capture the critical deadzone effect. The impact of jitter...... and of process, voltage and temperature variations on the BBPD behavior is also investigated. The proposed model can be used with advantage in the high-level design and verification of e.g. clock and data recovery (CDR) circuits...

  20. Simple ML Detector for Multiple Antennas Communication System

    Directory of Open Access Journals (Sweden)

    Ahmad Taqwa

    2010-10-01

    Full Text Available In order to support providing broadband wireless communication services against limited and expensive frequency bandwidth, we have to develop a bandwidth efficient system. Therefore, in this paper we propose a closed-loop MIMO (Multiple-Input-Multiple-Output system using ML (Maximum Likelihood detector to optimize capacity and to increase system performance. What is especially exciting about the benefits offered by MIMO is that a high capacity and performance can be attained without additional frequency-spectral resource. The grand scenario of this concept is the attained advantages of transformation matrices having capability to allocate transmitted signals power suit to the channel. Furthermore, product of these matrices forms parallel singular channels. Due to zero inter-channels correlation, thus we can design ML detector to increase the system performance. Finally, computer simulations validates that at 0 dB SNR our system can reach optimal capacity up to 1 bps/Hz and SER up to 0.2 higher than opened-loop MIMO.

  1. A DEPFET pixel system for the ILC vertex detector

    CERN Document Server

    Trimpl, M; Kohrs, R; Krüger, H; Lodomez, P; Reuen, L; Sandow, C; Toerne, E; Velthuis, J J; Wermes, N; Andricek, L; Moser, H G; Richter, R H; Lutz, Gerhard; Giesen, F; Fischer, P; Peric, I

    2006-01-01

    We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 pixel matrix and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6keV to 60keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.

  2. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    Science.gov (United States)

    2008-09-01

    cm3, ~ 3 kg, ~ 140 %, or larger). Maintenance-free Stirling -cycle mechanical coolers are being used. These coolers have operating lifetimes...photograph of the complete RASA 1 detector system is shown in Figure 1. The detector is cooled to temperatures below 50 K when the cooler is...cryostat- cooler combination can ultimately serve as a viable detector unit for RASA detector systems . During the pursuit of the microphonic noise

  3. Automated data collection and analysis system for MOSFET radiation detectors.

    Science.gov (United States)

    Gladstone, D J; Chin, L M

    1991-01-01

    Metal oxide semiconductor field effect transistors (MOSFET) have been used as radiation dosimeters. Because of their small detector size, minimal power requirements, and signal integration characteristics, they offer unique possibilities as real-time dose monitors in radiotherapy. An automated data collection and analysis system for use with MOSFET radiation dosimeters has been designed and built. The objective was to design a system which can acquire and process the MOSFET signals in real time, in any radiation field encountered in radiotherapy. In particular, major problems have been solved arising from the intrinsic drifts of the MOSFET signal during low dose rate measurements. These signal drifts are significant when the MOSFET detector is used in applications such as on-line monitoring of radiation dose delivery in brachytherapy or radioimmunotherapy. The data collection and analysis system includes a portable IBM-compatible personal computer fitted with digital-to-analog and analog-to-digital converter boards. A single-chip programmable current supply is used to power the MOSFET dosimeters. Intrinsic and extrinsic drifts in signal due to ion diffusion and electron tunneling are corrected by deconvolution of the collected data in real time or after data collection. The data acquisition system and signal-processing methodologies are described.

  4. A 90GHz Bolometer Camera Detector System for the Green

    Science.gov (United States)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  5. Single-element Electron-transfer Optical Detector System

    Science.gov (United States)

    Jordan, Jeffrey D. (Inventor)

    2004-01-01

    An optical detector system includes an electrically resistive screen that is substantially transparent to radiation energy having a wavelength of interest. An electron transfer element (e.g., a low work function photoactive material or a carbon nanotube (CNT)-based element) has a first end and a second end with its first end spaced apart from the screen by an evacuated gap. When radiation energy passes through the screen with a bias voltage being applied thereto, transfer of electrons through the electron transfer element is induced from its first to its second end such that a quantity indicative of the electrons transferred can be detected.

  6. Field guide to infrared systems, detectors, and FPAs

    CERN Document Server

    Daniels, Arnold

    2011-01-01

    This second edition is written to clarify and summarize the theoretical principles of infrared technology. It is intended as a reference for the practicing engineer and/or scientist who requires effective practical information to design, build, and/or test infrared equipment in a wide variety of applications. This Field Guide combines numerous engineering disciplines necessary for the development of an infrared system. It describes the basic elements involving image formation and image quality, radiometry and flux transfer, and explains the figures of merit involving detector performance. It c

  7. The Trigger System of the ARGO-YBJ detector

    CERN Document Server

    Mastroianni, S; Catalanotti, S; Cavaliere, S; Bernardini, P; Creti, P; De Mitri, I; Marsella, G; Panareo, M; Surdo, A

    2003-01-01

    The ARGO-YBJ experiment has been designed to detect air shower events over a large size scale and with an energy threshold of a few hundreds GeV. The building blocks of the ARGO-YBJ detector are single-gap Resistive Plate Counters (RPCs). The trigger logic selects the events on the basis of their hit multiplicity. Inclusive triggers as well as dedicated triggers for specific physics channels or calibration purposes have been developed. This paper describes the architecture and the main features of the trigger system.

  8. Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  9. Computing Architecture of the ALICE Detector Control System

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    The ALICE Detector Control System (DCS) is based on a commercial SCADA product, running on a large Windows computer cluster. It communicates with about 1200 network attached devices to assure safe and stable operation of the experiment. In the presentation we focus on the design of the ALICE DCS computer systems. We describe the management of data flow, mechanisms for handling the large data amounts and information exchange with external systems. One of the key operational requirements is an intuitive, error proof and robust user interface allowing for simple operation of the experiment. At the same time the typical operator task, like trending or routine checks of the devices, must be decoupled from the automated operation in order to prevent overload of critical parts of the system. All these requirements must be implemented in an environment with strict security requirements. In the presentation we explain how these demands affected the architecture of the ALICE DCS.

  10. Design of the TORCH detector: A Cherenkov based Time-of-Flight system for particle identification

    CERN Document Server

    AUTHOR|(CDS)2078663; Rademacker, Jonas

    The LHCb detector at the LHC collider has been very successfully operated over the past years, providing new and profound insights into the Standard Model, in particular through study of $b$-hadrons to achieve a better understanding of CP violation. One of the key components of LHCb is its particle identification system, comprised of two RICH detectors, which allow for high precision separation of particle species over a large momentum range. In order to retain and improve the performance of the particle identification system in light of the LHCb upgrade, the TORCH detector has been proposed to supplement the RICH system at low momentum (2-10 GeV/c). The TORCH detector provides (charged) particle identification through precision timing of particles passing through it. Assuming a known momentum from the tracking, it is possible to derive the species of a particle from the time of flight from its primary vertex. This measurement is achieved by timing and combining photons generated in a solid radiator. The geom...

  11. Modeling skin effect in large magnetized iron detectors

    CERN Document Server

    Incurvati, M

    2003-01-01

    The experimental problem of the calibration of magnetic field in large iron detectors is discussed. Emphasis is laid on techniques based on ballistic measurements as the ones employed by MINOS or OPERA.In particular, we provide analytical formulas to model the behavior of the apparatus in the transient regime, keeping into account eddy current effects and the finite penetration velocity of the driving fields. These formulas ease substantially the design of the calibration apparatus.Results are compared with experimental data coming from a prototype of the OPERA spectrometer.

  12. Analytic model of energy-absorption response functions in compound X-ray detector materials.

    Science.gov (United States)

    Yun, Seungman; Kim, Ho Kyung; Youn, Hanbean; Tanguay, Jesse; Cunningham, Ian A

    2013-10-01

    The absorbed energy distribution (AED) in X-ray imaging detectors is an important factor that affects both energy resolution and image quality through the Swank factor and detective quantum efficiency. In the diagnostic energy range (20-140 keV), escape of characteristic photons following photoelectric absorption and Compton scatter photons are primary sources of absorbed-energy dispersion in X-ray detectors. In this paper, we describe the development of an analytic model of the AED in compound X-ray detector materials, based on the cascaded-systems approach, that includes the effects of escape and reabsorption of characteristic and Compton-scatter photons. We derive analytic expressions for both semi-infinite slab and pixel geometries and validate our approach by Monte Carlo simulations. The analytic model provides the energy-dependent X-ray response function of arbitrary compound materials without time-consuming Monte Carlo simulations. We believe this model will be useful for correcting spectral distortion artifacts commonly observed in photon-counting applications and optimal design and development of novel X-ray detectors.

  13. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  14. Detector module development for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, Olga [GSI Helmholtzzentrum, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2014-07-01

    The central detector of the CBM experiment at FAIR, the Silicon Tracking System (STS), is designed to reconstruct hundreds of charged particle tracks produced at rates up to 10 MHz in interactions of ion beams of up to 45 AGeV projectile energies with nuclear targets. The building block of the tracking system is a module suitable for a low-mass detector construction. In a module, the basic functional unit of the STS, radiation tolerant microstrip sensors are read out through low-mass multi-line cables with self-triggering front-end electronics located at the periphery of the system. Light-weight carbon fibre support structures will carry 10 of such modules and build up the STS stations. The performance of module prototypes has been evaluated, resembling the structure of the intended STS module. The shown prototypes comprise a full-size CBM05 sensor and two 128-channel read-out cables attached to the read-out pads on either side of the sensor. The cables end in connector boards interfacing to two front-end boards each hosting one n-XYTER chip.

  15. System Test of a Prototype LHCb RICH Detector

    CERN Document Server

    Patel, M

    2004-01-01

    A prototype of the LHCb Ring Imaging Cherenkov detector has been constructed. The prototype module contained a pre-production Pixel Hybrid Photon Detector, mounted on the final photon detector mechanics. The photon detector was read out at the full LHC speed of 40 MHz using the full prototype on-detector RICH electronics readout chain. The readout uses radiation-tolerant FPGA technology, 1.6 GHz optical links and 40 MHz trigger-timing and control (TTC). The photon detector was mounted in a gas vessel and Cherenkov rings have been observed from and N$_2$ radiator using electron and pion beams.

  16. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  17. Gamma Radiation Detectors of the TA-55 Waste Line Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jack E. Malcom

    1999-06-01

    This report covers the gamma detectors, measurement instrumentation, and testing results of a system developed at Los Alamos National Laboratory. This system monitors the process liquid waste streams at the Plutonium Facility (TA-55) for the presence of radioactive contamination. The detectors are at various points on the acid, caustic, and industrial waste lines. Two of the detectors are on the sanitary sewer lines from the facility. A custom interface unit associated with these two detectors furnishes the facility operation center with a notification of the detection of material. All of the detectors furnish measurement information to a central computer system for storage and trending.

  18. Timing, Trigger and Control Systems for LHC Detectors

    CERN Multimedia

    2002-01-01

    \\\\ \\\\At the LHC, precise bunch-crossing clock and machine orbit signals must be broadcast over distances of several km from the Prevessin Control Room to the four experiment areas and other destinations. At the LHC experiments themselves, quite extensive distribution systems are also required for the transmission of timing, trigger and control (TTC) signals to large numbers of front-end electronics controllers from a single location in the vicinity of the central trigger processor. The systems must control the detector synchronization and deliver the necessary fast signals and messages that are phased with the LHC clock, orbit or bunch structure. These include the bunch-crossing clock, level-1 trigger decisions, bunch and event numbers, as well as test signals and broadcast commands. A common solution to this TTC system requirement is expected to result in important economies of scale and permit a rationalization of the development, operational and support efforts required. LHC Common Project RD12 is developi...

  19. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Wang, J; The ATLAS collaboration

    2011-01-01

    Atlas is a multipurpose experiment that records the LHC collisions. In order to reconstruct the trajectories of charged particles, ATLAS is equipped with a tracking system built using distinct technologies: silicon planar sensors (both pixel and microstrips) and drift-tubes (the Inner Detector). The tracking system is embedded in a 2 T solenoid field. In order to reach the track parameter accuracy requested by the physics goals of the experiment, the ATLAS tracking system requires to determine accurately its almost 700,000 degrees of freedom. The demanded precision for the alignment of the silicon sensors is below 10 micrometers. The implementation of the track based alignment within the ATLAS software framework unifies different alignment approaches and allows the alignment of all tracking subsystems together. The alignment software counts of course on the tracking information (track-hit residuals) but also includes the capability to set constraints on the beam spot and primary vertex for the global position...

  20. A new timing model for calculating the intrinsic timing resolution of a scintillator detector.

    Science.gov (United States)

    Shao, Yiping

    2007-02-21

    The coincidence timing resolution is a critical parameter which to a large extent determines the system performance of positron emission tomography (PET). This is particularly true for time-of-flight (TOF) PET that requires an excellent coincidence timing resolution (scintillator detector: scintillation decay time and total photoelectron yield from the photon-electron conversion. However, this calculation has led to significant errors when the coincidence timing resolution reaches 1 ns or less. In this paper, a bi-exponential timing model is derived and evaluated. The new timing model includes an additional parameter of a scintillator detector: scintillation rise time. The effect of rise time on the timing resolution has been investigated analytically, and the results reveal that the rise time can significantly change the timing resolution of fast scintillators that have short decay time constants. Compared with measured data, the calculations have shown that the new timing model significantly improves the accuracy in the calculation of timing resolutions.

  1. Monte Carlo simulation of the LENA detector system

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C., E-mail: choward@unc.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Iliadis, C.; Champagne, A.E. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2013-11-21

    Many nuclear astrophysics experiments use the singles energy spectrum to measure nuclear cross-sections. It has been shown in previous publications that the use of a high purity germanium (HPGe) detector and a NaI(Tl) annulus in coincidence can lower the background, allowing the measurement of smaller cross-sections. In our previous work, our simulation was only capable of determining both full-energy peak relative efficiencies. Here, we present work which extends our simulation so that we can predict absolute efficiencies, and both coincidence gate efficiencies. We first show that the full-energy peak and the total energy singles efficiency of our HPGe detector simulation agrees well with calibration data. We then present the full-energy peak and total energy efficiency for the NaI(Tl) annulus. Results are presented for our coincidence efficiencies, using three examples. These examples are a comparison to the decay of the 151 keV resonance in the {sup 18}O(p, γ){sup 19}F reaction, a {sup 22}Na point-like calibration source, and {sup 26}Al nuclei distributed in a meteorite fragment. In each case, we present a comparison of data to the simulation and show that, within our uncertainties, we can accurately simulate our measured intensities. -- Highlights: •We create a simulation of our HPGe detector and NaI annulus. •We compare our model to various calibration sources. •We compare energy gating using the simulation. •The simulation predict efficiencies as observed in the data.

  2. Separation system with a sheath-flow supported electrochemical detector

    Science.gov (United States)

    Mathies, Richard A.; Emrich, Charles A.; Singhal, Pankaj; Ertl, Peter

    2008-10-21

    An electrochemical detector including side channels associated with a separation channel of a sample component separation apparatus is provided. The side channels of the detector, in one configuration, provide a sheath-flow for an analyte exiting the separation channel which directs the analyte to the electrically developed electrochemical detector.

  3. The electronics for TOF system of the CMD-3 detector

    Science.gov (United States)

    Kozyrev, A. N.; Ruban, A. A.; Amerhanov, A. N.; Fedotovich, G. V.; Gribanov, S. S.; Popov, A. S.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Shemyakin, D. N.; Tolmachev, S. S.

    2017-07-01

    The time-of-flight (TOF) system now is installed at the CMD-3 detector of the VEPP-2000 electron-positron collider at the Budker Institute of Nuclear Physics. It is based on the strips of organic scintillator with shifter fibers readout and silicon photomultiplier (SiPM) photodetectors. The new electronics for TOF system is designed at the Budker Institute of Nuclear Physics. The main feature of the new electronics is usage a ripple-free technology for providing a bias voltage for SiPM photodetectors. Also this design has very low power consumption. It allows the individual controlled bias voltage generator to be integrated to front-end electronics, near the photodetectors. In this paper the structure of the TOF electronic hardware is described.

  4. First experience of vectorizing electromagnetic physics models for detector simulation

    Energy Technology Data Exchange (ETDEWEB)

    Amadio, G. [Sao Paulo State U.; Apostolakis, J. [CERN; Bandieramonte, M. [Catania Astrophys. Observ.; Bianchini, C. [Mackenzie Presbiteriana U.; Bitzes, G. [CERN; Brun, R. [CERN; Canal, P. [Fermilab; Carminati, F. [CERN; Licht, J.de Fine [U. Copenhagen (main); Duhem, L. [Intel, Santa Clara; Elvira, D. [Fermilab; Gheata, A. [CERN; Jun, S. Y. [Fermilab; Lima, G. [Fermilab; Novak, M. [CERN; Presbyterian, M. [Bhabha Atomic Res. Ctr.; Shadura, O. [CERN; Seghal, R. [Bhabha Atomic Res. Ctr.; Wenzel, S. [CERN

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  5. First experience of vectorizing electromagnetic physics models for detector simulation

    Science.gov (United States)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  6. First results from the Lund NMP particle detector system

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, P. [Division of Nuclear Physics, Department of Physics, Lund University, Box 118, SE-22100 Lund (Sweden); Kristiansson, P. [Division of Nuclear Physics, Department of Physics, Lund University, Box 118, SE-22100 Lund (Sweden)], E-mail: Per.Kristiansson@nuclear.lu.se; Arteaga-Marrero, N.; Elfman, M.; Malmqvist, K.; Nilsson, E.J.C.; Nilsson, C.; Pallon, J.; Wegden, M. [Division of Nuclear Physics, Department of Physics, Lund University, Box 118, SE-22100 Lund (Sweden)

    2009-06-15

    The design and first results from a Double Sided Silicon Strip Detector (DSSSD) recently installed at the Lund Nuclear Microprobe facility (NMP) are presented. The detector has 64 sector strips and 32 ring strips, which in combination give more than 2000 detector cells, each with characteristics comparable with a standard surface barrier detector (SBD). The detector has been tested both with radioactive sources and with different ion beams and energies. The most striking features are the high rate virtually pile-up free operation and also the possibility of detailed measurement of angular distributions.

  7. Performance evaluation of continuous blood sampling system for PET study. Comparison of three detector-systems

    CERN Document Server

    Matsumoto, K; Sakamoto, S; Senda, M; Yamamoto, S; Tarutani, K; Minato, K

    2002-01-01

    To measure cerebral blood flow with sup 1 sup 5 O PET, it is necessary to measure the time course of arterial blood radioactivity. We examined the performance of three different types of continuous blood sampling system. Three kinds of continuous blood sampling system were used: a plastic scintillator-based beta detector (conventional beta detector (BETA)), a bismuth germinate (BGO)-based coincidence gamma detector (Pico-count flow-through detector (COINC)) and a Phoswich detector (PD) composed by a combination of plastic scintillator and BGO scintillator. Performance of these systems was evaluated for absolute sensitivity, count rate characteristic, sensitivity to background gamnra photons, and reproducibility for nylon tube geometry. The absolute sensitivity of the PD was 0.21 cps/Bq for sup 6 sup 8 Ga positrons at the center of the detector. This was approximately three times higher than BETA, two times higher than COINC. The value measured with BETA was stable, even when background radioactivity was incre...

  8. Computational modelling of semiconducting X-ray detectors

    CERN Document Server

    Fowler, R F; Greenough, C S

    2002-01-01

    The design of high-performance semiconductor detectors is dominated by requirements on position and energy resolution and speed of operation. We investigate the contribution that three-dimensional transient device modelling can make to understanding these and the potential for its use in the design cycle. Simulations are performed using the EVEREST software to solve the drift-diffusion equations. Extra functionality has been added to allow the generation of electron-hole pairs by, for example, the absorption of an X-ray. Careful time integration can measure the time of arrival of the charge packet at the collecting well. By time integrating the current arriving in the collecting well the spatial distribution of charge can be determined. A simple analytic theory is developed and compared with simulations of a large pixel detector. Comparisons with simulations of a two pixel device show that the analytic approximation is reasonable if the X-ray is absorbed beyond 100 mu m from the well, but events closer show a...

  9. Modeling the impact of uncertainty in detector specification on efficiency values of a HPGe detector using ANGLE software

    Directory of Open Access Journals (Sweden)

    Miller Maurice

    2013-01-01

    Full Text Available The objective of this study is to model the impact of uncertainties in the engineering specifications of a typical p-type HPGe detector on the efficiency values when the measured soil sample is in contact geometry with the detector. We introduce a parameter named the normalized sensitivity impact which allows a comparative analysis to be made of the impact of the detector specification uncertainties and develop a correction factor table for the most important parameters. The areas of the detector most susceptible to error were found to be the crystal geometry, vacuum layer above the crystal and the bulletizing radius. In all cases the major impacts were mathematically modeled - for the first time - and found to vary either quadratically or logarithmically over the energy range of 180 keV to 1500 keV. Finally, we propose a set of detector characterization values that may be used in ANGLE for generating a reference efficiency curve using the efficiency transfer method inherent in this software. These values are to be used with the understanding that their uncertainty impact on the full-peak efficiency though not very significant in this counting arrangement, is not non-zero.

  10. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  11. The Daya Bay Antineutrino Detector Filling System and Liquid Mass Measurement

    CERN Document Server

    Band, H R; Draeger, E; Heeger, K M; Hinrichs, P; Lewis, C A; Mattison, H; McFarlane, M C; Webber, D M; Wenman, D; Wang, W; Wise, T; Xiao, Q

    2013-01-01

    The Daya Bay Reactor Neutrino Experiment has measured the neutrino mixing angle \\theta_{13} to world-leading precision. The experiment uses eight antineutrino detectors filled with 20-tons of gadolinium-doped liquid scintillator to detect antineutrinos emitted from the Daya Bay nuclear power plant through the inverse beta decay reaction. The precision measurement of sin^{2}2\\theta_{13} relies on the relative antineutrino interaction rates between detectors at near (400 m) and far (roughly 1.8 km) distances from the nuclear reactors. The measured interaction rate in each detector is directly proportional to the number of protons in the liquid scintillator target. A precision detector filling system was developed to simultaneously fill the three liquid zones of the antineutrino detectors and measure the relative target mass between detectors to <0.02%. This paper describes the design, operation, and performance of the system and the resulting precision measurement of the detectors' target liquid masses.

  12. Running experience with the DELPHI pixel detector reflections on design characteristics and system features

    CERN Document Server

    Heuser, J M

    1999-01-01

    The DELPHI experiment at LEP is the first collider experiment with hybrid pixel detectors contributing to its track reconstruction. The pixel detector has been installed in 1996 with the final DELPHI silicon tracker, an assembly of microstrip, ministrip and pixel detectors optimized for the operation at LEP2. It was completed for the physics period in 1997. The pixel detector comprises 1.2 million detector cells of 330*330 mu m/sup 2/. 152 detector modules are arranged in 4 inclined cone-shaped layers which cover polar angles from 10 degrees to 25 degrees . Experience on the system's features has been gained during three years of operation. The article intends to provide information on positive and critical aspects which might be useful for designers of pixel detector systems in forthcoming experiments. (4 refs).

  13. Electronics and data acquisition system for the ICAL prototype detector of India-based neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Behere, A. [Electronics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhuyan, M. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Chandratre, V.B. [Electronics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dasgupta, S., E-mail: sudeshnadasgupta@tifr.res.in [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Datar, V.M. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kalmani, S.D.; Lahamge, S.M.; Mondal, N.K. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Mukhopadhyay, P.K. [Electronics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Nagaraj, P.; Nagesh, B.K.; Pal, S.; Rao, Shobha K.; Samuel, D.; Saraf, M.N.; Satyanarayana, B. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Shastrakar, R.S. [Electronics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Shinde, R.R. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Sudheer, K.M. [Electronics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Upadhya, S.S. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); and others

    2013-02-11

    The India-based Neutrino Observatory (INO) collaboration has proposed to build a 50 kton magnetized Iron Calorimeter (ICAL) detector with the primary goal to study neutrino oscillations, employing Resistive Plate Chambers (RPCs) as active detector elements. A prototype of the ICAL detector has been built in order to develop and characterize the intrinsic sub-systems, like RPCs, gas system, electronics and data acquisition system, etc. This paper describes in detail the readout electronics as well as the VME-based data acquisition system for the prototype detector.

  14. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Science.gov (United States)

    Kim, Jae Cheon; Kaye, William R.; He, Zhong

    2014-05-01

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 × 20 × 15 mm3 CZT crystal with an 11 × 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  15. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae C.; Kaye, William R.; He, Zhong [University of Michigan, Ann Arbor, MI (United States)

    2014-05-15

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 x 20 x 15 mm{sup 3} CZT crystal with an 11 x 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  16. Inorganic Scintillators for Detector Systems Physical Principles and Crystal Engineering

    CERN Document Server

    AUTHOR|(CDS)2068219; Gektin, Alexander; Korzhik, Mikhail; Pédrini, Christian

    2006-01-01

    The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R & D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of high-energy physics and medical imaging introduce the reader to the practical aspects. This book will benefit researchers and scientists working in academic and industrial R & D related to the development of scintillators.

  17. Multi-Element Electron-Transfer Optical Detector System

    Science.gov (United States)

    Jordan, Jeffrey D. (Inventor)

    2004-01-01

    A multi-element optical detector system includes an electrically resistive screen that is substantially transparent to radiation energy having a wavelength of interest. A plurality of electron transfer elements (e.g., a low work function photoactive material or a carbon nanotube (CNT)-based element) are provided with each having a first end and a second end. The first end of each element is spaced apart from the screen by an evacuated gap. When the radiation energy passes through the screen with a bias voltage applied thereto, transfer of electrons through each element is induced from the first end to the second end such that a quantity indicative of the electrons transferred through each element can be detected.

  18. A Detector System for Identifying Substances in a Sample

    DEFF Research Database (Denmark)

    2010-01-01

    A system for identifying substances in a sample comprises an array of cantilevers (330), at least some of the cantilevers being provided with a recognition layer and adapted to bend if the recognition layer reacts with the substance, and a common-path interferometer for measuring cantilever bending......, said interferometer comprising an array of light sources (312) for emitting spatially coherent light, a transmitter diffractive optical element (319) for splitting the light into a plurality of probing beam sets, each beam set comprising at least a first probing beam and a second probing beam...... for illuminating a first area and a second area of the corresponding cantilever (330); a detector array (334, 336), and a receiver diffractive optical element (329) adapted to collect light reflected from the cantilever array and to form at least two spatially overlapping images of said areas so that interference...

  19. The Electronics and Data Acquisition System for the DarkSide-50 Veto Detectors

    CERN Document Server

    Agnes, P; Albuquerque, I F M; Alexander, T; Alton, A K; Arisaka, K; Back, H O; Baldin, B; Biery, K; Bonfini, G; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Cao, H; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cocco, A G; Covone, G; Crippa, L; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, A; Di Eusanio, F; Di Pietro, G; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Foster, G; Franco, D; Gabriele, F; Galbiati, C; Giganti, C; Goretti, A M; Granato, F; Grandi, L; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K R; Hungerford, E V; Ianni, Aldo; Ianni, Andrea; James, I; Jollet, C; Keeter, K; Kendziora, C L; Kobychev, V; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Lombardi, P; Luitz, S; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Miletic, T; Milincic, R; Montanari, D; Monte, A; Montuschi, M; Monzani, M E; Mosteiro, P; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Nelson, A; Odrowski, S; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeto, A; Reinhold, B; Renshaw, A L; Riffard, Q; Romani, A; Rossi, B; Rossi, N; Rountree, S D; Sablone, D; Saggese, P; Saldanha, R; Sands, W; Sangiorgio, S; Savarese, C; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Vishneva, A; Vogelaar, R B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xu, J; Yang, C; Yoo, J; Zavatarelli, S; Zec, A; Zhong, W; Zhu, C; Zuzel, G

    2016-01-01

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles (WIMPs). It utilizes a liquid argon time projection chamber (LAr TPC) for the inner main detector. The TPC is surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV, both instrumented with PMTs, act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors.

  20. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    Science.gov (United States)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  1. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dufan; Xu, Xiaofei [Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zhang, Li, E-mail: zli@mail.tsinghua.edu.cn [Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Wang, Sen [Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-09-11

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  2. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    Science.gov (United States)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  3. Modeling Sodium Iodide Detector Response Using Parametric Equations

    Science.gov (United States)

    2013-03-22

    and the source are kept in a constant geometry using a thin wooden plank . Both are moved back as a unit in 10 cm increments...using a thin wooden plank . Both are moved back as a unit in 10 cm increments. Similar to the MCNP model, the source and detector remained in a...simulated  particles   Error  %  Max   Backscatter  0  9.29E‐04  1%  100%  10  3.86E‐04  2%  42%  20  1.98E‐04  2%  21%  30  1.16E‐04  3%  13%  40  8.01E

  4. Large area liquid argon detectors for interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory [Adelphi Technology LLC, Purdue Technology Center, 5225 Exploration Drive, Indianapolis, IN 46241 (United States); Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J. [Rapiscan Laboratories, 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Nikkel, James A.; McKinsey, Dan [Physics Department, Yale University, New Haven, CT 06520 (United States)

    2013-04-19

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  5. 14 CFR 25.1731 - Powerplant and APU fire detector system: EWIS.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant and APU fire detector system: EWIS. 25.1731 Section 25.1731 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Systems (EWIS) § 25.1731 Powerplant and APU fire detector system: EWIS. (a) EWIS that are part of...

  6. FELIX: the new detector readout system for the ATLAS experiment

    CERN Document Server

    Zhang, Jinlong; The ATLAS collaboration

    2017-01-01

    After the Phase-I upgrade and onward, the Front-End Link eXchange (FELIX) system will be the interface between the data handling system and the detector front-end electronics and trigger electronics at the ATLAS experiment. FELIX will function as a router between custom serial links and a commodity switch network which will use standard technologies to communicate with data collecting and processing components. The FELIX system is being developed by using commercial-off-the-shelf server PC technology in combination with a FPGA-based PCIe Gen3 I/O card interfacing to GigaBit Transceiver links and with Timing, Trigger and Control connectivity provided by an FMC-based mezzanine card. Dedicated firmware for the Xilinx FPGA (Virtex 7 and Kintex UltraScale) installed on the I/O card alongside an interrupt-driven Linux kernel driver and user-space software will provide the required functionality. On the network side, the FELIX unit connects to both Ethernet-based network and Infiniband. The system architecture of FE...

  7. Spatio-energetic cross-talks in photon counting detectors: detector model and correlated Poisson data generator

    Science.gov (United States)

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Kappler, Steffen

    2016-03-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the two pixels. This is called double-counting with charge sharing. The output of individual PCD pixel is Poisson distributed integer counts; however, the outputs of adjacent pixels are correlated due to double-counting. Major problems are the lack of detector noise model for the spatio-energetic crosstalk and the lack of an efficient simulation tool. Monte Carlo simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, we developed a new detector model and implemented into an efficient software simulator which uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account effects: (1) detection efficiency and incomplete charge collection; (2) photoelectric effect with total absorption; (3) photoelectric effect with fluorescence x-ray emission and re-absorption; (4) photoelectric effect with fluorescence x-ray emission which leaves PCD completely; and (5) electric noise. The model produced total detector spectrum similar to previous MC simulation data. The model can be used to predict spectrum and correlation with various different settings. The simulated noisy data demonstrated the expected performance: (a) data were integers; (b) the mean and covariance matrix was close to the target values; (c) noisy data generation was very efficient

  8. Status of the OPAL microvertex detector and new radiation monitoring and beam dump system

    Science.gov (United States)

    Jong, Sijbrand de

    1998-11-01

    The status of the OPAL Phase III microvertex detector is discussed briefly. This is followed by a more detailed description of the OPAL microvertex detector radiation monitoring and beam dump system. This system measures AC currents induced by radiation on each passing of the beams in silicon diodes mounted close to the microvertex detector front-end electronics. Examples are shown for incidents leading to a beam dump trigger. The integrated radiation dose is also discussed.

  9. MTF compensation for digital radiography system with indirect conversion flat panel detector

    Science.gov (United States)

    Zhang, Wei; Souchay, Henri; Yang, Chao

    2009-02-01

    The MTF (modulation transfer function) of digital radiography systems can be enhanced in the spatial frequency domain due to their high signal to noise ratio. A Wiener filter, which requires prior estimation of the noise and signal power spectrum of the images, was used to compensate MTF of the detector and thereby optimally restore the images details. We studied the noise characteristics of two flat panel detectors with structured columnar scintillator (CsI) and granular scintillator (Gd2O2S). A noise model formulating noise transfer process was applied to estimate the noise components for the filter. Signal model was based on dose of the application. We revisited the noise and signal model that was used in previous work by Souchay et al. for mammography application [1], considering the difference in detector characteristics and the applications (extremity x-ray) that we are specifically investigating. Starting with real clinical images, we used an observer study method to measure the visually optimal parameter for the Wiener filter. A set of clinical images was used to evaluate the radiologists' preferences to compensated images against the reference images. Statistical results from three experienced radiologists ranking results show that the compensated images are preferred over the reference images.

  10. Simulation and modeling of BEGe detectors for GERDA phase II

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo; Barnabe Heider, Marik; Budjas, Dusan; Schoenert, Stefan [Max-Plank-Institute fuer Kernphysik, Heidelberg (Germany); Ur, Calin A. [INFN - Padova (Italy); Bellotti, Enrico; Cattadori, Carla [INFN - Milano (Italy); Di Vacri, Assunta; Pandola, Luciano [INFN - LNGS, L' Aquila (Italy); Garfagnini, Alberto [INFN - Padova (Italy); University of Padova (Italy)

    2010-07-01

    The GERDA experiment aims to search for the neutrinoless double beta decay of {sup 76}Ge by using high purity germanium detectors enriched in {sup 76}Ge. The background suppression in the GERDA experiment can be achieved by analyzing the time-development of the detector signals. To investigate the pulse shape discrimination capabilities of Broad Energy Germanium (BEGe) detectors, a complete simulation of the signal formation and evolution was developed. The results of the simulations will be presented and compared with measurements. The characteristic shapes of the BEGe detector signals and their dependence of the interaction position are discussed.

  11. Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN

    CERN Document Server

    Carrone, E; Tsirou, A

    The CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid (CMS), a general purpose detector optimized for the search of Higgs boson and for physics beyond the Standard Model of fundamental interactions between elementary particles. This thesis presents, in particular, the design, construction, commissioning and test of the control system for a screen that provides a thermal separation between the Tracker and ECAL (Electromagnetic CALorimeter) detector of CMS (Compact Muon Solenoid experiment). Chapter 1 introduces the new challenges posed by these installations and deals, more in detail, with the Tracker detector of CMS. The size of current experiments for high energy physics is comparable to that of a small industrial plant: therefore, the techniques used for controls a...

  12. Distributed Impact Detector System (DIDS) Health Monitoring System Evaluation

    Science.gov (United States)

    Prosser, William H.; Madaras, Eric I.

    2010-01-01

    Damage due to impacts from micrometeoroids and orbital debris is one of the most significant on-orbit hazards for spacecraft. Impacts to thermal protection systems must be detected and the damage evaluated to determine if repairs are needed to allow safe re-entry. To address this issue for the International Space Station Program, Langley Research Center and Johnson Space Center technologists have been working to develop and implement advanced methods for detecting impacts and resultant leaks. LaRC funded a Small Business Innovative Research contract to Invocon, Inc. to develop special wireless sensor systems that are compact, light weight, and have long battery lifetimes to enable applications to long duration space structures. These sensor systems are known as distributed impact detection systems (DIDS). In an assessment, the NASA Engineering and Safety Center procured two prototype DIDS sensor units to evaluate their capabilities in laboratory testing and field testing in an ISS Node 1 structural test article. This document contains the findings of the assessment.

  13. Renormalized Unruh-DeWitt Particle Detector Models for Boson and Fermion Fields

    CERN Document Server

    Hümmer, Daniel; Kempf, Achim

    2016-01-01

    Since quantum field theories do not possess proper position observables, Unruh-DeWitt detector models serve as a key theoretical tool for extracting localized spatio-temporal information from quantum fields. Most studies have been limited, however, to Unruh-DeWitt (UDW) detectors that are coupled linearly to a scalar bosonic field. Here, we investigate UDW detector models that probe fermionic as well as bosonic fields through both linear and quadratic couplings. In particular, we present a renormalization method that cures persistent divergencies of prior models. We then show how perturbative calculations with UDW detectors can be streamlined through the use of extended Feynman rules that include localized detector-field interactions.Our findings pave the way for the extension of previous studies of the Unruh and Hawking effects with UDW detectors, and provide new tools for studies in relativistic quantum information, for example, regarding relativistic quantum communication and studies of the entanglement st...

  14. Development of a real-time steady state detector of a heat pump system to develop fault detection and diagnosis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yoon, Seok Ho [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Min Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2008-07-01

    Identification of steady-state is the first step in developing a Fault Detection and Diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to 'tune' itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  15. Information Management for Intelligent Retail Environment: The Shelf Detector System

    Directory of Open Access Journals (Sweden)

    Emanuele Frontoni

    2014-05-01

    Full Text Available Shelf-out-of-stock is one of the leading motivations of technology innovation in the shelf of the future. The Shelf Detector project described in this paper aims to solve the problem of data knowledge in the shelf-out-of-stock problem. This paper is mainly focused on the information layer of the system and main novelties illustrated in this work are in the information field demonstrating the huge number of insights that can be derived from the use of such a tool able to gather data in real time from the store. The tool presented is the first being installed for a long time in a high number of stores and products, demonstrating the ability to gather data and extract interesting insights. This paper aims to demonstrate the feasibility and the scalability of our system in providing a high number of data and interesting insights for store and marketing teams. The cloud based architecture developed and tested in this project is a key feature of our system together with the ability to collect data from a distributed sensor network.

  16. FELIX: the new detector readout system for the ATLAS experiment

    CERN Document Server

    ATLAS TDAQ Collaboration; The ATLAS collaboration

    2017-01-01

    Starting during the upcoming major LHC shutdown from 2019-2021, the ATLAS experiment at CERN will move to the the Front-End Link eXchange (FELIX) system as the interface between the data acquisition system and the trigger and detector front-end electronics. FELIX will function as a router between custom serial links and a commodity switch network, which will use industry standard technologies to communicate with data collection and processing components. The FELIX system is being developed using commercial-off-the-shelf server PC technology in combination with a FPGA-based PCIe Gen3 I/O card hosting GigaBit Transceiver links and with Timing, Trigger and Control connectivity provided by an FMC-based mezzanine card. FELIX functions will be implemented with dedicated firmware for the Xilinx FPGA (Virtex 7 and Kintex UltraScale) installed on the I/O card alongside an interrupt-driven Linux kernel driver and user-space software. On the network side, FELIX is able to connect to both Ethernet or Infiniband network a...

  17. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    Science.gov (United States)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x

  18. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M. [Instrumentation Group, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  19. Detector Modeling and CMB Polarimetry Technology Development at GSFC

    Science.gov (United States)

    Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Withington, Stafford; Saklatvala, George

    2007-01-01

    Pixel size limits the resolution in the focal plane. This should be accounted for in optical design. Alternatively, this reduces the effective number of independent detectors. Polarization and scattering are intrinsically related, and both are more severe at low pnambda. Future work: Quantification of the pixel cross-coupling- calculate a theoretical covariance matrix to predict performance of future detector arrays.

  20. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    Science.gov (United States)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  1. The Magnetic Distortion Calibration System of the LHCb RICH1 Detector

    CERN Document Server

    Borgia, A; Contu, A; D'Ambrosio, C; Frei, C; Harnew, N; John, M; Lefeuvre, G; Mountain, R; Stone, S; Websdale, D; Xing, F

    2014-01-01

    The LHCb RICH1 detector uses hybrid photon detectors (HPDs) as its optical sensors. A calibration system has been constructed to provide corrections for distortions that are primarily due to external magnetic fields. We describe here the system design, construction, operation and performance.

  2. Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector

    CERN Document Server

    Flick, T; Gerlach, P; Kersten, S; Mättig, P; Kirichu, S N; Reeves, K; Richter, J; Schultes, J; Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Kirichu, Simon Nderitu; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. In this paper the system test setup and the operation of the readout chain is described. Also, some results of tests using the final pixel detector readout chain are given.

  3. The CERN Detector Safety System for the LHC Experiments

    CERN Document Server

    Lüders, S; Morpurgo, G; Schmeling, S

    2003-01-01

    The Detector Safety System (DSS), currently being developed at CERN under the auspices of the Joint Controls Project (JCOP), will be responsible for assuring the protection of equipment for the four LHC experiments. Thus, the DSS will require a high degree of both availability and reliability. After evaluation of various possible solutions, a prototype is being built based on a redundant Siemens PLC front-end, to which the safety-critical part of the DSS task is delegated. This is then supervised by a PVSS SCADA system via an OPC server. The PLC front-end is capable of running autonomously and of automatically taking predefined protective actions whenever required. The supervisory layer provides the operator with a status display and with limited online reconfiguration capabilities. Configuration of the code running in the PLCs will be completely data driven via the contents of a "Configuration Database". Thus, the DSS can easily adapt to the different and constantly evolving requirements of the LHC experimen...

  4. The CERN Detector Safety System for LHC Experiments

    CERN Document Server

    Lüders, S; Morpurgo, G; Schmeling, S M

    2003-01-01

    The Detector Safety System (DSS), developed at CERN in common for the four LHC experiments under the auspices of the Joint Controls Project (JCOP), will be responsible for assuring the equipment protection for these experiments. Therefore, the DSS requires a high degree of both availability and reliability. It is composed of a Front-end and a Back-end part. The Front-end is based on a redundant Siemens PLC, to which the safety-critical part of the DSS task is delegated. The PLC Front-end is capable of running autonomously and of automati-cally taking predefined protective actions whenever re-quired. It is supervised and configured by the CERN-cho-sen PVSS SCADA system via a Siemens OPC server. The supervisory layer provides the operator with a status display and with limited online reconfiguration capabili-ties. Configuration of the code running in the PLCs is completely data driven via the contents of a ?Configura-tion Database?. Thus, the DSS can easily adapt to the different and constantly evolving require...

  5. Distributed modular RT-systems for detector DAQ, trigger and control applications

    CERN Document Server

    Vinogradov, V I

    2001-01-01

    A modular approach to development of distributed modular system architecture for detector control, data acquisition and trigger data processing is proposed. A multilevel parallel-pipeline model of data acquisition, processing and control is proposed and discussed. Multiprocessor architecture with SCI-based interconnections is proposed as good high-performance system for parallel-pipeline data processing. A network (Ethernet -100) can be used for loading, monitoring and diagnostic purposes independent of basic interconnections. The modular cPCI-based structures with high speed modular interconnections are proposed for DAQ and control applications. For distributed control RT-systems, to construct the effective (cost-performance) systems the same platform of an Intel compatible processor board should be used. The basic computer multiprocessor nodes consist of high-power PC MB (Industrial Computer Systems), which are interconnected by SCI modules and link to embedded microprocessor-based sub-systems for control a...

  6. Scalable multiplexed detector system for high-rate telecom-band single-photon detection.

    Science.gov (United States)

    Brida, G; Degiovanni, I P; Piacentini, F; Schettini, V; Polyakov, S V; Migdall, A

    2009-11-01

    We present an actively multiplexed photon-counting detection system at telecom wavelengths that overcomes the difficulties of photon-counting at high rates. We find that for gated detectors, the heretofore unconsidered deadtime associated with the detector gate is a critical parameter, that limits the overall scalability of the scheme to just a few detectors. We propose and implement a new scheme that overcomes this problem and restores full scalability that allows an order of magnitude improvement with systems with as few as 4 detectors. When using just two multiplexed detectors, our experimental results show a 5x improvement over a single detector and a greater than 2x improvement over multiplexed schemes that do not consider gate deadtime.

  7. A Charrelation Matrix-Based Blind Adaptive Detector for DS-CDMA Systems.

    Science.gov (United States)

    Luo, Zhongqiang; Zhu, Lidong

    2015-08-14

    In this paper, a blind adaptive detector is proposed for blind separation of user signals and blind estimation of spreading sequences in DS-CDMA systems. The blind separation scheme exploits a charrelation matrix for simple computation and effective extraction of information from observation signal samples. The system model of DS-CDMA signals is modeled as a blind separation framework. The unknown user information and spreading sequence of DS-CDMA systems can be estimated only from the sampled observation signals. Theoretical analysis and simulation results show that the improved performance of the proposed algorithm in comparison with the existing conventional algorithms used in DS-CDMA systems. Especially, the proposed scheme is suitable for when the number of observation samples is less and the signal to noise ratio (SNR) is low.

  8. The development of a silicon multiplicity detector system

    Energy Technology Data Exchange (ETDEWEB)

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D. [Brookhaven National Laboratory, Upton, NY (United States); Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A. [McGill Univ., Montreal, Quebec (Canada); Wolfe, D. [Univ. of New Mexico, Albuquerque (United States); Borenstein, S.R. [York College-CUNY, Jamaica, NY (United States)

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  9. The development of a silicon multiplicity detector system

    Energy Technology Data Exchange (ETDEWEB)

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D. [Brookhaven National Laboratory, Upton, NY (United States); Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A. [McGill Univ., Montreal, Quebec (Canada); Wolfe, D. [Univ. of New Mexico, Albuquerque (United States); Borenstein, S.R. [York College-CUNY, Jamaica, NY (United States)

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  10. Two models for bolometer and microcalorimeter detectors with complex thermal architectures

    Energy Technology Data Exchange (ETDEWEB)

    Appel, J.W. [Department of Physics, University of Miami, P.O. Box 248046, Coral Gables, FL 33124 (United States); Galeazzi, M. [Department of Physics, University of Miami, P.O. Box 248046, Coral Gables, FL 33124 (United States)]. E-mail: galeazzi@physics.miami.edu

    2006-06-15

    We have developed two analytical models to describe the performance of cryogenic microcalorimeters and bolometers. One of the models is suitable to describe Transition Edge Sensor (TES) detectors with an integrated absorber, the other is suitable for detectors with large absorbers. Both models take into account hot-electron decoupling and absorber decoupling. The differential equations describing these models have been solved using block diagram algebra. Each model has produced closed-form solutions for the detector's responsivity, dynamic impedance, and noise equivalent power for phonon noise, Johnson noise, amplifier noise, 1/f noise, and load resistor noise.

  11. Two Models for Bolometer and Microcalorimeter Detectors with Complex Thermal Architectures

    CERN Document Server

    Appel, J W

    2005-01-01

    We have developed two analytical models to describe the performance of cryogenic microcalorimeters and bolometers. One of the models is suitable to describe Transition Edge Sensor (TES) detectors with an integrated absorber, the other is suitable for detectors with large absorbers. Both models take into account hot-electron decoupling and absorber decoupling. The differential equations describing these models have been solved using block diagram algebra. Each model has produced closed form solutions for the detector's responsivity, dynamic impedance, and noise equivalent power for phonon noise, Johnson noise, amplifier noise, 1/f noise, and load resistor noise.

  12. Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study.

    Science.gov (United States)

    Iida, Hirokazu; Ogawa, Koichi

    2011-02-01

    The aim of this work was to evaluate a pixelated semiconductor detector and non-pixelated scintillation detector in a pinhole SPECT system for small animal imaging. We assumed two pixelated CdTe semiconductor detectors (a monolithic type and a modular type) and two non-pixelated NaI(Tl) scintillation detectors (a conventional type and a large detector field type). For the monolithic semiconductor detector we assumed that the size of a pixel was 1.0 × 1.0 mm², the thickness 1 mm, and an effective detector field 128 × 128 mm². For the modular-type semiconductor detector we assumed that the size of a pixel was 2.5 × 2.5 mm², the thickness 5 mm, and an effective detector field 320 × 320 mm². For the two scintillation detectors we assumed that the size of a pixel was 1.4 × 1.4 mm² and the intrinsic spatial resolution 4.0 mm FWHM, and the thickness 9 mm. For the conventional scintillation detector we assumed that the effective detector field was 179.2 × 179.2 mm², and for the large field scintillation detector 358.2 × 358.2 mm² and the magnification factor two. In the simulation we used a pinhole collimator with a pinhole size of 0.3 mm. We reconstructed SPECT images of hot-rod and cold-channel phantoms with projection data calculated with a Monte Carlo method assuming a fixed data acquisition time, and evaluated the image quality with respect to contrast and spatial resolution. In addition, we calculated the scatter fraction to compare the amount of scattered photons between the pixelated and non-pixelated detectors. The image quality of the modular-type pixelated detector was similar to that of the non-pixelated detector operated with a twofold magnified data acquisition. The scattered photons and the parallax effect in the pixelated detector were small and similar to those in the non-pixelated detector. The performance of a modular-type pixelated semiconductor detector was almost the same as that of a non-pixelated scintillation detector with a magnified

  13. Ethernet-Based DAQ System for QUIET-II Detectors

    Science.gov (United States)

    Nagai, M.; Ishidoshiro, K.; Higuchi, T.; Ikeno, M.; Hasegawa, M.; Hazumi, M.; Tajima, O.; Tanaka, M.; Uchida, T.

    2012-06-01

    The B-modes in cosmic microwave background polarization are a smoking gun for the inflationary universe. For the detection of the B-modes, having a large detector array is a generic approach since the B-modes is so faint pattern ( T b≲0.1 μK). The Q/U Imaging ExperimenT Phase-II (QUIET-II) is proposed to search the B-modes, using an array with 500 HEMT-based polarimeters. Each polarimeter element has 4-outputs, therefore we have to manage 2000 channels in total. We developed a scalable DAQ system based on TCP/Ethernet for QUIET-II. The DAQ system is composed of the polarimeters, ADC boards, a Master Clock and a control computer (PC). The analog signals from the polarimeters are digitized on the ADC boards. On-board demodulation, which synchronizes the phase flip modulations on the polarimeter, extracts the polarized components in the digitized signal. The Master Clock distributes all necessary clocks to the ADC boards as well as the polarimeters. This scheme guarantees the synchronization of the modulations and demodulations. We employed Ethernet-based communication scheme between the data collection program (Collector) on the PC and the ADC boards as well as the Master Clock. Such an Ethernet-based communication scheme allows us to construct a simple structure of the upper level software, which results in the high scalability to increase the number of channels. All basic functions and requirements are confirmed by the laboratory tests; demonstration with test signals as well as the signals from the polarimeters, measurements of the data transfer rate, and the synchronous operation with two ADC boards. Therefore, the DAQ system is confirmed to be suitable for QUIET-II.

  14. Thermo-dynamical measurements for ATLAS Inner Detector (evaporative cooling system)

    CERN Document Server

    Bitadze, Alexander; Buttar, Craig

    During the construction, installation and initial operation of the Evaporative Cooling System for the ATLAS Inner Detector SCT Barrel Sub-detector, some performance characteristics were observed to be inconsistent with the original design specifications, therefore the assumptions made in the ATLAS Inner Detector TDR were revisited. The main concern arose because of unexpected pressure drops in the piping system from the end of the detector structure to the distribution racks. The author of this theses made a series of measurements of these pressure drops and the thermal behavior of SCT-Barrel cooling Stave. Tests were performed on the installed detector in the pit, and using a specially assembled full scale replica in the SR1 laboratory at CERN. This test setup has been used to perform extensive tests of the cooling performance of the system including measurements of pressure drops in different parts of system, studies of the thermal profile along the stave pipe for different running conditions / parameters a...

  15. Gamma Ray Array Detector Trigger Sub-System

    CERN Document Server

    Zhong-Wei, Du; Yi, Qian; KongJie,

    2012-01-01

    Gamma Ray Array Detector (GRAD) is one of External Target Facility (ETF) subsystems at the Heavy Ion Research Facility at Lanzhou. The trigger subsystem of the GRAD has been developed based on Field Programmable Gate Array (FPGAs) and PXI interface. The GRAD trigger subsystem makes prompt L1 trigger decisions to select valid events. These decisions are made by processing the hit signals from 1024 CsI scintillators of the GRAD. According to the physical requirements, the GRAD trigger subsystem generates 12-bit trigger signals that are passed to the ETF global trigger system. In addition, the GRAD trigger subsystem generates trigger data that are packed and transmitted to the host computer via PXI bus for off-line analysis. The trigger processing is implemented in the front-end electronics and one FPGA of the trigger module. The logic of PXI transmission and reconfiguration is implemented in the other FPGA of the trigger module. The reliable and efficient performance in the Gamma-ray experiments demonstrates th...

  16. Ice Detector and Deicing Fluid Effectiveness Monitoring System

    Science.gov (United States)

    Seegmiller, H. Lee B. (Inventor)

    1996-01-01

    An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.

  17. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-10-10

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed.

  18. Monte Carlo modelling of diode detectors for small field MV photon dosimetry: detector model simplification and the sensitivity of correction factors to source parameterization.

    Science.gov (United States)

    Cranmer-Sargison, G; Weston, S; Evans, J A; Sidhu, N P; Thwaites, D I

    2012-08-21

    The goal of this work was to examine the use of simplified diode detector models within a recently proposed Monte Carlo (MC) based small field dosimetry formalism and to investigate the influence of electron source parameterization has on MC calculated correction factors. BEAMnrc was used to model Varian 6 MV jaw-collimated square field sizes down to 0.5 cm. The IBA stereotactic field diode (SFD), PTW T60016 (shielded) and PTW T60017 (un-shielded) diodes were modelled in DOSRZnrc and isocentric output ratios (OR(fclin)(detMC)) calculated at depths of d = 1.5, 5.0 and 10.0 cm. Simplified detector models were then tested by evaluating the percent difference in (OR(fclin)(detMC)) between the simplified and complete detector models. The influence of active volume dimension on simulated output ratio and response factor was also investigated. The sensitivity of each MC calculated replacement correction factor (k(fclin,fmsr)(Qclin,Qmsr)), as a function of electron FWHM between 0.100 and 0.150 cm and energy between 5.5 and 6.5 MeV, was investigated for the same set of small field sizes using the simplified detector models. The SFD diode can be approximated simply as a silicon chip in water, the T60016 shielded diode can be modelled as a chip in water plus the entire shielding geometry and the T60017 unshielded diode as a chip in water plus the filter plate located upstream. The detector-specific (k(fclin,fmsr)(Qclin,Qmsr)), required to correct measured output ratios using the SFD, T60016 and T60017 diode detectors are insensitive to incident electron energy between 5.5 and 6.5 MeV and spot size variation between FWHM = 0.100 and 0.150 cm. Three general conclusions come out of this work: (1) detector models can be simplified to produce OR(fclin)(detMC) to within 1.0% of those calculated using the complete geometry, where typically not only the silicon chip, but also any high density components close to the chip, such as scattering plates or shielding material is necessary

  19. Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Rina Wu

    2016-02-01

    Full Text Available Studying the influencing factors of carbon dioxide emissions is not only practically but also theoretically crucial for establishing regional carbon-reduction policies, developing low-carbon economy and solving the climate problems. Therefore, we used a geographical detector model which is consists of four parts, i.e., risk detector, factor detector, ecological detector and interaction detector to analyze the effect of these social economic factors, i.e., GDP, industrial structure, urbanization rate, economic growth rate, population and road density on the increase of energy consumption carbon dioxide emissions in industrial sector in Inner Mongolia northeast of China. Thus, combining with the result of four detectors, we found that GDP and population more influence than economic growth rate, industrial structure, urbanization rate and road density. The interactive effect of any two influencing factors enhances the increase of the carbon dioxide emissions. The findings of this research have significant policy implications for regions like Inner Mongolia.

  20. Modeling Inter-Pixel Crosstalk in Teledyne Imaging Sensors H4RG Detectors

    CERN Document Server

    Dudik, R P; Dorland, B N; Veillette, D; Waczynski, A; Lane, B; Loose, M; Kan, E; Waterman, J; Pravdo, S

    2012-01-01

    CMOS-hybrid arrays have recently surfaced as competitive optical detectors for use in ground- and space-based astronomy. One source of error in these detectors that does not appear in more traditional CCD arrays is the inter-pixel capacitance component of crosstalk. In this paper we use a single pixel reset method to model inter-pixel capacitance (IPC). We combine this IPC model with a model for charge diffusion to estimate the total crosstalk on H4RG arrays. Finally, we compare our model results to Fe55 data obtained using an astrometric camera built to test the H4RG-B0 generation detectors.

  1. A Prototype of Wireless Power and Data Acquisition System for Large Detectors

    OpenAIRE

    2013-01-01

    A new prototype wireless data acquisition system has been developed with the intended application to read-out instrumentation systems having a large number of channels. In addition such system could be deployed in smaller detectors requiring increased mobility. The data acquisition and control system is based on 802.11n compliant hardware and protocols. In this paper we describe our case study with a single readout channel performed for a potential large detector containing photomultiplier tu...

  2. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    Science.gov (United States)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-09-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  3. Detector Control System and Efficiency Performance for CMS RPC at GIF++

    CERN Document Server

    Gul, Muhammad; Cimmino, A; Crucy, S; Fagot, A; Rios, A A O; Tytgat, M; Zaganidis, N; Aly, S; Assran, Y; Radi, A; Sayed, A; Singh, G; Abbrescia, M; Iaselli, G; Maggi, M; Pugliese, G; Verwilligen, P; Doninck, W V; Colafranceschi, S; Sharma, A; Benussi, L; Bianco, S; Piccolo, D; Primavera, F; Bhatnagar, V; Kumari, R; Mehta, A; Singh, J; Ahmad, A; Asghar, M I; Muhammad, S; Awan, I A; Hoorani, H R; Ahmed, W; Shahzad, H; Shah, M A; Cho, S W; Choi, S Y; Hong, B; Kang, M H; Lee, K S; Lim, J H; Park, S K; Kim, M; Goutzvitz, M; Grenier, G; Lagarde, F; Estrada, C U; Pedraza, I; Severiano, C B; Carrillo Moreno, S; Vazquez Valencia, F; Pant, L M; Buontempo, S; Cavallo, N; Esposito, M; Fabozzi, F; Lanza, G; Lista, L; Meola, S; Merola, M; Orso, I; Paolucci, P; Thyssen, F; Braghieri, A; Magnani, A; Montagna, P; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Ban, Y; Qian, S J; Choi, M; Choi, Y; Goh, J; Kim, D; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Lomidze, D; Bagaturia, I; Avila, C; Cabrera, A; Sanabria, J C; Crotty, I; Vaitkus, J

    2016-01-01

    In the framework of the High Luminosity LHC upgrade program, the CMS muon group built several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data.

  4. ALICE Diffractive Detector Control System for RUN-II in the ALICE Experiment

    CERN Document Server

    INSPIRE-00522336; Martinez, M.I.; Monzon, I. Leon

    2016-01-01

    This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.

  5. MCNP6 and DRiFT modeling efforts for the NEUANCE/DANCE detector array

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla, Maria Isabel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-30

    This report seeks to study and benchmark code predictions against experimental data; determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements; add stilbene processing capabilities to DRiFT; and improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features.

  6. Design and implementation of the detector control system for the BESIII drift chamber cosmic ray test

    Science.gov (United States)

    Chen, Xi-Hui; Xie, Xiao-Xi; Li, Xiao-Nan; Gao, Cui-Shan; Zhang, Yin-Hong; Nie, Zhen-Dong; Min, Jian; Xie, Yi-GANG

    2008-08-01

    After the construction of the BESIII drift chamber, a long period of cosmic rays test is necessary to verify its performance. This also provides a good opportunity to integrate the detector readout electronics and Detector Control System (DCS) into a unified working system. The goal of the DCS is to guarantee reliable physics data quality and the safe operation of the detector. It monitors and controls the HV, gas, VME crates and the environmental variables. The upper-level system is mainly developed from LabVIEW and the lower-level system mainly uses MCU and PLC technology. The system is designed to be highly flexible and scalable so that it can be applied to other detectors with little or no change. In the immediate future, it will be integrated into the entire BESIII Slow Control System.

  7. Design and implementation of the detector control system for the BESⅢ drift chamber cosmic ray test

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi-Hui; XIE Xiao-Xi; LI Xiao-Nan; GAO Cui-Shan; ZHANG Yin-Hong; NIE Zhen-Dong; MIN Jian; XIE Yi-GANG

    2008-01-01

    After the construction of the BESⅢ drift chamber,a long period of cosmic rays test is necessary to verify its performance.This also provides a good opportunity to integrate the detector readout electronics and Detector Control System (DCS) into a unified working system.The goal of the DCS is to guarantee reliable physics data quality and the safe operation of the detector.It monitors and controls the HV,gas,VME crates and the environmental variables.The upper-level system is mainly developed from LabVIEW and the lower-level system mainly uses MCU and PLC technology.The system is designed to be highly flexible and scalable so that it can be applied to other detectors with little or no change.In the immediate future,it will be integrated into the entire BESⅢ Slow Control System.

  8. The surface detector system of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Allekotte, I. [Instituto Balseiro and Centro Atomico Bariloche (U.N. Cuyo and CNEA, CONICET), 8400 Bariloche (Argentina)], E-mail: ingo@cab.cnea.gov.ar; Barbosa, A.F. [CBPF, Rua Xavier Sigaud 150, Rio de Janeiro (Brazil); Bauleo, P. [Colorado State University, Fort Collins, CO 80523 (United States); Bonifazi, C. [CBPF, Rua Xavier Sigaud 150, Rio de Janeiro (Brazil); Civit, B. [Universidad Tecnologica Nacional Regional Mendoza, Mendoza (Argentina); Escobar, C.O. [Departamento de Raios Cosmicos, Instituto de Fisica, Universidade Estadual de Campinas, CP 6165, 13084-971, Campinas SP (Brazil); Garcia, B. [Universidad Tecnologica Nacional Regional Mendoza, Mendoza (Argentina); Guedes, G. [Universidade Estadual de Feira de Santana (UEFS), Av. Universitaria Km 03 da BR 116, Campus Universitario, 44031-460 Feira de Santana BA (Brazil); Gomez Berisso, M. [Instituto Balseiro and Centro Atomico Bariloche (U.N. Cuyo and CNEA, CONICET), 8400 Bariloche (Argentina); Harton, J.L. [Colorado State University, Fort Collins, CO 80523 (United States); Healy, M. [Department of Physics and Astronomy, University of California, Los Angeles (UCLA), Los Angeles, CA 90095 (United States); Kaducak, M.; Mantsch, P.; Mazur, P.O.; Newman-Holmes, C. [Fermi National Accelerator Laboratory Batavia, IL (United States); Pepe, I. [Universidade Federal da Bahia, Campus de Odina, 40210-340 Salvador BA (Brazil); Rodriguez-Cabo, I. [Dpto. Fisica de Particulas, Universidad de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Salazar, H. [Benemerita Universidad Autonoma de Puebla (BUAP), Ap. Postal J-48, 72500 Puebla, Puebla (Mexico); Smetniansky-De Grande, N. [Laboratorio Tandar, Comision Nacional de Energia Atomica and CONICET, Av. Gral. Paz 1499 (1650) San Martin, Buenos Aires (Argentina); Warner, D. [Colorado State University, Fort Collins, CO 80523 (United States)

    2008-03-01

    The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10{sup 19}eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000km{sup 2}, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory.

  9. Detector apparatus having a hybrid pixel-waveform readout system

    Science.gov (United States)

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  10. The Surface Detector System of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Allekotte, I.; Barbosa, A.F.; Bauleo, P.; Bonifazi, C.; Civit, B.; Escobar, C.O.; Garcia, B.; Guedes, G.; Gomez Berisso, M.; Harton, J.L.; Healy, M.; /Cuyo U. /Buenos Aires, CONICET /Natl. Tech. U., San Rafael /Campinas State U. /UEFS, Feira de Santana /Bahia U. /BUAP, Puebla /Santiago de Compostela U. /Fermilab /UCLA /Colorado State U.

    2007-11-01

    The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10{sup 19} eV. Two sites are envisaged for the observatory, one in each hemisphere, for complete sky coverage. The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000 km{sup 2}, together with 24 fluorescence telescopes to record the air shower cascades produced by these particles. The two complementary detector techniques together with the large collecting area form a powerful instrument for these studies. Although construction is not yet complete, the Auger Observatory has been taking data stably since January 2004 and the first physics results are being published. In this paper we describe the design features and technical characteristics of the surface detector stations of the Pierre Auger Observatory.

  11. Arc detector system for extraction switches in LHC CERN

    CERN Document Server

    Dahlerup-Petersen, K; Kuper, E; Ovchar, V; Zverev, S

    2006-01-01

    The opening switches, which will be used in case of quenches or other failures in CERN’s future LHC collider to extract the large amounts of energy stored in the magnetic field of the superconducting chains of main dipoles (8 chains with 1350 MJ each) and main quadrupoles (16 chains with about 24 MJ each) consist of an array of series/parallel connected, electro-mechanical D.C. breakers, specifically designed for this particular application. During the opening process the magnet excitation current is transferred from the cluster of breakers to extraction resistors for rapid de-excitation of the magnet chain. An arc detector has been developed in order to facilitate the determination of the need for maintenance interventions on the switches. The paper describes the arc detector and highlight results from operation of the detector with a LHC pilot extraction...

  12. New technologies of silicon position-sensitive detectors for future tracker systems

    CERN Document Server

    Bassignana, Daniela; Lozano, M

    In view of the new generation of high luminosity colliders, HL-LHC and ILC, a farther investigation of silicon radiation detectors design and technology is demanded, in order to satisfy the stringent requirements of the experiments at such sophisticated machines. In this thesis, innovative technologies of silicon radiation detectors for future tracking systems are proposed. Three dierent devices have been studied and designed with the help of dierent tools for computer simulations. They have been manufactured in the IMB-CNM clean room facilities in Barcelona and characterized with proper experimental set-ups in order to test the detectors capabilities and the quality and suitability of the technologies used for their fabrication. The rst technology deals with the upgrade of dedicated sensors for laser alignment systems in future tracker detectors. The design and technology of common single-sided silicon microstrip detectors have been slightly modied in order to improve IR light transmittance of the devices. T...

  13. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described.

  14. B-Plant D-Filter detector system qualification test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-08-23

    This report summarizes the results of qualification testing of the B Plant D-Filter Detector System. The purpose of this test was to verify that the system meets the performance requirements and that the unit is ready for field deployment. Testing was performed in the test pit in the 306E Facility. This detector system will be deployed in the B Plant D-Filter to measure beta/gamma dose rates from the filter bank.

  15. Development of a polymer based fiberoptic magnetostrictive metal detector system.

    Science.gov (United States)

    Hua, Wei Shu; Hooks, Joshua Rosenberg; Wu, Wen Jong; Wang, Wei Chih

    2010-10-01

    This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.

  16. The vacuum system of the LHCb vertex detector

    CERN Document Server

    Van den Brand, J F J; Kraan, M G; Klous, S; Kaan, A P

    2002-01-01

    An overview of the design of the vertex detector of the LHCb experiment in the future Large Hadron Collider at CERN will be given. The application of silicon detectors close to the beam implies the isolation of the materials with a high desorption rate from the accelerator vacuum. The aluminium containment has a complicated shape and a thickness of 250 mu m in order to minimize the multiple scattering. Alignment, safety and precision problems have been solved in the design and are being tested. (1 refs).

  17. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Gorfine, Grant

    2009-01-01

    The ATLAS detector, built at one of the interaction points of the Large Hadron Collider, is operational and has been collecting data from cosmic rays. This paper describes the track based alignment of the ATLAS Inner Detector tracker which was performed using cosmic rays collected in 2008. The alignment algorithms are described and the performance of the alignment is demonstrated by showing the resulting hit residuals and comparing track parameters of upper and lower segments of tracks. The impact of the alignment on physics measurements is discussed.

  18. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyuseong.

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was {approximately}400 MHz and the noise charge {approximately}1000 electrons at a 1 {mu}sec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of {approximately}0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB.

  19. The LHCb RICH system: current detector performance and status of the upgrade program

    CERN Document Server

    Fiorini, Massimiliano

    2016-01-01

    LHCb is a precision experiment devoted to the study of CP violation and rare decays of b and c quarks, and to the search for new physics beyond the Standard Model at the Large Hadron Collider (LHC) at CERN. The Ring-Imaging Cherenkov (RICH) system is a key component of the LHCb experiment: it consists of two RICH detectors that provide charged particle identification over a wide momentum range (2-100 GeV/c) and angular acceptance (15-300 mrad). The LHCb RICH system has been performing extremely well during Run 1 and is providing the LHCb experiment also in Run 2 with a robust, reliable and precise particle identification system. Performance of the RICH detectors measured from data will be presented, with special reference to its dependence on calibration parameters and event multiplicities. The LHCb experiment is preparing for an upgrade during the second LHC long shutdown (2019-2020) in order to fully exploit the LHC flavour physics potential. A five-fold increase in instantaneous luminosity is foreseen reac...

  20. Development of a stacked detector system for the x-ray range and its possible applications

    Science.gov (United States)

    Maier, Daniel; Limousin, Olivier; Meuris, Aline; Pürckhauer, Sabina; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph

    2014-07-01

    We have constructed a stacked detector system operating in the X-ray range from 0.5 keV to 250 keV that consists of a Si-based 64×64 DePFET-Matrix in front of a CdTe hybrid detector called Caliste-64. The setup is operated under laboratory conditions that approximate the expected environment of a space-borne observatory. The DePFET detector is an active pixel matrix that provides high count-rate capabilities with a near Fanolimited spectral resolution at energies up to 15 keV. The Caliste-64 hard X-ray camera consists of a 1mm thick CdTe crystal combined with very compact integrated readout electronics, constituting a high performance spectro-imager with event-triggered time-tagging capability in the energy range between 2 keV and 200 keV. In this combined geometry the DePFET detector works as the Low Energy Detector (LED) while the Caliste-64 - as the High Energy Detector (HED) - detects predominantly the high energetic photons that have passed the LED. In addition to the individual optimization of both detectors, we use the setup to test and optimize the performance of the combined detector system. Side-effects like X-ray fluorescence photons, electrical crosstalk, and mutual heating have negative impacts on the data quality and will be investigated. Besides the primary application as a combined imaging detector system with high sensitivity across a broad energy range, additional applications become feasible. Via the analysis of coincident events in both detectors we can estimate the capabilities of the setup to be used as a Compton camera and as an X-ray polarimeter - both desirable functionalities for use in the lab as well as for future X-ray missions.

  1. Analysis of global components in Ganoderma using liquid chromatography system with multiple columns and detectors.

    Science.gov (United States)

    Qian, Zhengming; Zhao, Jing; Li, Deqiang; Hu, Dejun; Li, Shaoping

    2012-10-01

    In present study, a multiple columns and detectors liquid chromatography system for analysis of global components in traditional Chinese medicines was developed. The liquid chromatography system was consist of three columns, including size exclusion chromatography column, hydrophilic interaction chromatography column, and reversed phase chromatography column, and three detectors, such as diode array detector, evaporative light scattering detector, and mass spectrometry detector, based on column switching technique. The developed multiple columns and detectors liquid chromatography system was successfully applied to the analysis of global components, including macromolecular (polysaccharides), high (nucleosides and sugars)-, and low (triterpenes)-polarity small molecular compounds in Ganoderma, a well-known Chinese medicinal mushroom. As a result, one macromolecular chromatographic peak was found in two Ganoderma species, 19 components were identified in Ganoderma lucidum (two sugars, three nucleosides, and 14 triterpenes), and four components (two sugars and two nucleosides) were identified in Ganoderma sinense. The developed multiple columns and detectors liquid chromatography system was helpful to understand comprehensive chemical characters in TCMs.

  2. The Triple GEM Detector Control System for CMS forward muon spectrometer upgrade

    Science.gov (United States)

    Ahmed, W.; Abbaneo, D.; Abbrescia, M.; Abdelalim, A. A.; Abi. Akl, M.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Holme, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Khan, S. A.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; Lentdecker, G. De.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Shah, A. H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig. Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, R.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2017-02-01

    The CMS experiment at LHC will upgrade its forward muon spectrometer by incorporating Triple-GEM detectors. This upgrade referred to as GEM Endcap (GE1/1), consists of adding two back-to-back Triple-GEM detectors in front of the existing Cathode Strip Chambers (CSC) in the innermost ring of the endcap muon spectrometer. Before the full installation of 144 detectors in 2019-2020, CMS will first install ten single chamber prototypes during the early 2017. This pre-installation is referred as the slice test. These ten detectors will be read-out by VFAT2 chips [1]. On-detector there is also a FPGA mezzanine card which sends VFAT2 data optically to the μTCA back-end electronics. The correct and safe operation of the GEM system requires a sophisticated and powerful online Detector Control System, able to monitor and control many heterogeneous hardware devices. The DCS system developed for the slice test has been tested with CMS Triple-GEM detectors in the laboratory. In this paper we describe the newly developed DCS system and present the first results obtained in the GEM assembly and quality assurance laboratory.

  3. Reverse-engineering a watermark detector based on a more precise model

    Science.gov (United States)

    Yu, Jun; Craver, Scott

    2010-01-01

    Detection results obtained from an oracle can be used to reverse-engineer the underlying detector structure, or parameters thereof. In particular, if a detector uses a common structure like correlation or normalized correlation, detection results can be used to estimate feature space dimensionality, watermark strength, and detector threshold values. Previous estimation techniques used a simplistic but tractable model for a watermarked image in the detection cone of a normalized correlation detector; in particular a watermarked image is assumed to lie along the axis of the detection cone, essentially corresponding to an image of zero magnitude. This produced useful results for feature spaces of fewer dimensions, but increasingly imprecise estimates for larger feature spaces. In this paper we model the watermarked image properly as a sum of a cover vector and approximately orthogonal watermark vector, offsetting the image within the cone, which is the geometry of a detector using normalized correlation. This symmetry breaking produces a far more complex model which boils down to a quartic equation. Although it is infeasible to find its symbolic solution even with the aid of computer, our numerical analysis results show certain critical behavior which reveals the relationship between the attacking noise strength and the detector parameters. The critical behavior predicted by our model extends our reverse-engineering capability to the case of detectors with large feature space dimensions, which is not uncommon in multimedia watermarking algorithms.

  4. Shielding optimization studies for the detector systems of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.; Lillie, R.A.; Gabriel, T.A.

    1994-09-01

    Preliminary shielding optimization studies for the Superconducting Super Collider`s Solenoidal Detector Collaboration detector system were performed at the Oak Ridge National Laboratory in 1993. The objective of the study was to reduce the neutron and gamma-ray fluxes leaving the shield to a level that resulted in insignificant effects on the functionality of the detector system. Steel and two types of concrete were considered as components of the shield, and the shield was optimized according to thickness, weight, and cost. Significant differences in the thicknesses, weights, and costs were noted for the three optimization parameters. Results from the study are presented.

  5. Maintenance and development of the NA61/SHINE Detector Control System (DCS)

    CERN Document Server

    Brylinski, Wojciech

    2017-01-01

    This document presents the summary of my CERN Summer Student project. The main goal of my stay was the development of some parts of Detector Control System responsible for gas parameters, atmospheric conditions and drift velocity measurements.

  6. Characterization of GEM Detectors for Application in the CMS Muon Detection System

    CERN Document Server

    Abbaneo, D; Postema, H.; Conde Garcia, A.; Chatelain, J.P.; Faber, G.; Ropelewski, L.; David, E.; Duarte Pinto, S.; Croci, G.; Alfonsi, M.; van Stenis, M.; Sharma, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.; Saviano, G.; Turini, N.; Oliveri, E.; Magazzu', G.; Marinov, A.; Tytgat, M.; Zaganidis, N.; Hohlmann, M.; Gnanvo, K.; Ban, Y.; Teng, H.; Cai, J.

    2010-01-01

    The muon detection system of the Compact Muon Solenoid experiment at the CERN Large Hadron Collider is based on different technologies for muon tracking and triggering. In particular, the muon system in the endcap disks of the detector consists of Resistive Plate Chambers for triggering and Cathode Strip Chambers for tracking. At present, the endcap muon system is only partially instrumented with the very forward detector region remaining uncovered. In view of a possible future extension of the muon endcap system, we report on a feasibility study on the use of Micro-Pattern Gas Detectors, in particular Gas Electron Multipliers, for both muon triggering and tracking. Results on the construction and characterization of small tripleGas Electron Multiplier prototype detectors are presented.

  7. The upgrade for the data acquisition system of the KOTO detector

    Energy Technology Data Exchange (ETDEWEB)

    Tecchio, M., E-mail: tecchio@umich.edu [University of Michigan, Ann Arbor, MI (United States); Beechert, J.; Campbell, M. [University of Michigan, Ann Arbor, MI (United States); Huff, M. [Kenyon College, Gambier, OH (United States); Micallef, J.; Rymph, C.; Schamis, H.; Su, S. [University of Michigan, Ann Arbor, MI (United States); Xu, J. [Apple Inc., Cupertino, CA (United States)

    2016-07-11

    A major upgrade to the KOTO detector data acquisition system based on the ATCA standard is being considered. The ATCA standard provides a natural solution to the current KOTO constraints, including communication between boards and higher input and output bandwidth.

  8. An event-based neurobiological recognition system with orientation detector for objects in multiple orientations

    Directory of Open Access Journals (Sweden)

    Hanyu Wang

    2016-11-01

    Full Text Available A new multiple orientation event-based neurobiological recognition system is proposed by integrating recognition and tracking function in this paper, which is used for asynchronous address-event representation (AER image sensors. The characteristic of this system has been enriched to recognize the objects in multiple orientations with only training samples moving in a single orientation. The system extracts multi-scale and multi-orientation line features inspired by models of the primate visual cortex. An orientation detector based on modified Gaussian blob tracking algorithm is introduced for object tracking and orientation detection. The orientation detector and feature extraction block work in simultaneous mode, without any increase in categorization time. An addresses lookup table (addresses LUT is also presented to adjust the feature maps by addresses mapping and reordering, and they are categorized in the trained spiking neural network. This recognition system is evaluated with the MNIST dataset which have played important roles in the development of computer vision, and the accuracy is increase owing to the use of both ON and OFF events. AER data acquired by a DVS are also tested on the system, such as moving digits, pokers, and vehicles. The experimental results show that the proposed system can realize event-based multi-orientation recognition.The work presented in this paper makes a number of contributions to the event-based vision processing system for multi-orientation object recognition. It develops a new tracking-recognition architecture to feedforward categorization system and an address reorder approach to classify multi-orientation objects using event-based data. It provides a new way to recognize multiple orientation objects with only samples in single orientation.

  9. Status of the Control System for the CLAS Detector at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    T. Carroll; A. Gilmer; M. Vineyard; T. Auger; W. Brooks; S. Fabbro; A. Freyberger; M. Ito; B. Madre; Y. Patois; S. Philips; M. Swynghedauw; J. Tang

    1997-11-01

    A control system for Hall B at the Thomas Jefferson National Accelerator Facility is being developed within the framework of the Experimental Physics and Industrial Control System (EPICS). The Hall B equipment currently under EPICS control include numerous beam line devices, high voltage supplies, detector gas systems, and safety systems. The status of the control system is described.

  10. Real-time operating system for a multi-laser/multi-detector system

    Science.gov (United States)

    Coles, G.

    1980-01-01

    The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.

  11. The integration of the ALICE trigger system with sub-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krivda, M., E-mail: marian.krivda@cern.c [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Barnby, L.; Bombara, M.; Evans, D.; Jones, P.G.; Jovanovic, P.; Jusko, A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kralik, I. [Institute of Experimental Physics, Kosice (Slovakia); Kour, R.; Lazzeroni, C.; Lietava, R.; Matthews, Z.L.; Navin, S.; Palaha, A.; Petrov, P.R. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Sandor, L. [Institute of Experimental Physics, Kosice (Slovakia); Urban, J. [P.J. Safarik University, Faculty of Science, Kosice (Slovakia); Villalobos Baillie, O. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2010-05-21

    The ALICE Trigger electronics (TRG) has been installed in the experimental cavern and tested with each of the detectors, both individually ('standalone' mode) and in 'global' runs, i.e. those involving other detectors. Global runs were performed with cosmic ray triggers, and also during the LHC startup period in September 2008. In this paper the status of the trigger system will be reviewed, in particular describing recent extensions to the system.

  12. Development and performance of Triple-GEM detectors for the Upgrade of the Muon System of the CMS experiment

    CERN Document Server

    AUTHOR|(CDS)2088078

    2015-01-01

    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R and D performed on chambers design features and will discuss the performance of the upgraded detector.

  13. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors

    NARCIS (Netherlands)

    Jungmann, JH; Heeren, R.M.A.

    2013-01-01

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and highmass detectors for mass spectrometry (imaging) are treated.

  14. Systematic Comparison of the MINOS Near and Far Detector Readout Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Anatael [Univ. of Oxford (United Kingdom). Queen' s College

    2005-06-22

    The MINOS experiment is a neutrino oscillation baseline experiment intending to use high resolution L/E neutrinos to measure the atmospheric neutrino oscillations parameters to unprecedented precision. Two detectors have been built to realize the measurements, a Near detector, located about 1km downstream from the beam target at the Fermi Laboratory, and a Far detector, located at 736km, at the Soudan Laboratory. The technique relies on the Near detector to measure the un-oscillated neutrino spectrum, while the Far detector measures the neutrino spectrum once oscillated. The comparison between the two measurements is expected to allow MINOS to measure Δm2 beyond 10% precision level. The Near and Far detectors have been built similarly to minimize possible systematic effects. Both detectors have been endowed with different readout systems, as the beam event rates are very different. The MINOS calibration detector (CalDet), installed at CERN, was instrumented with both readout systems such that they can simultaneously measure and characterize the energy deposition (response and event topology) of incident known particle from test-beams. This thesis presents the investigations to quantify the impact of the performance of both readout systems on the MINOS results using the measurements obtained with CalDet. The relative comparison of the responses of both readout systems have been measured to be consistent with being identical within a systematic uncertainty of 0.6%. The event topologies have been found to be negligibly affected. In addition, the performance of the detector simulations have been thoroughly investigated and validated to be in agreement with data within similar level of uncertainties.

  15. Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade

    Science.gov (United States)

    King, Robert; CMS Muon group Team

    2017-01-01

    The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.

  16. Data quality management system (DQMS) for BAC detector in the ZEUS experiment at the HERA accelerator

    Science.gov (United States)

    Luszczak, Zbigniew; Jezynski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Kuthan, Marcin; Bigos, Grzegorz; Gierej, Artur

    2003-10-01

    The paper presents functional structure of database system of data measurement quality for BAC detector in ZEUS experiment. The system collects diagnostic and experimental data. Diagnostic data are: work parameters of the detector and electronics/photonics, tests of electronic/photonic blocks. These data are archived for certain period of time. The quality of current data collection process is estimated using these archived data. The result of such estimation is generated in a form of status map of the detector. Such maps, describing status of the hardware, are fundamental for elementary particle analysis by the calorimeter. The DAQ system, collecting data to the database, estimates data quality on-line during transmission and writing. This mechanism of fast on-line data quality management leads to early discoveries of detector work irregularities and faults.

  17. Ultra Low Complexity Soft Output Detector for Non-Binary LDPC Coded Large MIMO Systems

    CERN Document Server

    Suthisopapan, Puripong; Kasai, Kenta; Imtawil, Virasit

    2012-01-01

    The theoretic results of MIMO capacity tell us that the higher the number of antennas are employed, the higher the transmission rate is. This makes MIMO systems with hundreds of antennas very attractive but one of the major problems that obstructs such large dimensional MIMO systems from the practical realization is a high complexity of the MIMO detector. We present in this paper the new soft output MIMO detector based on matched filtering that can be applied to the large MIMO systems which are coded by the powerful non-binary LDPC codes. The per-bit complexity of the proposed detector is just 0.28% to that of low complexity soft output MMSE detector and scales only linearly with a number of antennas. Furthermore, the coded performances with small information length 800 bits are within 4.2 dB from the associated MIMO capacity.

  18. The 4th concept detector

    Indian Academy of Sciences (India)

    John Hauptman

    2007-12-01

    The 4th concept detector consists of four detector subsystems, a small-pixel vertex detector, a high-resolution TPC, a new multiple-readout fiber calorimeter and a new dual-solenoid iron-free muon system. We discuss the design of a comprehensive facility that measures and identifies all partons of the standard model, including hadronic → and → decays, with high precision and high e±ciency. We emphasis here the calorimeter and muon systems.

  19. Model Systems

    Directory of Open Access Journals (Sweden)

    Francisco Rodríguez-Trelles

    1998-12-01

    Full Text Available Current efforts to study the biological effects of global change have focused on ecological responses, particularly shifts in species ranges. Mostly ignored are microevolutionary changes. Genetic changes may be at least as important as ecological ones in determining species' responses. In addition, such changes may be a sensitive indicator of global changes that will provide different information than that provided by range shifts. We discuss potential candidate systems to use in such monitoring programs. Studies of Drosophila subobscura suggest that its chromosomal inversion polymorphisms are responding to global warming. Drosophila inversion polymorphisms can be useful indicators of the effects of climate change on populations and ecosystems. Other species also hold the potential to become important indicators of global change. Such studies might significantly influence ecosystem conservation policies and research priorities.

  20. The electronics and data acquisition system for the DarkSide-50 veto detectors

    Science.gov (United States)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-12-01

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger system have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector.

  1. RF Power Detector/Monitor Upgrade for the 500MHz Systems at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Baptiste, K.

    2003-05-08

    Several systems rely on the accurate and linear detection of 500 MHz signals, (the fundamental frequency of both the Booster Ring and Storage Ring) over a dynamic range in excess of 25dB. Prior to this upgrade, the detector/monitor was diode based and though this type of detector could handle the dynamic range requirement it could not do so in an accurate and linear manner. In order to meet the requirements (dynamic range greater than or equal to 25dB, accurate and linear to +-0.25dB over the range, and additional circuitry to interface to the legacy control system and interlocks), a new RF Power Detector/Monitor has been developed using two AD8361, Analog Devices Tru RMS Detectors and a fuzzy comparator, which extends the overall detector's range to twice that of the AD8361. Further information is available [www.analogedevices.com/]. Details of the design requirements and the detector/monitor's circuit as well as the performance of the detector will be presented.

  2. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    CERN Document Server

    Kuntz, Katanya B; Song, Hongbin; Webb, James G; Mabrok, Mohamed A; Huntington, Elanor H; Yonezawa, Hidehiro

    2016-01-01

    Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation d...

  3. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    CERN Document Server

    Püllen, L; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  4. Autonomous Rubidium Clock Weak Frequency Jump Detector for Onboard Navigation Satellite System.

    Science.gov (United States)

    Khare, Akshay; Arora, Rajat; Banik, Alak; Mehta, Sanjay D

    2016-02-01

    Frequency jumps are common in rubidium frequency sources. They affect the estimation of user position in navigational satellite systems. These jumps must be detected and corrected immediately as they have direct impact on the navigation system integrity. A novel weak frequency jump detector is proposed based on a Kalman filter with a multi-interval approach. This detector can be applied for both "sudden" and "slow" frequency transitions. In this detection method, noises of clock data are reduced by Kalman filtering, for accurate estimation of jump size with less latency. Analysis on in-orbit rubidium atomic frequency standard (RAFS) phase telemetry data shows that the detector can be used for fast detection and correction of weak frequency jumps. Furthermore, performance comparison of different existing frequency jump detection techniques with the proposed detector is discussed. A multialgorithm-based strategy is proposed depending on the jump size and latency for onboard navigation satellites having RAFS as the primary frequency source.

  5. ALICE Diffractive Detector Control System for RUN-II in the ALICE Experiment

    Science.gov (United States)

    Cabanillas, J. C.; Martínez, M. I.; León, I.

    2016-10-01

    The ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase of operation (RUN-II). With this new detector it is possible to achieve better measurements by expanding the range of pseudo-rapidity in which the production of particles can be detected. Specifically the selection of diffractive events in the ALICE experiment which was limited by the range over which rapidity gaps occur. Any new detector should be able to take data synchronously with all other detectors and to be operated through the ALICE central systems. One of the key elements developed for the AD0 detector is the Detector Control System (DCS). The DCS is designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, as electronics settings and power supply levels and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), the threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters affect the efficiency of AD0 and they have to be monitored and controlled by the AD0 DCS.

  6. A Prototype of Wireless Power and Data Acquisition System for Large Detectors

    CERN Document Server

    De Lurgio, P; Drake, G; Hashemian, R; Kreps, A; Oberling, M; Pearson, T; Sahoo, H

    2013-01-01

    A new prototype wireless data acquisition system has been developed with the intended application to read-out instrumentation systems having a large number of channels. In addition such system could be deployed in smaller detectors requiring increased mobility. The data acquisition and control system is based on 802.11n compliant hardware and protocols. In this paper we describe our case study with a single readout channel performed for a potential large detector containing photomultiplier tubes. The front-end circuitry, including a high-voltage power supply is powered wirelessly thus creating an all-wireless detector readout. The benchmarked performance of the prototype system and how a large scale implementation of the system might be realized are discussed.

  7. The automatic liquid nitrogen filling system for GDA detectors

    Indian Academy of Sciences (India)

    Rakesh Kumar; A J Malyadri; S Muralithar; Ruby Shanti; S K Saini Kusum Rani; B P Ajith Kumar; Rajesh Kumar; R K Bhowmik

    2001-07-01

    An indigenously developed automatic liquid nitrogen (LN2) filling system has been installed in gamma detector array (GDA) facility at Nuclear Science Centre. Electro-pneumatic valves are used for filling the liquid nitrogen into the high purity germanium detector cryostat. The temperature of the out-flowing gas/liquid from the cryostat is monitored using platinum resistor thermometer. The program allows for automatic filling at regular intervals with temperature monitoring from a remote terminal.

  8. Trends in the design of front-end systems for room temperature solid state detectors

    OpenAIRE

    Manfredi, Pier F.; Re, Valerio

    2003-01-01

    The paper discusses the present trends in the design of low-noise front-end systems for room temperature semiconductor detectors. The technological advancement provided by submicron CMOS and BiCMOS processes is examined from several points of view. The noise performances are a fundamental issue in most detector applications and suitable attention is devoted to them for the purpose of judging whether or not the present processes supersede the solutions featuring a field-effect transistor...

  9. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    Science.gov (United States)

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L.

    2016-02-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  10. Beam profile investigation of the new collimator system for the J-PET detector

    CERN Document Server

    Kubicz, E; Wieczorek, A; Alfs, D; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Głowacz, B; Jasińska, B; Kamińska, D; Korcyl, G; Kowalski, P; Kozik, T; Krzemień, W; Mohammed, M; Moskal, I; Niedźwiecki, S; Pawlik-Niedźwiecka, M; Raczyński, L; Rudy, Z; Strzelecki, A; Wiślicki, W; Zieliński, M; Zgardzińska, B; Moskal, P

    2016-01-01

    Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector which will be used for search for discrete symmetries violations in the decays of positronium atoms and for investigations with positronium atoms in life-sciences and medical diagnostics. In this article we present three methods for determination of the beam profile of collimated annihilation gamma quanta. Precise monitoring of this profile is essential for time and energy calibration of the J-PET detector and for the determination of the library of model signals used in the hit-time and hit-position reconstruction. We have we have shown that usage of two lead bricks with dimensions of 5x10x20 cm^3 enables to form a beam of annihilation quanta with Gaussian profile characterized by 1 mm FWHM. Determination of this characteristic is essential for designing and construction the collimator system for the 24-module J-PET prototype. Simulations of the beam profile for different collimator dimensions were performed. This allowed us to choo...

  11. Design and performance of a 50mK rapid turnaround detector characterization system

    Energy Technology Data Exchange (ETDEWEB)

    Benford, Dominic J. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]. E-mail: Dominic.Benford@nasa.gov; Dipirro, Michael J. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Forgione, Joshua B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jackson, Michael L. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Harvey Moseley, S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Panek, John [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Shirron, Peter J. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Staguhn, Johannes G. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); SSAI, 5900 Princess Garden Parkway, Lanham, MD 20706 (United States)

    2006-04-15

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory will require arrays of detectors with thousands of background-limited elements sensitive to wavelengths from {approx}50{mu}m to {approx}3mm. Because of the low power levels present in space with cryogenic telescopes, these detectors will likely operate at temperatures below 100mK. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8x32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50mK in under 6h, so that a test cycle begun in the morning will be over by the end of the day. The system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests.

  12. Gamma-ray pulse height spectrum analysis on systems with multiple Ge detectors using spectrum summing

    Energy Technology Data Exchange (ETDEWEB)

    Killian, E.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    A technique has been developed at the Idaho National Engineering Laboratory to sum high resolution gamma-ray pulse spectra from systems with multiple Ge detectors. Lockheed Martin Idaho Technologies Company operates a multi-detector spectrometer configuration at the Stored Waste Examination Pilot Plant facility which is used to characterize the radionuclide contents in waste drums destined for shipment to Waste Isolation Pilot Plant. This summing technique was developed to increase the sensitivity of the system, reduce the count times required to properly quantify the radio-nuclides and provide a more consistent methodology for combining data collected from multiple detectors. In spectrometer systems with multiple detectors looking at non homogeneous waste forms it is often difficult to combine individual spectrum analysis results from each detector to obtain a meaningful result for the total waste container. This is particularly true when the counting statistics in each individual spectrum are poor. The spectrum summing technique adds the spectra collected by each detector into a single spectrum which has better counting statistics than each individual spectrum. A normal spectral analysis program can then be used to analyze the sum spectrum to obtain radio-nuclide values which have smaller errors and do not have to be further manipulated to obtain results for the total waste container. 2 refs., 2 figs.

  13. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  14. LHCb : Clock and timing distribution in the LHCb upgraded detector and readout system

    CERN Multimedia

    Alessio, Federico; Barros Marin, M; Cachemiche, JP; Hachon, F; Jacobsson, Richard; Wyllie, Ken

    2014-01-01

    The LHCb experiment is upgrading part of its detector and the entire readout system towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity and increase its trigger efficiency. In this paper, the new timing, trigger and control distribution system for such an upgrade is reviewed with particular attention given to the distribution of the clock and timing information across the entire readout system, up to the FE and the on-detector electronics. Current ideas are here presented in terms of reliability, jitter, complexity and implementation.

  15. High availability through full redundancy of the CMS detector controls system

    CERN Document Server

    Bauer, Gerry; Bouffet, Olivier; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Ciganek, Marek; Cittolin, Sergio; Jose Antonio Coarasa; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Yi Ling Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Andrei Cristian Spataru; Sumorok, Konstanty

    2012-01-01

    The CMS detector control system (DCS) is responsible for controlling and monitoring the detector status and for the operation of all CMS sub detectors and infrastructure. This is required to ensure safe and efficient data taking so that high quality physics data can be recorded. The current system architecture is composed of more than 100 servers in order to provide the required processing resources. An optimization of the system software and hardware architecture is under development to ensure redundancy of all the controlled sub-systems and to reduce any downtime due to hardware or software failures. The new optimized structure is based mainly on powerful and highly reliable blade servers and makes use of a fully redundant approach, guaranteeing high availability and reliability. The analysis of the requirements, the challenges, the improvements and the optimized system architecture as well as its specific hardware and software solutions are presented.

  16. Model of Thermal Wavefront Distortion in Interferometric Gravitational-Wave Detectors I Thermal Focusing

    CERN Document Server

    Beausoleil, R G; Kells, W; Camp, J; Gustafson, E K; Fejer, M M

    2002-01-01

    We develop a steady-state analytical and numerical model of the optical response of power-recycled Fabry-Perot Michelson laser gravitational-wave detectors to thermal focusing in optical substrates. We assume that the thermal distortions are small enough that we can represent the unperturbed intracavity field anywhere in the detector as a linear combination of basis functions related to the eigenmodes of one of the Fabry-Perot arm cavities, and we take great care to preserve numerically the nearly ideal longitudinal phase resonance conditions that would otherwise be provided by an external servo-locking control system. We have included the effects of nonlinear thermal focusing due to power absorption in both the substrates and coatings of the mirrors and beamsplitter, the effects of a finite mismatch between the curvatures of the laser wavefront and the mirror surface, and the diffraction by the mirror aperture at each instance of reflection and transmission. We demonstrate a detailed numerical example of thi...

  17. Comprehensive device Simulation modeling of heavily irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Moscatelli, F; MacEvoy, B; Hall, G; Passeri, D; Petasecca, M; Pignatel, Giogrio Umberto

    2004-01-01

    Radiation hardness is a critical design concern for present and future silicon detectors in high energy physics. Tracking systems at the CERN Large Hadron Collider (LHC) are expected to operate for ten years and to receive fast hadron fluences equivalent to 10/sup 15/cm /sup -2/ 1-MeV neutrons. Recently, low temperature operating conditions have been suggested as a means of suppressing the negative effects of radiation damage on detector charge collection properties. To investigate this effect, simulations have been carried out using the ISE-TCAD DESSIS device simulator. The so-called "three-level model" has been used. A comprehensive analysis of the influence of the V/sub 2/, C/sub i/O/sub i/ and V/sub 2/O capture cross sections on the effective doping concentration (N/sub eff/) as a function of temperature and fluence has been carried out. The capture cross sections have been varied in the range 10/sup -18/-10/sup -12/ cm/sup 2/. The simulated results are compared with charge collection spectra obtained wit...

  18. Multiplicative Inhibitory Velocity Detector and Multi-Velocity Motion Detection Neural Network Model

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Motion perception is one of the most important aspects of the biological visual system,from which people get a lot of information of the natural world.In this paper,trying to simulate the neurons in MT(motion area in visual cortex)which respond selectively both in direction and speed,the authors propose a novel multiplicative inhibitory velocity detector(MIVD)model,whose spatiotemporal joint parameter K determines its optimal velocity.Based on the Response Amplitude Disparity(RAD) property of MIVD,two multi-velocity fusion neural networks(a simple one and an active one)are built to detect the velocity of 1-Dimension motion.The experiments show that the active MIVD Neural Network with a feedback fusion method has a relatively better result.

  19. Final Report: A CdZnTe detector for MRI-compatible SPECT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Ling-Jian

    2012-12-27

    The key objective of this project is to develop the enabling technology for future MRI-compatible nuclear (e.g. SPECT) imaging system, and to demonstrate the feasibility of performing simultaneous MR and SPECT imaging studies of the same object. During the past three years, we have developed (a) a MRI-compatible ultrahigh resolution gamma ray detector and associated readout electronics, (b) a theoretical approach for modeling the effect of strong magnetic field on SPECT image quality, and (c) a maximum-likelihood (ML) based reconstruction routine with correction for the MR-induced distortion. With this support, we have also constructed a four-head MR-compatible SPECT system and tested the system inside a 3-T clinical MR-scanner located on UI campus. The experimental results obtained with this system have clearly demonstrated that sub-500um spatial resolution can be achieved with a SPECT system operated inside a 3-T MRI scanner. During the past three years, we have accomplished most of the major objectives outlined in the original proposal. These research efforts have laid out a solid foundation the development of future MR-compatible SPECT systems for both pre-clinical and clinical imaging applications.

  20. Imaging at soft X-ray wavelengths with high-gain microchannel plate detector systems

    Science.gov (United States)

    Timothy, J. Gethyn

    1986-01-01

    Multianode microchannel array (MAMA) detector systems with formats of 256 x 1024 pixels and active areas of 6 x 26 mm are now under evaluation at visible, UV and soft X-ray wavelengths. Very-large-format versions of the MAMA detectors with formats of 2048 x 2048 pixels and active areas of 52 x 52 mm are under development for use in the NASA Goddard Space Telescope Imaging Spectrograph (STIS). Open-structure versions of these detectors with Cs I photocathodes can provide a high-resolution imaging capability at EUV and soft X-ray wavelengths and can deliver a maximum count rate from each array in excess of 10 to the 6th counts/s. In addition, these detector systems have the unique capability to determine the arrival time of a detected photon to an accuracy of 100 ns or better. The construction, mode of operation, and performance characteristics of the MAMA detectors are described, and the program for the development of the very-large-format detectors is outlined.

  1. Simplified MMSE Detectors for Turbo Receiver in BICM MIMO Systems

    Institute of Scientific and Technical Information of China (English)

    Juan Han; Chao Tang; Qiu-Ju Wang; Zi-Yuan Zhu; Shan Tang

    2013-01-01

    In this article,two methods adopting simplified minimum mean square error (MMSE) filter with soft parallel interference cancellation (SPIC) axe discussed for turbo receivers in bit interleaved coded modulation (BICM) multiple-input multiple-output (MIMO) systems.The proposed methods are utilized in the non-first iterative process of turbo receiver to suppress residual interference and noise.By modeling the components of residual interference after SPIC plus the noise as uncorrelated Gaussian random variables,the matrix inverse for weighting vector of conventional MMSE becomes unnecessary.Thus the complexity can be greatly reduced with only slight performance deterioration.By introducing optimal ordering to SPIC,performance gap between simplified MMSE and conventional MMSE further narrows.Monte Carlo simulation results confirm that the proposed algorithms can achieve almost the same performance as the conventional MMSE SPIC in various MIMO configurations,but with much lower computational complexity.

  2. A novel approach for modelling the cluster detector and the SPI spectrometer

    Indian Academy of Sciences (India)

    Ritesh Kshetri; Pintu Bhattachary

    2014-11-01

    A probabilistic approach has been presented in six recent papers (R Kshetri, J. Instrum. 2012 7 P04008; ibid., P07006; ibid., P07008; ibid., P08015; ibid., P12007; Appl. Radiat. Isotopes 2013 75 30) for modelling a general composite detector. In this paper, a simplistic view has been presented on the application of our formalism to composite detectors consisting of hexagonal closely packed encapsulated HPGe detector modules.We have presented modified calculations for the peak-to-total (PT) and peak-to-background (PB) ratios of the cluster and spectrometer for integral satellite (SPI) for the first time considering up to four-fold events. Instead of using an empirical method or simulation, we present a novel approach for calculating the peak-to-total ratio of the SPI spectrometer for high energies. Our work can provide guidance for designing new composite detectors and for performing experimental studies with the SPI spectrometer for high-energy -rays.

  3. Comparisons of the MINOS Near and Far Detector Readout Systems at a Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, A.; /Oxford U.; Adamson, P.; /University Coll. London; Barker, M.; /Oxford U.; Belias, A.; /Rutherford; Boyd, S.; /Pittsburgh U.; Crone, G.; /University Coll. London; Drake, G.; /Argonne; Falk, E.; /Sussex U.; Harris, P.G.; /Sussex U.; Hartnell, J.; /Oxford U.; Jenner, L.; /University Coll. London /Texas U.

    2009-02-01

    MINOS is a long baseline neutrino oscillation experiment that uses two detectors separated by 734 km. The readout systems used for the two detectors are different and have to be independently calibrated. To verify and make a direct comparison of the calibrated response of the two readout systems, test beam data were acquired using a smaller calibration detector. This detector was simultaneously instrumented with both readout systems and exposed to the CERN PS T7 test beam. Differences in the calibrated response of the two systems are shown to arise from differences in response non-linearity, photomultiplier tube crosstalk, and threshold effects at the few percent level. These differences are reproduced by the Monte Carlo (MC) simulation to better than 1% and a scheme that corrects for these differences by calibrating the MC to match the data in each detector separately is presented. The overall difference in calorimetric response between the two readout systems is shown to be consistent with zero to a precision of 1.3% in data and 0.3% in MC with no significant energy dependence.

  4. Modeling of photocurrent and lag signals in amorphous selenium x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Siddiquee, Sinchita; Kabir, M. Z., E-mail: kabir@encs.concordia.ca [Department of Electrical and Computer Engineering, Concordia University, 1455 Blvd. de Maisonneuve West, Montreal, Quebec H3G 1M8 (Canada)

    2015-07-15

    A mathematical model for transient photocurrent and lag signal in x-ray imaging detectors has been developed by considering charge carrier trapping and detrapping in the energy distributed defect states under exponentially distributed carrier generation across the photoconductor. The model for the transient and steady-state carrier distributions and hence the photocurrent has been developed by solving the carrier continuity equation for both holes and electrons. The residual (commonly known as lag signal) current is modeled by solving the trapping rate equations considering the thermal release and trap filling effects. The model is applied to amorphous selenium (a-Se) detectors for both chest radiography and mammography. The authors analyze the dependence of the residual current on various factors, such as x-ray exposure, applied electric field, and temperature. The electron trapping and detrapping mostly determines the residual current in a-Se detectors. The lag signal is more prominent in chest radiographic detector than in mammographic detectors. The model calculations are compared with the published experimental data and show a very good agreement.

  5. Diamond particle detectors systems in high energy physics

    CERN Document Server

    Gan, Kock Kiam

    2015-01-01

    The measurement of luminosity at the Large Hadron Collider (LHC) using diamond detect or s has matured from devices based on a rather large pads to highly granular pixelated device s . The ATLAS experiment has recently installed a diamond pixel detector, the Diamond Beam Monitor (DBM), to measure the luminosity in the upgraded LHC with higher instantaneous luminosity. Polycrystalline diamonds were used to fabricate the diamond pixel modules. The design , production, and test beam result s are described. CMS also has a similar plan to construct a diamond based luminosity monitor, the Pixel Luminos ity Telescope s (PLT) . In a pilot run using single crystal diamond, the pulse height was found to depend on the luminosity . Consequently the collaboration decided to use silicon instead due to time constrain ts .

  6. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  7. Novel detector systems for the Positron Emission Tomography

    CERN Document Server

    Moskal, P; Silarski, M; Smyrski, J; Zdebik, J; Zieliński, M

    2013-01-01

    In this contribution we describe a novel solution for the construction of Positron Emission Tomograph. We present the device allowing for determination of the impact position as well as time and deph of interaction of the annihilation gamma quanta. The device is comprised of scintillation chamber consisting of organic scintillators surrounding the body of the patient. We discuss two possible solutions: (i) the tomograph built out of scintillator strips, and (ii) the tomograph built out of the scintillator plates. The application of the fast scintillators will enable to take advantage of the difference between time of the registration of the annihilation quanta. The invented method will permit to use a thick layers of detector material with the possibility of measuring the depth of the gamma quantum interaction (DOI) and the determination of their time of flight (TOF), and will allow for increasing the size of the diagnostic chamber without a significant increase of costs. The method is a subject of two patent...

  8. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    Science.gov (United States)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  9. Understanding sensitization behavior of lead selenide photoconductive detectors by charge separation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lihua, E-mail: lihua.zhao@ou.edu, E-mail: shi@ou.edu; Qiu, Jijun; Weng, Binbin; Chang, Caleb; Yuan, Zijian; Shi, Zhisheng, E-mail: lihua.zhao@ou.edu, E-mail: shi@ou.edu [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2014-02-28

    We introduce a charge separation model in this work to explain the mechanism of enhanced photoconductivity of polycrystalline lead salt photoconductors. Our results show that this model could clarify the heuristic fabrication processes of such lead salt detectors that were not well understood and often considered mysterious for nearly a century. The improved lifetime and performance of the device, e.g., responsivity, are attributed to the spatial separation of holes and electrons, hence less possibility of carrier recombination. This model shows that in addition to crystal quality the size of crystallites, the depth of outer conversion layer, and doping concentration could all affect detector performance. The simulation results agree well with experimental results and thus offer a very useful tool for further improvement of lead salt detectors. The model was developed with lead salt family of photoconductors in mind, but may well be applicable to a wider class of semiconducting films.

  10. Causality issues of particle detector models in QFT and Quantum Optics

    CERN Document Server

    Martin-Martinez, Eduardo

    2015-01-01

    We analyze the constraints that causality imposes on some of the particle detector models employed in quantum field theory in general, and in particular on those used in quantum optics (or superconducting circuits) to model atoms interacting with light. Namely, we show that disallowing faster-than-light communication can impose severe constraints on the applicability of particle detector models in three different common scenarios: 1) when the detectors are spatially smeared, 2) when a UV cutoff is introduced in the theory and 3) under one of the most typical approximations made in quantum optics: the rotating-wave approximation. We identify in which scenarios the models' causal behaviour can be cured and in which it cannot.

  11. ENC Measurement for ASIC Preamp Board as a Detector Module for PET System

    Directory of Open Access Journals (Sweden)

    N. Nagara

    2016-08-01

    Full Text Available We developed a gamma ray detector with an LuAG:Pr scintillator and an avalanche photodiode as a detector for a positron emission tomography (PET system. Studies have been performed on the influences of gamma irradiation on application-specific integrated circuit (ASIC preamp boards used as a detector module. As a device used in nuclear environments for substantial durations, the ASIC has to have a lifetime long enough to ensure that there will be a negligible failure rate during this period. These front-end systems must meet the requirements for standard positron emission tomography (PET systems. Therefore, an equivalent noise charge (ENC experiment is needed to measure the front-end system's characteristics. This study showed that minimum ENC conditions can be achieved if a shorter shaping time could be applied.

  12. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Seungman [Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, 100 Perth Drive, London, Ontario N6A 5K8 (Canada); School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Tanguay, Jesse; Cunningham, Ian A. [Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, 100 Perth Drive, London, Ontario N6A 5K8 (Canada); Kim, Ho Kyung [School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2013-04-15

    Purpose: Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. Methods: A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an 'energy-labeled reabsorption' process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. Results: The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. Conclusions: A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter

  13. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions.

    Science.gov (United States)

    Yun, Seungman; Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian A

    2013-04-01

    Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an "energy-labeled reabsorption" process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20-40 keV.

  14. RD on 3D Sensors and Micro‐Fabricated Detector Systems

    CERN Document Server

    Da Via, C; Dalla Betta, GF

    2013-01-01

    The aim of this proposed R&D Collaboration is the design, fabrication and industrialization of a new generation of low mass detector systems based on silicon micro‐fabrication techniques. The main objective is the verification and validation of such systems for LHC detector upgrades. In particular, the collaboration would like to focus on the following research topics: • Novel 3D sensors layouts, with enhanced signal properties, high speed and active edges. • Integrated micro‐channel cooling for effective low mass module thermal management. • System integration and fully sensitive large area coverage.

  15. VME-based data acquisition system for the India-based Neutrino Observatory prototype detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, M. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Chandratre, V.B. [Electronics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dasgupta, S. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Datar, V.M. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kalmani, S.D.; Lahamge, S.M.; Mondal, N.K.; Nagaraj, P.; Pal, S.; Rao, S.K.; Redij, A. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Samuel, D., E-mail: samuel@tifr.res.in [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Saraf, M.N.; Satyanarayana, B.; Shinde, R.R.; Upadhya, S.S. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration has proposed to build a 50 kton Iron-Calorimeter (ICAL) to study neutrino oscillations. About 28,800 Resistive Plate Chambers will be used as active detector elements in this experiment. Preliminary studies are currently underway and as a part of it, a prototype detector was developed which now serves as a cosmic-ray telescope and as a test-bench to study the indigenously built RPCs. A VME-based data acquisition system was designed for this prototype system. Modern software tools were used in the designing of the DAQ software. The design and development of this DAQ system are discussed.

  16. A Wireless Sensor Network-Based Portable Vehicle Detector Evaluation System

    Directory of Open Access Journals (Sweden)

    Seong-eun Yoo

    2013-01-01

    Full Text Available In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  17. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  18. A prototype scalable readout system for micro-pattern gas detectors

    Science.gov (United States)

    Zheng, Qi-Bin; Liu, Shu-Bin; Tian, Jing; Li, Cheng; Feng, Chang-Qing; An, Qi

    2016-08-01

    A scalable readout system (SRS) is designed to provide a general solution for different micro-pattern gas detectors in various applications. The system mainly consists of three kinds of modules: the ASIC card, the adapter card and the front-end card (FEC). The ASIC cards, mounted with particular ASIC chips, are designed for receiving detector signals. The adapter card is in charge of digitizing the output signals from several ASIC cards. The FEC, edged-mounted with the adapter, has field-programmable gate array (FPGA)-based reconfigurable logic and I/O interfaces, allowing users to choose different ASIC cards and adapters for different experiments, which expands the system to various applications. The FEC transfers data through Gigabit Ethernet protocol realized by a TCP processor (SiTCP) IP core in FPGA. By assembling a flexible number of FECs in parallel through Gigabit Ethernet, the readout system can be tailored to specific sizes to adapt to the experiment scales and readout requirements. In this paper, two kinds of multi-channel ASIC chip, VA140 and AGET, are applied to verify the scalability of this SRS architecture. Based on this VA140 or AGET SRS, one FEC covers 8 ASIC (VA140) cards handling 512 detector channels, or 4 ASIC (AGET) cards handling 256 detector channels, respectively. More FECs can be assembled in crates to handle thousands of detector channels. Supported by National Natural Science Foundation of China (11222552)

  19. Comparing analytical and Monte Carlo optical diffusion models in phosphor-based X-ray detectors

    Science.gov (United States)

    Kalyvas, N.; Liaparinos, P.

    2014-03-01

    Luminescent materials are employed as radiation to light converters in detectors of medical imaging systems, often referred to as phosphor screens. Several processes affect the light transfer properties of phosphors. Amongst the most important is the interaction of light. Light attenuation (absorption and scattering) can be described either through "diffusion" theory in theoretical models or "quantum" theory in Monte Carlo methods. Although analytical methods, based on photon diffusion equations, have been preferentially employed to investigate optical diffusion in the past, Monte Carlo simulation models can overcome several of the analytical modelling assumptions. The present study aimed to compare both methodologies and investigate the dependence of the analytical model optical parameters as a function of particle size. It was found that the optical photon attenuation coefficients calculated by analytical modeling are decreased with respect to the particle size (in the region 1- 12 μm). In addition, for particles sizes smaller than 6μm there is no simultaneous agreement between the theoretical modulation transfer function and light escape values with respect to the Monte Carlo data.

  20. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    Energy Technology Data Exchange (ETDEWEB)

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  1. CLIC Detector Concepts as described in the CDR: Differences between the GEANT4 and Engineering Models

    CERN Document Server

    Elsener, K; Schlatter, D; Siegrist, N

    2011-01-01

    The CLIC_ILD and CLIC_SiD detector concepts as used for the CDR Vol. 2 in 2011 exist both in GEANT4 simulation models and in engineering layout drawings. At this early stage of a conceptual design, there are inevitably differences between these models, which are described in this note.

  2. Performance of the gas gain monitoring system of the CMS RPC muon detector

    CERN Document Server

    Benussi, L; Passamonti, L; Piccolo, D; Pierluigi, D; Raffone, G; Russo, A; Saviano, G; Ban, Y; Cai, J; Li, Q; Qian, S; Wang, D; Xu, Z; Zhang, F; Choi, Y; Kim, D; Choi, S; Hong, B; Kang, J W; Kang, M; Kwon, J H; Lee, K S; Park, S K; Pant, L; Singh, V B J; Kumar, A M R; Kumar, S; Chand, S; Singh, A; Bhandari, V K; Cimmino, A; Ocampo, A; Thyssen, F; Tytgat, M; Van Doninck, W; Ahmad, A; Muhamma, S; Shoaib, M; Hoorani, H; Awan, I; Ali, I; Ahmed, W; Asqhar, M I; Shahzad, H; Sayed, A; Ibrahim, A; Ali, S; Ali, R; Radi, A; Elkafrawi, T; Sharma, A; Colafranceschi, S; Abbrescia, M; Verwilligen, P; Meola, S; Cavallo, N; Braghieri, A; Montagna, P; Riccardi, C; Salvini, P; Vitulo, P; Dimitrov, A; Hadjiiska, R; Litov, L; Pavlov, B; Petkov, P; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Sultanov, G; Vutova, M; Stoykova, S; Ibarguen, H S; Pedraza Morales, M I; Bernardino, S Carpinteyro; Bagaturia, I

    2015-01-01

    The RPC muon detector of the CMS experiment at the LHC (CERN, Geneva, Switzerland) is equipped with a Gas Gain Monitoring (GGM) system. A report on the stability of the system during the 2011-2012 data taking run is given, as well as the observation of an effect which suggests a novel method for the monitoring of gas mixture composition.

  3. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    CERN Document Server

    Braibant, S

    1997-01-01

    The OPAL microvertex silicon detector radiation monitoring and beam dump system is described. This system was designed and implemented in order to measure the radiation dose received at every beam crossing and to induce a fast beam dump if the radiation dose exceeds a given threshold.

  4. The Light-Pulser Monitoring System for the WASA detector facility

    Science.gov (United States)

    Zabierowski, J.; Rachowski, J.

    2009-07-01

    The design and performance of the system for monitoring the stability of the scintillation counters in the WASA multi-detector apparatus are presented. The system utilizes light pulses generated by LEDs and a Xenon flash tube, for monitoring plastic and inorganic scintillator based counters, respectively.

  5. Detector system for the study of low energy heavy ion reactions using kinematic coincidence technique

    Energy Technology Data Exchange (ETDEWEB)

    Jhingan, Akhil, E-mail: akhil@iuac.res.in [Inter University Accelerator Centre, P. O. Box 10502, New Delhi 110067 (India); Kalkal, S. [Deptartment of Physics and Astrophysics, Delhi University, Delhi 110007 (India); Sugathan, P.; Golda, K.S.; Ahuja, R.; Gehlot, J.; Madhavan, N. [Inter University Accelerator Centre, P. O. Box 10502, New Delhi 110067 (India); Behera, B.R. [Deptartment of Physics, Panjab University, Chandigarh 160014 (India); Mandal, S.K. [Deptartment of Physics and Astrophysics, Delhi University, Delhi 110007 (India)

    2014-05-01

    The characteristics and performance of a new detector system developed for the study of low energy heavy ion binary reactions using the kinematic coincidence technique are presented. The detector system has been developed to carry out experiments such as multi-nucleon transfer reactions using the General Purpose Scattering Chamber (GPSC) facility at IUAC [1,2]. The detector system consists of a pair of two-dimensional position sensitive multi wire proportional counter (MWPC) and a ΔE−E gas ionization chamber. Both MWPC have an active area of 5×5 cm{sup 2}, and provide position signals in horizontal (X) and vertical (Y) plane, and timing signal for time of flight measurements. The main design feature of MWPC is the reduced wire pitch of 0.025 in. (0.635 mm) in all electrodes, giving uniform field and faster charge collection, and usage of 10μm diameter in anode frame which gives higher gains. The position resolution of the detectors was determined to be 0.45 mm FWHM and time resolution was estimated to be 400 ps FWHM. The detector could handle heavy ion count rates exceeding 100 kHz without any break down. The timing and position signals of the detectors are used for kinematic coincidence measurements and subsequent extraction of their mass and angular distributions. The ionization chamber has a conventional transverse field geometry with segmented anode providing multiple ΔE signals for nuclear charge (Z) identification. This article describes systematic study of these detectors in terms of efficiency, count rate handling capability, time, position and energy resolution.

  6. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  7. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector; Entwurf und Implementation eines Expertensystems fuer das Detektorkontrollsystem des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Tobias

    2008-12-15

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts.

  8. Liquid scintillator composition optimization for use in ultra-high energy cosmic ray detector systems

    Science.gov (United States)

    Beznosko, Dmitriy; Batyrkhanov, Ayan; Iakovlev, Alexander; Yelshibekov, Khalykbek

    2017-06-01

    The Horizon-T (HT) detector system and the currently under R&D HT-KZ detector system are designed for the detection of Extensive Air Showers (EAS) with energies above ˜1016 eV (˜1017 eV for HT-KZ). The main challenges in both detector systems are the fast time resolutions needed for studying the temporary structure of EAS, and the extremely wide dynamic range needed to study the spatial distribution of charged particles in EAS disks. In order to detect the low-density of charged particles far from the EAS axis, a large-area detector is needed. Liquid scintillator with low cost would be a possible solution for such a detector, including the recently developed safe and low-cost water-based liquid scintillators. Liquid organic scintillators give a fast and high light yield (LY) for charged particle detection. It is similar to plastic scintillator in properties but is cost effective for large volumes. With liquid scintillator, one can create detection volumes that are symmetric and yet retain high LY detection. Different wavelength shifters affect the scintillation light by changing the output spectrum into the best detection region. Results of the latest studies of the components optimization in the liquid scintillator formulae are presented.

  9. The CT-PPS tracking system with 3D pixel detectors

    Science.gov (United States)

    Ravera, F.

    2016-11-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) detector will be installed in Roman pots (RP) positioned on either side of CMS, at about 210 m from the interaction point. This detector will measure leading protons, allowing detailed studies of diffractive physics and central exclusive production in standard LHC running conditions. An essential component of the CT-PPS apparatus is the tracking system, which consists of two detector stations per arm equipped with six 3D silicon pixel-sensor modules, each read out by six PSI46dig chips. The front-end electronics has been designed to fulfill the mechanical constraints of the RP and to be compatible as much as possible with the readout chain of the CMS pixel detector. The tracking system is currently under construction and will be installed by the end of 2016. In this contribution the final design and the expected performance of the CT-PPS tracking system is presented. A summary of the studies performed, before and after irradiation, on the 3D detectors produced for CT-PPS is given.

  10. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems

    CERN Document Server

    Eisen, Y; Mardor, I

    1999-01-01

    CdTe and CdZnTe X-ray and gamma ray detectors in the form of single elements or as segmented monolithic detectors have been shown to be useful in medical and industrial imaging systems. These detectors possess inherently better energy resolution than scintillators coupled to either photodiodes or photomultipliers, and together with application specific integrated circuits they lead to compact imaging systems of enhanced spatial resolution and better contrast resolution. Photopeak efficiencies of these detectors is greatly affected by a relatively low hole mobility-lifetime product. Utilizing these detectors as highly efficient good spectrometers, demands use of techniques to improve their charge collection properties, i.e., correct for variations in charge losses at different depths of interaction in the detector. The corrections for the large hole trapping are made either by applying electronic techniques or by fabricating detector or electrical contacts configurations which differ from the commonly used pla...

  11. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  12. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  13. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels

    be seriously hampered by variations in detector efficiency (light output per energy imparted) due to high-LET effects and gradients along the physical size (~mm) of the detector crystals. Amorphous track models (ATMs) such as the Ion-Gamma-Kill (IGK) approach by Katz and co-workers or the ECLaT code by Geiß et...... the models and the selection of the most appropriate approach. Materials and methods: We have therefore developed a generic, open-source and publically available ATM code library (libSGP) including a number of ATMs, which can be used as a common platform to investigate the principal approaches and underlying...

  14. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    Science.gov (United States)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  15. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Science.gov (United States)

    Nakanishi, Kouhei; Yamamoto, Seiichi

    2016-11-01

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  16. Generalized two-dimensional (2D) linear system analysis metrics (GMTF, GDQE) for digital radiography systems including the effect of focal spot, magnification, scatter, and detector characteristics

    Science.gov (United States)

    Kuhls-Gilcrist, Andrew T.; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2010-01-01

    The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks. PMID:21243038

  17. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    CERN Document Server

    Schell, W R; Yoon, S R; Tobin, M J

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, opera...

  18. Impact of detector efficiency and energy resolution on gamma-ray background rejection in mobile spectroscopy and imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy J., E-mail: Timothy.Aucott@SRS.gov [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bandstra, Mark S. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Negut, Victor; Curtis, Joseph C. [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Meyer, Ross E.; Chivers, Daniel H. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Vetter, Kai [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States)

    2015-07-21

    The presence of gamma-ray background significantly reduces detection sensitivity when searching for radioactive sources in the field, and the systematic variability in the background will limit the size and energy resolution of systems that can be used effectively. An extensive survey of the background was performed using both sodium iodide and high-purity germanium. By using a bivariate negative binomial model for the measured counts, these measurements can be resampled to simulate the performance of a detector array of arbitrary size and resolution. The response of the system as it moved past a stationary source was modeled for spectroscopic and coded aperture imaging algorithms and used for source injection into the background. The performance of both techniques is shown for various sizes and resolutions, as well as the relative performance for sodium iodide and germanium. It was found that at smaller detector sizes or better energy resolution, spectroscopy has higher detection sensitivity than imaging, while imaging is better suited to larger or poorer resolution detectors.

  19. Neutron spatial flux profile measurement in compact subcritical system using miniature neutron detectors

    Science.gov (United States)

    Shukla, Mayank; Desai, Shraddha S.; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Bajpai, Shefali; Patel, Tarun; Sinha, Amar

    2015-02-01

    A zero power multiplying assembly in subcritical regime serves as a benchmark for validating subcritical reactor physics. The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplying medium requires a well-defined neutron flux to carry out the experiments. For this it is necessary to know the neutron flux profile inside a subcritical system. A compact subcritical assembly BRAHMMA has been developed in India. The experimental channels in this assembly are typically less than 8 mm diameter. This requires use of miniature detectors that can be mounted in these experimental channels. In this article we present the thermal neutron flux profile measurement in a compact subcritical system using indigenously developed miniature gas filled neutron detectors. These detectors were specially designed and fabricated considering the restrictive dimensional requirements of the subcritical core. Detectors of non-standard size with various sensitivities, from 0.4 to 0.001 cps/nv were used for neutron flux of interest ranging from 103 to 107 n-cm-2 s-1. A comparison of measured neutron flux using these detectors and simulated Monte Carlo calculations are also presented in this article.

  20. Continuous system modeling

    Science.gov (United States)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  1. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Reyna, D. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lund, J.; Kiff, S.; Cabrera-Palmer, B. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bowden, N. S.; Dazeley, S.; Keefer, G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2011-07-01

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino

  2. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Science.gov (United States)

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  3. Development of a Position Sensitive Microstrip Detector System and its Readout Electronics Using ASICs Technologies for SAMURAI

    Science.gov (United States)

    Saastamoinen, A.; Baba, H.; Blackmon, J. C.; Elson, J.; Kurokawa, M.; McCleskey, M.; Otsu, H.; Rasco, B. C.; Roeder, B. T.; Sobotka, L. G.; Trache, L.; Tribble, R. E.; Yoneda, K.; Zenihiro, J.

    We are building a Si detector tracker system for the SAMURAI spectrometer. Characterizing the behavior of the detectors and associated electronics is essential for properly analyzing the future experimental results. We have performed test experiments to study the detector system response to heavy ion and proton beams of various energies. In this contribution we present some of the results and give an outlook of the future plans.

  4. Prestaciones del Detector Central de Muones del Experimento CMS: las Camaras de Deriva y su Sistema de Trigger (Performance of the Central Muon Detector of the Experiment CMS: the Drift Tube Chambers and its Trigger System)

    CERN Document Server

    Muñoz, Carlos Villanueva

    2007-01-01

    Prestaciones del Detector Central de Muones del Experimento CMS: las Camaras de Deriva y su Sistema de Trigger (Performance of the Central Muon Detector of the Experiment CMS: the Drift Tube Chambers and its Trigger System)

  5. Concept of the K{sub S}{sup 0} rescue system for the Belle II pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Leonard; Kuehn, Wolfgang; Lange, Soeren; Muenchow, David [II. Physikalisches Institut, JLU Giessen (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    The Belle II experiment at KEK in Tsukuba, Japan will perform studies with B mesons with a factor 40 increased luminosity compared to its predecessor experiment, Belle. One of the main goals of Belle II is the search for physics beyond the Standard Model, for example in rare B meson decays described by loop diagrams. Detecting B mesons frequently involves the detection of K{sub S}{sup 0} with its displaced decay vertices. The innermost detector of Belle II is the Pixel Detector (PXD) with an expected occupancy of up to 3% due to high background. In order to reduce the data, only hits inside region-of-interests (ROIs) are read out. The ROIs are determined by extrapolation into the PXD region of tracks in the surrounding detectors, the Silicon Vertex Detector (SVD), and the outer detectors. Thus every PXD hit of a particle, which does not create a valid track in the track finder, and subsequently no ROI, will not be recorded. Frequently pions originating from a secondary vertex of a K{sub S}{sup 0} decay do not create sufficient hits in the SVD. As a consequence, a significant amount of K{sub S}{sup 0} mesons will be lost. In this contribution, we present a concept for the K{sub S}{sup 0} - rescue system. Here, we perform online tracking using all of the PXD and SVD layers to find the tracks of these pions, to improve the K{sub S}{sup 0} reconstruction efficiency.

  6. The Development of the Detector and Imaging Systems of the Masco Telescope

    Science.gov (United States)

    Damico, Flavio

    1997-08-01

    In this thesis the detector and imaging systems of the MASCO telescope are described. MASCO is a gamma-ray imaging telescope with both high angular resolution and sensitivity. Conceived to be able to individually study sources in crowded fields, MASCO is an ideal mission to map sky regions like the Galactic Center. A revision of recent observational results obtained with imaging telescopes of this particular region is presented. Also presented is the sensitivity of the telescope for pulsed gamma-ray sources, taking GX 1+4 as an example. MASCO employs the coded-aperture imaging technique, and will be the first telescope to use a new type of mask patterns, the modified uniformly redundant arrays (MURAs). The coded-aperture imaging technique is reviewed and interesting properties of the MURAs discussed. This work gives two original contributions for MURA based coded mask telescopes: an empirical rule that says which MURA pattern is convenient to build a mask when we want to make observations with the mask-antimask method and the definition of the rotation center of a MURA pattern. MASCO uses a large number of scintillation detectors. The main detector of the experiment is a 41 cm diameter and 5 cm thick inorganic NaI(Tl) scintillation detector in an Anger Camera configuration, with approximately 10% energy resolution in 662 keV. Organic scintillation detectors are used to minimize the telescope background. and large volume scintillation detectors were built for the first time in Brazil. MASCO uses 12 of these scintillation detectors and the fabrication process are discussed together with tests for 2 different types of these detectors. MASCO shall have an angular resolution of 14 min in a 14 deg field-of-view and 20 micro-s of temporal resolution. A simulated image of the Galactic Center region in the 50-150 keV energy band is presented in order to show the imaging capabilities of the telescope. Preliminary tests results obtained with the detector and imaging systems

  7. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2017-10-10

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  8. The barrel sector assembly system of the ALICE silicon pixel detector

    CERN Document Server

    Antinori, F; Cinausero, M; Dima, R; Fabris, D; Fioretto, E; Lunardon, M; Moretto, S; Pepato, Adriano; Prete, G; Scarlassara, F; Segato, G F; Soramel, F; Turrisi, R; Vannucci, L; Viesti, G

    2004-01-01

    The Silicon Pixel Detector is the inner part of the ITS tracking system of the ALICE experiment at LHC. The 240 silicon modules, hosting almost 10 million pixel cells with dimension 50 . 425 mu m /sup 2/, have to be assembled on a carbon fiber support with micrometric precision. To reach this result, a dedicated high- precision computer-controlled tooling system has been developed at the INFN Padova. The assembly system and the mounting procedures are presented. (10 refs).

  9. A new data acquisition system for the CMS Phase 1 pixel detector

    Science.gov (United States)

    Kornmayer, A.

    2016-12-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ system, integration tests and gives an outline for the activities up to commissioning the final system at CMS in 2017.

  10. A VMEbus interface for multi-detector trigger and control system

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MUSE (MUltiplicity SElector) is the trigger and control system of CHIMERA, a 4π charged particles detector. Initialization of MUSE can be performed via VMEbus. This paper describes the design of VMEbus interface and functional module in MUSE, and briefs an application of MUSE.

  11. High-speed microstrip multi-anode multichannel plate detector system

    Science.gov (United States)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  12. A front-end readout Detector Board for the OpenPET electronics system

    Science.gov (United States)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  13. Measurement of Standard Model VBS/VBF production with the ATLAS and CMS detectors

    CERN Document Server

    Li, Shu; The ATLAS collaboration

    2017-01-01

    Proceeding for the poster presentation at Blois2017, France on the topic of "Measurements of Standard Model VBS/VBF productions with ATLAS+CMS detectors" (ATL-PHYS-SLIDE-2017-333 https://cds.cern.ch/record/2267458) Deadline: 15/10/2017

  14. Pion-Muon Concentrating System for Detectors of Highly Enriched Uranium

    CERN Document Server

    Kurennoy, Sergey; Blind, Barbara; Jason, Andrew J; Neri, Filippo

    2005-01-01

    One of many possible applications of low-energy antiprotons collected in a Penning trap can be a portable muon source. Released antiprotons annihilate on impact with normal matter producing on average about 3 charged pions per antiproton, which in turn decay into muons. Existence of such negative-muon sources of sufficient intensity would bring into play, for example, detectors of highly enriched uranium based on muonic X-rays. We explore options of collecting and focusing pions and resulting muons to enhance the muon flux toward the detector. Simulations with MARS and MAFIA are used to choose the target material and parameters of the magnetic system consisting of a few solenoids.

  15. Expert System for the LHC CMS Cathode Strip Chambers (CSC) detector

    Energy Technology Data Exchange (ETDEWEB)

    Rapsevicius, Valdas, E-mail: valdas.rapsevicius@cern.ch [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vilnius University, Didlaukio g. 47-325, LT-08303 Vilnius (Lithuania); Juska, Evaldas, E-mail: evaldas.juska@cern.ch [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-02-21

    Modern High Energy Physics experiments are of high demand for a generic and consolidated solution to integrate and process high frequency data streams by applying experts' knowledge and inventory configurations. In this paper we present the Expert System application that was built for the Compact Muon Solenoid (CMS) Cathode Strip Chambers (CSC) detector at the Large Hadron Collider (LHC) aiming to support the detector operations and to provide integrated monitoring. The main building blocks are the integration platform, rule-based complex event processing engine, ontology-based knowledge base, persistent storage and user interfaces for results and control.

  16. Expert System for the LHC CMS Cathode Strip Chambers (CSC) detector

    Science.gov (United States)

    Rapsevicius, Valdas; Juska, Evaldas

    2014-02-01

    Modern High Energy Physics experiments are of high demand for a generic and consolidated solution to integrate and process high frequency data streams by applying experts' knowledge and inventory configurations. In this paper we present the Expert System application that was built for the Compact Muon Solenoid (CMS) Cathode Strip Chambers (CSC) detector at the Large Hadron Collider (LHC) aiming to support the detector operations and to provide integrated monitoring. The main building blocks are the integration platform, rule-based complex event processing engine, ontology-based knowledge base, persistent storage and user interfaces for results and control.

  17. Control and monitoring system for TRT detector in ATLAS experiment

    CERN Document Server

    Hajduk, Z

    2002-01-01

    In this article we present methods and tools for design and construction of the control and monitoring system for a big particle physics experiment taking as an example one of the ATLAS subdetectors. Several requirements has been enumerated which such a system have to meet both by hardware and software. Harsh environmental conditions, difficult if not impossible access and very long exploitation time create conditions where only application of industrial standards allow for serviceability, possibility of fast and easy upgrades and intuitive running of the system by relatively non-experienced staff. (6 refs).

  18. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System

    Directory of Open Access Journals (Sweden)

    Ciura Łukasz

    2014-08-01

    Full Text Available The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

  19. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  20. A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M. [Bern U., LHEP; Del Tutto, M. [Oxford U.; Ereditato, A. [Bern U.; Fleming, B. [Yale U.; Goeldi, D. [Bern U., LHEP; Gramellini, E. [Yale U.; Guenette, R. [Oxford U.; Ketchum, W. [Fermilab; Kreslo, I. [U. Bern, AEC; Laube, A. [Oxford U.; Lorca, D. [U. Bern, AEC; Luethi, M. [U. Bern, AEC; Rudolf von Rohr, C. [U. Bern, AEC; Sinclair, J. R. [U. Bern, AEC; Soleti, S. R. [Oxford U.; Weber, M. [U. Bern, AEC

    2016-12-14

    The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction.

  1. An Iterative Multiuser Detector for Turbo-Coded DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Takawira Fambirai

    2005-01-01

    Full Text Available We propose an iterative multiuser detector for turbo-coded synchronous and asynchronous direct-sequence CDMA (DS-CDMA systems. The receiver is derived from the maximum a posteriori (MAP estimation of the single user's transmitted data, conditioned on information about the estimate of the multiple-access interference (MAI and the received signal from the channel. This multiple-access interference is reconstructed by making hard decisions on the users' detected bits at the preceding iteration. The complexity of the proposed receiver increases linearly with the number of users. The proposed detection scheme is compared with a previously developed one. The multiuser detector proposed in this paper has a better performance when the transmitted powers of all active users are equal in the additive white Gaussian noise (AWGN channel. Also, the detector is found to be resilient against the near-far effect.

  2. An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS)

    Science.gov (United States)

    Hausladen, P. A.; Neal, J. S.; Mihalczo, J. T.

    2005-12-01

    A recoil alpha particle detector has been developed for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the coincident emission of 14.1 MeV neutrons and 3.5 MeV alpha particles produced by the D-T reaction, alpha detection determines the time and direction of the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (inorganic scintillator with a high melting point (1975 °C). One detector has been installed in an APSTNG and is currently being tested. Initial results include a measured efficiency for 3.5 MeV alphas of 90%.

  3. COMPARISON OF WIRELESS DETECTORS FOR DIGITAL RADIOGRAPHY SYSTEMS: IMAGE QUALITY AND DOSE.

    Science.gov (United States)

    Mourik, J E M; van der Tol, P; Veldkamp, W J H; Geleijns, J

    2016-06-01

    The purpose of this study was to compare dose and image quality of wireless detectors for digital chest radiography. Entrance dose at both the detector (EDD) and phantom (EPD) and image quality were measured for wireless detectors of seven different vendors. Both the local clinical protocols and a reference protocol were evaluated. In addition, effective dose was calculated. Main differences in clinical protocols involved tube voltage, tube current, the use of a small or large focus and the use of additional filtration. For the clinical protocols, large differences in EDD (1.4-11.8 µGy), EPD (13.9-80.2 µGy) and image quality (IQFinv: 1.4-4.1) were observed. Effective dose was systems. Although effective dose is low, further improvement of imaging technology and acquisition protocols is warranted for optimisation of digital chest radiography.

  4. Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Padilla Cabal, Fatima, E-mail: fpadilla@instec.c [Instituto Superior de Tecnologias y Ciencias Aplicadas, ' Quinta de los Molinos' Ave. Salvador Allende, esq. Luaces, Plaza de la Revolucion, Ciudad de la Habana, CP 10400 (Cuba); Lopez-Pino, Neivy; Luis Bernal-Castillo, Jose; Martinez-Palenzuela, Yisel; Aguilar-Mena, Jimmy; D' Alessandro, Katia; Arbelo, Yuniesky; Corrales, Yasser; Diaz, Oscar [Instituto Superior de Tecnologias y Ciencias Aplicadas, ' Quinta de los Molinos' Ave. Salvador Allende, esq. Luaces, Plaza de la Revolucion, Ciudad de la Habana, CP 10400 (Cuba)

    2010-12-15

    A procedure to optimize the geometrical model of an n-type detector is described. Sixteen lines from seven point sources ({sup 241}Am, {sup 133}Ba, {sup 22}Na, {sup 60}Co, {sup 57}Co, {sup 137}Cs and {sup 152}Eu) placed at three different source-to-detector distances (10, 20 and 30 cm) were used to calibrate a low-background gamma spectrometer between 26 and 1408 keV. Direct Monte Carlo techniques using the MCNPX 2.6 and GEANT 4 9.2 codes, and a semi-empirical procedure were performed to obtain theoretical efficiency curves. Since discrepancies were found between experimental and calculated data using the manufacturer parameters of the detector, a detail study of the crystal dimensions and the geometrical configuration is carried out. The relative deviation with experimental data decreases from a mean value of 18-4%, after the parameters were optimized.

  5. Complete model of a spherical gravitational wave detector with capacitive transducers. Calibration and sensitivity optimization

    CERN Document Server

    Gottardi, L

    2006-01-01

    We report the results of a detailed numerical analysis of a real resonant spherical gravitational wave antenna operating with six resonant two-mode capacitive transducers read out by superconducting quantum interference devices (SQUID) amplifiers. We derive a set of equations to describe the electro-mechanical dynamics of the detector. The model takes into account the effect of all the noise sources present in each transducer chain: the thermal noise associated with the mechanical resonators, the thermal noise from the superconducting impedance matching transformer, the back-action noise and the additive current noise of the SQUID amplifier. Asymmetries in the detector signal-to-noise ratio and bandwidth, coming from considering the transducers not as point-like objects but as sensor with physically defined geometry and dimension, are also investigated. We calculate the sensitivity for an ultracryogenic, 30 ton, 2 meter in diameter, spherical detector with optimal and non-optimal impedance matching of the ele...

  6. Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector.

    Science.gov (United States)

    Cabal, Fatima Padilla; Lopez-Pino, Neivy; Bernal-Castillo, Jose Luis; Martinez-Palenzuela, Yisel; Aguilar-Mena, Jimmy; D'Alessandro, Katia; Arbelo, Yuniesky; Corrales, Yasser; Diaz, Oscar

    2010-12-01

    A procedure to optimize the geometrical model of an n-type detector is described. Sixteen lines from seven point sources ((241)Am, (133)Ba, (22)Na, (60)Co, (57)Co, (137)Cs and (152)Eu) placed at three different source-to-detector distances (10, 20 and 30 cm) were used to calibrate a low-background gamma spectrometer between 26 and 1408 keV. Direct Monte Carlo techniques using the MCNPX 2.6 and GEANT 4 9.2 codes, and a semi-empirical procedure were performed to obtain theoretical efficiency curves. Since discrepancies were found between experimental and calculated data using the manufacturer parameters of the detector, a detail study of the crystal dimensions and the geometrical configuration is carried out. The relative deviation with experimental data decreases from a mean value of 18-4%, after the parameters were optimized.

  7. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    Science.gov (United States)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  8. Towards a deep characterization of a 64-fold-pixelated position sensitive detector for a new {gamma}-scanning system of HPGe segmented detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Prieto, A.; Quintana, B. [Laboratorio de Radiaciones Ionizantes, Univ. of Salamanca, 37007 (Spain)

    2011-07-01

    Characterization of the electrical response of the HPGe segmented detectors is one of the current goals for the Nuclear Physics community in order to perform {gamma}-ray tracking or even imaging with these detectors. For this purpose, scanning devices have to be developed to achieve the signal-position association with the highest precision. In this laboratory, a new scanning system, SALSA (Salamanca Lyso-based Scanning Array), consisting on a high spatial resolution {gamma} camera, is a under development. In this work the whole scanning system is presented and first results for the characterization of the {gamma} camera are shown. (authors)

  9. Qualification measurements of the voltage supply system as well as conceptionation of a state machine for the detector control of the ATLAS pixel detector; Qualifizierungsmessungen des Spannungsversorgungssystems sowie Konzeptionierung einer Zustandsmaschine fuer die Detektorkontrolle des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim

    2007-02-15

    The supply system and the control system of the ATLAS pixel detector represent important building blocks of the pixel detector. Corresponding studies of the supply system, which were performed within a comprehensive test system, the so-called system test, with nearly all final components and the effects on the pixel detector are object of this thesis. A further point of this thesis is the coordination and further development of the detector-control-system software under regardment of the different partial systems. A main topic represents thereby the conceptionation of the required state machine as interface for the users and the connection to the data acquisition system.

  10. Software management of the LHC Detector Control Systems

    CERN Multimedia

    Varela, F

    2007-01-01

    The control systems of each of the four Large Hadron Collider (LHC) experiments will contain of the order of 150 computers running the back-end applications. These applications will have to be maintained and eventually upgraded during the lifetime of the experiments, ~20 years. This paper presents the centralized software management strategy adopted by the Joint COntrols Project (JCOP) [1], which is based on a central database that holds the overall system configuration. The approach facilitates the integration of different parts of a control system and provides versioning of its various software components. The information stored in the configuration database can eventually be used to restore a computer in the event of failure.

  11. Intelligent pulse light source in the performance calibration system of two-dimensional neutron detector

    Science.gov (United States)

    Yang, Lei; Zhao, Xiao-Fang

    2017-07-01

    Chinese Spallation Neutron Source (CSNS) project will use numerous two-dimensional (2D) neutron detectors whose ZnS (Ag) scintillator is doped with 6Li. To ensure the consistency of all neutron detectors, a calibration system for the performance of 2D neutron detectors is designed. For radiation protection, the state control of the radiation source gets more and more strict. It is impossible to directly carry out experiments with massive radioactive particles. Thus, the following scheme has been designed. The controlled pulsed laser light source on a 2D mobile platform is used to replace the neutron bombardment to generate the photon. The pulse signal drives the laser diode to generate pulse light. The pulse light source located on the 2D platform is controlled by the core controller, and goes to the wavelength shift fiber through the optical fiber. The host computer (PC) receives the signal from the electronics system, processes data, and automatically calibrates the performance parameters. As shown by the experimental results, the pulse light source can perfectly meet all requirements of 2D neutron detector calibration system.

  12. The CT-PPS tracking system with 3D pixel detectors

    CERN Document Server

    Ravera, Fabio

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) detector will be installed in Roman pots (RP) positioned on either side of CMS, at about 200 m from the interaction point. This detector will measure forward leading protons, allowing detailed studies of diffractive physics and central exclusive production in standard LHC running conditions. An essential component of the CT-PPS apparatus is the tracking system, which consists of two detector stations per arm equipped with six 3D silicon pixel-sensor modules, each read out by six PSI46dig chips. The front-end electronics has been designed to fulfill the mechanical constrains of the RP and to be compatible as much as possible with the readout chain of the CMS pixel detector. The tracking system is currently under construction and will be installed by the end of 2016. In this contribution the final design and the expected performance of the CT-PPS tracking system will be presented. A summary of the studies performed, before and after irradiation, on the 3D det...

  13. The calibration system of the GERDA muon veto Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Florian, E-mail: ritter@pit.physik.uni-tuebingen.d [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Lubsandorzhiev, Bayarto [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Institute for Nuclear Research of RAS, Moscow (Russian Federation); Freund, Kai; Grabmayr, Peter; Jochum, Josef; Knapp, Markus; Meierhofer, Georg [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Shaibonov, Bator [Institute for Nuclear Research of RAS, Moscow (Russian Federation)

    2010-05-21

    The GERDA experiment searches for neutrinoless double beta decay (0{nu}{beta}{beta}). To achieve a sensitivity of 10{sup -3}counts/(keVkgy) or better within a specific region of interest (ROI), a good background identification is needed. Therefore GERDA is located in the LNGS (Laboratori Nationali del Gran Sasso) underground facility. In addition to the good rejection of cosmic muons due to the surrounding bedrocks, a dual muon veto system has to be used. For calibration and monitoring of the muon veto, two separate systems have been developed.

  14. Modelling of the "Pi of the Sky" detector

    CERN Document Server

    Piotrowski, Lech Wiktor

    2011-01-01

    The ultimate goal of the "Pi of the Sky" apparatus is observation of optical flashes of astronomical origin and other light sources variable on short timescales. We search mainly for optical emission of Gamma Ray Bursts, but also for variable stars, novae, etc. This task requires an accurate measurement of the brightness, which is difficult as "Pi of the Sky" single camera has a field of view of about 20*20 deg. This causes a significant deformation of a point spread function (PSF), reducing quality of measurements with standard algorithms. Improvement requires a careful study and modelling of PSF, which is the main topic of the presented thesis. A dedicated laboratory setup has been created for obtaining isolated, high quality profiles, which in turn were used as the input for mathematical models. Two different models are shown: diffractive, simulating light propagation through lenses and effective, modelling the PSF shape in the image plane. The effective model, based on PSF parametrization with selected Ze...

  15. The PASERO Project: parallel and serial readout systems for gas proportional synchrotron radiation X-ray detectors

    CERN Document Server

    Koch, M H J; Briquet-Laugier, F; Epstein, A; Sheldon, S; Beloeuvre, E; Gabriel, A; Hervé, C; Kocsis, M; Koschuch, A; Laggner, P; Leingartner, W; Raad-Iseli, C D; Reimann, T; Golding, F; Torki, K

    2001-01-01

    A project aiming at producing more efficient position sensitive gas proportional detectors and readout systems is presented. An area detector with reduced electrode spacing and a spatial resolution of 0.5 mm and two time to digital convertors (TDC) based on ASICs were produced. The first TDC, intended for use with linear detectors, relies on time to space conversion, whereas the second one, for area detectors, uses a ring oscillator with a phase locked loop. A parallel readout system for multi-anode detectors aiming at a maximum count rate extensively uses RISC microcontrollers. An electronic simulator of linear detectors built for test purposes and a mechanical chopper used for attenuation of the X-ray beam are also briefly described.

  16. Overview of the Standard Model Measurements with the ATLAS Detector

    CERN Document Server

    Liu, Yanwen; The ATLAS collaboration

    2017-01-01

    The ATLAS Collaboration is engaged in precision measurement of fundamental Standard Model parameters, such as the W boson mass, the weak-mixing angle or the strong coupling constant. In addition, the production cross-sections of a large variety of final states involving high energetic jets, photons as well as single and multi vector bosons are measured multi differentially at several center of mass energies. This allows to test perturbative QCD calculations to highest precision. In addition, these measurements allow also to test models beyond the SM, e.g. those leading to anomalous gauge couplings. In this talk, we give a broad overview of the Standard Model measurement campaign of the ATLAS collaboration, where selected topics will be discussed in more detail.

  17. Development of a miniature coaxial pulse tube cryocooler for a space-borne infrared detector system

    Science.gov (United States)

    Dang, H. Z.; Wang, L. B.; Wu, Y. N.; Yang, K. X.; Shen, W. B.

    2010-04-01

    A single-stage miniature coaxial pulse tube cryocooler prototype is developed to provide reliable low-noise cooling for an infrared detector system to be equipped in the future space mission. The challenging work is the exacting requirement on its dimensions due to the given miniature Dewar. The limited dimensions result in the insufficiency of the phaseshifting ability of the system when inertance tubes alone are employed. A larger filling pressure of 3.5 Mpa and higher operating frequency up to 70 Hz are adopted to increase the energy density, which compensates for the decrease in working gas volume due to the miniature structure, and realize a fast cool down process. A 1.5 kg dual opposed linear compressor based on flexure bearing and moving magnet technology is used to realize light weight, high efficiency and low contamination. The design and optimization are based on the theoretical CFD model developed by the analyses of thermodynamic behaviors of gas parcels in the oscillating flow. This paper describes the design approach and trade-offs. The cooler performance and characteristics are presented.

  18. Characterisation of the Photon Detection System for the LHCb RICH Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2097582; D'Ambrosio, Carmelo; Easo, Sajan

    The LHCb Experiment will be upgraded during Long Shutdown II of the Large Hadron Collider (LHC) in 2019 and 2020. The goal of the upgrade is to efficiently use the increased instantaneous luminosity in LHC Run 3 and to collect data at the proton collision rate of 40 MHz. The Ring Imaging Cherenkov (RICH) particle identification detectors will be upgraded to perform in the new operating conditions with continuing reliability. The photon detection system will be replaced using multi-anode photomultiplier tubes (MaPMTs) and associated read-out electronics. The photon detection chain was studied at CERN using a pulsed laser to test the system under high event rates and high photon intensities. The behaviour of two types of MaPMTs which are foreseen for the upgrade is presented for varying rates and intensities, and different applied bias voltages. A simulation was created to model the photon detection chain using the Geant4 simulation toolkit. The RICH Upgrade test beam using 180 GeV positive hadrons from CERN SP...

  19. Very High Radiation Detector for the LHC BLM System Based on Secondary Electron Emission

    CERN Document Server

    Dehning, B; Holzer, EB; Kramer, D

    2007-01-01

    Beam Loss Monitoring (BLM) system plays a vital role in the active protection of the LHC accelerators elements. It should provide the number of particles lost from the primary hadron beam by measuring the radiation field induced by their interaction with matter surrounding the beam pipe. The LHC BLM system will use ionization chambers as standard detectors but in the areas where very high dose rates are expected, the Secondary Emission Monitor (SEM) chambers will be employed because of their high linearity, low sensitivity and fast response. The SEM needs a high vacuum for proper operation and has to be functional for up to 20 years, therefore all the components were designed according to the UHV requirements and a getter pump was included. The SEM electrodes are made of Ti because of its Secondary Emission Yield (SEY) stability. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production...

  20. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald; Drigert, Mark William; Jewell, James Keith; Egger, Ann Elizabeth; Cordes, Gail Adele

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was from a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.

  1. Improving the Safety and Protective Automatic Actions of the CMS Electromagnetic Calorimeter Detector Control System

    CERN Document Server

    Jimenez Estupinan, Raul

    2017-01-01

    The CMS ECAL Detector Control System (DCS) features several monitoring mechanisms able to react and perform automatic actions based on pre-defined action matrices. The DCS is capable of early detection of anomalies inside the ECAL and on its off-detector support systems, triggering automatic actions to mitigate the impact of these events and preventing them from escalating to the safety system. The treatment of such events by the DCS allows for a faster recovery process, better understanding of the development of issues, and in most cases, actions with higher granularity than the safety system. This paper presents the details of the DCS automatic action mechanisms, as well as their evolution based on several years of CMS ECAL operations.

  2. Test of CMS tracker silicon detector modules with the ARC readout system

    CERN Document Server

    Axer, M; Flügge, G; Franke, T; Hegner, B; Hermanns, T; Kasselmann, S T; Mnich, J; Nowack, A; Pooth, O; Pottgens, M

    2004-01-01

    The CMS tracker will be equipped with 16,000 silicon microstrip detector modules covering a surface of approximately 220 m**2. For quality control, a compact and inexpensive DAQ system is needed to monitor the mass production in industry and in the CMS production centres. To meet these requirements a set-up called APV Readout Controller (ARC) system was developed and distributed among all collaborating institutes to perform full readout tests of hybrids and modules at each production step. The system consists of all necessary hardware components, C++ based readout software using LabVIEW **1 Lab VIEW is a product of National Instruments, Austin, USA. as graphical user interface and provides full database connection to track every single module component during the production phase. Two preseries of Tracker End Cap (TEC) silicon detector modules have been produced by the TEC community and tested with the ARC system at Aachen. The results of the second series are presented.

  3. Detector with a profile-based cathode and a two-coordinate pad-strip readout system

    CERN Document Server

    Kuchinskiy, N A; Kravchuk, N P; Korenchenko, A S; Khomutov, N V; Smirnov, V S; Chekhovskii, V A; Movchan, S A; Zyazyulya, F E

    2011-01-01

    A detector with a profile-based cathode and a pad-strip cathode readout system is experimentally investigated. Cathode pads arranged along each anode wire are diagonally interconnected and form strips that cross the detector at an angle with respect to the anode wire. Two coordinates from the cathodes and one from the anode wire allow identification of tracks in high multiplicity events with a single detector plane.

  4. Model independent WIMP Searches in full Simulation of the ILD Detector

    CERN Document Server

    Bartels, Christoph

    2010-01-01

    In this study the ILC's capabilities for detecting WIMPs and measure their properties are investigated. The signal events are detected by associated production of Initial State Radiation (ISR). A model independent formulation of the signal cross section is used. The cross section is normalized by inference from the observed abundance of cosmological Dark Matter (DM). The study is performed in full simulation of the ILD00 detector model. The prospects of determining the WIMP parameters individually and simultaneously are presented.

  5. Feasibility Study for a Dual Field of View-Single Detector Array Infrared System.

    Science.gov (United States)

    1974-06-01

    the background is shown in Figure 2-8. In this system the field stop is scare I with a vertical slit and essentially all the energy falling on the...cylindrical mirror will be o focused as a vertical iine on the detector array. Several of the previous problems have been solved in this system. The...patterns Limillid only by DAC, AD,,.J Access y u, limited by speed. anid Display Mtsaitor strict possible formats. xalbe Modification of timing salto

  6. Gas Analysis and Monitoring Systems for the RPC Detector of CMS at LHC

    CERN Document Server

    Abbrescia, M; Guida, R; Iaselli, G; Liuzzi, R; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F; Trentadue, R; Benussi, L; Bertani, M; Bianco, S; Caponero, M A; Colonna, D; Donisi, D; Fabbri, F L; Felli, F; Ortenzi, M G B; Pallotta, M; Paolozzi, A; Passamonti, L; Ponzio, B; Pucci, C; Polese, G S G; Segoni, I; Cavallo, N; Fabozzi, F; Paolucci, P; Piccolo, D; Belli, C S G; Grelli, A; Necchi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P

    2006-01-01

    The Resistive Plate Chambers (RPC) detector of the CMS experiment at the LHC proton collider (CERN, Switzerland) will employ an online gas analysis and monitoring system of the freon-based gas mixture used. We give an overview of the CMS RPC gas system, describe the project parameters and first results on gas-chromatograph analysis. Finally, we report on preliminary results for a set of monitor RPC.

  7. Electronic systems associated with radiation detectors; Electronique associee aux detecteurs de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H. [CEA Grenoble, Dept. des Systemes pour l' Information et la Sante, DSIS, 38 (France)

    2002-07-01

    This article deals with the instrumentation used for the detection of radiations in nuclear reactors and fuel reprocessing plants. In power reactors, the control of nuclear fissions is performed with the measurement of the neutron flux emitted by the pressure vessel. In fuel reprocessing plants the quantities of nuclear material are controlled all along the process by the measurement of the neutrons and gamma photons emitted. The measurement systems use the information contained in the series of electrical pulses delivered by the detectors. The number of pulses and the particular characteristics of each pulse are the methods used in the two different classes of measurements performed in nuclear facilities. Measurement systems are particularly sensible to the signal/noise ratio which is a determining factor in the quality of measurements: 1 - sources of error and filtering of detector pulses: detectors and processing of pulses; sources of errors (electronic noise, thermal drift, electromagnetic disturbances, piling up effects, ballistic deficit); optimum estimation and filtering (optimum energy estimation, counting optimization); 2 - measurement chains associated with detectors: counting and measurement of weak currents (effect of the connection cable, effects of high counting rates, method of fluctuations and advantage of a numerical processing of the signal, measurement of weak currents, effect of radiations on electronic components); energy measurement (filter for energy measurements, design of low-noise preamplifiers, high counting rate measurements). (J.S.)

  8. A new Data Acquisition System for the CMS Phase 1 Pixel Detector

    CERN Document Server

    Kornmayer, Andreas

    2016-01-01

    A new pixel detector will be installed in the CMS experiment during the extended technical stop of the LHC at the beginning of 2017. The new pixel detector, built from four layers in the barrel region and three layers on each end of the forward region, is equipped with upgraded front-end readout electronics, specifically designed to handle the high particle hit rates created in the LHC environment. The DAQ back-end was entirely redesigned to handle the increased number of readout channels, the higher data rates per channel and the new digital data format. Based entirely on the microTCA standard, new front-end controller (FEC) and front-end driver (FED) cards have been developed, prototyped and produced with custom optical link mezzanines mounted on the FC7 AMC and custom firmware. At the same time as the new detector is being assembled, the DAQ system is set up and its integration into the CMS central DAQ system tested by running the pilot blade detector already installed in CMS. This work describes the DAQ s...

  9. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.

    Science.gov (United States)

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-12-23

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.

  10. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.

    2017-01-09

    Precise knowledge of an optical device\\'s frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity\\'s optical response as a function of modulation frequency, which is also used to determine the modulator\\'s frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity\\'s characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  11. PLL application research of a broadband MEMS phase detector: Theory, measurement and modeling

    Science.gov (United States)

    Han, Juzheng; Liao, Xiaoping

    2017-06-01

    This paper evaluates the capability of a broadband MEMS phase detector in the application of phase locked loops (PLLs) through the aspect of theory, measurement and modeling. For the first time, it demonstrates how broadband property and optimized structure are realized through cascaded transmission lines and ANSYS simulations. The broadband MEMS phase detector shows potential in PLL application for its dc voltage output and large power handling ability which is important for munition applications. S-parameters of the power combiner in the MEMS phase detector are measured with S11 better than -15 dB and S23 better than -10 dB over the whole X-band. Compared to our previous works, developed phase detection measurements are performed and focused on signals at larger power levels up to 1 W. Cosine tendencies are revealed between the output voltage and the phase difference for both small and large signals. Simulation approach through equivalent circuit modeling is proposed to study the PLL application of the broadband MEMS phase detector. Synchronization and tracking properties are revealed.

  12. An infrared motion detector system for lossless real-time monitoring of animal preference tests.

    Science.gov (United States)

    Pogány, A; Heszberger, J; Szurovecz, Zita; Vincze, E; Székely, T

    2014-12-01

    Automated behavioural observations are routinely used in many fields of biology, including ethology, behavioural ecology and physiology. When preferences for certain resources are investigated, the focus is often on simple response variables, such as duration and frequency of visits to choice chambers. Here we present an automated motion detector system that use passive infrared sensors to eliminate many drawbacks of currently existing methods. Signals from the sensors are processed by a custom-built interface, and after unnecessary data is filtered by a computer software, the total time and frequency of the subject's visits to each of the choice chambers are calculated. We validate the detector system by monitoring (using the system) and in the same time video recording mating preferences of zebra finches in a four-way choice apparatus. Manual scoring of the video recordings showed very high consistency with data from the detector system both for time and for frequency of visits. Furthermore, the validation revealed that if we used micro-switches or light barriers, the most commonly applied automatic detection techniques, this would have resulted in approximately 22% less information compared to our lossless system. The system provides a low-cost alternative for monitoring animal movements, and we discuss its further applicability.

  13. Ultra high vacuum pumping system and high sensitivity helium leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  14. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators.

    Science.gov (United States)

    Sharma, Diksha; Badal, Andreu; Badano, Aldo

    2012-04-21

    The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code MANTIS, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fastDETECT2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the MANTIS code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify PENELOPE (the open source software package that handles the x-ray and electron transport in MANTIS) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fastDETECT2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybridMANTIS approach achieves a significant speed-up factor of 627 when compared to MANTIS and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybridMANTIS, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical tox-ray transport. The new code requires much less memory than MANTIS and, asa result, allows us to efficiently simulate large area detectors.

  15. The Ring of Fire - an internal illimination system for detector sensitivity and filter bandpass characterization

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; Kent, Stephen M.; /Fermilab; Deustua, Susana E.; /Baltimore, Space Telescope Sci.; Sholl, Michael J.; /LBL, Berkeley; Mufson, Stuart L.; /Indiana U.; Ott, Melanie N.; /NASA, Goddard; Wiesner, Matthew P.; /Northern Illinois U.; Baptitst, Brian J.; /Indiana U.

    2010-07-01

    We describe a prototype of an illumination system, the Ring of Fire (ROF), which is used as part of an internal calibration system for large focal plane detector arrays in TMA (Three Mirror Anastigmat) telescope designs. Such designs have been proposed for the SNAP (SuperNova Acceleration Probe) version of a Joint Dark Energy Mission (JDEM). The ROF system illuminates the focal plane with a light beam the closely matches that of the telescope and is used for creating high spatial frequency flat fields and monitoring filter bandpasses for experiments that demand a highly accurate characterization of the detectors. We present measurements of a mockup of this prototype ROF design including studies in variations in illumination across a large focal plane.

  16. Improving the gas gain monitoring system in multiwire proportional chambers for MUON detector of LHCb experiment.

    CERN Document Server

    Ruvinskaia, Ekaterina

    2016-01-01

    The gas gain monitoring system in multi-wire proportional chambers for MUON detector of LHCb has been constructed and commissioned. It includes an online- monitoring, tools for analysis the archived data and an alarm system on the quality of the gas mixture. Finally, it will be implemented in the main ECS of LHCb for MUON detector and as a part of safety system of LHCb as a permanent online monitor of the quality of the gas mixture in MWPCs. The main advantage of this setup is a monitoring of Gas Gain (GG) in MWPCs with radioactive sources independently from the presence of beam at LHC. It also provides an option for prompt reaction in case of a problem with the gas.

  17. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels

    : The library proved to be a useful tool for to investigate the results from different ATMs over a broad parameter space. We found good agreement between the model predictions and the experimental luminescence data and will discuss the influence on the selected approaches and their parameters. An extended...... be seriously hampered by variations in detector efficiency (light output per energy imparted) due to high-LET effects and gradients along the physical size (~mm) of the detector crystals. Amorphous track models (ATMs) such as the Ion-Gamma-Kill (IGK) approach by Katz and co-workers or the ECLaT code by Geiß et...... the models and the selection of the most appropriate approach. Materials and methods: We have therefore developed a generic, open-source and publically available ATM code library (libSGP) including a number of ATMs, which can be used as a common platform to investigate the principal approaches and underlying...

  18. Binary Systems as Resonance Detectors for Gravitational Waves

    CERN Document Server

    Hui, Lam; Yang, I-Sheng

    2012-01-01

    Gravitational waves at suitable frequencies can resonantly interact with a binary system, inducing changes to its orbit. A stochastic gravitational-wave background causes the orbital elements of the binary to execute a classic random walk -- with the variance of orbital elements growing with time. The lack of such a random walk in binaries that have been monitored with high precision over long time-scales can thus be used to place an upper bound on the gravitational-wave background. Using periastron time data from the Hulse-Taylor binary pulsar spanning ~30 years, we obtain a bound of h_c < 7.9 x 10^-14 at ~10^-4 Hz, where h_c is the strain amplitude per logarithmic frequency interval. Our constraint complements those from pulsar timing arrays, which probe much lower frequencies, and ground-based gravitational-wave observations, which probe much higher frequencies. Interesting sources in our frequency band, which overlaps the lower sensitive frequencies of proposed space-based observatories, include white-...

  19. Fiber-Optic Micrometeoroid/Orbital Debris Impact Detector System

    Science.gov (United States)

    Christiansen, Eric L.; Tennyson, R. C.; Morison, W. D.

    2012-01-01

    A document describes a reliable, lightweight micrometeoroid/orbital debris (MMOD) detection system that can be located at strategic positions of "high consequence" to provide real-time warning of a penetration, its location, and the extent of the damage to a spacecraft. The concept is to employ fiber-optic sensors to detect impact damage and penetration of spacecraft structures. The fibers are non-electrical, employ light waves, and are immune to electromagnetic interference. The fiber-optic sensor array can be made as a stand-alone product, being bonded to a flexible membrane material or a structure that is employed as a MMOD shield material. The optical sensors can also be woven into hybrid MMOD shielding fabrics. The glass fibers of the fiber-optic sensor provide a dual purpose in contributing to the breakup of MMOD projectiles. The grid arrays can be made in a modular configuration to provide coverage over any area desired. Each module can be connected to a central scanner instrument and be interrogated in a continuous or periodic mode.

  20. Sub-micro-liter Electrochemical Single-Nucleotide-Polymorphism Detector for Lab-on-a-Chip System

    Science.gov (United States)

    Tanaka, Hiroyuki; Fiorini, Paolo; Peeters, Sara; Majeed, Bivragh; Sterken, Tom; de Beeck, Maaike Op; Hayashi, Miho; Yaku, Hidenobu; Yamashita, Ichiro

    2012-04-01

    A sub-micro-liter single-nucleotide-polymorphism (SNP) detector for lab-on-a-chip applications is developed. This detector enables a fast, sensitive, and selective SNP detection directly from human blood. The detector is fabricated on a Si substrate by a standard complementary metal oxide semiconductor/micro electro mechanical systems (CMOS/MEMS) process and Polydimethylsiloxane (PDMS) molding. Stable and reproducible measurements are obtained by implementing an on-chip Ag/AgCl electrode and encapsulating the detector. The detector senses the presence of SNPs by measuring the concentration of pyrophosphoric acid generated during selective DNA amplification. A 0.5-µL-volume detector enabled the successful performance of the typing of a SNP within the ABO gene using human blood. The measured sensitivity is 566 pA/µM.

  1. Monte Carlo semi-empirical model for Si(Li) x-ray detector: Differences between nominal and fitted parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pino, N.; Padilla-Cabal, F.; Garcia-Alvarez, J. A.; Vazquez, L.; D' Alessandro, K.; Correa-Alfonso, C. M. [Departamento de Fisica Nuclear, Instituto Superior de Tecnologia y Ciencias Aplicadas (InSTEC) Ave. Salvador Allende y Luaces. Quinta de los Molinos. Habana 10600. A.P. 6163, La Habana (Cuba); Godoy, W.; Maidana, N. L.; Vanin, V. R. [Laboratorio do Acelerador Linear, Instituto de Fisica - Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-900, SP (Brazil)

    2013-05-06

    A detailed characterization of a X-ray Si(Li) detector was performed to obtain the energy dependence of efficiency in the photon energy range of 6.4 - 59.5 keV, which was measured and reproduced by Monte Carlo (MC) simulations. Significant discrepancies between MC and experimental values were found when the manufacturer parameters of the detector were used in the simulation. A complete Computerized Tomography (CT) detector scan allowed to find the correct crystal dimensions and position inside the capsule. The computed efficiencies with the resulting detector model differed with the measured values no more than 10% in most of the energy range.

  2. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN, two learning processes are proposed: (1 a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2 a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE, root mean square error (RMSE, and mean absolute relative error (MARE are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR, instantaneous model (IM, linear model (LM, neural network (NN, and cumulative plots (CP.

  3. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System

    Science.gov (United States)

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  4. Assembly and Commissioning of a Liquid Argon Detector and Development of a Slow Control System for the COHERENT Experiment

    Science.gov (United States)

    Kaemingk, Michael; Cooper, Robert; Coherent Collaboration

    2016-09-01

    COHERENT is a collaboration whose goal is to measure coherent elastic neutrino-nucleus scattering (CEvNS). COHERENT plans to deploy a suite of detectors to measure the expected number-of-neutrons squared dependence of CEvNS at the Spallation Neutron Source at Oak Ridge National Laboratory. One of these detectors is a liquid argon detector which can measure these low energy nuclear recoil interactions. Ensuring optimal functionality requires the development of a slow control system to monitor and control various aspects, such as the temperature and pressure, of these detectors. Electronics manufactured by Beckhoff, Digilent, and Arduino among others are being used to create these slow control systems. This poster will generally discuss the assembly and commissioning of this CENNS-10 liquid argon detector at Indiana University and will feature work on the slow control systems.

  5. The Performance Assessment of the Detector for the Portable Environmental Radiation Distribution Monitoring System with Rapid Nuclide Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uk Jae; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    The environment radiation distribution monitoring system measures the radiation using a portable detector and display the overall radiation distribution. Bluetooth and RS-232 communications are used for constructing monitoring system. However RS-232 serial communication is known to be more stable than Bluetooth and also it can use the detector's raw data which will be used for getting the activity of each artificial nuclide. In the present study, the detection and communication performance of the developed detector with RS-232 method is assessed by using standard sources for the real application to the urban or rural environment. Assessment of the detector for the portable environmental radiation distribution monitoring system with rapid nuclide recognition was carried out. It was understood that the raw data of detector could be effectively treated by using RS-232 method and the measurement showed a good agreement with the calculation within the relative error of 0.4 % in maximum.

  6. Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation

    Science.gov (United States)

    Borghi, Giacomo; Tabacchini, Valerio; Schaart, Dennis R.

    2016-07-01

    Gamma-ray detectors based on thick monolithic scintillator crystals can achieve spatial resolutions  published k-NN 1D method. Also, the procedures for estimating the DOI and time of interaction are revised to enable full detector calibration by means of fan-beam or flood irradiations only. Moreover, a new technique is presented to allow the use of events in which some of the photosensor pixel values and/or timestamps are missing (e.g. due to dead time), so as to further increase system sensitivity. The accelerated methods were tested on a monolithic scintillator detector specifically developed for clinical PET applications, consisting of a 32 mm  ×  32 mm  ×  22 mm LYSO : Ce crystal coupled to a digital photon counter (DPC) array. This resulted in a spatial resolution of 1.7 mm FWHM, an average DOI resolution of 3.7 mm FWHM, and a CRT of 214 ps. Moreover, the possibility of using events missing the information of up to 16 out of 64 photosensor pixels is shown. This results in only a small deterioration of the detector performance.

  7. MMC-based low-temperature detector system of the AMoRE-Pilot experiment

    Science.gov (United States)

    Kang, C. S.; Jeon, J. A.; Jo, H. S.; Kim, G. B.; Kim, H. L.; Kim, I.; Kim, S. R.; Kim, Y. H.; Kwon, D. H.; Lee, C.; Lee, H. J.; Lee, M. K.; Lee, S. H.; Oh, S. Y.; So, J. H.; Yoon, Y. S.

    2017-08-01

    Metallic magnetic calorimeters (MMCs) are highly sensitive temperature sensors that operate at millikelvin temperatures. An energy deposit in a detector can be measured using an MMC through the induced temperature increase. The MMC signal, i.e., a variation in magnetization can then be measured using a superconducting quantum interference device. MMCs are used in particle physics experiments searching for rare processes as their high sensitivity and fast response provide high energy and timing resolutions and good particle discrimination. Low-temperature detectors consisting of molybdenum-based scintillating crystals read out via MMCs were designed and built to perform simultaneous measurements of heat and light signals at millikelvin temperatures. These detectors have been used in the advanced Mo-based rare process experiment (AMoRE) that searches for the neutrinoless double beta decay of 100Mo. This article provides a detailed description of the MMC-based low-temperature detector system of the AMoRE-Pilot experiment which currently uses five crystals.

  8. Droplet detector for the continuous flow luminol-hydrogen peroxide chemiluminescence system.

    Science.gov (United States)

    Wen, Yaqiong; Yuan, Hongyan; Mao, Jianfei; Xiao, Dan; Choi, Martin M F

    2009-02-01

    A droplet detector with high sensitivity and low consumption of reagents and sample for continuous flow chemiluminescence (CL) detection has been developed. The proposed system directly mixes sample with luminescence reagents to form a small droplet, thanks to the gravity force and surface tension of water, in front of a photomultiplier tube (PMT) where the CL reaction takes place. The PMT can then instantaneously record the maximum CL light signal emitted from the whole reaction process. This small droplet can replace the conventional spiral-shaped flow cell for flow injection CL analysis and the droplet detector can reduce interference from the reaction products and residual reagents. To evaluate the potential application of the proposed detector, the CL detection of Fe(ii) was assessed under the alkaline luminol-hydrogen peroxide conditions. The CL intensity increased linearly with the concentration of Fe(ii) ranging from 10.0 to 1000 nmol dm(-3) with a detection limit of 7.16 nmol dm(-3) (S/N = 3). The droplet detector allows highly sensitive, stable and fast CL detection of analytes, and thus is promising for application to other analytes having fast CL reaction rates.

  9. Physics motivations and expected performance of the CMS muon system upgrade with triple-GEM detectors

    CERN Document Server

    Venditti, Rosamaria; Abbrescia, Marcello; Aleksandrov, Andrey B; Benussi, Luigi; Beni, Noemi; Bianco, Stefano; Calabria, Cesare; Caponero, Michele; Hernandez, Alfredo Martin Castaneda; Cavallo, Francesca; Colafranceschi, Stefano; Lentdecker, Gilles De; Oliveira, R; Guiducci, Luigi; Hoepfner, Kerstin; Iaydjiev, P S; Korytov, Andrey; Krutelyov, Slava; Kumar, A; Lee, Jason; Litov, L; Loddo, F; Maggi, M; Marchioro, Alessandro; Mitselmakher, Guenakh; Mohanty, Ajit Kumar; Molnar, J; Naimuddin, Md; Nuzzo, S; Pant, Lalit; Paolucci, Pierluigi; Pavlov, Borislav; Piccolo, Davide; Postema, Hans; Raffaella, Radogna; Ranieri, A; Riccardi, C; Rodozov, Mircho; Safonov, Alexei; Saviano, Giovanna; Sharma, Archana; Tytgat, Michael; Vitulo, Paolo; Colaleo, Anna; Caputo, Claudio; Errico, Filippo; Dildick, Sven; Vai, Ilaria; Magnani, Alice; Verwilligen, Piet; Altieri, Palma; Aspell, Paul; Giacomelli, Paolo; Braibant, Sylvie; Buontempo, S; Kamon, Teruki; Tatarinov, A; Celik, Ali; Gilmore, Jason; Flanagan, Will; Khotilovich, Vadim; Czellar, S; Fenyvesi, A; Jozsef Molnar@Cern Ch, Jozsef; Barria, P; Korntheuer, Michael; Lenzi, T; Maerschalk, T; Verhagen, E; Yang, Yifan; Yonamine, R; Zenoni, F; Merlin, J; Dorney, B; Garcia, A Conde; Dabrowski, M; Marinov, A; Oliveri, E; Baranac, A Puig; Ropelewski, Leszek; Bos, J; Bally, S; Stenis, M Van; Ferry, S; Rodrigues, A; Robertis, G De; Christiansen, J; Hohlmann, M; Bhopatkar, V; Mohapatra, A; Zhang, A; Hauser, J; Tuuva, Tuure; Talvitie, J; Passeggio, G; Cassese, F; Banerjee, S; Majumdar, N; Mukhopadhyay, Supratik; Roychowdhur, S; Salva, S; Zaganidis, N; Cimmino, A; Cauwenbergh, S; Bouhali, O; Akl, M Abi; Sturdy, J; Karchin, P; Gutierrez, A; Hadjiiska, R; Aleksandrov, Aleksandar; Rashevski, G; Rodozov, M; Shopova, M; Sultanov, G; Acosta, D; Barashko, V; Furic, I; Madorsky, A; Korytov, A; Mitselmakher, G; Raffone, G; Radi, A; Assran, Y; Aboamer, O; Ahmad, A; Ahmed, W; Awan, I; Hoorani, H; Muhammad, S; Sharma, R; Geonmo, R; Ryu, M S; Park, I; Jeng, Y C; Choi, M; Golovtsov, V; Volkov, S; Vorobyev, A; Choi, S; Guilloux, F; Philipps, B

    2015-01-01

    For the LHC High Luminosity phase (HL-LHC) the CMS GEM Collaboration is planning to in- stall new large size triple-GEM detectors in the forward region of the muon system (1.5< j h |<2.2) of the CMS detector. The muon reconstruction with triple-GEM chambers information included have been successfully integrated in the official CMS software, allowing physics studies to be carried out. The new sub-detector will be able to cope the extreme particle rates expected in this region along with a high spatial resolution. The resulting benefit in terms of triggering and tracking capabilities has been studied: the expected improvement in the performance of the muon identification and track reconstruction as well as the expected improvement coming from the low- ering of the muon p T trigger tresholds will be presented. The contribution will review the status of the CMS upgrade project with the usage of GEM detector, discussing the trigger, the muon reconstruction performance and the impact on the physics analyses.

  10. In-laboratory development of an automatic track counting system for solid state nuclear track detectors

    Science.gov (United States)

    Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet

    2017-01-01

    In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.

  11. Control electronics for a multi-laser/multi-detector scanning system

    Science.gov (United States)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  12. Characterization of a double-sided silicon strip detector autoradiography system

    Energy Technology Data Exchange (ETDEWEB)

    Örbom, Anders, E-mail: anders.orbom@med.lu.se; Ahlstedt, Jonas; Östlund, Karl; Strand, Sven-Erik [Department of Medical Radiation Physics, Lund University, Lund SE-22185 (Sweden); Serén, Tom; Auterinen, Iiro; Kotiluoto, Petri [VTT Technical Research Centre of Finland, Espoo FI-02044 (Finland); Hauge, Håvard [Biomolex AS, Oslo NO-0319 (Norway); Olafsen, Tove; Wu, Anna M.; Dahlbom, Magnus [Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 (United States)

    2015-02-15

    Purpose: The most commonly used technology currently used for autoradiography is storage phosphor screens, which has many benefits such as a large field of view but lacks particle-counting detection of the time and energy of each detected radionuclide decay. A number of alternative designs, using either solid state or scintillator detectors, have been developed to address these issues. The aim of this study is to characterize the imaging performance of one such instrument, a double-sided silicon strip detector (DSSD) system for digital autoradiography. A novel aspect of this work is that the instrument, in contrast to previous prototype systems using the same detector type, provides the ability for user accessible imaging with higher throughput. Studies were performed to compare its spatial resolution to that of storage phosphor screens and test the implementation of multiradionuclide ex vivo imaging in a mouse preclinical animal study. Methods: Detector background counts were determined by measuring a nonradioactive sample slide for 52 h. Energy spectra and detection efficiency were measured for seven commonly used radionuclides under representative conditions for tissue imaging. System dead time was measured by imaging {sup 18}F samples of at least 5 kBq and studying the changes in count rate over time. A line source of {sup 58}Co was manufactured by irradiating a 10 μm nickel wire with fast neutrons in a research reactor. Samples of this wire were imaged in both the DSSD and storage phosphor screen systems and the full width at half maximum (FWHM) measured for the line profiles. Multiradionuclide imaging was employed in a two animal study to examine the intratumoral distribution of a {sup 125}I-labeled monoclonal antibody and a {sup 131}I-labeled engineered fragment (diabody) injected in the same mouse, both targeting carcinoembryonic antigen. Results: Detector background was 1.81 × 10{sup −6} counts per second per 50 × 50 μm pixel. Energy spectra and

  13. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses

    Energy Technology Data Exchange (ETDEWEB)

    Tanguay, Jesse [Robarts Research Institute and Department of Medical Biophysics, Western University, London, Ontario N6A 5C1 (Canada); Yun, Seungman [Biomedical Engineering Program, Western University, London, Ontario N6A 5C1 (Canada); School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Kim, Ho Kyung [School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Cunningham, Ian A. [Robarts Research Institute, Department of Medical Biophysics, and Biomedical Engineering Program, Western University, London, Ontario N6A 5C1 (Canada)

    2013-04-15

    Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.

  14. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses.

    Science.gov (United States)

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A

    2013-04-01

    Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.

  15. Development and characterization of a modular acquisition system for a 4D PET block detector

    Energy Technology Data Exchange (ETDEWEB)

    Marcatili, Sara, E-mail: MarcatiliS@cardiff.ac.uk [University of Pisa, Department of Physics, I 56127 Pisa (Italy); INFN sezione di Pisa, I 56127 Pisa (Italy); Belcari, Nicola; Bisogni, Maria G. [University of Pisa, Department of Physics, I 56127 Pisa (Italy); Collazuol, Gianmaria [INFN sezione di Pisa, I 56127 Pisa (Italy); Ambrosi, Giovanni [INFN sezione di Perugia, I 06100 Perugia (Italy); Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito [Politecnico di Bari, I 70100 Bari (Italy); INFN Sezione di Bari, I 70100 Bari (Italy); Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres [Universidad Politecnica de Madrid, E 28040 Madrid (Spain); CIBER-BBN (Spain); Del Guerra, Alberto [University of Pisa, Department of Physics, I 56127 Pisa (Italy)

    2011-12-11

    Next generation PET scanners should fulfill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultiplier (SiPM) matrices is proposed for the construction of a 4D PET module based on LSO continuous crystals, which is envisaged to replace the standard PET block detector. The expected spatial resolution of the module for the photon hit position is below 1 mm, and it will perform at the same time, the Depth Of Interaction (DOI) calculation and the Time Of Flight (TOF) measurement. The use of large area multi-pixel Silicon Photomultiplier (SiPM) detectors requires the development of a multichannel Digital Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector performances. We have developed a flexible and modular DAQ system for the read-out of two modules in time coincidence for Positron Emission Tomography (PET) applications. The DAQ system is based on a previously developed custom front-end ASIC chip (BASIC) which allows to read-out SiPM matrices preserving their spectroscopy and timing capabilities. Here we describe the acquisition system architecture and its characterization measurements.

  16. Development of microwave kinetic inductance detectors and their readout system for LiteBIRD

    Science.gov (United States)

    Hattori, K.; Hazumi, M.; Ishino, H.; Kibayashi, A.; Kibe, Y.; Mima, S.; Okamura, T.; Sato, N.; Tomaru, T.; Yamada, Y.; Yoshida, M.; Yuasa, T.; Watanabe, H.

    2013-12-01

    Primordial gravitational waves generated by inflation have produced an odd-parity pattern B-mode in the cosmic microwave background (CMB) polarization. LiteBIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection) aims at detecting this B-mode polarization precisely. It requires about 2000 detectors capable of detecting a frequency range from 50 GHz to 250 GHz with ultra low noise. Superconducting detectors are suitable for this requirement. We have fabricated and tested microwave kinetic inductance detectors (MKIDs) and developed a new readout system. We have designed antenna-coupled MKIDs. Quasi-particles are created by incident radiation and are detected as a change of the surface impedance of a superconductor strip. This change of the surface impedance is translated into the change of the resonant frequency of a microwave signal transmitted through the resonator. We also have developed a new readout system for MKIDs. The newly developed readout system is not only able to read out the amplitude and the phase data with the homodyne detection for multi-channels, but also provides a unique feature of tracking the resonant frequency of the target resonator. This mechanism enables us to detect signals with a large dynamic range. We report on the recent R&D status of the developing MKIDs and on the read-out system for LiteBIRD.

  17. Improved IR detectors to swap heavy systems for SWaP

    Science.gov (United States)

    Manissadjian, Alain; Rubaldo, Laurent; Rebeil, Yann; Kerlain, Alexandre; Brellier, Delphine; Mollard, Laurent

    2012-06-01

    Cooled IR technologies are challenged for answering new system needs like the compactness and the reduction of cryopower which is a key feature for the SWaP (Size, Weight and Power) requirements. Over the last years, SOFRADIR has improved its HgCdTe technology, with effect on dark current reduction, opening the way for High Operating Temperature (HOT) systems that can get rid of the 80K temperature constraint, and therefore releases the Stirling cooler engine power consumption. Performances of the 640×512 15μm pitch LW detector working above 100K will be presented. A compact 640×512 15μm pitch MW detector presenting high EO performance above 130K with cut-off wavelength above 5.0μm has been developed. Its different performances with respect to the market requirements for SWaP will be discussed. High performance compact systems will make no compromise on detector resolution. The pixel pitch reduction is the answer for resolution enhancement with size reduction. We will therefore also discuss the ongoing developments and market needs for SWaP systems.

  18. Comparison of X-ray detectors for a diffraction enhanced imaging system

    CERN Document Server

    Kiss, M Z; Zhong Zhon

    2002-01-01

    Three digital detector systems--a Fuji BAS2500 Image Plate Reader, a prototype charge-coupled device (CCD) from Mar USA and the MicroPhotonics XQUIS 1000 were compared with respect to format, dynamic range, dark noise, and spatial resolution. Experiments were conducted using highly collimated monochromatic X-rays at 20 keV, produced at the National Synchrotron Light Source. This study characterized digital detectors being considered for integration into a synchrotron-based diffraction enhanced imaging (DEI) apparatus used for medical imaging research, particularly mammography. These detectors are also being considered for integration into a proposed clinical prototype for DEI-based mammography. While all three systems had comparable image quality, the CCDs had faster readout time than the image plate system. However, the Fuji system had the largest dynamic range (approx 10 sup 5 compared to 10 sup 4 for CCDs) and the largest active area. The MicroPhotonics XQUIS 1000 had the best spatial resolution as charact...

  19. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  20. Stroke Detector and Structure Based Models for Character Recognition: A Comparative Study.

    Science.gov (United States)

    Shi, Cun-Zhao; Gao, Song; Liu, Meng-Tao; Qi, Cheng-Zuo; Wang, Chun-Heng; Xiao, Bai-Hua

    2015-12-01

    Characters, which are man-made symbols composed of strokes arranged in a certain structure, could provide semantic information and play an indispensable role in our daily life. In this paper, we try to make use of the intrinsic characteristics of characters and explore the stroke and structure-based methods for character recognition. First, we introduce two existing part-based models to recognize characters by detecting the elastic strokelike parts. In order to utilize strokes of various scales, we propose to learn the discriminative multi-scale stroke detector-based representation (DMSDR) for characters. However, the part-based models and DMSDR need to manually label the parts or key points for training. In order to learn the discriminative stroke detectors automatically, we further propose the discriminative spatiality embedded dictionary learning-based representation (DSEDR) for character recognition. We make a comparative study of the performance of the tree-structured model (TSM), mixtures-of-parts TSM, DMSDR, and DSEDR for character recognition on three challenging scene character recognition (SCR) data sets as well as two handwritten digits recognition data sets. A series of experiments is done on these data sets with various experimental setup. The experimental results demonstrate the suitability of stroke detector-based models for recognizing characters with deformations and distortions, especially in the case of limited training samples.

  1. Coding Across Multicodes and Time in CDMA Systems Employing MMSE Multiuser Detector

    Directory of Open Access Journals (Sweden)

    Park Jeongsoon

    2004-01-01

    Full Text Available When combining a multicode CDMA system with convolutional coding, two methods have been considered in the literature. In one method, coding is across time in each multicode channel while in the other the coding is across both multicodes and time. In this paper, a performance/complexity analysis of decoding metrics and trellis structures for the two schemes is carried out. It is shown that the latter scheme can exploit the multicode diversity inherent in convolutionally coded direct sequence code division multiple access (DS-CDMA systems which employ minimum mean squared error (MMSE multiuser detectors. In particular, when the MMSE detector provides sufficiently different signal-to-interference ratios (SIRs for the multicode channels, coding across multicodes and time can obtain significant performance gain over coding across time, with nearly the same decoding complexity.

  2. Detector Construction Management and Quality Control Establishing and Using a CRISTAL System

    CERN Document Server

    Le Goff, J M; Bazan, A; Bityukov, S I; Chevenier, G; Estrella, F; Kovács, Z; Le Flour, T; Lieunard, S; McClatchey, R; Murray, S; Organtini, G; Vialle, J P

    1998-01-01

    The CRISTAL (Cooperating Repositories and an Information System for Tracking Assembly Lifecycles) project is delivering a software system to facilitate the management of the engineering data collected at each stage of production of CMS. CRISTAL captures all the physical characteristics of CMS components as each sub-detector is tested and assembled. These data are retained for later use in areas such as detector slow control, calibration and maintenance. CRISTAL must, therefore, support different views onto its data dependent on the role of the user. These data viewpoints are investigated in this paper. In the recent past two CMS Notes have been written about CRISTAL. The first note, CMS 1996/003, detailed the requirements for CRISTAL, its relationship to other CMS software, its objectives and reviewed the technology on which it would be based. CMS 1997/104 explained some important design concepts on which CRISTAL is and showed how CRISTAL integrated the domains of product data man- agement and workflow manage...

  3. Asymmetric Data Acquisition System for an Endoscopic PET-US Detector

    CERN Document Server

    Zorraquino, Carlos; Rolo, Manuel; Silva, Jose C; Vecklans, Viesturs; Silva, Rui; Ortigao, Catarina; Neves, Jorge A; Tavernier, Stefaan; Guerra, Pedro; Varela, Joao

    2014-01-01

    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from Time-Of- Flight (TOF) Positron Emission Tomography (PET) and anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance Data Acquisition System (DAQ) able to control and readout data from two different detectors.

  4. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  5. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    Science.gov (United States)

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  6. Model-based detector and extraction of weak signal frequencies from chaotic data.

    Science.gov (United States)

    Zhou, Cangtao; Cai, Tianxing; Heng Lai, Choy; Wang, Xingang; Lai, Ying-Cheng

    2008-03-01

    Detecting a weak signal from chaotic time series is of general interest in science and engineering. In this work we introduce and investigate a signal detection algorithm for which chaos theory, nonlinear dynamical reconstruction techniques, neural networks, and time-frequency analysis are put together in a synergistic manner. By applying the scheme to numerical simulation and different experimental measurement data sets (Henon map, chaotic circuit, and NH(3) laser data sets), we demonstrate that weak signals hidden beneath the noise floor can be detected by using a model-based detector. Particularly, the signal frequencies can be extracted accurately in the time-frequency space. By comparing the model-based method with the standard denoising wavelet technique as well as supervised principal components analysis detector, we further show that the nonlinear dynamics and neural network-based approach performs better in extracting frequencies of weak signals hidden in chaotic time series.

  7. Search for Physics beyond the Standard Model with the ATLAS detector and the development of radiation detectors

    CERN Document Server

    Silver, Yiftah

    We are investigating a radiation detector based on plasma display panel technology, the principal component of plasma television displays. This Plasma Panel Sensor (PPS) technology is a variant of micro-pattern gas radiation detectors. Based on the properties of existing plasma display panels, we expect eventually to be able to build a sealed array of plasma discharge gas cells to detect ionizing radiation with fast rise time of less than 10ns and high spatial resolution using a pixel pitch of less than 100 micrometer. In this thesis I shall describe our program of testing plasma display panels as detectors, including simulations, design and the first laboratory and beam studies that demonstrate the detection of cosmic ray muons, beta rays and medium energy protons. The ATLAS detector is used to search for high-mass resonances, in particular heavy neutral gauge bosons (Z') and excited states of Kaluza-Klein γ/Z bosons decaying to an electron-positron pair or a muon-antimuon pair. Results are presented based ...

  8. The integrated cryogenic system for the atmospheric vertical interferometric detector on FY-4 satellite

    Science.gov (United States)

    Wu, Yinong; Liu, EnGuang; Jiang, Zhenhua; Yang, Baoyu; Mu, Yongbin

    2016-05-01

    The cryogenic system for the atmospheric vertical interferometric detector on FY-4 satellite includes a Stirling cryocooler, a radiant cooler, a cryogenic heat pipe and some flexible thermal links as well. These cryogenic elements were integrated together in order to decrease the background radiation and maximize the sensitivity with high efficiency and high reliability. This paper summarizes the cryogenic integration design, technical challenges, and the results of thermal and performance testing.

  9. A Prototype Scalable Readout System for Micro-pattern Gas Detectors

    CERN Document Server

    Zheng, Qi-Bin; Tian, Jing; Li, Cheng; Feng, Chang-Qing; An, Qi

    2016-01-01

    A scalable readout system (SRS) is designed to provide a general solution for different micro-pattern gas detectors. The system mainly consists of three kinds of modules: the ASIC card, the Adapter card and the Front-End Card (FEC). The ASIC cards, mounted with particular ASIC chips, are designed for receiving detector signals. The Adapter card is in charge of digitizing the output signals from several ASIC cards. The FEC, edged-mounted with the Adapter, has a FPGA-based reconfigurable logic and I/O interfaces, allowing users to choose various ASIC cards and Adapters for different types of detectors. The FEC transfers data through Gigabit Ethernet protocol realized by a TCP processor (SiTCP) IP core in field-programmable gate arrays (FPGA). The readout system can be tailored to specific sizes to adapt to the experiment scales and readout requirements. In this paper, two kinds of multi-channel ASIC chips, VA140 and AGET, are applied to verify the concept of this SRS architecture. Based on this VA140 or AGET SR...

  10. Recent Developments on the Silicon Drift Detector readout scheme for the ALICE Inner Tracking System

    CERN Document Server

    Mazza, G; Bonazzola, G C; Bonvicini, V; Cavagnino, D; Cerello, P G; De Remigis, P; Falchieri, D; Gabrielli, A; Gandolfi, E; Giubellino, P; Hernández, R; Masetti, M; Montaño-Zetina, L M; Nouais, D; Rashevsky, A; Rivetti, A; Tosello, F

    1999-01-01

    Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999Recent developments of the Silicon Drift Detector (SDD) readout system for the ALICE Experiment are presented. The foreseen readout system is based on 2 main units. The first unit consists of a low noise preamplifier, an analog memory which continuously samples the amplifier output, an A/D converter and a digital memory. When the trigger signal validates the analog data, the ADCs convert the samples into a digital form and store them into the digital memory. The second unit performs the zero suppression/data compression operations. In this paper the status of the design is presented, together with the test results of the A/D converter, the multi-event buffer and the compression unit prototype.Summary:In the Inner Tracker System (ITS) of the ALICE experiment the third and the fourth layer of the detectors are SDDs. These detectors provide the measurement of both the energy deposition and the bi-dimensional position of the track. In terms o...

  11. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    CERN Document Server

    Boek, J; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University ofWuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  12. Evaluations of the commercial spectrometer systems for safeguards applications using the germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vo, D.T.

    1998-12-31

    Safeguards applications require the best spectrometer systems with excellent resolution, stability, and throughput. Instruments must perform well in all the situations and environments. Data communication to the computer should be convenient, fast, and reliable. The software should have all the necessary tools and be ease to use. Portable systems should be small in size, lightweight, and have a long battery life. Nine commercially available spectrometer systems are tested with both the planar and coaxial germanium detectors. Considering the performance of the Digital Signal Processors (DSP), digital-based spectroscopy may be the future of gamma-ray spectroscopy.

  13. An automatic system for controlling the quality of straws installed in the ATLAS TRT detector

    CERN Document Server

    Golunov, A O; Gousakov, Yu V; Kekelidze, G D; Livinski, V V; Mouraviev, S V; Parzycki, S S; Peshekhonov, V D; Price, M J; Savenkov, A A

    2004-01-01

    This article describes an automatic system to control the quality of straws installed in the wheels of the end-cap Transition Radiation Tracker of the ATLAS experiment. The system tests both the straightness and the electrical insulation of the straws during installation. The testing time per straw is 9s; consequently it takes about 2h to measure one layer of straws. The off-line analysis takes 20s per straw. With this system defects can be immediately detected and corrected. This clearly influences the future performance of the detector.

  14. Monitor and control systems for the SLD Cherenkov Ring Imaging Detector

    Energy Technology Data Exchange (ETDEWEB)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Fernandez, F.; Hallewell, G.; Kawahara, H.; Korff, P.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Rabinowitz, L.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va' Vra, J.; Williams, S.; Whitaker, J.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; McHugh, S.; Mathys, L.; Morriso

    1989-10-01

    To help ensure the stable long-term operation of a Cherenkov Ring Detector at high efficiency, a comprehensive monitor and control system is being developed. This system will continuously monitor and maintain the correct operating temperatures, and will provide an on-line monitor and maintain the correct operating temperatures, and will provide an on-line monitor of the pressures, flows, mixing, and purity of the various fluids. In addition the velocities and trajectories of Cherenkov photoelectrons drifting within the imaging chambers will be measured using a pulsed uv lamp and a fiberoptic light injection system. 9 refs., 6 figs.

  15. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    Science.gov (United States)

    Biebel, O.; Braibant, S.; de Jong, S. J.; Hammarström, R.; Hilgers, R.; Honma, A. K.; Jovanovic, P.; Lauber, J. A.; Neal, H. A.

    1998-02-01

    The radiation monitoring and beam dump system of the OPAL silicon microvertex detector is described. This system was designed and implemented to measure the radiation dose over time scales varying from a millisecond to a year, and to induce a fast beam dump if the radiation exceeds a given threshold in dose and in dose rate within a very small time interval. The system uses reverse-biased silicon diodes as sensitive elements and good stability is achieved by AC coupling of the amplifiers to the sensors.

  16. A rope-net support system for the liquid scintillator detector for the SNO+ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bialek, A., E-mail: abialek@snolab.ca [University of Alberta, Edmonton (Canada); Chen, M. [Queen' s University, Kingston (Canada); Cleveland, B. [SNOLAB, Lively (Canada); Gorel, P.; Hallin, A. [University of Alberta, Edmonton (Canada); Harvey, P.J.; Heise, J. [Queen' s University, Kingston (Canada); Kraus, C. [Laurentian University, Sudbury (Canada); Krauss, C.B. [University of Alberta, Edmonton (Canada); Lawson, I. [SNOLAB, Lively (Canada); Ng, C.J.; Pinkney, B. [University of Alberta, Edmonton (Canada); Rogowsky, D.M. [Rogowsky Engineering Ltd, AECOM Canada Ltd (Canada); Sibley, L.; Soluk, R.; Soukup, J. [University of Alberta, Edmonton (Canada); Vázquez-Jáuregui, E. [SNOLAB, Lively (Canada); Laurentian University, Sudbury (Canada)

    2016-08-11

    The detector for the SNO+ experiment consists of 780 000 kg of liquid scintillator contained in an acrylic vessel that is surrounded by water. A mechanical system has been installed to counteract the 1.25 MN of buoyant force on the acrylic and prevent the vessel from moving. The system is a rope net, designed using a Finite Element Analysis to calculate the amount of stress on the acrylic induced by the ropes, hydrostatic pressures and gravity. A dedicated test was performed to measure strains in the acrylic arising from the complex geometry of the knots in the rope system. The ratio between measured and FEA calculated strains was 1.3.

  17. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV {sup 36}Ar + {sup 27}Al, {sup 112}Sn, {sup 124}Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the {sup 36}Ar + {sup 27}Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution.

  18. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV {sup 36}Ar + {sup 27}Al, {sup 112}Sn, {sup 124}Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the {sup 36}Ar + {sup 27}Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution.

  19. Modelling Railway Interlocking Systems

    DEFF Research Database (Denmark)

    Lindegaard, Morten Peter; Viuf, P.; Haxthausen, Anne Elisabeth

    2000-01-01

    In this report we present a model of interlocking systems, and describe how the model may be validated by simulation. Station topologies are modelled by graphs in which the nodes denote track segments, and the edges denote connectivity for train traÆc. Points and signals are modelled by annotatio...

  20. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm(-1)) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  1. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    Science.gov (United States)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  2. Expected measurement of the Z production rate with the CMS detector and simulation of the Tracker Laser Alignment System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Maarten

    2009-06-16

    The Large Hadron Collider is a two-ring, superconducting accelerator and collider which can provide both proton and heavy-ion beams. First collisions are foreseen for 2009. The Compact Muon System (CMS) detector will measure the particles created in the hadron collisions and can confirm the Standard Model by establishing the existence of the Higgs boson, but also search for new phenomena. In order to provide a robust and precise track reconstruction, which can already be used in the High-Level Trigger systems, the positions of the silicon sensors in the CMS tracker have to been known with an accuracy of O(100 {mu}m). Therefore the CMS tracker has been equipped with a dedicated alignment system. The Laser Alignment System (LAS) aligns the tracker subdetectors with respect to each other and can also monitor the stability of the sensor positions during data taking. This study describes the implementation of a realistic simulation of the LAS in the CMS software framework (CMSSW) as well as the analysis of the first data collected during the integration of one of the tracker endcaps. In the present study it has been found that the alignment of the endcaps is possible with an accuracy of approximately 76 {mu}m. These results are in agreement with independent measurements of the TEC geometry using cosmic muons or photogrammetry measurements. The accuracy of approximately 100 {mu}m needed for track pattern recognition and reconstruction can be assured by the Laser Alignment System as shown in this study. Accurate knowledge of the luminosity delivered by the LHC to the experiments is an essential ingredient for many physics studies. The present work uses the production of lepton pairs via the Drell-Yan mechanism to determine the integrated luminosity with the CMS detector. A Monte Carlo generator (MC rate at NLO) including next-to-leading order QCD diagrams has been used to generate Drell-Yan events decaying into two muons. After a full CMS detector simulation, the events

  3. Development of a multi-detector and a systematic imaging system on the AGLAE external beam

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, L., E-mail: laurent.pichon@culture.gouv.fr [Centre de recherche et de restauration des musées de France, C2RMF, Palais du Louvre – Porte des Lions, 14 Quai François Mitterrand, 75001 Paris (France); Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); Moignard, B.; Lemasson, Q.; Pacheco, C. [Centre de recherche et de restauration des musées de France, C2RMF, Palais du Louvre – Porte des Lions, 14 Quai François Mitterrand, 75001 Paris (France); Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); Walter, P. [Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); UPMC Univ Paris 06, CNRS-UMR 8220, Laboratoire d’archéologie moléculaire et structurale, LAMS, F-75005 Paris (France)

    2014-01-01

    The New AGLAE external beamline provides analytical data for the understanding of the structure of archaeological and artistic objects, their composition, properties, and changes over time. One of the objectives of this project is to design and set up a new non-invasive acquisition system increasing the quality of the X-ray spectra and reducing the beam current on sensitive materials from work of art. To that end, the surface and the number of PIXE detectors have been increased to implement a cluster of SDD detectors. This can also provide the possibility to accomplish large and/or fast maps on artifacts with a scanning of the beam on the sample. During the mapping, a multi-parameter system saves each event from X-ray, gamma and particle detectors, simultaneously with the X and Y positions of the beam on the sample. To process the data, different softwares have been developed or updated. A first example on a decorated medieval shard highlights the perspectives of the technique.

  4. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, S., E-mail: satoshi@fnal.gov

    2016-09-21

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature (−20 °C).

  5. Development and test of the CO2 evaporative cooling system for the LHCb UT Detector

    CERN Multimedia

    Coelli, Simone

    2016-01-01

    The upgrade of the LHCb detector, which will take place during the Long Shutdown 2 from mid 2018 to the end of 2019, will extend significantly the physics reach of the experiment by allowing it to run at higher instantaneous luminosity with increased trigger efficiency for a wide range of decay channels. The LHCb upgrade relies on two major changes. Firstly, the full read-out of the front-end electronics, currently limited by a Level-0 trigger to 1 MHz, will be replaced with a 40 MHz trigger system. Secondly, the upgraded LHCb detector will be designed to cope with an increase of the nominal operational luminosity by a factor five compared to the current detector. Compared to the current experiment several subsystems need to be partially rebuilt. Among these the 4 TT planes will be replaced by new high granularity silicon micro-strip planes with an improved coverage of the LHCb acceptance.The new system is called the Upstream Tracker. The radiation length of each UT plane should not exceed the value of 1 % X0...

  6. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Hasegawa, S.

    2016-09-01

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature (-20 °C).

  7. Image quality of a digital chest radiography system based on a selenium detector.

    Science.gov (United States)

    Neitzel, U; Maack, I; Günther-Kohfahl, S

    1994-04-01

    A digital chest radiography system has been developed, with a detector based on the photoelectric properties of amorphous selenium. The selenium layer is deposited on a cylindrical aluminium drum, large enough to cover the full field of view for chest imaging. The electrostatic charge image which is formed on the selenium surface after x-ray exposure is read out by electrometer probes using fast drum rotation. For a physical evaluation of the attainable image quality, the characteristic curve, the modulation transfer function, and the noise spectra were measured. From these measurements, the signal-to-noise properties of the detector in terms of detective quantum efficiency (DQE) and noise equivalent quanta (NEQ) were derived. The results show that the selenium-based detector has a wide dynamic range and a significantly better DQE than screen-film and storage phosphor systems for spatial frequencies below the Nyquist limit (2.7 lp/mm). As a consequence, the detectability of small, low-contrast details is considerably improved.

  8. Development of an ASIC for Si/CdTe detectors in a radioactive substance visualizing system

    Science.gov (United States)

    Harayama, Atsushi; Takeda, Shin`ichiro; Sato, Goro; Ikeda, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki

    2014-11-01

    We report on the recent development of a 64-channel analog front-end ASIC for a new gamma-ray imaging system designed to visualize radioactive substances. The imaging system employs a novel Compton camera which consists of silicon (Si) and cadmium telluride (CdTe) detectors. The ASIC is intended for the readout of pixel/pad detectors utilizing Si/CdTe as detector materials, and covers a dynamic range up to 1.4 MeV. The readout chip consists of 64 identical signal channels and was implemented with X-FAB 0.35 μm CMOS technology. Each channel contains a charge-sensitive amplifier, a pole-zero cancellation circuit, a low-pass filter, a comparator, and a sample-hold circuit, along with a Wilkinson-type A-to-D converter. We observed an equivalent noise charge of 500 e- and a noise slope of 5 e-/pF (r.m.s.) with a power consumption of 2.1 mW per channel. The chip works well when connected to Schottky CdTe diodes, and delivers spectra with good energy resolution, such as 12 keV (FWHM) at 662 keV and 24 keV (FWHM) at 1.33 MeV.

  9. Development of an ASIC for Si/CdTe detectors in a radioactive substance visualizing system

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, Atsushi, E-mail: harayama@astro.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 229-8510 (Japan); Takeda, Shin' ichiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 229-8510 (Japan); Sato, Goro [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 229-8510 (Japan); Ikeda, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 229-8510 (Japan)

    2014-11-21

    We report on the recent development of a 64-channel analog front-end ASIC for a new gamma-ray imaging system designed to visualize radioactive substances. The imaging system employs a novel Compton camera which consists of silicon (Si) and cadmium telluride (CdTe) detectors. The ASIC is intended for the readout of pixel/pad detectors utilizing Si/CdTe as detector materials, and covers a dynamic range up to 1.4 MeV. The readout chip consists of 64 identical signal channels and was implemented with X-FAB 0.35μm CMOS technology. Each channel contains a charge-sensitive amplifier, a pole-zero cancellation circuit, a low-pass filter, a comparator, and a sample-hold circuit, along with a Wilkinson-type A-to-D converter. We observed an equivalent noise charge of ∼500 e{sup −} and a noise slope of ∼5 e{sup −}/pF (r.m.s.) with a power consumption of 2.1 mW per channel. The chip works well when connected to Schottky CdTe diodes, and delivers spectra with good energy resolution, such as ∼12 keV (FWHM) at 662 keV and ∼24 keV (FWHM) at 1.33 MeV.

  10. A new analogue sampling readout system for the COMPASS RICH-1 detector

    CERN Document Server

    Abbon, P; Dafni, T; Delagnes, E; Deschamps, H; Gerassimov, S; Ketzer, B; Konorov, I; Kravtchuk, N; Kunne, Fabienne; Magnon, A; Neyret, D; Panebianco, S; Paul, S; Rebourgeard, P

    2008-01-01

    A new electronic readout for CsI-coated multiwire proportional chambers (MWPC), used as photon detectors in the COMPASS ring imaging Cherenkov (RICH) detector, is described. A prototype system comprising more than 5000 channels has been built and tested in high-intensity beam conditions. It is based on the APV25-S1 analogue sampling chip, and replaces the GASSIPLEX chip readout used previously. The APV25 chip, although originally designed for Silicon microstrip detectors, is shown to perform well even with “slow” signals from an MWPC, maintaining a signal-to-noise ratio (SNR) of 9. For every trigger the system reads out three consecutive amplitudes in time, thus allowing to extract information on both the signal amplitude and its timing. This information is used to reduce pile-up events in a high-rate environment. Prototype tests of the new readout electronics on a central RICH photocathode in nominal COMPASS beam conditions showed that the effective time window is reduced from more than for the GASSIPLEX...

  11. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: eiichisato@hotmail.co [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Abderyim, Purkhet [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Enomoto, Toshiyuki; Watanabe, Manabu [The 3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Hitomi, Keitaro [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, 35-1 Yagiyama Kasumi-cho, Taihaku-ku, Sendai 982-8577 (Japan); Takahasi, Kiyomi; Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505 (Japan); Ogawae, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo 985-8537 (Japan)

    2010-07-21

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  12. Alignment of the inner detector and of the muon system of the ATLAS experiment

    CERN Document Server

    Potrap, I; The ATLAS collaboration

    2010-01-01

    Alignment of the ATLAS inner detector tracking system Large Hadron Collider (LHC) at CERN is the world's largest particle accelerator. After a successful start run at 900 GeV in 2009, during 2010, LHC will collide two proton beams at an unprecedented center of mass energy of 7 TeV. ATLAS is one of the four multipurpose experiments that will record the products of the LHC proton-proton collisions. ATLAS is equipped, along others, with a charged particle tracking system built on two different technologies: silicon sensors and drift-tube based detectors constituting the ATLAS Inner Detector (ID). In order to achieve its scientific goals, ATLAS has quite exigent tracking performance requirements. Thus, the goal of the alignment is set such that the limited knowledge of the sensors location should not deteriorate the resolution of the track parameters by more than 20% with respect to the intrinsic tracker resolution. In this manner the required precision for the alignment of the silicon sensors in its most sensiti...

  13. A Multiuser Detector Based on Artificial Bee Colony Algorithm for DS-UWB Systems

    Directory of Open Access Journals (Sweden)

    Zhendong Yin

    2013-01-01

    Full Text Available Artificial Bee Colony (ABC algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD is proposed and implemented in direct-sequence ultra-wideband (DS-UWB systems under the additive white Gaussian noise (AWGN channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity.

  14. A multiuser detector based on artificial bee colony algorithm for DS-UWB systems.

    Science.gov (United States)

    Yin, Zhendong; Liu, Xiaohui; Wu, Zhilu

    2013-01-01

    Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity.

  15. SiPMs characterization and selection for the DUNE far detector photon detection system

    CERN Document Server

    Sun, Yujing

    2015-01-01

    The Deep Underground Neutrino Experiment (DUNE) together with the Long Baseline Neutrino Facility (LBNF) hosted at the Fermilab will provide a unique, world-leading program for the exploration of key questions at the forefront of neutrino physics and astrophysics. CP violation in neutrino flavor mixing is one of its most important potential discoveries. Additionally, the experiment will determine the neutrino mass hierarchy and precisely measure the neutrino mixing parameters which may potentially reveal new fundamental symmetries of nature. Moreover, the DUNE is also designed for the observation of nucleon decay and supernova burst neutrinos. The photon detection (PD) system in the DUNE far detector provides trigger for cosmic backgrounds, enhances supernova burst trigger efficiency and improves the energy resolution of the detector. The DUNE adopts the technology of liquid argon time projection chamber (LArTPC) that requires the PD sensors, silicon photomultipliers (SiPM), to be carefully chosen to not only...

  16. Two-level system noise reduction for Microwave Kinetic Inductance Detectors

    CERN Document Server

    Noroozian, Omid; Zmuidzinas, Jonas; LeDuc, Henry G; Mazin, Benjamin A

    2009-01-01

    Noise performance is one of the most crucial aspects of any detector. Superconducting Microwave Kinetic Inductance Detectors (MKIDs) have an "excess" frequency noise that shows up as a small time dependent jitter of the resonance frequency characterized by the frequency noise power spectrum measured in units of Hz^2/Hz. Recent studies have shown that this noise almost certainly originates from a surface layer of two-level system (TLS) defects on the metallization or substrate. Fluctuation of these TLSs introduces noise in the resonator due to coupling of the TLS electric dipole moments to the resonator's electric field. Motivated by a semi-empirical quantitative theory of this noise mechanism, we have designed and tested new resonator geometries in which the high-field "capacitive" portion of the CPW resonator is replaced by an interdigitated capacitor (IDC) structure with 10 - 20 micron electrode spacing, as compared to the 2 micron spacing used for our more conventional CPW resonators. Measurements show tha...

  17. HEPTech Academia – Industry Matching Event on Control Systems for Accelerators and Detectors

    CERN Multimedia

    Anastasios Charitonidis (FP/KT), on behalf of the organizing committee

    2013-01-01

    The HEPTech AIME (Academia – Industry Matching Event) on Controls for accelerators and detectors will take place from 2 to 3 December in Athens, Greece.   The HEPTech network invites you to Demokritos NCSR to participate in an event that aims to bring together Academia and Industry to share ideas and potential applications of Controls Technology. The event will provide an overview of current Controls Systems for large scale projects including the LHC, the CMS and ATLAS detectors, medical accelerator facilities and contributions from companies active in these fields. CERN Computer Centre. The programme will also address some of the challenges faced by future High Energy Physics projects in the controls area and provide a glimpse into the future requirements of research infrastructures such as the European Spallation Source (ESS), and the Extreme Light Infrastructure (ELI), while exploring different possible approaches to the commercialisation of controls technology. The event ...

  18. Advances in InGaAs/InP single-photon detector systems for quantum communication

    CERN Document Server

    Zhang, Jun; Zbinden, Hugo; Pan, Jian-Wei

    2015-01-01

    Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized.

  19. Background model of NaI(Tl) detectors for the ANAIS Dark Matter Project

    CERN Document Server

    Amare, J; Cuesta, C; Garcia, E; Martinez, M; Olivan, M A; Ortigoza, Y; de Solorzano, A Ortiz; Pobes, C; Puimedon, J; Sarsa, M L; Villar, J A; Villar, P

    2015-01-01

    A thorough understanding of the background sources is mandatory in any experiment searching for rare events. The ANAIS (Annual Modulation with NaI(Tl) Scintillators) experiment aims at the confirmation of the DAMA/LIBRA signal at the Canfranc Underground Laboratory (LSC). Two NaI(Tl) crystals of 12.5 kg each produced by Alpha Spectra have been taking data since December 2012. The complete background model of these detectors and more precisely in the region of interest will be described. Preliminary background analysis of a new 12.5 kg crystal received at Canfranc in March 2015 will be presented too. Finally, the power of anticoincidence rejection in the region of interest has been analyzed in a 4x 5 12.5 kg detector matrix.

  20. Signals induced by charge-trapping in EDELWEISS FID detectors: analytical modeling and applications

    CERN Document Server

    Arnaud, Q; Augier, C; Benoît, A; Bergé, L; Billard, J; Blümer, J; de Boissière, T; Broniatowski, A; Camus, P; Cazes, A; Chapellier, M; Charlieux, F; Dumoulin, L; Eitel, K; Foerster, N; Fourches, N; Gascon, J; Giuliani, A; Gros, M; Hehn, L; Heuermann, G; Juillard, A; De Jésus, M; Kleifges, M; Kozlov, V; Kraus, H; Kudryavtsev, V A; Kéfélian, C; Le-Sueur, H; Lin, J; Marnieros, S; Navick, X -F; Nones, C; Olivieri, E; Pari, P; Paul, B; Piro, M -C; Poda, D; Queguiner, E; Rozov, S; Sanglard, V; Schmidt, B; Scorza, S; Siebenborn, B; Tcherniakhovski, D; Vagneron, L; Weber, M; Yakushev, E

    2016-01-01

    The EDELWEISS-III direct dark matter search experiment uses cryogenic HP-Ge detectors Fully covered with Inter-Digitized electrodes (FID). They are operated at low fields ($<1\\;\\mathrm{V/cm}$), and as a consequence charge-carrier trapping significantly affects both the ionization and heat energy measurements. This paper describes an analytical model of the signals induced by trapped charges in FID detectors based on the Shockley-Ramo theorem. It is used to demonstrate that veto electrodes, initially designed for the sole purpose of surface event rejection, can be used to provide a sensitivity to the depth of the energy deposits, characterize the trapping in the crystals, perform heat and ionization energy corrections and improve the ionization baseline resolutions. These procedures are applied successfully to actual data.

  1. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    Science.gov (United States)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  2. Modeling and Analysis of Hybrid Pixel Detector Deficiencies for Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  3. Detector evaluation of a prototype amorphous selenium-based full field digital mammography system

    Science.gov (United States)

    Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.

    2005-04-01

    This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.

  4. Digital signal processing for CdTe detectors using VXIbus data collection systems

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Daiji; Takahashi, Hiroyuki; Kurahashi, Tomohiko; Iguchi, Tetsuo; Nakazawa, Masaharu

    1996-07-01

    Recently fast signal digitizing technique has been developed, and signal waveforms with very short time periods can be obtained. In this paper, we analyzed each measured pulse which was digitized by an apparatus of this kind, and tried to improve an energy resolution of a CdTe semiconductor detector. The result of the energy resolution for {sup 137}Cs 662 keV photopeak was 13 keV. Also, we developed a fast data collection system based on VXIbus standard, and the counting rate on this system was obtained about 50 counts per second. (author)

  5. Study for a Design of Magnet System for the SPD Detector NICA LHEP JINR

    Science.gov (United States)

    Yudin, Ivan P.

    2016-02-01

    The choice of magnet system for the Spin Physics Detector of the NICA Collider of LHEP JINR is given. The inverse problem of magnetostatics is solved for a magnetic field of 0.5 tesla in the aperture a) ɸ 3 m x 5 m and b) ɸ 3 m x 6 m. We also discuss the design of the magnet with a field of 0.3 T. The paper presents the results obtained for the "warm" and SC versions of the magnetic system: currents (ampere-turns), the geometry (size) of the coil and the iron yoke, weight (on the whole and the individual elements), the magnet transportation and assembly.

  6. Standard Model Higgs boson searches with the ATLAS detector at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Aleandro Nisati; on behalf of the ATLAS Collaboration

    2012-10-01

    The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at $\\sqrt{s} = 7$ TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production of a Higgs boson is excluded at 95% Confidence Level for the mass regions 144–232, 256–282 and 296–466 GeV.

  7. A model-based, multichannel, real-time capable sawtooth crash detector

    Science.gov (United States)

    van den Brand, H.; de Baar, M. R.; van Berkel, M.; Blanken, T. C.; Felici, F.; Westerhof, E.; Willensdorfer, M.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2016-07-01

    Control of the time between sawtooth crashes, necessary for ITER and DEMO, requires real-time detection of the moment of the sawtooth crash. In this paper, estimation of sawtooth crash times is demonstrated using the model-based interacting multiple model (IMM) estimator, based on simplified models for the sawtooth crash. In contrast to previous detectors, this detector uses the spatial extent of the sawtooth crash as detection characteristic. The IMM estimator is tuned and applied to multiple ECE channels at once. A model for the sawtooth crash is introduced, which is used in the IMM algorithm. The IMM algorithm is applied to seven datasets from the ASDEX Upgrade tokamak. Five crash models with different mixing radii are used. All sawtooth crashes that have been identified beforehand by visual inspection of the data, are detected by the algorithm. A few additional detections are made, which upon closer inspection are seen to be sawtooth crashes, which show a partial reconnection. A closer inspection of the detected normal crashes shows that about 42% are not well fitted by any of the full reconnection models and show some characteristics of a partial reconnection. In some case, the measurement time is during the sawtooth crashes, which also results in an incorrect estimate of the mixing radius. For data provided at a sampling rate of 1 kHz, the run time of the IMM estimator is below 1 ms, thereby fulfilling real-time requirements.

  8. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector

    Science.gov (United States)

    Ovejero, M. C.; Pérez Vega-Leal, A.; Gallardo, M. I.; Espino, J. M.; Selva, A.; Cortés-Giraldo, M. A.; Arráns, R.

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  9. New micropattern gas detectors for the endcap muon system of the CMS experiment at the high-luminosity LHC

    CERN Document Server

    Calabria, Cesare

    2016-01-01

    For the era of the high-luminosity LHC, new detectors are planned to enhance the performance of the endcap muon system of the CMS detector. We report on two types of these detectors that will be installed during the third long shutdown (LS3) of the LHC. In the pseudo-rapidity region $1.6 < \\lvert\\eta\\rvert < 2.4$, new triple-foil large-area Gaseous Electron Multiplier (GEM) detectors will be installed in the third of five detector stations in each endcap, the first station being closest to the interaction point. These GEM detectors are in addition to ones that will have already been installed in the second station during LS2. We present a design for the third station detectors that must cover a larger geometrical area than those in the second station, while maintaining good performance for efficiency and spatial resolution. A new innermost (first) detector station will be installed in the endcaps to extend the range of muon identification up to about $ \\lvert\\eta\\rvert = 3.0$. We describe the geometric...

  10. New micropattern gas detectors for the endcap muon system of the CMS experiment at the high-luminosity LHC

    CERN Document Server

    Calabria, Cesare

    2016-01-01

    For the era of the high-luminosity LHC, new detectors are planned to enhance the performance of the endcap muon system of the CMS detector. We report on two types of these detectors that will be installed during the third long shutdown (LS3) of the LHC. In the pseudo-rapidity region $1.6 < \\lvert\\eta\\rvert < 2.4$, new triple-foil large-area Gaseous Electron Multiplier (GEM) detectors will be installed in the third of five detector stations in each endcap, the first station being closest to the interaction point. These GEM detectors are in addition to ones that will have already been installed in the second station during LS2. We present a design for the third station detectors that must cover a larger geometrical area than those in the second station, while maintaining good performance for efficiency and spatial resolution. A new innermost (first) detector station will be installed in the endcaps to extend the range of muon identification up to about $ \\lvert\\eta\\rvert = 3.0$. We describe the geometric...

  11. Development of a DAQ system for a plasma display panel-based X-ray detector (PXD)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hakjae [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of); Research Institute of Health Science, Korea University, Seoul (Korea, Republic of); Jung, Young-Jun [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of); Eom, Sangheum [Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si (Korea, Republic of); Kang, Jungwon [Department of Electronics and Electrical Engineering, Dankook University, Yongin, Gyeonggi (Korea, Republic of); Lee, Kisung, E-mail: kisung@korea.ac.kr [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2015-06-01

    Recently, a novel plasma display panel (PDP)-based X-ray detector (PXD) was developed. The goal of this study is to develop a data acquisition system for use with the PXD as an imaging detector. Since the prototype detector does not have any barrier ribs or a switching device in a detector pixel, a novel pixelation scheme—the line-scan method—is developed for this new detector. To implement line scanning, a multichannel high-voltage switching circuit and a multichannel charge-acquisition circuit are developed. These two circuits are controlled by an FPGA-based digital signal processing board, from which the information about the charge and position of each pixel can be sent to a PC. FPGA-based baseline compensation and switching noise rejection algorithms are used to improve the signal-to-noise ratio (SNR). The characteristic curve of the entire PXD system is acquired, and the correlation coefficients between the X-ray dose, and the signal intensity and the SNR were determined to be approximately 0.99 and 52.9, respectively. - Highlights: • We developed a data acquisition circuit for a novel X-ray imaging detector. • Line scan, noise rejection, and data transmission methods have been implemented by the FPGA. • The linearity and SNR of the proposed detector system have been measured quantitatively.

  12. Optimization, Synchronization, Calibration and Diagnostic of the RPC PAC Muon Trigger System for the CMS detector

    CERN Document Server

    Bunkowski, Karol

    2009-01-01

    The Compact Muon Solenoid is one of the four experiments that will analyse the results of the collisions of the protons accelerated by the Large Hadron Collider (LHC). The collisions of proton bunches occur in the middle of the CMS detector every 25 ns, i.e. with a frequency of 40 MHz. Such a high collision frequency is needed because the probability of interesting processes, which we hope to discover at the LHC (such as production of Higgs bosons or supersymmetric particles) is very small. The objects that are the results of the proton-proton collisions are detected and measured by the CMS detector. Out of each bunch crossing the CMS produces about 1 MB of data; 40 millions of bunch collisions per second give the data stream of 40 terabytes (1013) per second. Such a stream of data is practically not possible to record on mass storage, therefore the first stage of the analysis of the detector data is performed in real time by the dedicated trigger system. Its task is to select potentially interesting events (...

  13. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  14. Optimization of the NSCL Digital Data Acquisition System For Use With Fast Scintillator Detectors

    Science.gov (United States)

    Prokop, Christopher; Liddick, Sean; Larson, Nicole; Suchyta, Scott; Tompkins, Jeromy

    2013-10-01

    The Digital Data Acquisition System (DDAS) at the National Superconducting Cyclotron Laboratory is composed of several XIA Pixie-16 modules utilizing 12-bit digitizers sampling at 100 Mega-Samples-Per-Second. DDAS has been applied to fast organic and inorganic scintillator detectors intended for level lifetime and neutron time-of-flight studies, for which the time resolution is critical. Simultaneous high-resolution time and energy determination using online digital CFD and trapezoidal filtering algorithms is non-intuitive due to the short characteristic rise and decay times of the signals with respect to the sampling time of the digitizers. A new technique has been developed to identify the optimum filter parameters to maximize the time and energy resolution of each detector signal in an offline analysis. The parameters were subsequently verified online and have resulted in a 30% improvement in the measured time resolution between two LaBr3 detectors. Additional results and applications of the technique will be presented.

  15. Optimization, Synchronization, Calibration and Diagnostic of the RPC PAC Muon Trigger System for the CMS detector

    CERN Document Server

    Bunkowski, Karol

    2009-01-01

    The Compact Muon Solenoid is one of the four experiments that will analyse the results of the collisions of the protons accelerated by the Large Hadron Collider (LHC). The collisions of proton bunches occur in the middle of the CMS detector every 25 ns, i.e. with a frequency of 40 MHz. Such a high collision frequency is needed because the probability of interesting processes, which we hope to discover at the LHC (such as production of Higgs bosons or supersymmetric particles) is very small. The objects that are the results of the proton-proton collisions are detected and measured by the CMS detector. Out of each bunch crossing the CMS produces about 1 MB of data; 40 millions of bunch collisions per second give the data stream of 40 terabytes (1013) per second. Such a stream of data is practically not possible to record on mass storage, therefore the first stage of the analysis of the detector data is performed in real time by the dedicated trigger system. Its task is to select potentially interesting events (...

  16. VLSI architecture of a K-best detector for MIMO-OFDM wireless communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Jian Haifang; Shi Yin, E-mail: jhf@semi.ac.c [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-07-15

    The K-best detector is considered as a promising technique in the MIMO-OFDM detection because of its good performance and low complexity. In this paper, a new K-best VLSI architecture is presented. In the proposed architecture, the metric computation units (MCUs) expand each surviving path only to its partial branches, based on the novel expansion scheme, which can predetermine the branches' ascending order by their local distances. Then a distributed sorter sorts out the new K surviving paths from the expanded branches in pipelines. Compared to the conventional K-best scheme, the proposed architecture can approximately reduce fundamental operations by 50% and 75% for the 16-QAM and the 64-QAM cases, respectively, and, consequently, lower the demand on the hardware resource significantly. Simulation results prove that the proposed architecture can achieve a performance very similar to conventional K-best detectors. Hence, it is an efficient solution to the K-best detector's VLSI implementation for high-throughput MIMO-OFDM systems.

  17. Sci-Fri AM: Imaging - 03: Temperature dependence of a SiPM detector for an MR compatible PET system.

    Science.gov (United States)

    Goertzen, A L; Zhang, X; Liu, C-Y; Kozlowski, P; Retière, F; Ryner, L; Sossi, V; Stortz, G; Thompson, C J

    2012-07-01

    Silicon photomultiplier (SiPM) detectors are rapidly becoming the detector of choice for research and development of new detectors for positron emission tomography (PET) due to their combination of high gain, fast timing, compact form factor and ability to function in a magnetic field. We are investigating using SiPM based detectors in a compact PET system designed to be inserted into a 7T animal MRI system and enable simultaneous PET/MRI imaging. In order to understand the level of thermal stability required for this PET system, we examined the stability of a prototype SiPM detector vs. temperature. A detector was constructed using a SensL SPMArray4 SiPM array coupled to a LYSO scintillator crystal array. The temperature of the detector was varied between 23 and 60°C in 5°C steps. At each temperature setting data were collected to characterize the detector flood histogram, photopeak amplitude and energy resolution at 511 keV, timing resolution and signal arrival time. While the flood image showed no noticeable changes with temperature, the 511 keV photopeak amplitude showed a linear decrease of 1.5%/°C and the energy resolution degraded by 0.08%/°C. The timing resolution degraded by 1.5 ns, from 3.5 ns to 5 ns when the temperature changed from 23 to 60°C. Over this temperature range there was a shift in the signal arrival time of approximately 3 ns. These results demonstrate that the detector can be operated over a wide range of temperature, giving a large degree of flexibility in choosing an operating temperature set-point for our PET system. © 2012 American Association of Physicists in Medicine.

  18. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    Energy Technology Data Exchange (ETDEWEB)

    Benke, Roland R. (Helotes, TX); Kearfott, Kimberlee J. (Ann Arbor, MI); McGregor, Douglas S. (Ann Arbor, MI)

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having

  19. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  20. Performance analysis of MIMO FSO systems with radial array beams and finite sized detectors

    Science.gov (United States)

    Gökçe, Muhsin C.; Kamacıoǧlu, Canan; Uysal, Murat; Baykal, Yahya

    2014-10-01

    Multiple-input multiple-output (MIMO) systems are employed in free space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, we consider a MIMO FSO system with practical transmitter and receiver configurations that consists of a radial laser array with Gaussian beams and finite sized detectors. We formulate the average received intensity and the power scinitillation as a function of the receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens-Fresnel principle. Then, integrations over the finite sized multiple detectors are performed and the effect of the receiver aperture averaging is quantified. We further derive an outage probability expression of this MIMO system in the presence of turbulence-induced fading channels. Using the derived expressions, we demonstrate the effect of several practical system parameters such as the ring radius, the number of array beamlets, the source size, the link length, structure constant and the receiver aperture radius on the system performance.