WorldWideScience

Sample records for model aquifer sediment

  1. Similar sediment provenance of low and high arsenic aquifers in Bangladesh

    Science.gov (United States)

    Zheng, Y.; Yang, Q.; Li, S.; Hemming, S. R.; Zhang, Y.; Rasbury, T.; Hemming, G.

    2017-12-01

    Geogenic arsenic (As) in drinking water, especially in groundwater, is estimated to have affected the health of over 100 million people worldwide, with nearly half of the total at risk population in Bangladesh. Sluggish flow and reducing biogeochemical environment in sedimentary aquifers have been shown as the primary controls for the release of As from sediment to the shallower groundwater in the Holocene aquifer. In contrast, deeper groundwater in the Pleistocene aquifer is depleted in groundwater As and sediment-extractable As. This study assesses the origin of the sediment in two aquifers of Bangladesh that contain distinctly different As levels to ascertain whether the source of the sediment is a factor in this difference through measurements of detrital mica Ar-Ar age, detrital zircon U-Pb age, as well as sediment silicate Sr and Nd isotopes. Whole rock geochemical data were also used to illuminate the extent of chemical weathering. Detrital mica 40Ar/39Ar cooling ages and detrital zircon U-Pb ages show no statistical difference between high-As Holocene sediment and low-As Pleistocene sediment, but suggest an aquifer sediment source of both the Brahmaputra and the Ganges rivers. Silicate 87Sr/86Sr and 143Nd/144Nd further depict a major sediment source from the Brahmaputra river, which is supported by a two end member mixing model using 87Sr/86Sr and Sr concentrations. Pleistocene and Holocene sediments show little difference in weathering of mobile elements including As, while coarser sediments and a longer history of the Pleistocene aquifer suggest that sorting and flushing play more important roles in regulating the contrast of As occurrence between these two aquifers.

  2. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments

    Science.gov (United States)

    Davis, J.A.; Meece, D.E.; Kohler, M.; Curtis, G.P.

    2004-01-01

    Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 ?? 10-8 to 1 ?? 10-5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of

  3. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.

    Science.gov (United States)

    Ziegler, Brady A; Schreiber, Madeline E; Cozzarelli, Isabelle M

    2017-09-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011-2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich "iron curtain," associated with the anoxic-suboxic transition zone, migrated 30m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume

    Science.gov (United States)

    Ziegler, Brady A.; Schreiber, Madeline E.; Cozzarelli, Isabelle M.

    2017-01-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011–2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich “iron curtain,” associated with the anoxic-suboxic transition zone, migrated 30 m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter.

  5. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    Science.gov (United States)

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  6. Long-distance electron transfer by cable bacteria in aquifer sediments

    DEFF Research Database (Denmark)

    Müller, Hubert; Bosch, Julian; Griebler, Christian

    2016-01-01

    recycling of sulfate by electron transfer over 1–2-cm distance. Sediments were taken from a hydrocarbon-contaminated aquifer, amended with iron sulfide and saturated with water, leaving the sediment surface exposed to air. Steep geochemical gradients developed in the upper 3 cm, showing a spatial separation...... recently been discovered in marine sediments to couple spatially separated redox half reactions over centimeter scales. Here we provide primary evidence that such sulfur-oxidizing cable bacteria can also be found at oxic–anoxic interfaces in aquifer sediments, where they provide a means for the direct...

  7. Characterization of the sediments overlying the Floridan aquifer system in Alachua County, Florida

    OpenAIRE

    Green, Richard; Duncan, Joel; Seal, Thomas; Weinberg, J. Michael; Rupert, Frank

    1989-01-01

    The primary purpose of this project is to attempt to improve the existing hydrogeologic information through lithologic and hydrogeologic characterizations of the sediments overlying the Floridan aquifer system in Alachua County. These sediments locally comprise both the intermediate aquifer system and associated confining beds and the surficial aquifer system. (PDF has 119 pages.)

  8. Sediment distribution and hydrologic conditions of the Potomac aquifer in Virginia and parts of Maryland and North Carolina

    Science.gov (United States)

    McFarland, Randolph E.

    2013-01-01

    hydrologic function have not been well understood. Water-supply planning and development efforts have been hampered, and interpretations of regulatory criteria for allowable water-level declines have been ambiguous. An investigation undertaken during 2010–11 by the U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality, provides a comprehensive regional description of the spatial distribution of Potomac aquifer sediments and their relation to hydrologic conditions. Altitudes and thicknesses of 2,725 vertical sediment intervals represent the spatial distribution of Potomac aquifer sediments in the Virginia Coastal Plain and adjacent parts of Maryland and North Carolina. Sediment intervals are designated as either dominantly coarse or fine grained and were determined by interpretation of geophysical logs and ancillary information from 456 boreholes. Sediment-interval and borehole summary statistical data indicate regional trends in sediment lithology and stratigraphic continuity, upon which three structurally based and hydrologically distinct sediment depositional subareas are designated. Broad patterns of sediment deposition over time are inferred from published sediment pollen-age data. Discrepancies in previously drawn hydrostratigraphic relations between southeastern Virginia and northeastern North Carolina are partly resolved based on borehole geophysical logs and a recently documented geologic map and corehole. A conceptual model theorizes the depositional history of the sediments and geologically accounts for their distribution. Documented pumping tests of the Potomac aquifer at 197 locations produced 336 values of transmissivity and 127 values of storativity. Based on effective aquifer thicknesses, 296 values of sediment hydraulic conductivity and 113 values of sediment specific storage are calculated. Vertical hydraulic gradients are calculated from 9,479 pairs of water levels measured between November 17, 1953, and October 4

  9. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  10. Reactivity of Organic Matter and other Reductants in Aquifer Sediments

    NARCIS (Netherlands)

    Hartog, N.

    2003-01-01

    The molecular composition and the carbon isotope signature of sedimentary organic matter (SOM) and indicate that SOM is predominantly derived from higher land plants in sediments of both terrestrial as marine origins. The reactivity of SOM in the aquifer sediments studied is determined by the extent

  11. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater.

    Science.gov (United States)

    Li, Yuan; Guo, Huaming; Hao, Chunbo

    2014-12-01

    Indigenous microbes play crucial roles in arsenic mobilization in high arsenic groundwater systems. Databases concerning the presence and the activity of microbial communities are very useful in evaluating the potential of microbe-mediated arsenic mobilization in shallow aquifers hosting high arsenic groundwater. This study characterized microbial communities in groundwaters at different depths with different arsenic concentrations by DGGE and one sediment by 16S rRNA gene clone library, and evaluated arsenic mobilization in microcosm batches with the presence of indigenous bacteria. DGGE fingerprints revealed that the community structure changed substantially with depth at the same location. It indicated that a relatively higher bacterial diversity was present in the groundwater sample with lower arsenic concentration. Sequence analysis of 16S rRNA gene demonstrated that the sediment bacteria mainly belonged to Pseudomonas, Dietzia and Rhodococcus, which have been widely found in aquifer systems. Additionally, NO3(-)-reducing bacteria Pseudomonas sp. was the largest group, followed by Fe(III)-reducing, SO4(2-)-reducing and As(V)-reducing bacteria in the sediment sample. These anaerobic bacteria used the specific oxyanions as electron acceptor and played a significant role in reductive dissolution of Fe oxide minerals, reduction of As(V), and release of arsenic from sediments into groundwater. Microcosm experiments, using intact aquifer sediments, showed that arsenic release and Fe(III) reduction were microbially mediated in the presence of indigenous bacteria. High arsenic concentration was also observed in the batch without amendment of organic carbon, demonstrating that the natural organic matter in sediments was the potential electron donor for microbially mediated arsenic release from these aquifer sediments.

  12. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.

    Science.gov (United States)

    Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K

    2008-07-29

    This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.

  13. Predicting the denitrification capacity of sandy aquifers from shorter-term incubation experiments and sediment properties

    Directory of Open Access Journals (Sweden)

    W. Eschenbach

    2013-02-01

    Full Text Available Knowledge about the spatial variability of denitrification rates and the lifetime of denitrification in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, regression models were derived to estimate the measured cumulative denitrification of aquifer sediments after one year of incubation from initial denitrification rates and several sediment parameters, namely total sulphur, total organic carbon, extractable sulphate, extractable dissolved organic carbon, hot water soluble organic carbon and potassium permanganate labile organic carbon.

    For this purpose, we incubated aquifer material from two sandy Pleistocene aquifers in Northern Germany under anaerobic conditions in the laboratory using the 15N tracer technique. The measured amount of denitrification ranged from 0.19 to 56.2 mg N kg−1 yr−1. The laboratory incubations exhibited high differences between non-sulphidic and sulphidic aquifer material in both aquifers with respect to all investigated sediment parameters. Denitrification rates and the estimated lifetime of denitrification were higher in the sulphidic samples. For these samples, the cumulative denitrification measured during one year of incubation (Dcum(365 exhibited distinct linear regressions with the stock of reduced compounds in the investigated aquifer samples. Dcum(365 was predictable from sediment variables within a range of uncertainty of 0.5 to 2 (calculated Dcum(365/measured Dcum(365 for aquifer material with a Dcum(365 > 20 mg N kg−1 yr−1. Predictions were poor for samples with lower Dcum(365, such as samples from the NO3 bearing groundwater zone, which includes the non-sulphidic samples, from the upper part of both aquifers where denitrification is not sufficient to

  14. Potentially bioavailable natural organic carbon and hydrolyzable amino acids in aquifer sediments

    Science.gov (United States)

    Thomas, Lashun K.; Widdowson, Mark A.; Novak, John T.; Chapelle, Francis H.; Benner, Ronald; Kaiser, Karl

    2012-01-01

    This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic -carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene--contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.

  15. Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: Effects of sediment-water interactions, sediment burial age and groundwater residence time

    Science.gov (United States)

    Sø, Helle Ugilt; Postma, Dieke; , Mai Lan, Vi; Pham, Thi Kim Trang; Kazmierczak, Jolanta; Dao, Viet Nga; Pi, Kunfu; Koch, Christian Bender; Pham, Hung Viet; Jakobsen, Rasmus

    2018-03-01

    Water-sediment interactions were investigated in arsenic contaminated Holocene aquifers of the Red River floodplain, Vietnam, in order to elucidate the origin of the spatial variability in the groundwater arsenic concentration. The investigated aquifers are spread over an 8 × 13 km field area with sediments that varied in burial age from V) redox couple was found in disequilibrium with the other redox couples. Using the pe calculated from the CH4/CO2 redox couple we show that the groundwater has a reducing potential towards Fe-oxides ranging from ferrihydrite to poorly crystalline goethite, but not for well crystalline goethite or hematite. Hematite and poorly crystalline goethite were identified as the Fe-oxides present in the sediments. Reductive dissolution experiments identify two phases releasing Fe(II); one rapidly dissolving that also contains As and a second releasing Fe(II) more slowly but without As. The initial release of Fe and As occurs at a near constant As/Fe ratio that varied from site to site between 1.2 and 0.1 mmol As/mol Fe. Siderite (FeCO3) is the main sink for Fe(II), based on saturation calculations as well as the identification of siderite in the sediment. Most of the carbonate incorporated in siderite originates from the dissolution of sedimentary CaCO3. Over time the CaCO3 content of the sediments diminishes and FeCO3 appears instead. No specific secondary phases that incorporate arsenite could be identified. Alternatively, the amount of arsenic mobilized during the dissolution of reactive phases can be contained in the pool of adsorbed arsenite. Combining groundwater age with aquifer sediment age allows the calculation of the total number of pore volumes flushed through the aquifer. Comparison with groundwater chemistry shows the highest arsenic concentration to be present within the first 200 pore volumes flushed through the aquifer. These results agree with reactive transport modeling combining a kinetic description of reductive

  16. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado

    Science.gov (United States)

    Hyun, S.P.; Fox, P.M.; Davis, J.A.; Campbell, K.M.; Hayes, K.F.; Long, P.E.

    2009-01-01

    A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using tailings site at Naturita, Colorado, indicated that possible calcite nonequilibrium of dissolved calcium concentration should be evaluated. The modeling results also illustrate the importance of the range of data used in deriving the best fit model parameters. ?? 2009 American Chemical Society.

  17. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming

    2012-01-01

    , suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed......Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer......(III) while PO43− and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment...

  18. Surface complexation modeling of groundwater arsenic mobility: Results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam

    Science.gov (United States)

    Jessen, Søren; Postma, Dieke; Larsen, Flemming; Nhan, Pham Quy; Hoa, Le Quynh; Trang, Pham Thi Kim; Long, Tran Vu; Viet, Pham Hung; Jakobsen, Rasmus

    2012-12-01

    Three surface complexation models (SCMs) developed for, respectively, ferrihydrite, goethite and sorption data for a Pleistocene oxidized aquifer sediment from Bangladesh were used to explore the effect of multicomponent adsorption processes on As mobility in a reduced Holocene floodplain aquifer along the Red River, Vietnam. The SCMs for ferrihydrite and goethite yielded very different results. The ferrihydrite SCM favors As(III) over As(V) and has carbonate and silica species as the main competitors for surface sites. In contrast, the goethite SCM has a greater affinity for As(V) over As(III) while PO43- and Fe(II) form the predominant surface species. The SCM for Pleistocene aquifer sediment resembles most the goethite SCM but shows more Si sorption. Compiled As(III) adsorption data for Holocene sediment was also well described by the SCM determined for Pleistocene aquifer sediment, suggesting a comparable As(III) affinity of Holocene and Pleistocene aquifer sediments. A forced gradient field experiment was conducted in a bank aquifer adjacent to a tributary channel to the Red River, and the passage in the aquifer of mixed groundwater containing up to 74% channel water was observed. The concentrations of As (SCM correctly predicts desorption for As(III) but for Si and PO43- it predicts an increased adsorption instead of desorption. The goethite SCM correctly predicts desorption of both As(III) and PO43- but failed in the prediction of Si desorption. These results indicate that the prediction of As mobility, by using SCMs for synthetic Fe-oxides, will be strongly dependent on the model chosen. The SCM based on the Pleistocene aquifer sediment predicts the desorption of As(III), PO43- and Si quite superiorly, as compared to the SCMs for ferrihydrite and goethite, even though Si desorption is still somewhat under-predicted. The observation that a SCM calibrated on a different sediment can predict our field results so well suggests that sediment based SCMs may be a

  19. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    Science.gov (United States)

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia.

  20. Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S W; Ong, S K; Moorman, T B [Iowa State University, Ames, IA (USA)

    2007-11-15

    The microbial community structure and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated aquifer were investigated spatially using fluorescence in situ hybridization (FISH) and in laboratory-scale incubations of the aquifer sediments. DAPI-detected microbial populations in the contaminated sediments were three orders of magnitude greater than nearby uncontaminated sediments, suggesting growth on coal-tar constituents in situ. Actinobacteria, {beta}- and {gamma}-Proteobacteria, and Flavobacteria dominated the in situ aerobic (> 1 mg l{sup -1} dissolved oxygen) microbial community, whereas sulfate-reducing bacteria comprised 37% of the microbial community in the sulfidogenic region of the aquifer. Rapid mineralization of naphthalene and phenanthrene were observed in aerobic laboratory microcosms and resulted in significant enrichment of {beta}- and {gamma}-Proteobacteria potentially explaining their elevated presence in situ. Nitrate- and sulfate-limited mineralization of naphthalene in laboratory microcosms occurred to a small degree in aquifer sediments from locations where groundwater chemistry indicated nitrate- and sulfate-reduction, respectively. The results of this study suggest that FISH may be a useful tool for providing a link between laboratory microcosms and groundwater measurements made in situ necessary to better demonstrate the potential for natural attenuation at complex PAH contaminated sites.

  1. Geochemical studies of backfill aggregates, lake sediment cores and the Hueco Bolson Aquifer

    Science.gov (United States)

    Thapalia, Anita

    This dissertation comprises of three different researches that focuses on the application of geochemistry from aggregates, lake sediment cores and Hueco Bolson Aquifer. Each study is independent and presented in the publication format. The first chapter is already published and the second chapter is in revision phase. Overall, three studies measure the large scale (field) as well as bench scale (lab) water-rock interactions influenced by the climatic and anthropogenic factors spans from the field of environmental geology to civil engineering. The first chapter of this dissertation addresses the chemical evaluation of coarse aggregates from six different quarries in Texas. The goal of this work is to find out the best geochemical methods for assessing the corrosion potential of coarse aggregates prior to their use in mechanically stabilized earth walls. Electrochemical parameters help to define the corrosion potential of aggregates following two different leaching protocols. Testing the coarse and fine aggregates demonstrate the chemical difference due to size-related kinetic leaching effects. Field fines also show different chemistry than the bulk rock indicating the weathering impact on carbonate rocks. The second chapter investigates zinc (Zn) isotopic signatures from eight lake sediment cores collected both from pristine lakes and those impacted by urban anthropogenic contamination. Zinc from the natural weathering of rocks and anthropogenic atmospheric pollutants are transported to these lakes and the signatures are recorded in the sediments. Isotopic analysis of core samples provides the signature of anthropogenic contamination sources. Dated sediment core and isotopic analysis can identify Zn inputs that are correlated to the landuse and population change of the watersheds. Comparison of isotopic data from both pristine and urban lake sediment core also serves as an analog in other lake sediment cores in the world. The third chapter studies on Hueco Bolson

  2. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume

    Science.gov (United States)

    Lorah, M.M.; Cozzarelli, I.M.; Böhlke, J.K.

    2009-01-01

    The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A

  3. Determination of pentachlorophenol in water and aquifer sediments by high-performance liquid chromatography

    Science.gov (United States)

    Goerlitz, D.F.

    1981-01-01

    Methods for the determination of pentachlorophenol (PCP) in water and aquifer sediments are presented. Reverse-phase high-performance liquid chromotography employing ion suppression and gradient elution is used. PCP can be determined directly in water at a lower limit of detection Of 0.2 micrograms per liter. For extracts of sediment, PCP can be determined to a lower limit of 1.0 micrograms per kilogram.

  4. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    International Nuclear Information System (INIS)

    Sisman, S. Lara

    2015-01-01

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  5. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, S. Lara [Univ. of Virginia, Charlottesville, VA (United States); Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  6. Biodegradation of organic compounds in vadose zone and aquifer sediments

    International Nuclear Information System (INIS)

    Konopka, A.; Turco, R.

    1991-01-01

    The microbial processes that occur in the subsurface under a typical Midwest agricultural soil were studied. A 26-m bore was installed in November of 1988 at a site of the Purdue University Agronomy Research Center. Aseptic collections of soil materials were made at 17 different depths. Physical analysis indicated that the site contained up to 14 different strata. The site materials were primarily glacial tills with a high carbonate content. The N,P, and organic C contents of sediments tended to decrease with depth. Ambient water content was generally less than the water content, which corresponds to a -0.3-bar equivalent. No pesticides were detected in slurry incubations of up to 128 days. The sorption of atrazine and metolachlor was correlated with the clay content of the sediments. Microbial biomass (determined by direct microscopic count, viable count, and phospholipid assay) in the tills was lower than in either the surface materials or the aquifer located at 25 m. The biodegradation of glucose and phenol occurred rapidly and without a lag in samples from the aquifer capillary fringe, saturated zone, and surface soils. In contrast, lag periods and smaller biodegradation rates were found in the till samples. Subsurface sediments are rich in microbial numbers and activity. The most active strata appear to be transmissive layers in the saturated zone. This implies that the availability of water may limit activity in the profile

  7. Groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, phase 2, east-central Massachusetts

    Science.gov (United States)

    Eggleston, Jack R.; Zarriello, Phillip J.; Carlson, Carl S.

    2015-12-31

    The U.S. Geological Survey, in cooperation with the Town of Framingham, Massachusetts, has investigated the potential of proposed groundwater withdrawals at the Birch Road well site to affect nearby surface water bodies and wetlands, including Lake Cochituate, the Sudbury River, and the Great Meadows National Wildlife Refuge in east-central Massachusetts. In 2012, the U.S. Geological Survey developed a Phase 1 numerical groundwater model of a complex glacial-sediment aquifer to synthesize hydrogeologic information and simulate potential future pumping scenarios. The model was developed with MODFLOW-NWT, an updated version of a standard USGS numerical groundwater flow modeling program that improves solution of unconfined groundwater flow problems. The groundwater model and investigations of the aquifer improved understanding of groundwater–surface-water interaction and the effects of groundwater withdrawals on surface-water bodies and wetlands in the study area. The initial work also revealed a need for additional information and model refinements to better understand this complex aquifer system.

  8. Speciation of Fe(II) and Fe(III) in Contaminated Aquifer Sediments Using Chemical Extraction Techniques

    DEFF Research Database (Denmark)

    Heron, Gorm; Crouzet, Catherine.; Bourg, Alain C. M.

    1994-01-01

    The iron mineralogy of aquifer sediments was described by chemical extraction techniques. Single-step extractions including 1 M CaC12, NaAc, oxalate, dithionite, Ti(II1)- EDTA, 0.5 M HC1,5 M HC1, hot 6 M HC1, and a sequential extraction by HI and CrIIHC1 were tested on standard iron minerals...... species are distinguished as AVS (acid volatile sulfide, hot 6 M HC1 extraction) and pyrite (sequential HI and CrIIHC1 extraction). By including a cold 5 M HC1 extraction, the total distribution of the major reactive Fe(I1) and Fe(II1) fractions in aquifer sediments can be assessed....

  9. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    Science.gov (United States)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  10. Carbon, metals and grain size correlate with bacterial community composition in sediments of a high arsenic aquifer

    Directory of Open Access Journals (Sweden)

    Teresa eLegg

    2012-03-01

    Full Text Available Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As. This has globally important implications since As toxicity in drinking water affects the health of millions of people worldwide, including in the Ganges-Brahmaputra Delta region of Bangladesh where geogenic groundwater arsenic concentrations can be more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across environmental gradients in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flowpath, at a range of depths between 1.5 and 15 m. We identified significant shifts in bacterial community composition along the groundwater flowpath in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C, manganese (Mn, and iron (Fe concentrations. Deltaproteobacteria and Chloroflexi were more abundant in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were more abundant in sediments with higher concentrations of sand and Si, and lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance- reducers in the high C and metal sediments. It is well-documented that C, Mn and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community.

  11. Microbial physiology-based model of ethanol metabolism in subsurface sediments

    Science.gov (United States)

    Jin, Qusheng; Roden, Eric E.

    2011-07-01

    A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.

  12. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment

    Energy Technology Data Exchange (ETDEWEB)

    Levi, S.; Hybel, A.-M.; Bjerg, P.L.; Albrechtsen, H.-J., E-mail: hana@env.dtu.dk

    2014-03-01

    In order to investigate aerobic degradation potential for the herbicides bentazone, mecoprop and dichlorprop, anaerobic groundwater samples from two monitoring and three drinking water wells near a drinking water abstraction field in Nybølle, Denmark, were screened for their degradation potential for the herbicides. In the presence of oxygen {sup 14}C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides in microcosms using groundwater and sandy aquifer materials. To maintain a certain oxygen concentration this level was measured from the outside of the bottles with a fibre oxygen meter using oxygen-sensitive luminescent sensor foil mounted inside the microcosm, to which supplementary oxygen was added. The highest oxygen concentrations (corresponding to 4–11 mg L{sup −1}) stimulated degradation (a 14–27% increase for mecoprop, 3–9% for dichlorprop and 15–20% for bentazone) over an experimental period of 200 days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2 mg L{sup −1}). The sediment had substantial oxygen consumption (0.92–1.45 O{sub 2} g{sup -1} dw over 200 days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due to the oxidation of organic matter and other reduced species such as Fe{sup 2+}, S{sup 2−} and Mn in sediment before the biodegradation of herbicides takes place. This study suggests that oxygen enhancement around a drinking water abstraction field could stimulate the bioremediation of diffuse source contamination. - Highlights: • Addition of different oxygen concentrations stimulated degradation of

  13. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment

    International Nuclear Information System (INIS)

    Levi, S.; Hybel, A.-M.; Bjerg, P.L.; Albrechtsen, H.-J.

    2014-01-01

    In order to investigate aerobic degradation potential for the herbicides bentazone, mecoprop and dichlorprop, anaerobic groundwater samples from two monitoring and three drinking water wells near a drinking water abstraction field in Nybølle, Denmark, were screened for their degradation potential for the herbicides. In the presence of oxygen 14 C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides in microcosms using groundwater and sandy aquifer materials. To maintain a certain oxygen concentration this level was measured from the outside of the bottles with a fibre oxygen meter using oxygen-sensitive luminescent sensor foil mounted inside the microcosm, to which supplementary oxygen was added. The highest oxygen concentrations (corresponding to 4–11 mg L −1 ) stimulated degradation (a 14–27% increase for mecoprop, 3–9% for dichlorprop and 15–20% for bentazone) over an experimental period of 200 days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2 mg L −1 ). The sediment had substantial oxygen consumption (0.92–1.45 O 2 g -1 dw over 200 days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due to the oxidation of organic matter and other reduced species such as Fe 2+ , S 2− and Mn in sediment before the biodegradation of herbicides takes place. This study suggests that oxygen enhancement around a drinking water abstraction field could stimulate the bioremediation of diffuse source contamination. - Highlights: • Addition of different oxygen concentrations stimulated degradation of herbicides in anaerobic aquifer sediment

  14. Conceptual and numerical models of the glacial aquifer system north of Aberdeen, South Dakota

    Science.gov (United States)

    Marini, Katrina A.; Hoogestraat, Galen K.; Aurand, Katherine R.; Putnam, Larry D.

    2012-01-01

    This U.S. Geological Survey report documents a conceptual and numerical model of the glacial aquifer system north of Aberdeen, South Dakota, that can be used to evaluate and manage the city of Aberdeen's water resources. The glacial aquifer system in the model area includes the Elm, Middle James, and Deep James aquifers, with intervening confining units composed of glacial till. The Elm aquifer ranged in thickness from less than 1 to about 95 feet (ft), with an average thickness of about 24 ft; the Middle James aquifer ranged in thickness from less than 1 to 91 ft, with an average thickness of 13 ft; and the Deep James aquifer ranged in thickness from less than 1 to 165 ft, with an average thickness of 23 ft. The confining units between the aquifers consisted of glacial till and ranged in thickness from 0 to 280 ft. The general direction of groundwater flow in the Elm aquifer in the model area was from northwest to southeast following the topography. Groundwater flow in the Middle James aquifer was to the southeast. Sparse data indicated a fairly flat potentiometric surface for the Deep James aquifer. Horizontal hydraulic conductivity for the Elm aquifer determined from aquifer tests ranged from 97 to 418 feet per day (ft/d), and a confined storage coefficient was determined to be 2.4x10-5. Estimates of the vertical hydraulic conductivity of the sediments separating the Elm River from the Elm aquifer, determined from the analysis of temperature gradients, ranged from 0.14 to 2.48 ft/d. Average annual precipitation in the model area was 19.6 inches per year (in/yr), and agriculture was the primary land use. Recharge to the Elm aquifer was by infiltration of precipitation through overlying outwash, lake sediments, and glacial till. The annual recharge for the model area, calculated by using a soil-water-balance method for water year (WY) 1975-2009, ranged from 0.028 inch in WY 1980 to 4.52 inches in WY 1986, with a mean of 1.56 inches. The annual potential

  15. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    Science.gov (United States)

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  16. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  17. Transport and fate of viruses in sediment and stormwater from a Managed Aquifer Recharge site

    Science.gov (United States)

    Sasidharan, Salini; Bradford, Scott A.; Šimůnek, Jiří; Torkzaban, Saeed; Vanderzalm, Joanne

    2017-12-01

    Enteric viruses are one of the major concerns in water reclamation and reuse at Managed Aquifer Recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and ΦX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column experiments were conducted using SW, stormwater in equilibrium with the aquifer sediment (EQ-SW), and two pore-water velocities (1 and 5 m day-1) to encompass expected behavior at the MAR site. The aquifer sediment removed >92.3% of these viruses under all of the considered MAR conditions. However, much greater virus removal (4.6 logs) occurred at the lower pore-water velocity and in EQ-SW that had a higher ionic strength and Ca2+ concentration. Virus removal was greatest for MS2, followed by PRD1, and then ΦX174 for a given physicochemical condition. The vast majority of the attached viruses were irreversibly attached or inactivated on the solid phase, and injection of Milli-Q water or beef extract at pH = 10 only mobilized a small fraction of attached viruses ( μs > kdet > μl, and katt was several orders of magnitude greater than μl. Therefore, current microbial risk assessment methods in the MAR guideline may be overly conservative in some instances. Interestingly, virus BTCs exhibited blocking behavior and the calculated solid surface area that contributed to the attachment was very small. Additional research is therefore warranted to study the potential influence of blocking on virus transport and potential implications for MAR guidelines.

  18. Runoff and sediment yield model for predicting nuclide transport in watersheds using BIOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Wenzel, W.J.

    1990-09-01

    The environmental risk simulation model BIOTRAN was interfaced with a series of new subroutines (RUNOFF, GEOFLX, EROSON, and AQUIFER) to predict the movement of nuclides, elements, and pertinent chemical compounds in association with sediments through lateral and channel flow of runoff water. In addition, the movement of water into and out of segmented portions of runoff channels was modeled to simulate the dynamics of moisture flow through specified aquifers within the watershed. The BIOTRAN soil water flux subroutine, WATFLX, was modified to interface the relationships found in the SPUR model for runoff and sediment transport into channels with the particle sorting relationships to predict radionuclide enrichment and movement in watersheds. The new subroutines were applied specifically to Mortandad Canyon within Los Alamos National Laboratory by simultaneous simulation of eight surface vegetational subdivisions and associated channel and aquifer segments of this watershed. This report focuses on descriptions of the construction and rationale for the new subroutines and on discussing both input characteristics and output relationships to known runoff events from Mortandad Canyon. Limitations of the simplified input on model behavior are also discussed. Uranium-238 was selected as the nuclide for demonstration of the model because it could be assumed to be homogeneously distributed over the watershed surface. 22 refs., 18 figs., 9 tabs.

  19. Acid groundwater in an anoxic aquifer: Reactive transport modelling of buffering processes

    International Nuclear Information System (INIS)

    Franken, Gudrun; Postma, Dieke; Duijnisveld, Wilhelmus H.M.; Boettcher, Juergen; Molson, John

    2009-01-01

    The acidification of groundwater, due to acid rain, was investigated in a Quaternary sandy aquifer in the Fuhrberger Feld, near Hannover, Germany. The groundwater, recharged through an area covered by a coniferous forest, had a pH in the range 4-5 down to a depth of 5 m. The evolution in groundwater chemistry along the flow path was investigated in a transect of multisamplers. A 2D groundwater flow model was established delineating the groundwater flow field and a groundwater flow velocity of around 80 m/a along the flow path was derived. Speciation calculations showed the groundwater to be close to equilibrium with the mineral jurbanite (AlOHSO 4 ) over the pH range 4.0-6.5. This suggests an accumulation of acid rain derived SO 4 2- in the aquifer sediment during the decades with high atmospheric S deposition. The groundwater has a pH of around 4.5 in the upstream part of the flow path increasing to near 6 further downstream. 1D reactive transport modelling, using PHREEQC, was used to analyze different combinations of buffering processes. The first model contains ion exchange in combination with jurbanite dissolution. At the ion exchange front Al 3+ is adsorbed leading to the dissolution of jurbanite and an increase in pH. Comparison with field data showed that the simulated increases in pH and alkalinity are much lower than observed in the field. The second model includes organic matter degradation. In addition to ion exchange and jurbanite dissolution, the model included the reduction of SO 4 2- and Fe-oxides as well as the precipitation of Fe sulfide. This model matches the field data well and illustrates the importance of redox processes for pH buffering in the Fuhrberg aquifer. The current progress of the acidification front is about 4 m/a. This corresponds to an average value of 150 a of acid input, which covers large historical variations. Remediation is expected to take the same time span because it requires desorption and neutralization of adsorbed Al 3

  20. Transport and fate of viruses in sediment and stormwater from a managed aquifer recharge site

    Science.gov (United States)

    Enteric viruses are one of the major concerns in water reclamation and reuse at managed aquifer recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and FX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column ex...

  1. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2017-09-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45 × 106 m3 discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from ˜ 11 to ˜ 0.4 m d-1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface - abundant in many MAR operations - are negated by the high-quality desalinated seawater (turbidity ˜ 0.2 NTU, total dissolved solids ˜ 120 mg L-1) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

  2. Hydrogeologic framework, arsenic distribution, and groundwater geochemistry of the glacial-sediment aquifer at the Auburn Road landfill superfund site, Londonderry, New Hampshire

    Science.gov (United States)

    Degnan, James R.; Harte, Philip T.

    2013-01-01

    were present had low electrical resistivity, low dissolved oxygen, and high concentrations of arsenic. Low-resistivity zones in the underlying bedrock were associated with fractures that also may contain leachate. Although surveying the fractured bedrock was not a specific objective of this study, the results suggest that such a survey would help to determine if leachate and associated concentrations of arsenic are migrating downward into the fractured-bedrock-aquifer system. An uncalibrated, one-dimensional, reactive-transport model was used to assess several conditions that affect arsenic mobility. The results indicate that reductive dissolution and desorption from glacial sediments control dissolved arsenic concentrations. Parameter sensitivity analysis was used to identify key data that are needed in order to accurately assess the time required for arsenic concentrations to fall to levels below the maximum contaminant level at the site. Quantifying this time will require accurate characterization of carbon, sediment-surface sorption sites, and groundwater fluxes at the site.

  3. Development Report on the Idaho National Laboratory Sitewide Three-Dimensional Aquifer Model

    Energy Technology Data Exchange (ETDEWEB)

    Thomas R. Wood; Catherine M. Helm-Clark; Hai Huang; Swen Magnuson; Travis McLing; Brennon Orr; Michael J. Rohe; Mitchell A. Plummer; Robert Podgorney; Erik Whitmore; Michael S. Roddy

    2007-09-01

    A sub-regional scale, three-dimensional flow model of the Snake River Plain Aquifer was developed to support remediation decisions for Waste Area Group 10, Operable Unit 10 08 at the Idaho National Laboratory (INL) Site. This model has been calibrated primarily to water levels and secondarily to groundwater velocities interpreted from stable isotope disequilibrium studies and the movement of anthropogenic contaminants in the aquifer from facilities at the INL. The three-dimensional flow model described in this report is one step in the process of constructing a fully three-dimensional groundwater flow and contaminant transport model as prescribed in the Idaho National Engineering and Environmental Laboratory Operable Unit 10-08 Sitewide Groundwater Model Work Plan. An updated three-dimensional hydrogeologic conceptual model is presented along with the geologic basis for the conceptual model. Sediment-dominated three-dimensional volumes were used to represent the geology and constrain groundwater flow as part of the conceptual model. Hydrological, geochemical, and geological data were summarized and evaluated to infer aquifer behavior. A primary observation from development and evaluation of the conceptual model was that relative to flow on a regional scale, the aquifer can be treated with steady-state conditions. Boundary conditions developed for the three-dimensional flow model are presented along with inverse simulations that estimate parameterization of hydraulic conductivity. Inverse simulations were performed using the pilot-point method to estimate permeability distributions. Thermal modeling at the regional aquifer scale and at the sub-regional scale using the inverted permeabilities is presented to corroborate the results of the flow model. The results from the flow model show good agreement with simulated and observed water levels almost always within 1 meter. Simulated velocities show generally good agreement with some discrepancies in an interpreted low

  4. Groundwater Flow Model of Göksu Delta Coastal Aquifer System

    Science.gov (United States)

    Erdem Dokuz, Uǧur; Çelik, Mehmet; Arslan, Şebnem; Engin, Hilal

    2016-04-01

    Like many other coastal areas, Göksu Delta (Mersin-Silifke, Southern Turkey) is a preferred place for human settlement especially due to its productive farmlands and water resources. The water dependent ecosystem in Göksu delta hosts about 332 different plant species and 328 different bird species besides serving for human use. Göksu Delta has been declared as Special Environmental Protection Zone, Wildlife Protection Area, and RAMSAR Convention for Wetlands of International Importance area. Unfortunately, rising population, agricultural and industrial activities cause degradation of water resources both by means of quality and quantity. This problem also exists for other wetlands around the world. It is necessary to prepare water management plans by taking global warming issues into account to protect water resources for next generations. To achieve this, the most efficient tool is to come up with groundwater management strategies by constructing groundwater flow models. By this aim, groundwater modeling studies were carried out for Göksu Delta coastal aquifer system. As a first and most important step in all groundwater modeling studies, geological and hydrogeological settings of the study area have been investigated. Göksu Delta, like many other deltaic environments, has a complex structure because it was formed with the sediments transported by Göksu River throughout the Quaternary period and shaped throughout the transgression-regression periods. Both due to this complex structure and the lack of observation wells penetrating deep enough to give an idea of the total thickness of the delta, it was impossible to reveal out the hydrogeological setting in a correct manner. Therefore, six wells were drilled to construct the conceptual hydrogeological model of Göksu Delta coastal aquifer system. On the basis of drilling studies and slug tests that were conducted along Göksu Delta, hydrostratigraphic units of the delta system have been obtained. According to

  5. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-01-01

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer

  6. Characterization of Natural Organic Matter in Alluvial Aquifer Sediments: Approaches and Implications for Reactivity

    Science.gov (United States)

    Fox, P. M.; Nico, P. S.; Hao, Z.; Gilbert, B.; Tfaily, M. M.; Devadoss, J.

    2015-12-01

    Sediment-associated natural organic matter (NOM) is an extremely complex assemblage of organic molecules with a wide range of sizes, functional groups, and structures, which is intricately associated with mineral particles. The chemical nature of NOM may control its' reactivity towards metals, minerals, enzymes, and bacteria. Organic carbon concentrations in subsurface sediments are typically much lower than in surface soils, posing a distinct challenge for characterization. In this study, we investigated NOM associated with shallow alluvial aquifer sediments in a floodplain of the Colorado River. Total organic carbon (TOC) contents in these subsurface sediments are typically around 0.1%, but can range from 0.03% up to approximately 1.5%. Even at the typical TOC values of 0.1%, the mass of sediment-associated OC is approximately 5000 times higher than the mass of dissolved OC, representing a large pool of carbon that may potentially be mobilized or degraded under changing environmental conditions. Sediment-associated OC is much older than both the depositional age of the alluvial sediments and dissolved OC in the groundwater, indicating that the vast majority of NOM was sequestered by the sediment long before it was deposited in the floodplain. We have characterized the sediment-bound NOM from two locations within the floodplain with differing physical and geochemical properties. One location has relatively low organic carbon (mineral association across different biogeochemical regimes and assess the potential reactivity of various NOM pools.

  7. Development and Modelling of a High-Resolution Aquifer Analog in the Guarani Aquifer (Brazil)

    OpenAIRE

    Höyng, Dominik

    2014-01-01

    A comprehensive and detailed knowledge about the spatial distribution of physical and chemical properties in heterogeneous porous aquifers plays a decisive role for a realistic representation of governing parameters in mathematical models. Models allow the simulation, prediction and reproduction of subsurface flow and transport characteristics. This work explains the identification, characterization and effects of small-scale aquifer heterogeneities in the Guarani Aquifer System (GAS) in S...

  8. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  9. Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Rowland, Helen A.L.; Gault, Andrew G.; Lythgoe, Paul; Polya, David A.

    2008-01-01

    Elevated As is well known to be present in aquifers utilised for drinking water and irrigation in West Bengal and Bangladesh. This problem has also more recently been discovered in other parts of Asia, including Vietnam, Cambodia, Inner Mongolia and the Middle Ganges Plain. Analysis of groundwaters in Kandal Province of Cambodia found waters with comparable geochemistry to the As-rich groundwaters of the West Bengali Delta. Similarities included high but heterogeneous As distributions, predominantly in the form As(III), high Fe, moderate to high HCO 3 - , circumneutral pH, low SO 4 2- and geochemical components indicative of reducing conditions. Good positive correlations between As, Fe, HCO 3 - and NH 4 + , and dissolved organic C is consistent with As release predominantly via microbially mediated reductive dissolution of As bearing Fe(III) oxides. Further evidence for such a process is found from correlations between As, Fe and organic matter from analysis of aquifer sediments, by the presence of goethite in the finer fractions and from the association of As with amorphous, poorly crystalline and well crystallised hydrous Fe oxides. The presence of several high As, but low Fe, wells implies that microbes could have a more direct role in mediating As release via the direct utilisation of Fe(III) or As(V) as electron acceptors. The presence of elevated As in waters with short aquifer residence times (as indicated by their geochemical signature) highlights the possible vulnerability of these aquifers to the influx of surface derived waters, providing an additional source of labile organic C that could exacerbate As release by stimulating microbial activity

  10. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Y.; Ganot, Y.; Holtzman, R.; Weisbrod, N.; Nitzan, I.; Katz, Y.; Kurtzman, D.

    2017-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil senso...

  11. Importance of Unattached Bacteria and Bacteria Attached to Sediment in Determining Potentials for Degradation of Xenobiotic Organic Contaminants in an Aerobic Aquifer

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1992-01-01

    The bacterial abundance, distribution, and degradation potential (in terms of degradation versus lack of degradation) for four xenobiotic compounds in an aerobic aquifer sediment have been examined in laboratory and field experiments. The xenobiotic compounds studied were benzene, toluene, o......-xylene, and naphthalene (all at concentrations of approximately 120 pg/liter). The aerobic degradation experiments ran for approximately 90 days at 10°C, which corresponded to the groundwater temperature. At the end of the experiment, the major part of the microbial biomass, quantified as acridine orange direct counts......, was attached to the groundwater sediment (18 x 106 to 25 x 106 cells per g [dry weight]), and only a minor part was unattached in the groundwater (0.6 x 106 to 5.5 x 106 cells per ml). Experiments involving aquifer sediment suspensions showed identical degradation potentials in the laboratory and in the field...

  12. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    Directory of Open Access Journals (Sweden)

    Y. Ganot

    2017-09-01

    Full Text Available We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015 of continuous intensive MAR (2.45  ×  106 m3 discharged to a 10.7 ha area, groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d−1. This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L−1 or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016 fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

  13. Nitrogen Fate in a Phreatic Fluviokarst Watershed: a Stable Isotope, Sediment Tracing, and Numerical Modeling Approach

    Science.gov (United States)

    Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.

    2017-12-01

    Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system

  14. Organic matter accumulation and degradation in subsurface coastal sediments: a model-based comparison of rapid sedimentation and aquifer transport

    Directory of Open Access Journals (Sweden)

    J. M. Holstein

    2010-11-01

    Full Text Available The redox succession in shallow marine sediments generally exhibits a predictable pattern. Pore water profiles from a back barrier tidal flat in the German Wadden Sea depart from the expected redox zoning. Instead, a sulfate minimum zone associated with a sulfate-methane-sulfate double interface and a distinct ammonium peak at 1.5 m below sea floor (mbsf is displayed. Such evidence for significant degradation of organic matter (OM in subsurface layers is challenging our understanding of tidal flat biogeochemistry as little is known about processes that relocate reactive OM into layers far distant from the sediment-water interface. The objectives of our model study were to identify possible mechanisms for the rapid transport of organic matter to subsurface layers that cause the reversed redox succession and to constrain several important biogeochemical control parameters. We compared two scenarios for OM transfer: rapid sedimentation and burial of OM as well as lateral advection of suspended POM. Using a diagenetic model, uncertain process parameters, in particular those connected to OM degradation and (vertical or lateral transport, are systematically calibrated using field data.

    We found that both scenarios, advection and sedimentation, had solutions consistent with the observed pore water profiles. For this specific site, however, advective transport of particulate material had to be rejected since the reconstructed boundary conditions were rather improbable. In the alternative deposition set-up, model simulations suggested the deposition of the source OM about 60 yrs before cores were taken. A mean sedimentation rate of approximately 2 cm yr−1 indicates substantial changes in near coast tidal flat morphology, since sea level rise is at a much lower pace. High sedimentation rates most probably reflect the progradation of flats within the study area. These or similar morphodynamic features also occur in other coastal areas

  15. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2016-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors and observation...

  16. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. 1. Fate of inorganic pollutants in laboratory columns

    Science.gov (United States)

    Thornton, Steven F.; Tellam, John H.; Lerner, David N.

    2000-05-01

    The attenuation of inorganic contaminants in acetogenic and methanogenic landfill leachate by calcareous and carbonate-deficient, oxide-rich Triassic sandstone aquifer materials from the English Midlands was examined in laboratory columns. Aqueous equilibrium speciation modelling, simple transport modelling and chemical mass balance approaches are used to evaluate the key processes and aquifer geochemical properties controlling contaminant fate. The results indicate that leachate-rock interactions are dominated by ion-exchange processes, acid-base and redox reactions and sorption/precipitation of metal species. Leachate NH 4 is attenuated by cation exchange with the aquifer sediments; however, NH 4 migration could be described with a simple model using retardation factors. Organic acids in the acetogenic leachate buffered the system pH at low levels during flushing of the calcareous aquifer material. In contrast, equilibrium with Al oxyhydroxide phases initially buffered pH (˜4.5) during flushing of the carbonate-deficient sandstone with methanogenic leachate. This led to the mobilisation of sorbed and oxide-bound heavy metals from the aquifer sediment which migrated as a concentrated pulse at the leachate front. Abiotic reductive dissolution of Mn oxyhydroxides on each aquifer material by leachate Fe 2+ maintains high concentrations of dissolved Mn and buffers the leachate inorganic redox system. This feature is analogous to the Mn-reducing zones found in leachate plumes and in the experiments provides a sink for the leachate Fe load and other heavy metals. The availability of reactive solid phase Mn oxyhydroxides limits the duration of redox buffering and Fe attenuation by these aquifer sediments. Aquifer pH and redox buffering capacity exert a fundamental influence on leachate inorganic contaminant fate in these systems. The implications for the assessment of aquifer vulnerability at landfills are discussed and simple measurements of aquifer properties which

  17. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments

    Science.gov (United States)

    Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.

    2010-01-01

    Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.

  18. Microcosm studies on iron and arsenic mobilization from aquifer sediments under different conditions of microbial activity and carbon source

    Science.gov (United States)

    Duan, Mengyu; Xie, Zuoming; Wang, Yanxin; Xie, Xianjun

    2009-05-01

    Microcosm experiments were conducted to understand the mechanism of microbially mediated mobilization of Fe and As from high arsenic aquifer sediments. Arsenic-resistant strains isolated from aquifer sediments of a borehole specifically drilled for this study at Datong basin were used as inoculated strains, and glucose and sodium acetate as carbon sources for the experiments. In abiotic control experiments, the maximum concentrations of Fe and As were only 0.47 mg/L and 0.9 μg/L, respectively. By contrast, the maximum contents of Fe and As in anaerobic microcosm experiments were much higher (up to 1.82 mg/L and 12.91 μg/L, respectively), indicating the crucial roles of microbial activities in Fe and As mobilization. The observed difference in Fe and As release with different carbon sources may be related to the difference in growth pattern and composition of microbial communities that develop in response to the type of carbon sources.

  19. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.

    Science.gov (United States)

    Fakhreddine, Sarah; Dittmar, Jessica; Phipps, Don; Dadakis, Jason; Fendorf, Scott

    2015-07-07

    Mobilization of arsenic and other trace metal contaminants during managed aquifer recharge (MAR) poses a challenge to maintaining local groundwater quality and to ensuring the viability of aquifer storage and recovery techniques. Arsenic release from sediments into solution has occurred during purified recycled water recharge of shallow aquifers within Orange County, CA. Accordingly, we examine the geochemical processes controlling As desorption and mobilization from shallow, aerated sediments underlying MAR infiltration basins. Further, we conducted a series of batch and column experiments to evaluate recharge water chemistries that minimize the propensity of As desorption from the aquifer sediments. Within the shallow Orange County Groundwater Basin sediments, the divalent cations Ca(2+) and Mg(2+) are critical for limiting arsenic desorption; they promote As (as arsenate) adsorption to the phyllosilicate clay minerals of the aquifer. While native groundwater contains adequate concentrations of dissolved Ca(2+) and Mg(2+), these cations are not present at sufficient concentrations during recharge of highly purified recycled water. Subsequently, the absence of dissolved Ca(2+) and Mg(2+) displaces As from the sediments into solution. Increasing the dosages of common water treatment amendments including quicklime (Ca(OH)2) and dolomitic lime (CaO·MgO) provides recharge water with higher concentrations of Ca(2+) and Mg(2+) ions and subsequently decreases the release of As during infiltration.

  20. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments

    Science.gov (United States)

    Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.

    2000-01-01

    Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.

  1. Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge.

    Science.gov (United States)

    Ko, Myoung-Soo; Cho, Kyungjin; Jeong, Dawoon; Lee, Seunghak

    2016-03-01

    In this study, indigenous microbes enabling Fe reduction under saline groundwater conditions were identified, and their potential contribution to Fe release from aquifer sediments during managed aquifer recharge (MAR) was evaluated. Sediment and groundwater samples were collected from a MAR feasibility test site in Korea, where adjacent river water will be injected into the confined aquifer. The residual groundwater had a high salinity over 26.0 psu, as well as strong reducing conditions (dissolved oxygen, DOaquifer were found to be Citrobacter sp. However, column experiments to simulate field operation scenarios indicated that additional Fe release would be limited during MAR, as the dominant microbial community in the sediment would shift from Citrobacter sp. to Pseudomonas sp. and Limnohabitans sp. as river water injection alters the pore water chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    Science.gov (United States)

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  3. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Directory of Open Access Journals (Sweden)

    L. E. Pracht

    2018-03-01

    Full Text Available Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC. In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic

  4. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Science.gov (United States)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of

  5. Centimetre-scale vertical variability of phenoxy acid herbicide mineralization potential in aquifer sediment relates to the abundance of tfdA genes

    DEFF Research Database (Denmark)

    Pazarbasi, Meric Batioglu; Bælum, Jacob; Johnsen, Anders R.

    2012-01-01

    sampled just below the groundwater table. Mineralization of 2,4-D and MCPA was fastest in sediment samples taken close to the groundwater table, whereas only minor mineralization of MCPP was seen. Considerable variability was exhibited at increasing aquifer depth, more so with 2,4-D than with MCPA...... are known to be involved in the metabolism of phenoxy acid herbicides. tfdA class III gene copy number was approximately 100-fold greater in samples able to mineralize MCPA than in samples able to mineralize 2,4-D, suggesting that tfdA class III gene plays a greater role in the metabolism of MCPA than of 2......Centimetre-scale vertical distribution of mineralization potential was determined for 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) by 96-well microplate radiorespirometric analysis in aquifer sediment...

  6. Characterization of 200-UP-1 Aquifer Sediments and Results of Sorption-Desorption Tests Using Spiked Uncontaminated Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Serne, R JEFFREY.; Bjornstad, Bruce N.; Schaef, Herbert T.; Brown, Christopher F.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Lindberg, Michael J.

    2005-11-16

    increasing concentrations of carbonate up to a point. Then as carbonate and calcium concentrations in the groundwater reach values that exceed the solubility limit for the mineral calcite there is a slight increase in U(VI) Kd likely caused by uranium co-precipitation with the fresh calcite. If remediation of the UP-1 groundwater plume is required, such as pump and treat, it is recommended that the aquifer be treated with chemicals to increase pH and alkalinity and decrease dissolved calcium and magnesium [so that the precipitation of calcite is prevented]. Alternative methods to immobilize the uranium in place might be more effective than trying to remove the uranium by pump and treat. Unfortunately, no aquifer sediments were obtained that contained enough Hanford generated uranium to perform quantitative desorption tests germane to the UP-1 plume remediation issue. Recommended Kd values that should be used for risk predictions for the UP-1 groundwater plume traveling through the lithologies within the aquifer present at the UP-1 (and by proxy ZP-1) operable units were provided. The recommended values Kd values are chosen to include some conservatism (lower values are emphasized from the available range) as is standard risk assessment practice. In general, desorption Kd values for aged contaminated sediments can be larger than Kd values determined in short-term laboratory experiments. To accommodate the potential for desorption hysteresis and other complications, a second suite of uranium desorption Kd values were provided to be used to estimate removal of uranium by pump and treat techniques.

  7. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer

    Science.gov (United States)

    Patterson, B. M.; Shackleton, M.; Furness, A. J.; Bekele, E.; Pearce, J.; Linge, K. L.; Busetti, F.; Spadek, T.; Toze, S.

    2011-03-01

    The fate of nine trace organic compounds was evaluated during a 12 month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life > 50 days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.

  8. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Bekele, E; Pearce, J; Linge, K L; Busetti, F; Spadek, T; Toze, S

    2011-03-25

    The fate of nine trace organic compounds was evaluated during a 12month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life aquifer geochemical conditions (half life >50days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  9. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  10. Dynamics of arsenic adsorption in the targeted arsenic-safe aquifers in Matlab, south-eastern Bangladesh: Insight from experimental studies

    International Nuclear Information System (INIS)

    Robinson, Clare; Broemssen, Mattias von; Bhattacharya, Prosun; Haeller, Sara; Biven, Annelie; Hossain, Mohammed; Jacks, Gunnar; Ahmed, Kazi Matin; Hasan, M. Aziz; Thunvik, Roger

    2011-01-01

    Research highlights: → Adsorption behaviour of shallow oxidized sediments from Matlab Region in SE Bangladesh is investigated. → Oxidized sediments have a high capacity to adsorb arsenic. → Adsorption capacity will be reduced by high concentration of reactive organic C. → Monitoring of groundwater quality over 5 year period shows relatively stable water chemistry. - Abstract: Targeting shallow low-As aquifers based on sediment colour may be a viable solution for supplying As-safe drinking water to rural communities in some regions of Bangladesh and West Bengal in India. The sustainability of this solution with regard to the long-term risk of As-safe oxidized aquifers becoming enriched with As needs to be assessed. This study focuses on the adsorption behaviour of shallow oxidized sediments from Matlab Region, Bangladesh, and their capacity to attenuate As if cross-contamination of the oxidized aquifers occurs. Water quality analyses of samples collected from 20 tube-wells in the region indicate that while there may be some seasonal variability, the groundwater chemistry in the reduced and oxidized aquifers was relatively stable from 2004 to 2009. Although sediment extractions indicate a relatively low amount of As in the oxidized sediments, below 2.5 mg kg -1 , batch isotherm experiments show that the sediments have a high capacity to adsorb As. Simulations using a surface complexation model that considers adsorption to amorphous Fe(III) oxide minerals only, under-predict the experimental isotherms. This suggests that a large proportion of the adsorption sites in the oxidized sediments may be associated with crystalline Fe(III) oxides, Mn(IV) and Al(III) oxides, and clay minerals. Replicate breakthrough column experiments conducted with lactose added to the influent solution demonstrate that the high adsorption capacity of the oxidized sediments may be reduced if water drawn down into the oxidized aquifers contains high levels of electron donors such as

  11. Investigation of aquifer-system compaction in the Hueco basin, El Paso, Texas, USA

    Science.gov (United States)

    Heywood, Charles

    1995-01-01

    The Pleistocene geologic history of the Rio Grande valley in the Hueco basin included a cycle of sediment erosion and re-aggradation, resulting in unconformable stratification of sediment of contrasting compressibility and stress history. Since the 1950s large groundwater withdrawals have resulted in significant water-level declines and associated land subsidence. Knowledge of the magnitude and variation of specific storage is needed for developing predictive models of subsidence and groundwater flow simulations. Analyses of piezometric and extensometric data in the form of stress-strain diagrams from a 16 month period yield in situ measurements of aquifer-system compressibility across two discrete aquifer intervals. The linear elastic behaviour of the deeper interval indicates over-consolidation of basin deposits, probably resulting from deeper burial depth before the middle Pleistocene. By contrast, the shallow aquifer system displays an inelastic component, suggesting pre-consolidation stress not significantly greater than current effective stress levels for a sequence of late Pleistocene clay. Harmonic analyses of the piezometric response to earth tides in two water-level piezometers provide an independent estimate of specific storage of aquifer sands.

  12. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    Science.gov (United States)

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.

    Science.gov (United States)

    Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

    2012-01-01

    On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (∼140 m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3-9.1 meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240-262 mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H(2) as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H(2) might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds

  14. Heat storage in the Hettangian aquifer in Berlin - results from a column experiment

    Science.gov (United States)

    Milkus, Chri(Sch)augott

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) is a sustainable alternative for storage and seasonal availability of thermal energy. However, its impact on the subsurface flow regime is not well known. In Berlin (Germany), the Jurassic (Hettangian) sandstone aquifer with highly mineralized groundwater (TDS 27 g/L) is currently used for heat storage. The aim of this study was to examine the hydrogeochemical changes that are caused by the induced temperature shift and its effects on the hydraulic permeability of the aquifer. Column experiments were conducted, in which stainless steel columns were filled with sediment from the aquifer and flushed with native groundwater for several weeks. The initial temperature of the experiment was 20°C, comparable to the in-situ conditions within the aquifer. After reaching equilibrium between sediment and water, the temperature was increased to simulate heating of the aquifer. During the experiment, physical and chemical parameters (pH, ORP, dissolved oxygen and dissolved carbon dioxide) were measured at the outflow of the column and the effluent water was sampled. Using a Scanning Electron Microscope, the deposition of precipitated minerals and biofilm on sediment grains was analyzed. Changes in hydraulic properties of the sediment were studied by the use of tracer tests with Uranin.

  15. Conceptual and numerical modeling approach of the Guarani Aquifer System

    Science.gov (United States)

    Rodríguez, L.; Vives, L.; Gomez, A.

    2013-01-01

    In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s-1 while the observed absolute minimum discharge was 382 m3 s-1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average

  16. Development of A Mississippi River Alluvial Aquifer Groundwater Model

    Science.gov (United States)

    Karakullukcu, R. E.; Tsai, F. T. C.; Bhatta, D.; Paudel, K.; Kao, S. C.

    2017-12-01

    The Mississippi River Alluvial Aquifer (MRAA) underlies the Mississippi River Valley of the northeastern Louisiana, extending from the north border of Louisiana and Arkansas to south central of Louisiana. The MRAA has direct contact with the Mississippi River. However, the interaction between the Mississippi River and the alluvial aquifer is largely unknown. The MRAA is the second most used groundwater source in Louisiana's aquifers with about 390 million gallons per day, which is about 25% of all groundwater withdrawals in Louisiana. MRAA is the major water source to agriculture in the northeastern Louisiana. The groundwater withdrawals from the MRAA increases annually for irrigation. High groundwater pumping has caused significant groundwater level decline and elevated salinity in the aquifer. Therefore, dealing with agricultural irrigation is the primary purpose for managing the MRAA. The main objective of this study is to develop a groundwater model as a tool for the MRAA groundwater management. To do so, a hydrostratigraphy model of the MRAA was constructed by using nearly 8,000 drillers' logs and electric logs collected from Louisiana Department of Natural Resources. The hydrostratigraphy model clearly shows that the Mississippi River cuts into the alluvial aquifer. A grid generation technique was developed to convert the hydrostratigraphy model into a MODFLOW model with 12 layers. A GIS-based method was used to estimate groundwater withdrawals for irrigation wells based on the crop location and acreage from the USDACropScape - Cropland Data Layer. Results from the Variable Infiltration Capacity (VIC) model were used to determine potential recharge. NHDPlusV2 data was used to determine water level for major streams for the MODFLOW River Package. The groundwater model was calibrated using groundwater data between 2004 and 2015 to estimate aquifer hydraulic conductivity, specific yield, specific storage, river conductance, and surficial recharge.

  17. Determining shallow aquifer vulnerability by the DRASTIC model ...

    Indian Academy of Sciences (India)

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been ...

  18. Water-level altitudes 2013 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973--2012 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2013-01-01

    Most of the subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction mostly in the clay and silt layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate water-level altitudes for 2013 (represented by measurements made during December 2012-February 2013) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2012-13) water-level changes for each aquifer; maps depicting 5-year (2008--13) water-level changes for each aquifer; maps depicting long-term (1990-2013 and 1977-2013) water-level changes for the Chicot and Evangeline aquifers; a map depicting long-term (2000-13) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured compaction of subsurface sediments at the extensometers during 1973-2012. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  19. Dynamics of arsenic adsorption in the targeted arsenic-safe aquifers in Matlab, south-eastern Bangladesh: Insight from experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Clare, E-mail: crobinson@eng.uwo.ca [Department of Civil and Environmental Engineering, University of Western Ontario, London, N6A 5B9 (Canada)] [NGO Forum for Drinking Water Supply and Sanitation, Lalmatia, Dhaka 1207 (Bangladesh); Broemssen, Mattias von [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)] [Ramboell Sweden AB, Box 4205, SE-102 65 Stockholm (Sweden); Bhattacharya, Prosun; Haeller, Sara; Biven, Annelie [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Hossain, Mohammed [NGO Forum for Drinking Water Supply and Sanitation, Lalmatia, Dhaka 1207 (Bangladesh)] [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Jacks, Gunnar [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Ahmed, Kazi Matin; Hasan, M. Aziz [Department of Geology, University of Dhaka, Dhaka 1000 (Bangladesh); Thunvik, Roger [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2011-04-15

    Research highlights: {yields} Adsorption behaviour of shallow oxidized sediments from Matlab Region in SE Bangladesh is investigated. {yields} Oxidized sediments have a high capacity to adsorb arsenic. {yields} Adsorption capacity will be reduced by high concentration of reactive organic C. {yields} Monitoring of groundwater quality over 5 year period shows relatively stable water chemistry. - Abstract: Targeting shallow low-As aquifers based on sediment colour may be a viable solution for supplying As-safe drinking water to rural communities in some regions of Bangladesh and West Bengal in India. The sustainability of this solution with regard to the long-term risk of As-safe oxidized aquifers becoming enriched with As needs to be assessed. This study focuses on the adsorption behaviour of shallow oxidized sediments from Matlab Region, Bangladesh, and their capacity to attenuate As if cross-contamination of the oxidized aquifers occurs. Water quality analyses of samples collected from 20 tube-wells in the region indicate that while there may be some seasonal variability, the groundwater chemistry in the reduced and oxidized aquifers was relatively stable from 2004 to 2009. Although sediment extractions indicate a relatively low amount of As in the oxidized sediments, below 2.5 mg kg{sup -1}, batch isotherm experiments show that the sediments have a high capacity to adsorb As. Simulations using a surface complexation model that considers adsorption to amorphous Fe(III) oxide minerals only, under-predict the experimental isotherms. This suggests that a large proportion of the adsorption sites in the oxidized sediments may be associated with crystalline Fe(III) oxides, Mn(IV) and Al(III) oxides, and clay minerals. Replicate breakthrough column experiments conducted with lactose added to the influent solution demonstrate that the high adsorption capacity of the oxidized sediments may be reduced if water drawn down into the oxidized aquifers contains high levels of

  20. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    Science.gov (United States)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  1. A New Boundary for the High Plains - Ogallala Aquifer Complex

    Science.gov (United States)

    Haacker, E. M.; Nozari, S.; Kendall, A. D.

    2017-12-01

    In the semi-arid Great Plains, water is the key ingredient for crop growth: the difference between meager yields for many crops and an agricultural bonanza. The High Plains-Ogallala Aquifer complex (HPA) underlies 452,000 square kilometers of the region, and over 95% of water withdrawn from the aquifer is used for irrigation. Much of the HPA is being pumped unsustainably, and since the region is heavily reliant on this resource for its social and economic health, the High Plains has been a leader in groundwater management planning. However, the geographic boundary of the High Plains region fails to reflect the hydrogeological realities of the aquifer. The current boundary, recognizable from countless textbooks and news articles, is only slightly modified from a version from the 1980's, and largely follows the physiographic borders of the High Plains - defined by surface features such as escarpments and rivers - rather than the edges of water-bearing sediment sufficient for high-volume pumping. This is supported by three lines of evidence: hydrogeological observations from the original aquifer boundary determination; the extent of irrigated land, as estimated by MODIS-MIrAD data; and statistical estimates of saturated thickness, incorporating improved maps of the aquifer base and an additional 35 years of water table measurements. In this project, new maps of saturated thickness are used to create an updated aquifer boundary, which conforms with the standard definition of an aquifer as a package of sediment that yields enough water to be economically pumped. This has major implications for social and physical models, as well as water planning and estimates of sustainability for the HPA. Much of the area of the HPA that has been labeled `sustainable' based upon estimates of recharge relative to pumping estimates falls outside the updated aquifer boundary. In reality, the sustainably-pumped area of this updated aquifer boundary is far smaller—a fact that if more

  2. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO 2 ), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established

  3. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David R.; Izbicki, John A.; Metzger, Loren F.

    2015-11-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency's secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100-2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  4. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  5. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    Science.gov (United States)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an

  6. Conceptual and numerical modeling approach of the Guarani Aquifer System

    Directory of Open Access Journals (Sweden)

    L. Rodríguez

    2013-01-01

    Full Text Available In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s−1 while the observed absolute minimum discharge was 382 m3 s−1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through

  7. Continuous exposure of pesticides in an aquifer changes microbial biomass, diversity and degradation potential

    DEFF Research Database (Denmark)

    de Lipthay, J. R.; Johnsen, K.; Aamand, J.

    2000-01-01

    We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential ...... towards phenoxyalcanoic acid herbicides as well as impact on microbial diversity was observed. Furthermore, bacterial biomass was changed, e.g. increased numbers of phenoxyalcanoic acid degraders in pesticide exposed sediment.......We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential...

  8. Water-level altitudes 2014 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2013 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2014-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained clay and silt layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate 2014 water-level altitudes (represented by measurements made during December 2013–March 2014) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2013–14) water-level changes for each aquifer; maps depicting contoured 5-year (2009–14) water-level changes for each aquifer; maps depicting contoured long-term (1990–2014 and 1977–2014) water-level changes for the Chicot and Evangeline aquifers; a map depicting contoured long-term (2000–14) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2013. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  9. Regional modelling of the confined aquifers below the Boom clay in NE-Belgium

    International Nuclear Information System (INIS)

    Vandersteen, K.; Gedeon, M.; Marivoet, J.; Wouters, L.

    2012-01-01

    Document available in extended abstract form only. In the framework of the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). The hydrogeological program at SCK.CEN supports the long-term performance assessments of the geological disposal of radioactive waste by performing a phenomenological research of the aquifer systems surrounding the studied disposal system. One of the important components of this programme is the regional hydrogeological modelling. The regional hydrogeology is studied using two main models - the steady state Neogene aquifer model (NAM) and the transient deep aquifer pumping model (DAP), developed to characterize and quantify the regional groundwater flow in, respectively, the aquifers lying above the Boom Clay in the Nete catchment area (NAM), and the aquifers lying below the Boom Clay in the Campine area (DAP). This paper describes the most recent update of the DAP model. The DAP model represents the confined part of the groundwater system located stratigraphically below the Boom Clay. This includes the parts of the Oligocene aquifer, the Bartoon aquitard system and the Ledo-Paniselian-Brusselian aquifer buried under the Boom Clay. Due to the considerable pumping from these aquifers in combination with a limited recharge, a gradual decrease in groundwater levels has been observed in more than 30-year piezometric records. In the DAP model, the shallow aquifer system overlying the Boom Clay is replaced by fixed head boundaries: this aquifer system is dominated by close-to-surface hydrological processes and the heads fluctuate seasonally without any apparent long-term trend. In the horizontal direction, the model extends to the south as far as the outcrops of the major aquitards: the Maldegem Formation confining the Ledo

  10. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    Science.gov (United States)

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  11. Inherent mineralization of 2,6-dichlorobenzamide (BAM) in unsaturated zone and aquifers - Effect of initial concentrations and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Janniche, Gry Sander, E-mail: gsja@env.dtu.dk [DTU Environment, Technical University of Denmark, Building 113, DK-2800 Kgs. Lyngby (Denmark); Clausen, Liselotte; Albrechtsen, Hans-Jorgen [DTU Environment, Technical University of Denmark, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2011-10-15

    The dichlobenil metabolite BAM (2,6-dichlorobenzamide) is frequently detected in aquifers e.g. in Denmark despite the mother compound dichlobenil was banned here since 1997. BAM mineralization was investigated at environmentally relevant concentrations in sediment samples. Undisturbed sediment cores with known dichlobenil application were collected from topsoil to 8.5 m below surface resulting in 57 samples hereof 4 aquifer samples. Mineralization was only substantial (>10%) in the uppermost meter of the unsaturated zone. Microbial adaptation, observed as faster mineralization in pre-exposed than in pristine sediments from the same location, was only evident in sandy sediment where dichlobenil was still present, but not in clayey sediments. Higher initial concentrations (1-5000 {mu}g/kg) did not stimulate mineralization in pristine clayey or sandy sediments, or in pre-exposed sand. However, in pre-exposed clay mineralization was stimulated at high concentrations. Furthermore BAM was for the first time mineralized in aerobic aquifer sediments from different BAM-contaminated groundwater locations. - Highlights: > BAM mineralized in BAM-contaminated aerobic aquifer sediments. > In subsurface, fastest BAM mineralization in pre-exposed sandy sediments. > Increased mineralization (adaptation) only observed in contaminated sandy sediment. > In pristine sediments mineralization ratio increased with decreasing concentrations. - BAM mineralization in subsurface and groundwater was demonstrated.

  12. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  13. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  14. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    Science.gov (United States)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  15. Water-level altitudes 2015 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2014 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Houston, Natalie A.; Johnson, Michaela R.; Schmidt, Tiffany S.

    2015-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2015 water-level altitudes (represented by measurements made during December 2014–March 2015) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2014–15) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2010–15) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2015 and 1977–2015) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–15) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2014. Three tables listing the water-level data used to construct each water-level map for each aquifer and a table listing the measured cumulative compaction data for each extensometer site and graphs are included.

  16. Clay Mineralogy of AN Alluvial Aquifer in a Mountainous, Semiarid Terrain, AN Example from Rifle, Colorado

    Science.gov (United States)

    Elliott, W. C.; Lim, D.; Zaunbrecher, L. K.; Pickering, R. A.; Williams, K. H.; Navarre-Sitchler, A.; Long, P. E.; Noel, V.; Bargar, J.; Qafoku, N. P.

    2015-12-01

    Alluvial sediments deposited along the Colorado River corridor in the semi-arid regions of central to western Colorado can be important hosts for legacy contamination including U, V, As and Se. These alluvial sediments host aquifers which are thought to provide important "hot spots" and "hot moments" for microbiological activity controlling organic carbon processing and fluxes in the subsurface. Relatively little is known about the clay mineralogy of these alluvial aquifers and the parent alluvial sediments in spite of the fact that they commonly include lenses of silt-clay materials. These lenses are typically more reduced than coarser grained materials, but zones of reduced and more oxidized materials are present in these alluvial aquifer sediments. The clay mineralogy of the non-reduced parent alluvial sediments of the alluvial aquifer located in Rifle, CO (USA) is composed of chlorite, smectite, illite, kaolinite and quartz. The clay mineralogy of non-reduced fine-grained materials at Rifle are composed of the same suite of minerals found in the sediments plus a vermiculite-smectite intergrade that occurs near the bottom of the aquifer near the top of the Wasatch Formation. The clay mineral assemblages of the system reflect the mineralogically immature character of the source sediments. These assemblages are consistent with sediments and soils that formed in a moderately low rainfall climate and suggestive of minimal transport of the alluvial sediments from their source areas. Chlorite, smectite, smectite-vermiculite intergrade, and illite are the likely phases involved in the sorption of organic carbon and related microbial redox transformations of metals in these sediments. Both the occurrence and abundance of chlorite, smectite-vermiculite, illite and smectite can therefore exert an important control on the contaminant fluxes and are important determinants of biogeofacies in mountainous, semiarid terrains.

  17. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    Science.gov (United States)

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  18. Spatial variability of hydraulic conductivity of an unconfined sandy aquifer determined by a mini slug test

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Hinsby, Klaus; Christensen, Thomas Højlund

    1992-01-01

    The spatial variability of the hydraulic conductivity in a sandy aquifer has been determined by a mini slug test method. The hydraulic conductivity (K) of the aquifer has a geometric mean of 5.05 × 10−4 m s−1, and an overall variance of 1n K equal to 0.37 which corresponds quite well to the results...... obtained by two large scale tracer experiments performed in the aquifer. A geological model of the aquifer based on 31 sediment cores, proposed three hydrogeological layers in the aquifer concurrent with the vertical variations observed with respect to hydraulic conductivity. The horizontal correlation......, to be in the range of 0.3–0.5 m compared with a value of 0.42 m obtained in one of the tracer tests performed....

  19. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    Science.gov (United States)

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  20. Understanding Uranium Behavior in a Reduced Aquifer

    Science.gov (United States)

    Janot, N.; Lezama-Pacheco, J. S.; Williams, K. H.; Bernier-Latmani, R.; Long, P. E.; Davis, J. A.; Fox, P. M.; Yang, L.; Giammar, D.; Cerrato, J. M.; Bargar, J.

    2012-12-01

    Uranium contamination of groundwater is a concern at several US Department of Energy sites, such Old Rifle, CO. Uranium transport in the environment is mainly controlled by its oxidation state, since oxidized U(VI) is relatively mobile, whereas U(IV) is relatively insoluble. Bio-remediation of contaminated aquifers aims at immobilizing uranium in a reduced form. Previous laboratory and field studies have shown that adding electron donor (lactate, acetate, ethanol) to groundwater stimulates the activity of metal- and sulfate-reducing bacteria, which promotes U(VI) reduction in contaminated aquifers. However, obtaining information on chemical and physical forms of U, Fe and S species for sediments biostimulated in the field, as well as kinetic parameters such as U(VI) reduction rate, is challenging due to the low concentration of uranium in the aquifers (typically bio-remediation experiment at the Old Rifle site, CO, from early iron-reducing conditions to the transition to sulfate-reducing conditions. Several in-well chromatographic columns packed with sediment were deployed and were sampled at different days after the start of bio-reduction. X-ray absorption spectroscopy and X-ray microscopy were used to obtain information on Fe, S and U speciation and distribution. Chemical extractions of the reduced sediments have also been performed, to determine the rate of Fe(II) and U(IV) accumulation.

  1. FEMA: a Finite Element Model of Material Transport through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

  2. FEMA: a Finite Element Model of Material Transport through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above

  3. Geochemical processes in a calcareous sandstone aquifer during managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Yonatan; Russak, Amos; Siebner, Hagar; Bernstein, Anat; Katz, Yoram; Guttman, Jospeh; Kurtzman, Daniel

    2017-04-01

    In the last three years we monitor Managed Aquifer Recharge (MAR) of post-treated desalinated seawater (PTDES) in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. The PTDES are stabilized with CaCO3 during post-treatment in the desalination plant and their chemical composition differs from those of any other water recharged to the aquifer and of the natural groundwater. We use suction cups in the unsaturated zone, shallow observation wells within the pond and production wells that encircles the MAR Menashe site, to study the geochemical processes during MAR with PTDES. Ion-enrichment (remineralization) of the recharged water was observed in both unsaturated zone and shallow observation wells samples. Enrichment occurs mainly in the first few meters below the pond surface by ion-exchange processes. Mg2+ enrichment is most prominent due to its deficiency in the PTDES. It is explained by ion-exchange with Ca2+, as the PTDES (enriched with Ca2+) infiltrates through a calcareous-sandstone aquifer with various amount of adsorbed Mg2+ (3-27 meq/kg). Hence, the higher concentration of Ca+2 in the PTDES together with its higher affinity to the sediments promotes the release of Mg2+ ions to the recharged water. Water isotopes analysis of the production wells were used to estimate residence time and mixing with local groundwater. At the end of 2016, it was found that the percentage of PTDES in adjacent down-gradient production wells was around 10%, while more distant or up-gradient wells show no mixing with PTDES. The distinct isotope contrast between the recharged desalinated seawater (δ2H=+11.2±0.2‰) and the local groundwater (δ2H ranged from -22.7 to -16.7‰) is a promising tool to evaluate future mixing processes at the Menshae MAR site. Using the Menashe MAR system for remineralization could be beneficial as a primary or complementary post-treatment technique. However, the sustainability of this process is

  4. Ancient aqueous sedimentation on Mars

    International Nuclear Information System (INIS)

    Goldspiel, J.M.; Squyres, S.W.

    1991-01-01

    Viking orbiter images are presently used to calculate approximate volumes for the inflow valleys of the ancient cratered terrain of Mars; a sediment-transport model is then used to conservatively estimate the amount of water required for the removal of this volume of debris from the valleys. The results obtained for four basins with well-developed inflow networks indicate basin sediment thicknesses of the order of tens to hundreds of meters. The calculations further suggest that the quantity of water required to transport the sediment is greater than that which could be produced by a single discharge of the associated aquifer, unless the material of the Martian highlands was very fine-grained and noncohesive to depths of hundreds of meters. 48 refs

  5. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production.

    Science.gov (United States)

    Bonte, Matthijs; van Breukelen, Boris M; Stuyfzand, Pieter J

    2013-09-15

    Aquifers used for the production of drinking water are increasingly being used for the generation of shallow geothermal energy. This causes temperature perturbations far beyond the natural variations in aquifers and the effects of these temperature variations on groundwater quality, in particular trace elements, have not been investigated. Here, we report the results of column experiments to assess the impacts of temperature variations (5°C, 11°C, 25°C and 60°C) on groundwater quality in anoxic reactive unconsolidated sandy sediments derived from an aquifer system widely used for drinking water production in the Netherlands. Our results showed that at 5 °C no effects on water quality were observed compared to the reference of 11°C (in situ temperature). At 25°C, As concentrations were significantly increased and at 60 °C, significant increases were observed pH and DOC, P, K, Si, As, Mo, V, B, and F concentrations. These elements should therefore be considered for water quality monitoring programs of shallow geothermal energy projects. No consistent temperature effects were observed on Na, Ca, Mg, Sr, Fe, Mn, Al, Ba, Co, Cu, Ni, Pb, Zn, Eu, Ho, Sb, Sc, Yb, Ga, La, and Th concentrations, all of which were present in the sediment. The temperature-induced chemical effects were probably caused by (incongruent) dissolution of silicate minerals (K and Si), desorption from, and potentially reductive dissolution of, iron oxides (As, B, Mo, V, and possibly P and DOC), and mineralisation of sedimentary organic matter (DOC and P). Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Sensitivity Analysis of DRASTIC Model in Vulnerability Assessment of Shahrood Alluvial Aquifer

    Directory of Open Access Journals (Sweden)

    Shadi Abolhasan Almasi

    2017-07-01

    Full Text Available Groundwater vulnerability assessment is typically accomplished as a management tool to protect groundwater resources. In this research, the DRASTIC model which is an empirical one used for evaluating the potential of an aquifer for pollution was employed to evaluate the vulnerability of Shahrood alluvial aquifer. Moreover, the sensitivity of the model paramneters was assessed to identify the ones with greatest effect on vulnerability. The model layers including depth to groundwater table level, recharge, aquifer media, topography, impact of unsaturated zone, and hydraulic conductivity were prepared and classified in the ArcGIS software based on analyses of both the available data and the layer of surface soil texture using Aster satellite images. Once the vulnerability index was calculated, the sensitivity map of Shahroud aquifer vulnerability was analyzed using the two parameter removal and single parameter sensitivity methods. These were further verified by textural analysis of soil samples from different parts of the region. The layers with appropriate weights were overlaid and the DRASTIC index of the aquifer was estimated at 28 to 148. The highest vulnerability was detected in the northern margins and southwestern parts of the aquifer while other parts were characterized by medium to low vulnerability. The low nitrogen concentration observed in the farm areas and its rise to 45 mg/l in the northern stretches of the aquifer bear witness to the accuracy of the zoning rendered by the DRASTIC model. Based on the vulnerability map of Sharoud aquifer, it was found that 1.6% of the aquifer’s area has a very high vulnerability or potential for pollution followed by 10%, 28.8%, and 18.9% of the area were identified as having high, medium and low potentials for pollution, respecytively. The remaining (i.e., 40.5% was found to have no risk of pollution.

  7. Final report for the IAEA urban aquifers RCA : determining the effects of storm water infiltration on groundwater quality in an urban fractured rock aquifer, Auckland, New Zealand

    International Nuclear Information System (INIS)

    Rosen, M.R.; Hong, Y.S.; Sheppard, D.; Roberts, K.; Viljevac, Z.; Smaill, A.; Reeves, R.R.

    2000-01-01

    Disposal of storm water in the Mt Eden-Mt Albert area of Auckland, New Zealand, is via ''soak holes'' drilled directly into the top of the fractured basalt. These soak holes receive storm water and sediment runoff from city streets throughout Mt Eden. Although this method of disposal has been used for at least 60 years, its sustainability with respect to groundwater quality has not been addressed. This study aimed to determine the impact of soakage on the chemical and isotopic composition of the groundwater. In addition, sediments captured by the soak holes were analysed to determine their effectiveness at trapping contaminants. Groundwater samples were collected between August 1998 and August 1999. Three sampling trips were carried out after rainfall events in October 1998, April 1999 and August 1999. Samples were analysed for major and trace components, including nutrients, dissolved and total heavy metals (As, Cr, Cu, Zn, Pb, Cd, and Ni), polynuclear aromatic hydrocarbons (PAHs), chlorofluorocarbons (CFCs) and stable and radiogenic isotopes. Cores of sediment collected in the soak holes were analysed for major components, total and leachable heavy metals, and PAHs to determine the ability of the sediments to adsorp contaminants. In summary, the Mt Eden aquifer system shows the effect of storm water infiltration rapidly after a rainfall event in some parts of the aquifer. Water quality has been effected in some areas, but in general the water quality is quite good considering the quantity of storm water discharge that has occurred in the area for the past 60 years. The relatively high quality of the water in the wells monitored may be attributed to the ability of the accumulated sediment in the soak holes and the aquifer fractures to trap contaminants. Further research is needed to determine if continued use of the groundwater system as a conduit for storm water infiltration will lead to clogging of the fractures in the aquifer and/or transport of particulates

  8. Pesticide sorption by low organic carbon sediments: A sceening for seven herbicides

    DEFF Research Database (Denmark)

    Madsen, Lene; Lindhardt, Bo; Rosenberg, Per

    2000-01-01

    The sorption of seven pesticides in 10 Danish aquifer sediments has been studied. These sediments all have a total organic carbon (TOC) content below 1 g kg(-1), and include carbonate-bearing and carbonate-free Quatenary sand deposits and a Cretaceous chalk aquifer. Batch experiments were carried...

  9. Adaptive surrogate model based multiobjective optimization for coastal aquifer management

    Science.gov (United States)

    Song, Jian; Yang, Yun; Wu, Jianfeng; Wu, Jichun; Sun, Xiaomin; Lin, Jin

    2018-06-01

    In this study, a novel surrogate model assisted multiobjective memetic algorithm (SMOMA) is developed for optimal pumping strategies of large-scale coastal groundwater problems. The proposed SMOMA integrates an efficient data-driven surrogate model with an improved non-dominated sorted genetic algorithm-II (NSGAII) that employs a local search operator to accelerate its convergence in optimization. The surrogate model based on Kernel Extreme Learning Machine (KELM) is developed and evaluated as an approximate simulator to generate the patterns of regional groundwater flow and salinity levels in coastal aquifers for reducing huge computational burden. The KELM model is adaptively trained during evolutionary search to satisfy desired fidelity level of surrogate so that it inhibits error accumulation of forecasting and results in correctly converging to true Pareto-optimal front. The proposed methodology is then applied to a large-scale coastal aquifer management in Baldwin County, Alabama. Objectives of minimizing the saltwater mass increase and maximizing the total pumping rate in the coastal aquifers are considered. The optimal solutions achieved by the proposed adaptive surrogate model are compared against those solutions obtained from one-shot surrogate model and original simulation model. The adaptive surrogate model does not only improve the prediction accuracy of Pareto-optimal solutions compared with those by the one-shot surrogate model, but also maintains the equivalent quality of Pareto-optimal solutions compared with those by NSGAII coupled with original simulation model, while retaining the advantage of surrogate models in reducing computational burden up to 94% of time-saving. This study shows that the proposed methodology is a computationally efficient and promising tool for multiobjective optimizations of coastal aquifer managements.

  10. Modeling of drainage and hay production over the Crau aquifer for analyzing the impact of global change on aquifer recharge

    Science.gov (United States)

    Olioso, Albert; Lecerf, Rémi; Baillieux, Antoine; Chanzy, André; Ruget, Françoise; Banton, Olivier; Lecharpentier, Patrice; Alkassem Alosman, Mohamed; Ruy, Stéphane; Gallego Elvira, Belen

    2013-04-01

    The recharge of the aquifer in the Crau plain (550 km2, Southern Rhone Valley, France) depends on the irrigation of 15000 ha of meadow using water withdrawn from the River Durance through a dense network of channels. Traditional irrigation practice, since the XVIth century, has consisted in flooding the grassland fields with a large amount of water, the excess being infiltrated toward the water table. Today, the Crau aquifer holds the main resource in water in the area (300 000 inhabitants) but changes in the agricultural practices and progressive replacement of the irrigated meadows by urbanized area threaten the sustainability of groundwater. The distributed modeling of irrigated meadows together with the modeling of groundwater has been undertaken for quantifying the contribution of the irrigation to the recharge of the aquifer and to investigate possible evolution of hay production, water drainage, evapotranspiration and water table under scenarios of climate and land-use changes. The model combines a crop model (STICS) that simulates hay production, evapotranspiration and water drainage, a multisimulation tool (MultiSimLib) that allows to run STICS over each agricultural field in the aquifer perimeter, a groundwater model MODFLOW to simulate the water table from recharge data (simulated drainage). Specific models were developed for simulating the spatial distribution of climate, including scenario of changes for the 2025 - 2035 time period, soil properties (influenced by irrigation), and agricultural practices (calendar and amount), in particular irrigation and hay cutting. This step was crucial for correctly simulating hay production level and amount of water used for irrigation. Model results were evaluated thanks to plot experiments and information from farmers (biomass production, downward water flow, quantity of irrigated water, cutting calendar...), a network of piezometers and remote sensing maps of evapotranspiration. Main results included: - the

  11. Distribution of polychlorinated biphenyls in the Housatonic River and adjacent aquifer, Massachusetts

    Science.gov (United States)

    Gay, Frederick B.; Frimpter, Michael H.

    1985-01-01

    Polychlorinated biphenyls (PCB's) are sorbed to the fine-grained stream-bottom sediments along the Housatonic River from Pittsfield, Massachusetts, southward to the Massachusetts-Connecticut boundary. The highest PCB concentrations, up to 140,000 micrograms per kilogram, were found in samples of bottom material from a reach of the river between Pittsfield and Woods Pond Dam in Lee, Massachusetts. Sediments in Woods Pond have been estimated to contain about 11,000 pounds of PCB's. Approximately 490 pounds per year of PCB's have also been estimated to move past the Housatonic River gaging station at Great Barrington. The distribution of hydraulic heads, water temperatures, and concentrations of dissolved oxygen, ammonia, nitrate, iron, and manganese in ground water shows that industrial water-supply wells in a sand and gravel aquifer adjacent to a stretch of the river called Woods Pond have been inducing ground-water recharge through the PCB-contaminated bottom sediments of the pond since late 1956. These data indicate that, at one location along the shore of the pond, the upper 40 feet of the aquifer contains water derived from induced infiltration. However, this induced recharge has not moved PCB's from the bottom sediments into a vertical section of the aquifer located 5 feet downgradient from the edge of Woods Pond. Samples taken at selected intervals in this section showed that no PCB's sorbed to the aquifer material or dissolved in the ground water within the detection limits of the chemical analyses.

  12. Nitrate bioreduction in redox-variable low permeability sediments

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Sen [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Liu, Chongxuan, E-mail: chongxuan.liu@pnnl.gov [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Shi, Liang; Shang, Jianying [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Shan, Huimei [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Zachara, John; Fredrickson, Jim; Kennedy, David; Resch, Charles T.; Thompson, Christopher; Fansler, Sarah [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2016-01-01

    Low permeability zone (LPZ) can play an important role as a sink or secondary source in contaminant transport in groundwater system. This study investigated the rate and end product of nitrate bioreduction in LPZ sediments. The sediments were from the U.S. Department of Energy's Hanford Site, where nitrate is a groundwater contaminant as a by-product of radionuclide waste discharges. The LPZ at the Hanford site consists of two layers with an oxidized layer on top and reduced layer below. The oxidized layer is directly in contact with the overlying contaminated aquifer, while the reduced layer is in contact with an uncontaminated aquifer below. The experimental results showed that nitrate bioreduction rate and end-product differed significantly in the sediments. The bioreduction rate in the oxidized sediment was significantly faster than that in the reduced one. A significant amount of N{sub 2}O was accumulated in the reduced sediment; while in the oxidized sediment, N{sub 2}O was further reduced to N{sub 2}. RT-PCR analysis revealed that nosZ, the gene that codes for N{sub 2}O reductase, was below detection limit in the reduced sediment. Batch experiments and kinetic modeling were performed to provide insights into the role of organic carbon bioavailability, biomass growth, and competition between nitrate and its reducing products for electrons from electron donors. The results revealed that it is important to consider sediment redox conditions and functional genes in understanding and modeling nitrate bioreduction in subsurface sediments. The results also implied that LPZ sediments can be important sink of nitrate and a potential secondary source of N{sub 2}O as a nitrate bioreduction product in groundwater. - Highlights: • Low permeability zones (LPZ) can microbially remove nitrate in groundwater. • The rate and end product of nitrate bioreduction vary within LPZ. • Greenhouse gas N{sub 2}O can be the end product of nitrate bioreduction in LPZ.

  13. Hydrochemical characterization of groundwater aquifer using ...

    African Journals Online (AJOL)

    Hydrochemical data analysis revealed four sources of solutes. The processes responsible for their enrichment include: chemical weathering, leaching of the overlying sediments, domestic activities, climatic condition and the flow pattern of the aquifer. The factors have contributed to the changes of the groundwater chemistry ...

  14. Aquifer Vulnerability Investigation Using Geoelectric Method in Parts ...

    African Journals Online (AJOL)

    The generated longitudinal conductance map showed poor protective capacity ... capacity makes the aquifer in the study area vulnerable to contamination ..... Sedimentation and Structure of the Niger Delta. ... Direct application of the Dar.

  15. Impact of coal combustion waste on the microbiology of a model aquifer

    International Nuclear Information System (INIS)

    Brunning, J.S.; Caldwell, D.E.; Lawrence, J.R.; Roberts, R.D.

    1994-01-01

    The effects of water infiltration into an alkaline coal combustion waste burial site on the chemical and microbiological aspects of a meso-scale (2,44 m diameter x 4.6 m, height, 65 tonne) model aquifer were analyzed. The spatial and temporal effects of the alkaline leachate on microbial activity, numbers and diversity were examined in the model and compared with uncontaminated control materials. Within the saturated zone below the waste there was a pH gradient from 12.4 at the water table, immediately below the waste, to 6.0 at 3.5 meters from the waste, and elevated levels of arsenic and strontium in the pore waters. Microtox testing of the contaminated pore waters indicated high toxicity (a gamma value of 1 at dilutions of 45 to 110 fold). The leachate contamination was associated with a reduction in bacterial ( 3 H) leucine incorporation from a high of 265 fmol g -1 h -1 in sediments below the contaminant plume to undetectable in the contaminated zone. In comparison, leucine incorporation rates in control column sediments were 899 fmol g -1 h -1 . Similar toxic effects were evident in reduced total direct and culturable counts of bacteria. Observations also indicated a reduction in microbial diversity and development of alkaline-tolerant microbial communities. These results indicated that any failure of confinement technologies at disposal sites would adversely affect both the chemistry and microbiology of the underlying saturated zone. 43 refs., 7 figs., 2 tabs

  16. Digital model analysis of the principal artesian aquifer, Savannah, Georgia area

    Science.gov (United States)

    Counts, H.B.; Krause, R.E.

    1977-01-01

    A digital model of the principal artesian aquifer has been developed for the Savannah, Georgia, area. The model simulates the response of the aquifer system to various hydrologic stresses. Model results of the water levels and water-level changes are shown on maps. Computations may be extended in time, indicating changes in pumpage were applied to the system and probable results calculated. Drawdown or water-level differences were computed, showing comparisons of different water management alternatives. (Woodard-USGS)

  17. Hydraulic properties of the Midville Aquifer at the Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Hodges, R.A.; Snipes, D.S.; Benson, S.M.; Daggett, J.S.; Temples, T.; Harrelson, L.

    1994-01-01

    Aquifer performance tests of the Midville Aquifer System were conducted at the Savannah River Site (SRS) in South Carolina. The stratigraphic section of interest consists of Late Cretaceous Coastal Plain sediments. Within the study area, the Midville Aquifer System is composed of sand aquifers separated by discontinuous clay lenses. The Midville is underlain by the Appleton Confining Unit which is separated from underlying Triassic sediments and Paleozoic crystallines by a regional unconformity. This unconformable surface has a dip of 10 m/km to the southeast. The Midville is overlain by the Allendale Confining Unit which separates the Midville from the Dublin Aquifer System. The tests were performed at B and P Areas within the SRS using production wells screened in the Midville Aquifer and monitor well clusters screened in the Midville, Dublin, and Gordon (Eocene) Aquifers. The B Area is located 13 km updip from P Area. The Midville is about 50 meters thick at B Area and 80 meters thick at P Area. The transmissivity of the Midville is 0.0095 m 2 /s at B Area and 0.017 m 2 /s at P Area. The storativity at both areas is about 10 -4 . Vertical leakance of the Midville is greater updip as the stratigraphic section thins. During the B Area test, pumping induced water level changes were detected in aquifers above the Midville. At P Area, no pumping induced water level changes were detected above the Midville Aquifer System

  18. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ujević Bošnjak, M., E-mail: magdalena.ujevic@hzjz.hr [Croatian National Institute of Public Health, Rockefelerova 7, 10000 Zagreb (Croatia); Fazinić, S. [Institute Ruđer Bošković, Bijenička cesta, 10000 Zagreb (Croatia); Duić, Ž. [University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb (Croatia)

    2013-10-01

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole.

  19. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    International Nuclear Information System (INIS)

    Ujević Bošnjak, M.; Fazinić, S.; Duić, Ž.

    2013-01-01

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole

  20. Characterization of the lowland coastal aquifer of Comacchio (Ferrara, Italy): Hydrology, hydrochemistry and evolution of the system

    Science.gov (United States)

    Giambastiani, B. M. S.; Colombani, N.; Mastrocicco, M.; Fidelibus, M. D.

    2013-09-01

    This study delineates the actual hydrogeochemistry and the geological evolution of an unconfined coastal aquifer located in a lowland setting in order to understand the drivers of the groundwater salinization. Physical aquifer parameterization highlights a vertical hydraulic gradient due to the presence of a heavy drainage system, which controls the hydrodynamics of this coastal area, forcing groundwater to flow from the bottom toward the top of the aquifer. As a consequence, relict seawater in stable density stratification, preserved within low permeability sediments in the deepest portion of the aquifer, has been drawn upward. The hydrogeochemical investigations allow identifying the role of seepage and water-sediment interactions in the aquifer salinization process and in the modification of groundwater chemistry. Mixing between freshwater and saltwater occurs; however, it is neither the only nor the dominant process driving groundwater hydrochemistry. In the aquifer several concurring and competing water-sediment interactions - as NaCl solution, ion-exchange, calcite and dolomite dissolution/precipitation, oxidation of organic matter, and sulfate bacterial reduction - are triggered by or overlap freshwater-saltwater mixing The hyper-salinity found in the deepest portion of the aquifer cannot be associated with present seawater intrusion, but suggests the presence of salt water of marine origin, which was trapped in the inter-basin during the Holocene transgression. The results of this study contribute to a better understanding of groundwater dynamics and salinization processes in this lowland coastal aquifer.

  1. Biogeochemical aspects of aquifer thermal energy storage

    NARCIS (Netherlands)

    Brons, H.J.

    1992-01-01

    During the process of aquifer thermal energy storage the in situ temperature of the groundwater- sediment system may fluctuate significantly. As a result the groundwater characteristics can be considerably affected by a variety of chemical, biogeochemical and microbiological

  2. Water-level altitudes 2012 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2011 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2012-01-01

    Most of the subsidence in the Houston–Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers and caused compaction of the clay layers of the aquifer sediments. This report—prepared by the U.S. Geological Survey in cooperation with the Harris– Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District—is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing approximate water-level altitudes for 2012 (calculated from measurements of water levels in wells made during December 2011–February 2012) for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2011–12) water-level-altitude changes for each aquifer; maps showing 5-year (2007–12) water-levelaltitude changes for each aquifer; maps showing long-term (1990–2012 and 1977–2012) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–12) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface sediments at the extensometers from 1973 (or later) through 2011. Tables listing the data that were used to construct each water-level map for each aquifer and the cumulative compaction graphs are included.

  3. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were

  4. Application of a numerical model in the interpretation of a leaky aquifer test

    International Nuclear Information System (INIS)

    Schroth, B.; Narasimhan, T.N.

    1997-01-01

    The potential use of numerical models in aquifer analysis is by no means a new concept; yet relatively few engineers and scientists are taking advantage of this powerful tool that is more convenient to use now than ever before. In this technical note the authors present an example of using a numerical model in an integrated analysis of data from a three-layer leaky aquifer system involving well-bore storage, skin effects, variable discharge, and observation wells in the pumped aquifer and in an unpumped aquifer. The modeling detail may differ for other cases. The intent is to show that interpretation can be achieved with reduced bias by reducing assumptions in regard to system geometry, flow rate, and other details. A multiwell aquifer test was carried out at a site on the western part of the Lawrence Livermore National Laboratory (LLNL), located about 60 kilometers east of San Francisco. The test was conducted to hydraulically characterize one part of the site and thus help develop remediation strategies to alleviate the ground-water contamination

  5. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  6. Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA

    Science.gov (United States)

    Gurdak, Jason J.; Roe, Cassia D.

    2010-12-01

    Playas are ephemeral, closed-basin wetlands that are hypothesized as an important source of recharge to the High Plains aquifer in central USA. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on groundwater from the High Plains aquifer has prompted many questions regarding the contribution and quality of recharge from playas to the High Plains aquifer. As a result, there has been considerable scientific debate about the potential for water to infiltrate the relatively impermeable playa floors, travel through the unsaturated zone sediments that are tens of meters thick, and subsequently recharge the High Plains aquifer. This critical review examines previously published studies on the processes that control recharge rates and chemistry beneath playas. Reported recharge rates beneath playas range from less than 1.0 to more than 500 mm/yr and are generally 1-2 orders of magnitude higher than recharge rates beneath interplaya settings. Most studies support the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this review provide science-based implications for management of playas and groundwater resources of the High Plains aquifer and directions for future research.

  7. REDUCTIVE DEHALOGENATION OF HALOMETHANES IN IRON- AND SULFATE-REDUCING SEDIMENTS. 1. REACTIVITY PATTERN ANALYSIS

    Science.gov (United States)

    The incorporation of reductive transformations into environmental fate models requires the characterization of natural reductants in well-characterized sediments and aquifer materials. For this purpose, reactivity patterns (i.e., the range and relative order of reactivity) for a...

  8. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  9. Impact of coal combustion waste on the microbiology of a model aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Brunning, J.S.; Caldwell, D.E.; Lawrence, J.R.; Roberts, R.D. (University of Saskatchewan, Saskatoon, SK (Canada). Dept. of Applied Microbiology and Food Science)

    1994-03-01

    The effects of water infiltration into an alkaline coal combustion waste burial site on the chemical and microbiological aspects of a meso-scale (2,44 m diameter x 4.6 m, height, 65 tonne) model aquifer were analyzed. The spatial and temporal effects of the alkaline leachate on microbial activity, numbers and diversity were examined in the model and compared with uncontaminated control materials. Within the saturated zone below the waste there was a pH gradient from 12.4 at the water table, immediately below the waste, to 6.0 at 3.5 meters from the waste, and elevated levels of arsenic and strontium in the pore waters. Microtox testing of the contaminated pore waters indicated high toxicity (a gamma value of 1 at dilutions of 45 to 110 fold). The leachate contamination was associated with a reduction in bacterial ([sup 3]H) leucine incorporation from a high of 265 fmol g[sup -1]h[sup -1] in sediments below the contaminant plume to undetectable in the contaminated zone. In comparison, leucine incorporation rates in control column sediments were 899 fmol g[sup -1]h[sup -1]. Similar toxic effects were evident in reduced total direct and culturable counts of bacteria. Observations also indicated a reduction in microbial diversity and development of alkaline-tolerant microbial communities. These results indicated that any failure of confinement technologies at disposal sites would adversely affect both the chemistry and microbiology of the underlying saturated zone. 43 refs., 7 figs., 2 tabs.

  10. Karst Aquifer Recharge: A Case History of over Simplification from the Uley South Basin, South Australia

    Directory of Open Access Journals (Sweden)

    Nara Somaratne

    2015-02-01

    Full Text Available The article “Karst aquifer recharge: Comments on ‘Characteristics of Point Recharge in Karst Aquifers’, by Adrian D. Werner, 2014, Water 6, doi:10.3390/w6123727” provides misrepresentation in some parts of Somaratne [1]. The description of Uley South Quaternary Limestone (QL as unconsolidated or poorly consolidated aeolianite sediments with the presence of well-mixed groundwater in Uley South [2] appears unsubstantiated. Examination of 98 lithological descriptions with corresponding drillers’ logs show only two wells containing bands of unconsolidated sediments. In Uley South basin, about 70% of salinity profiles obtained by electrical conductivity (EC logging from monitoring wells show stratification. The central and north central areas of the basin receive leakage from the Tertiary Sand (TS aquifer thereby influencing QL groundwater characteristics, such as chemistry, age and isotope composition. The presence of conduit pathways is evident in salinity profiles taken away from TS water affected areas. Pumping tests derived aquifer parameters show strong heterogeneity, a typical characteristic of karst aquifers. Uley South QL aquifer recharge is derived from three sources; diffuse recharge, point recharge from sinkholes and continuous leakage of TS water. This limits application of recharge estimation methods, such as the conventional chloride mass balance (CMB as the basic premise of the CMB is violated. The conventional CMB is not suitable for accounting chloride mass balance in groundwater systems displaying extreme range of chloride concentrations and complex mixing [3]. Over simplification of karst aquifer systems to suit application of the conventional CMB or 1-D unsaturated modelling as described in Werner [2], is not suitable use of these recharge estimation methods.

  11. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment

    DEFF Research Database (Denmark)

    Levi, Suzi; Hybel, Anne-Marie; Bjerg, Poul Løgstrup

    2014-01-01

    for the herbicides. In the presence of oxygen 14C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides....... The highest oxygen concentrations (corresponding to 4-11mgL-1) stimulated degradation (a 14-27% increase for mecoprop, 3-9% for dichlorprop and 15-20% for bentazone) over an experimental period of 200days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic...... conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2mgL-1). The sediment had substantial oxygen consumption (0.92-1.45O2g-1dw over 200days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due...

  12. Combined geophysical methods for mapping infiltration pathways at the Aurora Water Aquifer recharge and recovery site

    Science.gov (United States)

    Jasper, Cameron A.

    Although aquifer recharge and recovery systems are a sustainable, decentralized, low cost, and low energy approach for the reclamation, treatment, and storage of post- treatment wastewater, they can suffer from poor infiltration rates and the development of a near-surface clogging layer within infiltration ponds. One such aquifer recharge and recovery system, the Aurora Water site in Colorado, U.S.A, functions at about 25% of its predicted capacity to recharge floodplain deposits by flooding infiltration ponds with post-treatment wastewater extracted from river bank aquifers along the South Platte River. The underwater self-potential method was developed to survey self-potential signals at the ground surface in a flooded infiltration pond for mapping infiltration pathways. A method for using heat as a groundwater tracer within the infiltration pond used an array of in situ high-resolution temperature sensing probes. Both relatively positive and negative underwater self-potential anomalies are consistent with observed recovery well pumping rates and specific discharge estimates from temperature data. Results from electrical resistivity tomography and electromagnetics surveys provide consistent electrical conductivity distributions associated with sediment textures. A lab method was developed for resistivity tests of near-surface sediment samples. Forward numerical modeling synthesizes the geophysical information to best match observed self- potential anomalies and provide permeability distributions, which is important for effective aquifer recharge and recovery system design, and optimization strategy development.

  13. Karst connections between unconfined aquifers and the Upper Floridan aquifer in south Georgia: geophysical evidence and hydrogeological models

    Science.gov (United States)

    Thieme, D. M.; Denizman, C.

    2011-12-01

    Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.

  14. Degradation of the Pesticides Mecoprop and Atrazine in Unpolluted Sandy Aquifers

    DEFF Research Database (Denmark)

    Klint, Mikala; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    The potential for biodegradation of the pesticides mecoprop ((+/-)-2-(4-chloro-2-methyl-phenoxy)propionic acid) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) in an aerobic aquifer was investigated in laboratory batch experiments. The experiments were performed with groundwater...... the aquifer. Atrazine was not degraded during an incubation period of 539 d in groundwater and 174 d in suspensions of groundwater and aquifer sediment. The addition of nutrients, primary substrates (acetate and naphthalene), and a pH or temperature increase had not effect on the recalcitrance of atrazine....

  15. An analytical solution for modeling thermal energy transfer in a confined aquifer system

    Science.gov (United States)

    Shaw-Yang, Yang; Hund-der, Yeh

    2008-12-01

    A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.

  16. Microbiological and environmental effects of aquifer thermal energy storage - studies at the Stuttgart man-made aquifer and a large-scale model system

    International Nuclear Information System (INIS)

    Adinolfi, M.; Ruck, W.

    1993-01-01

    The storage of thermal energy, either heat or cold, in natural or artificial aquifers creates local perturbations of the indigenous microflora and the environmental properties. Within an international working group of the International Energy Agency (IEA Annex VI) possible environmental impacts of ATES-systems were recognized and investigated. Investigations of storage systems on natural sites, man-made aquifers and large-scale models of impounded aquifers showed changes in microbial populations, but until now no adverse microbiological processes associated with ATES-systems could be documented. However, examinations with a model system indicate an increased risk of environmental impact. Therefore, the operation of ATES-systems should be accompanied by chemical and biological investigations. (orig.) [de

  17. Application of the Aquifer Impact Model to support decisions at a CO 2 sequestration site: Modeling and Analysis: Application of the Aquifer Impact Model to support decisions at a CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana Holford [Pacific Northwest National Laboratory, Richland WA USA; Locke II, Randall A. [University of Illinois, Illinois State Geological Survey Champaign IL USA; Keating, Elizabeth [Los Alamos National Laboratory, Los Alamos NM USA; Carroll, Susan [Lawrence Livermore National Laboratory, Livermore CA USA; Iranmanesh, Abbas [University of Illinois, Illinois State Geological Survey Champaign IL USA; Mansoor, Kayyum [Lawrence Livermore National Laboratory, Livermore CA USA; Wimmer, Bracken [University of Illinois, Illinois State Geological Survey Champaign IL USA; Zheng, Liange [Lawrence Berkeley National Laboratory, Berkeley CA USA; Shao, Hongbo [University of Illinois, Illinois State Geological Survey Champaign IL USA; Greenberg, Sallie E. [University of Illinois, Illinois State Geological Survey Champaign IL USA

    2017-10-04

    The National Risk Assessment Partnership (NRAP) has developed a suite of tools to assess and manage risk at CO2 sequestration sites (1). The NRAP tool suite includes the Aquifer Impact Model (AIM), based on reduced order models developed using site-specific data from two aquifers (alluvium and carbonate). The models accept aquifer parameters as a range of variable inputs so they may have more broad applicability. Guidelines have been developed for determining the aquifer types for which the ROMs should be applicable. This paper considers the applicability of the aquifer models in AIM to predicting the impact of CO2 or Brine leakage were it to occur at the Illinois Basin Decatur Project (IBDP). Based on the results of the sensitivity analysis, the hydraulic parameters and leakage source term magnitude are more sensitive than clay fraction or cation exchange capacity. Sand permeability was the only hydraulic parameter measured at the IBDP site. More information on the other hydraulic parameters, such as sand fraction and sand/clay correlation lengths, could reduce uncertainty in risk estimates. Some non-adjustable parameters, such as the initial pH and TDS and the pH no-impact threshold, are significantly different for the ROM than for the observations at the IBDP site. The reduced order model could be made more useful to a wider range of sites if the initial conditions and no-impact threshold values were adjustable parameters.

  18. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  19. Estimating Poromechanical and Hydraulic Properties of Fractured Media Aquifers Using a Model of the Aquifer at Ploemeur France: Broad Applications and Future Uses

    Science.gov (United States)

    Wilson, M. W.; Burbey, T. J.

    2017-12-01

    Aquifers in fractured crystalline bedrock are located over half of the earth's surface and are vital civil and economic resources particularly in places where ample, safe surface water is not available. With fractured media aquifers providing large percentages of water for municipal, industrial, and agricultural use in many regions of the world. Distinguishing sustainable quantities of extraction is of paramount importance to the continuing viability of these important resources and the communities they serve. The fractured and faulted crystalline-rock aquifer system supporting the community of Ploemeur France has been providing one million cubic meters of water annually, resulting in a modest long-term drawdown of about 15m. To understand the sources and mechanisms of recharge that support this aquifer system, a three-dimensional ABAQUS model was developed using known geologic, water-level and geodetic (tiltmeters and GPS) data to simulate the natural aquifer system that is dominated by a permeable sub-vertical fault and an intersecting semi-horizontal contact zone. The model is used to constrain the poromechanical properties of the fault and contact zones relative to the host crystalline rocks and overlying saprolite by taking advantage of the tilt and seasonal GPS responses caused by municipal pumping along with water-level data for the area. A chief goal in this modeling effort is to assess the sources of recharge to this aquifer system that is atypically productive for a crystalline-rock setting. Preliminary results suggest that the source of water supplying this community is a combination of rapid localized recharge through the saprolite and fault zone and recharge along the contact zone, both from the north (older water) and where it is exposed to the south (younger water). The modeling effort also shows the importance of combining GPS and surface tiltmeter data with water-level measurements for constraining the properties of this complex aquifer system and

  20. A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers

    Science.gov (United States)

    Koussis, Antonis D.; Mazi, Katerina; Riou, Fabien; Destouni, Georgia

    2015-06-01

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by ∼20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  1. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Al Lawati, Wafa M. [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom); Higher College of Technology, Ministry of Manpower, Muscat (Oman); Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Kulp, Thomas R. [Department of Earth Sciences and Environmental Studies, State University of New York, Binghamton, NY (United States); Lee, Ming-Kuo [Department of Geology and Geography, Auburn University, Auburn, AL (United States); Polya, David A. [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom); Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Dongen, Bart E. van, E-mail: Bart.vanDongen@manchester.ac.uk [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom)

    2013-11-15

    Highlights: ► First lipid analysis of Taiwanese aquifer sediments from groundwater As-prone region. ► Both plant-derived terrestrial and mature hydrocarbon lipid sources identified. ► Organic matter sources similar to those of other high As groundwater aquifers. ► Groundwater arsenic at depth controlled by biotic As mobilisation processes. ► Biotic As mobilisation not controlled by a specific source of analysed organic matter. -- Abstract: Arsenic (As) in groundwaters extensively used by people across the world constitutes a serious public health threat. The importance of organic matter (OM) as an electron donor in microbially-mediated reduction of As(V) or Fe(III)-bearing As-host minerals leading to mobilisation of solid-phase arsenic is widely recognised. Notwithstanding this, there are few studies characterising OM in such aquifers and, in particular, there is a dearth of data from the classic arsenic bearing aquifers in southwestern Taiwan. Organic geochemical analyses of sediments from a known groundwater arsenic hot-spot in southwestern Taiwan revealed contributions of thermally mature and plant derived origin, consistent with OM sources in all other Asian groundwater aquifer sediments analysed to date, indicating comparable sources and routes of OM transfer. The combined results of amended As(V) reduction assays with the organic geochemical analysis revealed that the microbiological process of dissimilatory As(V) reduction is active in this aquifer, but it is not controlled by a specific source of analysed OM. These indicate that (i) part of the OM that was considered to be less bio-available could still be used as an electron donor or (ii) other electron donors, not analysed in present study, could be controlling the rate of As release.

  2. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan

    International Nuclear Information System (INIS)

    Al Lawati, Wafa M.; Jean, Jiin-Shuh; Kulp, Thomas R.; Lee, Ming-Kuo; Polya, David A.; Liu, Chia-Chuan; Dongen, Bart E. van

    2013-01-01

    Highlights: ► First lipid analysis of Taiwanese aquifer sediments from groundwater As-prone region. ► Both plant-derived terrestrial and mature hydrocarbon lipid sources identified. ► Organic matter sources similar to those of other high As groundwater aquifers. ► Groundwater arsenic at depth controlled by biotic As mobilisation processes. ► Biotic As mobilisation not controlled by a specific source of analysed organic matter. -- Abstract: Arsenic (As) in groundwaters extensively used by people across the world constitutes a serious public health threat. The importance of organic matter (OM) as an electron donor in microbially-mediated reduction of As(V) or Fe(III)-bearing As-host minerals leading to mobilisation of solid-phase arsenic is widely recognised. Notwithstanding this, there are few studies characterising OM in such aquifers and, in particular, there is a dearth of data from the classic arsenic bearing aquifers in southwestern Taiwan. Organic geochemical analyses of sediments from a known groundwater arsenic hot-spot in southwestern Taiwan revealed contributions of thermally mature and plant derived origin, consistent with OM sources in all other Asian groundwater aquifer sediments analysed to date, indicating comparable sources and routes of OM transfer. The combined results of amended As(V) reduction assays with the organic geochemical analysis revealed that the microbiological process of dissimilatory As(V) reduction is active in this aquifer, but it is not controlled by a specific source of analysed OM. These indicate that (i) part of the OM that was considered to be less bio-available could still be used as an electron donor or (ii) other electron donors, not analysed in present study, could be controlling the rate of As release

  3. Artificial Intelligence-Based Models for the Optimal and Sustainable Use of Groundwater in Coastal Aquifers

    Science.gov (United States)

    Sreekanth, J.; Datta, Bithin

    2011-07-01

    Overexploitation of the coastal aquifers results in saltwater intrusion. Once saltwater intrusion occurs, it involves huge cost and long-term remediation measures to remediate these contaminated aquifers. Hence, it is important to have strategies for the sustainable use of coastal aquifers. This study develops a methodology for the optimal management of saltwater intrusion prone aquifers. A linked simulation-optimization-based management strategy is developed. The methodology uses genetic-programming-based models for simulating the aquifer processes, which is then linked to a multi-objective genetic algorithm to obtain optimal management strategies in terms of groundwater extraction from potential well locations in the aquifer.

  4. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  5. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer

    International Nuclear Information System (INIS)

    Gieg, L.M.; McInerney; Tanner, R.S.; Harris, S.H. Jr.; Sublette, K.L.; Suflita, J.M.; Kolhatkar, R.V.

    1999-01-01

    A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved oxygen and sulfate levels and increased alkalinity, Fe(II), and methane concentrations in the contaminated groundwater, suggesting that aerobic heterotrophic respiration depleted oxygen reserves leaving anaerobic conditions in the hydrocarbon-impacted subsurface. Dissolved hydrogen levels in the contaminated groundwater indicated that sulfate reduction and methanogenesis were predominant biological processes, corroborating the geochemical findings. Furthermore, 10--1000-fold higher numbers of sulfate reducers and methanogens were enumerated in the contaminated sediment relative to background. Putative metabolites were also detected in the contaminated groundwater, including methylbenzylsuccinic acid, a signature intermediate of anaerobic xylene decay. Laboratory incubations showed that benzene, toluene, ethylbenzene, and each of the xylene isomers were biodegraded under sulfate-reducing conditions as was toluene under methanogenic conditions. These results coupled with a decrease in hydrocarbon concentrations in contaminated sediment confirm that intrinsic bioremediation contributes to the attenuation of hydrocarbons in this aquifer

  6. Three-dimensional geologic modeling and groundwater flow modeling of the Töllinperä aquifer in the Hitura nickel mine area, Finland – providing the framework for restoration and protection of the aquifer

    Directory of Open Access Journals (Sweden)

    Sami Saraperä

    2004-01-01

    Full Text Available Elevated concentrations of sulphate, chloride, and nickel were discovered in water samples taken from the Töllinperä aquifer in western Finland. The area is located adjacent to the tailings area of the Hitura nickel mine. Earlier studies revealed that the groundwater contamination resulted from tailings-derived mine waters leaking from a tailings impoundment area. The tailings area directly overlies the Weichselian esker system, part of which is the Töllinperä classified groundwater area. The observed groundwater and surface water contamination resulted in a need to characterize the subsurface geology in the whole area of the contaminated esker aquifer. The primary sedimentary units were introduced into a three-dimensional (3-D geologic model of the aquifer made with EarthVision geologic modeling software. The information obtained from the 3-D geological model was then introduced into a numerical groundwater flow model made with MODFLOW code, which was calibrated with MODFLOWP code.The results of this study were used to guide the sealing of the tailings impoundment in order to prevent the further contamination of the Töllinperä aquifer. The groundwater flow model was used to interpret and simulate the flow system, and to provide a plan to safely continue water supply to local inhabitants from the unpolluted parts of the aquifer.

  7. 3D gravity modeling of the Corrientes province (NE Argentina) and its importance to the Guarani Aquifer System

    Science.gov (United States)

    Mira, Andrés; Gómez Dacal, María Laura; Tocho, Claudia; Vives, Luis

    2013-11-01

    This paper presents a geological model of Corrientes province (Argentina) based on Bouguer gravity anomaly data, obtained in 2073 measurement points. To build the model, the IGMAS + interactive program was used. Two areas of approximately 135,000 km2 were modeled in this study. The selection of these areas was based on the sectors where the largest number of gravity anomaly measurements was made and other type of data was available to perform the parameterization (i.e, lithology profiles in boreholes, seismic profiles and audio-magnetotelluric AMT soundings). The initial geological configuration proposed was composed by four layers: basement, sediments (Paleozoic-Lower Cretaceous), basalts (Serra Geral Group, Lower Cretaceous) and post-basaltic sediments. The result shows a basement compartmentalized in structural blocks separated by large faults. The connection of Asunción and Río Grande Arches is confirmed along a structural high that crosses Corrientes province from SE to NW. The basaltic layer shows lateral changes in its thickness, due to faulting, almost disappearing on the NW of Corrientes. This structural configuration has a special hydrogeological importance because it produces the rise of the Guaraní Aquifer System sedimentary series near the surface and the intense fracture network makes this area prone to local recharge and regional discharge.

  8. Coastal aquifer management under parameter uncertainty: Ensemble surrogate modeling based simulation-optimization

    Science.gov (United States)

    Janardhanan, S.; Datta, B.

    2011-12-01

    Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of

  9. Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kenwell, Amy [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Navarre-Sitchler, Alexis, E-mail: asitchle@mines.edu [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Prugue, Rodrigo [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Spear, John R. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Hering, Amanda S. [Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Maxwell, Reed M. [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Carroll, Rosemary W.H. [Desert Research Institute, Division of Hydrologic Sciences, 2215 Raggio Parkway, Reno, NV 89512 (United States); Williams, Kenneth H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-09-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial “hotspots”) in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. - Highlights: • Biogeochemical characterization of alluvial floodplain soils and sediments was performed to investigate parameters that may indicate microbial hot spot formation. • A correlation between geochemical parameters (total organic carbon and

  10. Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments

    International Nuclear Information System (INIS)

    Kenwell, Amy; Navarre-Sitchler, Alexis; Prugue, Rodrigo; Spear, John R.; Hering, Amanda S.; Maxwell, Reed M.; Carroll, Rosemary W.H.; Williams, Kenneth H.

    2016-01-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial “hotspots”) in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. - Highlights: • Biogeochemical characterization of alluvial floodplain soils and sediments was performed to investigate parameters that may indicate microbial hot spot formation. • A correlation between geochemical parameters (total organic carbon and

  11. Hydrostratigraphy, soil/sediment chemistry, and water quality, Potomac-Raritan-Magothy aquifer system, Puchack Well Field Superfund site and vicinity, Pennsauken Township, Camden County, New Jersey, 1997-2001

    Science.gov (United States)

    Barringer, Julia L.; Walker, Richard L.; Jacobsen, Eric; Jankowski, Pamela

    2010-01-01

    Drinking-water supplies from the Potomac-Raritan-Magothy aquifer system at the Puchack well field in Pennsauken Township, Camden County, New Jersey, have been contaminated by hexavalent chromium-the most toxic and mobile form-at concentrations exceeding the New Jersey maximum contaminant level of 100 micrograms per liter. Also, scattered but widespread instances of volatile organic compounds (primarily trichloroethylene) at concentrations that exceed their respective maximum contaminant levels in the area's ground water have been reported. Because inorganic and organic contaminants are present in the ground water underlying the Puchack well field, no water from there has been withdrawn for public supply since 1998, when the U.S. Environmental Protection Agency (USEPA) added the area that contains the Puchack well field to the National Priorities List. As part of the USEPA's investigation of the Puchack Well Field Superfund site, the U.S. Geological Survey (USGS) conducted a study during 1997-2001 to (1) refine previous interpretations of the hydrostratigraphic framework, hydraulic gradients, and local directions of ground-water flow; (2) describe the chemistry of soils and saturated aquifer sediments; and (3) document the quality of ground water in the Potomac-Raritan-Magothy aquifer system in the area. The four major water-bearing units of the Potomac-Raritan-Magothy aquifer system-the Upper aquifer (mostly unsaturated in the study area), the Middle aquifer, the Intermediate Sand (a local but important unit), and the Lower aquifer-are separated by confining units. The confining units contain areas of cut and fill, resulting in permeable zones that permit water to pass through them. Pumping from the Puchack well field during the past 3 decades resulted in downward hydraulic gradients that moved contaminants into the Lower aquifer, in which the production wells are finished, and caused ground water to flow northeast, locally. A comparison of current (1997

  12. Sedimentological analysis of a contaminated groundwater aquifer

    International Nuclear Information System (INIS)

    Towse, D.

    1991-01-01

    The use of sedimentological reservoir analysis techniques adapted from standard oilfield practice can improve the efficiency and reduce the costs of the evaluation of groundwater aquifers and the design of restoration programs. An evaluation/restoration program at a site in California drilled over 200 test wells in about 750 ac. All wells were logged lithologically and with wireline. The shallow aquifer is a complex braided alluvial floodplain deposit of Late Quaternary age. Analysis demonstrates depositional and erosional responses to periodic hinterland uplifts and to changing climatic conditions. Channel, overbank, lacustrine, and minor deltaic deposits can be recognized. The aquifer architecture has been interpreted to explain the movement of fuel and halogenated hydrocarbon solvents in the sediments and water. Routine engineering geology techniques and hydrologic tests were used to evaluate contamination and to design experimental restoration processes. As demonstrated here, sedimentological techniques show promise in reducing the costs and time required for this type of study. The abundant detailed data will be used in an attempt to develop a microcomputer-based expert system for rapid preliminary analyses of similar aquifers or reservoirs

  13. Recharge and Aquifer Response: Manukan Island’s Aquifer, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Sarva Mangala Praveena

    2010-01-01

    Full Text Available Manukan Island is a small island located in North-West of Sabah, Malaysia was used as a case study area for numerical modeling of an aquifer response to recharge and pumping rates. The results in this study present the variations of recharge into the aquifer under the prediction simulations. The recharge rate increases the water level as indicated by hydraulic heads. This shows that it can alter groundwater of Manukan Island which has been suffering from an overexploration in its unconfined the aquifer. The increase in recharge rate (from 600 mm/year to 750 mm/year increases the water level indicated by hydraulic heads. A reduction in pumping rate (from 0.072 m3/day to 0.058 m3/day not only increases the amount of water levels in aquifer but also reduces the supply hence a deficit in supply. The increase in hydraulic heads depends on the percentage reduction of pumping and recharges rates. The well water has 1978.3 mg/L chloride with current pumping (0.072 m3/day and recharge rates (600 mm/year. However, with an increased of recharge rate and current pumping rate it has decreased about 1.13%. In addition, reduction in pumping rate made the chloride concentration decreased about 2.8%. In general, a reduction in pumping with an increase in recharge rate leads to a decreased in chloride concentrations within the vicinity of cone of depression. Next, to further develop the numerical model, the model should focus on climate change variables such as consequences of climate change are increase in air temperature, increase in sea surface temperature, and more extreme weather conditions. These parameters are considered critical parameters for climate change impact modeling in aquifers. The behavior of the aquifer and its sustainable pumping rate can be done by applying a computer modeling component.

  14. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    Science.gov (United States)

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  15. Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer

    Science.gov (United States)

    Zhang, Shouliang; Kent, Douglas B.; Elbert, David C.; Shi, Zhi; Davis, James A.; Veblen, David R.

    2011-01-01

    Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport

  16. Groundwater potentiality mapping using geoelectrical-based aquifer hydraulic parameters: A GIS-based multi-criteria decision analysis modeling approach

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji Hwee San Lim

    2017-01-01

    Full Text Available This study conducted a robust analysis on acquired 2D resistivity imaging data and borehole pumping test records to optimize groundwater potentiality mapping in Perak province, Malaysia using derived aquifer hydraulic properties. The transverse resistance (TR parameter was determined from the interpreted 2D resistivity imaging data by applying the Dar-Zarrouk parameter equation. Linear regression and GIS techniques were used to regress the estimated values for TR parameters with the aquifer transmissivity values extracted from the geospatially produced BPT records-based aquifer transmissivity map to develop the aquifer transmissivity parameter predictive (ATPP model. The reliability evaluated ATPP model using the Theil inequality coefficient measurement approach was used to establish geoelectrical-based hydraulic parameters (GHP modeling equations for the modeling of transmissivity (Tr, hydraulic conductivity (K, storativity (St, and hydraulic diffusivity (D properties. The applied GHP modeling equation results to the delineated aquifer media was used to produce aquifer potential conditioning factor maps for Tr, K, St, and D. The maps were modeled to develop an aquifer potential mapping index (APMI model via applying the multi-criteria decision analysis-analytic hierarchy process principle. The area groundwater reservoir productivity potential model map produced based on the processed APMI model estimates in the GIS environment was found to be 71% accurate. This study establishes a good alternative approach to determine aquifer hydraulic parameters even in areas where pumping test information is unavailable using a cost effective geophysical data. The produced map can be explored for hydrological decision making.

  17. Landscape self organisation: Modelling Sediment trains

    Science.gov (United States)

    Schoorl, J. M.; Temme, A. J. A. M.; Veldkamp, A.

    2012-04-01

    Rivers tend to develop towards an equilibrium length profile, independently of exogenous factors. In general, although still under debate, this so-called self-organisation is assumed to be caused by simple feedbacks between sedimentation and erosion. Erosion correlates positively with gradient and discharge and sedimentation negatively. With the LAPSUS model, which was run for the catchment of the Sabinal, a small river in the South of Spain, this interplay of erosion and sedimentation results in sediment pulses (sequences of incision and sedimentation through time). These pulses are visualised in a short movie ( see http://www.youtube.com/watch?v=V5LDUMvYZxU). In this case the LAPSUS model run did not take climate, base level nor tectonics into account. Therefore, these pulses can be considered independent of them. Furthermore, different scenarios show that the existence of the pulses is independent of precipitation, erodibility and sedimentation rate, although they control the number and shape of the pulses. A fieldwork check showed the plausibility of the occurrence of these sediment pulses. We conclude that the pulses as modelled with LAPSUS are indeed the consequence of the feedbacks between erosion and sedimentation and are not depending on exogenous factors. Keywords: Landscape self-organisation, Erosion, Deposition, LAPSUS, Modelling

  18. The Importance of Microbial Iron Sulfide Oxidation for Nitrate Depletion in Anoxic Danish Sediments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka; Jacobsen, Ole Stig; Jørgensen, Christian Juncher

    2014-01-01

    of organic carbon in the sediment. An apparent salinity limitation to MISON was observed in the most brackish environment. Addition of high surface area synthetically precipitated iron sulfide (FeS x ) to the aquifer sediment with the lowest natural FeS x reactivity increased both the relative fraction of NO......Nitrate (NO3 −) reduction processes are important for depleting the NO3 − load from agricultural source areas before the discharge water reaches surface waters or groundwater aquifers. In this study, we experimentally demonstrate the co-occurrence of microbial iron sulfide oxidation by NO3 − (MISON......) and other NO3 −-depleting processes in a range of contrasting sediment types: sandy groundwater aquifer, non-managed minerotrophic freshwater peat and two brackish muddy sediments. Approximately 1/3 of the net NO3 − reduction was caused by MISON in three of the four environments despite the presence...

  19. Geochemical controls on fluoriferous groundwaters of the Pliocene and the more recent aquifers: The case of Aigion region, Greece

    Science.gov (United States)

    Katsanou, K.; Siavalas, G.; Lambrakis, N.

    2013-12-01

    High fluoride concentrations (> 8 mg/L) in the groundwater of the Plio-Pleistocene sediments are rare; however, this is the case around Aigion town, where teeth fluorosis has been detected since the 80s. Aiming to investigate the origin and the mobility mechanism of fluorine in groundwater and sediments a hydrogeological and geochemical research has been conducted. The hydrogeological research revealed that the Na-HCO3 water type of boreholes aligned along a fault and hosted in the confined aquifers display the higher fluoride content. The unconfined aquifer is mostly dominated by Na-Ca-Mg-HCO3-SO4 water, which displays much lower fluoride concentrations. The most permeable sectors of this aquifer host fresh water of Ca-HCO3 type. The geochemical research revealed significant amount of fluorine in the base of a lignite sequence hosted in the Plio-Pleistocene sediments.

  20. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    Science.gov (United States)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  1. Assessing groundwater availability in a folded carbonate aquifer through the development of a numerical model

    Science.gov (United States)

    Di Salvo, Cristina; Romano, Emanuele; Guyennon, Nicolas; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2015-04-01

    The study of aquifer systems from a quantitative point of view is fundamental for adopting water management plans aiming at preserving water resources and reducing environmental risks related to groundwater level and discharge changes. This is also what the European Union Water Framework Directive (WFD, 2000/60/EC) states, holding the development of numerical models as a key aspect for groundwater management. The objective of this research is to i) define a methodology for modeling a complex hydrogeological structure in a structurally folded carbonate area and ii) estimate the concurrent effects of exploitation and climate changes on groundwater availability through the implementation of a 3D groundwater flow model. This study concerns the Monte Coscerno karst aquifer located in the Apennine chain in Central Italy in the Nera River Valley.This aquifer, is planned to be exploited in the near future for water supply. Negative trends of precipitation in Central Italy have been reported in relation to global climate changes, which are expected to affect the availability of recharge to carbonate aquifers throughout the region . A great concern is the combined impact of climate change and groundwater exploitation, hence scenarios are needed taking into account the effect of possible temperature and precipitation trends on recharge rates. Following a previous experience with model conceptualization and long-term simulation of groundwater flow, an integrated three-dimensional groundwater model has been developed for the Monte Coscerno aquifer. In a previous paper (Preziosi et al 2014) the spatial distribution of recharge to this aquifer was estimated through the Thornthwaite Mather model at a daily time step using as inputs past precipitation and temperature values (1951-2013) as well as soil and landscape properties. In this paper the numerical model development is described. On the basis of well logs from private consulting companies and literature cross sections the

  2. Microbial Reduction of Fe(III) and SO42- and Associated Microbial Communities in the Alluvial Aquifer Groundwater and Sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Bong-Joo

    2017-11-25

    Agricultural demands continuously increased use of groundwater, causing drawdown of water table and need of artificial recharge using adjacent stream waters. River water intrusion into groundwater can alter the geochemical and microbiological characteristics in the aquifer and subsurface. In an effort to investigate the subsurface biogeochemical activities before operation of artificial recharge at the test site, established at the bank of Nakdong River, Changwon, South Korea, organic carbon transported from river water to groundwater was mimicked and the effect on the indigenous microbial communities was investigated with the microcosm incubations of the groundwater and subsurface sediments. Laboratory incubations indicated microbial reduction of Fe(III) and sulfate. Next-generation Illumina MiSeq sequences of V4 region of 16S rRNA gene provided that the shifts of microbial taxa to Fe(III)-reducing and/or sulfate-reducing microorganisms such as Geobacter, Albidiferax, Desulfocapsa, Desulfuromonas, and Desulfovibrio were in good correlation with the sequential flourishment of microbial reduction of Fe(III) and sulfate as the incubations progressed. This suggests the potential role of dissolved organic carbons migrated with the river water into groundwater in the managed aquifer recharge system on the indigenous microbial community composition and following alterations of subsurface biogeochemistry and microbial metabolic activities.

  3. Hydrogeochemical impact of CO{sub 2} leakage from geological sequestration on shallow potable aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, A.G.

    2013-09-15

    Over the past 10 years scientists have worked in earnest to understand the potential effects of leakage in order that an informed decision on CCGS implementation can be made. This research can be broadly described as aiming to answer two key questions; how deleterious is leakage of CCGS to groundwater resources? and can it be detected geochemically? Some common hydrochemical development is apparent from the literature however many aspects of hydrogeological and hydrogeochemical impact of leakage into shallow aquifers used in water supply remain unclear. In this Ph.D. study an integrated approach was employed in order to answer the two key questions regarding leakage of CO{sub 2} into shallow aquifers. Consequently a combination of laboratory and field investigations were conducted supported by numerical geochemical modeling in order to identify, constrain and quantify processes controlling groundwater chemistry evolution. The output is 4 journal articles and 3 technical reports. In paper I and technical report I simple batch reactors were employed coupled to comprehensive sediment characterization to determine the likely effects of CO{sub 2} on water chemistry in a range of shallow aquifers. Results showed aquifers can be broadly divided into three types; carbonate dominated, silicate dominated and mixed. Each aquifer type showed distinct water chemistry evolution thus inherent risks vary. These studies also highlighted the complexity of risk assessment and detection caused by the range of formation types potentially overlying storage reservoirs. Investigations described in Papers II, III and technical report II increase applicability to real leakage by observing in situ effects including groundwater flow. A silicate dominated shallow aquifer in Vroegum, western Denmark forms the focus of study upon which a series of investigations were conducted. The main field study involved injection of 1600 kg of gas phase CO{sub 2} into the shallow Vroegum aquifer over 72 days

  4. Hydrogeologic framework and hydrologic conditions of the Piney Point aquifer in Virginia

    Science.gov (United States)

    McFarland, E. Randolph

    2017-06-07

    The Piney Point aquifer in Virginia is newly described and delineated as being composed of six geologic units, in a study conducted by the U.S. Geological Survey in cooperation with the Virginia Department of Environmental Quality (VA DEQ). The eastward-dipping geologic units include, in stratigraphically ascending order, thesand of the Nanjemoy Formation Woodstock Member,interbedded limestone and sand of the Piney Point Formation,silty and clayey sand of the Gosport Formation equivalent sediments,silty sand of the Oligocene-age sediments,silty fine-grained sand of the Old Church Formation, andsilty sand of the Calvert Formation, Newport News unit and basal Plum Point Member.Identification of geologic units is based on typical sediment lithologies of geologic formations. Fine-grained sediments that compose confining units positioned immediately above and below the Piney Point aquifer are also described.The Piney Point aquifer is one of several confined aquifers within the Virginia Coastal Plain and includes a highly porous and solution-channeled indurated limestone within the Piney Point Formation from which withdrawals are made. The limestone is relatively continuous laterally across central parts of the Northern Neck, Middle Peninsula, and York-James Peninsula. Other geologic units are of variable extent. The configurations of most of the geologic units are further affected by newly identified faults that are aligned radially from the Chesapeake Bay impact crater and create constrictions or barriers to groundwater flow. Some geologic units are also truncated beneath the lower Rappahannock River by a resurge channel associated with the impact crater.Groundwater withdrawals from the Piney Point aquifer increased from approximately 1 million gallons per day (Mgal/d) during 1900 to 7.35 Mgal/d during 2004. As a result, a water-level cone of depression in James City and northern York Counties was estimated to be as low as 70 feet (ft) below the National Geodetic

  5. hydrogeological caracterization and modeling of the aquifer of oued ...

    African Journals Online (AJOL)

    K. Baba-Hamed

    1 janv. 2018 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. HYDROGEOLOGICAL CARACTERIZATION AND MODELING OF THE AQUIFER.

  6. Estimating preferential flow in karstic aquifers using statistical mixed models.

    Science.gov (United States)

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N

    2014-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  7. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  8. Retardation of volatile organic compounds in ground water in low organic carbon sediments

    International Nuclear Information System (INIS)

    Hoffman, F.

    1995-04-01

    It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K d of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K d s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described

  9. Quantitative groundwater modelling for a sustainable water resource exploitation in a Mediterranean alluvial aquifer

    Science.gov (United States)

    Laïssaoui, Mounir; Mesbah, Mohamed; Madani, Khodir; Kiniouar, Hocine

    2018-05-01

    To analyze the water budget under human influences in the Isser wadi alluvial aquifer in the northeast of Algeria, we built a mathematical model which can be used for better managing groundwater exploitation. A modular three-dimensional finite-difference groundwater flow model (MODFLOW) was used. The modelling system is largely based on physical laws and employs a numerical method of the finite difference to simulate water movement and fluxes in a horizontally discretized field. After calibration in steady-state, the model could reproduce the initial heads with a rather good precision. It enabled us to quantify the aquifer water balance terms and to obtain a conductivity zones distribution. The model also highlighted the relevant role of the Isser wadi which constitutes a drain of great importance for the aquifer, ensuring alone almost all outflows. The scenarios suggested in transient simulations showed that an increase in the pumping would only increase the lowering of the groundwater levels and disrupting natural balance of aquifer. However, it is clear that this situation depends primarily on the position of pumping wells in the plain as well as on the extracted volumes of water. As proven by the promising results of model, this physically based and distributed-parameter model is a valuable contribution to the ever-advancing technology of hydrological modelling and water resources assessment.

  10. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate......Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  11. Hydrogeological modelling of the Atlantis aquifer for management ...

    African Journals Online (AJOL)

    The Atlantis Water Supply Scheme (AWSS, Western Cape, South Africa) has been in operation for about 40 years as a means to supply and augment drinking water to the town of Atlantis via managed aquifer recharge (MAR). In this study, the numerical model MODFLOW for groundwater flow and contaminant transport was ...

  12. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  13. High arsenic (As concentrations in the shallow groundwaters of southern Louisiana: Evidence of microbial controls on As mobilization from sediments

    Directory of Open Access Journals (Sweden)

    Ningfang Yang

    2016-03-01

    Full Text Available Study region: The Mississippi Delta in southern Louisiana, United States. Study focus: The probable role that microbial respiration plays in As release from the shallow aquifer sediments. New hydrological insights for the region: Shallow groundwaters in southern Louisiana have been reported to contain elevated As concentrations, whereas mechanisms responsible for As release from sediments have rarely been studied in this region. Microbial respiration is generally considered the main mechanism controlling As release in reducing anoxic aquifers such as the shallow aquifers in southern Louisiana and those of the Bengal basin. This study investigates the role microbial respiration plays in As release from shallow aquifer sediments in southern Louisiana through sediment incubation experiments and porewater analysis. Arsenic concentrations were the lowest in the sterilized control experiments, slightly higher in the un-amended experiments, and the highest in the experiments amended with acetate, and especially those amended with both acetate and AQDS (9,10-anthraquinone-2,6-disulfonic acid. Although Fe and Mn generally decreased at the beginning of all the experiments, they did follow a similar trend to As after the decrease. Porewater analysis showed that As and Fe concentrations were generally positively correlated and were higher in the coarse-grained sediments than in the fine-grained sediments. Results of the investigation are consistent with microbial respiration playing a key role in As release from the shallow aquifers sediments in southern Louisiana. Keywords: Groundwater, Arsenic, Microbial respiration

  14. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    Science.gov (United States)

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  15. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  16. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    Science.gov (United States)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  17. Determining flow, recharge, and vadose zone drainage in an unconfined aquifer from groundwater strontium isotope measurements, Pasco Basin, WA

    International Nuclear Information System (INIS)

    2004-01-01

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr

  18. Uranium speciation and stability after reductive immobilization in aquifer sediments

    Science.gov (United States)

    Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-11-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.

  19. Combining sediment fingerprinting and a conceptual model for erosion and sediment transfer to explore sediment sources in an Alpine catchment

    Science.gov (United States)

    Costa, A.; Stutenbecker, L.; Anghileri, D.; Bakker, M.; Lane, S. N.; Molnar, P.; Schlunegger, F.

    2017-12-01

    In Alpine basins, sediment production and transfer is increasingly affected by climate change and human activities, specifically hydropower exploitation. Changes in sediment sources and pathways significantly influence basin management, biodiversity and landscape evolution. We explore the dynamics of sediment sources in a partially glaciated and highly regulated Alpine basin, the Borgne basin, by combining geochemical fingerprinting with the modelling of erosion and sediment transfer. The Borgne basin in southwest Switzerland is composed of three main litho-tectonic units, which we characterised following a tributary-sampling approach from lithologically characteristic sub-basins. We analysed bulk geochemistry using lithium borate fusion coupled with ICP-ES, and we used it to discriminate the three lithologic sources using statistical methods. Finally, we applied a mixing model to estimate the relative contributions of the three sources to the sediment sampled at the outlet. We combine results of the sediment fingerprinting with simulations of a spatially distributed conceptual model for erosion and transport of fine sediment. The model expresses sediment erosion by differentiating the contributions of erosional processes driven by erosive rainfall, snowmelt, and icemelt. Soil erodibility is accounted for as function of land-use and sediment fluxes are linearly convoluted to the outlet by sediment transfer rates for hillslope and river cells, which are a function of sediment connectivity. Sediment connectivity is estimated on the basis of topographic-hydraulic connectivity, flow duration associated with hydropower flow abstraction and permanent storage in hydropower reservoirs. Sediment fingerprinting at the outlet of the Borgne shows a consistent dominance (68-89%) of material derived from the uppermost, highly glaciated reaches, while contributions of the lower part (10-25%) and middle part (1-16%), where rainfall erosion is predominant, are minor. This result is

  20. Developing a probability-based model of aquifer vulnerability in an agricultural region

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei

    2013-04-01

    SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.

  1. Elucidating the Role of Carbon Sources on Abiotic and Biotic Release of Arsenic into Cambodian Aquifers

    Science.gov (United States)

    Koeneke, M.

    2017-12-01

    Arsenic (As) is a naturally occurring contaminant in Cambodia that has been contaminating well-water sources of millions of people. Commonly, studies look into the biotic factors that cause the arsenic to be released from aquifer sediments to groundwater. However, abiotic release of As from sediments, though little studied, may also play key roles in As contamination of well water. The goal of this research is to quantitatively compare organic-carbon mediated abiotic and biotic release of arsenic from sediments to groundwater. Batch anaerobic incubation experiments under abiotic (sodium azide used to immobilize microbes) and biotic conditions were conducted using Cambodian aquifer sediments, four different organic carbon sources (sodium lactate, sodium citrate, sodium oxalate, and humic acid), and six different carbon concentrations (0, 1, 2.5, 5, 10, 25mg C/L). Dissolved arsenic, iron(Fe), and manganese(Mn) concentrations in the treatments were measured 112 days . In addition, sediment and solution carbon solution was measured . Collectively, these show how different carbon sources, different carbon concentrations, and how abiotic and biotic factors impact the release of arsenic from Cambodian sediments into aquifers. Overall, an introduction of organic carbon to the soil increases the amount of As released from the sediment. The biotic + abiotic and abiotic conditions seemed to play a minimal role in the amount of As released. Dissolved species analysis showed us that 100% of the As was As(V), Our ICP-MS results vary due to the heterogeneity of samples, but when high levels are Fe are seen in solution, we also see high levels of As. We also see higher As concentrations when there is a smaller amount of Mn in solution.

  2. Characterizing a complex aquifer system using geophysics, hydrodynamics and geochemistry: A new distribution of Miocene aquifers in the Zéramdine and Mahdia-Jébéniana blocks (east-central Tunisia)

    Science.gov (United States)

    Lachaal, Fethi; Bédir, Mourad; Tarhouni, Jamila; Gacha, Ayadi Ben; Leduc, Christian

    2011-06-01

    The Zéramdine and Mahdia-Jébéniana blocks are located in the Sahel region in east-central Tunisia. Active tectonics have divided the region into numerous sub-units, as result of multiple phases of distension and compression. The Miocene fluvio-deltaic sediment sandy layers have aquiferous capacities but their hydraulic properties are still unknown, due to the lack of investigation wells. This study proposes a new description of the regional hydrogeology of Miocene deposits. Seismic-reflection and wireline logging of petroleum and water wells were used to understand the structure and the geometry of the Miocene reservoirs. The groundwater flow and its relationship to the sedimentary and tectonic context were then identified by studying piezometry and hydrochemistry. Two Miocene deep aquifer systems were identified: (1) Zéramdine-Béni Hassen to the north and (2) Jébéniana-Ksour Essef to the south. These aquifers are separated by the Mahdia graben. Other major tectonic structures, such as the Zéramdine fault corridor, the Moknine graben, and the El-Jem half-graben represent lateral boundaries for these aquifers. Other deeper sandy and clayey-sandy reservoirs were also identified in the area. Their repartition, thickness and depth vary from one block to other. Hydrodynamics of the deep aquifers seems to be controlled by geological structures. Two independent compartments were identified: in the northern block groundwater flows from West to East and from Northwest to Southeast, while in the southern block it flows from Northwest to Southeast. Geochemical facies are of two types: Na-Ca-Cl-SO 4 for the Zéramdine-Béni Hassen deep aquifer and Na-Cl for the Jébéniana-Ksour Essef deep aquifer. The hydrodynamic and geochemical results confirm the sharing of the Miocene sediments into two aquifers.

  3. Basement and alluvial aquifers of Malawi: An overview of ...

    African Journals Online (AJOL)

    Elizabeth B Mapoma

    2014-02-17

    Feb 17, 2014 ... Rowland HAL, Gault AG, Lythgoe P, Polya DA (2008) Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal. Province, Cambodia. Appl. Geochem. 23: 3029–3046. Sajidu SM, Masumbu FFF, Fabiano E, Ngongondo C (2007). Drinking water quality and identification of fluoritic areas ...

  4. An experimental and modeling study of grain-scale uranium desorption from field-contaminated sediments and the potential influence of microporosity on mass-transfer

    Science.gov (United States)

    Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.

    2012-12-01

    The aquifer below the 300-Area of the Hanford site (Richland, WA, USA) is plagued by a persistent plume of dissolved uranium (U(VI)) in excess of the Environmental Protection Agency drinking water maximum contamination level even after the removal of highly contaminated sediments. The aquifer sediments in the seasonally saturated lower vadose zone act as both a source and sink for uranium during stage changes in the nearby Columbia River. Diffusion limitation of uranium mass-transfer within these sediments has been cited as a potential cause of the plume's persistence. Equilibrium U(VI) sorption is a strong function of variable chemical conditions, especially carbonate, hydrogen, and uranyl ion activities. Field-contaminated sediments from the site require up to 1,000 hours to reach equilibrium in static batch reactors. Increases in U(VI) concentrations over longer time-scales result from changes in chemical conditions, which drive reactions with sediments that favor U(VI) desorption. Grain-scale U(VI) sorption/desorption rates are slow, likely owing to diffusion of U(VI) and other solutes through intra-granular pore domains. In order to improve understanding of the impact of intra-granular diffusion and chemical reactions controlling grain-scale U(VI) release, experiments were conducted on individual particle size fractions of a single set of constant chemical conditions with multiple stop-flow events, were similar for all size fractions displacement from equilibrium and multiple diffusion domains were described with a two-parameter lognormal distribution of mass-transfer rate coefficients. Parameters describing mass transfer were the same for all size fractions reaction models calibrated with individual size fractions predicted U(VI) and chemical composition as a function of time for the bulk sediment sample. Volumes of pores less than 2.4 nm, quantified using nitrogen adsorption-desorption isotherms, were the same for all size fractions < 2 mm, nearly double

  5. Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)

    Science.gov (United States)

    De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

    2014-05-01

    The Mediterranean region is characterized by a strong development of coastal areas with a high concentration of water-demanding human activities, resulting in weakly controlled withdrawals of groundwater which accentuate the saltwater intrusion phenomenon. The worsening of groundwater quality is a huge problem especially for those regions, like Salento (southern Italy), where a karst aquifer system represents the most important water resource because of the deficiency of a well developed superficial water supply. In this frame, the first 2D numerical model describing the groundwater flow in the karst aquifer of Salento peninsula was developed by Giudici et al. [1] at the regional scale and then improved by De Filippis et al. [2]. In particular, the estimate of the saturated thickness of the deep aquifer highlighted that the Taranto area is particularly sensitive to the phenomenon of seawater intrusion, both for the specific hydrostratigraphic configuration and for the presence of highly water-demanding industrial activities. These remarks motivate a research project which is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area. In this context, the CINFAI operative unit aims at providing a contribution to the characterization of groundwater in the study area. The specific objectives are: a. the reconstruction of the groundwater dynamic (i.e., the preliminary identification of a conceptual model for the aquifer system and the subsequent modeling of groundwater flow in a multilayered system which is very complex from the hydrostratigraphical point of view); b. the characterization of groundwater outflows through submarine and subaerial springs and the water exchanges with the shallow coastal water bodies (e.g. Mar Piccolo) and the off

  6. A sediment graph model based on SCS-CN method

    Science.gov (United States)

    Singh, P. K.; Bhunya, P. K.; Mishra, S. K.; Chaube, U. C.

    2008-01-01

    SummaryThis paper proposes new conceptual sediment graph models based on coupling of popular and extensively used methods, viz., Nash model based instantaneous unit sediment graph (IUSG), soil conservation service curve number (SCS-CN) method, and Power law. These models vary in their complexity and this paper tests their performance using data of the Nagwan watershed (area = 92.46 km 2) (India). The sensitivity of total sediment yield and peak sediment flow rate computations to model parameterisation is analysed. The exponent of the Power law, β, is more sensitive than other model parameters. The models are found to have substantial potential for computing sediment graphs (temporal sediment flow rate distribution) as well as total sediment yield.

  7. Regional Models for Sediment Toxicity Assessment

    Science.gov (United States)

    This paper investigates the use of empirical models to predict the toxicity of sediment samples within a region to laboratory test organisms based on sediment chemistry. In earlier work, we used a large nationwide database of matching sediment chemistry and marine amphipod sedim...

  8. Reactive transport modelling of groundwater chemistry in a chalk aquifer at the watershed scale.

    Science.gov (United States)

    Mangeret, A; De Windt, L; Crançon, P

    2012-09-01

    This study investigates thermodynamics and kinetics of water-rock interactions in a carbonate aquifer at the watershed scale. A reactive transport model is applied to the unconfined chalk aquifer of the Champagne Mounts (France), by considering both the chalk matrix and the interconnected fracture network. Major element concentrations and main chemical parameters calculated in groundwater and their evolution along flow lines are in fair agreement with field data. A relative homogeneity of the aquifer baseline chemistry is rapidly reached in terms of pH, alkalinity and Ca concentration since calcite equilibrium is achieved over the first metres of the vadose zone. However, incongruent chalk dissolution slowly releases Ba, Mg and Sr in groundwater. Introducing dilution effect by rainwater infiltration and a local occurrence of dolomite improves the agreement between modelling and field data. The dissolution of illite and opal-CT, controlling K and SiO(2) concentrations in the model, can be approximately tackled by classical kinetic rate laws, but not the incongruent chalk dissolution. An apparent kinetic rate has therefore been fitted on field data by inverse modelling: 1.5×10(-5) mol(chalk)L (-1) water year (-1). Sensitivity analysis indicates that the CO(2) partial pressure of the unsaturated zone is a critical parameter for modelling the baseline chemistry over the whole chalk aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Options of sustainable groundwater supply from safe aquifers in areas with elevated arsenic - a case study from Bangladesh

    Science.gov (United States)

    Jakariya, M.; Bhattacharya, P.; Bromssen, M. V.

    2008-05-01

    Access to safe drinking water is a basic human right. Several millions of people, mainly in developing countries are affected by arsenic in drinking water and the global impact now makes it a top priority water quality issue. A wide gap between the number of exposed people and the pace of mitigation programmes in rural areas of developing countries is the main problem in providing safe drinking water. The main challenge is to develop a sustainable mitigation option that rural and disadvantaged people can adopt and implement themselves to overcome possible public heath hazards. During the recent years, new approaches have emerged in Bangladesh, primarily emerging out of people's own initiative. The local drillers target presumed safe aquifers on the basis of colour and texture of the sediments. A recent study by our research group revealed a distinct correlation between the colour characteristics of the sediments and the groundwater redox conditions. The coupling between the colour of sediments and the redox characteristics of groundwater may thus be used as a tool to assess the risk for As mobilization from the aquifers. The study showed that it is possible to assess the relative risk of high concentrations of As in aquifers if the colour characteristics of the sediments are known and thus, local drillers may target safe aquifers. For validating the sustainability of this mitigation option geological, hydrogeological and microbiological investigations are needed. The sustainability of the aquifers needs to be assessed by combining results from various field and laboratory investigations and by running predictive models. There is also a need to raise the awareness and thereby create a platform for motivating the local drillers to be educated in installing safe tubewells. Awareness raising and community mobilisation are two top priorities for implementing a sustainable safe water project in rural village areas. Significant preparation, attention, and focus must be

  10. Simplified models of transport and reactions in conditions of CO2 storage in saline aquifers

    Science.gov (United States)

    Suchodolska, Katarzyna; Labus, Krzysztof

    2016-04-01

    Simple hydrogeochemical models may serve as tools of preliminary assessment of CO2 injection and sequestraton impact on the aquifer and cap-rocks. In order to create models of reaction and transport in conditions of CO2 injection and storage, the TOUGHREACT simulator, and the Geochemist's Workbench software were applied. The chemical composition of waters for kinetic transport models based on the water - rock equilibrium calculations. Analyses of reaction and transport of substances during CO2 injection and storage period were carried out in three scenarios: one-dimensional radial model, and two-dimensional model of CO2 injection and sequestration, and one-dimensional model of aquifer - cap-rock interface. Modeling was performed in two stages. The first one simulated the immediate changes in the aquifer and insulating rocks impacted by CO2 injection (100 days in case of reaction model and 30 years in transport and reaction model), the second - enabled assessment of long-term effects of sequestration (20000 years). Reactions' quality and progress were monitored and their effects on formation porosity and sequestration capacity in form of mineral, residual and free phase of CO2 were calculated. Calibration of numerical models (including precipitation of secondary minerals, and correction of kinetics parameters) describing the initial stage of injection, was based on the experimental results. Modeling allowed to evaluate the pore space saturation with gas, changes in the composition and pH of pore waters, relationships between porosity and permeability changes and crystallization or dissolution minerals. We assessed the temporal and spatial extent of crystallization processes, and the amount of carbonates trapping. CO2 in mineral form. The calculated sequestration capacity of analyzed formations reached n·100 kg/m3 for the: dissolved phase - CO(aq), gas phase - CO2(g) and mineral phase, but as much as 101 kg/m3 for the supercritical phase - SCCO2. Processes of gas

  11. Topographic filtering simulation model for sediment source apportionment

    Science.gov (United States)

    Cho, Se Jong; Wilcock, Peter; Hobbs, Benjamin

    2018-05-01

    We propose a Topographic Filtering simulation model (Topofilter) that can be used to identify those locations that are likely to contribute most of the sediment load delivered from a watershed. The reduced complexity model links spatially distributed estimates of annual soil erosion, high-resolution topography, and observed sediment loading to determine the distribution of sediment delivery ratio across a watershed. The model uses two simple two-parameter topographic transfer functions based on the distance and change in elevation from upland sources to the nearest stream channel and then down the stream network. The approach does not attempt to find a single best-calibrated solution of sediment delivery, but uses a model conditioning approach to develop a large number of possible solutions. For each model run, locations that contribute to 90% of the sediment loading are identified and those locations that appear in this set in most of the 10,000 model runs are identified as the sources that are most likely to contribute to most of the sediment delivered to the watershed outlet. Because the underlying model is quite simple and strongly anchored by reliable information on soil erosion, topography, and sediment load, we believe that the ensemble of simulation outputs provides a useful basis for identifying the dominant sediment sources in the watershed.

  12. Geochemical Fractionations and Mobility of Arsenic, Lead and Cadmium in Sediments of the Kanto Plain, Japan.

    Science.gov (United States)

    Hossain, Sushmita; Oguchi, Chiaki T.; Hachinohe, Shoichi; Ishiyama, Takashi; Hamamoto, Hideki

    2014-05-01

    Lowland alluvial and floodplain sediment play a major role in transferring heavy metals and other elements to groundwater through sediment water interaction in changing environmental conditions. However identification of geochemical forms of toxic elements such as arsenic (As), lead (Pb) and cadmium (Cd) requires risk assessment of sediment and subsequent groundwater pollution. A four steps sequential extraction procedure was applied to characterize the geochemical fractionations of As, Pb and Cd for 44 sediment samples including one peat sample from middle basin area of the Nakagawa river in the central Kanto plain. The studied sediment profile extended from the bottom of the river to 44 m depth; sediment samples were collected at 1m intervals from a bored core. The existing sedimentary facies in vertical profile are continental, transitional and marine. There are two aquifers in vertical profile; the upper aquifer (15-20m) contains fine to medium sand whereas medium to coarse sand and gravelly sand contain in lower aquifer (37-44m). The total As and Pb contents were measured by the X-Ray Fluorescence analysis which ranged from 4 to 23 mg/kg of As and 10 to 27 mg/kg of Pb in sediment profile. The three trace elements and major heavy metals were determined by ICP/MS and ICP/AES, and major ions were measured by an ion chromatograph. The marine sediment is mainly Ca-SO4 type. The Geochemical analysis showed the order of mobility trends to be As > Pb > Cd for all the steps. The geochemical fractionations order was determined to be Fe-Mn oxide bound > carbonate bound > ion exchangeable > water soluble for As and Pb whereas the order for Cd is carbonate bound > Fe-Mn oxide bound > ion exchangeable > water soluble. The mobility tendency of Pb and Cd showed high in fine silty sediment of marine environment than for those from continental and transitional environments. In the case of As, the potential mobility is very high (>60%) in the riverbed sediments and clayey silt

  13. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  14. Evaluation of Conceptual and Numerical Models for Arsenic Mobilization and Attenuation during Managed Aquifer Recharge

    NARCIS (Netherlands)

    Post, V.E.A.; Prommer, H.; Wallis, I.; Simmons, C.T.; Stuijfzand, P.J.

    2010-01-01

    Managed Aquifer Recharge (MAR) is promoted as an attractive technique to meet growing water demands. An impediment to MAR applications, where oxygenated water is recharged into anoxic aquifers, is the potential mobilization of trace metals (e.g., arsenic). While conceptual models for arsenic

  15. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  16. Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer

    International Nuclear Information System (INIS)

    Sturchio, N.C.; Heraty, L.J.; Huang, L.; Holt, B.D.; Abrajano, T.A. Jr.; Clausen, J.L.

    1998-01-01

    Natural attenuation of chlorinated aliphatic hydrocarbons (CAHs) can be an important mechanism for groundwater remediation. It is difficult to determine the effectiveness of natural CAH attenuation from chemical analyses of groundwater samples because mixing, dispersion, and secondary reactions can mask the chemical evidence of attenuation. In this paper, the authors explore the application of stable chlorine isotope ratio measurements as a new tool for evaluating natural attenuation of CAHs. They report stable isotope ratios of chlorine in both trichloroethene (TCE) and inorganic chloride in groundwater from an aerobic aquifer beneath an extensively contaminated industrial site, the Paducah Gaseous Diffusion Plant in western Kentucky. Variations in the concentrations and chlorine isotope ratios of TCE and chloride in the groundwater are consistent with those expected from natural attenuation. These data support a model in which partial TCE degradation occurred in relatively impermeable, clay-rich sediments above the aquifer, and little or no further degradation of TCE occurred within the aquifer. A record of changing conditions within the TCE source area can be inferred from the spatial variation of chlorine isotope ratios for TCE and chloride within the plume

  17. Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area

    International Nuclear Information System (INIS)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Lin, Po-Cheng; Hwang, Yaw-Huei; Liu, Chen-Wuing; Liao, Chung-Min; Chang, Fi-John; Yu, Chan-Wei

    2011-01-01

    Highlights: ► Sedimentary microcosm showed simultaneous microbial reduction of Fe(III) and As(V). ► Addition of acetate caused a further increase in aqueous Fe(II) but not arsenic. ► An As(V)-reducing bacterium (ARS-3) native to aquifer sediments was isolated. ► ARS-3 showed microbial reduction of As(V) to As(III) in pore water in this aquifer. - Abstract: High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23 ± 0.03 mM) in pore waters and mobilization of As(III) (206.7 ± 21.2 nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27 ± 0.01 mM and 571.4 ± 63.3 nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments.

  18. Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Vivian Hsiu-Chuan, E-mail: vivianliao@ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Chu, Yu-Ju; Su, Yu-Chen; Lin, Po-Cheng [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Hwang, Yaw-Huei [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei 100, Taiwan (China); Liu, Chen-Wuing; Liao, Chung-Min; Chang, Fi-John; Yu, Chan-Wei [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Sedimentary microcosm showed simultaneous microbial reduction of Fe(III) and As(V). Black-Right-Pointing-Pointer Addition of acetate caused a further increase in aqueous Fe(II) but not arsenic. Black-Right-Pointing-Pointer An As(V)-reducing bacterium (ARS-3) native to aquifer sediments was isolated. Black-Right-Pointing-Pointer ARS-3 showed microbial reduction of As(V) to As(III) in pore water in this aquifer. - Abstract: High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23 {+-} 0.03 mM) in pore waters and mobilization of As(III) (206.7 {+-} 21.2 nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27 {+-} 0.01 mM and 571.4 {+-} 63.3 nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments.

  19. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    Science.gov (United States)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a

  20. Heat exchange modeling in a multilayered karst aquifer affected by seawater intrusion

    Directory of Open Access Journals (Sweden)

    Luca Vettorello

    2015-11-01

    Full Text Available A Feflow thermohaline model has been implemented in order to study borehole heat exchangers (BHEs activity in a coastal aquifer in the South of Italy (Province of Lecce, Puglia Region. The modeled closed-loop system consists of two double u-pipe heat exchangers, installed in 200 meters deep boreholes. The main purpose of numerical modeling was to forecast thermal plume extension in groundwater after a long period of heat exchange, calculating temperature trends in observation points during a 10 years transport simulation. The complex geological structure, including calcarenites, fractured limestones and a deep karst aquifer, has been translated into a multilayered model, with a depth-related parameter distribution, assigning different values of hydraulic, thermal and chemical properties to each layer. In particular saltwater concentration has been taken into account, considering the influence of seawater intrusion on the heat transport density-dependent model. Parameters assignment was based on experimental datasets collected during initial field investigations, including thermal characterization of soil samples and GRTs, together with historical hydrogeological and hydrochemical measures and previous groundwater surveys. After model structure configuration and aquifers parameterization, a sensitivity analysis on porosity and heat dispersivity has been conducted, to evaluate their influence on thermal transport phenomena with a multiple scenarios approach, considering in particular the uncertainty related to secondary porosity in karst systems. Feflow simulation represented the first step in environmental compatibility evaluation for the BHE plant, waiting for the necessary model calibration with groundwater temperature monitoring trends.

  1. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico

    Science.gov (United States)

    González-Herrera, Roger; Sánchez-y-Pinto, Ismael; Gamboa-Vargas, José

    2002-09-01

    The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Résumé. Le modèle conceptuel classique de l'aquifère karstique libre de la péninsule du Yucatan (Mexique) consiste en une lentille d'eau douce flottant sur une eau salée plus dense qui pénètre à plus de 40 km à l'intérieur des terres. La transmissivité de l'aquifère est très élevée, en sorte que le gradient hydraulique est très faible, compris entre 7 et 10 mm/km dans la plus grande partie du nord de la péninsule. Le modèle AQUIFER a été utilisé pour explorer les écoulements souterrains régionaux dans cet

  2. Assessing the efficiency of a coastal Managed Aquifer Recharge (MAR) system in Cyprus.

    Science.gov (United States)

    Tzoraki, Ourania; Dokou, Zoi; Christodoulou, George; Gaganis, Petros; Karatzas, George

    2018-06-01

    Managed Aquifer Recharge (MAR) is becoming an attractive water management option, with more than 223 sites operating in European countries. The quality of the produced water, available for drinking or irrigation processes is strongly depended on the aquifer's hydrogeochemical characteristics and on the MAR system design and operation. The objective of this project is the assessment of the operation efficiency of a MAR system in Cyprus. The coupling of alternative methodologies is used such as water quality monitoring, micro-scale sediment sorption experiments, simulation of groundwater flow and phosphate and copper transport in the subsurface using the FEFLOW model and evaluation of the observed change in the chemical composition of water due to mixing using the geochemical model PHREEQC. The above methodology is tested in the Ezousa MAR project in Cyprus, where treated effluent from the Paphos Waste Water Treatment Plant, is recharged into the aquifer through five sets of artificial ponds along the riverbed. Additionally, groundwater is pumped for irrigation purposes from wells located nearby. A slight attenuation of nutrients is observed, whereas copper in groundwater is overcoming the EPA standards. The FEFLOW simulations reveal no effective mixing in some intermediate infiltration ponds, which is validated by the inverse modeling simulation of the PHREEQC model. Based on the results, better control of the infiltration capacity of some of the ponds and increased travel times are some suggestions that could improve the efficiency of the system. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Directory of Open Access Journals (Sweden)

    Robert eDanczak

    2016-05-01

    Full Text Available Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11 and Parcubacteria (OD1 that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  4. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Science.gov (United States)

    Danczak, Robert; Yabusaki, Steven; Williams, Kenneth; Fang, Yilin; Hobson, Chad; Wilkins, Michael

    2016-05-01

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  5. Geochemistry and origins of mineralized waters in the Floridan aquifer system, northeastern Florida

    Science.gov (United States)

    Phelps, G.G.

    2001-01-01

    Increases in chloride concentration have been observed in water from numerous wells tapping the Floridan aquifer system in northeastern Florida. Although most increases have been in the eastern part of Duval County, Florida, no spatial pattern in elevated chloride concentrations is discernible. Possible sources of the mineralized water include modern seawater intrusion; unflushed Miocene-to-Pleistocene-age seawater or connate water in aquifer sediments; or mineralized water from deeper zones of the aquifer system or from formations beneath the Floridan aquifer system. The purpose of this study was to document the chemical and isotopic characteristics of water samples from various aquifer zones, and from geochemical and hydrogeologic data, to infer the source of the increased mineralization. Water samples were collected from 53 wells in northeastern Florida during 1997-1999. Wells tapped various zones of the aquifer including: the Fernandina permeable zone (FPZ), the upper zone of the Lower Floridan aquifer (UZLF), the Upper Floridan aquifer (UFA), and both the UFA and the UZLF. Water samples were analyzed for major ions and trace constituents and for isotopes of carbon, oxygen, hydrogen, sulfur, strontium, chlorine, and boron. Samples of rock from the aquifer were analyzed for isotopes of oxygen, carbon, and strontium. In general, water from various aquifer zones cannot be differentiated based on chemistry, except for water from FPZ wells. Major-ion concentrations vary as much within the upper zone of the Lower Floridan aquifer and the Upper Floridan aquifer as between these two zones. Simple models of mixing between fresh ground water and either modern seawater or water from the FPZ as a mineralized end member show that many water samples from the UZLF aquifer and the UFA are enriched in bicarbonate, calcium, magnesium, sulfate, fluoride, and silica and are depleted in sodium and potassium (as compared to concentrations predicted by simple mixing). Chemical mass

  6. A Review on Concepts, Applications, and Models of Aquifer Thermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Kun Sang Lee

    2010-06-01

    Full Text Available Being a heat source or sink, aquifers have been used to store large quantities of thermal energy to match cooling and heating supply and demand on both a short-term and long-term basis. The current technical, economic, and environmental status of aquifer thermal energy storage (ATES is promising. General information on the basic operation principles, design, and construction of ATES systems is discussed in this paper. Numerous projects in operation around the world are summarized to illustrate the present status of ATES. Hydrogeological-thermal simulation has become an integral part of predicting ATES system performance. Numerical models which are available to simulate an ATES system by modeling mass and heat transport in the aquifer have been summarized. This paper also presents an example of numerical simulation and thermohydraulic evaluation of a two-well, ATES system operating under a continuous flow regime.

  7. Modeling the potential impact of seasonal and inactive multi-aquifer wells on contaminant movement to public water-supply wells

    Science.gov (United States)

    Johnson, R.L.; Clark, B.R.; Landon, M.K.; Kauffman, L.J.; Eberts, S.M.

    2011-01-01

    Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi-aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi-aquifer well is more than a kilometer from the PWS well. The contribution from multi-aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi-aquifer well from an unconfined aquifer to a confined aquifer even when those multi-aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi-aquifer wells can increase the vulnerability of a confined-aquifer PWS well.

  8. Magnetotellurics applied to the study of the Guaraní aquifer in Entre Ríos Province, N-E Argentina

    Science.gov (United States)

    Favetto, Alicia; Curcio, Ana; Pomposiello, Cristina

    2011-07-01

    The South American Guaraní Aquifer System covers the entire Parana basin and part of the Chaco-Parana basin. This system is one of the most important groundwater reservoirs; it is shared by four neighboring countries covering an area larger than one million square kilometers. The geological units closely related to the Guaraní Aquifer are the Piramboia and Botucatu Formations that consist of Triassic-Jurassic aeolian, fluvial and lacustrine sandstones, and the Serra Geral basalts with clastic intercalations. Serra Geral, an effusive Cretaceous complex, covers the sandstones and provides a high degree of confinement to the system. This paper presents the interpretation of magnetotelluric (MT) data collected during 2007-2008 in Entre Ríos Province, Argentina. These data, recorded in three profiles, mainly provide the depth to the crystalline basement, determinant for the presence of aquifer-related sediments. Models showed that the discrimination of the basalts strongly depends on local electrical characteristics. Model information is quite consistent with the information from oil and thermal wells located close to the profiles.

  9. Holocene estuarine sediments as a source of arsenic in Pleistocene groundwater in suburbs of Hanoi, Vietnam

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Funabiki, Ayako; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Takizawa, Satoshi

    2017-06-01

    Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25-40 m depth, 9.6-4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25-94 μg/L) than in the HUA (5.2-42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.

  10. Research on the neutron flux, secular equilibrium of chlorine-36 and groundwater age of the deep quaternary sediments, Hebei plain

    International Nuclear Information System (INIS)

    Dong Yuean; He Ming; Jiang Songsheng; Wu Shaoyong; Jiang Shan

    2001-01-01

    For the study of the neutron flux, secular equilibrium of chlorine-36 in the deep quaternary sediments of Hebei plain, the main chemical composition of water sand and confining bed was determined by neutron activation analysis. The mean neutron flux is 2.79 x 10 -5 cm -2 s -1 which was calculated by the chemical composition of the strata. The mean 36 Cl/Cl ratio in secular equilibrium is 1.27 x 10 -14 in the deep quaternary sediments, Hebei Plain. For the study of the groundwater age of the deep Quaternary sediments of Hebei Plain, the 36 Cl/Cl ratio of groundwater samples were determined by tandem accelerator mass spectrometry. The mixed groundwater 36 Cl/Cl ratio of the second and the third aquifer of Quaternary sediments in Baoding district is 247 x 10 -15 , that of the fourth aquifer in Baoding city is 224 x 10 -15 and the third aquifer in Cangzhou district is 40.5 x 10 -15 . The groundwater age of Baoding district was young and that of the third aquifer in Cangzhou was 229.2 ka

  11. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  12. Numerical modeling of aquifer thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongchan [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of); Lee, Youngmin [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Yoon, Woon Sang; Jeon, Jae Soo [nexGeo Inc., 134-1 Garak 2-dong, Songpa-gu, Seoul 138-807 (Korea, Republic of); Koo, Min-Ho; Keehm, Youngseuk [Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of)

    2010-12-15

    The performance of the ATES (aquifer thermal energy storage) system primarily depends on the thermal interference between warm and cold thermal energy stored in an aquifer. Additionally the thermal interference is mainly affected by the borehole distance, the hydraulic conductivity, and the pumping/injection rate. Thermo-hydraulic modeling was performed to identify the thermal interference by three parameters and to estimate the system performance change by the thermal interference. Modeling results indicate that the thermal interference grows as the borehole distance decreases, as the hydraulic conductivity increases, and as the pumping/injection rate increases. The system performance analysis indicates that if {eta} (the ratio of the length of the thermal front to the distance between two boreholes) is lower than unity, the system performance is not significantly affected, but if {eta} is equal to unity, the system performance falls up to {proportional_to}22%. Long term modeling for a factory in Anseong was conducted to test the applicability of the ATES system. When the pumping/injection rate is 100 m{sup 3}/day, system performances during the summer and winter after 3 years of operation are estimated to be {proportional_to}125 kW and {proportional_to}110 kW, respectively. Therefore, 100 m{sup 3}/day of the pumping/injection rate satisfies the energy requirements ({proportional_to}70 kW) for the factory. (author)

  13. The long-term impacts of anthropogenic and natural processes on groundwater deterioration in a multilayered aquifer.

    Science.gov (United States)

    Sheikhy Narany, Tahoora; Sefie, Anuar; Aris, Ahmad Zaharin

    2018-07-15

    In many regions around the world, there are issues associated with groundwater resources due to human and natural factors. However, the relation between these factors is difficult to determine due to the large number of parameters and complex processes required. In order to understand the relation between land use allocations, the intrinsic factors of the aquifer, climate change data and groundwater chemistry in the multilayered aquifer system in Malaysia's Northern Kelantan Basin, twenty-two years hydrogeochemical data set was used in this research. The groundwater salinisation in the intermediate aquifer, which mainly extends along the coastal line, was revealed through the hydrogeochemical investigation. Even so, there had been no significant trend detected on groundwater salinity from 1989 to 2011. In contrast to salinity, as seen from the nitrate contaminations there had been significantly increasing trends in the shallow aquifer, particularly in the central part of the study area. Additionally, a strong association between high nitrate values and the areas covered with palm oil cultivations and mixed agricultural have been detected by a multiple correspondence analysis (MCA), which implies that the increasing nitrate concentrations are associated with nitrate loading from the application of N-fertilisers. From the process of groundwater salinisation in the intermediate aquifer, could be seen that it has a strong correlation the aquifer lithology, specifically marine sediments which are influenced by the ancient seawater trapped within the sediments. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia

    International Nuclear Information System (INIS)

    Guo, Huaming; Liu, Zeyun; Ding, Susu; Hao, Chunbo; Xiu, Wei; Hou, Weiguo

    2015-01-01

    Intact aquifer sediments were collected to obtain As-resistant bacteria from the Hetao basin. Two strains of aerobic As-resistant bacteria (Pseudomonas sp. M17-1 and Bacillus sp. M17-15) were isolated from the aquifer sediments. Those strains exhibited high resistances to both As(III) and As(V). Results showed that both strains had arr and ars genes, and led to reduction of dissolved As(V), goethite-adsorbed As(V), scorodite As(V) and sediment As(V), in the presence of organic carbon as the carbon source. After reduction of solid As(V), As release was observed from the solids to solutions. Strain M17-15 had a higher ability than strain M17-1 in reducing As(V) and promoting the release of As. These results suggested that the strains would mediate As(V) reduction to As(III), and thereafter release As(III), due to the higher mobility of As(III) in most aquifer systems. The processes would play an important role in genesis of high As groundwater. - Highlights: • Two strains of As-resistant bacteria were isolated from high As aquifer sediment. • The strains (M17–1 and M17-15) had an As tolerance under oxic conditions. • The strains had arr and ars genes, and reduced both dissolved As(V) and solid As(V). • Reduction of solid As(V) resulted in As release into solutions. • M17-15 had a higher ability in reducing As(V) and promoting As release than M17-1. - Indigenous aerobic bacteria from the high-As aquifer sediment had arr and ars genes and led to reduction of dissolved As(V), goethite-adsorbed As(V), scorodite As(V) and sedimentary As

  15. Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer

    Science.gov (United States)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S. F.; Gupta, Manish; Chandler, Darrell P.; Murray, Chris; Peacock, Aaron D.; Giloteaux, Ludovic; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al., 2003; Williams et al., 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al., 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ∼3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in

  16. The Next Generation in Subsidence and Aquifer-System Compaction Modeling within the MODFLOW Software Family: A New Package for MODFLOW-2005 and MODFLOW-OWHM

    Science.gov (United States)

    Boyce, S. E.; Leake, S. A.; Hanson, R. T.; Galloway, D. L.

    2015-12-01

    The Subsidence and Aquifer-System Compaction Packages, SUB and SUB-WT, for MODFLOW are two currently supported subsidence packages within the MODFLOW family of software. The SUB package allows the calculation of instantaneous and delayed releases of water from distributed interbeds (relatively more compressible fine-grained sediments) within a saturated aquifer system or discrete confining beds. The SUB-WT package does not include delayed releases, but does perform a more rigorous calculation of vertical stresses that can vary the effective stress that causes compaction. This calculation of instantaneous compaction can include the effect of water-table fluctuations for unconfined aquifers on effective stress, and can optionally adjust the elastic and inelastic storage properties based on the changes in effective stress. The next generation of subsidence modeling in MODFLOW is under development, and will merge and enhance the capabilities of the SUB and SUB-WT Packages for MODFLOW-2005 and MODFLOW-OWHM. This new version will also provide some additional features such as stress dependent vertical hydraulic conductivity of interbeds, time-varying geostatic loads, and additional attributes related to aquifer-system compaction and subsidence that will broaden the class of problems that can be simulated. The new version will include a redesigned source code, a new user friendly input file structure, more output options, and new subsidence solution options. This presentation will discuss progress in developing the new package and the new features being implemented and their potential applications. By Stanley Leake, Scott E. Boyce, Randall T. Hanson, and Devin Galloway

  17. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    Science.gov (United States)

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    From 1966 to 2002, activities at the Standard Chlorine of Delaware chemical facility in New Castle County, Delaware resulted in the contamination of groundwater, soils, and wetland sediment. In 2005, the U.S. Geological Survey (USGS), in partnership with the U.S. Environmental Protection Agency, Region 3, and the Delaware Department of Natural Resources and Environmental Control began a multi-year investigation of the hydrogeologic framework and hydrology of the confined aquifer system. The goals of the ongoing study at the site (the Potomac Aquifer Study) are to determine the hydraulic connection between the Columbia and Potomac aquifers, determine the direction of groundwater flow in the Potomac aquifer, and identify factors affecting the fate of contaminated groundwater. This report describes progress made towards these goals based on available data collected through September 2012.

  18. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... model. The paper concludes with recommendations on how to identify and employ suitable models to advance the conceptual understanding and as decision support tools for risk assessment and the planning of remedial actions....... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  19. Characterizations of pumping-induced land subsidence in coastal aquifers - model development and field-scale implementations

    Science.gov (United States)

    Ni, C.; Huang, Y.; Lu, C.

    2012-12-01

    The pumping-induced land subsidence events are typically founded in coastal aquifers in Taiwan especially in the areas of lower alluvial fans. Previous investigations have recognized the irreversible situation for an aquifer deformation even if the pumped water is significantly reduced or stopped. Long-term monitoring projects on land subsidence in Choshui alluvial fan in central Taiwan have improved the understanding of the deformations in the aquifer system. To characterization the detailed land subsidence mechanism, this study develops an inverse numerical model to estimate the deformation parameters such as the specific storage (Ss) and vertical hydraulic conductivity (Kv) for interbeds. Similar to the concept of Hydraulic tomography survey (HTS), the developed model employs the iterative cokriging estimator to improve the accuracy of estimating deformation parameters. A one-dimensional numerical example is employed to assess the accuracy of the developed inverse model. The developed model is then applied to field-scale data from compaction monitoring wells (CMW) installed in the lower Choshui River fan. Results of the synthetic example show that the developed inverse model can reproduce well the predefined geologic features of the synthetic aquifer. The model provides better estimations of Kv patterns and magnitudes. Slightly less detail of the Ss was obtained due to the insensitivity of transient stresses for specified sampling times. Without prior information from field measurements, the developed model associated with deformation measurements form CMW can estimate Kv and Ss fields with great spatial resolution.

  20. Model-based analysis of δ34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer

    Science.gov (United States)

    Seibert, Simone; Descourvieres, Carlos; Skrzypek, Grzegorz; Deng, Hailin; Prommer, Henning

    2017-05-01

    The oxidation of pyrite is often one of the main drivers affecting groundwater quality during managed aquifer recharge in deep aquifers. Data and techniques that allow detailed identification and quantification of pyrite oxidation are therefore crucial for assessing and predicting the adverse water quality changes that may be associated with this process. In this study, we explore the benefits of combining stable sulphur isotope analysis with reactive transport modelling to improve the identification and characterisation of pyrite oxidation during an aquifer storage and recovery experiment in a chemically and physically heterogeneous aquifer. We characterise the stable sulphur isotope signal (δ34S) in both the ambient groundwater and the injectant as well as its spatial distribution within the sedimentary sulphur species. The identified stable sulphur isotope signal for pyrite was found to vary between -32 and +34‰, while the signal of the injectant ranged between +9.06 and +14.45‰ during the injection phase of the experiment. Both isotope and hydrochemical data together suggest a substantial contribution of pyrite oxidation to the observed, temporally variable δ34S signals. The variability of the δ34S signal in pyrite and the injectant were both found to complicate the analysis of the stable isotope data. However, the incorporation of the data into a numerical modelling approach allowed to successfully employ the δ34S signatures as a valuable additional constraint for identifying and quantifying the contribution of pyrite oxidation to the redox transformations that occur in response to the injection of oxygenated water.

  1. Increasing freshwater recovery upon aquifer storage : A field and modelling study of dedicated aquifer storage and recovery configurations in brackish-saline aquifers

    NARCIS (Netherlands)

    Zuurbier, Koen

    2016-01-01

    The subsurface may provide opportunities for robust, effective, sustainable, and cost-efficient freshwater management solutions. For instance, via aquifer storage and recovery (ASR; Pyne, 2005): “the storage of water in a suitable aquifer through a well during times when water is available, and the

  2. Protists from a sewage‐contaminated aquifer on cape cod, Massachusetts

    Science.gov (United States)

    Novarino, Gianfranco; Warren, Alan; Kinner, Nancy E.; Harvey, Ronald W.

    1994-01-01

    Several species of flagellates (genera Bodo, Cercomonas, Cryptaulax, Cyathomonas, Goniomonas, Spumella) have been identified in cultures from a plume of organic contamination (treated sewage effluent) within an aquifer on Cape Cod, Massachusetts. Amoebae and numerous unidentifiable 2‐ to 3‐μm flagellates have also been observed. As a rule, flagellates were associated with solid surfaces, or were capable of temporary surface attachment, corroborating earlier observations from in situ and column transport experiments suggesting that protists in the Massachusetts aquifer have a high propensity for association with sediment grain surfaces. Based on the fact that cultures from the uncontaminated part of the aquifer yielded only a few species of protists, it is hypothesized that the greater abundance and variety of food sources in the contaminant plume is capable of supporting a greater number of protistan species.

  3. Volcanic aquifers of Hawai‘i—Hydrogeology, water budgets, and conceptual models

    Science.gov (United States)

    Izuka, Scot K.; Engott, John A.; Rotzoll, Kolja; Bassiouni, Maoya; Johnson, Adam G.; Miller, Lisa D.; Mair, Alan

    2016-06-13

    Hawai‘i’s aquifers have limited capacity to store fresh groundwater because each island is small and surrounded by saltwater. Saltwater also underlies much of the fresh groundwater. Fresh groundwater resources are, therefore, particularly vulnerable to human activity, short-term climate cycles, and long-term climate change. Availability of fresh groundwater for human use is constrained by the degree to which the impacts of withdrawal—such as lowering of the water table, saltwater intrusion, and reduction in the natural discharge to springs, streams, wetlands, and submarine seeps—are deemed acceptable. This report describes the hydrogeologic framework, groundwater budgets (inflows and outflows), conceptual models of groundwater occurrence and movement, and the factors limiting groundwater availability for the largest and most populated of the Hawaiian Islands—Kaua‘i, O‘ahu, Maui, and Hawai‘i Island.The bulk of each of Hawai‘i’s islands is built of many thin lava flows erupted from shield volcanoes; the great piles of lava flows form highly permeable aquifers. In some areas, low-permeability dikes cutting across the lava flows, or low-permeability ash and soil horizons interlayered with the lava flows, can substantially alter groundwater flow. On some islands, sedimentary rocks form thick semiconfining coastal-plain deposits, locally known as caprock, that impede natural groundwater discharge to the ocean. In some regions, thick lava flows that ponded in preexisting depressions form aquifers that are much less permeable than aquifers formed by thin lava flows.Fresh groundwater inflow to Hawai‘i’s aquifers comes from recharge. For predevelopment conditions (1870), estimates of groundwater recharge from this study are 871, 675, 1,279, and 5,291 million gallons per day (Mgal/d) for Kaua‘i, O‘ahu, Maui, and Hawai‘i Island, respectively. Estimates of recharge for recent conditions (2010 land cover and 1978–2007 rainfall for Kaua‘i, O

  4. Aquifer characterization and groundwater modeling in support of remedial actions at the Weldon Spring Site

    International Nuclear Information System (INIS)

    Durham, L.A.; Carman, J.D.

    1993-01-01

    Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site

  5. Geochemical Processes During Managed Aquifer Recharge With Desalinated Seawater

    Science.gov (United States)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2018-02-01

    We study geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW). The DSW, post-treated at the desalination plant by calcite dissolution (remineralization) to meet the Israeli water quality standards, is recharged into the Israeli Coastal Aquifer through an infiltration pond. Water quality monitoring during two MAR events using suction cups and wells inside the pond indicates that cation exchange is the dominant subsurface reaction, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the shallow groundwater composition is similar to the recharged DSW, except for enrichment of Mg2+, Na+, Ca2+, and HCO3-. A calibrated variably-saturated reactive transport model is used to predict the geochemical evolution during 50 years of MAR for two water quality scenarios: (i) post-treated DSW (current practice) and (ii) soft DSW (lacking the remineralization post-treatment process). The latter scenario was aimed to test soil-aquifer-treatment (SAT) as an alternative post-treatment technique. Both scenarios provide an enrichment of ˜2.5 mg L-1 in Mg2+ due to cation exchange, compared to practically zero Mg2+ currently found in the Israeli DSW. Simulations of the alternative SAT scenario provide Ca2+ and HCO3- remineralization due to calcite dissolution at levels that meet the Israeli standard for DSW. The simulated calcite content reduction in the sediments below the infiltration pond after 50 years of MAR was low (<1%). Our findings suggest that remineralization using SAT for DSW is a potentially sustainable practice at MAR sites overlying calcareous sandy aquifers.

  6. Protocols for collection of streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data to describe stream quality for the Hydrobiological Monitoring Program, Equus Beds Aquifer Storage and Recovery Program, city of Wichita, Kansas

    Science.gov (United States)

    Stone, Mandy L.; Rasmussen, Teresa J.; Bennett, Trudy J.; Poulton, Barry C.; Ziegler, Andrew C.

    2012-01-01

    The city of Wichita, Kansas uses the Equus Beds aquifer, one of two sources, for municipal water supply. To meet future water needs, plans for artificial recharge of the aquifer have been implemented in several phases. Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) Program began with injection of water from the Little Arkansas River into the aquifer for storage and subsequent recovery in 2006. Construction of a river intake structure and surface-water treatment plant began as implementation of Phase II of the Equus Beds ASR Program in 2010. An important aspect of the ASR Program is the monitoring of water quality and the effects of recharge activities on stream conditions. Physical, chemical, and biological data provide the basis for an integrated assessment of stream quality. This report describes protocols for collecting streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data as part of the city of Wichita's hydrobiological monitoring program (HBMP). Following consistent and reliable methods for data collection and processing is imperative for the long-term success of the monitoring program.

  7. Evaluation of modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Fjordbøge, Annika Sidelmann; Broholm, Mette Martina

    in fractured limestone aquifers. The model comparison is conducted for a contaminated site in Denmark, where a plume of dissolved PCE has migrated through a fractured limestone aquifer. Field data includes information on spill history, distribution of the contaminant (multilevel sampling), geology...... and hydrogeology. To describe the geology and fracture system, data from borehole logs and cores was combined with an analysis of heterogeneities and fractures from a nearby excavation and pump test data. We present how field data is integrated into the different model concepts. A challenge in the use of field...... and remediation strategies. Each model is compared with field data, considering both model fit and model suitability. Results show a considerable difference between the approaches, and that it is important to select the right one for the actual modeling purpose. The comparison with data showed how much...

  8. Geologic history and hydrogeologic setting of the Edwards-Trinity aquifer system, west-central Texas

    Science.gov (United States)

    Barker, R.A.; Bush, P.W.; Baker, E.T.

    1994-01-01

    The Edwards-Trinity aquifer system underlies about 42,000 square miles of west-central Texas. Nearly flat-lying, mostly Comanche (Lower Cretaceous) strata of the aquifer system thin northwestward atop massive pre-Cretaceous rocks that are comparatively impermeable and structurally complex. From predominately terrigenous clastic sediments in the east and fluvialdeltaic (terrestrial) deposits in the west, the rocks of early Trinitian age grade upward into supratidal evaporitic and dolomitic strata, intertidal limestone and dolostone, and shallow-marine, openshelf, and reefal strata of late Trinitian, Fredericksburgian, and Washitan age. A thick, downfaulted remnant of mostly open-marine strata of Eaglefordian through Navarroan age composes a small, southeastern part of the aquifer system.

  9. Hydro-geological properties of the Savian aquifer in the county Obrenovac

    Directory of Open Access Journals (Sweden)

    Stojadinović Dušan D.

    2005-01-01

    Full Text Available The paper presents a description of hydrogeological researches of alluvial layers of the Sava River in the area of the source "Vić Bare" near Obrenovac. This source supplies groundwater to that town. The depth of these layers amounts to 25 m. With regard to collecting capacity, the most significant are gravel-sand sediments of high filtration properties. Their average depth amounts to about 13 m with the underlying layer made of Pleistocene clays. Compact aquifer is formed within these sediments and it refills partly from the Sava River at places where river cuts its channel into the gravel-sand layer. The analysis of the groundwater regime in the riparian area points out that groundwater levels follow stages of the Sava River. Such an influence lessens with the distance. Established hydraulic connection between the river and the aquifer enables its permanent replenishment. On the other hand, due to certain pollutions this river flow might bring along, it represents a potential danger. Those pollutions could enter water-bearing layer of the aquifer as well as the exploitation well of the source. Such presumptions have been confirmed in the experiment of pollution transport carried out in the water-bearing layer. Unabsorbable chloride was used as a tracer whose movement velocity through exploitation well proved that there were real possibilities of intrusion of aggressive pollutants into the water-bearing layer and into the aquifer as well. Therefore, the protection of the source must be in the function of the protection of surface waters.

  10. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... this zone to be a confined aquifer situated in sediments with a porosity of 23-42%. Discovery of this aquifer suggests that subsurface liquid water may be more pervasive in regions of continuous permafrost than previously thought and may represent an extensive habitat for microbial populations. Key Points...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...

  11. Predicting watershed post-fire sediment yield with the InVEST sediment retention model: Accuracy and uncertainties

    Science.gov (United States)

    Sankey, Joel B.; McVay, Jason C.; Kreitler, Jason R.; Hawbaker, Todd J.; Vaillant, Nicole; Lowe, Scott

    2015-01-01

    Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how changing fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the western USA and throughout the world. In this work we assess the utility of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention Model to accurately characterize erosion and sedimentation of burned watersheds. InVEST was developed by the Natural Capital Project at Stanford University (Tallis et al., 2014) and is a suite of GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., USLE – Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. In this study, we evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured postfire sediment yields available for many watersheds throughout the western USA from an existing, published large database. We show that the model can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy. Our ultimate goal is to use the model to accurately predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions.

  12. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  13. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    Science.gov (United States)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  14. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  15. Quantifying and modelling the contribution of streams that recharge the Querença-Silves aquifer in the south of Portugal

    Directory of Open Access Journals (Sweden)

    N. Salvador

    2012-11-01

    Full Text Available The water balance of the mesocenozoic aquifers of the Algarve, in the south of Portugal has traditionally been estimated considering only direct ("autogenic" recharge from rainfall occurring in the area of the aquifers. Little importance has been attributed to so-called allogenic recharge, originating from streambed infiltration from runoff generated outside the aquifers, particularly in the Palaeozoic rocks to the north where runoff is high. The Querença-Silves (QS aquifer is the most important aquifer of the region both for irrigation and public water supply. Several important and sensitive surface/groundwater ecotones and associated groundwater dependent ecosystems exist at the springs of the natural discharge areas of the aquifer system. A numerical flow model has been in constant development over the last few years and currently is able to reproduce the aquifer's responses to estimated direct recharge and abstraction for the years 2001–2010. However, recharge calculations for the model do not take into account allogenic recharge infiltration along influent reaches of streams. The quantification of allogenic recharge may further improve the assessment of water availability and exploitation risks. In this paper an attempt is made to quantify the average annual contribution of allogenic recharge to the QS aquifer, based on monitoring data of the principal water courses that cross the aquifer system. Significant uncertainties related to surface runoff generated within the aquifer area, as well as areal recharge were identified and the consequences for the optimization of spatial distribution of transmissivity in the groundwater flow model are also addressed.

  16. Sustainable management of transboundary water resources (Belgium/France): Characterization and modelling of the Carboniferous aquifer

    Science.gov (United States)

    Bastien, J.; Picot-Colbeaux, G.; Crastes de Paulet, F.; Rorive, A.; Bouvet, A.; Goderniaux, P.; Thiery, D.

    2016-12-01

    The Carboniferous Limestone groundwater extends from East to West across Belgium and the North of France (1420 km²). In a high population density and industrial activity region, it represents huge volumes of abstracted groundwater (98 Mm³). The aquifer thus constitutes a critical reserve for public distribution and industrial uses. This water reservoir is intensively exploited from both sides of the border since the end of the 19th century. Historically, this transboundary aquifer was overexploited, due to the massive requirements of the industry. As a consequence, a substantial piezometric level decrease was observed (up to 50 m). Due to the karstic nature of the aquifer, many sinkhole collapses were induced in the studied area. A reduction of the abstracted volumes was implemented in the 90s, which contributed to the relative stabilization of the piezometric levels, but the equilibrium remains uncertain. Due to complex political, urbanistic and industrial developments across this region, a reasonable and long-term management model was needed, involving all concerned countries and regions. Within the framework of the Interreg ScaldWIN Project, a belgo-french collaboration allowed the acquisition of new sets of geological and hydrogeological data. A new piezometric map was established and correlated with chemical and isotopic analyses. It enabled a more accurate knowledge on the main flow directions within the aquifer, and the relation between recharge area and the confined area, where groundwater is aged up to 10000 years. A new numerical model of the aquifer was implemented and calibrated by using the MARTHE code. This 4 layer-model includes a part of the French chalk aquifer and integrates all abstracted groundwater volumes (wells and quarries) from 1900 to 2010. Atmospheric and surface waters and potential evapotranspiration are included in relation to the groundwater. This model is used by the different partners to consider globally and locally the impact of

  17. Petrographic and sedimentological characteristics of drift sediments from the radiotracer experiment array at Drigg, Cumbria

    International Nuclear Information System (INIS)

    Milodowski, A.E.

    1990-11-01

    A detailed petrographic, mineralogical and sedimentological study has been made of five drift sediment cores taken from shallow boreholes at Drigg, Cumbria, forming part of the British Geological Survey's migration test borehole array. The cores correspond to the aquifer in which tests are undertaken. The study shows that several discrete units can be recognised within the aquifer but that these may vary laterally by a considerable amount over short distances. The sands and silts comprising the aquifer zone are generally finely laminated and show an upwards coarsening of grain size. They are interpreted as proximal glacial sediments, possibly having been deposited in a lake or ponded basin. Petrographic analysis shows that most of the porosity is lined by detrital ferruginous illitic clay which coats the sand grains. Some evidence of feldspar dissolution is identified. Pyrite is also present as an important detrital component. In the upper part of the aquifer the pyrite has been largely oxidised to form secondary ferric oxide compounds. However, pyrite increases in abundance with depth and its preservation may reflect a variation in redox across the aquifer. (author)

  18. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage

    Impacts of heterogeneity, thermal interference and bioremediation

    Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2

    Abstract

    Aquifer

  19. Free web-based modelling platform for managed aquifer recharge (MAR) applications

    Science.gov (United States)

    Stefan, Catalin; Junghanns, Ralf; Glaß, Jana; Sallwey, Jana; Fatkhutdinov, Aybulat; Fichtner, Thomas; Barquero, Felix; Moreno, Miguel; Bonilla, José; Kwoyiga, Lydia

    2017-04-01

    Managed aquifer recharge represents a valuable instrument for sustainable water resources management. The concept implies purposeful infiltration of surface water into underground for later recovery or environmental benefits. Over decades, MAR schemes were successfully installed worldwide for a variety of reasons: to maximize the natural storage capacity of aquifers, physical aquifer management, water quality management, and ecological benefits. The INOWAS-DSS platform provides a collection of free web-based tools for planning, management and optimization of main components of MAR schemes. The tools are grouped into 13 specific applications that cover most relevant challenges encountered at MAR sites, both from quantitative and qualitative perspectives. The applications include among others the optimization of MAR site location, the assessment of saltwater intrusion, the restoration of groundwater levels in overexploited aquifers, the maximization of natural storage capacity of aquifers, the improvement of water quality, the design and operational optimization of MAR schemes, clogging development and risk assessment. The platform contains a collection of about 35 web-based tools of various degrees of complexity, which are either included in application specific workflows or used as standalone modelling instruments. Among them are simple tools derived from data mining and empirical equations, analytical groundwater related equations, as well as complex numerical flow and transport models (MODFLOW, MT3DMS and SEAWAT). Up to now, the simulation core of the INOWAS-DSS, which is based on the finite differences groundwater flow model MODFLOW, is implemented and runs on the web. A scenario analyser helps to easily set up and evaluate new management options as well as future development such as land use and climate change and compare them to previous scenarios. Additionally simple tools such as analytical equations to assess saltwater intrusion are already running online

  20. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    Science.gov (United States)

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Geophysical exploration to estimate the surface conductivity of residual argillaceous bands in the groundwater repositories of coastal sediments of EOLGA, Nigeria

    Directory of Open Access Journals (Sweden)

    N.J. George

    2017-06-01

    Full Text Available Electrical geophysical applications exploit a petrophysical relationship governing the electrical properties of rocks/sediments when field data are coupled with laboratory data. Given the robust analytical techniques of electrical method and the interrelationship with laboratory measurements, it seems natural to classify, and hence simplify, the spatially aggregated conductivity information on the basis of rock/sediment lithology. This provides a unique link between lithological sediment/rock parameters and the physical parameters controlling bulk conductivity. In this work vertical electrical sounding (VES technique employing Schlumberger configuration integrated with sediment and water analysis have been used to determine the conductivity of argillaceous bands of aquifer sands (fine- coarse sands in Eastern Obolo Local Government Area (EOLGA. The analysis of the data shows that the aquifer systems composing of fine sands, siltstones and coarse sand have bulk and pore-water resistivities ranging from 40.1–2049.4 Ω m (average = 995.18 Ω m to 2.7–256.9 Ω m (average = 91.2 Ω m respectively. These ranges respectively correspond to porosity and formation factor of (19.5–40.6%; average = 29.2% and (7.1–19.7%; average = 12.95%. Within the limit of experimental errors clearly specified in the work, the intrinsic (clay-free formation factor (Fi was estimated to be 16.34 while the intrinsic porosity and the conductivity of the pore-scale clay (σA were respectively estimated to be 20.4% and 3.2679 mS/m. Accounting for this conductivity magnitude of argillaceous bands from bulk conductivity (σb of aquifer sands makes the aquifer systems in the area to be consistent with Archie’s law that is valid only in clay-free sandy formation. The graphical deductions and contour distribution of parameters realised from data processing could be used to derive input parameters for contaminant migration modelling and to improve the

  2. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Fredrickson, James K; Kukkadapu, Ravi K; Boyanov, Maxim I; Kemner, Kenneth M; Lin, Xueju; Kennedy, David W; Bjornstad, Bruce N; Konopka, Allan E; Moore, Dean A; Resch, Charles T; Phillips, Jerry L

    2012-04-03

    The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  3. Simulated effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system and Piney Point aquifer, Maurice and Cohansey River Basins, Cumberland County and vicinity, New Jersey

    Science.gov (United States)

    Gordon, Alison D.; Buxton, Debra E.

    2018-05-10

    The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, conducted a study to simulate the effects of withdrawals from the Kirkwood-Cohansey aquifer system on streamflow and groundwater flow and from the Piney Point aquifer on water levels in the Cohansey and Maurice River Basins in Cumberland County and surrounding areas. The aquifer system consists of gravel, sand, silt, and clay sediments of the Cohansey Sand and Kirkwood Formation that dip and thicken to the southeast. The aquifer system is generally an unconfined aquifer, but semi-confined and confined conditions exist within the Cumberland County study area. The Kirkwood-Cohansey aquifer system is present throughout Cumberland County and is the principal source of groundwater for public, domestic, agricultural-irrigation, industrial, and commercial water uses. In 2008, reported groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the study area totaled about 21,700 million gallons—about 36 percent for public supply; about 49 percent for agricultural irrigation; and about 15 percent for industrial, commercial, mining by sand and gravel companies, and non-agricultural irrigation uses. A transient numerical groundwater-flow model of the Kirkwood-Cohansey aquifer system was developed and calibrated by incorporating monthly recharge, base-flow estimates, water-level data, surface-water diversions and discharges, and groundwater withdrawals from 1998 to 2008.The groundwater-flow model was used to simulate five withdrawal scenarios to observe the effects of additional groundwater withdrawals on the Kirkwood-Cohansey aquifer system and streams. These scenarios include (1) average 1998 to 2008 monthly groundwater withdrawals (baseline scenario); (2) monthly full-allocation groundwater withdrawals, but agricultural-irrigation withdrawals were decreased for October through March; (3) monthly full-allocation groundwater withdrawals; (4) estimated monthly

  4. Environment tracers application to groundwater circulation assessment in an alluvial aquifer in Central Italy

    Science.gov (United States)

    Sappa, Giuseppe; Barbieri, Maurizio; Vitale, Stefania

    2017-04-01

    Groundwater vulnerability assessment is an important tool in order to plan any groundwater protection strategy. The aim of this study is to experiment a specific approach to give a conceptual model about groundwater circulation characterization. This approach has been applied to a suspected contaminated site in a large alluvial plan, made of sediments coming from weathered volcanic rocks, laying on marine sediments, where more than thirty years ago had been built a very important urban waste solid landfill. In referring to this case history it has been pointed out the importance of natural chemical interaction between ground water and rock mass, especially when pyroclastic origin sediments are involved. The landfill had been isolated from the surrounding environment, especially to protect aquifers, by a waterproof diaphragm This land is characterised by intensive agricultural and industrial activities (oil refineries, medical waste incinerators, concrete production, tar factory). The study will highlight the importance of environmental tracers which provide information about the flow and mixing processes of water coming from different sources. They are also useful to point out directions of groundwater flow and to determine origin Environmental tracers are natural chemical and isotopic substances that can be measured in groundwater and used to understand hydrologic properties of aquifers. They may be input into the hydrological system from the atmosphere at recharge and/or are added/lost/exchanged inherently as waters flow over and through materials. Variations in their chemical abundances and isotopic compositions can be used as tracers to determine sources (provenance), pathways (of reaction or interaction) and also timescales (dating) of environmental processes. In combination with these, the basic idea is to use. In this case enviromental tracers have been integrated by temperature and electric conductivity logs, to better investigate different levels of faster

  5. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan.

    Science.gov (United States)

    Al Lawati, Wafa M; Jean, Jiin-Shuh; Kulp, Thomas R; Lee, Ming-Kuo; Polya, David A; Liu, Chia-Chuan; van Dongen, Bart E

    2013-11-15

    Arsenic (As) in groundwaters extensively used by people across the world constitutes a serious public health threat. The importance of organic matter (OM) as an electron donor in microbially-mediated reduction of As(V) or Fe(III)-bearing As-host minerals leading to mobilisation of solid-phase arsenic is widely recognised. Notwithstanding this, there are few studies characterising OM in such aquifers and, in particular, there is a dearth of data from the classic arsenic bearing aquifers in southwestern Taiwan. Organic geochemical analyses of sediments from a known groundwater arsenic hot-spot in southwestern Taiwan revealed contributions of thermally mature and plant derived origin, consistent with OM sources in all other Asian groundwater aquifer sediments analysed to date, indicating comparable sources and routes of OM transfer. The combined results of amended As(V) reduction assays with the organic geochemical analysis revealed that the microbiological process of dissimilatory As(V) reduction is active in this aquifer, but it is not controlled by a specific source of analysed OM. These indicate that (i) part of the OM that was considered to be less bio-available could still be used as an electron donor or (ii) other electron donors, not analysed in present study, could be controlling the rate of As release. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling

    Energy Technology Data Exchange (ETDEWEB)

    Flipo, Nicolas [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France)]. E-mail: nicolas.flipo@ensmp.fr; Jeannee, Nicolas [Geovariances, 49 bis, avenue Franklin Roosevelt, F-77212 Avon (France); Poulin, Michel [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France); Even, Stephanie [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France); Ledoux, Emmanuel [Centre de Geosciences, UMR Sisyphe, ENSMP, 35 rue Saint-Honore, F-77305 Fontainebleau (France)

    2007-03-15

    The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km{sup 2}), part of the Seine basin. CAWAQS results from the coupling of the hydrogeological model NEWSAM with the hydrodynamic and biogeochemical model of river PROSE. CAWAQS is coupled with the agronomic model STICS in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate CAWAQS results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then CAWAQS is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L{sup -1} yr{sup -1}, resulting from an average infiltration flux of 3500 kgN.km{sup -2} yr{sup -1}. - Combined use of geostatistics and physically based modeling allows assessment of nitrate concentrations in aquifer systems.

  7. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling

    International Nuclear Information System (INIS)

    Flipo, Nicolas; Jeannee, Nicolas; Poulin, Michel; Even, Stephanie; Ledoux, Emmanuel

    2007-01-01

    The objective of this work is to combine several approaches to better understand nitrate fate in the Grand Morin aquifers (2700 km 2 ), part of the Seine basin. CAWAQS results from the coupling of the hydrogeological model NEWSAM with the hydrodynamic and biogeochemical model of river PROSE. CAWAQS is coupled with the agronomic model STICS in order to simulate nitrate migration in basins. First, kriging provides a satisfactory representation of aquifer nitrate contamination from local observations, to set initial conditions for the physically based model. Then associated confidence intervals, derived from data using geostatistics, are used to validate CAWAQS results. Results and evaluation obtained from the combination of these approaches are given (period 1977-1988). Then CAWAQS is used to simulate nitrate fate for a 20-year period (1977-1996). The mean nitrate concentrations increase in aquifers is 0.09 mgN L -1 yr -1 , resulting from an average infiltration flux of 3500 kgN.km -2 yr -1 . - Combined use of geostatistics and physically based modeling allows assessment of nitrate concentrations in aquifer systems

  8. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  9. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    Science.gov (United States)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  10. A Tidally Averaged Sediment-Transport Model for San Francisco Bay, California

    Science.gov (United States)

    Lionberger, Megan A.; Schoellhamer, David H.

    2009-01-01

    A tidally averaged sediment-transport model of San Francisco Bay was incorporated into a tidally averaged salinity box model previously developed and calibrated using salinity, a conservative tracer (Uncles and Peterson, 1995; Knowles, 1996). The Bay is represented in the model by 50 segments composed of two layers: one representing the channel (>5-meter depth) and the other the shallows (0- to 5-meter depth). Calculations are made using a daily time step and simulations can be made on the decadal time scale. The sediment-transport model includes an erosion-deposition algorithm, a bed-sediment algorithm, and sediment boundary conditions. Erosion and deposition of bed sediments are calculated explicitly, and suspended sediment is transported by implicitly solving the advection-dispersion equation. The bed-sediment model simulates the increase in bed strength with depth, owing to consolidation of fine sediments that make up San Francisco Bay mud. The model is calibrated to either net sedimentation calculated from bathymetric-change data or measured suspended-sediment concentration. Specified boundary conditions are the tributary fluxes of suspended sediment and suspended-sediment concentration in the Pacific Ocean. Results of model calibration and validation show that the model simulates the trends in suspended-sediment concentration associated with tidal fluctuations, residual velocity, and wind stress well, although the spring neap tidal suspended-sediment concentration variability was consistently underestimated. Model validation also showed poor simulation of seasonal sediment pulses from the Sacramento-San Joaquin River Delta at Point San Pablo because the pulses enter the Bay over only a few days and the fate of the pulses is determined by intra-tidal deposition and resuspension that are not included in this tidally averaged model. The model was calibrated to net-basin sedimentation to calculate budgets of sediment and sediment-associated contaminants. While

  11. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  12. Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge.

    Science.gov (United States)

    Wallis, Ilka; Prommer, Henning; Simmons, Craig T; Post, Vincent; Stuyfzand, Pieter J

    2010-07-01

    Managed Aquifer Recharge (MAR) is promoted as an attractive technique to meet growing water demands. An impediment to MAR applications, where oxygenated water is recharged into anoxic aquifers, is the potential mobilization of trace metals (e.g., arsenic). While conceptual models for arsenic transport under such circumstances exist, they are generally not rigorously evaluated through numerical modeling, especially at field-scale. In this work, geochemical data from an injection experiment in The Netherlands, where the introduction of oxygenated water into an anoxic aquifer mobilized arsenic, was used to develop and evaluate conceptual and numerical models of arsenic release and attenuation under field-scale conditions. Initially, a groundwater flow and nonreactive transport model was developed. Subsequent reactive transport simulations focused on the description of the temporal and spatial evolution of the redox zonation. The calibrated model was then used to study and quantify the transport of arsenic. In the model that best reproduced field observations, the fate of arsenic was simulated by (i) release via codissolution of arsenopyrite, stoichiometrically linked to pyrite oxidation, (ii) kinetically controlled oxidation of dissolved As(III) to As(V), and (iii) As adsorption via surface complexation on neo-precipitated iron oxides.

  13. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh

    Directory of Open Access Journals (Sweden)

    Edwin T. Gnanaprakasam

    2017-11-01

    Full Text Available Long-term exposure to trace levels of arsenic (As in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III and As(V reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V and Fe(III in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.

  14. Temperature distribution by the effect of groundwater flow in an aquifer thermal energy storage system model

    Science.gov (United States)

    Shim, B.

    2005-12-01

    Aquifer thermal energy storage (ATES) can be a cost-effective and renewable energy source, depending on site-specific thermohydraulic conditions. To design an effective ATES system, the understanding of thermohydraulic processes is necessary. The heat transfer phenomena of an aquifer heat storage system are simulated with the scenario of heat pump operation of pumping and waste water reinjection in a two layered confined aquifer model having the effect of groundwater movement. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at both wells during simulation days. The average groundwater velocities are determined with two assumed hydraulic gradients set by boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions at three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.001 are shaped circular, and the center is moved less than 5 m to the east in 365 days. However at the hydraulic gradient of 0.01, the contour centers of the east well at each depth slice are moved near the east boundary and the movement of temperature distribution is increased at the lower aquifer. By the analysis of thermal interference data between two wells the efficiency of a heat pump operation model is validated, and the variation of heads is monitored at injection, pumping and stabilized state. The thermal efficiency of the ATES system model is represented as highly depended on groundwater flow velocity and direction. Therefore the hydrogeologic condition for the system site should be carefully surveyed.

  15. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    Science.gov (United States)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to

  16. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  17. Aquifer Testing And Rebound Study In Support Of The 100-H Deep Chromium Investigation

    International Nuclear Information System (INIS)

    Smoot, J.L.

    2010-01-01

    The 100-HR-3 Groundwater Operable Unit (OU) second Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 5-year review (DOEIRL-2006-20, The Second CERCLA Five-Year Review Report for the Hanford Site) set a milestone to conduct an investigation of deep hexavalent chromium contamination in the sediments of the Ringold upper mud (RUM) unit, which underlies the unconfined aquifer in the 100-H Area. The 5-year review noted that groundwater samples from one deep well extending below the aquitard (i.e., RUM) exceeded both the groundwater standard of 48 parts per billion (ppb) (Ecology Publication 94-06, Model Toxics Control Act Cleanup Statute and Regulation) and the federal drinking water standard of 100 μg/L for hexavalent chromium. The extent of hexavalent chromium contamination in this zone is not well understood. Action 12-1 from the 5-year review is to perform additional characterization of the aquifer below the initial aquitard. Field characterization and aquifer testing were performed in the Hanford Site's 100-H Area to address this milestone. The aquifer tests were conducted to gather data to answer several fundamental questions regarding the presence of the hexavalent chromium in the deep sediments of the RUM and to determine the extent and magnitude of deeper contamination. The pumping tests were performed in accordance with the Description of Work for Aquifer Testing in Support of the 100-H Deep Chromium Investigation (SGW-41302). The specific objectives for the series of tests were as follows: (1) Evaluate the sustainable production of the subject wells using step-drawdown and constant-rate pumping tests. (2) Collect water-level data to evaluate the degree of hydraulic connection between the RUM and the unconfined (upper) aquifer (natural or induced along the well casing). (3) Evaluate the hydraulic properties of a confined permeable layer within the RUM.; (4) Collect time-series groundwater samples during testing to evaluate

  18. Sedimentation Impacts Modeling for the Lower Elwha River

    Science.gov (United States)

    Beggs, M.; Kosaka, M.; Sigel, A.; Vandermause, R.; Lauer, J. W.

    2012-12-01

    The removal of Glines Canyon and Elwha Dams from the Elwha River, northwest Washington, is intended to restore natural geomorphic and ecological processes to the Elwha River basin. Prior to the start of dam removal, over 16 million cubic meters of sediment had accumulated in the reservoirs above the two dams. As dam removal progresses, a portion of this sediment will erode and then be deposited on the downstream river bed and floodplain. To address uncertainty in downstream response to the project, the United States Bureau of Reclamation is implementing an adaptive management plan that relies upon continuous monitoring of water levels at a set of stream gages along the river. To interpret the monitoring data and allow for rapid assessment of the rate of downstream sedimentation, we developed rating curves at several locations along the lower Elwha River. The curves consider a range of possible sedimentation scenarios, each involving different sedimentation levels and/or locations. One scenario considers sedimentation primarily in the river channel, another considers sedimentation primarily on the floodplain, and a third considers both possibilities in tandem. We modeled these scenarios using two separate approaches. First, we modified the cross sections in an existing U.S. Army Corps of Engineers HEC-RAS model to represent possible changes associated with geomorphic adjustment to the dam removals. In-channel sedimentation was assumed to occur as a constant fraction of the bankfull depth at any given section, thereby focusing geomorphic change in relatively deep pool areas. In the HEC-RAS model, off-channel sedimentation was assumed uniform. The HEC-RAS model showed that both low-flow and flood hydraulics are much more sensitive to plausible levels of in-channel sedimentation than to plausible levels of overbank sedimentation. The wide floodplain, complex secondary channels, and geomorphic evolution since the original cross sections were surveyed raise some

  19. Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution

    Science.gov (United States)

    Ganju, N.K.; Schoellhamer, D.H.

    2009-01-01

    Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic

  20. Water-level altitudes 2016 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2015 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Johnson, Michaela R.

    2016-10-07

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2016 water-level altitudes (represented by measurements made during December 2015–March 2016) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2015–16) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2011–16) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2016 and 1977–2016) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–16) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2015. Tables listing the water-level data used to construct each water-level map for each aquifer and the measured long-term cumulative compaction data for each extensometer site are included. Graphs depicting water-level measurement data also are included; these graphs can be used to approximate

  1. Results from a workshop on research needs for modeling aquifer thermal energy storage systems

    Science.gov (United States)

    Drost, M. K.

    1990-08-01

    A workshop an aquifer thermal energy storage (ATES) system modeling was conducted by Pacific Northwest Laboratory (PNL). The goal of the workshop was to develop a list of high priority research activities that would facilitate the commercial success of ATES. During the workshop, participants reviewed currently available modeling tools for ATES systems and produced a list of significant issues related to modeling ATES systems. Participants assigned a priority to each issue on the list by voting and developed a list of research needs for each of four high-priority research areas; the need for a feasibility study model, the need for engineering design models, the need for aquifer characterization, and the need for an economic model. The workshop participants concluded that ATES commercialization can be accelerated by aggressive development of ATES modeling tools and made specific recommendations for that development.

  2. Comparison of dissolved and particulate arsenic distributions in shallow aquifers of Chakdaha, India, and Araihazar, Bangladesh

    Directory of Open Access Journals (Sweden)

    Ahmed Kazi M

    2008-01-01

    Full Text Available Abstract Background The origin of the spatial variability of dissolved As concentrations in shallow aquifers of the Bengal Basin remains poorly understood. To address this, we compare here transects of simultaneously-collected groundwater and aquifer solids perpendicular to the banks of the Hooghly River in Chakdaha, India, and the Old Brahmaputra River in Araihazar, Bangladesh. Results Variations in surface geomorphology mapped by electromagnetic conductivity indicate that permeable sandy soils are associated with underlying aquifers that are moderately reducing to a depth of 10–30 m, as indicated by acid-leachable Fe(II/Fe ratios 5 mg L-1. More reducing aquifers are typically capped with finer-grained soils. The patterns suggest that vertical recharge through permeable soils is associated with a flux of oxidants on the banks of the Hooghly River and, further inland, in both Chakdaha and Araihazar. Moderately reducing conditions maintained by local recharge are generally associated with low As concentrations in Araihazar, but not systematically so in Chakdaha. Unlike Araihazar, there is also little correspondence in Chakdaha between dissolved As concentrations in groundwater and the P-extractable As content of aquifer particles, averaging 191 ± 122 ug As/L, 1.1 ± 1.5 mg As kg-1 (n = 43 and 108 ± 31 ug As/L, 3.1 ± 6.5 mg As kg-1 (n = 60, respectively. We tentatively attribute these differences to a combination of younger floodplain sediments, and therefore possibly more than one mechanism of As release, as well as less reducing conditions in Chakdaha compared to Araihazar. Conclusion Systematic dating of groundwater and sediment, combined with detailed mapping of the composition of aquifer solids and groundwater, will be needed to identify the various mechanisms underlying the complex distribution of As in aquifers of the Bengal Basin.

  3. Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers

    International Nuclear Information System (INIS)

    Le Borgne, F.; Treuil, M.; Joron, J.L.; Lepiller, M.

    2005-01-01

    The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction ( heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (I) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic

  4. Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: Column studies.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Pearce, J; Descourvieres, C; Linge, K L; Busetti, F; Spadek, T

    2010-03-01

    Water quality changes associated with the passage of aerobic reverse osmosis (RO) treated recycled water through a deep anaerobic pyritic aquifer system was evaluated in sediment-filled laboratory columns as part of a managed aquifer recharge (MAR) strategy. The fate of nine recycled water trace organic compounds along with potential negative water quality changes such as the release of metal(loid)s were investigated in large-scale columns over a period of 12 months. The anaerobic geochemical conditions provided a suitable environment for denitrification, and rapid (half-life 100 days). High retardation coefficients (R) determined for many of the trace organics (R 13 to 67) would increase aquifer residence time and be beneficial for many of the slow degrading compounds. However, for the trace organics with low R values (1.1-2.6) and slow degradation rates (half-life > 100 days), such as N-nitrosodimethylamine, N-nitrosomorpholine and iohexol, substantial biodegradation during aquifer passage may not occur and additional investigations are required. Only minor transient increases in some metal(loid) concentrations were observed, as a result of either pyrite oxidation, mineral dissolution or pH induced metal desorption, followed by metal re-sorption downgradient in the oxygen depleted zone. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  5. Analytical solutions for recession analyses of sloping aquifers - applicability on relict rock glaciers in alpine catchments

    Science.gov (United States)

    Pauritsch, Marcus; Birk, Steffen; Hergarten, Stefan; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried

    2014-05-01

    Rock glaciers as aquifer systems in alpine catchments may strongly influence the hydrological characteristics of these catchments. Thus, they have a high impact on the ecosystem and potential natural hazards such as for example debris flow. Therefore, knowledge of the hydrodynamic processes, internal structure and properties of these aquifers is important for resource management and risk assessment. The investigation of such aquifers often turns out to be expensive and technically complicated because of their strongly limited accessibility. Analytical solutions of discharge recession provide a quick and easy way to estimate aquifer parameters. However, due to simplifying assumptions the validity of the interpretation is often questionable. In this study we compared results of an analytical solution of discharge recessions with results based on a numerical model. This was done in order to analyse the range of uncertainties and the applicability of the analytical method in alpine catchment areas. The research area is a 0.76 km² large catchment in the Seckauer Tauern Range, Austria. The dominant aquifer in this catchment is a rock glacier, namely the Schöneben Rock Glacier. This relict rock glacier (i.e. containing no permafrost at present) covers an area of 0.11 km² and is drained by one spring at the rock glacier front. The rock glacier consists predominantly of gneissic sediments (mainly coarse-grained, blocky at the surface) and extends from 1720 to 1905 m a.s.l.. Discharge of the rock glacier spring is automatically measured since 2002. Electric conductivity and water temperature is monitored since 2008. An automatic weather station was installed in 2011 in the central part of the catchment. Additionally data of geophysical surveys (refraction seismic and ground penetrating radar) have been used to analyse the base slope and inner structure of the rock glacier. The measured data are incorporated into a numerical model implemented in MODFLOW. The numerical

  6. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain

    Science.gov (United States)

    Sikdar, P. K.; Chakraborty, Surajit

    2017-03-01

    In this paper, numerical simulations of regional-scale groundwater flow of North Bengal Plain have been carried out with special emphasis on the arsenic (As)-rich alluvium filled gap between the Rajmahal hills on the west and the Garo hills on the east. The proposed concern of this modelling arose from development that has led to large water table declines in the urban area of English Bazar block, Malda district, West Bengal and possible transport of As in the near future from the adjacent As-polluted aquifer. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Modelling indicates that current pumping has significantly changed the groundwater flowpaths from pre-development condition. At the present pumping rate, the pumping wells of the urban area may remain uncontaminated till the next 25 yrs, considering only pure advection of water but some water from the As-polluted zone may enter wells by 50 yrs. But geochemical and other processes such as adsorption, precipitation, redox reaction and microbial activity may significantly retard the predicted rate by advective transport. In the rural areas, majority of the water pumped from the aquifer is for irrigation, which is continuously re-applied on the surface. The near-vertical nature of the flowpaths indicates that, where As is present or released at shallow depths, it will continue to occur in pumping wells. Modelling also indicates that placing all the pumping wells at depths below 100 m may not provide As-free water permanently.

  7. SCS-CN based time-distributed sediment yield model

    Science.gov (United States)

    Tyagi, J. V.; Mishra, S. K.; Singh, Ranvir; Singh, V. P.

    2008-05-01

    SummaryA sediment yield model is developed to estimate the temporal rates of sediment yield from rainfall events on natural watersheds. The model utilizes the SCS-CN based infiltration model for computation of rainfall-excess rate, and the SCS-CN-inspired proportionality concept for computation of sediment-excess. For computation of sedimentographs, the sediment-excess is routed to the watershed outlet using a single linear reservoir technique. Analytical development of the model shows the ratio of the potential maximum erosion (A) to the potential maximum retention (S) of the SCS-CN method is constant for a watershed. The model is calibrated and validated on a number of events using the data of seven watersheds from India and the USA. Representative values of the A/S ratio computed for the watersheds from calibration are used for the validation of the model. The encouraging results of the proposed simple four parameter model exhibit its potential in field application.

  8. Numerical Modelling Approaches for Sediment Transport in Sewer Systems

    DEFF Research Database (Denmark)

    Mark, Ole

    A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....

  9. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model i...... is being developed as a part of a study being carried out at the University of Aalborg, Denmark and VBB VIAK, Sweden. The project is funded by the Swedish Water and Waste Water Works Association and the Nordic Industrial Foundation.......This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  10. A major challenge for modeling conservation-based water use reductions in aquifers supporting irrigated agriculture: The specific yield quandary

    Science.gov (United States)

    Butler, J. J., Jr.; Whittemore, D. O.; Wilson, B. B.; Bohling, G.

    2017-12-01

    Many large regional aquifers supporting irrigated agriculture are experiencing high rates of water-level decline. The primary means of moderating these rates is to reduce pumping. The key question is what percent pumping reduction will significantly impact decline rates. We have recently developed a water-balance approach to address this question for subareas (100s to 1000s km2 in size) of seasonally pumped aquifers (Butler et al., GRL, 2016). This approach also provides an estimate of specific yield (Sy), which has been difficult to estimate from field data at the scale of modeling analyses. When applied to subareas of the High Plains aquifer in Kansas, this approach reveals that the Sy estimate is much lower (as much as a factor of five or more) than expected for an unconsolidated aquifer. One explanation is that the aquifer is heterogeneous with considerable amounts of fine material, whereas field data, such as drillers' logs, are often biased towards coarser intervals. An additional explanation, which appears to have received little attention, is the impact of entrapped air. In seasonally pumped systems, water levels pass through the same aquifer intervals multiple times, giving ample opportunity for air to be entrapped. This entrapped air imbues the aquifer with a specific yield that is considerably lower than what would be expected from lithology. If unrecognized, a larger-than-actual Sy value is input into the aquifer model. This can lead to the inadvertent use of the same-year recharge assumption, which may not be appropriate for many conditions (e.g., large depths to water), and can also result in artificially low estimates of net inflow for a depleting aquifer. Moreover, failure to recognize this condition can bedevil efforts to model conservation-based water use reductions. In that case, models will leave the range of conditions for which they have been calibrated and can become more vulnerable to parameter errors. Conservation-based water use reductions

  11. Regional Sediment Management (RSM) Modeling Tools: Integration of Advanced Sediment Transport Tools into HEC-RAS

    Science.gov (United States)

    2014-06-01

    sediment transport within the USACE HEC River Analysis System ( HEC - RAS ) software package and to determine its applicability to Regional Sediment...Management (RSM) challenges. HEC - RAS SEDIMENT MODELING BACKGROUND: HEC - RAS performs (1) one- dimensional (1D) steady and unsteady hydraulic river ...Albuquerque (SPA)), and recently, the USACE RSM Program. HEC - RAS is one of several hydraulic modeling codes available for river analysis in the

  12. Impact of Varying Wave Conditions on the Mobility of Arsenic in a Nearshore Aquifer on the Great Lakes

    Science.gov (United States)

    Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.

    2017-12-01

    Groundwater-coastal water interactions play an important role in controlling the behavior of inorganic chemicals in nearshore aquifers and the subsequent flux of these chemicals to receiving coastal waters. Previous studies have shown that dynamic groundwater flows and water exchange across the sediment-water interface can set up strong geochemical gradients and an important reaction zone in a nearshore aquifer that affect the fate of reactive chemicals. There is limited understanding of the impact of transient coastal forcing such as wave conditions on groundwater dynamics and geochemistry in a nearshore aquifer. The goal of this study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer and to determine the hydrological and geochemical factors controlling its fate and ultimate delivery to receiving coastal waters. Field investigations were conducted over the period of intensified wave conditions on a freshwater beach on Lake Erie, Canada. High spatial resolution aqueous and sediment sampling was conducted to characterize the subsurface distribution of inorganic species in the nearshore aquifer. Numerical groundwater flow and transport simulations were conducted to evaluate wave-induced perturbations in the flow dynamics including characterizing changes in the groundwater flow recirculations in the nearshore aquifer. The combination of field data and numerical simulations reveal that varying wave conditions alter groundwater flows and set up geochemical transition zones within the aquifer resulting in the release and sequestration of arsenic. Interactions between oxic surface water, mildly reducing shallow groundwater, and reducing sulfur- and iron-rich deep groundwater promote dynamic iron, sulfur and manganese cycling which control the mobility of arsenic in the aquifer. The findings of this study have potential implications for the fate and transport of other reactive chemicals (e.g. phosphorus, mercury) in

  13. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia.

    Science.gov (United States)

    Guo, Huaming; Zhang, Bo; Li, Yuan; Berner, Zsolt; Tang, Xiaohui; Norra, Stefan; Stüben, Doris

    2011-04-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO₄²⁻ concentrations and δ³⁴S values indicates that bacterial reduction of SO₄²⁻ occurs in reducing aquifers. Due to high concentrations of Fe (> 0.5 mg L⁻¹), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Mayer, D.W.; Argo, R.S.

    1982-01-01

    Models are presented to estimate the migration of toxic contaminants in coastal waters. Ocean current is simulated by the vertically-averaged, finite element, two-demensional model known as CAFE-I with the Galerkin weighted residual technique. The refraction of locally generated waves or swells is simulated by the wave refraction model, LO3D. Using computed current, depth, and wave characteristics, the finite element model, FETRA, simulated sediment and contaminant transport in coastal waters, estuaries and rivers. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interaction, and the mechanism governing the transport, deposition, and resuspension of contaminated sediment. Several simple equations such as the unsteady, advection-diffusion equation, the equation for noncohesive-sediment load due to wind-induced waves in offshore and surf zones, and the equation for sediment-radionuclide transport simulation were solved during the preliminary testing of the model. (Kato, T.)

  15. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling

    Science.gov (United States)

    Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.

    2015-03-01

    Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.

  16. Investigation of ground water aquifer at Karangrowo Site, Undaan District, Kudus Sub Province Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Kudus is one of sub province in central Java with have the fresh water availability problem Condition of insufficiency 'Standard Water has been recognized in some part of regional area, those are Karangrowo area, Undaan District The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process; due the ground water trapped character is briny or brackish. One of the alternatives to overcome water problem is election or delineated of prospect area fur exploiting of ground water. Referring to that problem ''Pusbang Geologi Nuklir BATAN'' means to conduct investigation of ground water in some location problem of clean water. The ground investigation activity is to get information about the geology, geohydrology and sub surface geophysical characterize, which is needed to identification of ground water aquifer. To obtain that target, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo electrical 2-D image measurement Base on the result of analyze, evaluation and discussion was identified the existence of potential aquifer that happened at layer of sand sedimentary, in form of lens trapped in impermeable layer of clay sediment The layer of aquifer pattern follows of Old River in North-South and East-West direction. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement GF. A 4-14, AB 4-11 and B4. Physical characterized of aquifer, resistivity 9-19 Ωm with charge ability 13-53 milliseconds. (author)

  17. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.

    Science.gov (United States)

    Rango, Tewodros; Vengosh, Avner; Dwyer, Gary; Bianchini, Gianluca

    2013-10-01

    This study investigates the mechanisms of arsenic (As) and other naturally occurring contaminants (F(-), U, V, B, and Mo) mobilization from Quaternary sedimentary aquifers of the Main Ethiopian Rift (MER) and their enrichment in the local groundwater. The study is based on systematic measurements of major and trace elements as well as stable oxygen and hydrogen isotopes in groundwater, coupled with geochemical and mineralogical analyses of the aquifer rocks. The Rift Valley aquifer is composed of rhyolitic volcanics and Quaternary lacustrine sediments. X-ray fluorescence (XRF) results revealed that MER rhyolites (ash, tuff, pumice and ignimbrite) and sediments contain on average 72 wt. % and 65 wt. % SiO2, respectively. Petrographic studies of the rhyolites indicate predominance of volcanic glass, sanidine, pyroxene, Fe-oxides and plagioclase. The As content in the lacustrine sediments (mean = 6.6 mg/kg) was higher than that of the rhyolites (mean: 2.5 mg/kg). The lacustrine aquifers of the Ziway-Shala basin in the northern part of MER were identified as high As risk zones, where mean As concentration in groundwater was 22.4 ± 33.5 (range of 0.60-190 μg/L) and 54% of samples had As above the WHO drinking water guideline value of 10 μg/L. Field As speciation measurements showed that most of the groundwater samples contain predominantly (~80%) arsenate-As(V) over arsenite-As(III) species. The As speciation together with field data of redox potential (mean Eh = +73 ± 65 mV) and dissolved-O2 (6.6 ± 2.2 mg/L) suggest that the aquifer is predominantly oxidative. Water-rock interactions, including the dissolution of volcanic glass produces groundwater with near-neutral to alkaline pH (range 6.9-8.9), predominance of Na-HCO3 ions, and high concentration of SiO2 (mean: 85.8 ± 11.3 mg/L). The groundwater data show high positive correlation of As with Na, HCO3, U, B, V, and Mo (R(2) > 0.5; p groundwater indicates that Fe-oxides and oxyhydroxides minerals were saturated

  18. Induced groundwater flux by increases in the aquifer's total stress.

    Science.gov (United States)

    Chang, Ching-Min; Yeh, Hund-Der

    2015-01-01

    Fluid-filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid-saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one-dimensional field-scale groundwater flow through a heterogeneous aquifer. A closed-form of mean groundwater flux is developed to quantify the induced field-scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values. © 2014, National Ground Water Association.

  19. Evidence for Microbial Iron Reduction in a Landfill Leachate-Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1994-01-01

    Aquifer sediment samples obtained from the anaerobic part of a landfill leachate plume in Vejen, Denmark, were suspended in groundwater or in an artificial medium and incubated. The strictly anaerobic suspensions were tested for reduction of ferric iron (Fe(III)) oxides, which was measured...

  20. Subsidence Modeling of the Over-exploited Granular Aquifer System in Aguascalientes, Mexico

    Science.gov (United States)

    Solano Rojas, D. E.; Pacheco, J.; Wdowinski, S.; Minderhoud, P. S. J.; Cabral-Cano, E.; Albino, F.

    2017-12-01

    The valley of Aguascalientes in central Mexico experiences subsidence rates of up to 100 [mm/yr] due to overexploitation of its aquifer system, as revealed from satellite-based geodetic observations. The spatial pattern of the subsidence over the valley is inhomogeneous and affected by shallow faulting. The understanding of the subsoil mechanics is still limited. A better understanding of the subsidence process in Aguascalientes is needed to provide insights for future subsidence in the valley. We present here a displacement-constrained finite-element subsidence model, based on the USGS MODFLOW software. The construction of our model relies on 3 main inputs: (1) groundwater level time series obtained from extraction wells' hydrographs, (2) subsurface lithostratigraphy interpreted from well drilling logs, and (3) hydrogeological parameters obtained from field pumping tests. The groundwater level measurements were converted to pore pressure in our model's layers, and used in Terzaghi's equation for calculating effective stress. We then used the effective stress along with the displacement obtained from geodetic observations to constrain and optimize five geo-mechanical parameters: compression ratio, reloading ratio, secondary compression index, over consolidation ratio, and consolidation coefficient. Finally, we use the NEN-Bjerrum linear stress model formulation for settlements to determine elastic and visco-plastic strain, accounting for the aquifer system units' aging effect. Preliminary results show higher compaction response in clay-saturated intervals (i.e. aquitards) of the aquifer system, as reflected in the spatial pattern of the surface deformation. The forecasted subsidence for our proposed scenarios show a much more pronounced deformation when we consider higher groundwater extraction regimes.

  1. Spatial Modelling of Sediment Transport over the Upper Citarum Catchment

    Directory of Open Access Journals (Sweden)

    Poerbandono

    2006-05-01

    Full Text Available This paper discusses set up of a spatial model applied in Geographic Information System (GIS environment for predicting annual erosion rate and sediment yield of a watershed. The study area is situated in the Upper Citarum Catchment of West Java. Annual sediment yield is considered as product of erosion rate and sediment delivery ratio to be modelled under similar modeling tool. Sediment delivery ratio is estimated on the basis of sediment resident time. The modeling concept is based on the calculation of water flow velocity through sub-catchment surface, which is controlled by topography, rainfall, soil characteristics and various types of land use. Relating velocity to known distance across digital elevation model, sediment resident time can be estimated. Data from relevance authorities are used. Bearing in mind limited knowledge of some governing factors due to lack of observation, the result has shown the potential of GIS for spatially modeling regional sediment transport. Validation of model result is carried out by evaluating measured and computed total sediment yield at the main outlet. Computed total sediment yields for 1994 and 2001 are found to be 1.96×106 and 2.10×106tons/year. They deviate roughly 54 and 8% with respect to those measured in the field. Model response due to land use change observed in 2001 and 1994 is also recognised. Under presumably constant rainfall depth, an increase of overall average annual erosion rate of 11% resulted in an increase of overall average sediment yield of 7%.

  2. Variogram based and Multiple - Point Statistical simulation of shallow aquifer structures in the Upper Salzach valley, Austria

    Science.gov (United States)

    Jandrisevits, Carmen; Marschallinger, Robert

    2014-05-01

    Quarternary sediments in overdeepened alpine valleys and basins in the Eastern Alps bear substantial groundwater resources. The associated aquifer systems are generally geometrically complex with highly variable hydraulic properties. 3D geological models provide predictions of both geometry and properties of the subsurface required for subsequent modelling of groundwater flow and transport. In hydrology, geostatistical Kriging and Kriging based conditional simulations are widely used to predict the spatial distribution of hydrofacies. In the course of investigating the shallow aquifer structures in the Zell basin in the Upper Salzach valley (Salzburg, Austria), a benchmark of available geostatistical modelling and simulation methods was performed: traditional variogram based geostatistical methods, i.e. Indicator Kriging, Sequential Indicator Simulation and Sequential Indicator Co - Simulation were used as well as Multiple Point Statistics. The ~ 6 km2 investigation area is sampled by 56 drillings with depths of 5 to 50 m; in addition, there are 2 geophysical sections with lengths of 2 km and depths of 50 m. Due to clustered drilling sites, indicator Kriging models failed to consistently model the spatial variability of hydrofacies. Using classical variogram based geostatistical simulation (SIS), equally probable realizations were generated with differences among the realizations providing an uncertainty measure. The yielded models are unstructured from a geological point - they do not portray the shapes and lateral extensions of associated sedimentary units. Since variograms consider only two - point spatial correlations, they are unable to capture the spatial variability of complex geological structures. The Multiple Point Statistics approach overcomes these limitations of two point statistics as it uses a Training image instead of variograms. The 3D Training Image can be seen as a reference facies model where geological knowledge about depositional

  3. Uptake, translocation, and elimination in sediment-rooted macrophytes: a model-supported analysis of whole sediment test data.

    Science.gov (United States)

    Diepens, Noël J; Arts, Gertie H P; Focks, Andreas; Koelmans, Albert A

    2014-10-21

    Understanding bioaccumulation in sediment-rooted macrophytes is crucial for the development of sediment toxicity tests using macrophytes. Here, we explore bioaccumulation in sediment-rooted macrophytes by tracking and modeling chemical flows of chlorpyrifos, linuron, and six PCBs in water-sediment-macrophyte systems. Chemical fluxes across the interfaces between pore water, overlying water, shoots, and roots were modeled using a novel multicompartment model. The modeling yielded the first mass-transfer parameter set reported for bioaccumulation by sediment-rooted macrophytes, with satisfactory narrow confidence limits for more than half of the estimated parameters. Exposure via the water column led to rapid uptake by Elodea canadensis and Myriophyllum spicatum shoots, followed by transport to the roots within 1-3 days, after which tissue concentrations gradually declined. Translocation played an important role in the exchange between shoots and roots. Exposure via spiked sediment led to gradual uptake by the roots, but subsequent transport to the shoots and overlying water remained limited for the chemicals studied. These contrasting patterns show that exposure is sensitive to test set up, chemical properties, and species traits. Although field-concentrations in water and sediment will differ from those in the tests, the model parameters can be assumed applicable for modeling exposure to macrophytes in the field.

  4. Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields

    Science.gov (United States)

    Zhang, Hua; Harter, Thomas; Sivakumar, Bellie

    2006-06-01

    Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range

  5. Application of the finite element groundwater model FEWA to three regional aquifers

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Yeh, G.T.

    1986-06-01

    This report documents the calibration with field data and predictive application of a finite element model of water through aquifers (FEWA). FEWA was described in a report written by G.T. Yeh and D.D. Huff in 1983. The model was first compared with the United States Geological Survey (USGS) two-dimensional model and found superior in treating anisotropic media when the coordinates cannot be made to coincide with the principal directions of hydraulic conductivities. In addition, there was no necessity to define nodal points outside the region, as required by the USGS model. FEWA was next calibrated with measured potentiometric surfaces from the Love Canal area in New York and the Conesville area in Ohio. There were satisfactory matches between computed results and available field data. The calibration and predictive runs of FEWA were then accomplished with the Hialeah-Preston well field data over the Biscayne aquifer in south Florida. The calibration run yielded two values of hydraulic conductivity in the area, and the predictive run gave results that matched well with available data. 18 refs., 28 figs

  6. Application of the finite element groundwater model FEWA to three regional aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.F.V.; Yeh, G.T.

    1986-06-01

    This report documents the calibration with field data and predictive application of a finite element model of water through aquifers (FEWA). FEWA was described in a report written by G.T. Yeh and D.D. Huff in 1983. The model was first compared with the United States Geological Survey (USGS) two-dimensional model and found superior in treating anisotropic media when the coordinates cannot be made to coincide with the principal directions of hydraulic conductivities. In addition, there was no necessity to define nodal points outside the region, as required by the USGS model. FEWA was next calibrated with measured potentiometric surfaces from the Love Canal area in New York and the Conesville area in Ohio. There were satisfactory matches between computed results and available field data. The calibration and predictive runs of FEWA were then accomplished with the Hialeah-Preston well field data over the Biscayne aquifer in south Florida. The calibration run yielded two values of hydraulic conductivity in the area, and the predictive run gave results that matched well with available data. 18 refs., 28 figs.

  7. Distribution of moisture, tritium, and plutonium in the alluvium, aquifer, and underlying tuff in Mortandad Canyon

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Maes, M.N.; Peters, R.

    1985-01-01

    A study of the distribution of moisture, tritium, and plutonium in the Mortandad Canyon aquifer indicates some infiltration of water into the underlying tuff. This infiltration was accompanied by similar movement of tritium. The concentrations of plutonium on the sediments in the aquifer were low when compared with the high concentrations in solution in an ionic complex that does not readily exchange or is adsorbed by clay minerals in the alluvium. 2 references, 4 figures, 2 tables

  8. Modeling chemical accumulation in sediment of small waterbodies accounting for sediment transport and water-sediment exchange processes over long periods.

    Science.gov (United States)

    Patterson, David Albert; Strehmel, Alexander; Erzgräber, Beate; Hammel, Klaus

    2017-12-01

    In a recent scientific opinion of the European Food Safety Authority it is argued that the accumulation of plant protection products in sediments over long time periods may be an environmentally significant process. Therefore, the European Food Safety Authority proposed a calculation to account for plant protection product accumulation. This calculation, however, considers plant protection product degradation within sediment as the only dissipation route, and does not account for sediment dynamics or back-diffusion into the water column. The hydraulic model Hydrologic Engineering Center-River Analysis System (HEC-RAS; US Army Corps of Engineers) was parameterized to assess sediment transport and deposition dynamics within the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) scenarios in simulations spanning 20 yr. The results show that only 10 to 50% of incoming sediment would be deposited. The remaining portion of sediment particles is transported across the downstream boundary. For a generic plant protection product substance this resulted in deposition of only 20 to 50% of incoming plant protection product substance. In a separate analysis, the FOCUS TOXSWA model was utilized to examine the relative importance of degradation versus back-diffusion as loss processes from the sediment compartment for a diverse range of generic plant protection products. In simulations spanning 20 yr, it was shown that back-diffusion was generally the dominant dissipation process. The results of the present study show that sediment dynamics and back-diffusion should be considered when calculating long-term plant protection product accumulation in sediment. Neglecting these may lead to a systematic overestimation of accumulation. Environ Toxicol Chem 2017;36:3223-3231. © 2017 SETAC. © 2017 SETAC.

  9. Bacterial diversity and community structure of a sub-surface aquifer exposed to realistic low herbicide concentrations

    DEFF Research Database (Denmark)

    Lipthay, Julia R. de; Johnsen, Kaare; Albrechtsen, H.-J.

    2004-01-01

    contaminants. We examined the effect of in situ exposure to realistic low concentrations of herbicides on the microbial diversity and community structure of sub-surface sediments from a shallow aquifer near Vejen (Denmark). Three different community analyses were performed: colony morphology typing, sole...... community analyses. In contrast, no significant effect was found on the bacterial diversity, except for the culturable fraction where a significantly increased richness and Shannon index was found in the herbicide acclimated sediments. The results of this study show that in situ exposure of sub-surface...... aquifers to realistic low concentrations of herbicides may alter the overall structure of a natural bacterial community, although significant effects on the genetic diversity and carbon substrate usage cannot be detected. The observed impact was probably due to indirect effects. In future investigations...

  10. Ill-posedness in modeling mixed sediment river morphodynamics

    Science.gov (United States)

    Chavarrías, Víctor; Stecca, Guglielmo; Blom, Astrid

    2018-04-01

    In this paper we analyze the Hirano active layer model used in mixed sediment river morphodynamics concerning its ill-posedness. Ill-posedness causes the solution to be unstable to short-wave perturbations. This implies that the solution presents spurious oscillations, the amplitude of which depends on the domain discretization. Ill-posedness not only produces physically unrealistic results but may also cause failure of numerical simulations. By considering a two-fraction sediment mixture we obtain analytical expressions for the mathematical characterization of the model. Using these we show that the ill-posed domain is larger than what was found in previous analyses, not only comprising cases of bed degradation into a substrate finer than the active layer but also in aggradational cases. Furthermore, by analyzing a three-fraction model we observe ill-posedness under conditions of bed degradation into a coarse substrate. We observe that oscillations in the numerical solution of ill-posed simulations grow until the model becomes well-posed, as the spurious mixing of the active layer sediment and substrate sediment acts as a regularization mechanism. Finally we conduct an eigenstructure analysis of a simplified vertically continuous model for mixed sediment for which we show that ill-posedness occurs in a wider range of conditions than the active layer model.

  11. Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California

    Science.gov (United States)

    Pritchard-Peterson, D.; Malama, B.

    2017-12-01

    We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.

  12. Advancement in Watershed Modelling Using Dynamic Lateral and Longitudinal Sediment (Dis)connectivity Prediction

    Science.gov (United States)

    Mahoney, D. T.; al Aamery, N. M. H.; Fox, J.

    2017-12-01

    The authors find that sediment (dis)connectivity has seldom taken precedence within watershed models, and the present study advances this modeling framework and applies the modeling within a bedrock-controlled system. Sediment (dis)connectivity, defined as the detachment and transport of sediment from source to sink between geomorphic zones, is a major control on sediment transport. Given the availability of high resolution geospatial data, coupling sediment connectivity concepts within sediment prediction models offers an approach to simulate sediment sources and pathways within a watershed's sediment cascade. Bedrock controlled catchments are potentially unique due to the presence of rock outcrops causing longitudinal impedance to sediment transport pathways in turn impacting the longitudinal distribution of the energy gradient responsible for conveying sediment. Therefore, the authors were motivated by the need to formulate a sediment transport model that couples sediment (dis)connectivity knowledge to predict sediment flux for bedrock controlled catchments. A watershed-scale sediment transport model was formulated that incorporates sediment (dis)connectivity knowledge collected via field reconnaissance and predicts sediment flux through coupling with the Partheniades equation and sediment continuity model. Sediment (dis)connectivity was formulated by coupling probabilistic upland lateral connectivity prediction with instream longitudinal connectivity assessments via discretization of fluid and sediment pathways. Flux predictions from the upland lateral connectivity model served as an input to the instream longitudinal connectivity model. Disconnectivity in the instream model was simulated via the discretization of stream reaches due to barriers such as bedrock outcroppings and man-made check dams. The model was tested for a bedrock controlled catchment in Kentucky, USA for which extensive historic water and sediment flux data was available. Predicted sediment

  13. Numerical Modelling of Sediment Transport in Combined Sewer Systems

    DEFF Research Database (Denmark)

    Schlütter, Flemming

    A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....

  14. Vertical variability of arsenic concentrations under the control of iron-sulfur-arsenic interactions in reducing aquifer systems

    Science.gov (United States)

    Pi, Kunfu; Wang, Yanxin; Postma, Dieke; Ma, Teng; Su, Chunli; Xie, Xianjun

    2018-06-01

    High spatial variability of arsenic (As) concentration in geogenic As-contaminated groundwater has been commonly observed worldwide, but the underlying reasons remain not well understood. Selecting a sulfate-containing, As-affected aquifer at the Datong Basin, northern China as the study area and combining hydrogeochemical investigation and sediment extraction with reactive transport modeling, this work elucidated the roles of Fe-S-As interactions in regulating the vertical variation of As concentration in the groundwater. Dissolved As concentration varied between 0.05 and 18 μmol/L, but generally increased in the depth of 20-25 m and then decreased in 25-30 m. The high-As groundwater contained low Fe(II) (groundwater devoid of sulfate reduction. The reductive dissolution of As-bearing Fe(III) oxides coupled to the degradation of organic matter with an estimated maximum rate of 0.22 mmol C/L/yr, mainly accounted for the depth-dependent increase of As concentration in the upper part of the shallow aquifer (groundwater but also probably co-precipitated As to prompt As decrease in the depth of 25-30 m. Arsenite adsorbed on remaining Fe(III) oxides and newly-formed Fe(II) sulfides is another important pool of As in the aquifer, which varies in response to the extents of Fe(III)-oxide and sulfate reduction and consequently alters As distribution coefficient between the solid and the aqueous phases. This study highlights the importance of coupled geochemical cycling of Fe, S and As for As mobilization and reveals how it regulates As partitioning between groundwater and sediments.

  15. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    Science.gov (United States)

    Gonthier, Gerard; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  16. Coastal aquifer management based on surrogate models and multi-objective optimization

    Science.gov (United States)

    Mantoglou, A.; Kourakos, G.

    2011-12-01

    The demand for fresh water in coastal areas and islands can be very high, especially in summer months, due to increased local needs and tourism. In order to satisfy demand, a combined management plan is proposed which involves: i) desalinization (if needed) of pumped water to a potable level using reverse osmosis and ii) injection of biologically treated waste water into the aquifer. The management plan is formulated into a multiobjective optimization framework, where simultaneous minimization of economic and environmental costs is desired; subject to a constraint to satisfy demand. The method requires modeling tools, which are able to predict the salinity levels of the aquifer in response to different alternative management scenarios. Variable density models can simulate the interaction between fresh and saltwater; however, they are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNN)]. The surrogate models are trained adaptively during optimization based on a Genetic Algorithm. In the crossover step of the genetic algorithm, each pair of parents generates a pool of offspring. All offspring are evaluated based on the fast surrogate model. Then only the most promising offspring are evaluated based on the exact numerical model. This eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. Three new criteria for selecting the most promising offspring were proposed, which improve the Pareto set and maintain the diversity of the optimum solutions. The method has important advancements compared to previous methods, e.g. alleviation of propagation of errors due to surrogate model approximations. The method is applied to a real coastal aquifer in the island of Santorini which is a very touristy island with high water demands. The results show that the algorithm

  17. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Mayer, D.W.; Argo, R.S.

    1982-02-01

    A hydrodynamic model, CAFE-I, a wave refraction model, LO3D, and a sediment and contaminant transport model, FETRA, were selected as tools for evaluating exposure levels of radionuclides, heavy metals, and other toxic chemicals in coastal waters. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interactions (e.g., adsorption and desorption), and the mechanisms governing the transport, deposition, and resuspension of contaminated sediments

  18. Groundwater arsenic content in Raigon Aquifer System (San Jose, Uruguay)

    International Nuclear Information System (INIS)

    Manay, N.; Piston, M.; Goso, C.; Fernnandez, T.; Rejas, M.; Garcia Valles, M.

    2013-01-01

    As a Medical Geology research issue, an environmental arsenic risk assessment study in the most important sedimentary aquifer in southern Uruguay is presented. The Raigon Aquifer System is the most exploited in Uruguay. It has a surface extent of about 1,800 square kilometres and 10,000 inhabitants in San Jose Department, where it was studied. Agriculture and cattle breeding are the main economic activities and this aquifer is the basic support. The groundwater sampling was done on 37 water samples of PRENADER (Natural Resources Management and Irrigation Development Program) wells. Outcropping sediments of Raigon Formation and the overlying Libertad Formation were also sampled in the Kiyu region. The analyses were performed by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS). The results showed 80% samples with arsenic levels exceeding the 10 μg/l of WHO as limit for waters, and 11% exceeds the 20 μg/l limit of uruguayan regulation. The median, maximum and minimum water arsenic concentrations determined have been 14.24, 24.19 and 1.44 μg/l, respectively. On the other hand, nine sediment samples of Raigon and Libertad Formations in Kiyu region were analysed and yielded median, maximum and minimum arsenic concentrations of 5.03, 9.82 and 1.18 ppm, respectively. This issue leads to the supposition that the population, as well as industrial and agricultural activities, are consuming water with arsenic concentrations over the national and international maximum recommended limit.

  19. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    Science.gov (United States)

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal

  20. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model

  1. Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Li, Cai; Wang, Xiaoyu

    2016-01-01

    CAES (Compressed air energy storage) is credited with its potential ability for large-scale energy storage. Generally, it is more convenient using deep aquifers than employing underground caverns for energy storage, because of extensive presence of aquifers. During the first stage in a typical process of CAESA (compressed air energy storage in aquifers), a large amount of compressed air is injected into the target aquifer to develop an initial space (a gas bubble) for energy storage. In this study, numerical simulations were conducted to investigate the influence of aquifer's permeability, geological structure and operation parameters on the formation of gas bubble and the sustainability for the later cycling operation. The SCT (system cycle times) was designed as a parameter to evaluate the reservoir performance and the effect of operation parameters. Simulation results for pressure and gas saturation results of basic model confirm the feasibility of compressed air energy storage in aquifers. The results of different permeability cases show that, for a certain scale of CAESA system, there is an optimum permeability range for a candidate aquifer. An aquifer within this permeability range will not only satisfy the injectivity requirement but also have the best energy efficiency. Structural impact analysis indicates that the anticline structure has the best performance to hold the bubble under the same daily cycling schedule with the same initial injected air mass. In addition, our results indicate that the SCT shows a logarithmic growth as the injected air mass increase. During the formation of gas bubble, compressed air should be injected into aquifers with moderate rate and the injection can be done in several stages with different injection rate to avoid onset pressure. - Highlights: • Impact of permeability, geological structure, operation parameters was investigated. • With certain air production rate, an optimum permeability exists for performance.

  2. Iron isotope constraints on arsenic release from Mekong Delta sediments, Cambodia

    Science.gov (United States)

    Matsumoto, T.; Yamaguchi, K. E.; Hirata, T.; Yamagata, Y.; Yamaguchi, A.; Abe, G.

    2017-12-01

    Arsenic-contaminated groundwater is a world-wide environmental problem and threatens more than 100 million people living in delta areas of South, SE and East Asia. It is typically associated with reducing aquifers with organic-rich alluvial sediments, little thermal gradients, low sulfate concentrations, and slow flushing rates. Such conditions are typical for low-lying countries in Asian deltas; however, compared to Bangladesh, Cambodia has received far less attention. Upon reductive dissolution of Fe-(oxyhydr)oxides that adsorbed As, Fe and As are released into solution as dissolved Fe2+ and arsenate, respectively. Following the oxidation of dissolved Fe2+, newly-formed Fe-(oxyhydr)oxides adsorb As again. Thus, in anoxic waters, concentrations of As correlate with those of dissolved Fe2+. Fluctuating redox conditions in the aquifer are control As release, although inhibition of adsorption of arsenate and arsenite onto the Fe-(oxyhydr)oxides occurs when the concentrations of phosphate, bicarbonate, silicate, and/or organic matter become sufficiently high. Biogeochemical redox reactions of Fe result in significant isotope fractionation (e.g., Johnson et al., 2008). We hypothesized that magnitude of isotope fractionation of Fe in the aquifer sediments, reflecting repeated (incomplete) redox reactions of Fe, may be proportional to the amount of total As release. We aim to calibrate the As release from aquifer sediment by Fe isotope analysis. As a preliminary study, series of sediment samples were collected from the Mekong Delta, Cambodia, in September 2016. Based on measurements by XRF, ICP-AES and ICP-MS, concentrations of As varied significantly covering the range from 4.5 to 15.5 µg/g with a median value of 11 µg/g (higher than the average crustal value of 5 µg/g), and those of Fe is from 2.6 to 9.7 wt.% with a median value of 7.1 wt.%. Concentrations of As and Fe show positive correlation (R2 = 0.72), indicating an effective redox cycling of Fe and As as

  3. Aquifer Sampling Tube Completion Report: 100 Area and Hanford Townsite Shorelines

    International Nuclear Information System (INIS)

    Peterson, R.E.; Borghese, J.V.; Erb, D.B.

    1998-02-01

    Groundwater contamination is known or suspected along the Hanford Site shoreline of the Columbia River adjacent to the retired reactor areas. Along the shoreline away from the reactor areas, where contamination is presumed to be absent, monitoring sites are frequently widely spaced or unavailable to confirm the presumption. Previous characterizations of contamination near the river have relied on data from a limited number of near-river wells, contaminant plume migration predictions, and river bank seepage sampling to anticipate shoreline conditions. In recent years, new methods have been developed to obtain groundwater samples from the aquifer near the groundwater/river water interface. These methods include using (1) divers to obtain samples of pore water from riverbed sediment and (2) sampling tubes that are driven into the aquifer at the shoreline. The latter method also permits sampling the aquifer at multiple depths, which helps to determine the thickness of the potentially contaminated groundwater layer that discharges into the river

  4. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2018-01-01

    Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of

  5. Modeling sediment concentration of rill flow

    Science.gov (United States)

    Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen

    2018-06-01

    Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.

  6. Aquifers in coastal reclaimed lands - real world assessments

    Science.gov (United States)

    Saha, A.; Bironne, A.; Vonhögen-Peeters, L.; Lee, W. K.; Babovic, V. M.; Vermeulen, P.; van Baaren, E.; Karaoulis, M.; Blanchais, F.; Nguyen, M.; Pauw, P.; Doornenbal, P.

    2017-12-01

    Climate change and population growth are significant concerns in coastal regions around the world, where more than 30% of the world's population reside. The numbers continue to rise as coastal areas are increasingly urbanized. Urbanization creates land shortages along the coasts, which has spurred coastal reclamation activities as a viable solution. In this study, we focus on these reclamation areas; reclaimed areas in Singapore, and in the Netherlands, and investigate the potential of these reclaimed bodies as artificial aquifers that could attenuate water shortage problems in addition to their original purpose. We compare how the reclamation methods determine the hydrogeological characteristics of these manmade aquifers. We highlight similarities in freshwater lens development in the artificial shallow aquifers under natural recharge under diverse conditions, i.e. tropical and temperate zones, using numerical models. The characteristics and responses of these aquifers with dynamic freshwater-saltwater interface are contrasted against naturally occurring coastal aquifers where equilibrium was disturbed by anthropogenic activities. Finally, we assess the risks associated with subsidence and saltwater intrusion, combining measurements and numerical models, in case these aquifers are planned for Aquifer Storage and Recovery (ASR) or Managed Aquifer Recharge (MAR) strategies. Relative performances of some ASR schemes are simulated and compared in the reclaimed lands.

  7. Deposition, persistence and turnover of pollutants: first results from the EU project AquaTerra for selected river basins and aquifers

    DEFF Research Database (Denmark)

    Barth, J.A.C.; Steidle, D.; Kuntz, D.

    2007-01-01

    in laboratory studies with soils and aquifer material from selected sites. For sediment transport of contaminants, new flood sampling techniques revealed highest deposition rates of beta-hexachlorocyclohexane (beta-HCH) in river sediments at hotspot areas on the Mulde River in the Bitterfeld region (Elbe Basin...... that range from biogeochemistry, environmental engineering, computer modelling and chemistry to socio-economic sciences. Field study areas are the river basins of the Ebro, the Meuse, the Elbe and the Danube as well as the 3-km(2) French catchment of the Brevilles Spring. Within the first 2 years...... of the project more than 1700 samples of atmospherically deposited particles, sediments, and water have been collected in the above-mentioned systems. Results show clear spatial patterns of deposition of polyaromatic hydrocarbons (PAHs) with the highest rates in the Meuse Basin. For local inputs...

  8. Quantifying differences in the impact of variable chemistry on equilibrium Uranium(VI) adsorption properties of aquifer sediments.

    Science.gov (United States)

    Stoliker, Deborah L; Kent, Douglas B; Zachara, John M

    2011-10-15

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO₂²⁺ + 2CO₃²⁻ = >SOUO₂(CO₃HCO₃)²⁻, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logK(c)) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logK(c) values. Using this approach, logK(c) values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (< 0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logK(c) uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  9. Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area.

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Lin, Po-Cheng; Hwang, Yaw-Huei; Liu, Chen-Wuing; Liao, Chung-Min; Chang, Fi-John; Yu, Chan-Wei

    2011-12-15

    High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23±0.03 mM) in pore waters and mobilization of As(III) (206.7±21.2 nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27±0.01 mM and 571.4±63.3 nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Isotopic and hydro geochemistry study of the granular aquifer from Comarca Lagunera, Mexico

    International Nuclear Information System (INIS)

    Gonzalez Hita, Luis; Sanchez Diaz, Luis Felipe

    1994-01-01

    The Comarca Lagunera is one of Mexico's biggest agricultural regions. Its water sources are the Nazas and Aguanaval Rivers and a quaternary granular aquifer. The over exploitation of the aquifer has led to deteriorated groundwater quality due to the presence of arsenic. This study aims to determine the origin and evolution of the arsenic and to update the system's hydrogeochemical information. The methodology used is based on an analysis of the physical framework and on the hydrogeochemical and isotope characterization of the groundwater. An interpretation of the results shows that the arsenic could have originated in two geological events: first, the magmatic processes that generated the region's intrusive and extrusive igneous rocks, and second, the sedimentation of alluvial-lacustrine materials bearing arsenic, which were transported by the Nazas and Aguanaval Rivers during the aquifer's formation. (author)

  11. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    Science.gov (United States)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume

  12. Estimation of uranium migration parameters in sandstone aquifers.

    Science.gov (United States)

    Malov, A I

    2016-03-01

    The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are

  13. Determining shallow aquifer vulnerability by the DRASTIC model and hydrochemistry in granitic terrain, southern India

    Science.gov (United States)

    Mondal, N. C.; Adike, S.; Singh, V. S.; Ahmed, S.; Jayakumar, K. V.

    2017-08-01

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been cross-verified with hydrochemical signatures such as total dissolved solids (TDS), Cl-, HCO3-, SO4^{2-} and Cl-/HCO3- molar ratios. The results show four zones of aquifer vulnerability (i.e., negligible, low, moderate and high) based on the variation of DRASTIC Vulnerability Index (DVI) between 39 and 132. About 57% area in the central part is found moderately and highly contaminated due to the 80 functional tannery disposals and is more prone to groundwater aquifer vulnerability. The high range values of TDS (2304-39,100 mg/l); Na+(239- 6,046 mg/l) and Cl- (532-13,652 mg/l) are well correlated with the observed high vulnerable zones. The values of Cl-/HCO3- (molar ratios: 1.4-106.8) in the high vulnerable zone obviously indicate deterioration of the aquifer due to contamination. Further cumulative probability distributions of these parameters indicate several threshold values which are able to demarcate the diverse vulnerability zones in granitic terrain.

  14. A two-dimensional analytical model for groundwater flow in a leaky aquifer extending finite distance under the estuary

    Science.gov (United States)

    Chuang, Mo-Hsiung; Hung, Chi-Tung; -Yen Lin, Wen; Ma, Kuo-chen

    2017-04-01

    In recent years, cities and industries in the vicinity of the estuarine region have developed rapidly, resulting in a sharp increase in the population concerned. The increasing demand for human activities, agriculture irrigation, and aquaculture relies on massive pumping of water in estuarine area. Since the 1950s, numerous studies have focused on the effects of tidal fluctuations on groundwater flow in the estuarine area. Tide-induced head fluctuation in a two-dimensional estuarine aquifer system is complicated and rather important in dealing with many groundwater management or remediation problems. The conceptual model of the aquifer system considered is multi-layered with estuarine bank and the leaky aquifer extend finite distance under the estuary. The solution of the model describing the groundwater head distribution in such an estuarine aquifer system and subject to the tidal fluctuation effects from estuarine river is developed based on the method of separation of variables along with river boundary. The solutions by Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res. 1997; 33:1429-35) as well as Tang and Jiao (Tang Z. and J. J. Jiao, A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, Hydrological Processes, 2001; 15: 573-585) can be shown to be special cases of the present solution. On the basis of the analytical solution, the groundwater head distribution in response to estuarine boundary is examined and the influences of leakage, hydraulic parameters, and loading effect on the groundwater head fluctuation due to tide are investigated and discussed. KEYWORDS: analytical model, estuarine river, groundwater fluctuation, leaky aquifer.

  15. Origin and availability of organic matter leading to arsenic mobilisation in aquifers of the Red River Delta, Vietnam

    International Nuclear Information System (INIS)

    Eiche, Elisabeth; Berg, Michael; Hönig, Sarah-Madeleine; Neumann, Thomas; Lan, Vi Mai; Pham, Thi Kim Trang; Pham, Hung Viet

    2017-01-01

    Groundwater arsenic (As) concentrations in the Red River Delta (Vietnam) are often patchy and related to the microbially induced reduction of Fe oxy-hydroxides. In this study, we explored the influence of the origin, composition and availability of natural organic matter on the hydrochemical variability in the aquifers of Van Phuc. Carbon isotope signatures (δ"1"3C_o_r_g) and C/N ratios were assessed in combination with lithology, geochemistry, hydrochemistry, hydrology and the distribution of specific biomarkers. The elationship of C/N ratios and δ"1"3C_o_r_g distinguished four groups of sediment types that differ in their organic carbon sources. This includes organic carbon originating predominantly from vascular C_3 plants (C/N: 15.4–21.0, δ"1"3C_o_r_g: −28.6 to −26.7‰), C_4 plants (C/N: 10.6; δ"1"3C_o_r_g: −14.8‰), freshwater derived particulate organic carbon (C/N: ≤8; δ"1"3C_o_r_g:≤−24‰) as well as mixtures incorporating both sources. At the high As sites, we found particulate organic carbon (POC) being 1–2‰ less depleted in δ"1"3C_o_r_g than at low As sites. More importantly, however, our assessment shows that, the availability of organic matter has to be considered decisive with regard to groundwater As contamination. Fine-grained clayey sediments overlaying sands generally protect organic matter from substantial degradation and its leaching into an adjacent aquifer. However, at the sites that are high in dissolved As in Van Phuc, sediment layers rich in organic matter are hydraulically connected to the underlying aquifer. Here, soluble organic matter seeping into the aquifer can induce and/or enhance reducing conditions, thereby mobilising As from Fe oxy-hydroxides. Our study shows that both the clay content as well as the origin of organic matter are largely controlled by the depositional environment of the sediments. - Highlights: • Particulate organic carbon (POC) from C_3/C_4 plants and freshwater is a main source of

  16. Cation exchange and CaCO 3 dissolution during artificial recharge of effluent to a calcareous sandstone aquifer

    Science.gov (United States)

    Goren, Orly; Gavrieli, Ittai; Burg, Avihu; Lazar, Boaz

    2011-03-01

    SummaryThis research describes a field study and laboratory simulations of the geochemical evolution of groundwater following a recharge of effluent into aquifers. The study was conducted in the soil aquifer treatment (SAT) system of the Shafdan sewage reclamation plant, Israel. The SAT system recharges secondary effluent into the calcareous sandstone sediments of the Israeli Coastal Aquifer as a tertiary treatment. The reclaimed effluent is recovered ca. 500 m off the recharge basin and is used for unlimited irrigation. The laboratory simulations in which effluent was pumped through experimental columns packed with pristine Shafdan sediment showed that the chemical composition of the outflowing water was controlled mainly by cation exchange and CaCO 3 dissolution. Na +, K + and Mg 2+ were adsorbed and Ca 2+ was desorbed during the initial stage of recharge. The equilibrium distribution of the adsorbed cations was: Ca 2+ ˜ 60%, Mg 2+ ˜ 20%, and Na + and K + ˜ 10% each. The Ca 2+ in the Shafdan production wells and in the experimental columns outflow (˜5 meq L -1) was always higher than the Ca 2+ in the recharged effluent (˜3.5 meq L -1), indicating continuous CaCO 3 dissolution. This study demonstrates that besides mixing, a suite of geochemical processes should be considered when assessing groundwater quality following artificial recharge of aquifers.

  17. Geothermal characterization of the coastal aquifer near Ravenna (Italy

    Directory of Open Access Journals (Sweden)

    M. Antonellini

    2012-12-01

    Full Text Available The coastal aquifer near Ravenna (Italy contains a large volume of groundwater (2,5x109 m3 whose quality has been compromised by sea-water intrusion. Today, the phreatic groundwater is mostly brackish with some lenses of freshwater floating on top of more saline water. This water, although impossible to use as drink-water or for irrigation, is still important to guarantee the health of wetland habitats and especially of the roman historical and coastal pine forests of Ravenna. With the objective of defining the flow pattern within the aquifer and the exchange between surface and ground water, we characterized the temperature distribution in the shallow subsurface by means of a dense network of piezometers. At the same time we had the opportunity to characterize the phreatic aquifer from the geothermal point of view, so that it could eventually be considered for use as a “low enthalpy” heat source. Heat pumps are able to extract heat during the winter and dissipate it during the summer. The temperature of the groundwater in the top layer of the aquifer (surficial zone is sensitive to the changes in atmospheric temperature throughout the year whereas the temperature of the deeper groundwater follows the geothermal gradient (geothermal zone. One of the scopes of the project is to discover at what depth is located the geothermal zone, so that the aquifer has a constant temperature throughout the year. A constant temperature is needed for storage of heat at low enthalpy. The thickness of the surficial zone and the temperature at the top of the geothermal zone are essentially related to land use, distance from the sea, sediment type, and amount of interaction between surface and groundwater. A knowledge of these factors allows to better exploit the geothermal potential of the aquifer when choosing the optimal placement of the heat pumps.

  18. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  19. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  20. Impact of river stage prediction methods on stream-aquifer exchanges in a hydro(geo)logical model at the regional scale

    Science.gov (United States)

    Saleh, F.; Flipo, N.; de Fouquet, C.

    2012-04-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. The study focuses on the Oise basin (17 000 km2, part of the 65 000 km2 Seine basin in Northern France) where stream-aquifer exchanges cannot be assessed directly by experimental methods. Nowadays numerical methods are the most appropriate approaches for assessing stream-aquifer exchanges at this scale. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used, which aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using the Darcy law. Three methods for assessing in-stream river stages are explored to determine the most appropriate representation at regional scale over 25 years (1980-2005). The first method consists in defining rating curves for each cell of a 1D Saint-Venant hydraulic model. The second method consists in interpolating observed rating curves (at gauging stations) onto the river cells of the hydro(geo)logical model. The interpolation technique is based on geostatistics. The last method assesses river stage using Manning equation with a simplified rectangular cross-section (water depth equals the hydraulic radius). Compared to observations, the geostatistical and the Manning methodologies lead to slightly less accurate (but still acceptable) results offering a low computational cost opportunity

  1. Research in karst aquifers developed in high-mountain areas combining KARSYS models with springs discharge records. Picos de Europa, Spain

    Science.gov (United States)

    Ballesteros, Daniel; Meléndez, Mónica; Malard, Arnauld; Jiménez-Sánchez, Montserrat; Heredia, Nemesio; Jeannin, Pierre-Yves; García-Sansegundo, Joaquín

    2014-05-01

    The study of karst aquifers developed in high-mountain areas is quite complex since the application of many techniques of hydrogeology in these areas is difficult, expensive, and requires many hours of field work. In addition, the access to the study area is usually conditioned by the orography and the meteorological conditions. A pragmatic approach to study these aquifers can be the combination of geometric models of the aquifer with the monitoring of the discharge rate of springs and the meteorological records. KARSYS approach (Jeannin et al. 2013) allows us to elaborate a geometric model of karst aquifers establishing the boundaries of the groundwater bodies, the main drainage axes and providing evidences of the catchment delineation of the springs. The aim of this work is to analyse the functioning of the karst aquifer from the western and central part of the Picos de Europa Mountains (Spain) combining the KARSYS approach, the discharge record from two springs and the meteorological records (rain, snow and temperature). The Picos de Europa (North Spain) is a high-mountains area up to 2.6 km altitude with 2,500 mm/year of precipitations. The highest part of these mountains is covered by snow four to seven months a year. The karst aquifer is developed in Carboniferous limestone which is strongly compartmentalized in, at least, 17 groundwater bodies. The method of work includes: 1) the elaboration of a hydrogeological 3D model of the geometry of the karst aquifers by KARSYS approach, 2) the definition of the springs catchment areas based on the hydrogeological 3D model, 3) the selection of two representative springs emerging from the aquifers to study it, 4) the continuous monitoring of water levels in two karst springs since October 2013, 5) the transformation of the water level values to flow values using height-stream relation curves constructed by measures of the spring discharge, and 5) the comparison of the spring discharge rate records and meteorological

  2. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam.

    Science.gov (United States)

    Postma, Dieke; Mai, Nguyen Thi Hoa; Lan, Vi Mai; Trang, Pham Thi Kim; Sø, Helle Ugilt; Nhan, Pham Quy; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus

    2017-01-17

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium-helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO 2 (P CO 2 ) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L.

  3. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam

    Science.gov (United States)

    2016-01-01

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium–helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO2 (PCO2) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L. PMID:27958705

  4. Geographic information system-coupling sediment delivery distributed modeling based on observed data.

    Science.gov (United States)

    Lee, S E; Kang, S H

    2014-01-01

    Spatially distributed sediment delivery (SEDD) models are of great interest in estimating the expected effect of changes on soil erosion and sediment yield. However, they can only be applied if the model can be calibrated using observed data. This paper presents a geographic information system (GIS)-based method to calculate the sediment discharge from basins to coastal areas. For this, an SEDD model, with a sediment rating curve method based on observed data, is proposed and validated. The model proposed here has been developed using the combined application of the revised universal soil loss equation (RUSLE) and a spatially distributed sediment delivery ratio, within Model Builder of ArcGIS's software. The model focuses on spatial variability and is useful for estimating the spatial patterns of soil loss and sediment discharge. The model consists of two modules, a soil erosion prediction component and a sediment delivery model. The integrated approach allows for relatively practical and cost-effective estimation of spatially distributed soil erosion and sediment delivery, for gauged or ungauged basins. This paper provides the first attempt at estimating sediment delivery ratio based on observed data in the monsoon region of Korea.

  5. Effects of Subsurface Microbial Ecology on Geochemical Evolution of a Crude-Oil Contaminated Aquifer

    Science.gov (United States)

    Bekins, B. A.; Cozzarelli, I. M.; Godsy, E. M.; Warren, E.; Hostettler, F. D.

    2001-12-01

    We have identified several subsurface habitats for microorganisms in a crude oil contaminated located near Bemidji, Minnesota. These aquifer habitats include: 1) the unsaturated zone contaminated by hydrocarbon vapors, 2) the zones containing separate-phase crude oil, and 3) the aqueous-phase contaminant plume. The surficial glacial outwash aquifer was contaminated when a crude oil pipeline burst in 1979. We analyzed sediment samples from the contaminated aquifer for the most probable numbers of aerobes, iron reducers, fermenters, and three types of methanogens. The microbial data were then related to gas, water, and oil chemistry, sediment extractable iron, and permeability. The microbial populations in the various contaminated subsurface habitats each have special characteristics and these affect the aquifer and contaminant chemistry. In the eight-meter-thick, vapor-contaminated vadose zone, a substantial aerobic population has developed that is supported by hydrocarbon vapors and methane. Microbial numbers peak in locations where access to both hydrocarbons and nutrients infiltrating from the surface is maximized. The activity of this population prevents hydrocarbon vapors from reaching the land surface. In the zone where separate-phase crude oil is present, a consortium of methanogens and fermenters dominates the populations both above and below the water table. Moreover, gas concentration data indicate that methane production has been active in the oily zone since at least 1986. Analyses of the extracted separate-phase oil show that substantial degradation of C15 -C35 n-alkanes has occurred since 1983, raising the possibility that significant degradation of C15 and higher n-alkanes has occurred under methanogenic conditions. However, lab and field data suggest that toxic inhibition by crude oil results in fewer acetate-utilizing methanogens within and adjacent to the separate-phase oil. Data from this and other sites indicate that toxic inhibition of

  6. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.

    Science.gov (United States)

    Leone, A; Ripa, M N; Uricchio, V; Deák, J; Vargay, Z

    2009-07-01

    In recent years, the significant improvement in point source depuration technologies has highlighted problems regarding, in particular, phosphorus and nitrogen pollution of surface and groundwater caused by agricultural non-point (diffuse) sources (NPS). Therefore, there is an urgent need to determine the relationship between agriculture and chemical and ecological water quality. This is a worldwide problem, but it is particularly relevant in countries, such as Hungary, that have recently become members of the European Community. The Italian Foreign Ministry has financed the PECO (Eastern Europe Countries Project) projects, amongst which is the project that led to the present paper, aimed at agricultural sustainability in Hungary, from the point of view of NPS. Specifically, the aim of the present work has been to study nitrates in Hungary's main aquifer. This study compares a model showing aquifer intrinsic vulnerability to pollution (using the DRASTIC parameter method; Aller et al. [Aller, L., Truman, B., Leher, J.H., Petty, R.J., 1986. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. US NTIS, Springfield, VA.]) with a field-scale model (GLEAMS; Knisel [Knisel, W.G. (Ed.), 1993. GLEAMS--Groudwater Leaching Effects of Agricultural Management Systems, Version 3.10. University of Georgia, Coastal Plain Experimental Station, Tifton, GA.]) developed to evaluate the effects of agricultural management systems within and through the plant root zone. Specifically, GLEAMS calculates nitrate nitrogen lost by runoff, sediment and leachate. Groundwater monitoring probes were constructed for the project to measure: (i) nitrate content in monitored wells; (ii) tritium (3H) hydrogen radioisotope, as a tool to estimate the recharge conditions of the shallow groundwater; (iii) nitrogen isotope ratio delta15N, since nitrogen of organic and inorganic origin can easily be distinguished. The results obtained are satisfactory

  7. Hydrogeochemical and mineralogical effects of sustained CO2 contamination in a shallow sandy aquifer: A field-scale controlled release experiment

    DEFF Research Database (Denmark)

    Cahill, Aaron Graham; Marker, Pernille Aabye; Jakobsen, Rasmus

    2014-01-01

    A shallow aquifer CO2 contamination experiment was performed to investigate evolution of water chemistry and sediment alteration following leakage from geological storage by physically simulating a leak from a hypothetical storage site. In a carbonate-free aquifer, in western Denmark, a total...... of 1600 kg of gas phase CO2 was injected at 5 and 10 m depth over 72 days through four inclined injection wells into aeolian and glacial sands. Water chemistry was monitored for pH, EC, and dissolved element evolution through an extensive network of multilevel sampling points over 305 days. Sediment cores...... were taken pre and postinjection and analyzed to search for effects on mineralogy and sediment properties. Results showed the simulated leak to evolve in two distinct phases; an advective elevated ion pulse followed by increasing persistent acidification. Spatial and temporal differences in evolution...

  8. Reactive transport modeling of nitrogen in Seine River sediments

    Science.gov (United States)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  9. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  10. Regeneration of a confined aquifer after redevelopment and decommission of artesian wells, example from Grafendorf aquifer (Styria, Austria)

    Science.gov (United States)

    Mehmedovski, Nudzejma; Winkler, Gerfried

    2016-04-01

    Water is essential for life and it is therefore necessary to protect drinking water sustainably. Compared to shallow groundwater, deeper groundwater is especially important due to its characteristic tendency to remain extensively unaffected by environmental impacts. Thus, the uncontrolled waste of this valuable resource has to be avoided. A lot of artesian wells have been established in Grafendorf bei Hartberg (Styria, Austria). Almost all wells were not state-of-the art. As a result the different aquifer horizons began to intermix. Additionally some of the artesian wells had a permanent free overflow and the water was not even used. Consequently, since 1950, where the mean discharge of 37 wells was 0,334 l/s per well, the discharge has decreased to 0,090 l/s until 2013, which means a decline of about 75 %. As a reaction to these declines a decommissioning campaign was conducted where 69 artesian wells have been closed by injecting a cement-bentonite suspension (ratio 3:1). The Grafendorf aquifer is situated in the Styrian Basin and consists of 5 separated artesian horizons in Neogene sediments. These artesian horizons range from 42 m (1st horizon) to 176 m (5th horizon) and mostly consist of sand, partly of fine/medium/coarse gravel and partially with minor clay content. In order to analyse the reaction of the Grafendorf aquifer to these redevelopments, 5 monitoring wells could be used for the analysis. Some monitoring wells include different aquifer horizons and hydraulically short cut them. Thus, in this work the analysis focus on the general trend of the whole aquifer system neglecting the individual interactions between the different aquifers. In a first investigation step the hydraulic properties of the aquifer system has been determined using pumping tests which were analysed with different analytical solutions with the software AQTESOLV. Overall the pumping test solutions hardly differ in the transmissivity and hydraulic conductivity. On the contrary the

  11. Factors affecting public-supply well vulnerability in two karst aquifers.

    Science.gov (United States)

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. © 2014 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  12. Modeling sediment transport with an integrated view of the biofilm effects

    Science.gov (United States)

    Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.

    2017-09-01

    Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.

  13. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    International Nuclear Information System (INIS)

    Gosselin, David C.; Edwin Harvey, F.; Frost, Carol; Stotler, Randy; Allen Macfarlane, P.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist

  14. Instantaneous sediment transport model for asymmetric oscillatory sheet flow.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available On the basis of advanced concentration and velocity profiles above a mobile seabed, an instantaneous analytical model is derived for sediment transport in asymmetric oscillatory flow. The applied concentration profile is obtained from the classical exponential law based on mass conservation, and asymmetric velocity profile is developed following the turbulent boundary layer theory and the asymmetric wave theory. The proposed model includes two parts: the basic part that consists of erosion depth and free stream velocity, and can be simplified to the total Shields parameter power 3/2 in accordance with the classical empirical models, and the extra vital part that consists of phase-lead, boundary layer thickness and erosion depth. The effects of suspended sediment, phase-lag and asymmetric boundary layer development are considered particularly in the model. The observed instantaneous transport rate proportional to different velocity exponents due to phase-lag is unified and summarised by the proposed model. Both instantaneous and half period empirical formulas are compared with the developed model, using extensive data on a wide range of flow and sediment conditions. The synchronous variation in instantaneous transport rate with free stream velocity and its decrement caused by increased sediment size are predicted correctly. Net transport rates, especially offshore transport rates with large phase-lag under velocity skewed flows, which existing instantaneous type formulas failed to predict, are predicted correctly in both direction and magnitude by the proposed model. Net sediment transport rates are affected not only by suspended sediment and phase-lag, but also by the boundary layer difference between onshore and offshore.

  15. Assessing the Impact of Recycled Water Quality and Clogging on Infiltration Rates at A Pioneering Soil Aquifer Treatment (SAT) Site in Alice Springs, Northern Territory (NT), Australia

    OpenAIRE

    Karen E. Barry; Joanne L. Vanderzalm; Konrad Miotlinski; Peter J. Dillon

    2017-01-01

    Infiltration techniques for managed aquifer recharge (MAR), such as soil aquifer treatment (SAT) can facilitate low-cost water recycling and supplement groundwater resources. However there are still challenges in sustaining adequate infiltration rates in the presence of lower permeability sediments, especially when wastewater containing suspended solids and nutrients is used to recharge the aquifer. To gain a better insight into reductions in infiltration rates during MAR, a field investigati...

  16. Effect of transient wave forcing on the behavior of arsenic in a sandy nearshore aquifer

    Science.gov (United States)

    Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.

    2016-12-01

    Waves cause large quantities of coastal water to recirculate across the groundwater-coastal water interface in addition to inducing complex groundwater flows in the nearshore aquifer. Due to the distinct chemical composition of recirculating coastal water compared with discharging terrestrial groundwater, wave-induced recirculations and flows can alter geochemical gradients in the nearshore aquifer which may subsequently affect the mobilization and transport of reactive pollutants (e.g., arsenic). The impact of seasonal geochemical and hydrological variability on the occurrence and mobility of arsenic near the groundwater-surface water interface has been shown previously in riverine settings, however, the impact of high frequency geochemical variations (e.g., varying wave conditions) on arsenic mobility in groundwater-surface water environments is unclear. The objective of the study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer to determine the factors regulating its mobility and transport to receiving coastal waters. Field investigations were conducted at a permeable beach on the Great Lakes during a period of intensified wave conditions (wave event). High spatial resolution pore water sampling captured the geochemical conditions in the nearshore aquifer prior to the wave event, immediately after the wave event and over a recovery period of 3 weeks following the wave event. Shifts in pH and redox potential (ORP) gradients in response to varying wave conditions caused shifts in the iron and arsenic distributions in the aquifer. Sediment analysis was combined with the pore water distributions to assess the release of sediment-bound arsenic in response to the varying wave conditions. Insight into the effect of transient forcing on arsenic mobility and transport in groundwater-surface water environments is important for evaluating the potential risks associated with this toxic metalloid. The findings of this

  17. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  18. Integration of models of various types of aquifers for water quality management in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy).

    Science.gov (United States)

    Vižintin, Goran; Ravbar, Nataša; Janež, Jože; Koren, Eva; Janež, Naško; Zini, Luca; Treu, Francesco; Petrič, Metka

    2018-04-01

    Due to intrinsic characteristics of aquifers groundwater frequently passes between various types of aquifers without hindrance. The complex connection of underground water paths enables flow regardless of administrative boundaries. This can cause problems in water resources management. Numerical modelling is an important tool for the understanding, interpretation and management of aquifers. Useful and reliable methods of numerical modelling differ with regard to the type of aquifer, but their connections in a single hydrodynamic model are rare. The purpose of this study was to connect different models into an integrated system that enables determination of water travel time from the point of contamination to water sources. The worst-case scenario is considered. The system was applied in the Soča/Isonzo basin, a transboundary river in Slovenia and Italy, where there is a complex contact of karst and intergranular aquifers and surface flows over bedrock with low permeability. Time cell models were first elaborated separately for individual hydrogeological units. These were the result of numerical hydrological modelling (intergranular aquifer and surface flow) or complex GIS analysis taking into account the vulnerability map and tracer tests results (karst aquifer). The obtained cellular models present the basis of a contamination early-warning system, since it allows an estimation when contaminants can be expected to appear, and in which water sources. The system proves that the contaminants spread rapidly through karst aquifers and via surface flows, and more slowly through intergranular aquifers. For this reason, karst water sources are more at risk from one-off contamination incidents, while water sources in intergranular aquifers are more at risk in cases of long-term contamination. The system that has been developed is the basis for a single system of protection, action and quality monitoring in the areas of complex aquifer systems within or on the borders of

  19. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  20. Elastic Wave Imaging of in-Situ Bio-Alterations in a Contaminated Aquifer

    Science.gov (United States)

    Jaiswal, P.; Raj, R.; Atekwana, E. A.; Briand, B.; Alam, I.

    2014-12-01

    We present a pioneering report on the utility of seismic methods in imaging bio-induced elastic property changes within a contaminated aquifer. To understand physical properties of contaminated soil, we acquired 48 meters long multichannel seismic profile over the Norman landfill leachate plume in Norman Oklahoma, USA. We estimated both the P- and S- wave velocities respectively using full-waveform inversion of the transmission and the ground-roll coda. The resulting S-wave model showed distinct velocity anomaly (~10% over background) within the water table fluctuation zone bounded by the historical minimum and maximum groundwater table. In comparison, the P-wave velocity anomaly within the same zone was negligible. The Environmental Scanning Electron Microscope (ESEM) images of samples from a core located along the seismic profile clearly shows presence of biofilms in the water table fluctuation zone and their absence both above and below the fluctuation zone. Elemental chemistry further indicates that the sediment composition throughout the core is fairly constant. We conclude that the velocity anomaly in S-wave is due to biofilms. As a next step, we develop mechanistic modeling to gain insights into the petro-physical behavior of biofilm-bearing sediments. Preliminary results suggest that a plausible model could be biofilms acting as contact cement between sediment grains. The biofilm cement can be placed in two ways - (i) superficial non-contact deposition on sediment grains, and (ii) deposition at grain contacts. Both models explain P- and S- wave velocity structure at reasonable (~5-10%) biofilm saturation and are equivocally supported by the ESEM images. Ongoing attenuation modeling from full-waveform inversion and its mechanistic realization, may be able to further discriminate between the two cement models. Our study strongly suggests that as opposed to the traditional P-wave seismic, S-wave acquisition and imaging can be a more powerful tool for in

  1. Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973–2016 in the Chicot and Evangeline Aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.

    2017-08-16

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. This report contains regional-scale maps depicting approximate 2017 water-level altitudes (represented by measurements made during December 2016 through March 2017) and long-term water-level changes for the Chicot, Evangeline, and Jasper aquifers; a map depicting locations of borehole-extensometer (hereinafter referred to as “extensometer”) sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2016.In 2017, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below the North American Vertical Datum of 1988 (hereinafter referred to as “datum”) in two localized areas in southwestern and northwestern Harris County to 200 ft above datum in west-central Montgomery County. The largest water-level-altitude decline (120 ft) depicted by the 1977–2017 water-level-change contours for the Chicot aquifer was in northwestern Harris County. A broad area where water-level altitudes declined in the Chicot aquifer extends from northwestern, north-central, and southwestern Harris County

  2. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: A review

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Lekkerkerker-Teunissen, Karin; Amy, Gary L.

    2011-01-01

    Managed aquifer recharge (MAR) is a natural water treatment process that induces surface water to flow in response to a hydraulic gradient through soil/sediment and into a vertical or horizontal well. It is a relatively cost-effective, robust

  3. Evaluation of Different Modeling Approaches to Simulate Contaminant Transport in a Fractured Limestone Aquifer

    Science.gov (United States)

    Mosthaf, K.; Rosenberg, L.; Balbarini, N.; Broholm, M. M.; Bjerg, P. L.; Binning, P. J.

    2014-12-01

    It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies. Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE) has migrated through a fractured limestone aquifer. Multilevel monitoring wells have been installed at the site and available data includes information on spill history, extent of contamination, geology and hydrogeology. To describe the geology and fracture network, data from borehole logs was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit and measures of model suitability. An analysis of model parameter identifiability and sensitivity is presented. Results show that there is considerable difference between modeling approaches, and that it is important to identify the right one for the actual scale and model purpose. A challenge in the use of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias

  4. Coarse sediment oil persistence laboratory studies and model

    International Nuclear Information System (INIS)

    Humphrey, B.; Harper, J.R.

    1993-01-01

    To gain understanding of the factors which affect the fate of stranded oil on coarse sediment beaches, a series of oil penetration and tidal flushing experiments was conducted in columns containing sediments of two grain sizes: granules and pebbles. The experiments included changing oil properties by weathering and by emulsification. Factors examined included permeability, effective porosity, and residual capacity of the sediment for oil. The laboratory data provided input to an oil persistence model for coarse sediment beaches, and the model was modified on the basis of the new data. The permeability measurements suggest that the permeability of pebble/granule mixtures is close to that of the smaller component. For low viscosity oils, the permeability in coarse sediments is rapid enough to match the fall and rise of tidal water. Effective porosity of the pebbles was ca 90% of the measured porosity, but for both the granules and a 50-50 pebble/granule mixture, the effective porosity was ca 75% of measured porosity. Results of tidal flushing simulation imply that flushing may be rapid but not efficient. The emulsion completely entered the sediment in the case of pebbles only. 2 refs., 6 figs., 3 tabs

  5. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    Science.gov (United States)

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  6. VULNERABILITY AND RISK OF CONTAMINATION KARSTIC AQUIFERS

    Directory of Open Access Journals (Sweden)

    Yameli Aguilar

    2013-08-01

    Full Text Available Karstic systems occupy nearly 20% of the surface of the earth and are inhabited by numerous human communities. Karstic aquifers are the most exposed to pollution from human activities. Pollution of karstic aquifers is a severe environmental problem worldwide.  In order to face the vulnerability of karstic aquifers to pollution, researchers have created a diversity of study approaches and models, each one having their own strengths and weaknesses depending on the discipline from which they were originated, thus requiring a thorough discussion within the required multidisciplinary character. The objective of this article was to analyze the theoretical and methodological approaches applied to the pollution of karstic aquifers. The European hydrogeological, land evaluation, hydropedological and a geographic approach were analyzed. The relevance of a geomorphological analysis as a cartographic basis for the analysis of vulnerability and risks were emphasized. From the analysis of models, approaches and methodologies discussed the following recommendation is made: to form an interdisciplinary work team, to elaborate a conceptual model according to the site and the working scale and to e, apply and validate the model.

  7. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    Science.gov (United States)

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability.This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The

  8. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer’s importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey’s National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards.Mass-balance models indicate that changes in groundwater chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite

  9. A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT

    Directory of Open Access Journals (Sweden)

    Preksedis Marco Ndomba

    2008-12-01

    Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977–1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977–1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969–2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.

  10. A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT

    Directory of Open Access Journals (Sweden)

    Preksedis M. Ndomba

    2008-01-01

    Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977¿1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977-1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969-2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.

  11. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6 implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234

    Directory of Open Access Journals (Sweden)

    C. R. Sherwood

    2018-05-01

    Full Text Available We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6, as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST Subversion repository revision 1234. These include the following: floc dynamics (aggregation and disaggregation in the water column; changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.

  12. Controlling geological and hydrogeological processes in an arsenic contaminated aquifer on the Red River flood plain, Vietnam

    International Nuclear Information System (INIS)

    Larsen, Flemming; Nhan Quy Pham; Nhan Duc Dang; Postma, Dieke; Jessen, Soren; Viet Hung Pham; Nguyen, Thao Bach; Trieu, Huy Duc; Luu Thi Tran; Hoan Nguyen; Chambon, Julie; Hoan Van Nguyen; Dang Hoang Ha; Nguyen Thi Hue; Mai Thanh Duc; Refsgaard, Jens Christian

    2008-01-01

    Geological and hydrogeological processes controlling recharge and the mobilization of As were investigated in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The geology was investigated using surface resistivity methods, geophysical borehole logging, drilling of boreholes and installation of more than 200 piezometers. Recharge processes and surface-groundwater interaction were studied using (i) time-series of hydraulic head distribution in surface water and aquifers, (ii) the stable isotope composition of waters and (iii) numerical groundwater modeling. The Red River and two of its distributaries run through the field site and control the groundwater flow pattern. For most of the year, there is a regional groundwater flow towards the Red River. During the monsoon the Red River water stage rises up to 6 m and stalls the regional groundwater flow. The two distributaries recharge the aquifer from perched water tables in the dry season, whilst in the flooding period surface water enters the aquifer through highly permeable bank sediments. The result is a dynamic groundwater flow pattern with rapid fluctuations in the groundwater table. A transient numerical model of the groundwater flow yields an average recharge rate of 60-100 mm/a through the confining clay, and a total recharge of approximately 200 mm/a was estimated from 3 H/ 3 He dating of the shallow groundwater. Thus in the model area, recharge of surface water from the river distributaries and recharge through a confining clay is of the same magnitude, being on average around 100 mm/a. The thickness of the confining clay varies between 2 and 10 m, and affects the recharge rate and the transport of electron acceptors (O 2 , NO 3 - and SO 4 2- ) into the aquifer. Where the clay layer is thin, an up to 2 m thick oxic zone develops in the shallow aquifer. In the oxic zone the As concentration is less than 1 μg/L but increases in the reduced zone below to 550 μg/L. In the Holocene

  13. Determination of hydrogeological conditions in large unconfined aquifer: A case study in central Drava plain (NE Slovenia)

    Science.gov (United States)

    Keršmanc, Teja; Brenčič, Mihael

    2016-04-01

    In several countries, many unregulated landfills exits which releasing harmful contaminations to the underlying aquifer. The Kidričevo industrial complex is located in southeastern part of Drava plain in NW Slovenia. In the past during the production of alumina and aluminum approximately 11.2 million tons of wastes were deposit directly on the ground on two landfills covering an area of 61 hectares. Hydrogeological studies were intended to better characterized conditions bellow the landfill. Geological and hydrogeological conditions of Quaternary unconfined aquifer were analyzed with lithological characterization of well logs and cutting debris and XRF diffraction of silty sediments on 9 boreholes. Hydrogeological conditions: hydraulic permeability aquifer was determined with hydraulic tests and laboratory grain size analyses where empirical USBR and Hazen methods were applied. Dynamics of groundwater was determined by groundwater contour maps and groundwater level fluctuations. The impact of landfill was among chemical analyses of groundwater characterised by electrical conductivity measurements and XRF spectrometry of sand sediments. The heterogeneous Quaternary aquifer composed mainly of gravel and sand, is between 38 m and 47.5 m thick. Average hydraulic permeability of aquifer is within the decade 10-3 m/s. Average hydraulic permeability estimated on grain size curves is 6.29*10-3 m/s, and for the pumping tests is 4.0*10-3 m/s. General direction of groundwater flow is from west to east. During high water status the groundwater flow slightly changes flow direction to the southwest and when pumping station in Kidričevo (NW of landfill) is active groundwater flows to northeast. Landfills have significant impact on groundwater quality.

  14. Clinton River Sediment Transport Modeling Study

    Science.gov (United States)

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  15. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996-Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer; FINAL

    International Nuclear Information System (INIS)

    Vermeul, Vince R; Cole, Charles R; Bergeron, Marcel P; Thorne, Paul D; Wurstner, Signe K

    2001-01-01

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty

  16. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  17. Comparison of estuarine sediment record with modelled rates of sediment supply from a western European catchment since 1500

    Science.gov (United States)

    Poirier, Clément; Poitevin, Cyril; Chaumillon, Éric

    2016-09-01

    Marine and estuarine sediment records reporting impacts of historical land use changes exist worldwide, but they are rarely supported by direct quantified evidence of changes in denudation rates on the related catchments. Here we implement a spatially-resolved RUSLE soil erosion model on the 10 000 km2 Charente catchment (France), supplied with realistic scenarios of land-cover and climate changes since 1500, and compare the results to a 14C-dated estuarine sediment record. Despite approximations, the model correctly predicts present-day Charente river sediment load. Back-cast modelling suggests that the Charente catchment is an interesting case where the sediment supply did not change despite increase in soil erosion resulting from 18th-century deforestation because it was mitigated by drier climate during the same period. Silt-sand alternations evidenced in the sediment record were correlated with sub-decadal rainfall variability.

  18. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities

    Science.gov (United States)

    Bakker, Mark

    2004-05-01

    Two new analytic element solutions are presented for steady flow problems with elliptical boundaries. The first solution concerns groundwater flow to shallow elliptical lakes with leaky lake beds in a single-aquifer. The second solution concerns groundwater flow through elliptical cylinder inhomogeneities in a multi-aquifer system. Both the transmissivity of each aquifer and the resistance of each leaky layer may differ between the inside and the outside of an inhomogeneity. The elliptical inhomogeneity may be bounded on top by a shallow elliptical lake with a leaky lake bed. Analytic element solutions are obtained for both problems through separation of variables of the Laplace and modified-Helmholtz differential equations in elliptical coordinates. The resulting equations for the discharge potential consist of infinite sums of products of exponentials, trigonometric functions, and modified-Mathieu functions. The series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately, but up to machine accuracy provided enough terms are used. The head and flow may be computed analytically at any point in the aquifer. Examples are given of uniform flow through an elliptical lake, a well pumping near two elliptical lakes, and uniform flow through three elliptical inhomogeneities in a multi-aquifer system. Mathieu functions may be applied in a similar fashion to solve other groundwater flow problems in semi-confined aquifers and leaky aquifer systems with elliptical internal or external boundaries.

  19. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    Science.gov (United States)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic

  20. Modeling the Effects of Storm Surge from Hurricane Jeanne on Saltwater Intrusion into the Surficial Aquifer, East-Central Florida (USA)

    Science.gov (United States)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Hall, C. R.

    2017-12-01

    Saltwater intrusion (SWI) that has been widely recognized as a detrimental issue causing the deterioration of coastal aquifer water quality and degradation of coastal ecosystems. While it is widely recognized that SWI is exacerbated worldwide due to global sea-level rise, we show that increased SWI from tropical cyclones under climate change is also a concern. In the Cape Canaveral Barrier Island Complex (CCBIC) located in east-central Florida, the salinity level of the surficial aquifer is of great importance to maintain a bio-diverse ecosystem and to support the survival of various vegetation species. Climate change induced SWI into the surficial aquifer can lead to reduction of freshwater storage and alteration of the distribution and productivity of vegetation communities. In this study, a three-dimensional variable-density SEAWAT model is developed and calibrated to investigate the spatial and temporal variation of salinity level in the surficial aquifer of CCBIC. We link the SEAWAT model to surge model data to examine the effects of storm surge from Hurricane Jeanne. Simulation results indicate that the surficial aquifer salinity level increases significantly right after the occurrence of storm surge because of high aquifer permeability and rapid infiltration and diffusion of the overtopping saltwater, while the surficial aquifer salinity level begins to decrease after the fresh groundwater recharge from the storm's rainfall. The tropical storm precipitation generates an effective hydraulic barrier further impeding SWI and providing seaward freshwater discharge for saltwater dilution and flushing. To counteract the catastrophic effects of storm surge, this natural remediation process may take at least 15-20 years or even several decades. These simulation results contribute to ongoing research focusing on forecasting regional vegetation community responses to climate change, and are expected to provide a useful reference for climate change adaptation planning

  1. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison.

    Science.gov (United States)

    Cooper, Richard J; Krueger, Tobias; Hiscock, Kevin M; Rawlins, Barry G

    2014-11-01

    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations. An OFAT sensitivity analysis of sediment fingerprinting mixing models is conductedBayesian models display high sensitivity to error assumptions and structural choicesSource apportionment results differ between Bayesian and frequentist approaches.

  2. Unconfined aquifer response to infiltration basins and shallow pump tests

    Science.gov (United States)

    Ostendorf, David W.; DeGroot, Don J.; Hinlein, Erich S.

    2007-05-01

    SummaryWe measure and model the unsteady, axisymmetric response of an unconfined aquifer to delayed, arbitrary recharge. Water table drainage follows the initial elastic aquifer response, as modeled for uniform, instantaneous recharge by Zlotnik and Ledder [Zlotnik, V., Ledder, G., 1992. Groundwater flow in a compressible unconfined aquifer with uniform circular recharge. Water Resources Research 28(6), 1619-1630] and delayed drainage by Moench [Moench, A.F., 1995. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378-384]. We extend their analyses with a convolution integral that models the delayed response of an aquifer to infiltration from a circular infiltration basin. The basin routes the hydrograph to the water table with a decay constant dependent on a Brooks and Corey [Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division ASCE 92(2), 61-88] unsaturated permeability exponent. The resulting closed form model approaches Neuman's [Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research 8(4), 1031-1045] partially penetrating pump test equation for a small source radius, instantaneous, uniform drainage and a shallow screen section. Irrigation pump data at a well characterized part of the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate the small source model, while infiltration data from the closed drainage system of State Route 25 calibrate the infiltration basin model. The calibrated permeability, elasticity, specific yield, and permeability exponent are plausible and consistent for the pump and infiltration data sets.

  3. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  4. Fixation of Cs to marine sediments estimated by a stochastic modelling approach.

    Science.gov (United States)

    Børretzen, Peer; Salbu, Brit

    2002-01-01

    Dumping of nuclear waste in the Kara Sea represents a potential source of radioactive contamination to the Arctic Seas in the future. The mobility of 137Cs ions leached from the waste will depend on the interactions with sediment particles. Whether sediments will act as a continuous permanent sink for released 137Cs, or contaminated sediments will serve as a diffuse source of 137Cs in the future, depends on the interaction kinetics and binding mechanisms involved. The main purpose of this paper is to study the performance of different stochastic models using kinetic information to estimate the time needed for Cs ions to become irreversibly fixed within the sediments. The kinetic information was obtained from 134Cs tracer sorption and desorption (sequential extractions) experiments, conducted over time, using sediments from the Stepovogo Fjord waste dumping site, on the east coast of Novaya Zemlya. Results show that 134Cs ions interact rapidly with the surfaces of the Stepovogo sediment, with an estimated distribution coefficient Kd(eq) of 300 ml/g (or 13m2/g), and the 134Cs ions are increasingly irreversibly fixed to the sediment over time. For the first time, stochastic theory has been utilised for sediment-seawater systems to estimate the mean residence times (MRTs) of Cs ions in operationally defined sediment phases described by compartment models. In the present work, two different stochastic models (i) a Markov process model (MP) being analogous to deterministic compartment models, and (ii) a semi-Markov process model (SMP) which should be physically more relevant for inhomogeneous systems, have been compared. As similar results were obtained using the two models, the less complicated MP model was utilised to predict the time needed for an average Cs ion to become irreversibly fixed in the Stepovogo sediments. According the model, approximately 1100 days of contact time between Cs ions and sediments is needed before 50% of the 134Cs ion becomes fixed in the

  5. Development and Application of a Cohesive Sediment Transport Model in Coastal Louisiana

    Science.gov (United States)

    Sorourian, S.; Nistor, I.

    2017-12-01

    The Louisiana coast has suffered from rapid land loss due to the combined effects of increasing the rate of eustatic sea level rise, insufficient riverine sediment input and subsidence. The sediment in this region is dominated by cohesive sediments (up to 80% of clay). This study presents a new model for calculating suspended sediment concentration (SSC) of cohesive sediments. Several new concepts are incorporated into the proposed model, which is capable of estimating the spatial and temporal variation in the concentration of cohesive sediment. First, the model incorporates the effect of electrochemical forces between cohesive sediment particles. Second, the wave friction factor is expressed in terms of the median particle size diameter in order to enhance the accuracy of the estimation of bed shear stress. Third, the erosion rate of cohesive sediments is also expressed in time-dependent form. Simulated SSC profiles are compared with field data collected from Vermilion Bay, Louisiana. The results of the proposed model agree well with the experimental data, as soon as steady state condition is achieved. The results of the new numerical models provide a better estimation of the suspended sediment concentration profile compared to the initial model developed by Mehta and Li, 2003. Among the proposed developments, the formulation of a time-dependent erosion rate shows the most accurate results. Coupling of present model with the Finite-Volume, primitive equation Community Ocean Model (FVCOM) would shed light on the fate of fine-grained sediments in order to increase overall retention and restoration of the Louisiana coastal plain.

  6. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  7. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    Science.gov (United States)

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross

  8. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.; Hussen, Mustefa; Amy, Gary L.

    2011-01-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  9. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.

    2011-08-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  10. Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions

    Science.gov (United States)

    McMahon, P. B.

    2001-01-01

    Several important biogeochemical reactions are known to occur near the interface between aquifer and aquitard sediments. These reactions include O2 reduction; denitrification; and Fe3+, SO42-, and CO2 (methanogenesis) reduction. In some settings, these reactions occur on the aquitard side of the interface as electron acceptors move from the aquifer into the electron-donor-enriched aquitard. In other settings, these reactions occur on the aquifer side of the interface as electron donors move from the aquitard into the electron-acceptor-enriched, or microorganism-enriched, aquifer. Thus, the aquifer/aquitard interface represents a mixing zone capable of supporting greater microbial activity than either hydrogeologic unit alone. The extent to which biogeochemical reactions proceed in the mixing zone and the width of the mixing zone depend on several factors, including the abundance and solubility of electron acceptors and donors on either side of the interface and the rate at which electron acceptors and donors react and move across the interface. Biogeochemical reactions near the aquifer/aquitard interface can have a substantial influence on the chemistry of water in aquifers and on the chemistry of sediments near the interface. Résumé. Il se produit au voisinage de l'interface entre les aquifères et les imperméables plusieurs réactions biogéochimiques importantes. Il s'agit des réactions de réduction de l'oxygène, de la dénitrification et de la réduction de Fe3+, SO42- et CO2 (méthanogenèse). Dans certaines situations, ces réactions se produisent du côté imperméable de l'interface, avec des accepteurs d'électrons qui vont de l'aquifère vers l'imperméable riche en donneurs d'électrons. Dans d'autres situations, ces réactions se produisent du côté aquifère de l'interface, avec des donneurs d'électrons qui se déplacent de l'imperméable vers l'aquifère riche en accepteurs d'électrons ou en microorganismes. Ainsi, l'interface aquif

  11. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  12. Sediment plume model-a comparison between use of measured turbidity data and satellite images for model calibration.

    Science.gov (United States)

    Sadeghian, Amir; Hudson, Jeff; Wheater, Howard; Lindenschmidt, Karl-Erich

    2017-08-01

    In this study, we built a two-dimensional sediment transport model of Lake Diefenbaker, Saskatchewan, Canada. It was calibrated by using measured turbidity data from stations along the reservoir and satellite images based on a flood event in 2013. In June 2013, there was heavy rainfall for two consecutive days on the frozen and snow-covered ground in the higher elevations of western Alberta, Canada. The runoff from the rainfall and the melted snow caused one of the largest recorded inflows to the headwaters of the South Saskatchewan River and Lake Diefenbaker downstream. An estimated discharge peak of over 5200 m 3 /s arrived at the reservoir inlet with a thick sediment front within a few days. The sediment plume moved quickly through the entire reservoir and remained visible from satellite images for over 2 weeks along most of the reservoir, leading to concerns regarding water quality. The aims of this study are to compare, quantitatively and qualitatively, the efficacy of using turbidity data and satellite images for sediment transport model calibration and to determine how accurately a sediment transport model can simulate sediment transport based on each of them. Both turbidity data and satellite images were very useful for calibrating the sediment transport model quantitatively and qualitatively. Model predictions and turbidity measurements show that the flood water and suspended sediments entered upstream fairly well mixed and moved downstream as overflow with a sharp gradient at the plume front. The model results suggest that the settling and resuspension rates of sediment are directly proportional to flow characteristics and that the use of constant coefficients leads to model underestimation or overestimation unless more data on sediment formation become available. Hence, this study reiterates the significance of the availability of data on sediment distribution and characteristics for building a robust and reliable sediment transport model.

  13. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  14. Optimal control of suspended sediment distribution model of Talaga lake

    Science.gov (United States)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  15. Planning report for the Gulf Coast Regional Aquifer-System Analysis in the Gulf of Mexico coastal plain, United States

    Science.gov (United States)

    Grubb, Hayes F.

    1984-01-01

    Large quantities of water for municipal, industrial and agriculture use are supplied from the aquifers in Tertiary and younger sediments over an area of about 225,000 square miles in the Coastal Plain of Alabama, Arkansas, Florida, Illinois, Kentucky, Louisiana, Mississippi, Missouri, Tennessee, and Texas. Three regional aquifer systems, the Mississippi Embayment aquifer system, the Coastal Lowlands aquifer system, and the Texas Coastal Uplands aquifer system have been developed to varying degrees throughout the area. A variety of problems has resulted from development such as movement of the saline-freshwater interface into parts of aquifers that were previously fresh, lowering of the potentiometric surface with resulting increases in pumping lift, and land-surface subsidence due to the compaction of clays within the aquifer. Increased demand for ground water is anticipated to meet the needs of urban growth, expanded energy development, and growth of irrigated agriculture. The U. S. Geological Survey initiated an eightyear study in 1981 to define the geohydrologic framework, describe the chemistry of the ground water, and to analyze the regional ground-water flow patterns. The objectives, plan, and organization of the study are described in this report and the major tasks to be undertaken are outlined.

  16. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.

  17. Numerical modelling of erosion and sedimentation around offshore pipelines

    NARCIS (Netherlands)

    van Beek, F.A.; Wind, H.G.

    1990-01-01

    In this paper a numerical model is presented for the description of the erosion and sedimentation near pipelines on the sea bottom. The model is based on the Navier-Stokes equations and the equation of motion and continuity of sediment. The results of the simulations have been compared with the

  18. Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model.

    Science.gov (United States)

    Bonumá, Nadia B; Rossi, Colleen G; Arnold, Jeffrey G; Reichert, José M; Minella, Jean P; Allen, Peter M; Volk, Martin

    2014-01-01

    Sediment delivery from hillslopes to rivers is spatially variable and may lead to long-term delays between initial erosion and related sediment yield at the watershed outlet. Consideration of spatial variability is important for developing sound strategies for water quality improvement and soil protection at the watershed scale. Hence, the Soil and Water Assessment Tool (SWAT) was modified and tested in this study to simulate the landscape transport capacity of sediment. The study area was the steeply sloped Arroio Lino watershed in southern Brazil. Observed sediment yield data at the watershed outlet were used to calibrate and validate a modified SWAT model. For the calibration period, the modified model performed better than the unaltered SWAT2009 version; the models achieved Nash-Sutcliffe efficiency (NSE) values of 0.7 and -0.1, respectively. Nash-Sutcliffe efficiencies were less for the validation period, but the modified model's NSE was higher than the unaltered model (-1.4 and -12.1, respectively). Despite the relatively low NSE values, the results of this first test are promising because the model modifications lowered the percent bias in sediment yield from 73 to 18%. Simulation results for the modified model indicated that approximately 60% of the mobilized soil is deposited along the landscape before it reaches the river channels. This research demonstrates the modified model's ability to simulate sediment yield in watersheds with steep slopes. The results suggest that integration of the sediment deposition routine in SWAT increases accuracy in steeper areas while significantly improving its ability to predict the spatial distribution of sediment deposition areas. Further work is needed regarding (i) improved strategies for spatially distributed sediment transport measurements (for improving process knowledge and model evaluation) and (ii) extensive model tests in other well instrumented experimental watersheds with differing topographic configurations

  19. Conceptual and numerical models of groundwater flow in the Ogallala aquifer in Gregory and Tripp Counties, South Dakota, water years 1985--2009

    Science.gov (United States)

    Davis, Kyle W.; Putnam, Larry D.

    2013-01-01

    The Ogallala aquifer is an important water resource for the Rosebud Sioux Tribe in Gregory and Tripp Counties in south-central South Dakota and is used for irrigation, public supply, domestic, and stock water supplies. To better understand groundwater flow in the Ogallala aquifer, conceptual and numerical models of groundwater flow were developed for the aquifer. A conceptual model of the Ogallala aquifer was used to analyze groundwater flow and develop a numerical model to simulate groundwater flow in the aquifer. The MODFLOW–NWT model was used to simulate transient groundwater conditions for water years 1985–2009. The model was calibrated using statistical parameter estimation techniques. Potential future scenarios were simulated using the input parameters from the calibrated model for simulations of potential future drought and future increased pumping. Transient simulations were completed with the numerical model. A 200-year transient initialization period was used to establish starting conditions for the subsequent 25-year simulation of water years 1985–2009. The 25-year simulation was discretized into three seasonal stress periods per year and used to simulate transient conditions. A single-layer model was used to simulate flow and mass balance in the Ogallala aquifer with a grid of 133 rows and 282 columns and a uniform spacing of 500 meters (1,640 feet). Regional inflow and outflow were simulated along the western and southern boundaries using specified-head cells. All other boundaries were simulated using no-flow cells. Recharge to the aquifer occurs through precipitation on the outcrop area. Model calibration was accomplished using the Parameter Estimation (PEST) program that adjusted individual model input parameters and assessed the difference between estimated and model-simulated values of hydraulic head and base flow. This program was designed to estimate parameter values that are statistically the most likely set of values to result in the

  20. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    Science.gov (United States)

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per

  1. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    Science.gov (United States)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  2. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  3. Accounting for the Decreasing Denitrification Potential of Aquifers in Travel-Time Based Reactive-Transport Models of Nitrate

    Science.gov (United States)

    Cirpka, O. A.; Loschko, M.; Wöhling, T.; Rudolph, D. L.

    2017-12-01

    Excess nitrate concentrations pose a threat to drinking-water production from groundwater in all regions of intensive agriculture worldwide. Natural organic matter, pyrite, and other reduced constituents of the aquifer matrix can be oxidized by aerobic and denitrifying bacteria, leading to self-cleaning of groundwater. Various studies have shown that the heterogeneity of both hydraulic and chemical aquifer properties influence the reactive behavior. Since the exact spatial distributions of these properties are not known, predictions on the temporal evolution of nitrate should be probabilistic. However, the computational effort of pde-based, spatially explicit multi-component reactive-transport simulations are so high that multiple model runs become impossible. Conversely, simplistic models that treat denitrification as first-order decay process miss important controls on denitrification. We have proposed a Lagrangian framework of nonlinear reactive transport, in which the electron-donor supply by the aquifer matrix is parameterized by a relative reactivity, that is the reaction rate relative to a standard reaction rate for identical solute concentrations (Loschko et al., 2016). We could show that reactive transport simplifies to solving a single ordinary dfferential equation in terms of the cumulative relative reactivity for a given combination of inflow concentrations. Simulating 3-D flow and reactive transport are computationally so inexpensive that Monte Carlo simulation become feasible. The original scheme did not consider a change of the relative reactivity over time, implying that the electron-donor pool in the matrix is infinite. We have modified the scheme to address the consumption of the reducing aquifer constituents upon the reactions. We also analyzed how a minimally complex model of aerobic respiration and denitrification could look like. With the revised scheme, we performed Monte Carlo simulations in 3-D domains, confirming that the uncertainty in

  4. Inherent mineralization of 2,6-dichlorobenzamide (BAM) in unsaturated zone and aquifers – Effect of initial concentrations and adaptation

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Clausen, Liselotte; Albrechtsen, Hans-Jørgen

    2011-01-01

    cores with known dichlobenil application were collected from topsoil to 8.5 m below surface resulting in 57 samples hereof 4 aquifer samples. Mineralization was only substantial (>10%) in the uppermost meter of the unsaturated zone. Microbial adaptation, observed as faster mineralization in pre......, in pre-exposed clay mineralization was stimulated at high concentrations. Furthermore BAM was for the first time mineralized in aerobic aquifer sediments from different BAM-contaminated groundwater locations. BAM mineralization in subsurface and groundwater was demonstrated....

  5. Urban Runoff: Model Ordinances for Erosion and Sediment Control

    Science.gov (United States)

    The model ordinance in this section borrows language from the erosion and sediment control ordinance features that might help prevent erosion and sedimentation and protect natural resources more fully.

  6. Modelling land cover change effects on catchment-to-lake sediment transfer

    Science.gov (United States)

    Smith, Hugh; Peñuela Fernández, Andres; Sellami, Haykel; Sangster, Heather; Boyle, John; Chiverrell, Richard; Riley, Mark

    2017-04-01

    Measurements of catchment soil erosion and sediment transfer to streams and lakes are limited and typically short duration (physical and social records coupled with high-resolution, sub-annual simulations of catchment-to-lake soil erosion and sedimentation. This choice of modelling period represents a compromise between the length of record and data availability for model parameterisation. We combine historic datasets for climate and land cover from four lake catchments in Britain with a fully revised catchment-scale modelling approach based on the Morgan-Morgan-Finney model, called MMF-TWI, that incorporates new elements representing plant growth, soil water balance and variable runoff and sediment contributing areas. The catchments comprise an intensively-farmed lowland agricultural catchment and three upland catchments. Historic change simulations were compared with sedimentation rates determined from multiple dated cores taken from each lake. Our revised modelling approach produced generally comparable rates of lake sediment flux to those based on sediment archives. Moreover, these centennial scale records form the basis for examining hypothetical scenarios linked to changes in crop rotation (lowland) and riparian re-afforestation (uplands), as well as providing an extended historic baseline against which to compare future climate effects on runoff, erosion and lake sediment delivery.

  7. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events rates were estimated in the area underneath the floodplain clay layer rather than in the sandy area. A steady-state chloride method implied recharge rates of at least 200mm/year (>14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya [Department of Earth Sciences, The University of Hong Kong, Hong Kong (China); Jiao, Jiu Jimmy, E-mail: jjiao@hku.hk [Department of Earth Sciences, The University of Hong Kong, Hong Kong (China); Cherry, John A. [School of Engineering, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada)

    2012-06-15

    Elevated concentrations of arsenic, up to 161 {mu}g/L, have been identified in groundwater samples from the confined basal aquifer underlying the aquitard of the Pearl River Delta (PRD). Both aquatic arsenic in pore water and solid arsenic in the sediments in the basal aquifer and aquitard were identified. Arsenic speciation of groundwater in the basal aquifer was elucidated on a pH-Eh diagram. In the PRD, arsenic is enriched in groundwater having both low and high salinity, and arsenic enriched groundwater is devoid of dissolved oxygen, has negative Eh values, is slightly alkaline, and has abnormally high concentrations of ammonium and dissolved organic carbon, but low concentrations of nitrate and nitrite. Results of geochemical and hydrochemical analyses and sequential extraction analysis suggest that reductive dissolution of iron oxyhydroxide could be one of the important processes that mobilized solid arsenic. We speculate that mineralization of sedimentary organic matter could also contribute to aquatic arsenic. Scanning electron microscope analysis confirms that abundant authigenic pyrite is present in the sediments. Sulphate derived from paleo-seawater served as the important sulfur source for authigenic pyrite formation. Co-precipitation of arsenic with authigenic pyrite significantly controlled concentrations of aquatic arsenic in the coastal aquifer-aquitard system. - Highlights: Black-Right-Pointing-Pointer Coastal aquifer and aquitard are treated as an integrate system. Black-Right-Pointing-Pointer Both aquatic arsenic and solid arsenic are observed. Black-Right-Pointing-Pointer Aquatic arsenic is derived from reductive dissolution of iron oxyhydroxide. Black-Right-Pointing-Pointer Aquatic arsenic can also derived from mineralization of sedimentary organic matter. Black-Right-Pointing-Pointer Co-precipitation of arsenic with authigenic pyrite is significant in such a system.

  9. Monitoring and modelling of pumping-induced self-potentials for transmissivity estimation within a heterogeneous confined aquifer

    Science.gov (United States)

    DesRoches, Aaron J.; Butler, Karl E.

    2016-12-01

    Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of -3.4 mV · m-1. Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0-4.2) × 10-3 m2

  10. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Hajigholizadeh

    2018-03-01

    Full Text Available The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  11. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    Science.gov (United States)

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  12. Three-Dimensional Geological Model of Quaternary Sediments in Walworth County, Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Jodi Lau

    2016-07-01

    Full Text Available A three-dimensional (3D geologic model was developed for Quaternary deposits in southern Walworth County, WI using Petrel, a software package primarily designed for use in the energy industry. The purpose of this research was to better delineate and characterize the shallow glacial deposits, which include multiple shallow sand and gravel aquifers. The 3D model of Walworth County was constructed using datasets such as the U.S. Geological Survey 30 m digital elevation model (DEM of land surface, published maps of the regional surficial geology and bedrock topography, and a database of water-well records. Using 3D visualization and interpretation tools, more than 1400 lithostratigraphic picks were efficiently interpreted amongst 725 well records. The final 3D geologic model consisted of six Quaternary lithostratigraphic units and a bedrock horizon as the model base. The Quaternary units include in stratigraphic order from youngest to oldest: the New Berlin Member of the Holy Hill Formation, the Tiskilwa Member of the Zenda Formation, a Sub-Tiskilwa Sand/Gravel unit, the Walworth Formation, a Sub-Walworth Sand/Gravel unit, and a Pre-Illinoisan unit. Compared to previous studies, the results of this study indicate a more detailed distribution, thickness, and interconnectivity between shallow sand and gravel aquifers and their connectivity to shallow bedrock aquifers. This study can also help understand uncertainty within previous local groundwater-flow modeling studies and improve future studies.

  13. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations

    KAUST Repository

    Li, Dong

    2013-05-01

    This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems. © 2013 Elsevier Ltd.

  14. Characterising alluvial aquifers in a remote ephemeral catchment (Flinders River, Queensland) using a direct push tracer approach

    Science.gov (United States)

    Taylor, Andrew R.; Smith, Stanley D.; Lamontagne, Sébastien; Suckow, Axel

    2018-01-01

    The availability of reliable water supplies is a key factor limiting development in northern Australia. However, characterising groundwater resources in this remote part of Australia is challenging due to a lack of existing infrastructure and data. Here, direct push technology (DPT) was used to characterise shallow alluvial aquifers at two locations in the semiarid Flinders River catchment. DPT was used to evaluate the saturated thickness of the aquifer and estimate recharge rates by sampling for environmental tracers in groundwater (major ions, 2H, 18O, 3H and 14C). The alluvium at Fifteen Mile Reserve and Glendalough Station consisted of a mixture of permeable coarse sandy and gravely sediments and less permeable clays and silts. The alluvium was relatively thin (i.e. < 20 m) and, at the time of the investigation, was only partially saturated. Tritium (3H) concentrations in groundwater was ∼1 Tritium Unit (TU), corresponding to a mean residence time for groundwater of about 12 years. The lack of an evaporation signal for the 2H and 18O of groundwater suggests rapid localised recharge from overbank flood events as the primary recharge mechanism. Using the chloride mass balance technique (CMB) and lumped parameter models to interpret patterns in 3H in the aquifer, the mean annual recharge rate varied between 21 and 240 mm/yr. Whilst this recharge rate is relatively high for a semiarid climate, the alluvium is thin and heterogeneous hosting numerous alluvial aquifers with varied connectivity and limited storage capacity. Combining DPT and environmental tracers is a cost-effective strategy to characterise shallow groundwater resources in unconsolidated sedimentary aquifers in remote data sparse areas.

  15. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  16. Radionuclide transport in the Neogene aquifer system located in the environment of the Boom clay

    International Nuclear Information System (INIS)

    Gedeon, M.; Marivoet, J.; Vandersteen, K.

    2012-01-01

    Document available in extended abstract form only. In the framework the Belgian research program on the long term management of high-level and/or long-lived radioactive waste coordinated by ONDRAF/NIRAS, the Boom Clay is considered as a reference host rock for the geological disposal of high-level radioactive waste in NE-Belgium (Campine area). In the frame of the performance assessments of a disposal system located in the Boom Clay Formation, the transport of radionuclides diffusing through the clay barrier into the aquifers located above is modelled. The transport model for the Neogene aquifer is based on a series of groundwater flow models simulating the aquifer systems in the surroundings of the Boom Clay. This series of groundwater models include the regional north-eastern Belgium model simulating flow both above and below the Boom Clay, the recently updated deep-aquifer pumping model, simulating transient flow in the over-exploited aquifers below the Boom Clay and finally the catchment-scale Neogene aquifer model, simulating flow in the aquifer system above the Boom Clay. The Neogene aquifer system consists of two main aquifers. The Pliocene aquifer is located at the top, separated from the underlying Miocene aquifer by the Kasterlee Clay aquitard. The Miocene aquifer consists of three hydrostratigraphic units: the Diest, Berchem and Voort Formations; with the last two having a lower hydraulic conductivity than the Diest unit. The transport model for the Neogene aquifer represents a fraction of the catchment-scale Neogene aquifer model. It stretches from the local divide between the Grote and Kleine Nete Rivers up to the Kleine Nete River, representing the main model sink. The boundary conditions and the sources/sinks in the Pliocene aquifer are defined mostly by the surface water features, such as the rivers, brooks, lakes and canals. In the partially confined Miocene aquifer, the effect of the surface water features is dampened and the heads at the model

  17. Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport

    Science.gov (United States)

    Loschko, Matthias; Wöhling, Thomas; Rudolph, David L.; Cirpka, Olaf A.

    2018-01-01

    Many groundwater contaminants react with components of the aquifer matrix, causing a depletion of the aquifer's reactivity with time. We discuss conceptual simplifications of reactive transport that allow the implementation of a decreasing reaction potential in reactive-transport simulations in chemically and hydraulically heterogeneous aquifers without relying on a fully explicit description. We replace spatial coordinates by travel-times and use the concept of relative reactivity, which represents the reaction-partner supply from the matrix relative to a reference. Microorganisms facilitating the reactions are not explicitly modeled. Solute mixing is neglected. Streamlines, obtained by particle tracking, are discretized in travel-time increments with variable content of reaction partners in the matrix. As exemplary reactive system, we consider aerobic respiration and denitrification with simplified reaction equations: Dissolved oxygen undergoes conditional zero-order decay, nitrate follows first-order decay, which is inhibited in the presence of dissolved oxygen. Both reactions deplete the bioavailable organic carbon of the matrix, which in turn determines the relative reactivity. These simplifications reduce the computational effort, facilitating stochastic simulations of reactive transport on the aquifer scale. In a one-dimensional test case with a more detailed description of the reactions, we derive a potential relationship between the bioavailable organic-carbon content and the relative reactivity. In a three-dimensional steady-state test case, we use the simplified model to calculate the decreasing denitrification potential of an artificial aquifer over 200 years in an ensemble of 200 members. We demonstrate that the uncertainty in predicting the nitrate breakthrough in a heterogeneous aquifer decreases with increasing scale of observation.

  18. Nagra technical report 14-02, Geological basics - Dossier VI - Barrier properties of proposed host rock sediments and neighbouring rock

    International Nuclear Information System (INIS)

    Gautschi, A.; Deplazes, G.; Traber, D.; Marschall, P.; Mazurek, M.; Gimmi, T.; Maeder, U.

    2014-01-01

    This dossier is the sixth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. It discusses the barrier properties of the proposed host rock sediments and neighbouring rock layers. The mineralogical composition of the host rocks are discussed as are their pore densities and hydrological properties. Diffusion aspects are discussed. The aquifer systems in the proposed depository areas and their classification are looked at. The barrier properties of the host rocks and those of neighbouring sediments are discussed. Finally, modelling concepts and parameters for the transport of radionuclides in the rocks are discussed

  19. Development of a stream–aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin

    International Nuclear Information System (INIS)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-01-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream–aquifer relationship under these future scenarios. The Arbúcies River basin (116 km 2 ) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  20. General characteristics of the aquifer system Joanicó (Montevideo, Uruguay)

    International Nuclear Information System (INIS)

    Gagliardi Urtasun, S.; Montaño, X.; Montaño Gutiérrez, M.; Lacués Parodi, X.

    2010-01-01

    The work area, comprising the towns of Joanicó, Sauce and N Progress , Canelones province, is a center of intensive agricultural development (viticulture, hortofruticultura, etc), where demand and exploitation of groundwater is common primarily for irrigation supply .The subsoil consists of sedimentary rocks and sediments belonging to the Freedom and Dolores ( Pleistocene), Fray Bentos (Upper Oligocene) (aquitards), Mercedes formations - Asencio (Upper Cretaceous) and Migues (Lower Cretaceous). Permeable levels in the Mercedes and Migues formations make up a significant potential aquifer system , which we call Joanicó Aquifer System. This aquifer is multilayer type and consists of fine to coarse sand and gravel and sand mixture , with the occasional presence of thin matrix. Semi confined and behaves as confined in most area; in the outcrop of the Merc edes training is free. The average transmissivity is approximately the 50m2/día; The average permeability of 5 to 10 m/day. The storage coefficient (confined area) is of the order 10-4 .In the most developed area of the aquifer is where Joanicó are obtained by constructing boreholes higher flows Canelones department: more than 25% of the wells drilled to extract higher flow 15 m3/h y extracted more than 40% flows over 10 m3/h. The production of many agricultural enterprises depends directly on the area irrigated with groundwater, so the deeper knowledge of the exploited resource is paramount

  1. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment

    Energy Technology Data Exchange (ETDEWEB)

    Winderl, C.; Penning, H.; von Netzer, F.; Meckenstock, R.U.; Lueders, T. [Helmholtz Zentrum Munchen, Neuherberg (Germany)

    2010-10-15

    Global groundwater resources are constantly challenged by a multitude of contaminants such as aromatic hydrocarbons. Especially in anaerobic habitats, a large diversity of unrecognized microbial populations may be responsible for their degradation. Still, our present understanding of the respective microbiota and their ecophysiology is almost exclusively based on a small number of cultured organisms, mostly within the Proteobacteria. Here, by DNA-based stable isotope probing (SIP), we directly identified the most active sulfate-reducing toluene degraders in a diverse sedimentary microbial community originating from a tar-oil-contaminated aquifer at a former coal gasification plant. On incubation of fresh sediments with {sup 13}C{sub 7}-toluene, the production of both sulfide and (CS{sub 2}){sup 13}CO{sub 2} was clearly coupled to the {sup 13}Clabeling of DNA of microbes related to Desulfosporosinus spp. within the Peptococcaceae (Clostridia). The screening of labeled DNA fractions also suggested a novel benzylsuccinate synthase alpha-subunit (bssA) sequence type previously only detected in the environment to be tentatively affiliated with these degraders. However, carbon flow from the contaminant into degrader DNA was only similar to 50%, pointing toward high ratios of heterotrophic CS{sub 2}-fixation during assimilation of acetyl-CoA originating from the contaminant by these degraders. These findings demonstrate that the importance of non-proteobacterial populations in anaerobic aromatics degradation, as well as their specific ecophysiology in the subsurface may still be largely ungrasped.

  2. Sediment transport modelling in a distributed physically based hydrological catchment model

    Directory of Open Access Journals (Sweden)

    M. Konz

    2011-09-01

    Full Text Available Bedload sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A raster based distributed hydrological model, TOPKAPI, has been further developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the ground surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Several transport equations as well as the effects of an armour layer on the transport threshold discharge are considered. Flow resistance due to macro roughness is also considered. The advantage of this approach is the integrated simulation of the entire basin runoff response combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC demonstrates the reliability of the modelling concept. The devised technique is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.

  3. Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: Evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra)

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, David S., E-mail: dsv3@duke.edu [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States); McIntosh, Jennifer C. [University of Arizona, Department of Hydrology and Water Resources, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Dwyer, Gary S.; Vengosh, Avner [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States)

    2011-08-15

    Highlights: > Elevated natural As and F occur in the Willcox Basin aquifer of Arizona. > Oxyanion-forming elements are derived from volcanic-source aquifer sediments. > Sr isotopes trace sediment sources linked to oxyanion-forming trace elements. > {sup 87}Sr/{sup 86}Sr > 0.720 indicates Proterozoic crystalline-source sediment contributing low As. > Both sediment source and hydrogeochemical evolution (Ca/Na) affect As levels. - Abstract: The Willcox Basin is a hydrologically closed basin in semi-arid southeastern Arizona (USA) and, like many other alluvial basins in the southwestern USA, is characterized by oxic, near-neutral to slightly basic groundwater containing naturally elevated levels of oxyanion-forming trace elements such as As. This study evaluates the sources and mobilization of these oxyanionic trace elements of health significance by using several isotopic tracers of water-rock interaction and groundwater sources ({sup 87}Sr/{sup 86}Sr, {delta}{sup 34}S{sub SO4}, {delta}{sup 11}B, {delta}{sup 2}H, {delta}{sup 18}O, {sup 3}H). Values of {delta}{sup 2}H (-85 per mille to -64 per mille) and {delta}{sup 18}O (-11.8 per mille to -8.6 per mille) are consistent with precipitation and groundwater in adjacent alluvial basins, and low to non-detectable {sup 3}H activities further imply that modern recharge is slow in this semi-arid environment. Large variations in {sup 87}Sr/{sup 86}Sr ratios imply that groundwater has interacted with multiple sediment sources that constitute the basin-fill aquifer, including Tertiary felsic volcanic rocks, Paleozoic sedimentary rocks, and Proterozoic crystalline rocks. In general, low concentrations of oxyanion-forming trace elements and F{sup -} are associated with a group of waters exhibiting highly radiogenic values of {sup 87}Sr/{sup 86}Sr (0.72064-0.73336) consistent with waters in Proterozoic crystalline rocks in the mountain blocks (0.73247-0.75010). Generally higher As concentrations (2-29 {mu}g L{sup -1}), other

  4. Modelling the landslide area and sediment discharge in landslide-dominated region, Taiwan

    Science.gov (United States)

    Teng, Tse-Yang; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Chen, Yi-Chin; Jan, Ming-Young; Liu, Cheng-Chien

    2016-04-01

    Many studies have indicated the magnified increase of rainfall intensification, landsliding and subsequent sediment discharge due to the global warming effect. However, a few works synthesized the "chain reaction" from rainfall, landsliding to sediment discharge at the same time because of the limited observations of landslide area and sediment discharge during episodes. Besides, the sediment transport strongly depends on the sediment supply and stream power which interact conditionally. In this study, our goal is to build a model that can simulate time-series landslide area and subsequent sediment discharge. The synthesized model would be applied onto Tsengwen Reservoir watershed in southern Taiwan, where lots of landslides occur every year. Unlike other studies, our landslide model considers not only rainfall effect but also previous landslide status, which may be applied to landslide-dominated regions and explains the irrelevant relationship between typhoon rainfall and landslide area. Furthermore, our sediment transport model considers the sediment budget which couples transport- and supply-limited of sediment. The result shows that the simulated time-series landslide area and the sediment transport agree with the observation and the R2 are 0.88 and 0.56, respectively. Reactivated ratio of previous landslide area is 72.7% which indicates the high reoccurrence of historical landslide in landslide-dominated regions. We divided nine historical typhoons into three periods to demonstrate the effect of sediment supply/supply-limited condition upon sediment transport. For instance, the rainfall is smaller in period 3 than in period 1 but the sediment transport is higher in period 3 due to the catastrophic landslide (typhoon Morakot) during period 2. We argue that quantifying sediment transport should couple not only with water discharge but sediment budget, which is rarely considered in calculating sediment transport. Moreover, the parameterization of the controlling

  5. Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics

    Science.gov (United States)

    Pirrung, M.; Polom, U.; Krawczyk, C. M.

    2008-12-01

    The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.

  6. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  7. Flow modelling to estimate suspended sediment travel times for two Canadian Deltas

    Directory of Open Access Journals (Sweden)

    S. R. Fassnacht

    2000-01-01

    Full Text Available The approximate travel times for suspended sediment transport through two multi-channel networks are estimated using flow modelling. The focus is on the movement of high sediment concentrations that travel rapidly downstream. Since suspended sediment transport through river confluences and bifurcation movement is poorly understood, it is assumed that the sediment moves at approximately the average channel velocity during periods of high sediment load movement. Calibration of the flow model is discussed, with an emphasis on the incorporation of cross-section data, that are not referenced to a datum, using a continuous water surface profile. Various flow regimes are examined for the Mackenzie and the Slave River Deltas in the Northwest Territories, Canada, and a significant variation in travel times is illustrated. One set of continuous daily sediment measurements throughout the Mackenzie Delta is used to demonstrate that the travel time estimates are reasonable. Keywords: suspended sediment; multi-channel river systems; flow modelling; sediment transport

  8. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A. [Univ. of Florence (Italy)] [and others

    1993-11-01

    Geochemical and hydrogeological research has been carried out in Florence, to evaluate conductivity and main chemistry of groundwaters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO{sub 2}, NO{sub 3}), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. Most waters show conductivity values around 1000-1200 {mu}S, and almost all of them have an alkaline-earth-bicarbonate chemical character. In western areas higher salt content of the groundwaters is evident. Heavy metal and NO{sub 2}, NO{sub 3} analyses point out that no important pollution phenomena affect the groundwaters; all mean values are below the maximum admissible concentration (MAC) for drinkable waters. Some anomalies of NO{sub 2}, NO{sub 3}, Fe, Mn, and Zn are present. The most plausible causes can be recognized in losses of the sewage system; use of nitrate compounds in agriculture; oxidation of well pipes. All the observations of Cr, Cu, and Pb are below the MAC; the median values of <3, 3.9, and 1.1 {mu}g/l, respectively, could be considered reference concentrations for groundwaters in calcareous lithotypes, under undisturbed natural conditions. Finally, a map of vulnerability shows that the areas near the Arno river are highly vulnerable, for the minimum thickness (or lacking) of sediments covering the aquifer. On the other hand, in the case of pollution, several factors not considered could significantly increase the self-purification capacity of the aquifer, such asdilution of groundwaters, bacteria oxidation of nitrogenous species, and sorption capacity of clay minerals and organic matter. 31 refs., 6 figs., 5 tabs.

  9. A Semianalytical Model for Pumping Tests in Finite Heterogeneous Confined Aquifers With Arbitrarily Shaped Boundary

    Science.gov (United States)

    Wang, Lei; Dai, Cheng; Xue, Liang

    2018-04-01

    This study presents a Laplace-transform-based boundary element method to model the groundwater flow in a heterogeneous confined finite aquifer with arbitrarily shaped boundaries. The boundary condition can be Dirichlet, Neumann or Robin-type. The derived solution is analytical since it is obtained through the Green's function method within the domain. However, the numerical approximation is required on the boundaries, which essentially renders it a semi-analytical solution. The proposed method can provide a general framework to derive solutions for zoned heterogeneous confined aquifers with arbitrarily shaped boundary. The requirement of the boundary element method presented here is that the Green function must exist for a specific PDE equation. In this study, the linear equations for the two-zone and three-zone confined aquifers with arbitrarily shaped boundary is established in Laplace space, and the solution can be obtained by using any linear solver. Stehfest inversion algorithm can be used to transform it back into time domain to obtain the transient solution. The presented solution is validated in the two-zone cases by reducing the arbitrarily shaped boundaries to circular ones and comparing it with the solution in Lin et al. (2016, https://doi.org/10.1016/j.jhydrol.2016.07.028). The effect of boundary shape and well location on dimensionless drawdown in two-zone aquifers is investigated. Finally the drawdown distribution in three-zone aquifers with arbitrarily shaped boundary for constant-rate tests (CRT) and flow rate distribution for constant-head tests (CHT) are analyzed.

  10. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system

    Science.gov (United States)

    Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil

    2018-06-01

    Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.

  11. Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece

    Science.gov (United States)

    Petalas, C. P.; Diamantis, I. B.

    1999-06-01

    This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl-, Ca2+/Cl-, Mg2+/Cl-, and Br-/Cl- molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater.

  12. Chesapeake Bay Sediment Flux Model

    Science.gov (United States)

    1993-06-01

    1988; Van der Molen , -88- 1991; Yoshida, 1981.) The model developed below is based on both of these approaches. It incorporates the diagenetic...288: pp. 289-333. Van der Molen , D.T. (1991): A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow...1974; Berner, 1980; van Cappellen and Berner, 1988). These relate the diagenetic production of phosphate to the resulting pore water concentration

  13. AQUIFER OF THE WESTERN PART OF THE PRGOVO POLJE ON THE ISLAND OF LASTOVO

    Directory of Open Access Journals (Sweden)

    Renato Buljan

    2006-12-01

    Full Text Available Two new-drilled wells in the Prgovo Polje are pumped and additionally tested for the water supply of the island Lastovo. The research works were aimed at finding boundary quantitative and qualitative parameters for their optimal exploitation, desalination and use of the pumped water in the existent water supply system. Collected hydrogeological and hydrogeochemical data indicate the presence of stratified aquifer in the western part of Prgovo Polje consisting of two poorly connected horizons. Water from the shallower part of the aquifer, drilled by the well MZ-2 in the carbonate rocks at the edge of polje, is good enough for desalination. The deeper part of aquifer, drilled by the well MZ-1 in the carbonate cavern below the polje’s clastic sediments, experiences the greater influence of the sea water. Its continuing pumping combined with low quantity of water is the main reason of the ever increasing influence of the sea water (the paper is published in Croatian.

  14. Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer

    Science.gov (United States)

    Mayer, K. U.; Benner, S. G.; Frind, E. O.; Thornton, S. F.; Lerner, D. N.

    2001-12-01

    Reactive solute transport modeling was utilized to evaluate the potential for natural attenuation of a contaminant plume containing phenolic compounds at a chemical producer in the West Midlands, UK. The reactive transport simulations consider microbially mediated biodegradation of the phenolic compounds (phenols, cresols, and xylenols) by multiple electron acceptors. Inorganic reactions including hydrolysis, aqueous complexation, dissolution of primary minerals, formation of secondary mineral phases, and ion exchange are considered. One-dimensional (1D) and three-dimensional (3D) simulations were conducted. Mass balance calculations indicate that biodegradation in the saturated zone has degraded approximately 1-5% of the organic contaminant plume over a time period of 47 years. Simulations indicate that denitrification is the most significant degradation process, accounting for approximately 50% of the organic contaminant removal, followed by sulfate reduction and fermentation reactions, each contributing 15-20%. Aerobic respiration accounts for less than 10% of the observed contaminant removal in the saturated zone. Although concentrations of Fe(III) and Mn(IV) mineral phases are high in the aquifer sediment, reductive dissolution is limited, producing only 5% of the observed mass loss. Mass balance calculations suggest that no more than 20-25% of the observed total inorganic carbon (TIC) was generated from biodegradation reactions in the saturated zone. Simulations indicate that aerobic biodegradation in the unsaturated zone, before the contaminant entered the aquifer, may have produced the majority of the TIC observed in the plume. Because long-term degradation is limited to processes within the saturated zone, use of observed TIC concentrations to predict the future natural attenuation may overestimate contaminant degradation by a factor of 4-5.

  15. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  16. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  17. Interactive 4D Visualization of Sediment Transport Models

    Science.gov (United States)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  18. Estuarine Facies Model Revisited: Conceptual Model of Estuarine Sediment Dynamics During Non-Equilibrium Conditions

    Science.gov (United States)

    Elliott, E. A.; Rodriguez, A. B.; McKee, B. A.

    2017-12-01

    Traditional models of estuarine systems show deposition occurs primarily within the central basin. There, accommodation space is high within the deep central valley, which is below regional wave base and where current energy is presumed to reach a relative minimum, promoting direct deposition of cohesive sediment and minimizing erosion. However, these models often reflect long-term (decadal-millennial) timescales, where accumulation rates are in relative equilibrium with the rate of relative sea-level rise, and lack the resolution to capture shorter term changes in sediment deposition and erosion within the central estuary. This work presents a conceptual model for estuarine sedimentation during non-equilibrium conditions, where high-energy inputs to the system reach a relative maximum in the central basin, resulting in temporary deposition and/or remobilization over sub-annual to annual timescales. As an example, we present a case study of Core Sound, NC, a lagoonal estuarine system where the regional base-level has been reached, and sediment deposition, resuspension and bypassing is largely a result of non-equilibrium, high-energy events. Utilizing a 465 cm-long sediment core from a mini-basin located between Core Sound and the continental shelf, a 40-year sub-annual chronology was developed for the system, with sediment accumulation rates (SAR) interpolated to a monthly basis over the 40-year record. This study links erosional processes in the estuary directly with sediment flux to the continental shelf, taking advantage of the highly efficient sediment trapping capability of the mini-basin. The SAR record indicates high variation in the estuarine sediment supply, with peaks in the SAR record at a recurrence interval of 1 year (+/- 0.25). This record has been compared to historical storm influence for the area. Through this multi-decadal record, sediment flushing events occur at a much more frequent interval than previously thought (i.e. annual rather than

  19. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    Science.gov (United States)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  20. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia

    International Nuclear Information System (INIS)

    Guo Huaming; Zhang Bo; Li Yuan; Berner, Zsolt; Tang Xiaohui; Norra, Stefan; Stueben, Doris

    2011-01-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO 4 2- concentrations and δ 34 S values indicates that bacterial reduction of SO 4 2- occurs in reducing aquifers. Due to high concentrations of Fe (>0.5 mg L -1 ), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. - Research highlights: → Low As groundwaters occur in alluvial fans. → We find low As groundwaters near irrigation and drainage channels. → Both hydrogeologic conditions and biogeochemical processes control As distribution. - Both hydrogeologic conditions and biogeochemical processes control As distribution of shallow groundwaters, which results in the occurrence of low As groundwater in alluvial fans and near irrigation channels and drainage channels.

  1. Fertilizers mobilization in alluvial aquifer: laboratory experiments

    Science.gov (United States)

    Mastrocicco, M.; Colombani, N.; Palpacelli, S.

    2009-02-01

    In alluvial plains, intensive farming with conspicuous use of agrochemicals, can cause land pollution and groundwater contamination. In central Po River plain, paleo-channels are important links between arable lands and the underlaying aquifer, since the latter is often confined by clay sediments that act as a barrier against contaminants migration. Therefore, paleo-channels are recharge zones of particular interest that have to be protected from pollution as they are commonly used for water supply. This paper focuses on fertilizer mobilization next to a sand pit excavated in a paleo-channel near Ferrara (Italy). The problem is approached via batch test leaking and columns elution of alluvial sediments. Results from batch experiments showed fast increase in all major cations and anions, suggesting equilibrium control of dissolution reactions, limited availability of solid phases and geochemical homogeneity of samples. In column experiments, early elution and tailing of all ions breakthrough was recorded due to preferential flow paths. For sediments investigated in this study, dispersion, dilution and chemical reactions can reduce fertilizers at concentration below drinking standards in a reasonable time frame, provided fertilizer loading is halted or, at least, reduced. Thus, the definition of a corridor along paleo-channels is recommended to preserve groundwater quality.

  2. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  3. Principles and Approaches for Numerical Modelling of Sediment Transport in Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Appelgren, Cecilia; Larsen, Torben

    1995-01-01

    A study has been carried out with the objectives of describing the effect of sediment deposits on the hydraulic capacity of sewer systems and to investigate the sediment transport in sewer systems. A result of the study is a mathematical model MOUSE ST which describes sediment transport in sewers....... This paper discusses the applicability and the limitations of various modelling approaches and sediment transport formulations in in MOUSE ST. Further, the paper presents a simple application of MOUSE ST to the Rya catchment in Gothenburg, Sweden....

  4. Estimating aquifer transmissivity from geo-electrical sounding ...

    African Journals Online (AJOL)

    Aquifer resistivity range from 4.26 ohm-m to 755.3 ohm-m with maximum thickness of 52.25m. A maximum 55.52m depth- tobasement was obtained in the study area. Based on the model obtained, aquifer Transmissivity was calculated and was used to delineate the study area into prospective low and high groundwater ...

  5. Simulation of groundwater flow in the glacial aquifer system of northeastern Wisconsin with variable model complexity

    Science.gov (United States)

    Juckem, Paul F.; Clark, Brian R.; Feinstein, Daniel T.

    2017-05-04

    The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle

  6. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  7. Sediment movement along the U.S. east coast continental shelf—II. Modelling suspended sediment concentration and transport rate during storms

    Science.gov (United States)

    Lyne, Vincent D.; Butman, Bradford; Grant, William D.

    1990-05-01

    Long-term near-bottom wave and current observations and a one-dimensional sediment transport model are used to calculate the concentration and transport of sediment during winter storms at 60-80 m water depth along the southern flank of Georges Bank and in the Mid-Atlantic Bight. Calculations are presented for five stations, separated by more than 600 km alongshelf, that have different bottom sediment texture, bedforms and current conditions. A modified version of the sediment transport model presented by GRANT and GLENN (1983, Technical Report to the American Gas Association), GLENN (1983, D.Sc. Thesis, M.I.T.), and GLENN and GRANT (1987, Journal of Geophysical Research, 92, 8244-8264) is used to examine the influence of wave-current interaction, sediment stratification, and limitations on the erodibility of the bottom sediments on the concentration of sediment in the water column and on transport. Predicted suspended sediment concentrations are higher than observed, based on beam transmissometer measurements, unless an erosion limit of order a few millimeters for sediments finer than 94 μm is imposed. The agreement between predicted and measured beam attenuation is better at stations that have significant amounts of silt plus clay in the surficial sediments than for stations with sandy sediments. Sediment concentrations during storms estimated by MOODYet al. (1987, Continental Shelf Research, 7, 609-628) are within 50% of the model predictions. Sediment transport rates for sediments 94 μm and finer are determined largely by the concentrations in the surficial sediment and the erosion depth limit. Large alongshelf transports in the direction of storm-driven currents are inferred for stations in the Mid-Atlantic Bight. During a 115-day period in winter 1979-1980, the net transport of sediment along the shelf was westward; benthic storms (defined as periods when the bottom wave stress exceeded the current stress by 2 dyn cm -2) occurred between 23 and 73% of the

  8. Process-based reactive transport model to quantify arsenic mobility during aquifer storage and recovery of potable water.

    Science.gov (United States)

    Wallis, Ilka; Prommer, Henning; Pichler, Thomas; Post, Vincent; Norton, Stuart B; Annable, Michael D; Simmons, Craig T

    2011-08-15

    Aquifer storage and recovery (ASR) is an aquifer recharge technique in which water is injected in an aquifer during periods of surplus and withdrawn from the same well during periods of deficit. It is a critical component of the long-term water supply plan in various regions, including Florida, USA. Here, the viability of ASR as a safe and cost-effective water resource is currently being tested at a number of sites due to elevated arsenic concentrations detected during groundwater recovery. In this study, we developed a process-based reactive transport model of the coupled physical and geochemical mechanisms controlling the fate of arsenic during ASR. We analyzed multicycle hydrochemical data from a well-documented affected southwest Floridan site and evaluated a conceptual/numerical model in which (i) arsenic is initially released during pyrite oxidation triggered by the injection of oxygenated water (ii) then largely complexes to neo-formed hydrous ferric oxides before (iii) being remobilized during recovery as a result of both dissolution of hydrous ferric oxides and displacement from sorption sites by competing anions.

  9. Migration of uranium in the presence of clay colloids in a sandy aquifer

    International Nuclear Information System (INIS)

    Le Cointe, P.; Grambow, B.; Piscitelli, A.; Montavon, G.; Van der Lee, J.; Giffaut, E.; Schneider, V.

    2010-01-01

    Document available in extended abstract form only. In France, low and medium level radioactive waste of short period (nuclides with a half-life less than 31 years and an activity ranging from 100 to 1,000,000 Bq/g) is stored in concrete constructions on a surface site in Soulaines-Dhuys (Aube). The site was chosen for its simple geology: it entirely lays on an aquifer formation, the Upper Aptian sands, above a Lower Aptian impermeable clay formation. The site is surrounded by the Noues d'Amance stream, which serves as the single outlet of the groundwater on the site. The objective of this study is to improve knowledge of radionuclides migration in the aquifer formation to improve safety, using U(VI) as an example and focusing on colloids, capable of transporting U(VI) on long distances. The sediment is composed of two main phases: quartz and clay minerals (glauconite, with a small fraction of kaolinite and smectite), with relative amounts of 91 and 6% in weight, respectively. The aquifer water contains clay colloids, invisible to the eye though observed with SEM and TEM in a non disturbed sample. No signal was measured with usual light diffusion techniques and Asymmetric Flow Field-Flow Fractionation (AF4). Only the Laser Induced Breakdown Detection (LIBD) technique could characterize the size (between 30 and 70 nm) and the concentration (around 10 ppb) of the clay colloids. Batch experiments were carried out to define U(VI)-Quartz and U(VI)-Clay interactions, with U(VI) concentration, pH and pCO 2 being the studied variables. The data were modelled with the Chess geochemistry code developed at the Paris School of Mines and compared to literature. Davis applied model for U(VI)-Quartz interaction and Bradbury and Baeyens applied model for U(VI)-Illite interaction adequately describe the experimental data. To know if clay colloids can move freely in the groundwater, pore size was measured using X-ray microtomography. Nanoparticles tracing was done with

  10. Migration of uranium in the presence of clay colloids in a sandy aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Le Cointe, P. [Laboratoire SUBATECH, UMR 6457 Ecole des Mines/CNRS/Universite, 4 rue A. Kastler, BP 20722, 44307 Nantes Cedex 03 (France); Centre de Geosciences, Ecole des Mines de Paris, 35 rue St-Honore, 77305 Fontainebleau Cedex (France); ANDRA 1/7 rue Jean Monnet - 92298 Chatenay Malabry Cedex (France); Grambow, B.; Piscitelli, A.; Montavon, G. [Laboratoire SUBATECH, UMR 6457 Ecole des Mines/CNRS/Universite, 4 rue A. Kastler, BP 20722, 44307 Nantes Cedex 03 (France); Van der Lee, J. [EDF R ete D, Site des Renardieres, Route de Sens - Ecuelles, 77250 Moret sur Loing (France); Giffaut, E.; Schneider, V. [ANDRA 1/7 rue Jean Monnet - 92298 Chatenay Malabry Cedex (France)

    2010-07-01

    Document available in extended abstract form only. In France, low and medium level radioactive waste of short period (nuclides with a half-life less than 31 years and an activity ranging from 100 to 1,000,000 Bq/g) is stored in concrete constructions on a surface site in Soulaines-Dhuys (Aube). The site was chosen for its simple geology: it entirely lays on an aquifer formation, the Upper Aptian sands, above a Lower Aptian impermeable clay formation. The site is surrounded by the Noues d'Amance stream, which serves as the single outlet of the groundwater on the site. The objective of this study is to improve knowledge of radionuclides migration in the aquifer formation to improve safety, using U(VI) as an example and focusing on colloids, capable of transporting U(VI) on long distances. The sediment is composed of two main phases: quartz and clay minerals (glauconite, with a small fraction of kaolinite and smectite), with relative amounts of 91 and 6% in weight, respectively. The aquifer water contains clay colloids, invisible to the eye though observed with SEM and TEM in a non disturbed sample. No signal was measured with usual light diffusion techniques and Asymmetric Flow Field-Flow Fractionation (AF4). Only the Laser Induced Breakdown Detection (LIBD) technique could characterize the size (between 30 and 70 nm) and the concentration (around 10 ppb) of the clay colloids. Batch experiments were carried out to define U(VI)-Quartz and U(VI)-Clay interactions, with U(VI) concentration, pH and pCO{sub 2} being the studied variables. The data were modelled with the Chess geochemistry code developed at the Paris School of Mines and compared to literature. Davis applied model for U(VI)-Quartz interaction and Bradbury and Baeyens applied model for U(VI)-Illite interaction adequately describe the experimental data. To know if clay colloids can move freely in the groundwater, pore size was measured using X-ray microtomography. Nanoparticles tracing was done with

  11. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    Science.gov (United States)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models

  12. Water resources management in karst aquifers - concepts and modeling approaches

    Science.gov (United States)

    Sauter, M.; Schmidt, S.; Abusaada, M.; Reimann, T.; Liedl, R.; Kordilla, J.; Geyer, T.

    2011-12-01

    Water resources management schemes generally imply the availability of a spectrum of various sources of water with a variability of quantity and quality in space and time, and the availability and suitability of storage facilities to cover various demands of water consumers on quantity and quality. Aquifers are generally regarded as suitable reservoirs since large volumes of water can be stored in the subsurface, water is protected from contamination and evaporation and the underground passage assists in the removal of at least some groundwater contaminants. Favorable aquifer properties include high vertical hydraulic conductivities for infiltration, large storage coefficients and not too large hydraulic gradients / conductivities. The latter factors determine the degree of discharge, i.e. loss of groundwater. Considering the above criteria, fractured and karstified aquifers appear to not really fulfill the respective conditions for storage reservoirs. Although infiltration capacity is relatively high, due to low storativity and high hydraulic conductivities, the small quantity of water stored is rapidly discharged. However, for a number of specific conditions, even karst aquifers are suitable for groundwater management schemes. They can be subdivided into active and passive management strategies. Active management options include strategies such as overpumping, i.e. the depletion of the karst water resources below the spring outflow level, the construction of subsurface dams to prevent rapid discharge. Passive management options include the optimal use of the discharging groundwater under natural discharge conditions. System models that include the superposition of the effect of the different compartments soil zone, epikarst, vadose and phreatic zone assist in the optimal usage of the available groundwater resources, while taking into account the different water reservoirs. The elaboration and implementation of groundwater protection schemes employing well

  13. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    Science.gov (United States)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  14. Principles and approaches for numerical modelling of sediment transport in sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsen, Torben; Appelgren, Cecilia

    1994-01-01

    model MOUSE ST which describes the sediment transport in sewers. This paper discusses the applicability and the limitations of various modelling approaches and sediment transport formulations in MOUSE ST. The study was founded by the Swedish Water and Waste Works Association and the Nordic Industrial......A study has been carried out at the University of Aalborg, Denmark and VBB VIAK, Sweden with the objectives to describe the effect of sediment deposits on the hydraulic capacity of sewer systems and to investigate the sediment transport in sewer systems. A results of the study is a mathematical...

  15. A model for microbial phosphorus cycling in bioturbated marine sediments

    DEFF Research Database (Denmark)

    Dale, Andrew W.; Boyle, R. A.; Lenton, Timothy M.

    2016-01-01

    A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated...... P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from....... The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments. © 2016 Elsevier Ltd....

  16. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    Science.gov (United States)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  17. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units

  18. A Spatial Model of Erosion and Sedimentation on Continental Margins

    National Research Council Canada - National Science Library

    Pratson, Lincoln

    1999-01-01

    .... A computer model that simulates the evolution of continental slope morphology under the interaction of sedimentation, slope failure, and sediment flow erosion has been constructed and validated...

  19. Porosity and Organic Carbon Controls on Naturally Reduced Zone (NRZ) Formation Creating Microbial ';Hotspots' for Fe, S, and U Cycling in Subsurface Sediments

    Science.gov (United States)

    Jones, M. E.; Janot, N.; Bargar, J.; Fendorf, S. E.

    2013-12-01

    Previous studies have illustrated the importance of Naturally Reduced Zones (NRZs) within saturated sediments for the cycling of metals and redox sensitive contaminants. NRZs can provide a source of reducing equivalents such as reduced organic compounds or hydrogen to stimulate subsurface microbial communities. These NRZ's are typically characterized by low permeability and elevated concentrations of organic carbon and trace metals. However, both the formation of NRZs and their importance to the overall aquifer carbon remineralization is not fully understood. Within NRZs the hydrolysis of particulate organic carbon (POC) and subsequent fermentation of dissolved organic carbon (DOC) to form low molecular weight dissolved organic carbon (LMW-DOC) provides electron donors necessary for the respiration of Fe, S, and in the case of the Rifle aquifer, U. Rates of POC hydrolysis and subsequent fermentation have been poorly constrained and rates in excess and deficit to the rates of subsurface anaerobic respiratory processes have been suggested. In this study, we simulate the development of NRZ sediments in diffusion-limited aggregates to investigate the physical and chemical conditions required for NRZ formation. Effects of sediment porosity and POC loading on Fe, S, and U cycling on molecular and nanoscale are investigated with synchrotron-based Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Fourier Transform Infrared spectroscopy (FTIR) are used to characterize the transformations in POC and DOC. Sediment aggregates are inoculated with the natural microbial biota from the Rifle aquifer and population dynamics are monitored by 16S RNA analysis. Overall, establishment of low permeability NRZs within the aquifer stimulate microbial respiration beyond the diffusion-limited zones and can limit the transport of U through a contaminated aquifer. However, the long-term stability of

  20. Hydrogeologic model for the old Hanford townsite

    International Nuclear Information System (INIS)

    MacDonald, Q.; Csun, C.

    1994-01-01

    The Hanford Site in southeastern Washington state produced the country's first plutonium during WW II, and production continued through the end of the cold war. This plutonium production generated significant volumes of chemical and radioactive wastes, some of which were discharged directly to the local sediments as wastewater. Artifical recharge is still the dominating influence on the uppermost and unconfined aquifer over much of the Hanford site. Groundwater from a portion of this aquifer, which is in excess of drinking water standards for tritium, discharges to the Columbia River in the vicinity of the old Hanford townsite. The Hanford site lies within the Pasco basin, which is a structural basin in the Columbia Plateau. Columbia River basalt is overlain by the fluvial and lacustrian Ringold formation. The Ringold is unconformably overlain by the informal Hanford formation. Relatively impermeable basalt outcrops and subcrops along a northwest-southeast-trending anticline across the study area. Hanford sediments include both fluvial and glacial flood deposits lying on an irregular surface of basalt and sedimentary rocks. The coarser flood deposits have very high hydraulic conductivity and probably are the most important conduit for contaminant transport within the aquifer. A finite element model (CFEST-SC) is being used to study the effect of changing river stage on baseflow to the Columbia River near the old Hanford townsite. A steady-state version of the model produces calculated head within 1 m of observed values. Transient flow and solute transport results are expected to help further define the relationship between the contaminated aquifer and the Columbia River

  1. Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model.

    Science.gov (United States)

    Kaliraj, S; Chandrasekar, N; Peter, T Simon; Selvakumar, S; Magesh, N S

    2015-01-01

    The south west coast of Kanyakumari district in Tamil Nadu, India, is significantly affected by seawater intrusion and diffusion of pollutants into the aquifers due to unregulated beach placer mining and other anthropogenic activities. The present study investigates the vulnerability of the coastal aquifers using Geographic Information System (GIS)-based DRASTIC model. The seven DRASTIC parameters have been analyzed using the statistical equation of this model to demarcate the vulnerable zones for aquifer contamination. The vulnerability index map is prepared from the weighted spatial parameters, and an accounting of total index value ranged from 85 to 213. Based on the categorization of vulnerability classes, the high vulnerable zones are found near the beach placer mining areas between Manavalakurichi and Kodimanal coastal stretches. The aquifers associated with settlements and agricultural lands in the middle-eastern part have experienced high vulnerability due to contaminated water bodies. Similarly, the coastal areas of Thengapattinam and Manakudi estuary and around the South Tamaraikulam have also been falling under high vulnerability condition due to backwater and saltpan. In general, the nearshore region except the placer mining zone and the backwater has a moderately vulnerable condition, and the vulnerability index values range from 149 to180. Significantly, the northern and northeastern uplands and some parts of deposition zones in the middle-south coast have been identified as low to no vulnerable conditions. They are structurally controlled by various geological features such as charnockite, garnet biotite gneiss and granites, and sand dunes, respectively. The aquifer vulnerability assessment has been cross-verified by geochemical indicators such as total dissolved solids (TDS), Cl(-), HCO₃(-), and Cl(-)/HCO₃(-) ratio. The high ranges of TDS (1,842--3,736 mg/l) and Cl(-) (1,412--2,112 mg/l) values are well correlated with the observed high

  2. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    Science.gov (United States)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  3. Quantifying and Modelling Long Term Sediment Dynamics in Catchments in Western Europe

    Science.gov (United States)

    Notebaert, B.; De Brue, H.; Verstraeten, G.; Broothaerts, N.

    2015-12-01

    Quantification of sediment dynamics allows to get insight in driving forces and internal dynamics of the sediment cascade system. A useful tool to achieve this is the sediment budget approach, which encompasses the quantification of different sinks and sources. A Holocene time-differentiated sediment budget has been constructed for the Belgian Dijle River catchment (720 km²), based on a large set of field data. The results show how soil erosion is driven by land use changes over longer timescales. Sediment redistribution and the relative importance of the different sinks also vary over time, mainly as a result of changing land use and related landscape connectivity. However, the coarse temporal resolution typically associated with Holocene studies complicates the understanding of sub-millennial scale processes. In a second step, the field-based sediment budget was combined with a modeling approach using Watem/Sedem, a spatially distributed model that simulates soil erosion and colluvial deposition. After validation of the model calibration against the sediment budget, the model was used in a sensitivity analysis. Results confirm the overwhelming influence of human land use on both soil erosion and landscape connectivity, whereas the climatic impact is comparatively small. In addition to catchment-wide simulations, the model also served to test the relative importance of lynchets and dry valleys in different environments. Finally, the geomorphic model was used to simulate past land use, taking into account equifinality. For this purpose, a large series of hypothetical time-independent land use maps of the Dijle catchment were modeled based on a multi-objective allocation algorithm, and applied in Watem/Sedem. Modeled soil erosion and sediment deposition outcomes for each scenario were subsequently compared with the field-based record, taking into account uncertainties. As such, the model allows to evaluate and select realistic land use scenarios for the Holocene.

  4. A Multi-Model Approach Using Statistical Index and Information Criteria to Evaluate the Adequacy of the Model Geometry in a Fissured Carbonate Aquifer (Italy

    Directory of Open Access Journals (Sweden)

    Marco Giacopetti

    2016-06-01

    Full Text Available A conceptual model related to a mountain aquifer that is characterized by a lack of data of hydrogeological parameters and boundary conditions, which were based on a single available observational dataset used for calibration, was studied using numerical models. For the first time, a preliminary spatial-temporal analysis has been applied to the study area in order to evaluate the real extension of the aquifer studied. The analysis was based on four models that were characterized by an increasing degree of complexity using a minimum of two zones and a maximum of five zones, which consequently increased the number of adjustable parameters from a minimum of 10 to a maximum of 22, calibrated using the parameter estimation code PEST. Statistical index and information criteria were calculated for each model, which showed comparable results; the information criteria indicated that the model with the low number of adjustable parameters was the optimal model. A comparison of the simulated and observed spring hydrographs showed a good shape correspondence but a general overestimation of the discharge, which indicated a good fit with the rainfall time series and a probably incorrect extension of the aquifer structure: the recharge contributes more than half of the total outflow at the springs but is not able to completely feed the springs.

  5. The influence of hydrology on lacustrine sediment contaminant records

    Science.gov (United States)

    Rosen, Michael R.

    2015-01-01

    The way water flows to a lake, through streams, as runoff, or as groundwater, can control the distribution and mass of sediment and contaminants deposited. Whether a lake is large or small, deep or shallow, open or closed, the movement of water to a lake and the circulation patterns of water within a lake control how and where sediment and contaminants are deposited. Particle-associated contaminants may stay close to the input source of contamination or be transported by currents to bathymetric lows. A complex morphology of the lake bottom or shoreline can also affect how contaminants will be distributed. Dissolved contaminants may be widely dispersed in smaller lakes, but may be diluted in large lakes away from the source. Although dissolved contaminants may not be deposited in lake sediments, the impact of dissolved contaminants (such as nitrogen) may be reflected by the ecosystem. For instance, increased phosphorus and nitrogen may increase organic content or algal biomass, and contribute to eutrophication of the lake over time. Changes in oxidation-reduction potential at the sediment-water interface may either release some contaminants to the water column or conversely deposit other contaminants to the sediment depending on the compound’s chemical characteristics. Changes in land use generally affect the hydrology of the watershed surrounding a lake, providing more runoff if soil binding vegetation is removed or if more impervious cover (roads and buildings) is increased. Groundwater inputs may change if pumping of the aquifer connected to the lake occurs. Even if groundwater is only a small portion of the volume of water entering a lake, if contaminant concentrations in the aquifer are high compared to surface water inputs, the mass of contaminants from groundwater may be as, or more, important than surface water contributions.

  6. Fluid flow and sediment transport in evolving sedimentary basins

    Science.gov (United States)

    Swenson, John Bradley

    This thesis consists of three studies that focus on groundwater flow and sediment transport in evolving sedimentary basins. The first study considers the subsurface hydrodynamic response to basin-scale transgression and regression and its implications for stratiform ore genesis. I demonstrate that the transgressive sequence focuses marginward-directed, compaction-driven discharge within a basal aquifer during progradation and deposition of the overlying regressive sequence, isolates the basal aquifer from overlying flow systems, and serves as a chemical sink for metal-bearing brines. In the second study, I develop a new theory for the shoreline response to subsidence, sediment supply, and sea level. In this theory, sediment transport in a fluvio-deltaic basin is formally equivalent to heat transfer in a two-phase (liquid and isothermal solid) system: the fluvial system is analogous to a conduction-dominated liquid phase, the shoreline is the melting front, and the water depth at the delta toe is equivalent to the latent heat of fusion. A natural consequence of this theory is that sediment-starved basins do not possess an equilibrium state. In contrast to existing theories, I do not observe either strong phase shifting or attenuation of the shoreline response to low-frequency eustatic forcing; rather, shoreline tracks sea level over a spectrum of forcing frequencies, and its response to low-frequency forcing is amplified relative to the high-frequency response. For the third study, I use a set of dimensionless numbers from the previous study as a mathematical framework for providing a unified treatment of existing stratigraphic theories. In the limit of low-amplitude eustatic forcing, my study suggests that strong phase shifting between shoreline and sea level is a consequence of specifying the sedimentation rate at the shoreline; basins free of this constraint do not develop strong phase shifts.

  7. In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    JE Szecsody; JS Fruchter; DS Sklarew; JC Evans

    2000-03-21

    Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer. Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.

  8. Transient well flow in leaky multiple-aquifer systems

    Science.gov (United States)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  9. Constraints of costal aquifer functioning in a deeply antropized area through a multi-isotope fingerprinting (Recife, Brazil)

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Cary, Lise; Bertrand, Guillaume; Hirata, Ricardo; Martins, Veridiana; Montenegro, Suzana; Pauwels, Hélène; Kloppmann, Wolfram; Aquilina, Luc

    2014-05-01

    The Metropolitan Region of Recife (RMR) went through large changes of water and land uses over the last decades due to an increasing demographic pressure (1.5 M of inhabitants). These evolutions gave rise to numerous environmental consequences, such as a dramatic decline of the water levels, groundwater salinization and contamination. This degradation of natural resources is linked to the increase of water demand that is also punctually amplified by drought periods, inducing the construction of thousands of private wells. Recife city was built on an estuarine area, at the geological limits of the two sedimentary basins of Pernambuco (north of the city) and Paraíba (south of the city) separated by a famous shear zone (the Pernambuco lineament). Tectonic and sedimentary events involved in the genesis and evolution of these basins were mainly controlled by the opening of the Atlantic Ocean leading to the deposition of cretaceous sediments which now constitute the two main exploited aquifers, the Beberibe and Cabo aquifers. These two deep aquiferous formations are topped by the unconfined Boa Viagem aquifer of quaternary sediments. It is the most directly exposed to contamination, since it is connected to mangroves, rivers, estuaries and highly urbanized areas. Both the Beberibe and Cabo aquifers contain large clay levels and are separated by a rather continuous clayed formation which seems to play a consistent role of screen and to interfere in the hydraulic connections between the three aquifers. Previous isotopic studies have shown that recharge processes are similar in the aquifers, suggesting that exchanges may occur and may be modified or amplified by overexploitation. This very complex aquifer system is studied through more than 60 water samples, including some surface water samples from the main rivers. A methodology based on multi-isotopes fingerprinting is applied, including stable isotopes of the water molecule, strontium isotopes, boron isotopes, sulfur

  10. A hydrologic regression sediment-yield model for two ungaged watershed outlet stations in Africa

    International Nuclear Information System (INIS)

    Moussa, O.M.; Smith, S.E.; Shrestha, R.L.

    1991-01-01

    A hydrologic regression sediment-yield model was established to determine the relationship between water discharge and suspended sediment discharge at the Blue Nile and the Atbara River outlet stations during the flood season. The model consisted of two main submodels: (1) a suspended sediment discharge model, which was used to determine suspended sediment discharge for each basin outlet; and (2) a sediment rating model, which related water discharge and suspended sediment discharge for each outlet station. Due to the absence of suspended sediment concentration measurements at or near the outlet stations, a minimum norm solution, which is based on the minimization of the unknowns rather than the residuals, was used to determine the suspended sediment discharges at the stations. In addition, the sediment rating submodel was regressed by using an observation equations procedure. Verification analyses on the model were carried out and the mean percentage errors were found to be +12.59 and -12.39, respectively, for the Blue Nile and Atbara. The hydrologic regression model was found to be most sensitive to the relative weight matrix, moderately sensitive to the mean water discharge ratio, and slightly sensitive to the concentration variation along the River Nile's course

  11. The origins of mercury found in the coastal aquifer of La Plana de Castellon (Eastern Spain)

    International Nuclear Information System (INIS)

    Lopez Gutierrez, J.; Garcia Menendez, O.; Ballesteros Navarro, B. J.

    2010-01-01

    Mercury was detected in the Plio-Quaternary detrital coastal aquifer of La Plana de Castellon in the second half of the 1990s in the area of Nules-Moncofar-Vall d'Uixo at concentrations of between 5 and 12 μg/L according to groundwater analysis. The most reliable hypothesis pointed originally to an anthropic origin, although no precise sources were identified. This paper describes the results of investigation undertaken by the Geological Survey of Spain (IGME) to either corroborate or reject this hypothesis. A wide sampling array was set up to collect groundwater, sediments, wastewaters and rainwater together with an exhaustive inventory of possible anthropic and natural sources of mercurial contamination. All these data were integrated into the geological and metallogenic context of the Plio-Quaternary sediments of the aquifer and the Mesozoic formations of its rim. The results have led us to arrive at a new hypothesis that points to a geogenic origin for the mercury, although is mobilisation would still appear be related to the intensive human exploitation of the groundwater in the area. (Author) 30 refs.

  12. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Bone, Sharon E.; Dynes, James; Cliff, John B.; Barger, John

    2017-01-09

    Uranium is an important fuel source and a global environmental contaminant. It accumulates in the tetravalent state, U(IV), in anoxic sediments, including ore deposits, marine basins, and contaminated aquifers. However, very little is known about the speciation of U(IV) in low temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO2) in anoxic sediments; yet studies now show that UO2 is not often dominant in these environments. However, a model of U(IV) speciation under environmentally relevant conditions has not yet been developed. Here we show that complexes of U(IV) adsorb on organic carbon and organic carbon-coated clays in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that the U(IV) product depended on the reduction pathway, our results demonstrate that UO2 formation can be inhibited simply by decreasing the U:solid ratio. Thus, it is the number and type of surface ligands that controls U(IV) speciation subsequent to U(VI) reduction. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider retention of U(IV) ions within the local sediment environment.

  13. Modeling a full-scale primary sedimentation tank using artificial neural networks.

    Science.gov (United States)

    Gamal El-Din, A; Smith, D W

    2002-05-01

    Modeling the performance of full-scale primary sedimentation tanks has been commonly done using regression-based models, which are empirical relationships derived strictly from observed daily average influent and effluent data. Another approach to model a sedimentation tank is using a hydraulic efficiency model that utilizes tracer studies to characterize the performance of model sedimentation tanks based on eddy diffusion. However, the use of hydraulic efficiency models to predict the dynamic behavior of a full-scale sedimentation tank is very difficult as the development of such models has been done using controlled studies of model tanks. In this paper, another type of model, namely artificial neural network modeling approach, is used to predict the dynamic response of a full-scale primary sedimentation tank. The neuralmodel consists of two separate networks, one uses flow and influent total suspended solids data in order to predict the effluent total suspended solids from the tank, and the other makes predictions of the effluent chemical oxygen demand using data of the flow and influent chemical oxygen demand as inputs. An extensive sampling program was conducted in order to collect a data set to be used in training and validating the networks. A systematic approach was used in the building process of the model which allowed the identification of a parsimonious neural model that is able to learn (and not memorize) from past data and generalize very well to unseen data that were used to validate the model. Theresults seem very promising. The potential of using the model as part of a real-time process control system isalso discussed.

  14. A control-oriented model for combined building climate comfort and aquifer thermal energy storage system

    NARCIS (Netherlands)

    Rostampour Samarin, Vahab; Bloemendal, J.M.; Jaxa-Rozen, M.; Keviczky, T.

    2016-01-01

    This paper presents a control-oriented model for combined building climate comfort and aquifer thermal energy storage (ATES) system. In particular, we first provide a description of building operational systems together with control framework variables. We then focus on the derivation of an

  15. Modelling of Sediment Transport in Beris Fishery Port

    Directory of Open Access Journals (Sweden)

    Samira Ardani

    2015-06-01

    Full Text Available In this paper, the large amount of sedimentation and the resultant shoreline advancements at the breakwaters of Beris Fishery Port are studied. A series of numerical modeling of waves, sediment transport, and shoreline changes were conducted to predict the complicated equilibrium shoreline. The outputs show that the nearshore directions of wave components are not perpendicular to the coast which reveals the existence of longshore currents and consequently sediment transport along the bay. Considering the dynamic equilibrium condition of the bay, the effect of the existing sediment resources in the studied area is also investigated. The study also shows that in spite of the change of the diffraction point of Beris Bay after the construction of the fishery port, the bay is approaching its dynamic equilibrium condition, and the shoreline advancement behind secondary breakwater will stop before blocking the entrance of the port. The probable solutions to overcome the sedimentation problem at the main breakwater are also discussed.

  16. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    Science.gov (United States)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  17. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, coastal Georgia, 2009-2010

    Science.gov (United States)

    Gonthier, Gerald J.

    2011-01-01

    Two test wells were completed at Fort Stewart, coastal Georgia, to investigate the potential for using the Lower Floridan aquifer as a source of water to satisfy anticipated, increased water needs. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, completed hydrologic testing of the Floridan aquifer system at the study site, including flowmeter surveys, slug tests, and 24- and 72-hour aquifer tests by mid-March 2010. Analytical approaches and model simulation were applied to aquifer-test results to provide estimates of transmissivity and hydraulic conductivity of the multilayered Floridan aquifer system. Data from a 24-hour aquifer test of the Upper Floridan aquifer were evaluated by using the straight-line Cooper-Jacob analytical method. Data from a 72-hour aquifer test of the Lower Floridan aquifer were simulated by using axisymmetric model simulations. Results of aquifer testing indicated that the Upper Floridan aquifer has a transmissivity of 100,000 feet-squared per day, and the Lower Floridan aquifer has a transmissivity of 7,000 feet-squared per day. A specific storage for the Floridan aquifer system as a result of model calibration was 3E-06 ft–1. Additionally, during a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  18. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  19. Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism.

    Science.gov (United States)

    Matsushita, Makoto; Ishikawa, Shugo; Nagai, Kazushige; Hirata, Yuichiro; Ozawa, Kunio; Mitsunobu, Satoshi; Kimura, Hiroyuki

    2016-09-29

    Accretionary prisms are mainly composed of ancient marine sediment scraped from the subducting oceanic plate at a convergent plate boundary. Large amounts of anaerobic groundwater and natural gas, mainly methane (CH4) and nitrogen gas (N2), are present in the deep aquifers associated with an accretionary prism; however, the origins of these gases are poorly understood. We herein revealed regional variations in CH4 and N2 production processes in deep aquifers in the accretionary prism in Southwest Japan, known as the Shimanto Belt. Stable carbon isotopic and microbiological analyses suggested that CH4 is produced through the non-biological thermal decomposition of organic matter in the deep aquifers in the coastal area near the convergent plate boundary, whereas a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogens contributes to the significant production of CH4 observed in deep aquifers in midland and mountainous areas associated with the accretionary prism. Our results also demonstrated that N2 production through the anaerobic oxidation of organic matter by denitrifying bacteria is particularly prevalent in deep aquifers in mountainous areas in which groundwater is affected by rainfall.

  20. Optimal Aquifer Pumping Policy to Reduce Contaminant Concentration

    Directory of Open Access Journals (Sweden)

    Ali Abaei

    2012-01-01

    Full Text Available Different sources of ground water contamination lead to non-uniform distribution of contaminant concentration in the aquifer. If elimination or containment of pollution sources was not possible, the distribution of contaminant concentrations could be modified in order to eliminate peak concentrations using optimal water pumping discharge plan. In the present investigation Visual MODFLOW model was used to simulate the flow and transport in a hypothetic aquifer. Genetic Algorithm (GA also was applied to optimize the location and pumping flow rate of wells in order to reduce contaminants peak concentrations in aquifer.

  1. Event-based aquifer-to-atmosphere modeling over the European CORDEX domain

    Science.gov (United States)

    Keune, J.; Goergen, K.; Sulis, M.; Shrestha, P.; Springer, A.; Kusche, J.; Ohlwein, C.; Kollet, S. J.

    2014-12-01

    Despite the fact that recent studies focus on the impact of soil moisture on climate and especially land-energy feedbacks, groundwater dynamics are often neglected or conceptual groundwater flow models are used. In particular, in the context of climate change and the occurrence of droughts and floods, a better understanding and an improved simulation of the physical processes involving groundwater on continental scales is necessary. This requires the implementation of a physically consistent terrestrial modeling system, which explicitly incorporates groundwater dynamics and the connection with shallow soil moisture. Such a physics-based system enables simulations and monitoring of groundwater storage and enhanced representations of the terrestrial energy and hydrologic cycles over long time periods. On shorter timescales, the prediction of groundwater-related extremes, such as floods and droughts, are expected to improve, because of the improved simulation of components of the hydrological cycle. In this study, we present a fully coupled aquifer-to-atmosphere modeling system over the European CORDEX domain. The integrated Terrestrial Systems Modeling Platform, TerrSysMP, consisting of the three-dimensional subsurface model ParFlow, the Community Land Model CLM3.5 and the numerical weather prediction model COSMO of the German Weather Service, is used. The system is set up with a spatial resolution of 0.11° (12.5km) and closes the terrestrial water and energy cycles from aquifers into the atmosphere. Here, simulations of the fully coupled system are performed over events, such as the 2013 flood in Central Europe and the 2003 European heat wave, and over extended time periods on the order of 10 years. State and flux variables of the terrestrial hydrologic and energy cycle are analyzed and compared to both in situ (e.g. stream and water level gauge networks, FLUXNET) and remotely sensed observations (e.g. GRACE, ESA ICC ECV soil moisture and SMOS). Additionally, the

  2. Application of a Density-Dependent Numerical Model (MODHMS) to Assess Salinity Intrusion in the Biscayne Aquifer, North Miami-Dade County, Florida

    Science.gov (United States)

    Guha, H.; Panday, S.

    2005-05-01

    Miami-Dade County is located at the Southeastern part of the State of Florida adjoining the Atlantic coast. The sole drinking water source is the Biscayne Aquifer, which is an unconfined freshwater aquifer, composed of marine limestone with intermediate sand lenses. The aquifer is highly conductive with hydraulic conductivity values ranging from 1,000 ft/day to over 100,000 ft/day in some areas. Saltwater intrusion from the coast is an immediate threat to the freshwater resources of the County. Therefore, a multilayer density-dependent transient groundwater model was developed to evaluate the saltwater intrusion characteristics of the system. The model was developed using MODHMS, a finite difference, fully coupled groundwater and surface water flow and transport model. The buoyancy term is included in the equation for unconfined flow and the flow and transport equations are coupled using an iterative scheme. The transport equation was solved using an adaptive implicit total variation diminishing (TVD) scheme and anisotropy of dispersivity was included for longitudinal, transverse, vertical transverse, and vertical longitudinal directions. The model eastern boundaries extended approximately 3.5 miles into the Atlantic Ocean while the western boundary extended approximately 27 miles inland from the coast. The northern and southern boundaries extend 6 miles into Broward County and up to the C-100 canal in Miami-Dade County respectively. Close to 2 million active nodes were simulated, with horizontal discretization of 500 feet. A total of nine different statistical analyses were conducted with observed and simulated hydraulic heads. The analysis indicates that the model simulated hydraulic heads matched closely with the observed heads across the model domain. In general, the model reasonably simulated the inland extent of saltwater intrusion within the aquifer, and matched relatively well with limited observed chloride data from monitoring wells along the coast

  3. Assessment of Drywells as Effective Tools for Stormwater Management and Aquifer Recharge: Results of a Two-Year Field and Numerical Modeling Study

    Science.gov (United States)

    Edwards, E.; Washburn, B.; Harter, T.; Fogg, G. E.; Nelson, C.; Lock, B.; Li, X.

    2016-12-01

    Drywells are gravity-fed, excavated pits with perforated casings used to facilitate stormwater infiltration and groundwater recharge in areas with low permeability soils or cover. Stormwater runoff that would otherwise be routed to streams or drains in urban areas can be used as a source of aquifer recharge, potentially mitigating the effects of drought and harm to natural water bodies. However, the potential for groundwater contamination caused by urban runoff bypassing surface soil and near surface sediment attenuation processes has prevented more widespread use of drywells as a recharge mechanism. A field study was conducted in Elk Grove, CA, to determine the effects of drywell-induced stormwater infiltration on the local hydrogeologic system. Two drywells 13.5 meters in depth were constructed for the project: one in a preexisting drainage basin fed by residential lots, and one at an industrial site. Both sites were outfitted with vegetated pretreatments, and upgradient and downgradient groundwater monitoring wells. Site stormwater and groundwater were sampled between November, 2014, and May, 2016, and analyzed for contaminants. Results of water quality sampling have been statistically analyzed for trends and used to determine the contaminants of interest and the concentrations of these contaminants in influent stormwater. The fate and transport of these contaminants have been simulated using a 1D variably saturated flow and transport model and site specific parameters to predict long-term effects of stormwater infiltration on the surrounding hydrogeologic system. The potential for remobilization of geogenic heavy metals from changes in subsurface hydrochemistry caused by drywell infiltration have also been assessed. The results of the field study and numerical modeling assessment indicate that the study's drywells do not pose a long-term threat to groundwater quality and may be an effective source of aquifer recharge and tool for urban stormwater management.

  4. Mud, models, and managers: Reaching consensus on a watershed strategy for sediment load reduction

    Science.gov (United States)

    Wilcock, P. R.; Cho, S. J.; Gran, K.; Belmont, P.; Hobbs, B. F.; Heitkamp, B.; Marr, J. D.

    2017-12-01

    Agricultural nonpoint source sediment pollution is a leading cause of impairment of U.S. waters. Sediment sources are often on private land, such that solutions require not only considerable investment, but broad acceptance among landowners. We present the story of a participatory modeling exercise whose goal was to develop a consensus strategy for reducing sediment loading from the Greater Blue Earth River Basin, a large (9,200 km2) watershed in southern Minnesota dominated by row crop agriculture. The Collaborative for Sediment Source Reduction was a stakeholder group of farmers, industry representatives, conservation groups, and regulatory agencies. We used a participatory modeling approach to promote understanding of the problem, to define the scope of solutions acceptable to farmers, to develop confidence in a watershed model, and to reach consensus on a watershed strategy. We found that no existing watershed model could provide a reliable estimate of sediment response to management actions and developed a purpose-built model that could provide reliable, transparent, and fast answers. Because increased stream flow was identified as an important driver of sediment loading, the model and solutions included both hydrologic and sediment transport components. The model was based on an annual sediment budget with management actions serving to proportionally reduce both sediment sources and sediment delivery. Importantly, the model was developed in collaboration with stakeholders, such that a shared understanding emerged regarding of the modeling challenges and the reliability of information used to strongly constrain model output. The simplicity of the modeling approach supported stakeholder engagement and understanding, thereby lowering the social barrier between expert modeler and concerned stakeholder. The consensus strategy focused on water storage higher in the watershed in order to reduce river discharge and the large supply of sediment from near

  5. Development of a sharp interface model that simulates coastal aquifer flow with the coupled use of GIS

    Science.gov (United States)

    Gemitzi, Alexandra; Tolikas, Demetrios

    A simulation program, which works seamlessly with GIS and simulates flows in coastal aquifers, is presented in the present paper. The model is based on the Galerkin finite element discretization scheme and it simulates both steady and transient freshwater and saltwater flow, assuming that the two fluids are separated by a sharp interface. The model has been verified in simple cases where analytical solutions exist. The simulation program works as a tool of the GIS program, which is the main database that stores and manages all the necessary data. The combined use of the simulation and the GIS program forms an integrated management tool offering a simpler way of simulating and studying saline intrusion in coastal aquifers. Application of the model to the Yermasogia aquifer illustrates the coupled use of modeling and GIS techniques for the examination of regional coastal aquifer systems. Pour étudier un système aquifère côtier, nous avons développé un modèle aux éléments finis en quasi 3-D qui simule les écoulements d'eau douce et d'eau salée en régime aussi bien permanent que transitoire. Les équations qui les régissent sont discrétisées par un schéma de discrétisation de Garlekin aux éléments finis. Le modèle a été vérifié dans des cas simples où il existe des solutions analytiques. Toutes les données nécessaires sont introduites et gérées grâce à un logiciel de gestion de SIG. Le programme de simulation est utilisé comme un outil du logiciel de SIG, constituant ainsi un outil de gestion intégrée dont le but est de simuler et d'étudier l'intrusion saline dans les aquifères côtiers. L'application du modèle à l'aquifère de Yermasogia illustre l'utilisation couplée de la modélisation et des techniques de SIG pour l'étude des systèmes aquifères côtiers régionaux. Se ha desarrollado un modelo casi tridimensional de elementos finitos para simular el flujo de agua dulce y salada, tanto en régimen estacionario como en

  6. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  7. Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization

    Science.gov (United States)

    Hvilshøj, S.; Jensen, K. H.; Barlebo, H. C.; Madsen, B.

    1999-08-01

    Inverse numerical modeling was applied to analyze pumping tests of partially penetrating wells carried out in three wells established in an unconfined aquifer in Vejen, Denmark, where extensive field investigations had previously been carried out, including tracer tests, mini-slug tests, and other hydraulic tests. Drawdown data from multiple piezometers located at various horizontal and vertical distances from the pumping well were included in the optimization. Horizontal and vertical hydraulic conductivities, specific storage, and specific yield were estimated, assuming that the aquifer was either a homogeneous system with vertical anisotropy or composed of two or three layers of different hydraulic properties. In two out of three cases, a more accurate interpretation was obtained for a multi-layer model defined on the basis of lithostratigraphic information obtained from geological descriptions of sediment samples, gammalogs, and flow-meter tests. Analysis of the pumping tests resulted in values for horizontal hydraulic conductivities that are in good accordance with those obtained from slug tests and mini-slug tests. Besides the horizontal hydraulic conductivity, it is possible to determine the vertical hydraulic conductivity, specific yield, and specific storage based on a pumping test of a partially penetrating well. The study demonstrates that pumping tests of partially penetrating wells can be analyzed using inverse numerical models. The model used in the study was a finite-element flow model combined with a non-linear regression model. Such a model can accommodate more geological information and complex boundary conditions, and the parameter-estimation procedure can be formalized to obtain optimum estimates of hydraulic parameters and their standard deviations.

  8. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Larsen, Flemming; Hue, N.T.M.

    2007-01-01

    The mobilization of arsenic (As) to the groundwater was studied in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The groundwater chemistry was investigated in a transect of 100 piezometers. Results show an anoxic aquifer featuring organic carbon decomposition......(III) but some As(V) is always found. Arsenic correlates well with NH4, relating its release to organic matter decomposition and the source of As appears to be the Fe-oxides being reduced. Part of the produced Fe(II) is apparently reprecipitated as siderite containing less As. Results from sediment extraction...... chemistry over depth is homogeneous and a reactive transport model was constructed to quantify the geochemical processes along the vertical groundwater flow component. A redox zonation model was constructed using the partial equilibrium approach with organic carbon degradation in the sediment as the only...

  9. Hydrologic analysis of data for the Lost Lake Aquifer Zone of the Steel Pond Aquifer at recovery well RWM-16

    International Nuclear Information System (INIS)

    Wells, D.G.; Cook, J.W.; Hiergesell, R.A.

    1993-04-01

    This report presents the results of an analysis of data obtained from a large-scale, multiple-well aquifer test of the sandy unit referred to as the Lost Lake Aquifer Zone of the Steed Pond Aquifer in an area just south of the A and M Areas. Pumping was conducted at recovery well RWM-16, which is located near the MSB-40 well cluster, approximately 4000 feet south of the M-Area Basin. RWM-16 is located in the lower left portion of Figure 1, which also illustrates the general relationship of the testing site to the A and M Areas and other monitor wells. The data generated from testing RWM-16 was used to calculate estimates of transmissivity and storage for the aquifer system within which RWM-16 is screened. These parameters are related to hydraulic conductivity and storativity of the aquifer system by the vertical thickness of the unit. The leakage coefficient for the overlying confining unit is also estimated. This information is needed to refine conceptual understanding of the groundwater flow system beneath the A and M Areas. The refined conceptual model will more adequately describe the pattern of groundwater flow, and will contribute to updating the open-quotes Zone of Captureclose quotes model that has been used in the initial phases of designing a groundwater remediation system in the A and M Areas

  10. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  11. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S.; Gupta, Manish; Chandler, Darrell P.; Murray, Christopher J.; Peacock, Aaron D.; Giloteaux, L.; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  12. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  13. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations.

    Science.gov (United States)

    Li, Dong; Alidina, Mazahirali; Ouf, Mohamed; Sharp, Jonathan O; Saikaly, Pascal; Drewes, Jörg E

    2013-05-01

    This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems. Copyright © 2013 Elsevier Ltd

  14. Evaluation of long-term water-level declines in basalt aquifers near Mosier, Oregon

    Science.gov (United States)

    Burns, Erick R.; Morgan, David S.; Lee, Karl K.; Haynes, Jonathan V.; Conlon, Terrence D.

    2012-01-01

    were collected from a known commingling well. These data measured geologic properties and vertical flow through the well. 4. Streamflow measurements were made in Rock, Rowena, and Mosier Creeks. A long-term recording stream-gaging station was reestablished on Mosier Creek to provide a continuous record of streamflow. Streamflow measurements also were made along the creeks periodically to evaluate seasonal patterns of exchange between streams and the groundwater system. Major findings from the study include: 1. Annual average precipitation ranges from 20 to 54 inches across the study area with an average value of about 30 inches. Based on rainfall-runoff modeling, about one-third of this water infiltrates into the aquifer system. 2. Currently, about 3 percent of the water infiltrated into the groundwater system is extracted for municipal, agricultural, and rural residential use. The remainder of the water flows through the aquifer system, discharging into local streams and the Columbia River. About 80 percent of recent pumping supports crop production. The city of Mosier public supply wells account for about 10 percent of total pumping, with the remaining 10 percent being pumped from the private wells of rural residents. 3. Groundwater-flow simulation results indicate that leakage through commingling wells is a significant and likely the dominant cause of water level declines. Leakage patterns can be complex, but most of the leaked water likely flows out the CRBG aquifer system through very permeable sediments into Mosier Creek and its tributary streams in the OWRD administrative area. Model-derived estimates attribute 80-90 percent of the declines to commingling, with pumping accounting for the remaining 10-20 percent. Although decadal trends in precipitation have occurred, associated changes in aquifer recharge are likely not a significant contributor to the current water level declines. 4. As many as 150 wells might be commingling. To evaluate whether or not the

  15. Hydrology of aquifer systems in the Memphis area, Tennessee

    Science.gov (United States)

    Criner, James H.; Sun, P-C. P.; Nyman, Dale J.

    1964-01-01

    The Memphis area as described in .this report comprises about 1,300 square miles of the Mississippi embayment part of the Gulf Coastal Plain. The area is underlain by as much as 3,000 feet of sediments ranging in age from Cretaceous through Quaternary. In 1960, 150 mgd (million gallons per day) of water was pumped from the principal aquifers. Municipal pumpage accounted for almost half of this amount, and industrial pumpage a little more than half. About 90 percent of the water used in the area is derived from the '500-foot' sand, and most of the remainder is from the ?400-foot' sand; both sands are of Eocene age. A small amount of water for domestic use is pumped from the terrace deposits of Pliocene and Pleistocene age. Both the '500-foot' and the '1,400-foot' sands are artesian aquifers except in the southeastern part of the area; there the water level in wells in the '500-foot' sand is now below the overlying confining clay. Water levels in both aquifers have declined almost continuously since pumping began, but the rate of decline has increased rapidly since 1940. Water-level decline in the '1,400-foot' sand has been less pronounced since 1956. The cones of depression in both aquifers have expanded and deepened as a result of the annual increases in pumping, and an increase in hydraulic gradients has induced a greater flow of water into the area. Approximately 135 mgd entered the Memphis area through the '500-foot' sand aquifer in 1960, and, of this amount, 60 mgd originated as inflow from the east and about 75 mgd was derived from leakage from the terrace deposits, from the north, south, and west and from other sources. Of the water entering the '1,400-foot' sand, about 5 mgd was inflow from the east, and about half that amount was from each of the north, south, and west directions. The average rate of movement of water outside the area of heavy withdrawals is about 70 feet per year in the '500-foot' sand and about 40 feet per year in the '1,400-foot' sand

  16. Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond

    Science.gov (United States)

    Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel

    2018-01-01

    Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.

  17. Modeling of Sediment Transport and Self-Cleansing in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Ibro, I.

    2011-01-01

    The paper describes an on-going project on modeling of sediment transport in outfalls with special focus on the self-cleansing problem occurring due to the daily flow variations seen in outfalls. The two central elements of the project is the development of the numerical model and a matching...... physical model in the laboratory. The numerical model covers both sediment transport over bed accumulations as well as transport over clean bottom. The physical modeling emphasizes on measurement of the non-steady removal and transport of welldefined and limited accumulations along the pipe. The paper...

  18. Groundwater availability in the Crouch Branch and McQueen Branch aquifers, Chesterfield County, South Carolina, 1900-2012

    Science.gov (United States)

    Campbell, Bruce G.; Landmeyer, James E.

    2014-01-01

    Chesterfield County is located in the northeastern part of South Carolina along the southern border of North Carolina and is primarily underlain by unconsolidated sediments of Late Cretaceous age and younger of the Atlantic Coastal Plain. Approximately 20 percent of Chesterfield County is in the Piedmont Physiographic Province, and this area of the county is not included in this study. These Atlantic Coastal Plain sediments compose two productive aquifers: the Crouch Branch aquifer that is present at land surface across most of the county and the deeper, semi-confined McQueen Branch aquifer. Most of the potable water supplied to residents of Chesterfield County is produced from the Crouch Branch and McQueen Branch aquifers by a well field located near McBee, South Carolina, in the southwestern part of the county. Overall, groundwater availability is good to very good in most of Chesterfield County, especially the area around and to the south of McBee, South Carolina. The eastern part of Chesterfield County does not have as abundant groundwater resources but resources are generally adequate for domestic purposes. The primary purpose of this study was to determine groundwater-flow rates, flow directions, and changes in water budgets over time for the Crouch Branch and McQueen Branch aquifers in the Chesterfield County area. This goal was accomplished by using the U.S. Geological Survey finite-difference MODFLOW groundwater-flow code to construct and calibrate a groundwater-flow model of the Atlantic Coastal Plain of Chesterfield County. The model was created with a uniform grid size of 300 by 300 feet to facilitate a more accurate simulation of groundwater-surface-water interactions. The model consists of 617 rows from north to south extending about 35 miles and 884 columns from west to east extending about 50 miles, yielding a total area of about 1,750 square miles. However, the active part of the modeled area, or the part where groundwater flow is simulated

  19. Hydraulic properties of groundwater systems in the saprolite and sediments of the wheatbelt, Western Australia

    Science.gov (United States)

    George, Richard J.

    1992-01-01

    Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation. Aquifers with an average hydraulic conductivity of 0.55 m day -1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day -1). These aquifers are separated by an aquitard (0.065 m day -1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method. Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4-50 m 2 day -1) and is capable of producing from less than 5 to over 230 kl day -1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived. The overlying aquitard has a low transmissivity (< 1 m 2 day -1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m

  20. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    Science.gov (United States)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  1. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.

    2013-01-01

    Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).

  2. Geomorphic Controls on Aquifer Geometry in Northwestern India

    Science.gov (United States)

    van Dijk, W. M.; Densmore, A. L.; Sinha, R.; Gupta, S.; Mason, P. J.; Singh, A.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.

    2014-12-01

    The Indo-Gangetic foreland basin suffers from one of the highest rates of groundwater extraction in the world, especially in the Indian states of Punjab, Haryana and Rajasthan. To understand the effects of this extraction on ground water levels, we must first understand the geometry and sedimentary architecture of the aquifer system, which in turn depend upon its geomorphic setting. We use satellite images and digital elevation models to map the geomorphology of the Sutlej and Yamuna river systems, while aquifer geometry is assessed using ~250 wells that extend to ~300 m depth in Punjab and Haryana. The Sutlej and Yamuna rivers have deposited large sedimentary fans at their outlets. Elongate downslope ridges on the fan surfaces form distributary networks that radiate from the Sutlej and Yamuna fan apices, and we interpret these ridges as paleochannel deposits associated with discrete fan lobes. Paleochannels picked out by soil moisture variations illustrate a complex late Quaternary history of channel avulsion and incision, probably associated with variations in monsoon intensity. Aquifer bodies on the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow a heavy-tailed distribution, probably because of stacked sand bodies. The percentage of aquifer material in individual lithologs decreases downstream, although the exponent on the thickness distribution remains the same, indicating that aquifer bodies decrease in number down fan but do not thin appreciably. Critically, the interfan area between the Sutlej and Yamuna fans has thinner aquifers and a lower proportion of aquifer material, despite its proximal location. Our data show that the Sutlej and Yamuna fan systems form the major aquifer systems in this area, and that their geomorphic setting therefore provides a first-order control on aquifer distribution and geometry. The large spatial heterogeneity of the system must be considered in any future aquifer management scheme.

  3. Numerical Coupling of River Discharge to Shelf/Slope Sedimentation Models

    National Research Council Canada - National Science Library

    Syvitski, James

    1997-01-01

    Scientific objectives of this project are: (1) Develop a nested set of models to study the interactions of sedimentation processes on the shelf, including the effects of river supply, plume transport and initial deposition of sediments; (2...

  4. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet

    Science.gov (United States)

    Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value

  5. Ultramafic-derived arsenic in a fractured bedrock aquifer

    International Nuclear Information System (INIS)

    Ryan, Peter C.; Kim, Jonathan; Wall, Andrew J.; Moen, Jonathan C.; Corenthal, Lilly G.; Chow, Daniel R.; Sullivan, Colleen M.; Bright, Kevin S.

    2011-01-01

    Highlights: → Arsenic is elevated in groundwater from a fractured bedrock aquifer system in northern Vermont, USA. → The arsenic source is serpentinized ultramafic rock. → Antigorite, magnetite (MgCO 3 ) and magnetite (Fe 3 O 4 ) appear to be the main mineralogical hosts of arsenic in the ultramafic rock. → Arsenic appears to be introduced to the ultramafic rock when As-bearing fluids are driven out of sediments during subduction. → The occurrence of serpentinized ultramafic rocks in many orogenic belts suggests that similar arsenic anomalies may occur in geologically-similar terranes globally. - Abstract: In the fractured bedrock aquifer of northern Vermont, USA, As concentrations in groundwater range from 3 ) with lesser amounts in magnetite (Fe 3 O 4 ). Hydrochemistry of monitoring wells drilled into fractured ultramafic rock in a groundwater recharge area with no anthropogenic As source reveals above background As (2-9 μg/L) and an Mg-HCO 3 hydrochemical signature that reflects dissolution of antigorite and magnesite, confirming that As in groundwater can be derived from ultramafic rock dissolution. Arsenic mobility in groundwater affected by ultramafic rock dissolution may be enhanced by alkaline pH values and relatively high HCO 3 - concentrations.

  6. Strontium-90 migration in Hanford sediments, USA

    International Nuclear Information System (INIS)

    Steefel, C.I.; Yang, L.; Carroll, S.A.; Roberts, S.; Zachara, J.M.; Yabusaki, S.B.

    2005-01-01

    Full text of publication follows: Strontium-90 is an important risk-driving contaminant at the Hanford site in eastern Washington, USA. Disposal operations at the Hanford 100-N area released millions of liters of reactor cooling water containing high concentrations of strontium-90 into the vadose zone immediately adjacent to the Columbia River. The effectiveness of pump-and-treat methods for remediation have been questioned, largely because the strontium is strongly sorbed on subsurface sediments via ion exchange reactions and co-precipitation in carbonates. In addition, groundwater monitoring wells show a fluctuating seasonal behavior in which high strontium-90 concentrations correlate with high Columbia River stage, even while average concentrations remain approximately constant. A series of fully saturated reactive transport column experiments have been conducted to investigate the important controls on strontium migration in Hanford groundwater [1]. The experiments were designed to investigate the multicomponent cation exchange behavior of strontium in competition with the cations Na + , Ca +2 , and Mg +2 , the concentration of which differs between river water and groundwater. Reactive transport modeling of the experiments indicates that the Sr +2 selectivity coefficient becomes larger with increasing NaNO 3 concentration, a behavior also shown by the divalent cations Ca +2 and Mg +2 . A new set of column experiments investigates the effect of wetting and drying cycles on strontium- 90 sorption and migration by considering episodic flow in Hanford sediments. In addition, the effect of fluctuating aquifer chemistry as a result of changes in the Columbia River stage on Sr +2 sorption is addressed. Modeling of multicomponent reactive transport under variably saturated conditions is used to interpret the results of the episodic flow/chemistry experiments. [1] Experimental and modeling studies of the migration behavior of strontium in Hanford sediments, USA. C

  7. Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: A multi-isotope approach and geochemical modeling

    International Nuclear Information System (INIS)

    Carucci, Valentina; Petitta, Marco; Aravena, Ramon

    2012-01-01

    In the Tivoli Plain (Rome, Central Italy) the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using isotopic and chemical tracers. A conceptual model of the groundwater flowpaths has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as DIC/Cl − , Ca/(Ca + Mg)/SO 4 /(SO 4 + HCO 3 ), and environmental isotopes (δ 18 O, δ 2 H, 87 Sr/ 86 Sr, δ 34 S and δ 13 C) was carried out in order to determine the sources of recharge of the aquifer, the origin of solutes and the mixing processes in groundwater of Tivoli Plain. Multivariate statistical methods such as principal component analysis and Cluster analyses have confirmed the existence of different geochemical facies and the role of mixing in the chemical composition of the groundwater. Results indicate that the hydrochemistry of groundwater is characterized by mixing between end-members coming directly from carbonate recharge areas and to groundwater circulating in a deeply buried Meso-Cenozoic carbonate sequence. The travertine aquifer is fed by both flow systems, but a local contribution by direct input in the Plain has also been recognized. The stable isotope data ( 18 O, 2 H, 13 C and 34 S) supports the flow system conceptual model inferred from the geochemical data and represents key data to quantify the geochemical mixing in the different groundwaters of the Plain. The results of numerical modeling (PHREEQC) are consistent with the flowpaths derived from the hydrogeochemical conceptual model. The inverse models performed generated the main geochemical processes occurring in the groundwater flow system, which also included mixing. Geochemical and isotope modeling demonstrate an increasing influence of groundwater from the deeply buried aquifer in the travertine aquifer, enhanced by lowering of the travertine aquifer water table due to quarry pumping.

  8. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  9. Investigation of ground water aquifer at Tlogorejo Site Karangawen District, Demak Regency, Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Demak is one of regency are placed at north beach central Java. Some part of this area especially Tlogorejo site Karangawen have the problem of fresh water availability. Conditions of insufficient Standard Water have been recognized in some part of the region, those are Karangrowo area, Undaan District. The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process, so the trapped ground water character is brine or brackish. One of the alternatives to overcome water problem is election or delineated of the prospect area for exploiting of ground water. Referring to those problems Pusbang Geologi Nuklir BATAN means to conduct investigation of ground water in some location which has problem of clean water. The ground investigation activity is to get information about the geology, hydrogeology and sub surface geophysical characteristic, which is needed to identification of ground water aquifer. To obtain those targets, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo-electrical 2-D image measurement Base on observation, analysis, evaluation and discussion was identified the existence of potential confined aquifer that happened at the layer sand that is trapped in the in impermeable layer of clay, which is potential for confined aquifer. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement is ''Sand Aquifer Layer-1'' are located at RB 1 (TLG-5), RB 2 (TLG-4) and RB 3 (TLG-22). Physical characterized of aquifer: resistivity 22-46 Ωm, the depth of surface water 110 to 146 meter. (author)

  10. Nonstationary porosity evolution in mixing zone in coastal carbonate aquifer using an alternative modeling approach.

    Science.gov (United States)

    Laabidi, Ezzeddine; Bouhlila, Rachida

    2015-07-01

    In the last few decades, hydrogeochemical problems have benefited from the strong interest in numerical modeling. One of the most recognized hydrogeochemical problems is the dissolution of the calcite in the mixing zone below limestone coastal aquifer. In many works, this problem has been modeled using a coupling algorithm between a density-dependent flow model and a geochemical model. A related difficulty is that, because of the high nonlinearity of the coupled set of equations, high computational effort is needed. During calcite dissolution, an increase in permeability can be identified, which can induce an increase in the penetration of the seawater into the aquifer. The majority of the previous studies used a fully coupled reactive transport model in order to model such problem. Romanov and Dreybrodt (J Hydrol 329:661-673, 2006) have used an alternative approach to quantify the porosity evolution in mixing zone below coastal carbonate aquifer at steady state. This approach is based on the analytic solution presented by Phillips (1991) in his book Flow and Reactions in Permeable Rock, which shows that it is possible to decouple the complex set of equation. This equation is proportional to the square of the salinity gradient, which can be calculated using a density driven flow code and to the reaction rate that can be calculated using a geochemical code. In this work, this equation is used in nonstationary step-by-step regime. At each time step, the quantity of the dissolved calcite is quantified, the change of porosity is calculated, and the permeability is updated. The reaction rate, which is the second derivate of the calcium equilibrium concentration in the equation, is calculated using the PHREEQC code (Parkhurst and Apello 1999). This result is used in GEODENS (Bouhlila 1999; Bouhlila and Laabidi 2008) to calculate change of the porosity after calculating the salinity gradient. For the next time step, the same protocol is used but using the updated porosity

  11. Temporal and spatial variations in groundwater quality resulting from policy-induced reductions in nitrate leaching to the Rabis Creek aquifer, Denmark

    Science.gov (United States)

    Jessen, Søren; Engesgaard, Peter; Thorling, Lærke; Müller, Sascha; Leskelä, Jari; Postma, Dieke

    2016-04-01

    -gradient along the transect. During the 25 year monitoring period the redoxcline has moved by one to a few decimeters, as controlled by the aquifer sediment's pyrite content. Further, the data indicate that no zero-valent sulfur is precipitated during pyrite oxidation in the aquifer, while most of the pyritic iron is precipitated. Nickel (Ni2+) is released at the redoxcline resulting in concentrations more than twice the 20 μg/L Danish drinking water limit. The data clearly indicate that this Ni2+ contamination can be ascribed to the agricultural nitrate loading and would not occur under natural conditions. A 2D reactive transport model was constructed (PHAST 3) to simulate the temporal and spatial development in nitrate and sulfate concentrations in the aquifer while taking into account effects of dispersion. The model predictions indicate that sulfate concentrations, despite dispersive mixing, is still increasing along down-gradient stretches of the aquifer, where flow paths surface from the deeper up-gradient part of the aquifer, to eventually discharge into the Rabis Creek.

  12. Sediment measurement and transport modeling: impact of riparian and filter strip buffers.

    Science.gov (United States)

    Moriasi, Daniel N; Steiner, Jean L; Arnold, Jeffrey G

    2011-01-01

    Well-calibrated models are cost-effective tools to quantify environmental benefits of conservation practices, but lack of data for parameterization and evaluation remains a weakness to modeling. Research was conducted in southwestern Oklahoma within the Cobb Creek subwatershed (CCSW) to develop cost-effective methods to collect stream channel parameterization and evaluation data for modeling in watersheds with sparse data. Specifically, (i) simple stream channel observations obtained by rapid geomorphic assessment (RGA) were used to parameterize the Soil and Water Assessment Tool (SWAT) model stream channel variables before calibrating SWAT for streamflow and sediment, and (ii) average annual reservoir sedimentation rate, measured at the Crowder Lake using the acoustic profiling system (APS), was used to cross-check Crowder Lake sediment accumulation rate simulated by SWAT. Additionally, the calibrated and cross-checked SWAT model was used to simulate impacts of riparian forest buffer (RF) and bermudagrass [ (L.) Pers.] filter strip buffer (BFS) on sediment yield and concentration in the CCSW. The measured average annual sedimentation rate was between 1.7 and 3.5 t ha yr compared with simulated sediment rate of 2.4 t ha yr Application of BFS across cropped fields resulted in a 72% reduction of sediment delivery to the stream, while the RF and the combined RF and BFS reduced the suspended sediment concentration at the CCSW outlet by 68 and 73%, respectively. Effective riparian practices have potential to increase reservoir life. These results indicate promise for using the RGA and APS methods to obtain data to improve water quality simulations in ungauged watersheds. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  13. Proglacial Hydrogeology of the Cordillera Blanca (Peru): Integrating Field Observations with Hydrogeophysical Inversions to Inform Groundwater Flow Simulations and Conceptual Models

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Moucha, R.; Mark, B. G.

    2017-12-01

    Geological and depositional conditions of the glaciated Cordillera Blanca in Peru have given way to proglacial aquifer systems that contribute substantially to regional streams and rivers, particularly during the dry season. As glacial retreat accelerates, the dry season water budget will be increasingly dominated by groundwater inputs, although predictions of future groundwater quantities require estimations of groundwater storage capacity, aquifer extents, and groundwater residence time. We present a characterization of the sediment structure in a prototypical proglacial valley in the central portion of the range, the Quilcayhuanca Valley. Northern and Central valleys of the Cordillera Blanca feature ubiquitous talus deposits that line the steep granite walls, and have become partially buried beneath lacustrine sediments deposited in proglacial lake beds. The portion of the talus still exposed near the valley walls provides recharge to deeper portions of the valley aquifers that underlie lacustrine clay, resulting in a confined aquifer system that is connected to the surface via perennial springs. Seismic refraction surveys reveal an interface separating relatively slow ( 400-800 m/s) and fast ( 2500 m/s) p-wave velocities. The depth of this refractor coincides with the depth to buried talus observed in drilling records. Electrical resistivity tomography profiles of the same transect show depths near the buried talus to be relatively conductive (10-100 Ωm). At these depths, we hypothesize that electrical conductance is elevated by saturated clay particles in the sediment matrix of the talus deposit. The resistivity models all show a more resistive ( 700 Ω m) region at depth, likely corresponding to a more hydraulically conductive material. The resistive zone is interpreted to be a deeper portion of a buried talus deposit that did not accumulate clay in the matrix. Other possibilities include a thick deposit of gravelly glacial outwash, or a relatively clay

  14. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction

    Science.gov (United States)

    Desimone, Leslie A.; Barlow, Paul M.

    1999-01-01

    Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.

  15. Modeling subglacial sediment discharge in 1-dimension: comparison with measurments and implications for glacial retreat

    Science.gov (United States)

    Delaney, I. A.; Werder, M.; Farinotti, D.

    2017-12-01

    In recent decades increased sedimentation rates have been observed in reservoirs downstream of some retreating glaciers. This material either originates from slopes recently exposed by glacier retreat and no longer stabilized by ice, or subglacially, where pressurized melt water transports sediments from the glacier bed. Some evidence suggests that recently exposed periglacial areas can stablize relatively quickly and in some catchments provides a smaller precentage of the total sediment compared to the subglacial environment. As a result, in order predict and forecast sediment yield from glaciated catchments as glaciers thin and thier hydrology evolves, a subglacial sediment transport model must be implemented. Here a simple 1-dimensional glacio-hydraulic model uses the Darcy-Weissbach relationship to determine shear-stress of presurized water on the glacier bed. This is coupled with a sediment transport relationship to determine quantity of discharged material from the glacier snout. Several tuning factors allow calibration and the model to reproduces processes known to occur subglacially, including seasonal evolution of sediment expulsion and deposition of sediment on adverse slopes of overdeepenings. To asses the model's application to real glaciers, sediment flux data has been collected from Gornergletscher, Aletschgletscher and Griesgletscher in the Swiss Alps over time-scales of up to decades. By calibrating to these data, the skill of the model in recreating sediment trends and volumes is assesed. The outputs capture annual erosion quanities relatively well, however, challenges exist in capturing inter-annual variations in sediment discharge. Many of the model's short comings relate to caputuring the spatial distribution of sediment throughout the glacier bed, which is particularing difficult in 1-dimension. However, this work suggests that a simple models can be used to predict subglacial sediment transport with reasonable ability. Additionally, further

  16. Modeling ground water flow and radioactive transport in a fractured aquifer

    International Nuclear Information System (INIS)

    Pohll, G.; Hassan, A.E.; Chapman, J.B.; Papelis, C.; Andricevic, R.

    1999-01-01

    Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and in growth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical

  17. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  18. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  19. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    Science.gov (United States)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  20. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    Science.gov (United States)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling