WorldWideScience

Sample records for mode-locked solid-state laser

  1. Harmonic mode-locking and sub-round-trip time nonlinear dynamics of electro-optically controlled solid state laser

    Science.gov (United States)

    Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.

    2018-03-01

    Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.

  2. Amplitude characteristics of a solid-state ring laser with active mode locking

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, E.M.; Klochan, E.L.; Lariontsev, E.G.

    1986-09-01

    A system of equations is obtained for the parameters of ultrashort light pulses (USLP) in a solid-state ring laser (SSRL) with periodic loss modulation. Allowance is made for the coupling between counterpropagating USLP due to backscattering in the modulator. The regime of counter-propagating wave frequency capture (CPWFC) is studied. It is shown that the coupling of counterpropagating waves due to backscattering at the modulator ends leads to the suppression of one of the counterpropagating waves during an increase in the detuning of the modulation frequency relative to its optimal value. The influence of rotation on the amplitude characteristics of an SSRL in the CPWFC regime is studied. 9 references.

  3. Mode-locked silicon evanescent lasers.

    Science.gov (United States)

    Koch, Brian R; Fang, Alexander W; Cohen, Oded; Bowers, John E

    2007-09-03

    We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

  4. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  5. Actively mode-locked Raman fiber laser.

    Science.gov (United States)

    Yang, Xuezong; Zhang, Lei; Jiang, Huawei; Fan, Tingwei; Feng, Yan

    2015-07-27

    Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking.

  6. Theory of Passively Mode-Locked Photonic Crystal Semiconductor Lasers

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We report the first theoretical investigation of passive mode-locking in photonic crystal mode-locked lasers. Related work has investigated coupled-resonator-optical-waveguide structures in the regime of active mode-locking [Opt. Express 13, 4539-4553 (2005)]. An extensive numerical investigation...

  7. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  8. Solid-State Laser Engineering

    CERN Document Server

    Koechner, Walter

    2006-01-01

    Written from an industrial perspective, Solid-State Laser Engineering discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. Since its first edition almost 30 years ago this book has become the standard in the field of solid-state lasers for scientists,engineers and graduate students. This new edition has been extensively revised and updated to account for recent developments in the areas of diode-laser pumping, laser materials and nonlinear crystals. Completely new sections have been added dealing with frequency control, the theory of mode-locking, femto second lasers, high efficiency harmonic generation, passive and acousto-optic Q-switching, semiconductor saturable absorber mirrors (SESAM) and peridically poled nonlinear crystals.

  9. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized.......We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  10. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...

  11. Monolithic Hybrid and Passive Mode-Locked 40GHz Quantum Dot Laser Diodes

    DEFF Research Database (Denmark)

    Thompson, M. G.; Larsson, David; Rae, A. R.

    2006-01-01

    For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs....

  12. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  13. Dispersion-managed semiconductor mode-locked ring laser.

    Science.gov (United States)

    Resan, Bojan; Archundia, Luis; Delfyett, Peter J; Alphonse, Gerard

    2003-08-01

    A novel breathing-mode external sigma-ring-cavity semiconductor mode-locked laser is developed. Intracavity pulse compression and stretching produce linearly chirped pulses with an asymmetric exponential temporal profile. External dispersion compensation reduces the pulse duration to 274 fs (within 10% of the bandwidth limit).

  14. Color center lasers passively mode locked by quantum wells

    International Nuclear Information System (INIS)

    Islam, M.N.; Soccolich, C.E.; Bar-Joseph, I.; Sauer, N.; Chang, T.Y.; Miller, B.I.

    1989-01-01

    This paper describes how, using multiple quantum well (MQW) saturable absorbers, the authors passively mode locked a NaCl color center laser to produce 275 fs transform-limited, pedestal-free pulses with as high as 3.7 kW peak power. The pulses are tunable from λ = 1.59 to 1.7 μm by choosing MQW's with different bandgaps. They shortened the output pulses from the laser to 25 fs using the technique of soliton compression in a fiber. The steady-state operation of the laser requires the combination of a fast saturable absorber and gain saturation. In addition to the NaCl laser, they passively mode locked a Tl 0 (1):KCl color center laser and produced -- 22 ps pulses. Although the 275 fs pulses from the NaCl laser are Gaussian, when broadened, the pulses acquire an asymmetric spectrum because of carrier-induced refractive index changes

  15. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  16. Dispersion engineering of mode-locked fibre lasers

    Science.gov (United States)

    Woodward, R. I.

    2018-03-01

    Mode-locked fibre lasers are important sources of ultrashort pulses, where stable pulse generation is achieved through a balance of periodic amplitude and phase evolutions. A range of distinct cavity pulse dynamics have been revealed, arising from the interplay between dispersion and nonlinearity in addition to dissipative processes such as filtering. This has led to the discovery of numerous novel operating regimes, offering significantly improved laser performance. In this Topical Review, we summarise the main steady-state pulse dynamics reported to date through cavity dispersion engineering, including average solitons, dispersion-managed solitons, dissipative solitons, giant-chirped pulses and similaritons. Characteristic features and the stabilisation mechanism of each regime are described, supported by numerical modelling, in addition to the typical performance and limitations. Opportunities for further pulse energy scaling are discussed, in addition to considering other recent advances including automated self-tuning cavities and fluoride-fibre-based mid-infrared mode-locked lasers.

  17. Mode Locking of Quantum Cascade Lasers

    National Research Council Canada - National Science Library

    Capasso, Federico; Kaertner, Franz X

    2007-01-01

    .... A wide variety of experimental data on multimode regimes is presented. Lasers with narrow active region and/or with metal coating on the sides tend to develop a splitting in the spectrum, approximately equal to twice the Rabi frequency...

  18. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    Science.gov (United States)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  19. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of......, and ways to reduce high-frequency jitter is discussed. The main result of the thesis is a new design of the epitaxial structure that both enables simplified fabrication and improves the properties of monolithic lasers. 40 GHz monolithic lasers with record low jitter and high power is presented as well...

  20. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  1. Class-A mode-locked lasers: Fundamental solutions

    Science.gov (United States)

    Kovalev, Anton V.; Viktorov, Evgeny A.

    2017-11-01

    We consider a delay differential equation (DDE) model for mode-locked operation in class-A semiconductor lasers containing both gain and absorber sections. The material processes are adiabatically eliminated as these are considered fast in comparison to the delay time for a long cavity device. We determine the steady states and analyze their bifurcations using DDE-BIFTOOL [Engelborghs et al., ACM Trans. Math. Software 28, 1 (2002)]. Multiple forms of coexistence, transformation, and hysteretic behavior of stable steady states and fundamental periodic regimes are discussed in bifurcation diagrams.

  2. Deep-red semiconductor monolithic mode-locked lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kong, L.; Bajek, D.; White, S. E.; Forrest, A. F.; Cataluna, M. A., E-mail: m.a.cataluna@dundee.ac.uk [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, H. L.; Pan, J. Q. [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Wang, X. L.; Cui, B. F. [Key Laboratory of Opto-electronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124 (China); Ding, Y. [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom)

    2014-12-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications.

  3. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...... application in MLLs. Improved QW laser performance was demonstrated using the asymmetric barrier layer approach. The analysis of the gain characteristics showed that the high population inversion beneficial for noise reduction cannot be achieved for 10 GHz QW MLLs and would have required lowering the modal....... This work has considered the role of the combined ultrafast gain and absorption dynamics in MLLs as a main factor limiting laser performance. An independent optimization of MLL amplifier and saturable absorber active materials was performed. Two promising approaches were considered: quantum dot (QD...

  4. Delay differential equations for mode-locked semiconductor lasers.

    Science.gov (United States)

    Vladimirov, Andrei G; Turaev, Dmitry; Kozyreff, Gregory

    2004-06-01

    We propose a new model for passive mode locking that is a set of ordinary delay differential equations. We assume a ring-cavity geometry and Lorentzian spectral filtering of the pulses but do not use small gain and loss and weak saturation approximations. By means of a continuation method, we study mode-locking solutions and their stability. We find that stable mode locking can exist even when the nonlasing state between pulses becomes unstable.

  5. Comparison of the noise performance of 10GHz QW and QD mode-locked laser diodes

    DEFF Research Database (Denmark)

    Carpintero, Guillermo; Thompson, Mark G.; Yvind, Kresten

    2010-01-01

    This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes.......This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes....

  6. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...

  7. Independent tunability of the double-mode-locked cw dye laser.

    LENUS (Irish Health Repository)

    Bourkoff, E

    1979-06-01

    We report a new configuration that enables the double-mode-locked cw dye laser to be independently tunable. In addition, the output coupling at each of the two wavelengths can be independently specified. A series of oscillographs shows some interesting features unique to double mode locking and also shows the effects of varying the two cavity lengths with respect to each other.

  8. Cavity-augmented frequency tripling of a continuous wave mode-locked laser

    International Nuclear Information System (INIS)

    McConnell, Gail; Ferguson, Allister I.; Langford, Nigel

    2001-01-01

    We present a model and experimental investigation of a singly-resonant optical cavity to enhance the nonlinear conversion efficiency of a continuous wave mode-locked all-solid-state laser source to produce an efficient source of ultraviolet radiation. For input pulses of approximately 33 ps duration at 4.4 ns intervals, our model predicts greater than 30% conversion from fundamental to third harmonic which is particularly attractive for fundamental sources of modest average power. Experimentally, we have achieved overall optical conversion efficiencies from fundamental to third harmonic wavelength typically greater than 11%, compared with less than 0.4% in a single pass geometry. We have measured an average power of 320 mW at λ=355 nm at picosecond pulse duration, which corresponds to a generated third harmonic average power of 0.5 W. (author)

  9. Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier

    Science.gov (United States)

    Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin

    2013-03-01

    Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.

  10. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  11. Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1

    DEFF Research Database (Denmark)

    Bischoff, Svend; Brorson, S.D.; Franck, T.

    1996-01-01

    A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...

  12. On the mechanisms governing the repetition rate of mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    We investigate the mechanisms influencing the synchronization locking range of mode-locked lasers. We find that changes in repetition rates can be accomodated through a joint interplay of dispersion and pulse shaping effects.......We investigate the mechanisms influencing the synchronization locking range of mode-locked lasers. We find that changes in repetition rates can be accomodated through a joint interplay of dispersion and pulse shaping effects....

  13. Mode-locked terahertz quantum cascade laser by direct phase synchronization

    International Nuclear Information System (INIS)

    Maussang, K.; Maysonnave, J.; Jukam, N.; Freeman, J. R.; Cavalié, P.; Dhillon, S. S.; Tignon, J.; Khanna, S. P.; Linfield, E. H.; Davies, A. G.; Beere, H. E.; Ritchie, D. A.

    2013-01-01

    Mode-locking of a terahertz quantum cascade laser is achieved using multimode injection seeding. Contrary to standard methods that rely on gain modulation, here a fixed phase relationship is directly imprinted to the laser modes. In this work, we demonstrate the generation of 9 ps phase mode-locked pulses around 2.75 THz. A direct measurement of the emitted field phase shows that it results from the phase of the initial injection

  14. Optical flip-flop: Based on two-coupled mode-locked ring lasers

    NARCIS (Netherlands)

    Tangdiongga, E.; Yang, X.X.; Li, Z.; Liu, Y.S.; Lenstra, D.; Khoe, G.D.; Dorren, H.J.S.

    2005-01-01

    We report an all-optical flip-flop that is based on two coupled actively mode-locked fiber ring lasers. The lasers are coupled so that when one of the lasers lases, it quenches lasing in the other laser. The state of the flip-flop is determined by the wavelength of the laser that is currently

  15. Widely tunable all-fiber SESAM mode-locked Ytterbium laser with a linear cavity

    Science.gov (United States)

    Zou, Feng; Wang, Zhaokun; Wang, Ziwei; Bai, Yang; Li, Qiurui; Zhou, Jun

    2017-07-01

    We present a widely tunable all-fiber mode-locked laser based on semiconductor saturable absorber mirror (SESAM) with a linear cavity design. An easy-to-use tunable bandpass filter based on thin film cavity technology is employed to tune the wavelength. By tuning the filter and adjusting the polarization controller, mode-locked operation can be achieved over the range of 1023 nm-1060 nm. With the polarization controller settled, mode-locked operation can be preserved and the wavelength can be continuously tuned from 1030 nm to 1053 nm. At 1030 nm, the laser delivers 9.6 mw average output power with 15.4 ps 10.96 MHz pulses at fundamental mode-locked operation.

  16. Study of simulations q-switching and mode-locking in Nd:YVO4 laser with Cr4+:YAG crystal

    International Nuclear Information System (INIS)

    Al-Sous, M. B.

    2007-12-01

    A numerical model of rate equations for a four-level solid-state laser with Cr 4+ :YAG saturable absorber including excited state absorption ESA is presented. The cavity is divided into a large number of disks and the model is solved for each disk and its local corresponding photon flux. The flux array is shifted for each recurrence simulating the movement of photons inside the cavity during the round trip. This simulator can describe the mode locking phenomenon and can be used to simulate the simultaneous mode locking and Q-switching with a saturable absorber.(author)

  17. High-repetition-rate ultrashort pulsed fiber ring laser using hybrid mode locking.

    Science.gov (United States)

    Zhang, Xiang; Hu, Hongyu; Li, Wenbo; Dutta, Niloy K

    2016-10-01

    We propose and demonstrate a hybrid mode-locked erbium-doped fiber ring laser by combining the rational harmonic mode-locking technique and passive mode locking based on nonlinear polarization rotation in a highly nonlinear photonic crystal fiber. By carefully adjusting the modulation frequency and the polarization controllers in the cavity, a 30 GHz pulse train with improved stability and narrower pulse width is generated. The pulse width at 30 GHz using rational harmonic mode locking alone is 5.8 ps. This hybrid scheme narrows the pulse width to 1.9 ps at the repetition rate of 30 GHz. Numerical simulations are carried out that show good agreement with the experimental results.

  18. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order...... to improve the mode-locking performance, such as reducing the pulsewidth and time-bandwidth product as much as possible. Timing jitter is determined by means of extensive numerical simulations of the model, demontrating that an external modulation is required in order to maintain moderate timing......-jitter and phase-noise levels at low frequencies. The effect of the driving conditions is investigated in order to achieve short pulses and low timing jitter. Our results are in qualitative agreement with reported experiments and predictions obtained from the master equation for mode-locking....

  19. Novel design of low-jitter 10 GHz all-active monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Christiansen, Lotte Jin

    2004-01-01

    Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared.......Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared....

  20. $CO_{2}$ laser ion source Comparison between mode-locked and free- running laser beams

    CERN Document Server

    Lisi, N; Scrivens, R

    2001-01-01

    The production of highly charged ions in a CO/sub 2/ laser-generated plasma is compared for different laser pulse-time structures. The work was performed at the CERN Laser Ion Source, which has the aim of developing a high current, high charge-state ion source for the Large Hadron Collider (LHC). When an intense laser pulse is focused onto a high-Z metal target, the ions expanding in the plasma plume are suitable for extraction from the plasma and matching into a synchrotron. For the first time, a comparison is made between free- running pulses with randomly fluctuating intensity, and mode-locked pulse trains with a reproducible structure and the same energy. Despite the lower power density with respect to the mode-locked pulse train, the free-running pulse provides higher charge states and higher yield. (10 refs).

  1. Deep learning and model predictive control for self-tuning mode-locked lasers

    Science.gov (United States)

    Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.

    2018-03-01

    Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.

  2. Soliton generation from a fundamentally mode-locked fiber laser with a feed-forward path

    Science.gov (United States)

    Wang, Ruixin; Dai, Yitang; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong

    2014-08-01

    We demonstrate for the first time to our knowledge, the soliton generation from a mode-locked erbium-doped fiber laser using a novel saturable absorber (SA), which is realized by combining a dual-drive modulator and an intensity feed-forward path. The laser is fundamentally mode-locked under high-frequency RF signal modulation. Experimentally, the actively mode-locked laser produces a 16.7 MHz repetition rate pulse train with a 1.4 ps pulse width, and the spectrum bandwidth is 2.17 nm. The results demonstrate that the SA supports soliton pulse shaping in the cavity at the fundamental frequency.

  3. Active-passively mode-locked dye laser for diagnosis of laser-produced plasmas

    International Nuclear Information System (INIS)

    Teng, Y.L.; Fedosejevs, R.; Sigel, R.

    1981-03-01

    In this report an active-passively mode-locked, flashlamp-pumped dye laser for diagnosis of laser-produced plasmas is described. This dye laser system used as a pulsed light source for high-speed photography of laser-target experiments was synchronized to the ASTERIX III iodine laser pulse with better than 100 ps accuracy. The single pulse energy was 10 μJ, pulse duration less than 10 ps. In 111 shots clear shadowgrams were obtained during a total of 151 target shots, i.e. the system worked well in 74% of the shots. (orig.)

  4. Low-jitter and high-power 40 GHz all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2004-01-01

    A novel design strategy for the epitaxial structure of monolithic mode-locked semiconductor lasers is presented. Using an all-active design, we fabricate 40-GHz lasers generating 2.8-ps almost chirp-free pulses with record low high-frequency jitter and more than 7-mW fiber coupled output power....

  5. Mode-locked Pr3+-doped silica fiber laser with an external cavity

    DEFF Research Database (Denmark)

    Shi, Yuan; Poulsen, Christian; Sejka, Milan

    1994-01-01

    We present a Pr3+-doped silica-based fiber laser mode-locked by using a linear external cavity with a vibrating mirror. Stable laser pulses with a FWHM of less than 44 ps, peak power greater than 9 W, and repetition rate up to 100 MHz are obtained. The pulse width versus cavity mismatch ΔL and pump...

  6. Mode locked Nd3+ and Gd3+ co-doped calcium fluoride crystal laser at dual gain lines

    Science.gov (United States)

    Zhang, Feng; Wu, Yongjing; Liu, Jie; Pang, Siyuan; Ma, Fengkai; Jiang, Dapeng; Wu, Qinghui; Su, Liangbi

    2018-03-01

    Based on a novel disordered fluoride crystal-Nd3+ and Gd3+ co-doped CaF2, we demonstrate a dual-wavelength synchronously mode locked laser in a single cavity, for the first time. Two gain lines at 1064.2 nm and 1064.7 nm were synchronously mode locked by gain spectrum splitting method, corresponding to a 0.15 THz repetition rate. The mode locked laser shows a 6.5 ps separated pulse duration.

  7. Jitter reduction by intracavity active phase modulation in a mode-locked semiconductor laser.

    Science.gov (United States)

    Ozharar, Sarper; Ozdur, Ibrahim; Quinlan, Franklyn; Delfyett, Peter J

    2009-03-01

    We experimentally verify the theory of Haus et al. [IEEE J. Quantum Electron. 40, 41 (2004)] on the effects of timing jitter using intracavity phase modulation on the pulse train of a mode-locked laser. The theory is based on the solution of the Heisenberg-Langevin equation in the presence of dispersion and intracavity phase modulation. Using active intracavity phase modulation, we have reduced the timing jitter on a 10.24 GHz mode-locked diode laser by 50% from 304 to 150 fs integrated from 1 Hz to the Nyquist frequency of 5.12 GHz.

  8. Low jitter and high power all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2003-01-01

    A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and -coupled power of 7 mW.......A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and -coupled power of 7 mW....

  9. Low jitter and high power all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2003-01-01

    A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW.......A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW....

  10. Multiwavelength mode-locked cylindrical vector beam fiber laser based on mode selective coupler

    Science.gov (United States)

    Huang, Ping; Cai, Yu; Zhang, Zuxing

    2017-10-01

    We propose and demonstrate a multiwavelength mode-locked fiber laser with cylindrical vector beam generation for the first time, to the best of our knowledge. The mode-locking mechanism is nonlinear polarization rotation, and the multiwavelength operation is contributed to the in-line birefringence fiber filter with periodic multiple passbands formed by incorporating a section of polarization maintaining fiber into the laser cavity with a polarizer. Furthermore, using the mode selective coupler, which acts as mode converter from fundamental mode to higher-order mode, multiwavelength mode-locked cylindrical vector beams have been obtained, which may have potential applications in mode-division multiplexing optical fiber communication and material processing.

  11. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback

    Science.gov (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy

    2017-11-01

    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  12. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    Science.gov (United States)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  13. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1988-01-01

    Solid-State Laser Engineering is written from an industrial perspective and discusses in detail the characteristics, design, construction and practical problems of solid-state lasers. Emphasis is placed on engineering and practical considerations, with a phenomenological treatment using modelsbeing preferred to abstract mathematical derivations. This new edition has been updated and revised to include important developments, concepts and technologies that have emerged since the publication of the first edition.

  14. High peak power sub-nanosecond mode-locked pulse characteristics of Nd:GGG laser

    Science.gov (United States)

    Zhao, Jia; Zhao, Shengzhi; Li, Tao; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Feng, Chuansheng; Wang, Yonggang

    2015-10-01

    Based on the dual-loss modulation, i.e. electro-optic (EO) modulator and GaAs saturable absorber, a sub-nanosecond mode-locked pulsed Nd:GGG laser with kHz repetition rates is presented for the first time. The repetition rate (0.5-10 kHz) of this pulsed laser is controlled by the modulation rate of EO modulator, so high stability can be obtained. The sub-nanosecond pulse width depends on the mode-locked pulse underneath the Q-switched envelope in the Q-switched mode-locked (QML) laser and high peak power can be generated. The condition on the generation of sub-nanosecond pulse and the needed threshold power for different modulation rates of EO are given. The average output power, the pulse width and the peak power versus pump power for different repetition rates are demonstrated. The shortest pulse width is 426 ps and the highest peak power reaches 239.4 kW. The experimental results show that the dual-loss modulation technology with EO and GaAs saturable absorber in QML laser is an efficient method to generate sub-nanosecond mode-locked pulsed laser with kHz repetition rates.

  15. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  16. Control of fibre laser mode-locking by narrow-band Bragg gratings

    International Nuclear Information System (INIS)

    Laegsgaard, J

    2008-01-01

    The use of narrow-band high-reflectivity fibre Bragg gratings (FBGs) as end mirrors in a fibre laser cavity with passive mode-locking provided by a semiconductor saturable absorber mirror (SESAM) is investigated numerically. The FBG is found to control the energy range of stable mode-locking, which may be shifted far outside the regime of SESAM saturation by a suitable choice of FBG and cavity length. The pulse shape is controlled by the combined effects of FBG dispersion and self-phase modulation in the fibres, and a few ps pulses can be obtained with standard uniform FBGs

  17. The Proper Orthogonal Decomposition for Dimensionality Reduction in Mode-Locked Lasers and Optical Systems

    Directory of Open Access Journals (Sweden)

    Eli Shlizerman

    2012-01-01

    energy delivered per pulse. Managing the nonlinear penalties in the cavity becomes crucial for increasing the energy and suppressing the multipulsing instability. A proper orthogonal decomposition (POD allows for the reduction of governing equations of a mode-locked laser onto a low-dimensional space. The resulting reduced system is able to capture correctly the experimentally observed pulse transitions. Analysis of these models is used to explain the sequence of bifurcations that are responsible for the multipulsing instability in the master mode-locking and the waveguide array mode-locking models. As a result, the POD reduction allows for a simple and efficient way to characterize and optimize the cavity parameters for achieving maximal energy output.

  18. Harmonic Mode-Locked Fiber Laser based on Photonic Crystal Fiber Filled with Topological Insulator Solution

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2015-04-01

    Full Text Available We reported that the photonic crystal fiber (PCF filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA. Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. Due to the large cavity dispersion; the fundamental mode-locking pulse had the large full width at half maximum (FWHM of 2.33 ns with the repetition rate of ~1.11 MHz; and the radio frequency (RF spectrum with signal-to-noise ratio (SNR of 61 dB. In addition; the transition dynamics from a bunched state of pulses to harmonic mode-locking (HML was also observed; which was up to 26th order.

  19. 10-GHz 1.59-μm quantum dash passively mode-locked two-section lasers

    DEFF Research Database (Denmark)

    Dontabactouny, Madhoussoudhana; Rosenberg, C.; Semenova, Elizaveta

    2010-01-01

    This paper reports the fabrication and the characterisation of a 10 GHz two-section passively mode-locked quantum dash laser emitting at 1.59 μm. The potential of the device's mode-locking is investigated through an analytical model taking into account both the material parameters and the laser...

  20. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan

    2002-01-01

    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have...

  1. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    Abstract. Using the ABCD matrix method, the common stability region between the sagittal and tangential planes of a four-mirror Kerr lens mode-locked (KLM) laser cavity is obtained for different ranges of input power. In addition, the effect of the input power on the Kerr lens sensitivity is investigated. Optimal input power and ...

  2. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  3. Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation.

    Science.gov (United States)

    Wu, Zhichao; Liu, Deming; Fu, Songnian; Li, Lei; Tang, Ming; Zhao, Luming

    2016-08-08

    We report a passively mode-locked fiber laser by nonlinear polarization rotation (NPR), where both vector and scalar soliton can co-exist within the laser cavity. The mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is first demonstrated and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the operation regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the condition of very small birefringence.

  4. Effect of periodic optical pumping on dynamics of passive mode-locked fiber laser

    Science.gov (United States)

    Lee, Chung Ghiu; Kim, Joonyoung; Kim, Soeun

    2017-10-01

    We report on the effect of periodic optical pumping on a passively mode-locked fiber laser (MLFL) based on an erbium-doped fiber (EDF). We investigate the influence of various parameters (including average pump power into the fiber laser, the modulation frequency and duty cycle of the pump, and the polarization state of the light inside the cavity) on the transient response characteristic of the MLFL such as: relaxation oscillation (RO) build-up time (defined as the time delay from the onset of pumping to the generation of passively mode-locked pulses) and the power of the detected RF signal at the fundamental cavity-mode frequency (determined by the ring cavity length), which reflects the stability of mode-locking pulse train. We have found that the RO build-up time is inversely proportional to the average pump power while the RF power of the detected fundamental cavity mode (produced by the ring cavity) is proportional to the average pump power. A change in the duty cycle effectively leads the average pump power to vary, which in turn leads to changes in the transient response. The modulation frequency of the pump is rather related to the stability of the MLFL than its response time. Generally, the lower the modulation frequency, the more stable the mode-locked pulses generated in the fiber laser. Finally, the RO build-up time and, consequently, the pulse-generation time are highly sensitive to the state of polarization in the MLFL cavity.

  5. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Nanjing University of Posts and Communications, Nanjing 210003 (China); Popa, D., E-mail: dp387@cam.ac.uk; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Ilday, F. Ö. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  6. Observation of Coexisting Dissipative Solitons in a Mode-Locked Fiber Laser.

    Science.gov (United States)

    Bao, Chengying; Chang, Wonkeun; Yang, Changxi; Akhmediev, Nail; Cundiff, Steven T

    2015-12-18

    We show, experimentally and numerically, that a mode-locked fiber laser can operate in a regime where two dissipative soliton solutions coexist and the laser will periodically switch between the solutions. The two dissipative solitons differ in their pulse energy and spectrum. The switching can be controlled by an external perturbation and triggered even when switching does not occur spontaneously. Numerical simulations unveil the importance of the double-minima loss spectrum and nonlinear gain to the switching dynamics.

  7. Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection

    OpenAIRE

    Kaiser, J; Fischer, I; Elsasser, W; Gehrig, E; Hess, O

    2004-01-01

    We present combined experimental and theoretical investigations of the picosecond emission dynamics of broad-area semiconductor lasers (BALs). We enhance the weak longitudinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct regular train of 13-ps pulses. Modeling based on multimode Maxwell-Bloch equations illustrates how the dynamic interaction of the injected pulse with the internal laser field efficiently couples ...

  8. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    Science.gov (United States)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  9. Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management.

    Science.gov (United States)

    Wang, Lizhen; Xu, Peizhen; Li, Yuhang; Han, Jize; Guo, Xin; Cui, Yudong; Liu, Xueming; Tong, Limin

    2018-03-16

    Mode-locked Yb-doped fiber lasers around 1 μm are attractive for high power applications and low noise pulse train generation. Mode-locked fiber lasers working in soliton and stretched-pulse regime outperform others in terms of the laser noise characteristics, mechanical stability and easy maintenance. However, conventional optical fibers always show a normal group velocity dispersion around 1 μm, leading to the inconvenience for necessary dispersion management. Here we show that optical microfibers having a large anomalous dispersion around 1 μm can be integrated into mode-locked Yb-doped fiber lasers with ultralow insertion loss down to -0.06 dB, enabling convenient dispersion management of the laser cavity. Besides, optical microfibers could also be adopted to spectrally broaden and to dechirp the ultrashort pulses outside the laser cavity, giving rise to a pulse duration of about 110 fs. We believe that this demonstration may facilitate all-fiber format high-performance ultrashort pulse generation at 1 μm and may find applications in precision measurements, large-scale facility synchronization and evanescent-field-based optical sensing.

  10. Flexible picosecond thulium-doped fiber laser using the active mode-locking technique.

    Science.gov (United States)

    Yin, Ke; Zhang, Bin; Yang, Weiqiang; Chen, He; Chen, Shengping; Hou, Jing

    2014-07-15

    An all-fiber actively mode-locked thulium-doped fiber laser (AML-TDFL) based on a 10 GHz bandwidth electro-optic intensity modulator (EOM) providing flexible picosecond pulses at 1980 nm is presented. The EOM is driven by electrical pulses rather than traditional sine-wave signals. The repetition rate of output pulses was 21.4 MHz at fundamental mode-locking, which could be scaled up to 1.498 GHz through the 70th order harmonic mode-locking, and the shortest measured output pulse width was 38 ps. Furthermore, the output pulse width could be tuned by either adjusting the modulation frequency with small detuning or changing the width of these driving electrical pulses without frequency detuning. In our work, the stability of these mode-locked pulses obtained from the AML-TDFL was superior; for instance, the measured supermode suppression ratio of 1.498 GHz pulses train was up to 48 dB.

  11. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration

    Science.gov (United States)

    Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi

    2018-04-01

    In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.

  12. The effect of transverse multi-mode oscillation in passively modelocked solid-state lasers

    Science.gov (United States)

    Agnesi, A.; Reali, G. C.; Gabetta, G.

    1992-03-01

    We demonstrate that the pulses from a passively mode-locked flashlamp pumped solid-state laser can be considerably shorter using an antiresonant-ring mirror than using a linear cavity with a standard contacted dye-cell mirror, and we suggest that transverse-mode-filtering effects in the antiresonant ring play an important role in explaining this difference.

  13. Passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm

    Science.gov (United States)

    Waritanant, Tanant; Major, Arkady

    2018-02-01

    A passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm was demonstrated with an intracavity birefringent filter as the wavelength selecting element. The average output powers achieved were 2.17 W and 2.18 W with optical-to-optical efficiency of 19.6% and 19.7%, respectively. The slope efficiencies were more than 31% at both output wavelengths. The pulse durations at the highest average output power were 10.3 ps and 8.4 ps, respectively. We believe that this is the first report of mode locking of a Nd:YVO4 laser operating at 1073 nm or 1085 nm lines.

  14. Flat pulse-amplitude rational-harmonic-mode-locking fiber lasers with GHz pulse repetition rates

    Science.gov (United States)

    Wang, Tianhe; Yang, Tianxin; Jia, Dongfang; Wang, Zhaoying; Sang, Mei; Bai, Neng; Li, Guifang

    2013-03-01

    Rational harmonic mode locking (RHML) in an active mode-locked fiber laser can increase the output pulse repetition rate a number of times the modulation frequency of an optical modulator in a cavity when driven by gigahertz (GHz) RF. The amplitudes of the output optical pulse train in a high order RHML operation are not equalized and flat due to the GHz RF drive signals. A modified RHML technique using standard instrumentation that generates 1 GHz electrical square wave signals to accomplish up to 6th order RHML in fiber lasers is presented for improving the flatness of the amplitudes of the output optical pulse train at the pulse repetition rate of up to 12 GHz.

  15. Dark solitons of the power-energy saturation model: application to mode-locked lasers

    International Nuclear Information System (INIS)

    Ablowitz, M J; Nixon, S D; Horikis, T P; Frantzeskakis, D J

    2013-01-01

    The generation and dynamics of dark solitons in mode-locked lasers is studied within the framework of a nonlinear Schrödinger equation which incorporates power-saturated loss, as well as energy-saturated gain and filtering. Mode-locking into single dark solitons and multiple dark pulses are found by employing different descriptions for the energy and power of the system defined over unbounded and periodic (ring laser) systems. Treating the loss, gain and filtering terms as perturbations, it is shown that these terms induce an expanding shelf around the soliton. The dark soliton dynamics are studied analytically by means of a perturbation method that takes into regard the emergence of the shelves and reveals their importance. (paper)

  16. Fabrication and Characterisation of Low-noise Monolithic Mode-locked Lasers

    DEFF Research Database (Denmark)

    Larsson, David

    2007-01-01

    This thesis deals with the fabrication and characterisation of monolithic semiconductor mode-locked lasers for use in optical communication systems. Other foreseeable applications may be as sources in microwave photonics and optical sampling. The thesis also deals with the design and fabrication...... of intracavity monolithically integrated filters. The common dnominator among the diffrent parts of the thesis is how to achieve and measure the lowest possible noise. Achieving low noise has been pinpointed as one of the most important and difficult challenges for semiconductor mode-locked lasers. The main...... result of this thesis are a fabrication process of a monolithic and deeply etched distributed Bragg reflector and a characterisation system for measurement of quantum limitid timing noise at high repetition rates. The Bragg reflector is a key component in achieving transform limited pulses with low noise...

  17. Universal soliton pattern formations in passively mode-locked fiber lasers.

    Science.gov (United States)

    Amrani, Foued; Salhi, Mohamed; Grelu, Philippe; Leblond, Hervé; Sanchez, François

    2011-05-01

    We investigate multiple-soliton pattern formations in a figure-of-eight passively mode-locked fiber laser. Operation in the anomalous dispersion regime with a double-clad fiber amplifier allows generation of up to several hundreds of solitons per round trip. We report the observation of remarkable soliton distributions: soliton gas, soliton liquid, soliton polycrystal, and soliton crystal, thus indicating the universality of such complexes.

  18. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Posilović, K. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstrasse 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2014-10-20

    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm{sup −2} sr{sup −1} are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  19. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    International Nuclear Information System (INIS)

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D.; Posilović, K.; Pohl, J.; Weyers, M.

    2014-01-01

    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm −2  sr −1 are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  20. Passively mode-locked laser with an ultra-narrow spectral width

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Roztocki, Piotr; Little, Brent E.; Chu, Sai T.; Hansson, Tobias; Viktorov, Evgeny A.; Moss, David J.; Morandotti, Roberto

    2017-01-01

    Most mode-locking techniques introduced in the past focused mainly on increasing the spectral bandwidth to achieve ultrashort, sub-picosecond-long coherent light pulses. By contrast, less importance seemed to be given to mode-locked lasers generating Fourier-transform-limited nanosecond pulses, which feature the narrow spectral bandwidths required for applications in spectroscopy, the efficient excitation of molecules, sensing and quantum optics. Here, we demonstrate a passively mode-locked laser system that relies on simultaneous nested cavity filtering and cavity-enhanced nonlinear interactions within an integrated microring resonator. This allows us to produce optical pulses in the nanosecond regime (4.3 ns in duration), with an overall spectral bandwidth of 104.9 MHz—more than two orders of magnitude smaller than previous realizations. The very narrow bandwidth of our laser makes it possible to fully characterize its spectral properties in the radiofrequency domain using widely available GHz-bandwidth optoelectronic components. In turn, this characterization reveals the strong coherence of the generated pulse train.

  1. Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.

    Science.gov (United States)

    Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2017-10-24

    We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.

  2. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  3. Combination of Transverse Mode Selection and Active Longitudinal Mode-Locking of Broad Area Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Christoph Doering

    2014-01-01

    Full Text Available Experimental results of the combination of transverse mode selection and active mode-locking with anti-reflection-coated broad area lasers (BALs are presented. The BALs are subject to feedback from a free-space external Fourier-optical 4f-setup with a reflective spatial frequency filter in the Fourier-plane for transverse mode selection. Driving the BALs with a high frequency modulated pump current above threshold active longitudinal mode-locking is achieved. Pulse durations as low as 88 ps are obtained, while the Gaussian-like fundamental or a higher order transverse mode up to mode number 5 is selected on purpose. Pulse duration and shape are nearly independent of the selected transverse mode.

  4. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  5. Coupled opto electronic oscillator with a passively mode locked extended cavity diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmin; Jang, Gwang Hoon; Yoon, Duseong; Song, Minsoo; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    An opto electronic oscillator(OEO)has very unique properties compared to the conventional quartz based microwave oscillators in that its oscillation frequency is determined by the beat note frequency of a phase coherent optical frequency comb generated as a side bands to an optical single mode carrier by using an electro optic modulator (EOM)or a direct current modulation of a semiconductor laser. Recently, a different type of OEO called a COEO has been demonstrated, where the optical carrier in the OEO system has been replaced by a mode locked laser so that an EOM or a direct current modulation are no longer necessary, but has potentially a much lower phase noise thanks to the high Q value of the optical frequency comb due to the mode locking mechanism. In this paper, we propose and demonstrate a COEO based on a passively mode locked ECDL at 852nm in which the fourth harmonic of the repetition frequency of the ECDL matched exactly the ground state hyperfine splitting frequency of the Cs atoms.

  6. Coupled opto electronic oscillator with a passively mode locked extended cavity diode laser

    International Nuclear Information System (INIS)

    Lee, Jeongmin; Jang, Gwang Hoon; Yoon, Duseong; Song, Minsoo; Yoon, Tai Hyun

    2008-01-01

    An opto electronic oscillator(OEO)has very unique properties compared to the conventional quartz based microwave oscillators in that its oscillation frequency is determined by the beat note frequency of a phase coherent optical frequency comb generated as a side bands to an optical single mode carrier by using an electro optic modulator (EOM)or a direct current modulation of a semiconductor laser. Recently, a different type of OEO called a COEO has been demonstrated, where the optical carrier in the OEO system has been replaced by a mode locked laser so that an EOM or a direct current modulation are no longer necessary, but has potentially a much lower phase noise thanks to the high Q value of the optical frequency comb due to the mode locking mechanism. In this paper, we propose and demonstrate a COEO based on a passively mode locked ECDL at 852nm in which the fourth harmonic of the repetition frequency of the ECDL matched exactly the ground state hyperfine splitting frequency of the Cs atoms

  7. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  8. Stability of the mode-locking regime in tapered quantum-dot lasers

    Science.gov (United States)

    Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.

    2018-02-01

    We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.

  9. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Hvam, Jørn Märcher

    2005-01-01

    We have performed wide-band residual phase-noise measurements on semiconductor 40-GHz mode-locked lasers by employing electrical waveguide components for the radio-frequency circuit. The intrinsic timing jitters of lasers with one, two, and three quantum wells (QW) are compared and our design...... prediction, concerning noise versus number of QWs, for the first time corroborated by experiments. A minimum jitter of 44 fs is found, by extrapolating to the Nyquist frequency, for the one-QW device having nearly transform-limited pulses of 1.2 ps. This jitter is nearly three times lower than for a three...

  10. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  11. Various phenomena of self-mode-locked operation in optically pumped semiconductor lasers

    Science.gov (United States)

    Tsou, C. H.; Liang, H. C.; Huang, K. F.; Chen, Y. F.

    2017-02-01

    This work presents several optical experiments to investigate the phenomenon of self-mode locking (SML) in optically pumped semiconductor lasers (OPSLs). First of all, we systematically explore the influence of high-order transverse modes on the SML in an OPSL with a linear cavity. Experimental results reveal that the occurrence of SML can be assisted by the existence of the first high-order transverse mode, and the laser is operated in a well-behaved SML state with the existence of the TEM0,0 mode and the first high-order transverse mode. While more high-order transverse modes are excited, it is found that the pulse train is modulated by more beating frequencies of transverse modes. The temporal behavior becomes the random dynamics when too many high-order transverse modes are excited. We observe that the temporal trace exhibits an intermittent mode-locked state in the absence of high-order transverse modes. In addition to typical mode-locked pulses, we originally observe an intriguing phenomenon of SML in an OPSL related to the formation of bright-dark pulse pairs. We experimentally demonstrated that under the influence of the tiny reflection feedback, the phase locking between lasing longitudinal modes can be assisted to form bright-dark pulse pairs in the scale of round-trip time. A theoretical model based on the multiple reflections in a phase-locked multi-longitudinal-mode laser is developed to confirm the formation of bright-dark pulse pairs.

  12. Dispersive-cavity actively mode-locked fiber laser for stable radio frequency delivery

    International Nuclear Information System (INIS)

    Dai, Yitang; Wang, Ruixin; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong

    2013-01-01

    We report a novel technique for highly stable transfer of a radio frequency (RF) comb over long optical fiber link, which is highly dispersive and is a part of an actively mode-locked fiber laser. Phase fluctuation along the fiber link, which is mainly induced by physical vibration and temperature fluctuations, is automatically compensated by the self-adapted wavelength shifting. Without phase-locking loop or any tunable parts, stable radio frequency is transferred over a 2-km fiber link, with a time jitter suppression ratio larger than 110. (letter)

  13. Swept source optical coherence microscopy using a Fourier domain mode-locked laser.

    Science.gov (United States)

    Huang, Shu-Wei; Aguirre, Aaron D; Huber, Robert A; Adler, Desmond C; Fujimoto, James G

    2007-05-14

    Swept source optical coherence microscopy (OCM) enables cellular resolution en face imaging as well as integration with optical coherence tomography (OCT) cross sectional imaging. A buffered Fourier domain mode-locked (FDML) laser light source provides high speed, three dimensional imaging. Image resolutions of 1.6 microm x 8 microm (transverse x axial) with a 220 microm x 220 microm field of view and sensitivity higher than 98 dB are achieved. Three dimensional cellular imaging is demonstrated in vivo in the Xenopus laevis tadpole and ex vivo in the rat kidney and human colon.

  14. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  15. Large net-normal dispersion Er-doped fibre laser mode-locked with a nonlinear amplifying loop mirror

    Science.gov (United States)

    Bowen, Patrick; Erkintalo, Miro; Broderick, Neil G. R.

    2018-03-01

    We report on an environmentally stable, all-PM-fibre, Er-doped, mode-locked laser with a central wavelength of 1550 nm. Significantly, the laser possesses large net-normal dispersion such that its dynamics are comparable to that of an all-normal dispersion fibre laser at 1 μm with an analogous architecture. The laser is mode-locked with a nonlinear amplifying loop mirror to produce pulses that are externally compressible to 500 fs. Experimental results are in good agreement with numerical simulations.

  16. Bright-dark rogue wave in mode-locked fibre laser (Conference Presentation)

    Science.gov (United States)

    Kbashi, Hani; Kolpakov, Stanislav; Martinez, Amós; Mou, Chengbo; Sergeyev, Sergey V.

    2017-05-01

    Bright-Dark Rogue Wave in Mode-Locked Fibre Laser Hani Kbashi1*, Amos Martinez1, S. A. Kolpakov1, Chengbo Mou, Alex Rozhin1, Sergey V. Sergeyev1 1Aston Institute of Photonic Technologies, School of Engineering and Applied Science Aston University, Birmingham, B4 7ET, UK kbashihj@aston.ac.uk , 0044 755 3534 388 Keywords: Optical rogue wave, Bright-Dark rogue wave, rogue wave, mode-locked fiber laser, polarization instability. Abstract: Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the in-cavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium-doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods. References: 1. D. R. Solli, C. Ropers, P. Koonath,and B. Jalali, Optical rogue waves," Nature, 450, 1054-1057, 2007. 2. S. V. Sergeyev, S. A. Kolpakov, C. Mou, G. Jacobsen, S. Popov, and V. Kalashnikov, "Slow deterministic vector rogue waves," Proc. SPIE 9732, 97320K (2016). 3. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, "Dynamics of vector rogue waves in a fiber laser with a ring cavity," Optica, 3, 8, 870, (2016). 5. S. Kolpakov, H. Kbashi, and S. Sergeyev, "Slow optical rogue waves in a unidirectional fiber laser

  17. Electronic control of different generation regimes in mode-locked all-fibre F8 laser

    Science.gov (United States)

    Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey

    2018-04-01

    We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.

  18. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  19. Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography.

    Science.gov (United States)

    Huber, R; Wojtkowski, M; Fujimoto, J G

    2006-04-17

    We demonstrate a new technique for frequency-swept laser operation--Fourier domain mode locking (FDML)--and its application for swept-source optical coherence tomography (OCT) imaging. FDML is analogous to active laser mode locking for short pulse generation, except that the spectrum rather than the amplitude of the light field is modulated. High-speed, narrowband optical frequency sweeps are generated with a repetition period equal to the fundamental or a harmonic of cavity round-trip time. An FDML laser is constructed using a long fiber ring cavity, a semiconductor optical amplifier, and a tunable fiber Fabry-Perot filter. Effective sweep rates of up to 290 kHz are demonstrated with a 105 nm tuning range at 1300 nm center wavelength. The average output power is 3mW directly from the laser and 20 mW after post-amplification. Using the FDML laser for swept-source OCT, sensitivities of 108 dB are achieved and dynamic linewidths are narrow enough to enable imaging over a 7 mm depth with only a 7.5 dB decrease in sensitivity. We demonstrate swept-source OCT imaging with acquisition rates of up to 232,000 axial scans per second. This corresponds to 906 frames/second with 256 transverse pixel images, and 3.5 volumes/second with a 256x128x256 voxel element 3-DOCT data set. The FDML laser is ideal for swept-source OCT imaging, thus enabling high imaging speeds and large imaging depths.

  20. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    Science.gov (United States)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  1. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    Science.gov (United States)

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  2. Electronic frequency tuning of the acousto-optic mode-locking device of a laser

    Science.gov (United States)

    Magdich, L. N.; Balakshy, V. I.; Mantsevich, S. N.

    2017-11-01

    The effect of the electronic tuning of the acoustic resonances in an acousto-optic mode-locking device of a laser is investigated theoretically and experimentally. The problem of the excitation of a Fabry-Perot acoustic resonator by a plate-like piezoelectric transducer (PET) is solved in the approximation of plane acoustic waves taking into consideration the actual parameters of an RF generator and the elements for matching the PET to the generator. Resonances are tuned by changing the matching inductance that was connected in parallel to the transducer of the acousto-optic cell. The cell used in the experiment was manufactured from fused silica and included a lithium niobate PET. Changes in the matching inductance in the range of 0.025 to 0.2 μH provided the acoustic-resonance frequency tuning by 0.19 MHz, which exceeds the acoustic- resonance half-width.

  3. Cr:ZnS saturable absorber passively Q-switched mode-locking Tm,Ho:LLF laser.

    Science.gov (United States)

    Zhang, Xinlu; Luo, Yong; Wang, Tianhan; Dai, Junfeng; Zhang, Jianxin; Li, Jiang; Cui, Jinhui; Huang, Jinjer

    2017-04-10

    We first report on a diode-end-pumped passively Q-switched mode-locking Tm,Ho:LLF laser at 2053 nm by using a Cr:ZnS saturable absorber. A stable Q-switched mode-locking pulse train with a nearly 100% modulation depth was achieved. The repetition frequency of the Q-switched pulse envelope increased from 0.5 to 12.3 kHz with increasing pump power from 1 to 4.36 W. The maximum average output power of 145 mW was obtained, and the width of the mode-locked pulse was estimated to be less than 682 ps with a 250 MHz repetition frequency within a Q-switched pulse envelope of about 700 ns.

  4. Compact mode-locked diode laser system for high precision frequency comparisons in microgravity

    Science.gov (United States)

    Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.

    2017-11-01

    Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.

  5. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  6. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber

    Science.gov (United States)

    Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu

    2018-04-01

    We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.

  7. Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber

    Science.gov (United States)

    Cao, Liming; Li, Xing; Zhang, Rui; Wu, Duanduan; Dai, Shixun; Peng, Jian; Weng, Jian; Nie, Qiuhua

    2018-03-01

    We have designed an all-fiber passive mode-locking thulium-doped fiber laser that uses molybdenum disulfide (MoS2) as a saturable absorber (SA) material. A free-standing few-layer MoS2-polyvinyl alcohol (PVA) film is fabricated by liquid phase exfoliation (LPE) and is then transferred onto the end face of a fiber connector. The excellent saturable absorption of the fabricated MoS2-based SA allows the laser to output soliton pulses at a pump power of 500 mW. Fundamental frequency mode-locking is realized at a repetition frequency of 13.9 MHz. The central wavelength is 1926 nm, the 3 dB spectral bandwidth is 2.86 nm and the pulse duration is 1.51 ps. Additionally, third-order harmonic mode-locking of the laser is also achieved. The pulse duration is 1.33 ps, which is slightly narrower than the fundamental frequency mode-locking bandwidth. The experimental results demonstrate that the few-layer MoS2-PVA SA is promising for use in 2 μm laser systems.

  8. Hybrid silicon mode-locked laser with improved RF power by impedance matching

    Science.gov (United States)

    Tossoun, Bassem; Derickson, Dennis; Srinivasan, Sudharsanan; Bowers, John

    2015-02-01

    We design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode (MLLD) to improve peak optical power coming from the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the MLLD as a function of bias on each of the laser segments was carried out. A passive component impedance matching network was designed at the operating frequency of 20 GHz to optimize RF power delivery to the laser. The hybrid silicon laser was packaged together in a module including the impedance matching circuit. The impedance matching design resulted in a 6 dB (electrical) improvement in the detected modulation spectrum power, as well as approximately a 10 dB phase noise improvement, from the MLLD. Also, looking ahead to possible future work, we discuss a Step Recovery Diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique addresses the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum optical pulse shaping.

  9. Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser.

    Science.gov (United States)

    Peng, Junsong; Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry

    2016-09-19

    We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.

  10. Self-organization of the Q-switched mode-locked regime in a diode-pumped Nd:YAG laser

    Science.gov (United States)

    Donin, V. I.; Yakovin, D. V.; Gribanov, A. V.

    2015-06-01

    A new Q-switched mode-locked generation regime of a solid-state laser, in which a Q-switch is "spontaneously" formed at the frequency of relaxation oscillations, has been observed for the first time. The new generation has been implemented by means of the previously proposed method of an acoustic modulator of a traveling wave in combination with a spherical mirror of a cavity. Stable pulse trains with a repetition frequency of ~30 kHz and a duration of ~2 µs have been observed in the diode-pump Nd:YAG laser with an average output power of ~3 W. Each train contains about 200 equispaced single pulses with a duration of ~45 ps.

  11. Compact 84 GHz passive mode-locked fiber laser using dual-fiber coupled fused-quartz microresonator

    Science.gov (United States)

    Liu, Tze-An; Hsu, Yung; Chow, Chi-Wai; Chuang, Yi-Chen; Ting, Wei-Jo; Wang, Bo-Chun; Peng, Jin-Long; Chen, Guan-Hong; Chang, Yuan-Chia

    2017-10-01

    We propose and demonstrate a compact and portable-size 84-GHz passive mode-locked fiber laser, in which a dual-fiber coupled fused-quartz microresonator is employed as the intracavity optical comb filter as well as the optical nonlinear material for optical frequency comb generation. About eight coherent optical tones can be generated in the proposed fiber laser. The 20-dB bandwidth is larger than 588 GHz. The full-width half-maximum pulse-width of the proposed laser is 2.5 ps. We also demonstrate the feasibility of using the proposed passive mode-locked fiber laser to carry a 5-Gbit/s on-off-keying signal and transmit over 20-km standard single mode fiber. A 7% forward error correction requirement can be achieved, showing the proposed fiber laser can be a potential candidate for fiber-wireless applications.

  12. K-space linear Fourier domain mode locked laser and applications for optical coherence tomography.

    Science.gov (United States)

    Eigenwillig, Christoph M; Biedermann, Benjamin R; Palte, Gesa; Huber, Robert

    2008-06-09

    We report on a Fourier Domain Mode Locked (FDML) wavelength swept laser source with a highly linear time-frequency sweep characteristic and demonstrate OCT imaging without k-space resampling prior to Fourier transformation. A detailed theoretical framework is provided and different strategies how to determine the optimum drive waveform of the piezo-electrically actuated optical bandpass-filter in the FDML laser are discussed. An FDML laser with a relative optical frequency deviation ??nu/nu smaller than 8 x10(-5) over a 100 nm spectral bandwidth at 1300 nm is presented, enabling high resolution OCT over long ranging depths. Without numerical time-to-frequency resampling and without spectral apodization a sensitivity roll off of 4 dB over 2 mm, 12.5 dB over 4 mm and 26.5 dB over 1 cm at 3.5 mus sweep duration and 106.6 dB maximum sensitivity at 9.2 mW average power is achieved. The axial resolution in air degrades from 14 to 21 mum over 4 mm imaging depth. The compensation of unbalanced dispersion in the OCT sample arm by an adapted tuning characteristic of the source is demonstrated. Good stability of the system without feedback-control loops is observed over hours.

  13. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  14. High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy.

    Science.gov (United States)

    Kranendonk, Laura A; An, Xinliang; Caswell, Andrew W; Herold, Randy E; Sanders, Scott T; Huber, Robert; Fujimoto, James G; Okura, Yasuhiro; Urata, Yasuhiro

    2007-11-12

    We present a novel method for low noise, high-speed, real-time spectroscopy to monitor molecular absorption spectra. The system is based on a rapidly swept, narrowband CW Fourier-domain mode-locked (FDML) laser source for spectral encoding in time and an optically time-multiplexed split-pulse data acquisition system for improved noise performance and sensitivity. An acquisition speed of ~100 kHz, a spectral resolution better than 0.1 nm over a wavelength range of ~1335-1373 nm and a relative noise level of ~5 mOD (~1% minimum detectable base-e absorbance) are achieved. The system is applied for crank-angle-resolved gas thermometry by H(2)O absorption spectroscopy in an engine motoring at 600 and 900 rpm with a precision of ~1%. Influences of various noise sources such as laser phase and intensity noise, trigger and synchronization jitter in the electronic detection system, and the accuracy of available H(2)O absorption databases are discussed.

  15. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets

    Science.gov (United States)

    Luo, Yongfeng; Zhou, Yan; Tang, Yulong; Xu, Jianqiu; Hu, Chenxia; Gao, Linfeng; Zhang, Haoli; Wang, Qiang

    2017-11-01

    Solution based nanosheets of iron-doped graphitic carbon nitrides (Fe-g-CN) have been prepared and their optical properties (both linear and nonlinear) are studied. These two-dimensional (2D) nanosheets show an absorption spectrum extending to over 2 µm, and in particular they possess strong nonlinear (saturable) absorption in the 2 µm spectral region. A saturable absorber (SA) manufactured from 2D Fe-g-CN nanosheets gives a modulation depth and saturation intensity of 12.9% and 8.9 MW cm‑2, respectively. This SA is further used to mode-lock thulium-doped fiber lasers, producing 2 µm laser pulses with a duration of 16.6 ps (dechirped to 2.2 ps), an average power of 96.4 mW, a pulse energy of 6.3 nJ, and a repetition rate of 15.3 MHz. As a new type of 2D nonlinear material with strong modulation capabilities, solution-based Fe-g-CN nanosheets can be potentially integrated into photonic and optoelectrionic devices, particuarly in the 2 µm spectral region.

  16. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser.

    Science.gov (United States)

    Lin, Yung-Hsiang; Yang, Chun-Yu; Liou, Jia-Hong; Yu, Chin-Ping; Lin, Gong-Ru

    2013-07-15

    A photonic crystal fiber (PCF) with high-quality graphene nano-particles uniformly dispersed in the hole cladding are demonstrated to passively mode-lock the erbium-doped fiber laser (EDFL) by evanescent-wave interaction. The few-layer graphene nano-particles are obtained by a stabilized electrochemical exfoliation at a threshold bias. These slowly and softly exfoliated graphene nano-particle exhibits an intense 2D band and an almost disappeared D band in the Raman scattering spectrum. The saturable phenomena of the extinction coefficient β in the cladding provides a loss modulation for the intracavity photon intensity by the evanescent-wave interaction. The evanescent-wave mode-locking scheme effectively enlarges the interaction length of saturable absorption with graphene nano-particle to provide an increasing transmittance ΔT of 5% and modulation depth of 13%. By comparing the core-wave and evanescent-wave mode-locking under the same linear transmittance, the transmittance of the graphene nano-particles on the end-face of SMF only enlarges from 0.54 to 0.578 with ΔT = 3.8% and the modulation depth of 10.8%. The evanescent wave interaction is found to be better than the traditional approach which confines the graphene nano-particles at the interface of two SMF patchcords. When enlarging the intra-cavity gain by simultaneously increasing the pumping current of 980-nm and 1480-nm pumping laser diodes (LDs) to 900 mA, the passively mode-locked EDFL shortens its pulsewidth to 650 fs and broadens its spectral linewidth to 3.92 nm. An extremely low carrier amplitude jitter (CAJ) of 1.2-1.6% is observed to confirm the stable EDFL pulse-train with the cladding graphene nano-particle based evanescent-wave mode-locking.

  17. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser.

    Science.gov (United States)

    Zhang, Shumin; Lu, Fuyun; Dong, Xinyong; Shum, Ping; Yang, Xiufeng; Zhou, Xiaoqun; Gong, Yandong; Lu, Chao

    2005-11-01

    We report the passive mode-locking at harmonics of the free spectral range (FSR) of the intracavity multi-channel filter in a fiber ring laser. The laser uses a sampled fiber Bragg grating (SFBG) with a free spectral range (FSR) of 0.8 nm, or 99 GHz at 1555 nm, and a length of highly nonlinear photonic crystal fiber with low and flat dispersion. Stable picosecond soliton pulse trains with twofold to sevenfold enhancement in the repetition rate, relative to the FSR of the SFBG, have been achieved. The passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process and switching of repetition rate is realized simply by adjustment of the intracavity polarization controllers.

  18. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  19. Electrical addressing and temporal tweezing of localized pulses in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Javaloyes, J.; Camelin, P.; Marconi, M.; Giudici, M.

    2017-08-01

    This work presents an overview of a combined experimental and theoretical analysis on the manipulation of temporal localized structures (LSs) found in passively Vertical-Cavity Surface-Emitting Lasers coupled to resonant saturable absorber mirrors. We show that the pumping current is a convenient parameter for manipulating the temporal Localized Structures, also called localized pulses. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing to control the position and the dynamics of LSs. We show that the localized pulses drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on an finite timescale and breaks the parity invariance along the cavity, thus leading to a new paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. Starting from a generic model of passive mode-locking based upon delay differential equations, we deduce the effective equations of motion for these LSs in a time-dependent current landscape.

  20. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  1. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Science.gov (United States)

    Donin, V. I.; Yakovin, D. V.; Gribanov, A. V.

    2015-12-01

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses.

  2. Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser.

    Science.gov (United States)

    Peng, Di; Zhang, Zhiyao; Zeng, Zhen; Zhang, Lingjie; Lyu, Yanjia; Liu, Yong; Xie, Kang

    2018-03-19

    We demonstrate a single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser. The theoretical analysis and simulation results indicate that the dissipative soliton-based optical source with a flat spectrum relieves the envelope-induced signal distortion, and its high energy spectral density helps to improve the signal-to-noise ratio, both of which are favorable for simplifying the optical front-end architecture of a photonic time-stretch digitizer. By employing a homemade dissipative soliton-based passively mode-locked erbium-doped fiber laser in a single-shot photonic time-stretch digitizer, an effective number of bits of 4.11 bits under an effective sampling rate of 100 GS/s is experimentally obtained without optical amplification in the link and pulse envelope removing process.

  3. Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser

    Science.gov (United States)

    Wang, Zhenhong; Wang, Zhi; Liu, Yange; He, Ruijing; Zhao, Jian; Wang, Guangdou; Yang, Guang

    2018-02-01

    We experimentally observe soliton self-organization and pulsation in a passively mode-locked fiber laser. The optomechanical interaction in the optical fiber is key to the formation of equidistant soliton bunches. These solitons simultaneously undergo a pulsation process with a period corresponding to tens of the cavity round trip time. Using the dispersive Fourier transformation technique, we find that the Kelly sidebands in the shot-to-shot spectra appear periodically, synchronizing with the pulsation.

  4. A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter

    International Nuclear Information System (INIS)

    Song, Rui; Chen, Hong-Wei; Chen, Sheng-Ping; Hou, Jing; Lu, Qi-Sheng

    2011-01-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked fiber laser with a long cavity length over 700 m is demonstrated. A band pass filter is inserted into the laser cavity to stabilize the lasing wavelength. Some interesting phenomena are observed and discussed. The central wavelength, repetition rate, average power and single pulse energy of the laser are 1064 nm, 281.5 kHz, 11 mW and 39 nJ, respectively. The laser operates stably without Q-switching instabilities, which greatly reduces the damage opportunities of the SESAM

  5. 256 fs, 2 nJ soliton pulse generation from MoS2 mode-locked fiber laser

    Science.gov (United States)

    Jiang, Zike; Chen, Hao; Li, Jiarong; Yin, Jinde; Wang, Jinzhang; Yan, Peiguang

    2017-12-01

    We demonstrate an Er-doped fiber laser (EDFL) mode-locked by a MoS2 saturable absorber (SA), delivering a 256 fs, 2 nJ soliton pulse at 1563.4 nm. The nonlinear property of the SA prepared by magnetron sputtering deposition (MSD) is measured with a modulation depth (MD) of ∼19.48% and a saturable intensity of 4.14 MW/cm2. To the best of our knowledge, the generated soliton pulse has the highest pulse energy of 2 nJ among the reported mode-locked EDFLs based on transition metal dichalcogenides (TMDs). Our results indicate that MSD-grown SAs could offer an exciting platform for high pulse energy and ultrashort pulse generation.

  6. Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser

    Science.gov (United States)

    Lin, G.-R.; Lin, Y.-C.

    2011-12-01

    By directly brushing and scribing an ultra-thin (face of a FC/APC connector in erbium-doped fiber laser (EDFL), and then imprinting it with the graphite nano-particles exfoliated from a graphite foil, the intra-cavity graphite nano-particle based saturable absorber can be formed to induce passive mode-locking effect in the EDFL. Such a novel approach greatly suppresses the film-thickness induced laser-beam divergent loss to 3.4%, thus enhancing the intra-cavity circulating power to promote the shortening on mode-locking pulsewidth. The saturable absorber with area coverage ratio of graphite nano-particles is detuned from 70 to 25% to provide the modulation depth enhancing from 11 to 20% and the saturated transmittance from 27 to 60%. Optimizing the coverage ratio reduces the non-saturable loss to 40% and enhances the modulation depth to 21%, such that the sub-ps soliton mode-locking can be initiated to provide a chirped pulsewidth of 482 fs and a linewidth of 2.87 nm.

  7. Diverse mode of operation of an all-normal-dispersion mode-locked fiber laser employing two nonlinear loop mirrors.

    Science.gov (United States)

    Chowdhury, Sourav Das; Pal, Atasi; Chatterjee, Sayan; Sen, Ranjan; Pal, Mrinmay

    2018-02-10

    In this paper, we propose an all-normal-dispersion ytterbium-fiber laser with a novel ring cavity architecture having two nonlinear amplifying loop mirrors (NALM) as saturable absorbers, capable of delivering distinctly different pulses with adjustable features. By optimizing the loop lengths of the individual NALMs, the cavity can be operated to deliver Q-switched mode-locked (Q-ML) pulse bunches with adjustable repetition rates, mode-locked pulses in dissipative soliton resonance (DSR) regime or noise-like pulse (NLP) regime with tunable pulse width. The DSR pulses exhibit characteristic narrowband spectrum, while the NLPs exhibit large broadband spectrum. The operation regime of the laser can be controlled by adjusting the amplifier pump powers and the polarization controllers. To the best of the authors' knowledge, this is the first demonstration of a single mode-locked cavity where narrowband DSR pulses and broadband NLPs alongside Q-ML pulse bunches can be selectively generated by employing two NALMs.

  8. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  9. Cryogenically-cooled Yb:YGAG ceramic mode-locked laser

    Czech Academy of Sciences Publication Activity Database

    Mužík, Jiří; Jelínek, M.; Jambunathan, Venkatesan; Miura, Taisuke; Smrž, Martin; Endo, Akira; Mocek, Tomáš; Kubeček, V.

    2015-01-01

    Roč. 24, č. 2 (2015), s. 1402-1408 ISSN 1094-4087 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk LO1602; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : solid-states laser * lasing characteristics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.148, year: 2015

  10. Comparison of the noise performance of 10 GHz repetition rate quantum-dot and quantum well monolithic mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Carpintero, G.; Thompson, M. G.; Yvind, Kresten

    2011-01-01

    Mode-locked lasers are commonly used in carrier-wave signal generation systems because of their excellent phase noise performance. Owing to the importance of this key parameter, this study presents a like-for-like comparison of the noise performance of the passive mode-locked regime of two devices...... fabricated with different material gain systems, one quantum well and the other quantum dot (QD), both with a monolithic all-active two-section mode-locked structure. Two important factors are identified as having a significant effect on the noise performance, the RF linewidth of the first harmonic...... and the shape of the noise pedestals, both depending on the passive mode-locked bias conditions. Nevertheless, the dominant contribution of the RF linewidth to the phase noise, which is significantly narrower for the QD laser, makes this material more suitable for optical generation of low-noise millimetre...

  11. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  12. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser.

    Science.gov (United States)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-Ge; Zhao, Wenjing; Zhang, Hao; Wang, Shangcheng; Yang, Guang; He, Ruijing

    2016-06-27

    We report an intermediate regime between c.w. emission and noise-like pulses (NLPs) regime in an Er-doped partially mode-locked fiber laser with nonlinear polarization rotation. In this regime, the soliton bunches stochastically turn up from a quasi-cw background in the Q-switched-like envelope. The soliton bunches normally last for tens or hundreds of intracavity round-trips. When the soliton bunches vanish, typical NLPs chains are generated sporadically at location where the soliton bunches collapses. These results would be helpful to understand the generation and property of the NLPs regime.

  13. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  14. Solid-state-laser-rod holder

    Science.gov (United States)

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  15. Femtosecond mode-locked erbium-doped fiber laser based on MoS2-PVA saturable absorber

    Science.gov (United States)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Ahmad, H.; Harun, S. W.

    2016-08-01

    We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a soliton mode-locked Erbium-doped fiber laser (EDFL). A stable self-started mode-locked soliton pulse is generated by fine-tuning the rotation of the polarization controller at a low threshold pump power of 25 mW. Its solitonic behavior is verified by the presence of Kelly sidebands in the output spectrum. The central wavelength, pulse width, and repetition rate of the laser are 1573.7 nm, 630 fs, and 27.1 MHz, respectively. The maximum pulse energy is 0.141 nJ with peak power of 210 W at pump power of 170 mW. This result contributes to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.

  16. Simulation of dissipative-soliton-resonance generation in a passively mode-locked Yb-doped fiber laser

    Science.gov (United States)

    Du, Wenxiong; Li, Heping; Liu, Cong; Shen, Shengnan; Zhang, Shangjian; Liu, Yong

    2017-10-01

    We present a numerical investigation of dissipative-soliton-resonance (DSR) generation in an all-normal-dispersion Ybdoped fiber laser mode-locked by a real saturable absorber (SA). In the simulation model, the SA includes both the saturable absorption and excited-state absorption (ESA) effects. The intra-cavity pulse evolution is numerically simulated with different transmission functions of SA. When omitting the ESA effect, the transmissivity of SA increases monotonically with the input pulse power. The noise-like pulse (NLP) operation in the cavity is obtained at high pump power, which is attributed to the spectral filtering effect. When the ESA effect is activated, higher instantaneous power part of pulse encounters larger loss induced by SA, causing that the pulse peak power is clamped at a certain fixed value. With increasing pump, the pulse starts to extend in the time domain while the pulse spectrum is considerably narrowed. In this case, the NLP operation state induced by the spectral filtering effect is avoided and the DSR is generated. Our simulation results indicate that the ESA effect in the SA plays a dominant role in generating the DSR pulses, which will be conducive to comprehending the mechanism of DSR generation in passively mode-locked fiber lasers.

  17. Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk InN as saturable absorber.

    Science.gov (United States)

    Jimenez-Rodriguez, M; Monteagudo-Lerma, L; Monroy, E; González-Herráez, M; Naranjo, F B

    2017-03-06

    The growing demand of ultrafast mode-locked fiber lasers in the near infrared has boosted the research activity in this area. One of the most convenient ways to achieve passive mode locking consists of inserting a semiconductor saturable absorber in the laser cavity to modulate the losses. However, in such a configuration, the limited power range of operation is still an unsolved issue. Here we report the fabrication of an ultrafast, high-power, widely power-tunable and non-polarization-dependent mode-locked fiber laser operating at 1.55 µm, using an InN layer as saturable absorber. With post-amplification, this laser delivers 55-fs pulses with a repetition rate of 4.84 MHz and peak power in the range of 1 MW in an all-fiber arrangement.

  18. Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.

    Science.gov (United States)

    Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min

    2014-05-19

    The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.

  19. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Science.gov (United States)

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  20. Properties of the pulse train generated by repetition-rate-doubling rational-harmonic actively mode-locked Er-doped fiber lasers.

    Science.gov (United States)

    Kiyan, R; Deparis, O; Pottiez, O; Mégret, P; Blondel, M

    2000-10-01

    We demonstrate for the first time to our knowledge, experimentally and theoretically, that the pulse-to-pulse amplitude fluctuations that occur in pulse trains generated by actively mode-locked Er-doped fiber lasers in a repetition-rate-doubling rational-harmonic mode-locking regime are completely eliminated when the modulation frequency is properly tuned. Irregularity of the pulse position in the train was found to be the only drawback of this regime. One could reduce the irregularity to a value acceptable for applications by increasing the bandwidth of the optical filter installed in the laser cavity.

  1. Generation of a 64-GHz, 3.3-ps transform-limited pulse train from a fiber laser employing higher-order frequency-modulated mode locking.

    Science.gov (United States)

    Abedin, K S; Onodera, N; Hyodo, M

    1999-11-15

    We demonstrate the generation of optical pulses at a repetition rate of 64 GHz directly from a frequency-modulated (FM) mode-locked fiber laser. This is achieved by phase modulation at 16 GHz and by initiating of higher-order FM mode locking by use of an intracavity Fabry-Perot filter with a free spectral range of 64 GHz. This process yielded transform-limited pulses with a width of 3.3 ps. We investigated the operating characteristics of the laser and compared them with the characteristics that were predicted theoretically.

  2. Passively mode-locked diode-pumped Tm3+:YLF laser emitting at 1.91 µm using a GaAs-based SESAM

    Science.gov (United States)

    Tyazhev, A.; Soulard, R.; Godin, T.; Paris, M.; Brasse, G.; Doualan, J.-L.; Braud, A.; Moncorgé, R.; Laroche, M.; Camy, P.; Hideur, A.

    2018-04-01

    We report on a diode-pumped Tm:YLF laser passively mode-locked with an InGaAs saturable absorber. The laser emits a train of 31 ps pulses at a wavelength of 1.91 µm with a repetition rate of 94 MHz and a maximum average power of 95 mW. A sustained and robust mode-locking with a signal-to-noise ratio of ~70 dB is obtained even at high relative air humidity, making this system attractive for applications requiring ultra-short pulses in the spectral window just below 2 µm.

  3. Individual optimization of InAlGaAsP-InP sections for 1.55-μm passively mode-locked lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina; Larsson, David; Semenova, Elizaveta

    2012-01-01

    We present integrated single QW semiconductor optical amplifier and MQW electroabsorber modulator based on InAlGaAsP-InP materials for application in a monolithic mode-locked laser. Optimized structures with high-quality butt-joint interfaces are demonstrated.......We present integrated single QW semiconductor optical amplifier and MQW electroabsorber modulator based on InAlGaAsP-InP materials for application in a monolithic mode-locked laser. Optimized structures with high-quality butt-joint interfaces are demonstrated....

  4. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  5. Towards low timing phase noise operation in fiber lasers mode locked by graphene oxide and carbon nanotubes at 1.5 µm.

    Science.gov (United States)

    Wu, Kan; Li, Xiaohui; Wang, Yonggang; Wang, Qi Jie; Shum, Perry Ping; Chen, Jianping

    2015-01-12

    We investigate the timing phase noise of fiber lasers mode locked by graphene oxide (GO) and carbon nanotubes (CNTs), respectively, integrated in a linear cavity fiber laser in the reflecting operation. Due to the shorter decay time of the GO and CNTs, weaker slow saturable absorber effects are expected and mode-locked lasers based on these two saturable absorbers exhibit low excess timing phase noise coupled from the laser intensity noise. Compared with a reference laser mode locked by semiconductor saturable absorber mirror (SESAM), GO based laser obtains a timing phase noise reduction of 7 dB at 1 kHz and a timing jitter reduction of 45% experimentally whereas CNTs based laser obtains a timing phase noise reduction of 3 dB and a timing jitter reduction of 29%. This finding suggests that saturable absorbers with short decay time have the potential for achieving mode locking operation with low timing phase noise, which is important for applications including frequency metrology, high-precision optical sampling, clock distribution and optical sensing.

  6. Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles

    Science.gov (United States)

    Lin, Yung-Hsiang; Yang, Chun-Yu; Lin, Sheng-Feng; Tseng, Wei-Hsuan; Bao, Qiaoliang; Wu, Chih-I.; Lin, Gong-Ru

    2014-05-01

    We demonstrate the nanoscale p-type Bi2Te3 powder-based saturable absorber-induced passive mode-locking of the erbium-doped fiber laser (EDFL) with sub-picosecond pulsewidth. Such a nanoscale topological insulator powder is obtained by polishing the bulk p-type Bi2Te3 in a commercial thermoelectric cooler (TE cooler). This is then directly brushed onto the end-face of a single-mode fiber patchcord, to avoid any mis-connecting loss caused by laser beam divergence, which can result in a mode-locked pulsewidth of 436 fs in the self-amplitude modulation mode of a TE cooler. To further shorten the pulse, the soliton compression is operated by well-controlling the group delay dispersion and self-phase modulation, providing the passively mode-locked EDFL with a pulsewidth as short as 403 fs.

  7. Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber

    International Nuclear Information System (INIS)

    Xia Han-Ding; Li He-Ping; Lan Chang-Yong; Li Chun; Deng Guang-Lei; Li Jian-Feng; Liu Yong

    2015-01-01

    Passive harmonic mode locking of an erbium-doped fiber laser based on few-layer molybdenum disulfide (MoS 2 ) saturable absorber (SA) is demonstrated. The few-layer MoS 2 is prepared by the chemical vapor deposition (CVD) method and then transferred onto the end face of a fiber connector to form a fiber-compatible MoS 2 SA. The 20th harmonic mode-locked pulses at 216-MHz repetition rate are stably generated with a pulse duration of 1.42 ps and side-mode suppression ratio (SMSR) of 36.1 dB. The results confirm that few-layer MoS 2 can serve as an effective SA for mode-locked fiber lasers. (paper)

  8. Ultrashort pulse generation in mode-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber

    Science.gov (United States)

    Liu, Mengli; Liu, Wenjun; Pang, Lihui; Teng, Hao; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    Tungsten disulfide (WS2), as one of typical transition metal dichalcogenides with the characteristics of strong nonlinear polarization and wide bandgap, has been widely used in such fields as biology and optoelectronics. With the magnetron sputtering technique, the saturable absorber (SA) is prepared by depositing WS2 and Au film on the tapered fiber. The heat elimination and damage threshold can be improved for the WS2 SA with evanescent field interaction. Besides, the Au film is deposited on the surface of the WS2 film to improve their reliability and avoid being oxidized. The fabricated SA has a modulation depth of 14.79%. With this SA, we obtain a relatively stable mode-locked fiber laser with the pulse duration of 288 fs, the repetition rate of 41.4 MHz and the signal to noise ratio of 58 dB.

  9. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    Science.gov (United States)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  10. 80  nJ ultrafast dissipative soliton generation in dumbbell-shaped mode-locked fiber laser.

    Science.gov (United States)

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-09-15

    A novel all-fiberized dumbbell-shaped mode-locked fiber laser was developed to directly generate 80 nJ dissipative solitons, which can be linearly compressed from 85 to 1.2 ps externally with a diffraction grating pair. The pulse peak power reached 42 kW after compression. With the most available pump power, stable dissipative soliton bundles with up to 628 nJ bundle energy were obtained. The corresponding average output power reached 2.2 W. The employment of dual-nonlinear-optical-loop mirrors and large-mode-area fibers in the cavity played an essential role in improving structural compactness and producing high-energy ultrafast pulses. To the best of our knowledge, these are the most energetic compressible dissipative solitons generated from a strictly all-fiber cavity.

  11. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser

    Science.gov (United States)

    Ryczkowski, P.; Närhi, M.; Billet, C.; Merolla, J.-M.; Genty, G.; Dudley, J. M.

    2018-04-01

    Dissipative solitons are remarkably localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist, and are seen in far-from-equilibrium systems in many fields, including chemistry, biology and physics. There has been particular interest in studying their properties in mode-locked lasers, but experiments have been limited by the inability to track the dynamical soliton evolution in real time. Here, we use simultaneous dispersive Fourier transform and time-lens measurements to completely characterize the spectral and temporal evolution of ultrashort dissipative solitons as their dynamics pass through a transient unstable regime with complex break-up and collisions before stabilization. Further insight is obtained from reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum. These findings show how real-time measurements provide new insights into ultrafast transient dynamics in optics.

  12. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780  nm.

    Science.gov (United States)

    Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther

    2017-07-01

    We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20  dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7  nm (full width at -20  dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100  Hz 2 /Hz and of at most 170  Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.

  13. Robust, low-noise, polarization-maintaining mode-locked Er-fiber laser with a planar lightwave circuit (PLC) device as a multi-functional element.

    Science.gov (United States)

    Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2017-04-15

    We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.

  14. Characterisation of the light pulses of a cavity dumped dye laser pumped by a cw mode-locked and q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Geist, P.; Heisel, F.; Martz, A.; Miehe, J.A.; Miller, R.J.D.

    1984-01-01

    The frequency doubled pulses (of 532 nm) obtained, with the help of a KTP crystal, from those delivered by either a continuous wave mode-locked (100 MHz) or mode-locked Q-switched (0-1 KHz) Nd: YAG laser, are analyzed by means of a streak camera, operating in synchroscan or triggered mode. In the step-by-step measurements the pulse stability, concerning form and amplitude, is shown. In addition, measurements effectuated with synchronously pumped and cavity dumped dye laser (Rhodamine 6G), controlled by a Pockels cell, allows the obtention of stable and reproducible single pulses of 30 ps duration, 10 μJ energy and 500Hz frequency [fr

  15. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  16. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  17. Intracavity KTP-based OPO pumped by a dual-loss modulated, simultaneously Q-switched and mode-locked Nd:GGG laser.

    Science.gov (United States)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Dechun; Li, Guiqiu; Li, Tao; Qiao, Wenchao

    2014-11-03

    An intracavity KTiOPO(4) (KTP) optical parametric oscillator (OPO) pumped by a simultaneously Q-switched and mode-locked (QML) Nd:Gd(3)Ga(5)O(12) (Nd:GGG) laser with an acousto-optic modulator (AOM) and a Cr(4+):YAG saturable absorber is presented. A minimum mode-locking pulse duration underneath the Q-switched envelope was evaluated to be about 290 ps. A maximum QML output power of 82 mW at the signal wavelength of 1570 nm was achieved, corresponding to a maximum mode-locked pulse energy of about 5.12 μJ. The M(2) values were measured to be about 1.3 and 1.5 for tangential and sagittal directions using knife-edge technique.

  18. Systematic investigation of the temperature behavior of InAs/InP quantum nanostructure passively mode-locked lasers

    DEFF Research Database (Denmark)

    Klaime, K.; Piron, R.; Grillot, F.

    2013-01-01

    for the first time a systematic investigation of the temperature-dependence on the mode-locking properties of InAs/InP QN devices. Beside, a rigorous comparison between QDashes and QDs temperature dependence is proposed through a proper analysis of the mode-locking stability maps. Experimental results also show...

  19. Effect of thermal management on the properties of saturable absorber mirrors in high-power mode-locked semiconductor disk lasers

    International Nuclear Information System (INIS)

    Rantamäki, Antti; Lyytikäinen, Jari; Jari Nikkinen; Okhotnikov, Oleg G

    2011-01-01

    The thermal management of saturable absorbers is shown to have a critical impact on a high-power mode-locked disk laser. The absorber with efficient heat removal makes it possible to generate ultrashort pulses with high repetition rates and high power density.

  20. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  1. 40-gHz, 100-fs stimulated-Brillouin-scattering-free pulse generation by combining a mode-locked laser diode and a dispersion-decreasing fiber.

    Science.gov (United States)

    Hagiuda, Ken-ichi; Hirooka, Toshihiko; Nakazawa, Masataka; Arahira, Shin; Ogawa, Yoh

    2005-03-15

    A 40-GHz, 100-fs pulse train was successfully generated by soliton compression of a mode-locked laser diode (MLLD) pulse with a dispersion-decreasing fiber. The MLLD had a longitudinal mode linewidth as broad as 60 MHz, which made it possible to suppress stimulated Brillouin scattering and achieve stable, ultrahigh-speed pulse compression without applying external frequency modulation.

  2. Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser

    DEFF Research Database (Denmark)

    Torzicky, Teresa; Marschall, Sebastian; Pircher, Michael

    2013-01-01

    We present a novel, high-speed, polarization-sensitive, optical coherence tomography set-up for retinal imaging operating at a central wavelength of 1060 nm which was tested for in vivo imaging in healthy human volunteers. We use the system in combination with a Fourier domain mode locked laser...

  3. Optical parametric generation by a simultaneously Q-switched mode-locked single-oscillator thulium-doped fiber laser in orientation-patterned gallium arsenide.

    Science.gov (United States)

    Donelan, Brenda; Kneis, Christian; Scurria, Giuseppe; Cadier, Benoît; Robin, Thierry; Lallier, Eric; Grisard, Arnaud; Gérard, Bruno; Eichhorn, Marc; Kieleck, Christelle

    2016-11-01

    Optical parametric generation is demonstrated in orientation-patterned gallium arsenide, pumped by a novel single-oscillator simultaneously Q-switched and mode-locked thulium-doped fiber laser, downconverting the pump radiation into the mid-infrared wavelength regime. The maximum output energy reached is greater than 2.0 μJ per pump pulse.

  4. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers

    Science.gov (United States)

    Zameroski, Nathan D.; Wanke, Michael; Bossert, David

    2013-03-01

    The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser.

    Science.gov (United States)

    Zhang, Baitao; Lou, Fei; Zhao, Ruwei; He, Jingliang; Li, Jing; Su, Xiancui; Ning, Jian; Yang, Kejian

    2015-08-15

    High-quality black phosphorus (BP) saturable absorber mirror (SAM) was successfully fabricated with few-layered BP (phosphorene). By employing the prepared phosphorene SAM, we have demonstrated ultrafast pulse generation from a BP mode-locked bulk laser for the first time to our best knowledge. Pulses as short as 6.1 ps with an average power of 460 mW were obtained at the central wavelength of 1064.1 nm. Considering the direct and flexible band gap for different layers of phosphorene, this work may provide a possible method for fabricating BP SAM to achieve ultrafast solid-state lasers in IR and mid-IR wavelength region.

  6. Direct growth of graphene on quartz substrate as saturable absorber for femtosecond solid-state laser

    International Nuclear Information System (INIS)

    Xu, S C; Man, B Y; Jiang, S Z; Chen, C S; Liu, M; Yang, C; Gao, S B; Zhang, C; Feng, D J; Huang, Q J; Hu, G D; Chen, X F

    2014-01-01

    We present a novel method for the direct metal-free growth of graphene on quartz substrate. The direct-grown graphene yields excellent nonlinear saturable absorption properties and is demonstrated to be suitable as a saturable absorber (SA) for an ultrafast solid-state laser. Nearly Fourier-limited 367 fs was obtained at a central wavelength of 1048 nm with a repetition rate of 105.7 MHz. At a pump power of 7.95 W, the average output power was 1.93 W and the highest pulse energy reached 18.3 nJ, with a peak power of 49.8 kW. Our work opens an easy route for making a reliable graphene SA with a mode-locking technique and also displays an exciting prospect in making low-cost and ultrafast lasers. (letter)

  7. 110 GHz hybrid mode-locked fiber laser with enhanced extinction ratio based on nonlinear silicon-on-insulator micro-ring-resonator (SOI MRR)

    Science.gov (United States)

    Liu, Yang; Hsu, Yung; Chow, Chi-Wai; Yang, Ling-Gang; Yeh, Chien-Hung; Lai, Yin-Chieh; Tsang, Hon-Ki

    2016-03-01

    We propose and experimentally demonstrate a new 110 GHz high-repetition-rate hybrid mode-locked fiber laser using a silicon-on-insulator microring-resonator (SOI MRR) acting as the optical nonlinear element and optical comb filter simultaneously. By incorporating a phase modulator (PM) that is electrically driven at a fraction of the harmonic frequency, an enhanced extinction ratio (ER) of the optical pulses can be produced. The ER of the optical pulse train increases from 3 dB to 10 dB. As the PM is only electrically driven by the signal at a fraction of the harmonic frequency, in this case 22 GHz (110 GHz/5 GHz), a low bandwidth PM and driving circuit can be used. The mode-locked pulse width and the 3 dB spectral bandwidth of the proposed mode-locked fiber laser are measured, showing that the optical pulses are nearly transform limited. Moreover, stability evaluation for an hour is performed, showing that the proposed laser can achieve stable mode-locking without the need for optical feedback or any other stabilization mechanism.

  8. Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion

    International Nuclear Information System (INIS)

    Huang, S S; Yan, P G; Zhang, G L; Zhao, J Q; Li, H Q; Lin, R Y; Wang, Y G

    2014-01-01

    We experimentally investigated soliton rains in an ytterbium-doped fiber (YDF) laser with a net normal dispersion cavity using a graphene-oxide (GO) saturable absorber (SA). The 195 m-long-cavity, the fiber birefringence filter and the inserted 2.5 nm narrow bandwidth filter play important roles in the formation of the soliton rains. The soliton rain states can be changed by the effective gain bandwidth of the laser. The experimental results can be conducive to an understanding of dissipative soliton features and mode-locking dynamics in all-normal dispersion fiber lasers with GOSAs. To the best of our knowledge, this is the first demonstration of soliton rains in a GOSA passively mode-locked YDF laser with a net normal dispersion cavity. (letter)

  9. Ultralow-jitter passive timing stabilization of a mode-locked Er-doped fiber laser by injection of an optical pulse train.

    Science.gov (United States)

    Yoshitomi, Dai; Kobayashi, Yohei; Kakehata, Masayuki; Takada, Hideyuki; Torizuka, Kenji; Onuma, Taketo; Yokoi, Hideki; Sekiguchi, Takuro; Nakamura, Shinki

    2006-11-15

    The pulse timing of a mode-locked Er-doped fiber laser was stabilized to a reference pulse train from a Cr:forsterite mode-locked laser by all-optical passive synchronization scheme. The reference pulses were injected into a ring cavity of the fiber laser by using a 1.3-1.5 mum wavelength-division multiplexer. The spectral shift induced by cross-phase modulation between copropagating two-color pulses realizes self-synchronization due to intracavity group-delay dispersion. The rms integration of timing jitter between the fiber laser pulse and the reference pulse was 3.7 fs in a Fourier frequency range from 1 Hz to 100 kHz.

  10. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  11. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    International Nuclear Information System (INIS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-01-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice

  12. A mode-locked thulium-doped fiber laser based on a nonlinear loop mirror

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel; Baravets, Yauhen; Todorov, Filip

    2013-01-01

    Roč. 10, č. 7 (2013) ISSN 1612-2011 R&D Projects: GA ČR(CZ) GAP205/11/1840 Institutional support: RVO:67985882 Keywords : PULSE GENERATION * RING LASER * OSCILLATOR Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.964, year: 2013

  13. Comb multi-wavelength, rectangular pulse, passively mode-locked fiber laser enhanced by un-pumped Erbium-doped fiber

    Science.gov (United States)

    Guo, Chunyu; Luo, Ruoheng; Liu, Weiqi; Ruan, Shuangchen; Yang, Jinhui; Yan, Peiguang; Wang, Jinzhang; Hua, Ping

    2018-01-01

    We propose and demonstrate a comb multi-wavelength, nanosecond rectangular pulse, passively mode-locked Erbium-doped fiber (EDF) laser. A section of un-pumped EDF had been employed to optimize the multi-wavelength pulses for the first time to the best of our knowledge. The un-pumped EDF absorbs the unwanted the short-wavelength lasing and optimizes the gain, therefore allowing for the enhancement of the long-wavelength lasing. Because of the gain competition effect in the un-pumped EDF, the output wavelength line number of the fiber laser can be significantly increased from three wavelengths to twenty lasing wavelengths. The mode-locked pulse has a rectangular temporal profile with pump power dependent pulse duration. Experimental results illustrate that the fiber laser has a good stability at room temperature. This work provides a new configuration for the design of multi-wavelength, rectangular nanosecond pulse that may fit for specific applications.

  14. Simultaneous generation of wavelength division multiplexing PON and RoF signals using a hybrid mode-locked laser

    Science.gov (United States)

    Aldaya, Ivan; Campuzano, Gabriel; Castañón, Gerardo

    2015-06-01

    The use of millimeter-wave (mm-wave) frequencies has been proposed to overcome the imminent saturation of the ultra high frequency band, justifying research on radio over fiber (RoF) networks as an inexpensive and green solution to distribute multi-Gbps signals. Coincidently, telecommunication operators are investing a significant effort to deploy their passive optical network (PON) infrastructure closer to the users. In this work, we present a novel cost-efficient architecture based on a hybrid mode locked laser capable to simultaneously generate up-to 5 wavelength division multiplexing PON and RoF channels, being compatible with the 50-GHz ITU frequency grid. We analyze the limits of operation of our proposed architecture considering the high modal relative intensity noise induced by mode partition noise, as well as fiber impairments, such as chromatic dispersion and nonlinearities. The feasibility of generation and transmission of 5×10-Gbps PON and 5×5-Gbps RoF using orthogonal frequency division multiplexing up to 50 km has been demonstrated through realistic numerical simulations.

  15. Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser.

    Science.gov (United States)

    Moscoso-Mártir, Alvaro; Müller, Juliana; Islamova, Elmira; Merget, Florian; Witzens, Jeremy

    2017-09-20

    Based on the single channel characterization of a Silicon Photonics (SiP) transceiver with Semiconductor Optical Amplifier (SOA) and semiconductor Mode-Locked Laser (MLL), we evaluate the optical power budget of a corresponding Wavelength Division Multiplexed (WDM) link in which penalties associated to multi-channel operation and the management of polarization diversity are introduced. In particular, channel cross-talk as well as Cross Gain Modulation (XGM) and Four Wave Mixing (FWM) inside the SOA are taken into account. Based on these link budget models, the technology is expected to support up to 12 multiplexed channels without channel pre-emphasis or equalization. Forward Error Correction (FEC) does not appear to be required at 14 Gbps if the SOA is maintained at 25 °C and MLL-to-SiP as well as SiP-to-SOA interface losses can be maintained below 3 dB. In semi-cooled operation with an SOA temperature below 55 °C, multi-channel operation is expected to be compatible with standard 802.3bj Reed-Solomon FEC at 14 Gbps provided interface losses are maintained below 4.5 dB. With these interface losses and some improvements to the Transmitter (Tx) and Receiver (Rx) electronics, 25 Gbps multi-channel operation is expected to be compatible with 7% overhead hard decision FEC.

  16. Chair-like pulses in an all-normal dispersion Ytterbium-doped mode-locked fiber laser.

    Science.gov (United States)

    Gupta, Pradeep K; Singh, Chandra P; Singh, Amarjeet; Sharma, Sunil K; Mukhopadhyay, Pranab K; Bindra, Kushvinder S

    2016-12-10

    We report, for what we believe is the first time, generation of stable chair-like pulses (a pulse shape with an initial long flat portion followed by a short high peak power portion resembling the shape of a chair) by mode locking of a Ytterbium (Yb)-doped fiber laser. Chair-like pulse shapes are achieved by implementing dual saturable absorbers, one based on a nonlinear optical loop mirror (NOLM) and the other based on nonlinear polarization rotation (NPR) inside the cavity. The transmission characteristics of the NOLM-NPR pair leading to the formation of chair-like pulses are numerically investigated. We also report the amplification characteristics of chair-like pulses in an external multistage Yb-doped fiber amplifier setup at different repetition rates of the pulse train. It was found that the chair-like pulses are suitable for amplification, and more than 10 W of average power at 460 kHz repetition rate have been obtained at total pump power of ∼20  W coupled to the power amplifier. At a lower repetition rate (115 kHz), ∼8  W of average power were obtained corresponding to ∼70  μJ of pulse energy with negligible contribution from amplified spontaneous emission or stimulated Raman scattering. We believe that such an oscillator-amplifier system could serve as an attractive tool for micromachining applications.

  17. Ultrathin quartz plate-based multilayer MoS2 for passively mode-locked fiber lasers (invited)

    Science.gov (United States)

    Jiang, Zike; Li, Jiarong; Chen, Hao; Wang, Jinzhang; Zhang, Wenfei; Yan, Peiguang

    2018-01-01

    We have grown ultrathin quartz plate-based multilayer molybdenum disulfide (MoS2) by chemical vapor deposition (CVD). When employed as saturable absorber (SA), the prepared MoS2 device exhibits remarkable merits (e.g. uniform thickness, high quality of crystal lattice high damage threshold easy fabrication and good practicability). The modulation depth, saturable intensity, and non-saturable loss of this SA device are measured to be 16.1%, 0.438 MW/cm2 and 44.6% respectively. By incorporating the SA into a typical ring cavity erbium-doped fiber laser, stable passive soliton mode-locked pulse is achieved with the repetition frequency of 0.987 MHz, the signal noise ratio (SNR) of 71.4 dB and the pulse duration of 2.17 ps. The experimental results demonstrate our MoS2-SA device to be an effective mode locker, and it is promising to be used in ultrafast photonics.

  18. Passive mode locking in a multisegment laser diode with an external cavity

    International Nuclear Information System (INIS)

    Andreeva, E V; Magnitskiy, Sergey A; Koroteev, Nikolai I; Salik, E; Feinberg, J; Starodubov, D S; Shramenko, M V; Yakubovich, S D

    1999-01-01

    The structure and operating conditions of multisegment laser (GaAl)As diodes with passive locking of the modes of an external cavity (bulk and fibre) were optimised. Regular trains of optical single pulses of picosecond duration were generated in a spectral range 850 - 860 nm. The peak power of these pulses was several watts and the repetition rate was near 1 GHz. Under certain conditions these output pulses were linearly chirped, i.e. they were suitable for subpicosecond time compression. Laboratory prototypes were made of miniature light-emitting modules with these characteristics. (lasers)

  19. Conversion of Stability of Femtosecond Stabilized Mode-locked Laser to Optical Cavity Length

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Číp, Ondřej; Čížek, Martin; Mikel, Břetislav; Lazar, Josef

    2010-01-01

    Roč. 57, č. 3 (2010), s. 636-640 ISSN 0885-3010 R&D Projects: GA ČR GA102/09/1276; GA MŠk(CZ) LC06007; GA MŠk 2C06012; GA MPO 2A-1TP1/127; GA MPO FT-TA3/133; GA MPO 2A-3TP1/113; GA ČR GA102/07/1179 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser * Fabry-Perot * interferometer * length etalon Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.460, year: 2010

  20. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    Science.gov (United States)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-05-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm-1 and the disappearance of the 2D-band peak at 2700 cm-1. The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth.

  1. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2012-01-01

    , enable acquisition of densely sampled three-dimensional datasets covering a wide field of view. However, semiconductor optical amplifiers (SOAs)-the typical laser gain media for swept sources-for the 1060nm band could until recently only provide relatively low output power and bandwidth. We have...

  2. Analysis of soft-aperture Kerr-lens mode-locking in Ti:sapphire laser cavities using nonlinear ABCD-matrix

    International Nuclear Information System (INIS)

    Lee, Yong Woo; Cha, Yong Ho; Rhee, Yong Joo; Yoo, Byung Duk; Lee, Byoung Chul

    2004-01-01

    We have numerically analyzed the effect of soft-aperture Kerr-lens mode locking in Ti:sapphire laser cavities. Because the Kerr-lens effect depends on the intracavitiy power, we used nonlinear ABCD-matrix to calculated the power-dependent beam mode inside a cavity. In soft-aperture Kerr-lens mode locking, the Kerr-lens effect is strongly dependent on the position of the crystal, the separation of two curved mirrors, and the cavity length. Figure 1 is the schematic of the Ti:sapphire laser cavity used in our calculation. It consists of a Ti:sapphire crystal (Kerr medium), two curved mirrors, and flat mirrors. Lc is the Ti:sapphire crystal length, D1 the length between M1 and M3, D2 the length between M2 and M4, L1 the length between the crystal and M1, and L2 the length between crystal and M2

  3. Mode-locked semiconductor laser for long and absolute distance measurement based on laser pulse repetition frequency sweeping: a comparative study between three types of lasers

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.

    2017-08-01

    In this work we present a study on three types of semiconductor mode-locked lasers as possible sources for a high precision absolute distance metrology measurement concept based on pulse repetition frequency (PRF) sweep. In this work, we evaluated one vertical emission laser and two transversal emission sources. The topology of the gain element is quantum-well, quantum-dot and quantum-dash, respectively. Only the vertical emission laser has optical pump, whilst the others operate with electric pumping. The quantum-dash laser does not have a saturable absorber in its configuration but relies on a dispersion compensating fiber for generating pulses. The bottleneck of vertical emission laser is his high power density pump (4.5W/165μm), increasing the vulnerability of damaging the gain element. The other lasers, i.e., the single (quantum-dash) and double section (quantum-dot) lasers present good results either in terms of applicability to the metrology system or in terms of robustness. Using RF injection on the gain element, both lasers show good PRF stabilization results (better than σy(10ms) = 10-9 ) which is a requirement for the mentioned metrology technique.

  4. Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser

    Science.gov (United States)

    Tsatourian, Veronika; Sergeyev, Sergey V.; Mou, Chengbo; Rozhin, Alex; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.; Turitsyn, Sergei K.

    2013-01-01

    Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning. PMID:24193374

  5. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    Additionally, in order to simplify the article, a Gaussian beam is considered. Figure 1. Resonator configuration for KLM laser: tilted mirrors M2 and M3 are focussing; output mirror M1 and back mirror M4 are flat; S1 and S2 are the slits;. L1 and L2 are the arms. The Kerr medium is placed between the mirrors M2 and M3.

  6. Passively Q-switched and mode-locked Nd:GGG laser with a Bi-doped GaAs saturable absorber.

    Science.gov (United States)

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji

    2014-06-16

    A simultaneously passively Q-switched and mode-locked (QML) Nd:GGG laser using a Bi-doped GaAs wafer as saturable absorber is accomplished for the first time. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. In comparison to the passively QML laser with GaAs, the QML laser with Bi-doped GaAs can generate more stable pulses with 99% modulation depth. The experiment results indicate that the Bi-doped GaAs could be an excellent saturable absorber for diode-pumped QML lasers.

  7. Design studies on compact four mirror laser resonator with mode-locked pulsed laser for 5 μm laser wire

    Energy Technology Data Exchange (ETDEWEB)

    Rawankar, Arpit [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); High Energy Accelerator Research Organization KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Urakawa, Junji, E-mail: junji.urakawa@kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); High Energy Accelerator Research Organization KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shimizu, Hirotaka [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); You, Yan [Department of Engineering Physics, Tsinghua University, Beijing, 100084 (China); Terunuma, Nobuhiro [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); High Energy Accelerator Research Organization KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Aryshev, Alexander; Honda, Yosuke [High Energy Accelerator Research Organization KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-02-01

    A compact prototype four-mirror optical cavity is being constructed at KEK-ATF to measure low-emittance electron beams in the damping ring. Four-mirror-resonators reduce the sensitivity to the misalignment of mirrors in comparison to two mirror-resonators. The aspect ratio is important when constructing a compact resonator with a very small beam waist of less than 5 μm. The total cavity length of a four-mirror resonator is matched according to the pulse repetition of mode-locked laser oscillator. Minimum beam waist is obtained in the sagittal plane using an IR pulsed laser. The advantage of such types of compact four-mirror-resonators is the total scanning time for measurement of the beam profile is much shorter in comparison to a CW laser wire system. By using a pulsed green laser that has been converted to the second harmonics from an IR pulsed laser, a minimum beam waist that has half the beam waist when using an IR laser oscillator can be obtained. Therefore, it is possible to obtain the beam waist of less than 5 μm (σ value) that is required for effective photon–electron collision. We report on the development and performance studies for such types of compact four-mirror laser wire systems.

  8. Spatial instabilities of light bullets in passively-mode-locked lasers

    Science.gov (United States)

    Gurevich, S. V.; Javaloyes, J.

    2017-08-01

    Recently, the existence of robust three-dimensional light bullets (LBs) was predicted theoretically in the output of a laser coupled to a distant saturable absorber. In this paper, we analyze the stability and the range of existence of these dissipative localized structures and provide guidelines and realistic parameter sets for their experimental observation. In order to reduce the complexity of the analysis, we first approximate the three-dimensional problem by a reduced equation governing the dynamics of the transverse profile. This effective theory provides an intuitive picture of the LB formation mechanism. Moreover, it allows us to perform a detailed multiparameter bifurcation study and to identify the different mechanisms of instability. It is found that the LBs experience dominantly either homogeneous oscillation or symmetry-breaking transversal wave radiation. In addition, our analysis reveals several nonintuitive scaling behaviors as functions of the linewidth enhancement factors and the saturation parameters. Our results are confirmed by direct numerical simulations of the full system.

  9. Modeling and characterization of pulse shape and pulse train dynamics in two-section passively mode-locked quantum dot lasers

    Science.gov (United States)

    Raghunathan, R.; Mee, J. K.; Crowley, M. T.; Grillot, F.; Kovanis, V.; Lester, L. F.

    2013-03-01

    A nonlinear delay differential equation model for passive mode-locking in semiconductor lasers, seeded with parameters extracted from the gain and loss spectra of a quantum dot laser, is employed to simulate and study the dynamical regimes of mode-locked operation of the device. The model parameter ranges corresponding to these regimes are then mapped to externally-controllable parameters such as gain current and absorber bias voltage. Using this approach, a map indicating the approximate regions corresponding to fundamental and harmonically mode locked operation is constructed as a function of gain current and absorber bias voltage. This is shown to be a highly useful method of getting a sense of the highest repetition rates achievable in principle with a simple, two-section device, and provides a guideline toward achieving higher repetition rates by simply adjusting external biasing conditions instantaneously while the device is in operation, as opposed to re-engineering the device with additional passive or saturable absorber sections. The general approach could potentially aid the development of numerical modeling techniques aimed at providing a systematic guideline geared toward developing microwave and RF photonic sources for THz applications.

  10. Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s.

    Science.gov (United States)

    Huber, Robert; Adler, Desmond C; Fujimoto, James G

    2006-10-15

    We describe buffered Fourier domain mode locking (FDML), a technique for tailoring the output and multiplying the sweep rate of FDML lasers. Buffered FDML can be used to create unidirectional wavelength sweeps from the normal bidirectional sweeps in an FDML laser without sacrificing sweep rate. We also investigate the role of the laser source in dynamic range versus sensitivity performance in optical coherence tomography (OCT) imaging. Unidirectional sweep rates of 370 kHz over a 100 nm range at a center wavelength of 1300 nm are achieved. High-speed, swept-source OCT is demonstrated at record speeds of up to 370,000 axial scans per second.

  11. Medium-gain erbium doped fiber amplifier ring laser passively mode-locked by graphite nano-powder adhered thin PVA film

    Science.gov (United States)

    Lin, Yung-Hsiang; Lin, Gong-Ru

    2012-06-01

    A direct brushing process of graphite nano-powder adhered on the single-mode fiber end-face with the use of an ultrathin PVA film is demonstrated, such a graphite nano-powder adhered ultra-thin PVA film is introduced to passively mode-lock a medium-gain Erbium-doped fiber laser (EDFL). The structural property of the graphite nano-powder is investigated by Raman spectroscopy. Numerous structural defects induced when abrading the graphite into nano-powder are found to broaden the 2D band Raman scattered signal and attenuate its peak intensity. The graphite nano-powders exhibit the featureless transmittance to show the potential as being a broadband tuning saturable absorber. In addition, the modulation depth of 0.43 is comparable with the graphene saturable absorber. The central wavelength of the passively mode-locked medium-gain EDFL is at 1561.2 nm with the full width at half maximum (FHWM) of 1.62 nm, and the pulsewidth is 1.58 ps. Under the limited intra-cavity power of 18 dBm, a nearly transform-limited passively mode-locking EDFL with TBP of 0.32 is generated.

  12. Influence of gain fiber on dissipative soliton pairs in passively mode-locked fiber laser based on BP as a saturable absorber

    Science.gov (United States)

    Gao, Bo; Ma, Chunyang; Huo, Jiayu; Guo, Yubin; Sun, Tiegang; Wu, Ge

    2018-03-01

    We investigate the influence of gain fiber on dissipative soliton pairs in passively mode-locked (PML) fiber laser based on black phosphorus (BP) as a saturable absorber. Numerical simulations show that we can generate the dissipative soliton pairs in PML fiber laser when the gain fiber parameters (gain saturation energy and gain bandwidth) are in an appropriate dynamic range, and the dissipative soliton pairs become unstable once the range is exceeded. Then we analyze the dynamic evolution of the dissipative soliton pairs and the influence of gain fiber on the pulse separation, peak power, and single-pulse energy of the dissipative solitons pairs.

  13. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber

    Science.gov (United States)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng

    2018-05-01

    We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.

  14. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  15. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  16. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  17. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Directory of Open Access Journals (Sweden)

    Malik Kemiche

    2018-01-01

    Full Text Available We exploit slow light (high ng modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28, this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate of the pulsed laser signal.

  18. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    Science.gov (United States)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration 59 dB) and relative intensity noise <-101 dBc / Hz.

  19. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    International Nuclear Information System (INIS)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm −1 and the disappearance of the 2D-band peak at 2700 cm −1 . The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth. (letter)

  20. Quantum dot cadmium selenide as a saturable absorber for Q-switched and mode-locked double-clad ytterbium-doped fiber lasers

    Science.gov (United States)

    Mahyuddin, M. B. H.; Latiff, A. A.; Rusdi, M. F. M.; Irawati, N.; Harun, S. W.

    2017-08-01

    This paper demonstrates the integration of quantum dot (QD) cadmium selenide (CdSe) nanoparticles, which is embedded into polymethyl methacrylate (PMMA) film into an ytterbium-doped fiber laser (YDFL) cavity to produce Q-switched and mode-locked fiber lasers. The QD CdSe based film functions as a saturable absorber (SA). For Q-switching operation, stable pulse is generated within 970-1200 mW pump power, with tunable repetition rate and pulse width of 24.5-40.5 kHz and 6.8-3.7 μs, respectively. Maximum pulse energy and peak power are obtained about 1.1 μJ and 0.28 W, respectively. As we tune the polarization state of the laser cavity and use a single QD CdSe film, the mode-locking operation could also be generated within 310-468 mW pump power with repetition rate of 14.5 MHz and pulse width of 3.5 ps. Maximum pulse energy and peak power are obtained about 2 nJ and 0.11 W, respectively. These results may contribute to continuous research work on laser pulse generation, providing new opportunities of CdSe material in photonics applications.

  1. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    Science.gov (United States)

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  2. Fiber optical parametric oscillator based on photonic crystal fiber pumped with all-normal-dispersion mode-locked Yb:fiber laser

    International Nuclear Information System (INIS)

    Gou Dou-Dou; Yang Si-Gang; Zhang Lei; Wang Xiao-Jian; Chen Hong-Wei; Chen Ming-Hua; Xie Shi-Zhong; Chen Wei; Luo Wen-Yong

    2014-01-01

    We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges from 1018 nm to 1038 nm for the idler wavelength and from 1097 nm to 1117 nm for the signal wavelength by tuning the pump wavelength and the cavity length. In order to obtain the desired fiber with a zero dispersion wavelength around 1060 nm, eight samples of photonic crystal fibers with gradually changed structural parameters are fabricated for the reason that it is difficult to accurately customize the structural dimensions during fabrication. We verify the usability of the fabricated fiber experimentally via optical parametric generation and conclude a successful procedure of design, fabirication, and verification. A seed source of home-made all-normal-dispersion mode-locked ytterbium-doped fiber laser with 38.57 ps pulsewidth around the 1064 nm wavelength is used to pump the fiber optical parametric oscillator. The wide picosecond pulse pump laser enables a larger walk-off tolerance between the pump light and the oscillating light as well as a longer photonic crystal fiber of 20 m superior to the femtosecond pulse lasers, resulting in a larger parametric amplification and a lower threshold pump power of 15.8 dBm of the fiber optical parametric oscillator. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. The search for solid state fusion lasers

    International Nuclear Information System (INIS)

    Weber, M.J.

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs

  4. Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 µm Fourier domain mode-locked wavelength-swept laser

    International Nuclear Information System (INIS)

    Lee, Byoung Chang; Jeon, Min Yong; Jung, Eun-Joo; Kim, Chang-Seok

    2010-01-01

    We demonstrate dynamic and static strain fiber Bragg grating (FBG) sensor array interrogation using a 1.3 µm Fourier-domain mode-locked (FDML) wavelength-swept laser. The FDML wavelength-swept laser provides a high speed scanning rate and wide scanning bandwidth. Using the FDML wavelength swept laser, we measure the performances of static strain sensor interrogation for both time and spectral domains. The slope coefficients for the measured relative wavelength difference and relative time delay from the static strain are 0.8 pm/µstrain and 0.086 ns/µstrain, respectively. We demonstrate the dynamic response of the FBG sensor array with a 100 Hz modulating strain based on the FDML wavelength-swept laser at a 40.6 kHz scanning rate. The FBG sensor interrogation system using the FDML wavelength-swept laser can be realized for high-speed and high-sensitivity monitoring systems

  5. Diode array pumped, non-linear mirror Q-switched and mode-locked ...

    Indian Academy of Sciences (India)

    Abstract. A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser ...

  6. Diode array pumped, non-linear mirror Q-switched and mode-locked ...

    Indian Academy of Sciences (India)

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  7. Diode array pumped, non-linear mirror Q-switched and mode-locked

    Indian Academy of Sciences (India)

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  8. Solid state laser systems for space application

    Science.gov (United States)

    Kay, Richard B.

    1994-01-01

    Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.

  9. Influence of different approaches for dynamical performance optimization of monolithic passive colliding-pulse mode-locked laser diodes emitting around 850 nm

    Science.gov (United States)

    Prziwarka, T.; Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Weyers, M.; Knigge, A.; Tränkle, G.

    2018-02-01

    Monolithic laser diodes which generate short infrared pulses in the picosecond and sub-picosecond ranges with high peak power are ideal sources for many applications like e.g. THz-time-domain spectroscopy (TDS) scanning systems. The achievable THz bandwidth is limited by the length of the optical pulses. Due to the fact that colliding-pulse mode locking (CPM) leads to the shortest pulses which could reached by passive mode locking, we experimentally investigated in detail the dynamical and electro optical performance of InGaAsP based quantum well CPM laser diodes with well-established vertical layer structures. Simple design modifications whose implementation is technically easy were realized. Improvements of the device performance in terms of pulse duration, output power, and noise properties are presented in dependence on the different adaptions. From the results we extract an optimized configuration with which we have reached pulses with durations of ≍1.5 ps, a peak power of > 1 W and a pulse-to-pulse timing jitter < 200 fs. The laser diodes emit pulses at a wavelength around 850 nm with a repetition frequency of ≍ 12.4 GHz and could be used as pump source for GaAs antennas to generate THz-radiation. Approaches for reducing pulse width, increasing output power, and improving noise performance are described.

  10. Towards composite solid state laser materials

    International Nuclear Information System (INIS)

    Auzel, F.

    1998-01-01

    The largest recent advance in the field of solid state materials is the exponential development of the erbium doped fibre amplifiers, the so-called EDFAs, which are already implemented in many telecommunication systems. One is already interested in the evolution of such amplifiers towards more compact devices which could be obtained through erbium doped wave guide amplifiers. The conditions for wave guide amplifiers are first discussed showing that it will be difficult to limit the active length to less than a few tenths of a centimetre in usual glasses without having to increase the active ion concentration up to the point where self-quenching reduces prohibitively the quantum efficiency of the amplifying transition. This leads us to consider new glassy materials where the inhomogeneous linewidth of the active ions shall be reduced in order to correlatively increase the gain cross-sections. An historical review of such an approach will be presented. Then we show that composite materials of the vitroceramic type where the active rare earth ion stays only in the microcrystalline phase, provide materials with reduced inhomogeneous broadening and with crystal type optical spectra though obtained by glass technics. Evaluations of the gain cross-sections indicate increases of at least 100%. Such composite materials may so pave the way for wave guide amplifiers. (orig.)

  11. Highly efficient solid-state waveguide lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Geskus, D.; Bernhardi, Edward; van Dalfsen, Koop; Worhoff, Kerstin; de Ridder, R.M.

    This paper reviews our recent results on highly efficient rare-earth-ion-doped planar and channel waveguide lasers in crystalline potassium double tungstates and amorphous aluminum oxide on silicon chips.

  12. Photodynamics and physics behind tunable solid-state lasers

    Science.gov (United States)

    Alfano, R. R.; Petricevic, V.; Demos, S. G.

    1991-02-01

    Research was focused in two areas. The use of excite-and-probe anti-Stokes Raman scattering apparatus, the nonequilibrium phonons which participate in the overall complex nonradiative decay in tunable solid state laser crystals, were directly identified. Rise and decay behavior of different Raman-active phonon modes were measured. A new laser ion, Chromium 4(+) in chromium-doped forsterite was discovered, and its spectroscopic and laser characteristics were investigated.

  13. Optical frequency comb generator based on a monolithically integrated passive mode-locked ring laser with a Mach-Zehnder interferometer.

    Science.gov (United States)

    Corral, V; Guzmán, R; Gordón, C; Leijtens, X J M; Carpintero, G

    2016-05-01

    We report the demonstration of an optical-frequency comb generator based on a monolithically integrated ring laser fabricated in a multiproject wafer run in an active/passive integration process in a generic foundry using standardized building blocks. The device is based on a passive mode-locked ring laser architecture, which includes a Mach-Zehnder interferometer to flatten the spectral shape of the comb output. This structure allows monolithic integration with other optical components, such as optical filters for wavelength selection, or dual wavelength lasers for their stabilization. The results show a -10  dB span of the optical comb of 8.7 nm (1.08 THz), with comb spacing of 10.16 GHz. We also obtain a flatness of 44 lines within a 1.8 dB power variation.

  14. Advanced Solid-state Lasers - to Ignition and Beyond

    International Nuclear Information System (INIS)

    Marshall, C.; Bibeau, C.; Orth, C; Meier, W.R.; Payne, S.; Sutton, S.

    1998-01-01

    This brochure concentrates on the diode-pumped solid-state laser. Surrounding it on the cover are some of the primary technological developments that make it a candidate for the means by which inertial confinement fusion will create inertial fusion energy as an inexhaustible source of electric power

  15. A new solid-state passive switch for neodymium lasers

    Science.gov (United States)

    Ziul'Kov, V. A.; Kazachenko, A. E.; Kotov, S. G.; Kovalev, D. V.; Stavrov, A. A.

    1992-07-01

    A new passive modulator based on CuInS2(1-x)Se2x-doped glass is proposed for Q-switching in neodymium lasers. It is noted that these solid-state passive switches can operate in a wide spectral range and do not require the use of semiconductor compounds of high optical quality.

  16. DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring.

    Science.gov (United States)

    Peng, Guo-Hsuan; Chi, Yu-Chieh; Lin, Gong-Ru

    2008-08-18

    A novel optical TDM pulsed carrier with tunable mode spacing matching the ITU-T defined DWDM channels is demonstrated, which is generated from an optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity. The FPLD exhibits relatively weak cavity modes and a gain spectral linewidth covering >33.5 nm. The least common multiple of the mode spacing determined by both the weak-resonant-cavity FPLD and the fiber-ring cavity can be tunable by adjusting length of the fiber ring cavity or the FPLD temperature to approach the desired 200GHz DWDM channel spacing of 1.6 nm. At a specific fiber-ring cavity length, such a least-common- multiple selection rule results in 12 lasing modes between 1532 and 1545 nm naturally and a mode-locking pulsewidth of 19 ps broadened by group velocity dispersion among different modes. With an additional intracavity bandpass filter, the operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode gives rise to a shortened pulsewidth of 12 ps due to the reduced group velocity dispersion. By linear dispersion compensating with a 55-m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8 ps with its corresponding peak-to-peak chirp reducing from 9.7 to 4.3 GHz.

  17. Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers.

    Science.gov (United States)

    Adler, Desmond C; Huber, Robert; Fujimoto, James G

    2007-03-15

    Buffered Fourier domain mode-locked (FDML) lasers are demonstrated for dynamic phase-sensitive optical coherence tomography (OCT) and 3D OCT phase microscopy. Systems are operated at sweep speeds of 42, 117, and 370 kHz, and displacement sensitivities of 39, 52, and 102 pm are achieved, respectively. Sensitivities are comparable to spectrometer-based OCT phase microscopy systems, but much faster acquisition speeds are possible. An additional factor of sqrt 2 improvement in noise performance is observed for differential phase measurements, which is important for Doppler OCT. Dynamic measurements of piezoelectric transducer motion and static 3D OCT phase microscopy are demonstrated. Buffered FDML lasers provide excellent displacement sensitivities at extremely high sweep speeds.

  18. High-pulse energy-stabilized passively mode-locked external cavity inverse bow-tie 980nm laser diode for space applications

    Science.gov (United States)

    Krakowski, M.; Resneau, P.; Garcia, M.; Vinet, E.; Robert, Y.; Lecomte, M.; Parillaud, O.; Gerard, B.; Kundermann, S.; Torcheboeuf, N.; Boiko, D. L.

    2018-02-01

    We report on multi-section inverse bow-tie laser producing mode-locked pulses of 90 pJ energy and 6.5 ps width (895 fs after compression) at 1.3 GHz pulse repetition frequency (PRF) and consuming 2.9 W of electric power. The laser operates in an 80 mm long external cavity. By translation of the output coupling mirror, the PRF was continuously tuned over 37 MHz range without additional adjustments. Active stabilization with a phase lock loop actuating on the driving current has allowed us to reach the PRF relative stability at a 2·10-10 level on 10 s intervals, as required by the European Space Agency (ESA) for inter-satellite long distance measurements.

  19. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    Science.gov (United States)

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  20. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...... lighting is that the high efficiency can be obtained at high light lumen levels in a single element emitter and thus less light sources are required to achieve a desired light level. Furthermore, the high directionality of the generated light from laser diodes increases the energy savings in many...

  1. Solid state lasers: a major direction in quantum electronics

    International Nuclear Information System (INIS)

    Shcherbakov, I.A.

    2004-01-01

    The aim of the report is to analyze development of solid-state lasers (SSL) as one of the most important avenues of the quantum electronics. The obtained intensity of a laser radiation at the focus equal to 5x10 1 0 W/cm 2 (the field intensity equal to about 5x10 1 0 V/cm 2 ) is noted to enable to observe nonlinear quantum- electrodynamic effects. Besides, one managed to increase the SSL efficiency conventionally equal to maximum 3% up to 48-50%. Paper describes new types of SSLs, namely, the crystalline fiber lasers with the lateral gradient of the index of refraction [ru

  2. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.

    Science.gov (United States)

    Liu, Zhi-Bo; He, Xiaoying; Wang, D N

    2011-08-15

    We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable absorber can be successfully fabricated. The output pulses obtained have a center wavelength, pulse width, and repetition rate of 1561.2 nm, 4.85 ns, and 7.68 MHz, respectively. This method provides a simple and efficient approach to integrate the graphene into the optical fiber system. © 2011 Optical Society of America

  3. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    Science.gov (United States)

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  4. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  5. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  6. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...... is Rhodamine 6G ClO4. This dye is shown to withstand temperatures up to 240 °C without bleaching, which makes it compatible with the thermal nanoimprint lithography process. The 1.55 µm thick dye-doped PMMA devices are fabricated on a SiO2 substrate, yielding planar waveguiding in the dye-doped PMMA with two...... propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...

  7. Mathematical solutions of rate equations of a laser-diode end-pumped passively Q-switched and mode locked Nd-laser with Cr4+:YAG polarized saturable absorber

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2012-01-01

    The intracavity frequency-doubling (IFD) of a simultaneous passively Q-switched mode-locked diode-pumped Nd 3 + - laser is studied with a polarized isotropic Cr 4 +: YAG saturable absorber. A general recurrence formula for the mode-locked pulses under the Q-switched envelope at fundamental wavelength has been reconstructed in order to analyze the temporal shape behavior of a single Q-switched envelope with mode-locking pulse trains. This formula has been derived taking into account the impact of the IFD and polarized Cr 4 +: YAG saturable absorber.The presented mathematical model describes the self-induced anisotropy appeared in the polarized Cr 4 +: YAG in the nonlinear stage of the giant pulse formation. For the anisotropic Nd 3 +: YVO 4 active medium, the generated polarized waves are assumed to be fixed through the lasing cycle. Besides, the maximum absorber initial transmission and the minimum mirror reflectivity values have been determined from the second threshold criterion. The calculated numerical results demonstrate the impact of the variation of the input laser parameters (rotational angle of the polarized crystal, absorber initial transmission and the output mirror reflectivity) on the characteristics of the output laser pulse (SH peak power, pulse width, pulse duration and shift pulse position of central mode). The calculated numerical results in this work is in good qualitative and quantitative agreement with the available experimental data reported in the references. (author)

  8. Diode-pumped all-solid-state lasers and applications

    CERN Document Server

    Parsons-Karavassilis, D

    2002-01-01

    This thesis describes research carried out by the within the Physics Department at Imperial College that was aimed at developing novel all-solid-state laser sources and investigating potential applications of this technology. A description of the development, characterisation and application of a microjoule energy level, diode-pumped all-solid-state Cr:LiSGAF femtosecond oscillator and regenerative amplifier system is presented. The femtosecond oscillator was pumped by two commercially available laser diodes and produced an approx 80 MHz pulse train of variable pulse duration with approx 30 mW average output power and a tuning range of over approx 60 nm. This laser oscillator was used to seed a regenerative amplifier, resulting in adjustable repetition rate (single pulse to 20 kHz) approx 1 mu J picosecond pulses. These pulses were compressed to approx 150 fs using a double-pass twin-grating compressor. The amplifier's performance was investigated with respect to two different laser crystals and different pul...

  9. Mode-locking via dissipative Faraday instability.

    Science.gov (United States)

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  10. Superluminescent high-efficient parametric generation in PPLN crystal with pumping by a Q-switched mode locked Nd:YAG laser

    Science.gov (United States)

    Donin, V. I.; Yakovin, D. V.; Yakovin, M. D.; Gribanov, A. V.

    2018-03-01

    We present results on parametric superluminescence in a periodically poled lithium niobate crystal pumped by a train of 45 ps pulses using a Q-switched mode locked Nd:YAG laser. The conversion efficiency (with respect to the absorbed power) was ~83%. To the best of our knowledge, this is the highest efficiency obtained with powerful superluminescent parametric sources. At the average pumping power of the laser of ~0.5 W and repetition rates of 1 and 1.7 kHz, the peak total output powers were as high as 210 and 200 kW, and the powers of the idler wavelength (3.82 µm) were 55 and 50 kW. New lines in the visible and UV spectrum were observed and are explained. The experiments demonstrated that the spectral and angular characteristics of superluminescence are determined by the pumping laser. In particular, the line width of the signal wave was close to that of the pumping line at ~200 GHz, and the divergence of the signal and idler waves depended only on the convergence (divergence) angle of the pumping radiation (30 mrad) and was independent of the wavelength.

  11. Development of a solid state laser of Nd:YLF

    Science.gov (United States)

    Doamaralneto, R.

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories. It initiates a broader project on laser development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc. Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations sigma (1,053 (MU)m) and (PI) (1.047 (MU)m) an active medium was prepared which was a crystalline plate with a convenient crystallographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mw, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials.

  12. Development of a solid state laser of Nd:YLF

    International Nuclear Information System (INIS)

    Amaral Neto, R. do.

    1984-01-01

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories, thus having a high degree of nationalization. It initiates a broader project on lasers development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc.... Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations σ (1,053 μm) and π (1,047 μm) an active medium was prepared which was a cristalline plate with a convenient crystalographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mW, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials. (Author) [pt

  13. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  14. Towards a solid-state ring laser gyroscope

    Science.gov (United States)

    El Badaoui, Noad; Morbieu, Bertrand; Martin, Philippe; Rouchon, Pierre; Pocholle, Jean-Paul; Gutty, François; Feugnet, Gilles; Schwartz, Sylvain

    2014-12-01

    In this paper, we report our recent progress towards a solid-state ring laser gyroscope (RLG), where mode competition is circumvented by active control of differential losses, and nonlinear effects are mitigated by longitudinal vibration of the gain medium. The resulting dynamics is significantly different from that of a classical helium-neon RLG, owing in particular to parametric resonances that occur when the Sagnac frequency is an integer multiple of the crystal vibration frequency. We describe the main experimental and theoretical results obtained so far, and the prospects of practical applications in the near future. xml:lang="fr"

  15. Mitigation of mode partition noise in quantum-dash Fabry-Perot mode-locked lasers using Manchester encoding and balanced detection.

    Science.gov (United States)

    Chaibi, Mohamed Essghair; Bramerie, Laurent; Lobo, Sébastien; Peucheret, Christophe

    2017-07-10

    We propose the use of Manchester encoding in conjunction with balanced detection to overcome the mode partition noise (MPN) limit of quantum-dash Fabry-Perot mode-locked lasers (QD-MLLs) used as multi-wavelength sources in short-reach applications. The proposed approach is demonstrated for a 10-mode laser, each carrying a 10-Gb/s signal. We show that bit-error-rate floors as high as 10 -4 when traditional non-return-to-zero (NRZ) modulation is employed with a single-ended detection scheme can be pushed below 10 -9 thanks to the introduction of Manchester encoding together with balanced detection. The benefit of the scheme could be attributed to the spectral shift of the Manchester spectrum, resulting in a smaller overlap with the high-relative intensity noise (RIN) region present at low frequencies, and the use of balanced detection. We clarify the origin of the performance improvement through comparisons of single-ended and balanced detection and the use of a RIN emulation technique. We unambiguously show that the use of balanced detection plays the leading role in MPN mitigation enabled by Manchester modulation.

  16. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  17. Potential of high-average-power solid state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-09-25

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels.

  18. Second-order fractional Talbot effect induced frequency-doubling optical pulse injection for 40 GHz rational-harmonic mode-locking of an SOA fiber laser

    Science.gov (United States)

    Kang, Jung-Jui; Lin, Yung-Hsiang; Lee, Chao-Kuei; Lin, Gong-Ru

    2013-09-01

    A second-order fractional Talbot effect induced frequency-doubling of a 10 GHz optical pulse-train is demonstrated to backward injection mode-lock a semiconductor optical amplifier fiber laser (SOAFL) for 40 GHz rational-harmonic mode-locking (RHML). That is, a real all-optical gain-modulation of the SOAFL can be created by injecting such a time-multiplexed but pseudo-frequency-doubled pulse-train into the cavity. The time-multiplexing pulse-train can thus be transformed into a frequency-multiplied pulse-train via cross-gain modulation (XGM). The optical pulse-train at 10 GHz is generated by nonlinearly driving an electro-absorption modulator (EAM), which experiences the second-order fractional Talbot effect after propagating through a 4 km long dispersion compensation fiber (DCF). The DCF not only plays the role of frequency-doubler but also compensates the frequency chirp of the 10 GHz optical pulse-train. The pulsewidth broadening from 22 to 60 ps for initiating the time-domain Talbot effect is simulated by the nonlinear Schrödinger equation. With careful detuning of the RF modulation power of the EAM at 5 dBm, the generated 20 GHz optical pulse-train exhibits a positive frequency chirp with minimum peak-to-peak value of 2 GHz, and the peak-amplitude fluctuation between adjacent pulses is below 1.4%. In comparison with the SOAFL pulse-train repeated at 40 GHz generated by the fourth-order purely RHML process, the optimized second-order fractional Talbot effect in combination with the second-order RHML mechanism significantly enhances the modulation-depth of RHML, thus improving the on/off extinction ratio of the 40 GHz SOAFL pulse-train from 1.8 to 5.6 dB. Such a new scheme also provides a more stable 40 GHz RHML pulse-train from the SOAFL with its timing jitter reducing from 0.51 to 0.23 ps.

  19. Theoretical Study of an Actively Mode-Locked Fiber Laser Stabilized by an Intracavity Fabry-Perot Etalon: Linear Regime

    Science.gov (United States)

    2007-07-01

    competition without a significant ncrease in the pulse duration. . MATHEMATICAL MODEL FOR THE ASER ur mathematical model of the laser is similar to...to he case 1=0. The increase in the parameter P̂ yields an ncrease in the pulse duration by a factor of approxi- ately 10. It is possible to...etalon and it increases as the finesse of the etalon ncreases . Therefore, in a laser with an etalon, the total ispersion is determined by the parameter D̂

  20. Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser.

    Science.gov (United States)

    Jenkins, M W; Adler, D C; Gargesha, M; Huber, R; Rothenberg, F; Belding, J; Watanabe, M; Wilson, D L; Fujimoto, J G; Rollins, A M

    2007-05-14

    The embryonic avian heart is an important model for studying cardiac developmental biology. The mechanisms that govern the development of a four-chambered heart from a peristaltic heart tube are largely unknown due in part to a lack of adequate imaging technology. Due to the small size and rapid motion of the living embryonic avian heart, an imaging system with high spatial and temporal resolution is required to study these models. Here, an optical coherence tomography (OCT) system using a buffered Fourier Domain Mode Locked (FDML) laser is applied for ultrahigh-speed non-invasive imaging of embryonic quail hearts at 100,000 axial scans per second. The high scan rate enables the acquisition of high temporal resolution 2D datasets (195 frames per second or 5.12 ms between frames) and 3D datasets (10 volumes per second). Spatio-temporal details of cardiac motion not resolvable using previous OCT technology are analyzed. Visualization and measurement techniques are developed to non-invasively observe and quantify cardiac motion throughout the brief period of systole (less than 50 msec) and diastole. This marks the first time that the preseptated embryonic avian heart has been imaged in 4D without the aid of gating and the first time it has been viewed in cross section during looping with extremely high temporal resolution, enabling the observation of morphological dynamics of the beating heart during systole.

  1. Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser

    Science.gov (United States)

    Jenkins, M. W.; Adler, D. C.; Gargesha, M.; Huber, R.; Rothenberg, F.; Belding, J.; Watanabe, M.; Wilson, D. L.; Fujimoto, J. G.; Rollins, A. M.

    2015-01-01

    The embryonic avian heart is an important model for studying cardiac developmental biology. The mechanisms that govern the development of a four-chambered heart from a peristaltic heart tube are largely unknown due in part to a lack of adequate imaging technology. Due to the small size and rapid motion of the living embryonic avian heart, an imaging system with high spatial and temporal resolution is required to study these models. Here, an optical coherence tomography (OCT) system using a buffered Fourier Domain Mode Locked (FDML) laser is applied for ultrahigh-speed non-invasive imaging of embryonic quail hearts at 100,000 axial scans per second. The high scan rate enables the acquisition of high temporal resolution 2D datasets (195 frames per second or 5.12 ms between frames) and 3D datasets (10 volumes per second). Spatio-temporal details of cardiac motion not resolvable using previous OCT technology are analyzed. Visualization and measurement techniques are developed to non-invasively observe and quantify cardiac motion throughout the brief period of systole (less than 50 msec) and diastole. This marks the first time that the preseptated embryonic avian heart has been imaged in 4D without the aid of gating and the first time it has been viewed in cross section during looping with extremely high temporal resolution, enabling the observation of morphological dynamics of the beating heart during systole. PMID:19546930

  2. 260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser.

    Science.gov (United States)

    Sobon, Grzegorz; Sotor, Jaroslaw; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Abramski, Krzysztof M

    2015-11-30

    We report on generation of 260 fs-short pulses with energy of 1.1 nJ from a fully fiberized, monolithic Tm-doped fiber laser system. The design comprises a simple, graphene-based ultrafast oscillator and an integrated all-fiber chirped pulse amplifier (CPA). The system generates 110 mW of average power at 100.25 MHz repetition rate and central wavelength of 1968 nm. This is, to our knowledge, the highest pulse energy generated from a fully fiberized sub-300 fs Tm-doped laser, without the necessity of using grating-based dispersion compensation. Such compact, robust and cost-effective system might serve as a seed source for nonlinear frequency conversion or mid-infrared supercontinuum generation.

  3. Q-Switched and Mode Locked Short Pulses from a Diode Pumped, YB-Doped Fiber Laser

    Science.gov (United States)

    2009-03-26

    polarization maintaining (PM) at a length of 8.7 ± 0.1 m. The surface area of the PANDA -style fiber is pictured in figure 3.3 (a) [46]. The core diameter was...diode- pumped c-cut Nd:GdVO4 laser,” Optics Communications 231 (2004) pg 365-369. 36. W. G. Wagner, B. A. Lengyel, "Evolution of the giant pulse in a

  4. Solid state laser driver for an ICF reactor

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1988-01-01

    A conceptual design is presented of the main power amplifier of a multi-beamline, multi-megawatt solid state ICF reactor driver. Simultaneous achievement of useful beam quality and high average power is achieved by a proper choice of amplifier geometry. An amplifier beamline consists of a sequence of face-pumped rectangular slab gain elements, oriented at the Brewster angle relative to the beamline axis, and cooled on their large faces by helium gas that is flowing subsonically. The infrared amplifier output radiation is shifted to an appropriately short wavelength ( 10% (including all flow cooling input power) when the amplifiers are pumped by efficient high-power AlGaAs semiconductor laser diode arrays. 11 refs., 3 figs., 7 tabs

  5. 41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band

    DEFF Research Database (Denmark)

    Dontabactouny, M.; Piron, R.; Klaime, K.

    2012-01-01

    This paper reports recent results on InAs/InP quantum dash-based, two-section, passively mode-locked lasers pulsing at 41 GHz and 10.6 GHz and emitting at 1.59 mu m at 20 degrees C. The 41-GHz device (1 mm long) starts lasing at 25 mA under uniform injection and the 10.6 GHz (4 mm long) at 71 m...

  6. Effect of narrow spectral filter position on the characteristics of active similariton mode-locked femtosecond fiber laser.

    Science.gov (United States)

    Kotb, Hussein; Abdelalim, Mohamed A; Anis, Hanan

    2015-11-16

    A significant change in active similariton characteristics, both numerically and experimentally, is observed as a function of the location of the lumped spectral filter. The closer the spectral filter is to the input of the Yb(3+)-doped fiber, the shorter the de-chirped pulse width. The peak power of the de-chirped pulse has its maximum value at a certain location of the spectral filter. Four different positions of the spectral filter inside the laser cavity have been theoretically studied and two of them have been verified experimentally.

  7. LASERS: Solid-state tunable laser with a forsterite converter

    Science.gov (United States)

    Minkov, B. I.; Nazarenko, P. N.; Stavrov, A. A.

    1994-09-01

    The energy efficiency of a forsterite laser was investigated. Calculations show that the use of real components limits the efficiency to ~10%. Some ways of optimising the parameters of such a laser are suggested. The calculated results are on the whole in agreement with the experimental data, including those obtained by other authors. A description is given of the first all-solid forsterite laser and ways of improving it further are proposed.

  8. Design of a miniaturized solid state laser for automated assembly

    Science.gov (United States)

    Funck, Max C.; Dolkemeyer, Jan; Morasch, Valentin; Loosen, Peter

    2010-05-01

    A miniaturized solid state laser for marking applications has been developed featuring novel assembly strategies to reduce size, cost and assembly effort. Design and setup have been laid out with future automation of the assembly in mind. Using a high precision robot the optical components composing the laser system are directly placed on a planar substrate providing accurate positioning and alignment within a few microns. No adjustable mounts for mirrors and lenses are necessary, greatly simplifying the setup. Consisting of either a ND:YAG or a Nd:YVO4 crystal pumped with a fiber coupled diode laser, a q-switch for pulse generation and a beam expander the entire assembly is confined in a 100ml space and delivers 4 W of continuous output power at 1.064 μm with an efficiency greater than 40%. Pulse lengths of 10-20 ns and repetition rates of up to 150 kHz have been obtained with an acousto-optic modulator. In addition, a custom designed electro-optic modulator with integrated high voltage switch has been realized. A supply unit for the entire system, including scanner and water cooling, is integrated in a 19" industrial chassis and can be operated via a graphical user interface on a standard personal computer.

  9. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  10. Fundamental and harmonic soliton mode-locked erbium-doped fiber laser using single-walled carbon nanotubes embedded in poly (ethylene oxide) film saturable absorber

    Science.gov (United States)

    Rosdin, R. Z. R. R.; Zarei, A.; Ali, N. M.; Arof, H.; Ahmad, H.; Harun, S. W.

    2015-01-01

    This paper presents a simple, compact and low cost mode-locked Erbium-doped fiber laser (EDFL) using a single-walled carbon nanotubes (SWCNTs) embedded in poly(ethylene oxide) (PEO) film as a passive saturable absorber. The film was fabricated using a prepared homogeneous SWCNT solution, which was mixed with a diluted PEO solution and casted onto a glass petri dish to form a thin film by evaporation technique. The film, with a thickness of 50 μm, is sandwiched between two fiber connectors to construct a saturable absorber, which is then integrated in an EDFL cavity to generate a self-started stable soliton pulses operating at 1560.8 nm. The soliton pulse starts to lase at 1480 nm pup power threshold of 12.3 mW to produce pulse train with repetition rate of 11.21 MHz, pulse width of 1.02 ps, average output power of 0.65 mW and pulse energy of 57.98 pJ. Then, we observed the 4th, 7th and 15th harmonic of fundamental cavity frequency start to occur when the pump powers are further increased to 14.9, 17.5 and 20.1 mW, respectively. The 4th harmonic pulses are characterized in detail with a repetition rate of 44.84 MHz, a transform-limited pulse width of 1.19 ps, side-mode suppression ratio of larger than 20 dB and pulse energy of 9.14 pJ.

  11. Diode-pumped two micron solid-state lasers

    International Nuclear Information System (INIS)

    Elder, I.F.

    1997-01-01

    This thesis presents an investigation of diode-pumped two micron solid-state lasers, concentrating on a comparison of the cw room temperature operation of Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Dopant concentrations in YAP were 4.2% thulium and 0.28% holmium; in YLF they were 6% thulium and 0.4% holmium. Thermal modelling was carried out in order to provide an insight into the thermal lensing and population distributions in these materials. Laser operation was achieved utilising an end-pumping geometry with a simple two mirror standing wave resonator. The pump source for these experiments was a 3 W laser diode. Maximum output power was achieved with Tm:YAP, generating 730 mW of laser output, representing 42% conversion efficiency in terms of absorbed pump power. Upper bounds on the conversion efficiency of Tm,Ho:YAP and Tm,Ho:YLF laser crystal of 14% and 30% were obtained, with corresponding output powers of 270 and 660 mW. In all three cases, the output beam was TEM 00 in nature. Visible upconversion fluorescence bands in the green and red were identified in Tm,Ho:YAP and Tm,Ho:YLF, with additional blue emission from the latter, all assigned to transitions on holmium. The principal upconversion mechanisms in these materials all involved the holmium first excited state. Upconversion in Tm:YAP was negligible. The spectral output of Tm:YAP consisted of a comb of lines in the range 1.965 to 2.020 μm. For both the double-doped crystals, the laser output was multilongitudinal mode on a single transition, wavelength 2.120 μm in YAP, 2.065 μm in YLF. In the time domain the output of Tm:YAP was dominated by large amplitude spiking, unlike both of the double-doped laser crystals. The long lifetime of the thulium upper laser level (4.4 ms) provided very weak damping of the spiking. Excitation sharing between thulium and holmium, with a measured characteristic lifetime in YAP of 11.9 μs and YLF of 14.8 μs, provided strong damping of any spiking behaviour. (author)

  12. Toward high brightness, multi-kilowatt solid state lasers

    International Nuclear Information System (INIS)

    Zapata, L.E.; Manes, K.R.

    1990-11-01

    High average power (HAP) solid state laser output with improved beam quality has introduced new capabilities in materials processing. At the 500 W level and with a beam quality of a ''few'' times the diffraction limit, the General Electric NY slab is able to drill 5 cm of stainless steel in a few seconds. We expect that 2--3 kW of near infrared laser output in a low order spatial mode would enable metal working now unknown to industry. The HAP output of slab lasers is limited by the size of the available laser crystals and the pump power. Core free, six cm diameter NY boules have been grown on an experimental basis. High optical quality NG can be obtained up to 10 cm in diameter. We present the results of our modeling based on these crystals pumped by advanced arc-lamps or laser diode arrays. We project HAP laser outputs of 1.6 kW from an existing Vortek pumped NG oscillator and about 2 kW from diode pumped NY device. Several kW of laser output can be expected from two such slabs in a MOPA configuration before optical damage limits are reached. The three dimensional stress-optic code which we used to optimize our designs, was normalized to available experimental data obtained with the above NG slab at the 500 W level and a 40 W diode pumped NY test bed. Our calculations indicate the essential parameters for attainment of high beam quality. Cooling uniformity across the pumped faces of the slab is critical and the location of the transition between pumped and un-pumped regions towards the slab tips is very important. A flat pumping profile was found to be desirable and predicted one wave of distortion which should be correctable over about 75% of the aperture however, an even better wavefront was predicted over 90% of the aperture when the regions near the edges of the slab were slightly over-pumped relative to the central regions and the regions near to the ends were tapered to compensate for transition effects

  13. New infrared solid state laser materials for CALIOPE

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1994-01-01

    Tunable infrared laser light may serve as a useful means by which to detect the presence of the targeted effluents. Since optical parametric oscillators (OPOs) have proven to be a versatile method of generating coherent light from the ultraviolet to the mid-infrared, this technology is a promising choice by which to service the CALIOPE applications. In addition, since some uncertainty remains regarding the precise wavelengths and molecules that will be targeted, the deployment of OPOs retains the greatest amount of wavelength flexibility. Another approach that the authors are considering is that of generating tunable infrared radiation directly with a diode-pumped solid state laser (DPSSL). One important advantage of a DPSSL is that it offers flexible pulse format modes that can be tailored to meet the needs of a particular application and target molecule. On the other hand, direct generation by a tunable DPSSL will generally be able to cover a more limited wavelength range than is possible with OPO technology. In support of the CALIOPE objectives the authors are exploring the potential for laser action among a class of materials comprised of transition metal-doped zinc chalcogenide crystals (i.e., ZnS, ZnSe and ZnTe). The Cr 2+ , Co 2+ and Ni 2+ dopants were selected as the most favorable candidates, on the basis of their documented spectral properties in the scientific literature. Thus far, the authors have characterized the absorption and emission properties of these ions in the ZnS and ZnSe crystals. The absorption spectra are used to determine the preferred wavelength at which the crystal should be pumped, while the emission spectra reveal the extent of the tuning range potentially offered by the material. In addition, measurements of the emission lifetime as a function of temperature turn out to be quite useful, since this data is suggestive of the room temperature emission yield

  14. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-07-24

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities.

  15. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  16. Self-Starting Solid-State Laser with Dynamic Self-Adaptive Cavity

    National Research Council Canada - National Science Library

    Antipov, Oleg

    2002-01-01

    ...: The present project is directed at the development of physical principles of creation of solid-state lasers of a new class with cavity completed by dynamic holographic gratings induced in nonlinear...

  17. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  18. Can solid-state laser technology serve usefully beyond fusion ignition facilities?

    International Nuclear Information System (INIS)

    Payne, S.A.; Powell, H.T.; Krupke, W.F.

    1995-01-01

    We have explored the major technical and conceptual issues relating to the suitability of a diode-pumped solid state laser as a driver for an inertial fusion energy power plant. While solid state lasers have long served as the workhorse of inertial confinement fusion physics studies, the deployment of a driver possessing adequate efficiency, reliability, and repetition rate for inertial fusion energy requires the implementation of several technical innovations discussed in this article

  19. All-Solid-State Drivers for High Power Excimer Lasers Used in Projection Gas Immersion Laser Doping

    National Research Council Canada - National Science Library

    Jacob, Jonah

    2001-01-01

    The objective of this SBIR program is to develop all-solid-state pulsed modulators to drive the high power excimer lasers required to commercialize the Projection Gas Immersion Laser Doping (P-GILD) process...

  20. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  1. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  2. Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers

    NARCIS (Netherlands)

    Agazzi, L.; Bernhardi, Edward; Worhoff, Kerstin; Pollnau, Markus

    Measurement of the laser relaxation-oscillation frequency as a function of pump rate allows one to determine parameters of the laser medium or cavity. We show that luminescence quenching of a fraction of the rare-earth ions in a solid-state laser affects the relaxation oscillations, resulting in

  3. 100  J-level nanosecond pulsed diode pumped solid state laser.

    Science.gov (United States)

    Banerjee, Saumyabrata; Mason, Paul D; Ertel, Klaus; Jonathan Phillips, P; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilar, Jan; Smith, Jodie; Butcher, Thomas; Lintern, Andrew; Tomlinson, Steph; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John L

    2016-05-01

    We report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser. This demonstration confirms the energy scalability of the diode pumped optical laser for experiments laser architecture.

  4. High power, high beam quality solid state lasers for materials processing applications

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L.A.; Dane, C.B.; Hermann, M.R. [and others

    1994-08-01

    The Laser Science and Technology Department at Lawrence Livermore National Laboratory is developing solid state lasers with high average power and high beam quality. Specific systems include a laser to generate 10 to 14 {angstrom} x-rays for proximity print lithography, a 400 mJ, 500 Hz laser for 130 {angstrom} projection lithography and unique systems for speckle imaging, laser radars and medical treatments.

  5. Hybrid heat capacity-moving slab solid-state laser

    Science.gov (United States)

    Stappaerts, Eddy A.

    2005-03-01

    Laser material is pumped and its stored energy is extracted in a heat capacity laser mode at a high duty factor. When the laser material reaches a maximum temperature, it is removed from the lasing region and a subsequent volume of laser material is positioned into the lasing region to repeat the lasing process. The heated laser material is cooled passively or actively outside the lasing region.

  6. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium.

    Science.gov (United States)

    Eismann, U; Bergschneider, A; Sievers, F; Kretzschmar, N; Salomon, C; Chevy, F

    2013-04-08

    We present an all-solid-state laser source emitting up to 2.1 W of single-frequency light at 671 nm developed for laser cooling of lithium atoms. It is based on a diode-pumped, neodymium-doped orthovanadate (Nd:YVO(4)) ring laser operating at 1342 nm. Optimization of the thermal management in the gain medium results in a maximum multi-frequency output power of 2.5 W at the fundamental wavelength. We develop a simple theory for the efficient implementation of intracavity second harmonic generation, and its application to our system allows us to obtain nonlinear conversion efficiencies of up to 88%. Single-mode operation and tuning is established by adding an etalon to the resonator. The second-harmonic wavelength can be tuned over 0.5 nm, and mode-hop-free scanning over more than 6 GHz is demonstrated, corresponding to around ten times the laser cavity free spectral range. The output frequency can be locked with respect to the lithium D-line transitions for atomic physics applications. Furthermore, we observe parametric Kerr-lens mode-locking when detuning the phase-matching temperature sufficiently far from the optimum value.

  7. Parasitic oscillation suppression in solid state lasers using optical coatings

    Science.gov (United States)

    Honea, Eric C.; Beach, Raymond J.

    2005-06-07

    A laser gain medium having a layered coating on at least certain surfaces of the laser gain medium. The layered coating having a reflective inner material and an absorptive scattering outside material.

  8. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    Science.gov (United States)

    Zapata, Luis E.

    1994-01-01

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

  9. Solid-state-based laser system as a replacement for Ar+ lasers.

    Science.gov (United States)

    Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas

    2016-09-15

    We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.

  10. Generation of Laguerre-Gaussian Beams Using a Diode Pumped Solid-State Digital Laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2015-10-01

    Full Text Available The solid state digital laser was used in generation of Laguerre-Gaussian modes, LGpl, of different orders. This work demonstrates that we can generate high-order Laguerre-Gaussian modes with high purity using a digital laser....

  11. UV solid state laser ablation of intraocular lenses

    Science.gov (United States)

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a

  12. Measurement of product of solid state laser materials by an ...

    Indian Academy of Sciences (India)

    In this method a microchip laser is formed by keeping a small piece of the sample in plane–plane resonator and a diode laser (808 nm) is used for pumping. The pump power induced thermal lensing effect is used to make the cavity stable. The cavity mode area is estimated by measuring the thermal lens focal length at the ...

  13. The future of diode pumped solid state lasers and their applicability to the automotive industry

    Science.gov (United States)

    Solarz, R.; Beach, R.; Hackel, L.

    1994-03-01

    The largest commercial application of high power lasers is for cutting and welding. Their ability to increase productivity by introducing processing flexibility and integrated automation into the fabrication process is well demonstrated. This paper addresses the potential importance of recent developments in laser technology to further impact their use within the automotive industry. The laser technology we will concentrate upon is diode laser technology and diode-pumped solid-state laser technology. We will review present device performance and cost and make projections for the future in these areas. Semiconductor laser arrays have matured dramatically over the last several years. They are lasers of unparalleled efficiency (greater than 50%), reliability (greater than 10,000 hours of continuous operation), and offer the potential of dramatic cost reductions (less than a dollar per watt). They can be used directly in many applications or can be used to pump solid-state lasers. When used as solid-state laser pump arrays, they simultaneously improve overall laser efficiency, reduce size, and improve reliability.

  14. Solid-state ring laser gyro for aerospace applications

    Science.gov (United States)

    Schwartz, Sylvain; Gutty, François; Feugnet, Gilles; Pocholle, Jean-Paul; Desilles, Gaël.

    2017-11-01

    We report on the development of a prototype solidstate ring laser gyro based on a diode-pumped neodymium-doped yttrium aluminum garnet crystal as the gain medium. We describe in this paper how we circumvent mode competition between the counter-propagating modes using a feedback loop acting on the differential losses. We then show how the non-linear frequency response can be significantly improved by vibrating the gain medium along the laser axis, leading to a behavior similar as a typical Helium-Neon ring laser gyro. We finally discuss the undergoing improvements for achieving high inertial performance with this device, with significant potential benefits in terms of cost and robustness as compared to other highperformance gyro technologies.

  15. Solid state luminescent light filters for neodymium lasers

    Science.gov (United States)

    Verenik, V. N.; Koptev, V. G.; Razvina, T. M.; Rzhevskiy, M. B.; Stavrov, A. A.; Starostina, G. P.

    1985-01-01

    The spectral luminescent properties of a number of optical filters made of doped quartz glasses are compared; their influence on the lasing characteristics of a YAG:Nd sup 3+ laser are investigated. The studies employed KlZh5 glass, as well as quartz glass made of synthetic amorphous and crystalline silicon dioxide and containing Sm sup 2+. Luminescence kinetics were investigated by using an Sl-70 oscillograph. It is found that the use of quartz glasses doped with Sm sup 2+ ions and KlZh5 glass for light figures can increase the optical pumping efficiency of pulsed lasers in certain cases.

  16. Solid state laser driver for Extreme Ultraviolet Lithography. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, L.E.; Honig, J.; Reichert, P.; Hackel, L.A.

    1994-05-01

    We describe the design and initial performance of a Nd:YAG laser master oscillator/phase conjugated power amplifier as a driver for extreme ultraviolet lithography. The design provides 0.5 to 1 joule per pulse with about 5 ns pulse width and excellent beam quality up through 1.5 kHz repetition frequency.

  17. Measurement of product of solid state laser materials by an ...

    Indian Academy of Sciences (India)

    In this method, plano-concave resonator was used for laser oscillation and the cavity mode area was calculated from the resonator parameters. However, this method is also not accounting for the pump power induced thermal lensing effect in the crystal and due to this the value of the cavity waist radius calculated from the ...

  18. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  19. High energy bursts from a solid state laser operated in the heat capacity limited regime

    Science.gov (United States)

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  20. Inkjet-printed vertically emitting solid-state organic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mhibik, Oussama; Chénais, Sébastien; Forget, Sébastien [Laboratoire de Physique des Lasers - Equipe Photonique Organique, Université PARIS 13 et CNRS (UMR 7538), 99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Defranoux, Christophe [SEMILAB Semiconductor Physics Laboratory Co., Ltd., Prielle Kornelia u.2., H-1117 Budapest (Hungary); Sanaur, Sébastien, E-mail: sanaur@emse.fr [Département of Bioelectronics, Centre Microélectronique de Provence, Ecole Nationale Supérieure des Mines de Saint Etienne, 880, route de Mimet, 13541 Gardanne (France)

    2016-05-07

    In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically emitting thin-film organic lasers and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 μJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several μm thicknesses are realized, thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficient of 0.66 cm{sup −1} at 550–680 nm. Standard laser dyes like Pyrromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size “printed pixels” of 50 mm{sup 2} present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50 μm × 50 μm AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost, and can be used as fully disposable items. This work opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated.

  1. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  2. Code for three dimensional analysis of thermal birefringence in solid-state lasers

    International Nuclear Information System (INIS)

    Furukawa, Hiroyuki; Yamanaka, Chiyoe; Hiura, Norimitsu; Matsui, Hiroki; Yoshida, Takuji; Kiriyama, Hiromitsu; Yamanaka, Masanobu; Izawa, Yasukazu; Nakai, Sadao

    1999-01-01

    A three dimensional (3D) analysis code of thermal birefringence in solid-state lasers was developed. Basic equations include thermal conduction, absorption of laser energy, thermal stress and thermal birefringence. Relative phase shifts induced by thermal effects measured and obtained by simulation are in good agreement with quantitatively. Edge effects of thermal birefringence are quantitatively estimated by 3D simulation. Those are unable to be estimated by 2D analysis. (author)

  3. Response of microchip solid-state laser to external frequency-shifted feedback and its applications

    OpenAIRE

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-01-01

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without p...

  4. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    International Nuclear Information System (INIS)

    Mori, Yoshitaka; Sekine, Takashi; Komeda, Osamu

    2014-01-01

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  5. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  6. All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

    Science.gov (United States)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei

    2017-12-01

    A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.

  7. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    Science.gov (United States)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  8. Bistability of self-modulation oscillations in an autonomous solid-state ring laser

    International Nuclear Information System (INIS)

    Dudetskii, V Yu

    2013-01-01

    Bistable self-modulation regimes of generation for a ring YAG : Nd chip laser with the counterpropagating waves asymmetrically coupled via backward scattering are simulated numerically. Two branches of bistable self-modulation regimes of generation are found in the domain of the parametric resonance between the selfmodulation and relaxation oscillations. The self-modulation regimes observed in earlier experiments pertain to only one of the branches. Possible reasons for such a discrepancy are considered, related to the influence of technical and natural noise on the dynamics of solid-state ring lasers. (control of laser radiation parameters)

  9. Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Orth, C., LLNL

    1998-02-23

    We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of {approximately}10%. Our modeling indicates that the laser will be able to meet its performance goals.

  10. Analytical thermal model for end-pumped solid-state lasers

    Science.gov (United States)

    Cini, L.; Mackenzie, J. I.

    2017-12-01

    Fundamentally power-limited by thermal effects, the design challenge for end-pumped "bulk" solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.

  11. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  12. All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10-14-level frequency instability and 1-fs-level jitter over 1  s.

    Science.gov (United States)

    Kwon, Dohyeon; Kim, Jungwon

    2017-12-15

    We report on all-fiber Michelson interferometer-based repetition-rate stabilization of femtosecond mode-locked lasers down to 1.3×10 -14 frequency instability and 1.4 fs integrated jitter in a 1 s time scale. The use of a compactly packaged 10 km long single-mode fiber (SMF)-28 fiber link as a timing reference allows the scaling of phase noise at a 10 GHz carrier down to -80  dBc/Hz at 1 Hz Fourier frequency. We also tested a 500 m long low-thermal-sensitivity fiber as a reference and found that, compared to standard SMF-28 fiber, it can mitigate the phase noise divergence by ∼10  dB/dec in the 0.1-1 Hz Fourier frequency range. These results suggest that the use of a longer low-thermal-sensitivity fiber may achieve sub-femtosecond integrated timing jitter with sub-10 -14 -level frequency instability in repetition rate by a simple and robust all-fiber-photonic method.

  13. Analytical identification of soliton dynamics in normal-dispersion passively mode-locked fiber lasers: from dissipative soliton to dissipative soliton resonance.

    Science.gov (United States)

    Lin, Wei; Wang, Simin; Xu, Shanhui; Luo, Zhi-Chao; Yang, Zhongmin

    2015-06-01

    A combined analytical approach to classify soliton dynamics from dissipative soliton to dissipative soliton resonance (DSR) is developed based on the established laser models. The approach, derived from two compatible analytical solutions to the complex cubic-quintic Ginzburg-Landau equation (CQGLE), characterizes the pulse evolution process from both algebraic and physical points of view. The proposed theory is proved to be valid in real world laser oscillators according to numerical simulations, and potentially offers guideline on the design of DSR cavity configurations.

  14. Theoretical simulation of a 2 micron airborne solid state laser anemometer

    Science.gov (United States)

    Imbert, Beatrice; Cariou, Jean-Pierre

    1992-01-01

    In the near future, military aircraft will need to know precisely their true airspeed in order to optimize flight conditions. In comparison with classical anemometer probes, an airborne Doppler lidar allows measurement of the air velocity without influence from aircraft aerodynamic disturbance. While several demonstration systems of heterodyne detection using a CO2 laser have been reported, improvements in the technology of solid state lasers have recently opened up the possibility that these devices can be used as an alternative to CO2 laser systems. In particular, a diode pumped Tm:Ho:YAG laser allows a reliable compact airborne system with an eye safe wavelength (lambda = 2.09 microns) to be achieved. The theoretical study of performances of a coherent lidar using a solid state diode pumped Tm:Ho:YAG laser, caled SALSA, for measuring aircraft airspeed relative to atmospheric aerosols is described. A computer simulation was developed in order to modelize the Doppler anemometer in the function of atmospheric propagation and optical design. A clever analysis of the power budget on the detector area allows optical characteristic parameters of the system to be calculated, and then it can be used to predict performances of the Doppler system. Estimating signal to noise ratios (SNR) and heterodyne efficiency provides the available energy of speed measurement as well as a useful measurement of the alignment of the backscattered and reference fields on the detector.

  15. Diode laser pumped solid state laser. Part IV. ; Noise analysis. Handotai laser reiki kotai laser. 4. ; Noise kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-06-10

    Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.

  16. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.

    2012-01-01

    is carried out based on an automated measurement system that systematically evaluates the dynamic characteristics of the devices, focusing on the figures of merit that define the optimum performance of a pulsed laser source when considered as an OFCG. Sub-THz signals generated with both devices at 60 GHz...... topologies that can be used for the implementation of photonic integrated sub-THz CW generation....

  17. Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene

    Science.gov (United States)

    2015-07-16

    Vertical External Cavity Surface Emitting Lasers). 2)! Installation of a FTIR based temperature dependent reflectivity setup for characterizing VECSELs...and SESAMs (Semiconductor Saturable Absorber Mirrors). 3)! Demonstration of up to 6 Watts CW with InAs QD (Quantum Dot) VECSELs (1250 nm) and 15...AFRL and at other university collaborators such as the University of Arizona. 2.#Installation#of#a# FTIR #based#temperature#dependent#reflectivity

  18. Novel solid state lasers for Lidar applications at 2 μm

    Science.gov (United States)

    Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2005-09-01

    A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.

  19. Solderjet bumping technique used to manufacture a compact and robust green solid-state laser

    Science.gov (United States)

    Ribes, P.; Burkhardt, T.; Hornaff, M.; Kousar, S.; Burkhardt, D.; Beckert, E.; Gilaberte, M.; Guilhot, D.; Montes, D.; Galan, M.; Ferrando, S.; Laudisio, M.; Belenguer, T.; Ibarmia, S.; Gallego, P.; Rodríguez, J. A.; Eberhardt, R.; Tünnermann, A.

    2015-06-01

    Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.

  20. Response of microchip solid-state laser to external frequency-shifted feedback and its applications.

    Science.gov (United States)

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-10-09

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening.

  1. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  2. Damage resistant optics for a mega-joule solid-state laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Rainer, F.; Kozlowski, M.; Wolfe, C.R.; Thomas, I.; Milanovich, F.

    1990-01-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd +3 -phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd +3 -doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5--2 MJ Nd 3+ -glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 20 refs., 9 figs., 2 tabs

  3. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    Science.gov (United States)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  4. Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Shabalin, Yu V; Konyashkin, A V; Kostryukov, P V; Olenin, A N; Tunkin, V G; Morozov, V B; Rusov, V A; Telegin, L S; Yakovlev, D V

    2005-01-01

    The results of the development of repetitively pulsed, diode-pumped, electro-optically controlled picosecond Nd:YAG lasers of two designs are presented. The first design uses the active-passive mode locking with electro-optical lasing control and semiconductor saturable absorber mirrors (SESAM). This design allows the generation of 15-50-ps pulses with an energy up to 0.5 mJ and a maximum pulse repetition rate of 100 Hz. The laser of the second design generates 30-ps pulses due to combination of positive and negative electro-optical feedback and the control of the electro-optical modulator by the photocurrent of high-speed semiconductor structures. (active media. lasers)

  5. All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber

    Czech Academy of Sciences Publication Activity Database

    Sotor, J.; Pawliszewska, M.; Sobon, G.; Kaczmarek, P.; Przewolka, A.; Pasternak, I.; Cajzl, Jakub; Peterka, Pavel; Honzátko, Pavel; Kašík, Ivan; Strupinski, W.; Abramski, K.

    2016-01-01

    Roč. 41, č. 11 (2016), s. 2592-2595 ISSN 0146-9592 R&D Projects: GA ČR GA14-35256S; GA MŠk(CZ) LD15122 Institutional support: RVO:67985882 Keywords : Fiber lasers * Graphene * Mode-locked oscillators Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.416, year: 2016

  6. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers.

    Science.gov (United States)

    Ma, Jie; Lu, Shunbin; Guo, Zhinan; Xu, Xiaodong; Zhang, Han; Tang, Dingyuan; Fan, Dianyuan

    2015-08-24

    We experimentally demonstrated that few-layer black phosphorus (BP) could be used as an optical modulator for solid-state lasers to generate short laser pulses. The BP flakes were fabricated by the liquid phase exfoliation method and drop-casted on a high-reflection mirror to form a BP-based saturable absorber mirror (BP-SAM). Stable Q-switched pulses with a pulse width of 620 ns at the wavelength of 1046 nm were obtained in a Yb:CaYAlO(4) (Yb:CYA) laser with the BP-SAM. The generated pulse train has a repetition rate of 113.6 kHz and an average output power of 37 mW. Our results show that the BP-SAMs could have excellent prospective for ultrafast photonics applications.

  7. Customized ablation using an all-solid-state deep-UV laser

    Science.gov (United States)

    Korn, G.; Lenzner, M.; Kittelmann, O.; Zatonski, R.; Kirsch, M.; Kuklin, Y.

    2003-07-01

    We show first deep UV ablation results achieved with our new all solid state laser system. The system parameters allow high repetition rate ablation with a small spot diameter of about 0.250mm and a fluence of 350 mJ/cm2 at a wavelength of 210 nm using sequential frequency conversion of a diode pumped laser source. The single shot and multishot ablation rates as well as the ablation profiles have been defined using MicroProf (Fries Research and Technology GmbH, Germany). By means of computer controlled scanning we produce smooth ablation profiles corresponding to a correction of myopia, hyperopia or astigmatism. Due to the small spot size and high repetition rate of the laser we are able to generate in short time intervals complicated ablation profiles described by higher order polynomial functions which are required for the needs of customized corneal ablation.

  8. Laser properties of Fe2+:ZnSe fabricated by solid-state diffusion bonding

    Science.gov (United States)

    Balabanov, S. S.; Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2018-04-01

    The characteristics of an Fe2+:ZnSe laser at room temperature and its active elements with undoped faces were studied. Polycrystalline elements with one or two diffusion-doped internal layers were obtained by the solid-state diffusion bonding technique applied to chemical vapor deposition grown ZnSe plates preliminary doped with Fe2+ ions in the process of hot isostatic pressing. A non-chain electric-discharge HF laser was used to pump the crystals. It was demonstrated that increasing the number of doped layers allows increasing the maximum diameter of the pump radiation spot and the pump energy without the appearance of transversal parasitic oscillation. For the two-layer-doped active element with a diameter of 20 mm an output energy of 480 mJ was achieved with 37% total efficiency with respect to the absorbed energy. The obtained results demonstrate the potential of the developed technology for fabrication of active elements by the solid-state diffusion bonding technique combined with the hot isostatic pressing treatment for efficient IR lasers based on chalcogenides doped with transition metal ions.

  9. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    Science.gov (United States)

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  10. Lethality Effects of a High-Power Solid-State Laser

    Energy Technology Data Exchange (ETDEWEB)

    Boley, C D; Fochs, S N; Rubenchik, A M

    2007-08-24

    We study the material interactions of a 25-kW solid-state laser, in experiments characterized by relatively large spot sizes ({approx}3 cm) and the presence of airflow. The targets are iron or aluminum slabs, of thickness 1 cm. In the experiments with iron, we show that combustion plays an important role in heating the material. In the experiments with aluminum, there is a narrow range of intensities within which the material interactions vary from no melting at all to complete melt-through. A layer of paint serves to increase the absorption. We explain these effects and incorporate them into a comprehensive computational model.

  11. Diode-pumped solid-state-laser drivers and the competitiveness of inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.

    1993-12-01

    Based on five technical advances at LLNL and a new systems-analysis code that we have written, we present conceptual designs for diode-pumped solid-state laser (DPSSL) drivers for Inertial Fusion Energy (IFE) power plants. Such designs are based on detailed physics calculations for the drive, and on generic scaling relationships for the reactor and balance of plant (BOP). We describe the performance and economics of such power plants, show how sensitive these results are to changes in the major parameters, and indicate how technological improvements can make DPSSL-driven IFE plants more competitive

  12. Directly phase-modulation-mode-locked doubly-resonant optical parametric oscillator.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2013-10-07

    We present results on direct mode-locking of a doubly-resonant optical parametric oscillator (DRO) using an electro-optic phase modulator with low resonant frequency of 80 MHz as the single mode-locking element. Pumped by a cw laser at 532 nm and based on MgO:sPPLT as the nonlinear material, the DRO generates 533 ps pulses at 80 MHz and 471 ps pulses at 160 MHz. Stable train of mode-locked pulses is obtained at a modulation depth of 1.83 radians when the modulation frequency is precisely tuned and the cavity length is carefully adjusted. The effects of frequency detuning, modulation depth, input laser pump power, crystal temperature and position of modulator inside the cavity, on pulse duration and repetition rate have been studied. Operating at degeneracy, under mode-locked condition, the signal-idler spectrum exhibits a bandwidth of ~31 nm, and the spectrum has been investigated for different phase-matching temperatures. Mode-locked operation has been confirmed by second-harmonic-generation of the DRO output in a β-BaB₂O₄ crystal, where a 4 times enhancement in green power is observed compared to cw operation.

  13. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    Kervevan, L.

    2006-12-01

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb 3+ :Er 3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er 3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  14. Optimised design for a 1 kJ diode-pumped solid-state laser system

    Science.gov (United States)

    Mason, Paul D.; Ertel, Klaus; Banerjee, Saumyabrata; Phillips, P. Jonathan; Hernandez-Gomez, Cristina; Collier, John L.

    2011-06-01

    A conceptual design for a kJ-class diode-pumped solid-state laser (DPSSL) system based on cryogenic gas-cooled multislab ceramic Yb:YAG amplifier technology has been developed at the STFC as a building block towards a MJ-class source for inertial fusion energy (IFE) projects such as HiPER. In this paper, we present an overview of an amplifier design optimised for efficient generation of 1 kJ nanosecond pulses at 10 Hz repetition rate. In order to confirm the viability of this technology, a prototype version of this amplifier scaled to deliver 10 J at 10 Hz, DiPOLE, is under development at the Central Laser Facility. A progress update on the status of this system is also presented.

  15. Graphene oxide reduction by solid-state laser irradiation for bolometric applications

    Science.gov (United States)

    Kondrashov, Vladislav A.; Struchkov, Nikolay S.; Rozanov, Roman Yu; Nevolin, Vladimir K.; Kopylova, Daria S.; Nasibulin, Albert G.

    2018-01-01

    We present a method for reduced graphene oxide (GO) patterning on the surface of GO film by a 445 nm solid-state laser with the adjustable fluence from 0.2–20 kJ cm‑2. We demonstrate that the optimal argon concentration in air to obtain good quality reduced GO films is 90%. Varying the laser irradiation energy density allows controlling the resistance and I G /I D and I G /I 2D ratios of Raman peak intensities. As a result, we demonstrate the possibility of forming of conductive patterns with a sheet resistance of 189 Ohm/□ and ∼1 μm film thickness by a local reduction of the GO. The fabricated structures reveal excellent bolometric response with a high speed and sensitivity to the radiation in the visible wavelength region.

  16. System study of a diode-pumped solid-state-laser driver for inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.; Payne, S.A.

    1995-01-01

    The present a conceptual design of a diode-pumped solid-state-laser (DPSSL) driver for an inertial fusion energy (IFE) power plant based on the maximized cost of electricity (COE) as determined in a comprehensive systems study. This study contained extensive detail for all significant DPSSL physics and costs, plus published scaling relationships for the costs of the target chamber and the balance of plant (BOP). Our DPSSL design offers low development cost because it is modular, can be fully tested functionally at reduced scale, and is based on mature solid-state-laser technology. Most of the parameter values that we used are being verified by experiments now in progress. Future experiments will address the few issues that remain. As a consequence, the economic and technical risk of our DPSSL driver concept is becoming rather low. Baseline performance at 1 GW e using a new gain medium [Yb 3+ -doped Sr 5 (PO 4 ) 3 F or Yb:S-FAP] includes a product of laser efficiency and target gain of ηG = 7, and a COE of 8.6 cents/kW·h, although values of ηG ≥ 11 and COEs ≤6.6 cents/kW·h are possible at double the assumed target gain of 76 at 3.7 MJ. We present a summary of our results, discuss why other more-common types of laser media do not perform as well as Yb:S-FAP, and present a simple model that shows where DPSSL development should proceed to reduce projected COEs

  17. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-01-01

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0x10 -20 cm 2 . Up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm 3 Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse from a 3x3x30 mm 3 rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 μs pulses

  18. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from...

  19. On the jitter of mode-locked pulses introduced by an optical fibre

    NARCIS (Netherlands)

    Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; Ernst, G.J.

    1993-01-01

    Measurements on the jitter of mode-locked pulses of a Nd:YLF laser after travelling through an optical fibre are presented. For low powers self phase modulation occurs which leaves the jitter unaltered. For powers higher than the threshold of stimulated Raman scattering the jitter increases due to

  20. Characteristics of AFB interfaces of dissimilar crystal composites as components for solid state lasers

    Science.gov (United States)

    Lee, H. C.; Meissner, O. R.; Meissner, H. E.

    2005-06-01

    Adhesive-free bonded (AFB®) composite crystals have proven to be useful components in diode-pumped solid-state lasers (DPSSL). The combination of a lasing medium of higher index of refraction with laser-inactive cladding layers of lower index results in light- or wave-guided slab architectures. The cladding layers also serve to provide mechanical support, thermal uniformity and a heat sink during laser operation. Therefore, the optical and mechanical properties of these components are of interest for the design of DPSSL, especially at high laser fluencies and output power. We report on process parameters and material attributes that result in stress-free AFB® composites that are resistant to thermally induced failure. Formation of stress-free and durable bonds between two dissimilar materials requires heat-treatment of composites to a temperature high enough to ensure durable bonds and low enough to prevent forming of permanent chemical bonds. The onset temperature for forming permanent bonds at the interface sets the upper limit for heat treatment. This limiting temperature is dependent on the chemical composition, crystallographic orientation, and surface characteristics. We have determined the upper temperature limits for forming stress-free bonds between YAG and sapphire, YAG and GGG, YAG and spinel, spinel and sapphire, spinel and GGG, and sapphire and GGG composites. We also deduce the relative magnitude of thermal expansion coefficients amongst the respective single crystals as αGGG > αsapp_c > αspinel > αYAG > αsapp_a from interferometric analysis.

  1. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  2. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero

    2017-05-31

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  3. Development of high-power and high-energy 2 µm bulk solid-state lasers and amplifiers

    CSIR Research Space (South Africa)

    Koen, W

    2016-04-01

    Full Text Available with the proliferation of both neodymium solid-state lasers as well as diode lasers. Mid-infrared laser sources in the 2-5 µm region, however, lagged behind in both power and availability. Even though they were demonstrated soon after the first laser was developed... for aircraft from anti-aircraft missiles. Mid-infrared lasers may also be used as target designators and for range finding. Free space communication is also possible, provided the laser wavelength coincides with an atmospheric transmission window, as shown...

  4. Develop Solid State Laser Sources for High Resolution Video Projection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brickeen, B.K.

    2000-10-24

    Magic Lantern and Honeywell FM and T worked together to develop lower-cost, visible light solid-state laser sources to use in laser projector products. Work included a new family of video displays that use lasers as light sources. The displays would project electronic images up to 15 meters across and provide better resolution and clarity than movie film, up to five times the resolution of the best available computer monitors, up to 20 times the resolution of television, and up to six times the resolution of HDTV displays. The products that could be developed as a result of this CRADA could benefit the economy in many ways, such as: (1) Direct economic impact in the local manufacture and marketing of the units. (2) Direct economic impact in exports and foreign distribution. (3) Influencing the development of other elements of display technology that take advantage of the signals that these elements allow. (4) Increased productivity for engineers, FAA controllers, medical practitioners, and military operatives.

  5. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  6. High-Power Solid-State Lasers from a Laser Glass Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H; Hayden, J S; Marker, A J

    2010-12-17

    Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses summarized. Proposed advances in these three laser systems will require new glasses and new melting methods which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades.

  7. Solid state material strength effects in hydrodynamic instability experiments on the Nova laser

    Science.gov (United States)

    Kalantar, D. H.; Remington, B. A.; Chandler, E. A.; Colvin, J. D.; Weber, S. V.; Wiley, L. G.

    1997-11-01

    We are conducting experiments on the Nova laser to investigate the Rayleigh-Taylor (RT) instability in metal foils maintained in the solid state. We use a high contrast shaped 6.5 ns laser pulse to generate a hohlraum x-ray drive that launches a sequence of shocks into a 22 μm CH(Br) ablator and 15 μm thick Cu and Mo foils with a sinusoidal amplitude modulation on the surface at the embedded interface. The metal foils are shock compressed by a factor of 1.5-2.0 at a pressure of 3-5 Mbar, and a temperature below the melt temperature. We observe RT instability growth that is delayed relative to the classical (fluid case) by several nanoseconds, suggesting that the metal foil remains solid. In contrast, a Cu foil is melted on compression with a single strong shock. In this case, the instability growth is consistent with fluid simulations. We present results of the experiments, and compare with 2-D modeling that incorporates a Steinberg-Guinan formulation for material strength. ( D.J. Steinberg et al), J. Appl. Phys. 51, 1498 (1980).

  8. Active mode control of solid state laser using an intra-cavity beam shaper

    Science.gov (United States)

    Liu, Wenguang; Zhou, Qiong; Yan, Baozhu; Jiang, Zongfu

    2015-05-01

    In high power solid state lasers, thermal lens effect always give rise to the multi-modes oscillation in the resonator. The beam quality will deteriorate with the increase of output power. In this paper, an intra-cavity beam shaper is introduced to actively compensate the thermal lens in the laser resonator. One round trip ABCD matrix of the resonator with an intra-cavity beam shaper and thermal lens is calculated. The design parameters with wide stable zone are concluded through the ABCD matrix. The mode size and stability diagram of the resonator are calculated under different focal length of the thermal lens. The relationship between the adjustment of the intra-cavity beam shaper and the mode size under different thermal lenses are concluded, and general method to actively control the modes contents by adjusting the intra-cavity beam shaper is introduced. The effectiveness and performance of active mode control with the intra-cavity beam shaper are verified by simulations of the output modes of resonators. It shows that the M2 factor is well maintained below 1.6 even the focal length of the thermal lens changes from 5m to 0.5m.

  9. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davis, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  10. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  11. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  12. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  13. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  14. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. (Texas Univ., Houston, TX (United States). Cancer Center); Welch, A.J. (Texas Univ., Austin, TX (United States)); Motamedi, M. (Texas Univ., Galveston, TX (United States). Medical Branch); Rastegar, S. (Texas A and M Univ., College Station, TX (United States)); Tittel, F. (Rice Univ., Houston, TX (United States)); Esterowitz, L. (Naval Research Lab., Washington, DC (United States))

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  15. Update on diode-pumped solid-state laser experiments for inertial fusion energy

    International Nuclear Information System (INIS)

    Marshall, C.; Smith, L.; Payne, S.

    1994-01-01

    The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics ( 2 ). The saturation fluence for pumping has been measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm 3 . A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author's immediate experiments. These results further increase their optimism of being able to produce a ∼ 10% efficient diode-pumped solid state laser for inertial fusion energy

  16. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    Science.gov (United States)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  17. Solid-state active media of tunable organic-compound lasers pumped with a laser. I. An XeCl laser

    Science.gov (United States)

    Kopylova, T. N.; Mayer, G. V.; Reznichenko, A. V.; Samsonova, L. G.; Svetlichnyi, V. A.; Dolotov, M. S.; Ponomarenko, E. P.; Tel'minov, E. N.; Filinov, D. N.; Sergeev, A. K.

    The lasing properties of organic compounds in a polymethylmethacrylate matrix radiating in the blue-green (paraterphenyle and coumarine derivatives) and red (phodamine and phenalemine derivatives) regions of the spectrum pumped by an XeCl laser are studied. The lasing efficiency and photostability of the solid-state active media are compared with corresponding characteristics of the same liquid active media.

  18. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  19. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    International Nuclear Information System (INIS)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-01-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1–10 kHz and 10–125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status. (letter)

  20. Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries

    Science.gov (United States)

    Hördemann, C.; Anand, H.; Gillner, A.

    2017-08-01

    Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.

  1. High-speed polarization-sensitive OCT at 1060 nm using a Fourier domain mode-locked swept source

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Torzicky, Teresa; Klein, Thomas

    2012-01-01

    sufficiently large datasets. Here, we demonstrate PS-OCT imaging at 350 kHz A-scan rate using a two-channel PS-OCT system in conjunction with a Fourier domain mode-locked laser. The light source spectrum spans up to 100nm around the water absorption minimum at 1060 nm. By modulating the laser pump current, we...

  2. Development of laser diode pumped solid state green laser for the pumping of wavelength tunable laser. 1. Development of single-pass Nd:YAG MOPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Kato, Masaaki; Oba, Masaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    For the pumping of wavelength tunable laser, a high repetition rate, high average power solid state laser pumped by a high duty laser diode (LD) array has been developed. The solid state laser using Nd:YAG zigzag slab crystals consists of an oscillator and an amplifier. Using this Nd:YAG MOPA system, the maximum fundamental average power of 33 W is obtained. The wavefront distortion of amplified laser beam is within 0.3 wavelength. M{sup 2} measured is about 1.5 which means the laser beam is near diffraction limited. By using nonlinear crystals, fundamental laser radiation is converted to second, third and fourth harmonics. The average power is 15.5 W at 532 nm, 1.2 W at 355 nm and 2.3 W at 266 nm. The beam quality of the second harmonic is good. With the measurement of the laser parameters, it is confirmed that the high repetition rate, high power and high quality second harmonic can be produced by the LD pumped Nd:YAG laser MOPA system. (author)

  3. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber.

    Science.gov (United States)

    Qin, Zhipeng; Xie, Guoqiang; Zhao, Chujun; Wen, Shuangchun; Yuan, Peng; Qian, Liejia

    2016-01-01

    A mid-infrared saturable absorber mirror is successfully fabricated by transferring the mechanically exfoliated black phosphorus onto the gold-coated mirror. With the as-prepared black phosphorus saturable absorber mirror, a continuous-wave passively mode-locked Er:ZBLAN fiber laser is demonstrated at the wavelength of 2.8 μm, which delivers a maximum average output power of 613 mW, a repetition rate of 24 MHz, and a pulse duration of 42 ps. To the best of our knowledge, this is the first time a black phosphorus mode-locked laser at 2.8 μm wavelength has been demonstrated. Our results demonstrate the feasibility of black phosphorus flake as a new two-dimensional material for application in mid-infrared ultrafast photonics.

  4. Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers.

    Science.gov (United States)

    Boge, Robert; Horáček, Jakub; Mazůrek, Petr; Naylon, Jack A; Green, Jonathan T; Hubka, Zbyněk; Šobr, Václav; Novák, Jakub; Batysta, František; Antipenkov, Roman; Bakule, Pavel; Rus, Bedřich

    2018-02-01

    A robust and simple method is presented for ensuring constant energy and pointing of a high average power solid state laser on a target. In addition to providing long-term stability, this scheme also eliminates any drifts in energy or pointing resulting from the initial warm-up after a cold start. This is achieved using two separate feedback loops: one loop stabilizes the pointing of the beam external to the amplifier cavity and the other locks the cavity mode to have optimum overlap with the pump spot on the active medium. The key idea of the cavity mode stabilization is to monitor the overlap of the cavity mode and the gain medium with a camera and control it with an actively controlled, intra-cavity mirror. While this method is demonstrated on a thin-disk regenerative amplifier, it can also be applied to a wide variety of solid state laser amplifiers.

  5. Robust method for long-term energy and pointing stabilization of high energy, high average power solid state lasers

    Science.gov (United States)

    Boge, Robert; Horáček, Jakub; Mazůrek, Petr; Naylon, Jack A.; Green, Jonathan T.; Hubka, Zbyněk; Šobr, Václav; Novák, Jakub; Batysta, František; Antipenkov, Roman; Bakule, Pavel; Rus, Bedřich

    2018-02-01

    A robust and simple method is presented for ensuring constant energy and pointing of a high average power solid state laser on a target. In addition to providing long-term stability, this scheme also eliminates any drifts in energy or pointing resulting from the initial warm-up after a cold start. This is achieved using two separate feedback loops: one loop stabilizes the pointing of the beam external to the amplifier cavity and the other locks the cavity mode to have optimum overlap with the pump spot on the active medium. The key idea of the cavity mode stabilization is to monitor the overlap of the cavity mode and the gain medium with a camera and control it with an actively controlled, intra-cavity mirror. While this method is demonstrated on a thin-disk regenerative amplifier, it can also be applied to a wide variety of solid state laser amplifiers.

  6. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Directory of Open Access Journals (Sweden)

    Roberto De Santis

    2018-03-01

    Full Text Available Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design/CAM (computer-aided manufacturing assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  7. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser.

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro

    2018-03-27

    Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  8. Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser

    Science.gov (United States)

    Andreana, Marco; Le, Tuan; Hansen, Anders K.; Verhoef, Aart J.; Jensen, Ole B.; Andersen, Peter E.; Slezak, Paul; Drexler, Wolfgang; Fernández, Alma; Unterhuber, Angelika

    2017-09-01

    We have developed an epi-detected multimodal nonlinear optical microscopy platform based on a compact and cost-effective laser source featuring simultaneous acquisition of signals arising from hyperspectral coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence, and second harmonic generation. The laser source is based on an approach using a frequency-doubled distributed Bragg reflector-tapered diode laser to pump a femtosecond Ti:sapphire laser. The operational parameters of the laser source are set to the optimum trade-off between the spectral and temporal requirements for these three modalities, achieving sufficient spectral resolution for CARS in the lipid region. The experimental results on a biological tissue reveal that the combination of the epi-detection scheme and the use of a compact diode-pumped femtosecond solid-state laser in the nonlinear optical microscope is promising for biomedical applications in a clinical environment.

  9. Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope.

    Science.gov (United States)

    Schwartz, Sylvain; Gutty, François; Feugnet, Gilles; Bouyer, Philippe; Pocholle, Jean-Paul

    2008-05-09

    We report fine-tuning of nonlinear interactions in a solid-state ring laser gyroscope by vibrating the gain medium along the cavity axis. We demonstrate both experimentally and theoretically that nonlinear interactions vanish for some values of the vibration parameters, leading to quasi-ideal rotation sensing. We eventually point out that our conclusions can be mapped onto other subfields of physics such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned by using Feshbach resonance.

  10. Suppression of Nonlinear Interactions in Resonant Macroscopic Quantum Devices : the Example of the Solid-State Ring Laser Gyroscope

    OpenAIRE

    Schwartz, Sylvain; Gutty, François; Feugnet, Gilles; Bouyer, Philippe; Pocholle, Jean-Paul

    2008-01-01

    International audience; We study the suppression of nonlinear interactions in resonant macroscopic quantum devices in the case of the solid-state ring laser gyroscope. These nonlinear interactions are tuned by vibrating the gain medium along the cavity axis. Beat note occurrence under rotation provides a precise measurement of the strength of nonlinear interactions, which turn out to vanish for some discrete values of the amplitude of vibration. Our theoretical description, in very good agree...

  11. 3-D TECATE/BREW: Thermal, stress, and birefringent ray-tracing codes for solid-state laser design

    Science.gov (United States)

    Gelinas, R. J.; Doss, S. K.; Nelson, R. G.

    1994-07-01

    This report describes the physics, code formulations, and numerics that are used in the TECATE (totally Eulerian code for anisotropic thermo-elasticity) and BREW (birefringent ray-tracing of electromagnetic waves) codes for laser design. These codes resolve thermal, stress, and birefringent optical effects in 3-D stationary solid-state systems. This suite of three constituent codes is a package referred to as LASRPAK.

  12. Laser Beam Failure Mode Effects and Analysis (FMEA) of the Solid State Heat Capacity Laser (SSHCL)

    Energy Technology Data Exchange (ETDEWEB)

    King, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-07

    A laser beam related FMEA of the SSHCL was performed to determine potential personnel and equipment safety issues. As part of the FMEA, a request was made to test a sample of the drywall material used for walls in the room for burn-through. This material was tested with a full power beam for five seconds. The surface paper material burned off and the inner calcium carbonate turned from white to brown. The result of the test is shown in the photo below.

  13. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers.

    Science.gov (United States)

    Gather, Malte C; Yun, Seok Hyun

    2014-12-08

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.

  14. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  15. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    International Nuclear Information System (INIS)

    Kubiak, Marcin; Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew; Stano, Sebastian

    2015-01-01

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process

  16. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, Marcin, E-mail: kubiak@imipkm.pcz.pl; Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew [Institute of Mechanics and Machine Design Foundations, Częstochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa (Poland); Stano, Sebastian [Welding Technologies Department, Welding Institute, Błogosławionego Czesława 16-18, 44-100 Gliwice (Poland)

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  17. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    Science.gov (United States)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  18. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  19. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  20. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  1. Intracavity coherent interaction of mode-locked pulse train with resonant medium

    Science.gov (United States)

    Masuda, Koji

    Resonant interactions of a mode-locked pulse train with intracavity samples, namely rubidium-87 (Rb-87) vapor and Fabry-Perot etalon, placed inside a laser cavity are studied in the light of developing ultra-sensitive laser sensors to measure a small magnetic field and a minute change of index of refraction of a sample material, respectively. A Rb-87 vapor provides an opportunity for a compact high-sensitivity atomic magnetometer due to its accessibility by the standard laser sources and to the large ensemble magnetization. By employing the ultra-sensitive interferometric technique utilizing the intracavity properties of a mode-locked laser, the performance of the Rb-87 magnetometer can be further improved. The fundamental properties of coherent interaction between a mode-locked pulse train and a Rb-87 vapor are studied in numerical calculations of 33 density matrix equations and the reduced wave equation, which are then examined in experiments. In particular, a coherent dark-state is created by the pulse train and is further enhanced by means of spectral shaping or polarization modulation of the excitation pulse train. Experiments performed inside a laser cavity show that the atomic coherence is still preserved due to the coherent nature of interaction between the Rb-87 vapor and the ultrashort pulses occurred within a short time scale compared to the atomic relaxation times, which results in nonlinear propagation of the pulses as well as an observation of the dark-line resonance inside the laser cavity. A Fabry-Perot etalon is a type of optical cavity and serves as a tuning element of the frequency of cw-lasers. By inserting a Fabry-Perot etalon inside a mode-locked laser, the cavity resonance modes are modied due to a coupling between the two cavities, which leads to unique temporal and spectral characteristics of the resultant pulse train and its frequency comb. Both the temporal and spectral properties of the pulse train are studied in detail in experiments as

  2. New advances in solid state powder lasers: the effects of external seeding and external mirrors

    Science.gov (United States)

    Noginov, Mikhail A.; Noginova, Natalia E.; Egarievwe, Stephen U.; Wang, JaChing; Caulfield, H. John

    1999-01-01

    We have studied the effects of the external laser seeding and external mirrors on stimulated emission in powder lasers. The possibility of remove controlling of the powder laser emission has been demonstrated.

  3. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  4. Laser Photodeposition of Sulfur and Room-Temperature Solid-State Reaction with Copper

    Czech Academy of Sciences Publication Activity Database

    Pola, Josef; Urbanová, Markéta; Pokorná, Dana; Bastl, Zdeněk; Bakardjieva, Snejana; Šubrt, Jan; Bezdička, Petr

    2011-01-01

    Roč. 219, č. 1 (2011), s. 109-114 ISSN 1010-6030 R&D Projects: GA ČR GA203/09/0931 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : solid-state reaction * CuS and Cu2S nanograins * growth of CuS and Cu2S structures Subject RIV: CA - Inorganic Chemistry Impact factor: 2.421, year: 2011

  5. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    Science.gov (United States)

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  6. A dual-loss-modulated intra-cavity frequency-doubled Q-switched and mode-locked Nd:Lu0.15Y0.85VO4/KTP green laser with a single-walled carbon nanotube saturable absorber and an acousto-optic modulator

    International Nuclear Information System (INIS)

    Zhang, Gang; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Cheng, Kang; Han, Chao; Zhao, Bin; Wang, Yonggang

    2011-01-01

    By using both a single-walled carbon nanotube saturable absorber (SWCNT-SA) and an acousto-optic (AO) modulator, a dual-loss-modulated intra-cavity frequency-doubled Q-switched and mode-locked (QML) Nd:Lu 0.15 Y 0.85 VO 4 /KTP (KTiOPO 4 ) green laser was demonstrated for the first time. The QML green laser characteristics such as the pulse width and single-pulse energy have been measured for different modulation frequencies of the AO modulator (f p ). In particular, in comparison with the solely passively QML green laser with an SWCNT-SA, the dual-loss-modulated QML green laser can generate a more stable pulse train, a shorter pulse width of the Q-switched envelope, a greater pulse energy and a higher average peak power. For the dual-loss-modulated QML green laser, at a pump power of 7.9 W and a repetition rate of 10 kHz, the pulse width and the pulse energy of the Q-switch envelope and the average peak power of the QML green laser are 50 ns, 20.34 µJ and 15.5 kW, respectively, corresponding to a pulse width compression of 77%, a pulse energy improvement factor of six times and a QML peak power increase factor of 16 times when compared with those for the solely passively QML green laser. The experimental results show that the dual-loss modulation is an efficient method for the generation of a stable QML green laser with an SWCNT-SA

  7. Ultraviolet-Diode Pump Solid State Laser Removal of Titanium Aluminium Nitride Coating from Tungsten Carbide Substrate

    Science.gov (United States)

    See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar

    2017-09-01

    This paper presents an investigation on the titanium aluminium nitride (TiAlN) coating removal from tungsten carbide (WC-Co) substrate using a diode pump solid state (DPSS) ultraviolet (UV) laser with maximum average power of 90 W, wavelength of 355 nm and pulse width of 50 ns. The TiAlN coating of 1.5 μm thickness is removed from the WC-Co substrate with laser fluence of 2.71 J/cm2 at 285.6 number of pulses (NOP) and with NOP of 117.6 at 3.38 J/cm2 fluence. Titanium oxide formation was observed on the ablated surface due to the re-deposition of ablated titanium residue and also attributed to the high temperature observed during the laser ablation process. Crack width of around 0.2 μm was observed over both TiAlN coating and WC-Co substrate. The crack depth ranging from 1 to 10 μm was observed and is related to the thickness of the melted carbide. The crack formation is a result of the thermal induced stresses caused by the laser beam interaction with the material as well as the higher thermal conductivity of cobalt compared to WC. Two cleaning regions are observed and is a consequence of the Gaussian distribution of the laser beam energy. The surface roughness of the ablated WC-Co increased with increasing laser fluence and NOP.

  8. Comparison of eye-safe solid state laser DIAL with passive gas filter correlation measurements from aircraft and spacecraft

    Science.gov (United States)

    Hess, Robert V.; Staton, Leo D.; Wallio, H. Andrew; Wang, Liang-Guo

    1992-01-01

    Differential Absorption Lidar (DIAL) using solid state Ti:sapphire lasers finds current application in the NASA/LASE Project for H2O vapor measurements in the approximately = 0.820 micron region for the lower and mid-troposphere and in potential future applications in planned measurements of the approximately = 0.940 micron region where both strong and weak absorption lines enables measurements throughout the troposphere and lower stratosphere. The challenge exists to perform measurements in the eye-safe greater than 1.5 micron region. A comparison between DIAL and passive Gas Filter Correlation Radiometer (GFCR) measurements is made. The essence of the differences in signal to noise ratio for DIAL and passive GFCR measurements is examined. The state of the art of lasers and optical parametric oscillators (OPO's) is discussed.

  9. Power and Energy Storage Requirements for Ship Integration of Solid-State Lasers on Naval Platforms

    Science.gov (United States)

    2016-06-01

    atmospheric data will come from laser environmental effects definition and reference (LEEDR), which is a program that characterizes the atmosphere ...plug efficiency 20% 15 IV. DAMAGE MECHANISMS The losses accrued as laser light travels through the atmosphere is only part of the issue . It is...high-energy lasers (HELs) dictates the need for further study into the propagation of laser light through different atmospheric conditions. Due to the

  10. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  11. Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications

    Science.gov (United States)

    Kay, Richard B.

    1997-01-01

    This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.

  12. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available A Nd: YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses in the picosecond region with a maximum average output power of 2.8W. Passive modelocking of the Nd: YVO4...

  13. High-Power Solid-State Laser: Lethality Testing And Modeling

    National Research Council Canada - National Science Library

    Abbott, R. P; Boley, C. D; Fochs, S. N; Nattrass, L. A; Parker, J. M; Rubenchik, A. M; Smith, J. A; Yamamoto, R. M

    2006-01-01

    .... We discuss selected target interaction experiments recently performed with this laser. These involve the irradiation of painted aluminum foils at a power of about 25 kW, in the presence of high-speed airflow...

  14. Comparison of Amplitude Noise Properties of Solid State Laser Oscillators and Amplifiers

    National Research Council Canada - National Science Library

    Ewart, Roberta

    1998-01-01

    There is an ongoing need for more capable laser sources that combine high average power with quantum noise limited performance for applied physics and photonic engineering applications, including free...

  15. Novel Solid State Lasers for Space-Based Water Vapor DIAL, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II program will develop novel laser transmitters needed for planned airborne and space-based active remote sensing missions. This program will build on...

  16. Laser materials development by means of a solid-state bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira

    2011-01-01

    This paper reviews laser materials development via a bonding method without adhesives. Instead of conventional chemical etching, a dry etching technique using an argon beam has been newly developed for the bonding method. This method meets the requirement for the use of optical materials. We succeeded in the fabrication of a composite laser crystal with good heat conductivity by bonding two kinds of crystals; one is neodymium-doped YVO 4 crystal (Nd:YVO 4 ) and the other is its host crystal YVO 4 . In the comparison of the laser performance between the normal and composite crystal, the composite one shows the good lasing capability of increasing laser output without fracture of the crystal due to thermal stress which appeared in the normal one. (author)

  17. Anti-Reflective Fluoride Coatings for Widely Tunable Deep-Ultraviolet Diode-Pumped Solid-State Laser Applications

    International Nuclear Information System (INIS)

    Bin-Cheng, Li; Da-Wei, Lin; Yan-Ling, Han; Chun, Guo; Yun-Dong, Zhang; Hong-Xiang, Liu

    2010-01-01

    An anti-reflective (AR) fluoride coating in the 170–230 nm spectral range is prepared by the thermal evaporation method for the applications of widely tunable deep-ultraviolet diode-pumped solid-state lasers. The transmittance of an AR coated calcium fluoride (CaF 2 ) window in thickness 3 mm is measured to be in the range of 95.8% at 170 nm to 97.1% at 230 nm, with the maximum transmittance 99.2% and the minimum residual reflectance 0.04% appeared at 195 nm. The experimental results indicate that treating the AR coated window and the bare substrate with ultraviolet irradiation can significantly improve their optical performance

  18. The design and construction of a solid state femtosecond laser system and its application to chemistry

    CERN Document Server

    Tompkins, R J

    1999-01-01

    have also been successfully tackled and both the x-ray yield and output spectrum have been measured. Future experiments designed to measure x-ray diffraction from liquid water are also presented. This thesis outlines the design and construction of an amplified ultrashort pulse femtosecond laser system specifically for use as a tool for the analysis of chemical and biochemical systems. A summary of the problems associated with such a laser system and a stage by stage description of the design will be given along with a selection of experimental results aimed at emphasising the versatility of the system. Three separate experimental arrangements have been constructed for use with the laser system, all of which can be run at the same time: pump-probe transient absorption spectroscopy using a 400nm pump, and a white-light continuum probe, using 4% of the laser output, photon echo and transient grating spectroscopy, again using 4% of the laser output and ultrashort x-ray production using a novel liquid jet target f...

  19. Micro-fabricated solid state dye lasers based on a photo-definable polymer

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Balslev, Søren; Gregersen, Misha Marie

    2005-01-01

    We present a solid polymer dye laser based on a single-mode planar waveguide. The all-polymer device is self-contained in the photodefinable polymer SU-8 and may therefore easily be placed on any substrate and be integrated with polymer-based systems. We use as the active medium for the laser...... the commercially available laser dye Rhodamine 6G, which is incorporated into the SU-8 polymer matrix. The single-mode slab waveguide is formed by three-step spin-coating deposition: a buffer layer of undoped SU-8, a core layer of SU-8 doped with Rhodamine, and a cladding layer of undoped SU-8. (c) 2005 Optical...

  20. Solar pumping of solid state lasers for space mission: a novel approach

    Science.gov (United States)

    Boetti, N. G.; Lousteau, J.; Negro, D.; Mura, E.; Scarpignato, G. C.; Perrone, G.; Milanese, D.; Abrate, S.

    2017-11-01

    Solar pumped laser (SPL) can find wide applications in space missions, especially for long lasting ones. In this paper a new technological approach for the realization of a SPL based on fiber laser technology is proposed. We present a preliminary study, focused on the active material performance evaluation, towards the realization of a Nd3+ -doped fiber laser made of phosphate glass materials, emitting at 1.06 μm. For this research several Nd3+ -doped phosphate glass samples were fabricated, with concentration of Nd3+ up to 10 mol%. Physical and thermal properties of the glasses were measured and their spectroscopic properties are described. The effect of Nd3+ doping concentration on emission spectra and lifetimes was investigated in order to study the concentration quenching effect on luminescence performance.

  1. Recent Advances In Efficient Long-Life, Eye-Safe Solid-State And CO2 Lasers For Laser Radar Applications

    Science.gov (United States)

    Hess, R. V.; Buoncristiani, A. M.; Brockman, P.; Bair, C. H.; Schryer, D. R.; Upchurch, B. T.; Wood, G. M.

    There is increasing interest in the comparative roles of CO2 and the more recently developed eye-safe solid-state lasers for long-life efficient laser radar applications. This paper assesses recent technology advances in each area and their roles in laser radar and especially Doppler lidar and DIAL development. The key problems in eye-safe solid-state lasers are discussed relating to the energy transfer mechanisms between the complicated energy level manifolds of the Tm,Ho,Er ion dopants in hosts with decreasing crystal fields such as YAG or YLF. One concerns optimization of energy transfer for efficient lasing through choice of dopant concentration, power density, crystal field and temperature, with the highly practical goal of minimal cooling needs. Another key problem, specific to laser radar and lidar, involves tailoring of energy transfer times to provide efficient energy extraction for short, e.g., Q-switched pulses used in DIAL and Dopper lidar. Special emphasis is given to eye-safe lasers in the 2 μm range because of the high efficiency applications to DIAL and (windshear) Doppler lidar and because they are well suited for Optical Parametric Oscillator frequency conversion into the important ≍ 4 to 5 μm DIAL range. The discussion of CO2 lasers concerns recent advances in Pt/Sn02 oxide catalysts and other noble metal/metal oxide combinations. Emphasis is given to the dramatic effects of small quantities of H20 vapor for increasing the activity and lifetime of Pt/Sn02 catalysts and to increased lifetime operation with rare isotope 12C18O2 lasing mixtures; iL-the 12C18O2 laser wavelengths in the 9.1 μm range are of special interest for space-based Doppler lidar such as the proposed Laser Atmospheric Wind Sounder.

  2. Impact of the spectroscopic properties of rare-earth ions on solid-state laser systems

    NARCIS (Netherlands)

    Pollnau, Markus

    The electronic energy level schemes within the 4f subshells of rare-earth ions give rise to a number of fluorescence transitions ranging from the near-UV to the mid-IR spectral region. A large variety of laser lines have been demonstrated based on these fluorescence transitions. Depending on the

  3. Accurate absolute frequencies of the ν1+ν3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb

    International Nuclear Information System (INIS)

    Madej, Alan A.; Bernard, John E.; John Alcock, A.; Czajkowski, Andrzej; Chepurov, Sergei

    2006-01-01

    Absolute frequency measurements, with up to 1x10 -11 level accuracies, are presented for 60 lines of the P and R branches for the ν 1 +ν 3 band of 13 C 2 H 2 at 1.5 μm (194 THz). The measurements were made using cavity-enhanced, diode-laser-based saturation spectroscopy. With one laser system stabilized to the P(16) line and a second laser system stabilized to the line whose frequency was to be determined, a Cr:YAG frequency comb was employed to accurately measure the tetrahertz level frequency intervals. The results are compared with recent work from other groups and indicate that these lines would form a basis for a high-quality atlas of reference frequencies for this region of the spectrum

  4. Modeling the effect of heatsink performance in high-peak-power laser-diode-bar pump sources for solid-state lasers 011 011

    Energy Technology Data Exchange (ETDEWEB)

    Honea, E.C., LLNL

    1998-01-14

    We derive approximate expressions for transient output power and wavelength chirp of high- peak-power laser-diode bars assuming one-dimensional heat flow and linear temperature dependences for chirp and efficiency. The model is derived for pulse durations, 10 < {tau} < 1000 ps, typically used for diode-pumped solid-state lasers and is in good agreement with experimental data for Si heatsink mounted 940 nm laser-diode bars operating at 100 W/cm. The analytic expressions are more flexible and easily used than the results of operating point dependent numerical modeling. In addition, the analytic expressions used here can be integrated to describe the energy per unit wavelength for a given pulse duration, initial emission bandwidth and heatsink material. We find that the figure-of-merit for a heatsink material in this application is ({rho}C{sub p}K) where {rho}C{sub p} is the volumetric heat capacity and K is the thermal conductivity. As an example of the utility of the derived expressions, we determine an effective absorption coefficient as a function of pump pulse duration for a diode-pumped solid-state laser utilizing Yb:Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) as the gain medium.

  5. Nonlinear Dynamics of Self-Pulsing All-Solid-State Lasers

    Science.gov (United States)

    2015-07-06

    NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Centro de Investigaciones en Laseres,y Aplicaciones (CEILAP), , , 8...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 1. Centro de Investigaciones en Láseres y Aplicaciones ...de Investigaciones en Láseres y Aplicaciones (CEILAP), CITEDEF-CONICET, J.B. de La Salle 4397, (1603) Villa Martelli, Argentina. Nahuel M. Granese

  6. 100 J-level nanosecond pulsed diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Banerjee, S.; Mason, P.D.; Ertel, K.; Phillips, P.J.; De Vido, M.; Chekhlov, O.; Divoký, Martin; Pilař, Jan; Smith, J.; Butcher, T.; Lintern, A.; Tomlinson, S.; Shaikh, W.; Hooker, Ch.; Lucianetti, Antonio; Hernandez-Gomez, C.; Mocek, Tomáš; Edwards, Ch.; Collier, J.L.

    2016-01-01

    Roč. 41, č. 9 (2016), s. 2089-2092 ISSN 0146-9592 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027 Institutional support: RVO:68378271 Keywords : high average power * efficiency * amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.416, year: 2016

  7. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    Science.gov (United States)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  8. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes.

    Science.gov (United States)

    Wang, Q; Chen, T; Zhang, B; Heberle, A P; Chen, K P

    2011-10-01

    This Letter presents an all-fiber mode-locked thulium-doped fiber ring oscillator based on nonlinear polarization evolution (NPE). Pumped by an erbium-doped fiber amplified spontaneous emission source, the construction of the laser cavity consisting of only fiber optic components can operate under two different regimes of solitary and noiselike (NL) pulses. Autocorrelation measurements are performed to extract features of these two regimes. © 2011 Optical Society of America

  9. All-solid-state CO sub 2 laser driver. Final report, 1 Jun 88-31 Mar 91

    Energy Technology Data Exchange (ETDEWEB)

    Birx, D.

    1991-03-31

    New, all-solid-state pulse generators are described which meet military requirements for an efficient, reliable pulsed power source to drive a space based CO{sub 2} laser. These SCR-commutated, nonlinear magnetic pulse compressors are fully-compatible with the present Spectra Technologies laser head design planned for use on LOWKATER. By employing SCRs rather than thyratron commutators, these pulsers should provide a significant increase in reliability over the current generation of pulsed power drivers. The first pulser which was designed and constructed was denoted COLD-I. COLD-I was designed to meet the original LOWKATER specifications and delivered at 150 joule, 20 kV pulse into a laser load at 10 to 20 Hz repetition rate. The second pulser, denoted COLD-II, was designed to provide a 45 joule, 500 nsec duration pulse at a voltage of 20 kV and a repetition rate of 1 kHz peak and 50-100 Hz average. The electrical efficiency was measured to be 80% with an input drive of 500 VDC. This pulse served as a design verification testbed for a third pulser, presently designed but not constructed and denoted COLD-III. COLD-III would be capable of producing 36 joules at the same pulse length and repetition rate at voltages of 20 kV. The Phase-II effort was a high risk, high payoff effort aimed at developing a light weight, high reliability RF power source for advanced RF CO2 laser heads under development. COLD-IV a Branched Magnetic RF Nonlinear Magnetic Pulse Compressor was built as a breadboard for this effort.

  10. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication.

    Science.gov (United States)

    Xu, Jing; Kong, Meiwei; Lin, Aobo; Song, Yuhang; Han, Jun; Xu, Zhiwei; Wu, Bo; Gao, Shiming; Deng, Ning

    2017-05-01

    It is widely known that a diode-pumped solid-state laser (DPSSL) has very limited modulation bandwidth. Recently, we directed our attention toward the opportunities for directly modulating a DPSSL to generate high-speed green-light signals, with high power and superior beam quality, which are highly desirable in underwater wireless optical communication. The constraint imposed by the limited modulation bandwidth of a DPSSL is circumvented with the strategy of orthogonal frequency-division multiplexing and power loading. With a compact DPSSL dismantled from a low-cost laser pointer, we achieve net bit rates of 108.55 Mb/s for the 64 quadrature amplitude modulation (QAM) signal at a bit error rate (BER) of 6.42×10-4 and 89.55 Mb/s for the 32 QAM signal at a BER of 4.81×10-4, respectively, over a 2 m underwater channel. When the underwater transmission distance is increased to 6 m, the BERs are still below the forward error correction (FEC) limit of 3.8×10-3.

  11. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence

    Science.gov (United States)

    2009-03-30

    original work of Wagener et al. [5]. This simulator solves the coupled laser rate equations numerically to predict the output performance of the fiber... Wagener , D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A Mueller Matrix Formalism for Modeling Polarization Effects in Erbium-Doped Fiber,” IEEE...J. Lightwave Technol., vol. 16, No. 2, 1998, pp. 200-206. [6] D. G. Falquier, J. L. Wagener , M. J. F. Digonnet and H. J. Shaw, “Polarized

  12. High energy, high average power solid state green or UV laser

    Science.gov (United States)

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  13. CW-Laser-Induced Solid-State Reactions in Mixed Micron-Sized Particles of Silicon Monoxide and Titanium Monoxide: Nano-Structured Composite with Visible Light Absorption

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Tesař, J.; Kupčík, Jaroslav; Netrvalová, M.; Pola, M.; Jandová, Věra; Pokorná, Dana; Cuřínová, Petra; Bezdička, Petr; Pola, Josef

    2017-01-01

    Roč. 27, č. 6 (2017), s. 1640-1648 ISSN 1574-1443 Institutional support: RVO:61388980 ; RVO:67985858 Keywords : Cw CO2 laser heating * IR laser imaging * Silicon monoxide * Solid state redox reactions * Ti/Si/O composite * Titanium monoxide Subject RIV: CA - Inorganic Chemistry; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) OBOR OECD: Inorganic and nuclear chemistry; Chemical process engineering (UCHP-M) Impact factor: 1.577, year: 2016

  14. Improved solid-state laser sources. Final technical report, 2 June 1981-1 June 1982

    International Nuclear Information System (INIS)

    Byer, R.L.

    1982-08-01

    During the first program year we have demonstrated diffraction limited output of 600 mJ from an unstable resonator Nd:Glass slab geometry oscillator. We have investigated, in detail, slab geometry lasers and have verified by careful experiments all important predictions of the slab theory. To date we have generated 10 J of output energy at 2.5 Hz from a single multimode, non-Q-switched, slab oscillator at 3.5% storage efficiency, 2% slope efficiency and 1.6% extraction efficiency. We have doubled and Raman shifted the Q-switched 600 mJ slab glass oscillator. We have extended the slab concept to Nd:YAG. Preliminary measurements show that the slab geometry eliminates thermal focusing and stress induced birefringence in Nd:YAG. We have demonstrated the advantages of the miniature pedestal growth technology by growing Eu:Y 2 O 3 single crystal fibers in addition to Nd:YAG and sapphire single crystal fibers

  15. Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs

    Science.gov (United States)

    Himamaheswara Rao, V.; Syam Prasad, P.; Mohan Babu, M.; Venkateswara Rao, P.; Satyanarayana, T.; Luís F., Santos; Veeraiah, N.

    2018-01-01

    Rare earth ion Dy3 +-doped tellurite glasses were synthesised in the system of (75-x)TeO2-15Sb2O3-10WO3-xDy2O3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy3 + ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484 nm along with less intense emissions around 662 and 751 nm. Various radiative properties of the 4F9/2 excited level of Dy3 + ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications.

  16. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  17. Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist

    DEFF Research Database (Denmark)

    Balslev, Søren; Rasmussen, Torben; Shi, Peixiong

    2005-01-01

    are optically pumped at 532 nm, and exhibit low lasing threshold from 530 nJ/mm2 and single mode output at selectable wavelengths from 580 to 630 nm, determined by the grating pitch. The lasers are well suited for integration into polymer based lab-on-chip circuits for interference based sensing.......We demonstrate grey scale electron beam lithography on functionalized SU-8 resist for fabrication of single mode solid state dye laser devices. The resist is doped with Rhodamine 6G perchlorate and the lasers are based on a first order Bragg grating distributed feedback resonator. The lasers...

  18. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  19. Studies on reducing the thermal loads of solar-pumped solid state lasers; Taiyoko reiki laser no netsufuka teigen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Yugami, H.; Naito, H.; Arashi, H. [Tohoku University, Sendai (Japan)

    1997-11-25

    It was intended to reduce the thermal loads of solar-pumped solid state lasers (highly densified solar light is irradiated directly onto a laser medium to cause excitation. No electric power is required for the excitation.). For this purpose, experiments were performed by using a selective permeation film. Solar light includes wavelengths not effective for excitation, which causes heat generation and thermal loads such as lens heating effect and thermal stress compounded refraction, degrading the laser beam quality. The Nd:YAG was used as a laser medium, and a multi-layered film (composed of SiO2 and TiO2) which cuts wavelength below 500 nm as a selective permeation film to cut light having wavelengths not required for excitation. A laser transmitting experiment revealed that the slope efficiency is improved by 27% as compared to not using the film. Beam fluctuation was improved to 45%. Using the selective permeation film has realized more efficient conversion of the solar light into a beam with better quality. The results for calculation of heat lens effect by using temperature distribution simulation showed good agreement with experimental values. Using the selective permeation film can suppress the maximum temperature of a laser rod to 68%, as well as the thermal stress. 9 figs., 2 tabs.

  20. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  1. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  2. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.

    Science.gov (United States)

    Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J

    2014-04-01

    We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.

  3. Development of all solid-state, high average power ultra-short pulse laser for X-ray generation. High average power CPA system and wavefront control of ultra short laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, Sayaka; Akaoka, Katsuaki; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Maruyama, Yoichiro; Matoba, Toru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We developed a prototype CPA laser system which is pumped by a all solid-state Nd:YAG laser. In a preliminary experiment, the output energy of 52mJ before compression was obtained when the pumping energy was 250mJ. To compensate the wavefront distortion, an adaptive optics has been developed. By using this wavefront control system, the laser beam with the distortion of 0.15{lambda} was obtained. (author)

  4. Time-Gating Processes in Intra-Cavity Mode-Locking Devices Like Saturable Absorbers and Kerr Cells

    Science.gov (United States)

    Prasad, Narasimha; Roychoudhuri, Chandrasekhar

    2010-01-01

    Photons are non-interacting entities. Light beams do not interfere by themselves. Light beams constituting different laser modes (frequencies) are not capable of re-arranging their energies from extended time-domain to ultra-short time-domain by themselves without the aid of light-matter interactions with suitable intra-cavity devices. In this paper we will discuss the time-gating properties of intra-cavity "mode-locking" devices that actually help generate a regular train of high energy wave packets.

  5. Q-switching and mode-locking pulse generation with graphene oxide paper-based saturable absorber

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2015-06-01

    Full Text Available Q-switched and mode-locked erbium-doped fibre lasers (EDFLs are demonstrated by using non-conductive graphene oxide (GO paper as a saturable absorber (SA. A stable and self-starting Q-switched operation was achieved at 1534.4 nm by using a 0.8 m long erbium-doped fibre (EDF as a gain medium. The pulse repetition rate changed from 14.3 to 31.5 kHz, whereas the corresponding pulse width decreased from 32.8 to 13.8 µs as the pump power increased from 22 to 50.5 mW. A narrow spacing dual-wavelength Q-switched EDFL could also be realised by including a photonics crystal fibre and a tunable Bragg filter in the setup. It can operate at a maximum repetition rate of 31 kHz, with a pulse duration of 7.04 µs and pulse energy of 2.8 nJ. Another GOSA was used to realise mode-locked EDFL in a different cavity consisting of a 1.6 m long EDF in conjunction with 1480 nm pumping. The laser generated a soliton pulse train with a repetition rate of 15.62 MHz and pulse width of 870 fs. It is observed that the proposed fibre lasers have a low pulsing threshold pump power as well as a low damage threshold.

  6. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  7. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  8. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    Science.gov (United States)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  9. Excitation of high-radial-order Laguerre-Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    Science.gov (United States)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  10. Numerical study on the selective excitation of Helmholtz-Gauss beams in end-pumped solid-state digital lasers with the control of the laser gain transverse position provided by off-axis end pumping

    Science.gov (United States)

    Tsai, Ko-Fan; Chu, Shu-Chun

    2018-03-01

    This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.

  11. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    OpenAIRE

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2013-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute ...

  12. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    International Nuclear Information System (INIS)

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation

  13. 1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser

    International Nuclear Information System (INIS)

    Mori, Y.; Komeda, O.; Nakayama, S.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Kawashima, T.; Kan, H.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Hioki, T.; Kakeno, M.; Motohiro, T.; Nishimura, Y.

    2013-01-01

    A Ti : sapphire laser HAMA pumped by a diode-pumped solid-state laser (DPSSL) is developed to enable a high-repetitive inertial confinement fusion (ICF) experiment to be conducted. To demonstrate a counter-irradiation fast-heating fusion scheme, a 3.8 J, 0.4 ns amplified chirped pulse is divided into four beams: two counter-irradiate a target with intensities of 6 × 10 13 W cm −2 , and the remaining two are pulse-compressed to 110 fs for heating the imploded target with intensities of 2 × 10 17 W cm −2 . HAMA contributed to the first demonstration by showing that a 10 J class DPSSL is adaptable to ICF experiments and succeeded in DD neutron generation in the repetition mode. Based on HAMA, we can design and develop an integrated repetitive ICF experiment machine by including target injection and tracking. (paper)

  14. Theoretical and experimental study of two-frequency solid-state lasers in the GHz to THz ranges. Opto-microwave applications waves

    International Nuclear Information System (INIS)

    Lai, N.D.

    2003-07-01

    We explored some new features of single- and dual-frequency solid-state lasers oscillating in continuous-wave or pulsed regimes. First, we have developed some techniques to optimise the characteristics of pulsed lasers. A weak modulation of the pump power made it possible to obtain a stable repetition rate with a relative stability of 10 -6 . The pulse duration was continuously controlled from ten nanoseconds to a few hundreds nanoseconds by three different methods: adjustment of the laser beam diameter in the absorber, adjustment of the pump beam diameter in the active medium, and, in particular, the use of forked eigenstates in a two-axis laser. Moreover, the forked eigenstates allows to increase the pulse energy by coherent addition of the pulses. A compact two-frequency Nd:YAG-Cr:YAG laser with a beat note frequency continuously adjustable up to 2,7 GHz was demonstrated. The two-frequency pulses are ideal sources to meet various needs of applications such as the Doppler lidar-radar. Moreover, we show that two-frequency pulses at 1,55 μm can be obtained by using a new c-cut Co:ASL saturable absorber in an Er-Yb:glass laser. These pulses are perfectly adapted to free-space detection systems requiring eye safety. The coherence time of the beat note in these lasers was also studied: it is limited by the pulse duration. A new technique of modulating the pump power of a solid-state laser at frequencies close to its relaxation oscillation frequency was studied and made it possible to generate a beat note coherence from pulse to pulse. Frequency conversion techniques using the nonlinear optical effects make it possible to obtain tunable two-frequency sources in the visible spectrum. Green and red two-frequency pulses were obtained by using different conversion techniques, intra-cavity or extra-cavity. A two-frequency THz source in the red spectrum was also obtained by doubling the frequencies of a two-frequency THz Er-Yb:glass laser using a mixed fan-out PPLN crystal

  15. Simple, compact, and low cost CO2 laser driven by fast high voltage solid state switch for industrial application

    Science.gov (United States)

    Tanaka, Miyu; Tei, Masaya; Uno, Kazuyuki; Nakano, Hitoshi

    2017-02-01

    A longitudinally excited CO2 laser driven with a reverse recovery characteristics of high voltage diode has been developed. A diode is used to control the high voltage pulse as an opening switch. Power supply for longitudinally excited CO2 laser is composed of a pulse generator, transformer, capacitor, and a diode, is very simple. Laser oscillation has been successfully achieved, several tens of mJ in laser energy has been obtained.

  16. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    Science.gov (United States)

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  17. Atmospheric measurements of OH, HO2 and NO by laser-induced fluorescence spectroscopy using a compact all solid-state laser system

    Science.gov (United States)

    Bloss, W. J.; Floquet, C.; Gravestock, T. J.; Heard, D. E.; Ingham, T.; Johnson, G. P.; Lee, J. D.

    2003-04-01

    Free-radicals are key intermediates that control the budgets of many trace gases, for example ozone, greenhouse gases and harmful pollutants. Measurement of radicals and comparison with model calculations constitutes an important test of our understanding of the underlying chemistry. There is a greater need for compact and lightweight instruments for the in situ measurement of free-radical species that are suitable for deployment from a number of field-platforms. A new field instrument has been developed that incorporates an all solid-state Nd:YAG pumped titanium sapphire laser that is capable of generating radiation at high pulse-repetition-frequency for the detection of OH, HO_2, NO and IO radicals in the atmosphere by laser induced fluorescence (LIF). The system offers advantages of wide wavelength tunability, compactness, low weight, greater long-term stability (fibre-optic delivery) and short warm-up time. The instrument was successfully deployed during 2002 in the NAMBLEX field campaign at Mace Head with detection limits for OH and HO_2 (measured simultaneously with laser operation at 308 nm) of 3.1 x 10^5 molecule cm-3 (0.012 ppt) and 2.6 x 10^6 molecule cm-3 (0.09 pptv) respectively. Diurnal profiles of OH have been recorded over a period of 5 weeks. NO controls the HO_2/OH ratio and is the critical parameter in the production of tropospheric ozone, yet measurements in the boundary layer are restricted to a single indirect technique based on chemiluminescent analysers. Measurements of NO in the atmosphere have been made by LIF using the new instrument operating at 226 nm, with absolute concentrations in good agreement with simultaneous measurements made using a commercial chemiluminescent analyser. Whilst operating at 445 nm, the instrument has detected the IO radical in the laboratory, with a projected detection limit that is well below previously measured atmospheric concentrations of IO. A second instrument to be deployed on an aircraft platform is

  18. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  19. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  20. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  1. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  2. CW and Q-switched 2 µm solid-state laser on ZrO2–Y2O3–Ho2O3 crystals pumped by a Tm fiber laser

    Science.gov (United States)

    Chabushkin, A. N.; Lyapin, A. A.; Ryabochkina, P. A.; Antipov, O. L.; Artemov, S. A.; Lomonova, E. E.

    2018-03-01

    A solid-state laser based on yttrium-stabilized zirconia crystals (86 mol% ZrO2–13.6 mol% Y2O3–0.4 mol% Ho2O3) and pumped by a thulium fiber laser at a wavelength of 1907 nm was developed. The maximum output power of 8.8 W was achieved, with a slope efficiency of 46% for continuous-wave operation. 2 µm Q-switched operation of the laser at repetition rates of 1 kHz and 10 kHz was demonstrated.

  3. Measurements of energetic ions produced by high-energy laser pulses by means of solid-state nuclear track detectors

    Czech Academy of Sciences Publication Activity Database

    Szydlowski, A.; Badziak, A.; Parys, P.; Wolowski, J.; Woryna, E.; Jungwirth, Karel; Králiková, Božena; Krása, Josef; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Boody, F. D.; Gammino, S.; Torrisi, L.

    2004-01-01

    Roč. 7, č. 3 (2004), s. 327-332 ISSN 1093-3611 Institutional research plan: CEZ:AV0Z1010921 Keywords : iodine laser * nuclear track detectors * ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.194, year: 2004

  4. Selective excitation of higher-radial-order Laguerre-Gaussian beams using a solid-state digital laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2017-01-01

    Full Text Available In this paper, we use a digital laser to generate high-radial-order Laguerre-Gaussian, LGp,0 modes by loading digital holograms on a phase-only spatial light modulator that act as an end mirror of a diode-end-pumped laser resonator. The digital...

  5. Development of laser diode-pumped solid state green laser for the pumping of wavelength tunable laser. 2. Development of double-pass Nd:YAG MOPA system

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Masaki; Kato, Masaaki; Maruyama, Yoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    The characteristics of a LD pumped zigzag slab YAG laser double-pass amplification is studied. The amplified laser power of 43W in IR is obtained, and the energy extraction efficiency from Nd:YAG crystals 40%. The electrical efficiency is 3.7%. The green power is 19W by using a KTP crystal, with the conversion efficiency of 46%. In this condition, electrical energy efficiency is 1.4%. We also study the quality of the laser beam, and shows that the M{sup 2} of the laser beam is around 1.5 at high average power condition. (author)

  6. Solid-State Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II we will develop transparent Nd:Yttria ceramic laser materials that can operate at 914 nm and 946 nm suitable for applications in ozone LIDAR systems. We...

  7. Improving the Performance of Gold-Nanoparticle-Doped Solid-State Dye Laser Using Thermal Conversion Effect

    Science.gov (United States)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.

    2018-04-01

    Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.

  8. Improving the Performance of Gold-Nanoparticle-Doped Solid-State Dye Laser Using Thermal Conversion Effect

    Science.gov (United States)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.

    2018-01-01

    Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.

  9. Generation of 2 µm Laguerre–Gaussian mode in a Tm:LuYAG solid-state laser

    Science.gov (United States)

    Liu, Qiyao; Ding, Manman; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan

    2018-04-01

    In this article, we discuss the first vortex laser in the 2 µm spectral range directly generated from a Tm:LuYAG oscillator, in which a pump beam with annular intensity distribution is employed in line with Laguerre–Gaussian modes. Laser thresholds of different-order Laguerre–Gaussian modes are theoretically analyzed and discussed. Vortex lasers with orbital angular momentum of ħ and  ‑ħ were experimentally produced with corresponding output powers of 1.75 W and 1.64 W, respectively. This directly emitted vortex laser generated in the ~2 µm region from a compact and robust Tm:LuYAG oscillator has potential applications in the areas of molecular spectroscopy and organic material processing amongst others.

  10. Assessment of high-power kW-class single-diode bars for use in highly efficient pulsed solid state laser systems

    Science.gov (United States)

    Lucianetti, Antonio; Pilar, Jan; Pranovich, Alina; Divoky, Martin; Mocek, Tomas; Ertel, K.; Jelinkova, Helena; Crump, P.; Frevert, C.; Staske, R.; Erbert, Götz; Traenkle, Günther

    2015-03-01

    In this work, we present measurements of efficiency-optimized 940 nm diode laser bars with long resonators that are constructed with robustly passivated output facets at the Ferdinand-Braun-Institut (FBH). The measurements were performed at room temperature on a test bench developed at HiLASE Centre, as a function of operating condition. The single-diode bars generated < 1.0 kW when tested with 1 ms pulses at 1-10Hz operating frequency, corresponding to < 1 J per pulse. The maximum electrical-to-optical efficiency was < 60 %, with operating efficiency at 1 kW of < 50%, limited by the ~ 200 μΩ resistance of the bar packaging. In addition, slow axis divergence at 1 kW was below 6° FWHM and spectral width at 1 kW was below 7 nm FWHM, as needed for pumping Yb-doped solid state amplifier crystals.

  11. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  12. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  13. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  14. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  15. Efficient near diffraction limited blue light source by sum-frequency mixing of a BAL and a solid-state laser

    DEFF Research Database (Denmark)

    Sørensen, Knud Palmelund; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2011-01-01

    Sum-frequency mixing of an 808 nm broad area laser (BAL) with a build-in grating structure for spectral control and a 1064 nm solid-state laser is experimentally investigated. The spectrally improved 20 mu m wide BAL can deliver up to 700 mW of output power with an M-2 of 1.4 and 5.3 in the fast...... and slow axis of the diode, respectively. The BAL output beam is single-passed through a periodically poled KTiOPO4 (PPKTP) crystal placed in an intra-cavity beam waist of a 1064 nm Nd:YVO4 laser, resulting in 100 mW of sum-frequency generated blue output power. This corresponds to a power conversion...... efficiency of 15%. The near diffraction limited blue output beam is measured to have an M-2 of 1.2 and 1.7 in the directions corresponding to the fast and slow axis of the BAL diode, respectively....

  16. Q-switching of a high-power solid-state laser by a fast scanning Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Baburin, N V; Borozdov, Yu V; Danileiko, Yu K; Denker, B I; Ivanov, A D; Osiko, Vyacheslav V; Sverchkov, S E; Sidorin, A V; Chikov, V A; Ifflander, R; Hack, R; Kertesz, I; Kroo, N

    1998-01-01

    An investigation was made of the suitability of a Q-switch, based on a piezoelectrically scanned short-base Fabry-Perot interferometer, for an Nd 3+ :YAG laser with an average output radiation power up to 2 kW. The proposed switch made it possible to generate of giant pulses of 60 - 300 ns duration at a repetition rate of 20 - 100 kHz. Throughout the investigated range of the pulse repetition rates the average power was at least equal to that obtained by cw lasing. Special requirements to be satisfied by the interferometer, essential for efficient Q-switching, were considered. (control of laser radiation parameters)

  17. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  18. Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser

    DEFF Research Database (Denmark)

    Andreana, Marco; Le, Tuan; Hansen, Anders Kragh

    2017-01-01

    We have developed an epi-detected multimodal nonlinear optical microscopy platform based on a compact and cost-effective laser source featuring simultaneous acquisition of signals arising from hyperspectral coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence, and second harmonic...

  19. Application of V2O5 thin films deposited by laser ablation in micron batteries of solid state

    International Nuclear Information System (INIS)

    Escobar A, L.; Camps, E.; Haro P, E.; Camacho L, M.A.; Julien, C.

    2001-01-01

    The obtained results from synthesizing V 2 O 5 thin films by laser ablation are presented. Depending on the deposit conditions V 2 O 5 thin films have been grown as amorphous as a crystalline ones with preferential orientation. The results of the electrochemical characterization of one of the synthesized layers are presented when being manufactured joint with it a micron battery. (Author)

  20. Solid State Grid Modulator

    National Research Council Canada - National Science Library

    Jones, Franklin

    2001-01-01

    This program was for the design, construction and test of two Solid State Grid Modulators to provide enhanced performance and improved reliability in existing S-band radar transmitters at the Rome Research Site...

  1. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    Science.gov (United States)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-04-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 105, pulsed carrier is also employed for the application in a 10 Gbit s-1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on-off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of -17 and -15.2 dBm at a bit error rate of 10-9, respectively.

  2. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  3. Effect of energy density on low-shrinkage composite resins: diode-pumped solid state laser versus quartz-tungsten-halogen light-curing unit.

    Science.gov (United States)

    Heo, Young-Joon; Lee, Geun-Ho; Park, Jeong-Kil; Ro, Jung-Hoon; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2013-01-01

    The purpose of the present study was to evaluate the effect of energy density on the polymerization of low-shrinkage composite resins. The number of photons needs to initiate the polymerization process can be controlled by light intensity and curing time through the form of energy density. For the study, two methacrylate-based (Premise [PR] and Venus Diamond [VE]) and one silorane-based (Filtek LS [LS]) composite resins were light cured using a quartz-tungsten-halogen (QTH) light-curing unit (LCU) and a 473 nm diode-pumped solid state (DPSS) laser. Degree of conversion (DC), microhardness, refractive index, and polymerization shrinkage were evaluated under different energy densities. Through the study, the feasibility of DPSS laser as a light source was tested as well. LS showed the highest DC and refractive index both on the top and bottom surfaces, and the least polymerization shrinkage among the tested specimens. For the same or similar energy density, QTH and DPSS showed insignificant DC difference (p>0.05). On the other hand, for microhardness, except for one case at the bottom surface, QTH and DPSS showed significant difference (punit.

  4. Mode-locked 1.5 micrometers semiconductor optical amplifier fiber ring

    DEFF Research Database (Denmark)

    Pedersen, Niels V.; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product=0.7) 1.5 μm 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental...

  5. Mode-Locked 1.5 um Semiconductor Optical Fiber Ring

    DEFF Research Database (Denmark)

    Pedersen, Niels Vagn; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product = 0.7) 1.5 um 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental...

  6. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  7. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  8. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  9. Selective photochemistry at stereogenic metal and ligand centers of cis-[Ru(diphosphine)2(H)2]: preparative, NMR, solid state, and laser flash studies.

    Science.gov (United States)

    Câmpian, Marius V; Perutz, Robin N; Procacci, Barbara; Thatcher, Robert J; Torres, Olga; Whitwood, Adrian C

    2012-02-22

    Three ruthenium complexes Λ-[cis-Ru((R,R)-Me-BPE)(2)(H)(2)] Λ-R,R-Ru1H(2), Δ-[cis-Ru((S,S)-Me-DuPHOS)(2)(H)(2)] Δ-S,S-Ru2H(2), and Λ-[cis-Ru((R,R)-Me-DuPHOS)(2)(H)(2)] Λ-R,R-Ru2H(2) (1 = (Me-BPE)(2), 2 = (Me-DuPHOS)(2)) were characterized by multinuclear NMR and CD spectroscopy in solution and by X-ray crystallography. The chiral ligands allow the full control of stereochemistry and enable mechanistic studies not otherwise available. Oxidative addition of E-H bonds (E = H, B, Si, C) was studied by steady state and laser flash photolysis in the presence of substrates. Steady state photolysis shows formation of single products with one stereoisomer. Solid state structures and circular dichroism spectra reveal a change in configuration at ruthenium for some Δ-S,S-Ru2H(2)/Λ-R,R-Ru2H(2) photoproducts from Λ to Δ (or vice versa) while the configuration for Λ-R,R-Ru1H(2) products remains unchanged as Λ. The X-ray structure of silyl hydride photoproducts suggests a residual H(1)···Si(1) interaction for Δ-[cis-Ru((R,R)-Me-DuPHOS)(2)(Et(2)SiH)(H)] and Δ-[cis-Ru((R,R)-Me-DuPHOS)(2)(PhSiH(2))(H)] but not for their Ru(R,R-BPE)(2) analogues. Molecular structures were also determined for Λ-[cis-Ru((R,R)-Me-BPE)(2)(Bpin)(H)], Λ-[Ru((S,S)-Me-DuPHOS)(2)(η(2)-C(2)H(4))], Δ-[Ru((R,R)-Me-DuPHOS)(2)(η(2)-C(2)H(4))], and trans-[Ru((R,R)-Me-DuPHOS)(2)(C(6)F(5))(H)]. In situ laser photolysis in the presence of p-H(2) generates hyperpolarized NMR spectra because of magnetically inequivalent hydrides; these experiments and low temperature photolysis with D(2) reveal that the loss of hydride ligands is concerted. The reaction intermediates [Ru(DuPHOS)(2)] and [Ru(BPE)(2)] were detected by laser flash photolysis and have spectra consistent with approximate square-planar Ru(0) structures. The rates of their reactions with H(2), D(2), HBpin, and PhSiH(3) were measured by transient kinetics. Rate constants are significantly faster for [Ru(BPE)(2)] than for [Ru(DuPHOS)(2

  10. Solid State Research.

    Science.gov (United States)

    1996-05-15

    15, 324 (1993). 3. L . Wallman , J. Drott, J. Nilsson, and T. Laurell, 8th International Conference on Solid-State Sensors and Actuators and...unlimited. BTIG QUA1ETY IHSESCTBH) l This report is based on studies performed at Lincoln Laboratory, a center for research operated by Massachusetts...analyzer. 34 7-1 Fully depleted transistor results for 50-nm silicon-on-insulator thickness and W/ L = 7/0.25 fjm: (a) n-channel characteristic curves, (b

  11. Quasiperiodicity, mode-locking, and universal scaling in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Ecke, R.E.

    1990-01-01

    This major review paper describes research on a model nonlinear dynamical system of small-aspect-ratio Rayleigh-Benard convection in 3 He - 4 He mixtures. The nonlinear effects of mode locking and quasiperiodic behavior are described. Analysis techniques for characterizing the state of the dynamical system include Fourier transforms, Poincare sections, phase differences, transients, multifractal f(∝) spectra and scaling function dynamics. Theoretical results such as the fractal staircase of mode-locked intervals and the Arnold tongues are reproduced in experimental data. New techniques for analyzing scaling dynamics are developed and discussed. This is a tutorial article that introduces the major important concepts in nonlinear dynamics and focuses on experimental problems and techniques. 77 refs

  12. MHD stability and mode locking in pre-disruptive plasmas on TORE SUPRA

    International Nuclear Information System (INIS)

    Vallet, J.C.; Edery, D.; Joffrin, E.; Lecoustey, P.; Mohamed-Benkadda, M.S.; Pecquet, A.L.; Samain, A.; Talvard, M.

    1991-01-01

    Experiments devoted to the study of MHD activity have been carried out on TORE SUPRA. The observed disruptions are preceded by the growth of an m=2 N=1 rotating mode which locks when the magnetic field perturbation exceeds a critical value. The mode locking is interpreted as a bifurcation of the mode frequency. In addition, stabilization of the m=2 N=1 tearing mode has been obtained with the Ergodic Divertor (ED)

  13. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  14. Solid state phenomena

    CERN Document Server

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  15. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  16. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  17. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  18. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  19. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  20. A Compact, Solid-State UV (266 nm) Laser System Capable of Burst-Mode Operation for Laser Ablation Desorption Processing

    Science.gov (United States)

    Arevalo, Ricardo, Jr.; Coyle, Barry; Paulios, Demetrios; Stysley, Paul; Feng, Steve; Getty, Stephanie; Binkerhoff, William

    2015-01-01

    Compared to wet chemistry and pyrolysis techniques, in situ laser-based methods of chemical analysis provide an ideal way to characterize precious planetary materials without requiring extensive sample processing. In particular, laser desorption and ablation techniques allow for rapid, reproducible and robust data acquisition over a wide mass range, plus: Quantitative, spatially-resolved measurements of elemental and molecular (organic and inorganic) abundances; Low analytical blanks and limits-of-detection ( ng g-1); and, the destruction of minimal quantities of sample ( g) compared to traditional solution and/or pyrolysis analyses (mg).

  1. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second.

    Science.gov (United States)

    Huber, R; Adler, D C; Srinivasan, V J; Fujimoto, J G

    2007-07-15

    A Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of approximately10x over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.

  2. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    International Nuclear Information System (INIS)

    Lee, Hwi Don; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok; Jung, Eun Joo

    2013-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. (paper)

  3. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    Science.gov (United States)

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2013-06-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal.

  4. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  5. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    Science.gov (United States)

    Olivier, Michel; Piché, Michel

    2016-02-08

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber.

  6. Solid State Research.

    Science.gov (United States)

    1996-08-01

    SUBMICROMETER TECHNOLOGY 25 3.1 Laser-Induced Microchemical Etching of Silicon for Terahertz -Based Waveguide Components 25 3.2 Optical Sampling...developed to machine waveguide structures for the terahertz operating regime. This technique uses a thermally activated chemical reaction to etch three...fabricated using a new doubly planarized all-refractory technology for superconductors (DPARTS) process. 7. ADVANCED SILICON TECHNOLOGY A self-aligned

  7. Solid State Research

    Science.gov (United States)

    1992-02-15

    M. Smyth* J. Logan* K. Stawiasz* E. Baran* M. Jaso* T. Ross* K. Petrillo* M. Manny* S. Basavaiah* S. Brodsky* S. B. Kaplan * W. J. Gallagher* M... Cima * Frequency Tuning of Microchip Lasers J. J. Zayhowski IEEE J. Quantum Electron. Using Pump-Power Modulation J. A. Keszenheimer *Author not at... Cima * A. C. Anderson 1991 Fall Meeting of the A High Flux Atomic Oxygen Source L. S. Yu-Jahnes Materials Research Society, for the Deposition of In Situ

  8. Report on first masing and single mode locking in a prebunched beam FEM oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.; Eichenbaum, A.; Kleinman, H. [Tel-Aviv Univ., Ramat-Aviv (Israel)] [and others

    1995-12-31

    Radiation characteristics of a table-top free electron maser (FEM) are described in this paper. The FEM employs a prebunched electron beam and is operated as an oscillator in the low-gain collective (Raman) regime. Using electron beam prebunching single mode locking at any one of the possible oscillation modes was obtained. The electron beam is prebunched by a microwave tube section before it is injected into the wiggler. By tuning the electron beam bunching frequency, the FEM oscillation frequency can be locked to any eigen frequency of the resonant waveguide cavity which is within the frequency band of net gain of the FEM. The oscillation build up process is sped up, when the FEM operates with a prebunched electron beam, and the build-up time of radiation is shortened significantly. First measurements of masing with and without prebunching and characterization of the emitted radiation are reported.

  9. Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model

    Science.gov (United States)

    Wang, Fengjuan; Cao, Hongjun

    2018-03-01

    The two-dimensional parameter spaces of a discrete-time Chialvo neuron model are investigated. Our studies demonstrate that for all our choice of two parameters (i) the fixed point is destabilized via Neimark-Sacker bifurcation; (ii) there exist mode locking structures like Arnold tongues and shrimps, with periods organized in a Farey tree sequence, embedded in quasiperiodic/chaotic region. We determine analytically the location of the parameter sets where Neimark-Sacker bifurcation occurs, and the location on this curve where Arnold tongues of arbitrary period are born. Properties of the transition that follows the so-called two-torus from quasiperiodicity to chaos are presented clearly and proved strictly by using numerical simulations such as bifurcation diagrams, the largest Lyapunov exponent diagram on MATLAB and C++.

  10. A Theoretical Investigation of Mode-Locking Phenomena in Reversed Field Pinches

    International Nuclear Information System (INIS)

    Richard Fitzpatrick

    2004-01-01

    OAK-B135 This paper investigates the formation and breakup of the ''slinky mode'' in an RFP using analytic techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that above which slinky formation occurs. Analytic expressions for the slinky formation and breakup thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all regimes of physical interest. The problems associated with a locked slinky mode can be alleviated by canceling out the accidentally produced error-field responsible for locking the slinky mode, using a deliberately created ''control'' error-field. Alternatively, the locking angle of the slinky mode can be swept toroidally by rotating the control field

  11. A theoretical investigation of mode-locking phenomena in reversed field pinches

    Energy Technology Data Exchange (ETDEWEB)

    Richard Fitzpatrick

    2004-03-17

    OAK-B135 This paper investigates the formation and breakup of the ''slinky mode'' in an RFP using analytic techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that above which slinky formation occurs. Analytic expressions for the slinky formation and breakup thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all regimes of physical interest. The problems associated with a locked slinky mode can be alleviated by canceling out the accidentally produced error-field responsible for locking the slinky mode, using a deliberately created ''control'' error-field. Alternatively, the locking angle of the slinky mode can be swept toroidally by rotating the control field.

  12. A Theoretical Investigation of Mode-Locking Phenomena in Reversed Field Pinches

    Energy Technology Data Exchange (ETDEWEB)

    Richard Fitzpatrick

    2004-04-07

    OAK-B135 This paper investigates the formation and breakup of the ''slinky mode'' in an RFP using analytic techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that above which slinky formation occurs. Analytic expressions for the slinky formation and breakup thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all regimes of physical interest. The problems associated with a locked slinky mode can be alleviated by canceling out the accidentally produced error-field responsible for locking the slinky mode, using a deliberately created ''control'' error-field. Alternatively, the locking angle of the slinky mode can be swept toroidally by rotating the control field.

  13. A theoretical investigation of mode-locking phenomena in reversed field pinches

    International Nuclear Information System (INIS)

    Richard Fitzpatrick

    2004-01-01

    OAK-B135 This paper investigates the formation and breakup of the ''slinky mode'' in an RFP using analytic techniques previously employed to examine mode locking phenomena in tokamaks. The slinky mode is a toroidally localized, coherent interference pattern in the magnetic field which co-rotates with the plasma at the reversal surface. This mode forms, as a result of the nonlinear coupling of multiple m = 1 core tearing modes, via a bifurcation which is similar to that by which toroidally coupled tearing modes lock together in a tokamak. The slinky mode breaks up via a second bifurcation which is similar to that by which toroidally coupled tearing modes in a tokamak unlock. However, the typical m = 1 mode amplitude below which slinky breakup is triggered is much smaller than that above which slinky formation occurs. Analytic expressions for the slinky formation and breakup thresholds are obtained in all regimes of physical interest. The locking of the slinky mode to a static error-field is also investigated analytically. Either the error-field arrests the rotation of the plasma at the reversal surface before the formation of the slinky mode, so that the mode subsequently forms as a non-rotating mode, or the slinky mode forms as a rotating mode and subsequently locks to the error-field. Analytic expressions for the locking and unlocking thresholds are obtained in all regimes of physical interest. The problems associated with a locked slinky mode can be alleviated by canceling out the accidentally produced error-field responsible for locking the slinky mode, using a deliberately created ''control'' error-field. Alternatively, the locking angle of the slinky mode can be swept toroidally by rotating the control field

  14. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.

    Science.gov (United States)

    Lerud, Karl D; Almonte, Felix V; Kim, Ji Chul; Large, Edward W

    2014-02-01

    The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet the biophysical origin of central auditory nonlinearities, their signal processing properties, and their relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical intervals that have been observed in the human brainstem. The model makes predictions about auditory signal processing and perception that are different from traditional delay-based models, and may provide insight into the nature of auditory population responses. We anticipate that the application of dynamical systems analysis will provide the starting point for generic models of auditory population dynamics, and lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-inhibitory networks of the central auditory nervous system. This approach has the potential to link neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of auditory system development. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Solid State Air Purification System

    Data.gov (United States)

    National Aeronautics and Space Administration — The solid state air purification project will explore feasibility of a new air purification system based on a liquid membrane, capable of purifying carbon dioxide...

  16. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  17. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation.

  18. The possibility of clinical application of the solid state lasers: Nd:YAG, Ho:YAG, and Er:YAG in otolaryngology - head and neck surgery

    Science.gov (United States)

    Tomaszewska, M.; Kukwa, A.; Tulibacki, M.; Wójtowicz, P.; Olędzka, I.; Jeżewska, E.

    2007-02-01

    The purpose of this study was to summarize our experiences in clinical application of Nd:YAG, Ho:YAG and Er:YAG in otolaryngology- head and neck surgery. Choosing the laser type and parameters for the particular procedures was based on our previous research on tissue effects of those lasers. During the period of 1993-2006 we performed 3988 surgical procedures with the Nd:YAG laser. Over 87% of those were made for the nasal cavity pathologies as polyps, hyperplasia of inferior nasal turbinate, granulation tissue, postoperative adhesions, vascular malformations, under the local anesthesia conditions. In our experience Nd:YAG laser gives the possibility of good clinical control and low risk of side effects for disorders of high recurrence and frequent interventions necessity, as nasal polyps or respiratory papillomatosis. Nd:YAG assisted uvulopalatoplasty gives an interesting alternative for surgical procedures for snoring and slight/mild OSA-recognized patients. Due to its good hemostatic properties, it is a perfect tool for removal of the chemodectoma from meddle ear. During the period of 1995-2006 we performed 229 surgical procedures with the Ho:YAG laser, mostly for larynx pathologies (adhesion and scar tissue removal). In our experience Ho:YAG laser can serve as a precise laser knife for both soft and bony tissue. The ER:YAG laser still remain under clinical trial. Since 2001 year we performed 24 procedures of removing stone deposits from salivary glands. We believe it may become a promising method to cope with sialolithiasis which allows for glandule function preservation. All of the laser types mentioned above, can be easily coupled with endoscopes, what makes them available for all of the head and necklocalized disorders.

  19. Monolithic mode-locked lasers with deeply dry etched Bragg mirror

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    and high index regions (etched andunetched), is 240 nm for a 1st order grating and 480 nm for the 2nd order.Fabrication: The mask for the grating is formed by a combination of E-beam writing andUV-lithography. The resist pattern is transferred to a 100 nm SiO2-film, with a CHF3(Freon) based dry etch...

  20. Construction and Measurement of an Actively Mode-Locked Sigma Laser

    National Research Council Canada - National Science Library

    Butler, James

    1998-01-01

    .... The amplitude-modulated pulses become the discrete samples of the analog signal. Limiting factors in an optical ADC are the pulsewidth, the pulse rate, and the jitter noise of the optical pulse train...

  1. Amplitude and Temporal Jitter Associated with the NPS Active Mode-Locked Sigma Laser

    National Research Council Canada - National Science Library

    Anderson, James

    2000-01-01

    .... They have the capability of being used for direct signal reception and ADC at an antenna. A fundamental requirement for these designs is a high-frequency optical pulse train with uniform amplitude and pulse spacing...

  2. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    Pramana – Journal of Physics. Current Issue : Vol. 90, Issue 3 · Current Issue Volume 90 | Issue 3. March 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  3. Pulse Characteristics of Passively Mode-Locked Quantum Dot Lasers (Postprint)

    Science.gov (United States)

    2010-07-01

    wide, 1.8-m deep ridges by inductively coupled plasma (ICP) etching in BCl3. Then a BCB layer was applied for isolation between the p-type metal and...GaAs substrate and annealed at 380C for 1 minute to form the n-ohmic contact. A temperature greater than 380C can crack the BCB . Another Ti/Au metal

  4. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  5. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  6. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  7. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  8. Gain broadening and mode-locking in overcoupled second harmonic Q-switched microsecond pulses

    Science.gov (United States)

    Rohde, Ingo; Brinkmann, Ralf

    2014-10-01

    An intracavity frequency doubled, Q-switched Nd:YLF emitting at a wavelength of 527 nm was designed with the goal to temporally stretch the Q-switched pulses up to some microseconds at pulse energies of several millijoules. With different resonator configurations pulse durations between 12 μs and 3 μs with energies of 1 mJ-4.5 mJ have been achieved, which is demanded for an application in ophthalmology. For tighter intracavity foci and high pump power, however, strong power modulations by trains of picosecond pulses on the rear flank of the microsecond pulses were observed, indicating the occurrence of cascading nonlinearities and mode-locking. Simultaneously a significant increase of the fundamental spectrum up to 5 nm was found. A similar effect, which is referred to as gain broadening, has previously been observed by using ppKTP for intracavity second harmonic generation. This is, to the best of our knowledge, the first observation of this effect with unpoled second harmonic media. This project was realized with the support of the German Ministry for Education and Research (BMBF).

  9. Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes

    Science.gov (United States)

    Saccoccio, Mattia; Yu, Jing; Lu, Ziheng; Kwok, Stephen C. T.; Wang, Jian; Yeung, Kan Kan; Yuen, Matthew M. F.; Ciucci, Francesco

    2017-10-01

    With its stability against Li and good ionic conductivity, Li7La3Zr2O12 (LLZO) has emerged as a promising electrolyte material for lithium-based solid-state batteries (SSBs). Thin layers of solid electrolyte are needed to enable the practical use of SSBs. We report the first deposition of Li-conductive crystalline Ta-doped LLZO thin films on MgO (100) substrates via pulsed laser deposition. Further, we investigate the impact of laser fluence, deposition temperature (in the 50 °C-700 °C range), and post-deposition annealing on the structural, compositional, and transport properties of the film. We analyze the structure of the deposited films via grazing incident X-ray diffraction, their morphology via scanning electron microscopy, and the composition via depth profiling X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. The Li ionic conductivity is investigated via electrochemical impedance spectroscopy. Contrary to previous reports for LLZO films, the crystalline Ta-doped films presents a pure cubic LLZO structure for deposition temperatures as low as 50 °C, with resulting conductivities not significantly influenced by the temperature deposition. Instead, the laser fluence has a major effect on the growth rate of the thin films.

  10. Organization of the Topical Meeting on Tunable Solid State Lasers Held in North Falmouth, Massachusetts on 1-3 May 1989

    Science.gov (United States)

    1989-08-30

    Antonio Sanchez V/T Llnr~ln o’iCr~j P-e o 11:15 AM WC3 Enhanced Energy Transfer Processes in Codoped WBI Laser Techniques and Frequency Conversion for a...150 WEDNESDAY, MAY 3, 1989 NAUSET III 9:15 AM-10:30 AM WB1-WB6 MOSTLY 1.3 MICRON Nd LASERS/ POSTER SESSION Antonio Sanchez, MIT Lincoln Laboratory...1964). E.P. CITicklis, C.S. Naiman, R.C. Folweiler, D.R. Gabbe, H.P. Jenssen, A. Linz : Appl. Phys. LetL. _3, 119 (1971). (2)M. Meucci , M. Tonelli, G

  11. Solid State and Materials Chemistry

    Indian Academy of Sciences (India)

    Unknown

    It gives us immense pleasure to present this Special Issue of the Proceedings of the Indian. Academy of Sciences (Chemical Sciences) to mark the Silver Jubilee of the Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bangalore. This Unit was created by Professor C N R Rao, FRS, at the Institute ...

  12. Solid State and Materials Chemistry

    Indian Academy of Sciences (India)

    Unknown

    and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bangalore. This Unit was created by Professor C N R Rao, FRS, at the Institute in 1976, to give a major thrust to the then emerging discipline of solid state and structural chemistry. Over the years, the Unit has grown from strength to strength under the dynamic.

  13. Hysteresis in the tearing mode locking/unlocking due to resonant magnetic perturbations in EXTRAP T2R

    Science.gov (United States)

    Fridström, R.; Frassinetti, L.; Brunsell, P. R.

    2015-10-01

    The physical mechanisms behind the hysteresis in the tearing mode locking and unlocking to a resonant magnetic perturbation (RMP) are experimentally studied in EXTRAP T2R reversed-field pinch. The experiments show that the electromagnetic and the viscous torque increase with increasing perturbation amplitude until the mode locks to the wall. At the wall-locking, the plasma velocity reduction profile is peaked at the radius where the RMP is resonant. Thereafter, the viscous torque drops due to the relaxation of the velocity in the central plasma. This is the main reason for the hysteresis in the RMP locking and unlocking amplitude. The increased amplitude of the locked tearing mode produces further deepening of the hysteresis. Both experimental results are in qualitative agreement with the model in Fitzpatrick et al (2001 Phys. Plasmas 8 4489)

  14. A laser-based longitudinal density monitor for the large hadron collider

    International Nuclear Information System (INIS)

    Beche, J.-F.; Byrd, J.; Datte, P.; De Santis, S.; Placidi, M.; Riot, V.; Schoenlein, R.; Turner, W.; Zolotorev, M.

    2004-01-01

    We report on the development of an instrument for the measurement of the longitudinal beam profile in the Large Hadron Collider (LHC). The technique used, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid state laser oscillator in a non-linear crystal.The up-converted radiation is then detected with a photomultiplier and processed to extract, store and display the required information. A 40MHz laser, phase-locked to the ring radio frequency system, with a 50 pspulse length, would be suitable for measuring the dynamics of the core of each of the LHC 2808 bunches in a time span much shorter than the synchrotron period. The same instrument could also monitor the evolution of the bunch tails, the presence of untrapped particles and their diffusion into nominally empty RF buckets (''ghost bunches'') as required by the CERN specifications

  15. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  16. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  17. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  18. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  19. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  20. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...