WorldWideScience

Sample records for mode phonon energy

  1. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  2. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Science.gov (United States)

    Lourenço-Martins, Hugo; Kociak, Mathieu

    2017-10-01

    Recently, two reports [Krivanek et al. Nature (London) 514, 209 (2014), 10.1038/nature13870, Lagos et al. Nature (London) 543, 529 (2017), 10.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014), 10.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989), 10.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997), 10.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008), 10.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012), 10.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015), 10.1021/acsphotonics.5b00421].

  3. Quantum mode phonon forces between chainmolecules

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2001-01-01

    A phenomenological description of the contributions of phonons to molecular force is developed. It uses an approximation to consider macromolecules as solid continua. The molecular modes of a molecule can then be characterized by a Debye-like description of the partition function. The resulting b....... For the later case, a significant change in zero-point energy is found. This may be the underlying cause for cold denaturation of proteins. (C) 2001 John Wiley & Sons, Inc....

  4. Phonon modes in a disordered lattice

    International Nuclear Information System (INIS)

    Chakrabarti, B.K.; Roy, G.K.; Sinha, S.K.

    1979-01-01

    A simple cubic lattice, in which a small fraction of sites are replaced at random by atoms of a different kind and the resulting vibrational excitations are studied. Both the mass and force constant disorders are considered. The equation of motion of the Green function is developed following Matsubara and Yonezawa neglecting shear modes; the resulting expression for dispersion relation is summed up following Keneyashi and Jones to the lowest order in concentration. The results are obtained analytically and are found to be exact upto the linear term in concentration. Expressions have been obtained for the renormalised energies and the damping of the long wavelength phonon modes. In the special case of simple disorder, the results are compared with those of Langer. (K.B.)

  5. Goldstone-like phonon modes in a (111)-strained perovskite

    Science.gov (United States)

    Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.

    2018-01-01

    Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.

  6. Phononic frequency comb via three-mode parametric resonance

    Science.gov (United States)

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2018-01-01

    This paper is motivated by the recent demonstration of a phononic frequency comb. While previous experiments have shown the existence of a three-wave mixing pathway in a system of two-coupled phonon modes, this work demonstrates a similar pathway in a system of three-coupled phonon modes. This paper also presents a number of interesting experimental facts concomitant to the three-mode parametric resonance based frequency comb observed in a specific micromechanical device. The experimental validation of frequency combs via three-mode parametric resonance along with the previous demonstration of two-mode frequency combs points to the ultimate possibility of multimode frequency combs.

  7. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-06

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  8. Phonon Modes and the Maintenance Condition of a Crystalline Beam

    CERN Document Server

    Wei, Jie; Li, Xiao-Ping; Okamoto, Hiromi; Sessler, Andrew M; Yuri, Yosuke

    2005-01-01

    Previously it has been shown that the maintenance condition for a crystalline beam requires that there not be a resonance between the crystal phonon frequencies and the frequency associated with a beam moving through a lattice of N periods. This resonance can be avoided provided the phonon frequencies are all below half of the lattice frequency. Here we make a detailed study of the phonon modes of a crystalline beam. Analytic results obtained in a “smooth approximation” using the ground-state crystalline beam structure is compared with numerical evaluation employing Fourier transform of Molecular Dynamic (MD) modes. The MD also determines when a crystalline beam is stable. The maintenance condition, when combined with either the simple analytic theory or the numerical evaluation of phonon modes, is shown to be in excellent agreement with the MD calculations of crystal stability.

  9. Designing broad phononic band gaps for in-plane modes

    Science.gov (United States)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  10. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.

    Science.gov (United States)

    Kothari, Kartik; Maldovan, Martin

    2017-07-17

    Thermal transport at small length scales has attracted significant attention in recent years and various experimental and theoretical methods have been developed to establish the reduced thermal conductivity. The fundamental understanding of how phonons move and the physical mechanisms behind nanoscale thermal transport, however, remains poorly understood. Here we move beyond thermal conductivity calculations and provide a rigorous and comprehensive physical description of thermal phonon transport in superlattices by solving the Boltzmann transport equation and using the Beckman-Kirchhoff surface scattering theory with shadowing to precisely describe phonon-surface interactions. We show that thermal transport in superlattices can be divided in two different heat transport modes having different physical properties at small length scales: layer-restricted and extended heat modes. We study how interface conditions, periodicity, and composition can be used to manipulate the distribution of thermal energy flow among such layer-restricted and extended heat modes. From predicted frequency and mean free path spectra of superlattices, we also investigate the existence of wave effects. The results and insights in this paper advance the fundamental understanding of heat transport in superlattices and the prospects of rationally designing thermal systems with tailored phonon transport properties.

  11. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai

    2012-10-16

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  12. Polarization dependent behavior of CdS around the first and second LO-phonon modes

    Energy Technology Data Exchange (ETDEWEB)

    Frausto-Reyes, C., E-mail: cfraus@cio.mx [Centro de Investigaciones en Optica AC, Unidad Aguascalientes, Prolong., Constitucion 607, Fracc. Reserva Loma Bonita, CP 20200, Apartado Postal 507, Ags. (Mexico); Molina-Contreras, J.R., E-mail: rmolina@correo.ita.mx [Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256, Aguascalientes, Ags. (Mexico); Lopez-Alvarez, Y.F. [Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256, Aguascalientes, Ags. (Mexico); Medel-Ruiz, C.I.; Perez Ladron de Guevara, H. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon s/n, Fracc. Paseos de la Montana, CP 47460, Lagos de Moreno, Jal. (Mexico); Ortiz-Morales, M. [Centro de Investigaciones en Optica AC, Unidad Aguascalientes, Prolong., Constitucion 607, Fracc. Reserva Loma Bonita, CP 20200, Apartado Postal 507, Ags. (Mexico)

    2010-10-25

    The present work report studies on resonant Raman experimental line shape for CdS around the first and second LO-phonon modes. The application of our method to the study of LO-phonon modes of CdS suggests that the scattered intensity is dominated by the surface and dependent on polarization. Results showed that the Raman spectra for CdS, roughly fall into three groups: a broad line-wing with apparent maxima around 194 cm{sup -1} in the range of 140 and 240 cm{sup -1} which can be ascribed to overtone scattering from acoustic phonons; a band near the 1LO phonon mode which can be attributed to a combination of one-phonon scattering and peak acoustic phonon and finally, a band near the 2LO phonon mode which can be attributed to a combination of two-phonon scattering and peak acoustic phonon.

  13. Optical phonon modes of wurtzite InP

    Science.gov (United States)

    Gadret, E. G.; de Lima, M. M.; Madureira, J. R.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F.; Cantarero, A.

    2013-03-01

    Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by using light linearly polarized along different directions in backscattering configuration. Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the wurtzite phase have been calculated, showing a good agreement with the Raman experimental data.

  14. Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene.

    Science.gov (United States)

    Araujo, Paulo T; Mafra, Daniela L; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred S

    2012-01-01

    In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS₂, WSe₂, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications.

  15. First observation of E{sub 2} coherent phonon modes in CdS using a noncollinear optical parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Daisuke; Kunugita, Hideyuki; Ema, Kazuhiro, E-mail: daisuk-s@sophia.ac.j [Department of Engineering and Applied Sciences, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo, 102-8554 (Japan)

    2009-11-15

    We report the first observation of E{sub 2} coherent phonon modes in CdS using a noncollinear optical parametric amplifier. We studied the intensity, temperature and excitation energy dependences of the high- and low-frequency E{sub 2} modes. We obtain that generation mechanism under non- and near resonant regions is impulsive stimulated Raman scattering (ISRS) and E{sub 2} modes are barely affected by Froehlich interaction. As temperature increases, E{sub 2} modes are affected by anharmonic effect. The observed phonon lifetime of the low- and high-E{sub 2} modes in CdS is 243 {+-} 37 and 11.4 {+-} 0.4 ps, respectively, at 83 K. From fitting, we can estimate the lifetime of the high-E{sub 2} mode at the low-temperature limit to be 49.3 ps.

  16. First observation of E2 coherent phonon modes in CdS using a noncollinear optical parametric amplifier

    Science.gov (United States)

    Suzuki, Daisuke; Kunugita, Hideyuki; Ema, Kazuhiro

    2009-11-01

    We report the first observation of E2 coherent phonon modes in CdS using a noncollinear optical parametric amplifier. We studied the intensity, temperature and excitation energy dependences of the high- and low-frequency E2 modes. We obtain that generation mechanism under non- and near resonant regions is impulsive stimulated Raman scattering (ISRS) and E2 modes are barely affected by Fröhlich interaction. As temperature increases, E2 modes are affected by anharmonic effect. The observed phonon lifetime of the low- and high-E2 modes in CdS is 243 ± 37 and 11.4 ± 0.4 ps, respectively, at 83 K. From fitting, we can estimate the lifetime of the high-E2 mode at the low-temperature limit to be 49.3 ps.

  17. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  18. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...

  19. Dispersion, mode-mixing and the electron-phonon interaction in nanostructures

    Science.gov (United States)

    Dyson, A.; Ridley, B. K.

    2018-03-01

    The electron-phonon interaction with polar optical modes in nanostructures is re-examined in the light of phonon dispersion relations and the role of the Fuchs-Kliewer (FK) mode. At an interface between adjacent polar materials the frequencies of the FK mode are drawn from the dielectric constants of the adjacent materials and are significantly smaller than the corresponding frequencies of the longitudinal optic (LO) modes at the zone centre. The requirement that all polar modes satisfy mechanical and electrical boundary conditions forces the modes to become hybrids. For a hybrid to have both FK and LO components the LO mode must have the FK frequency, which can only come about through the reduction associated with phonon dispersion relations. We illustrate the effect of phonon dispersion relations on the Fröhlich interaction by considering a simple linear-chain model of the zincblende lattice. Optical and acoustic modes become mixed towards short wavelengths in both optical and acoustic branches. A study of GaAs, InP and cubic GaN and AlN shows that the polarity of the optical branch and the acousticity of the acoustic branch are reduced by dispersion in equal measures, but the effect is relatively weak. Coupling coefficients quantifying the strengths of the interaction with electrons for optical and acoustic components of mixed modes in the optical branch show that, in most cases, the polar interaction dominates the acoustic interaction, and it is reduced from the long-wavelength result towards the zone boundary by only a few percent. The effect on the lower-frequency FK mode can be large.

  20. Study of optical phonon modes of CdS nanoparticles using Raman ...

    Indian Academy of Sciences (India)

    In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time ...

  1. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects.

    Science.gov (United States)

    Shao, Cheng; Bao, Hua

    2016-06-06

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.

  2. Energy Guiding and Harvesting through Phonon-Engineered Graphene

    Science.gov (United States)

    2016-01-28

    Graphene The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the...ABSTRACT Final Report: Energy Guiding and Harvesting through Phonon-Engineered Graphene Report Title The work performed under this proposal was primarily...Justin Wu, Xinran Wang, Kristof Tahy, Debdeep Jena, Hongjie Dai, Eric Pop. Thermally Limited Current Carrying Ability of Graphene Nanoribbons

  3. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    Science.gov (United States)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  4. Optical phonon modes and polaron related parameters in GaxIn1-xP

    Science.gov (United States)

    Bouarissa, N.; Algarni, H.; Al-Hagan, O. A.; Khan, M. A.; Alhuwaymel, T. F.

    2018-02-01

    Based on a pseudopotential approach under the virtual crystal approximation that includes the effect of compositional disorder, the optical lattice vibration frequencies and polaron related parameters in zinc-blende GaxIn1-xP have been studied. Our findings showed generally reasonably good accord with data in the literature. Other case, our results are predictions. The composition dependence of longitudinal optical (LO) and transverse optical (TO) phonon modes, LO-TO splittings, Frӧhlich coupling parameter, Debye temperature of LO phonon frequency, and polaron effective mass has been analyzed and discussed. While a non-monotonic behavior has been noticed for the LO and TO phonon frequencies versus Ga concentration x, a monotonic behavior has been observed for the rest of the features of interest. The information derived from this investigation may be useful for optoelectronic technological applications.

  5. Isochoric thermal conductivity of solid carbon oxide: the role of phonons and 'diffusive' modes

    International Nuclear Information System (INIS)

    Konstantinov, V A; Manzhelii, V G; Revyakin, V P; Sagan, V V; Pursky, O I

    2006-01-01

    The isochoric thermal conductivity of solid CO was investigated in three samples of different densities in the interval from 35 K to the onset of melting. In α-CO the temperature dependence of the isochoric thermal conductivity is significantly weaker than Λ∝1/T; in β-CO it increases slightly with temperature. A quantitative description of the experimental results is given within the Debye model of thermal conductivity in the approximation of the corresponding relaxation times and which allows for the fact that the mean-free path of phonons cannot become smaller than half the phonon wavelength. On this consideration the heat is transported by both phonons and 'diffusive' modes

  6. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  7. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  8. The A1g mode in the Hg-1201 phonon spectrum as an indicator of N→S transition

    International Nuclear Information System (INIS)

    Dovgij, Ya.

    2011-01-01

    By analyzing the structure of and the temperature changes in HgBa 2 CuO 4+y phonon spectra, the electron-phonon coupling constant g has been determined for the first time. It is shown that this compound is a superconductor with strong coupling. A frequency interval around 60.4 MeV in the HgBa 2 CuO 4+y phonon spectrum, which may be classed as a 'soft mode', is revealed. The dominant partial contribution to the density of phonon states in that spectral range is found to be given by O(2) atomic vibrations.

  9. Ultrafast optical studies of phonon polaritons, squeezed modes and high frequency diamagnetism in metamaterials

    Science.gov (United States)

    Bianchini, Andrea

    The coupling of the electromagnetic field with polar lattice vibrations of a solid, which gives rise to what is traditionally known as phonon polaritons, is investigated both through spontaneous and stimulated Raman scattering. Experimental results relative to polariton modes excited in several semiconductors are presented to explore their dependence on the crystal symmetry, temperature, excitation wavelength and measuring techniques. In GaAs we find discrepancies between spontaneous and Impulsive Stimulated Raman Scattering (ISRS) which are attributed to the presence of free carriers interacting with the electric field of the longitudinal phonon mode. In CraSe, we successfully excite two distinct frequencies of the lower phonon polariton branch. In the transparent regime, this is accomplished combining in the same experiment backward and forward scattering, the latter one induced by the beam reflected at the back surface of the sample. Moreover, it is shown how the reduced value of the scattering cross section retrieved in the time domain experiments is attributable to the polariton field spatial distribution, estimated in accordance with the Cherenkov radiation theory. In CdSe we identify another polariton mode that is present whenever the dielectric constant of a medium becomes negative: the surface plasmon polariton. Besides coherent phonons, squeezed phonons are studied. discussing their generation and detection in regard to the ISRS theory. In particular we introduce a novel phenomenon, named "phonon echo", occurring whenever a squeezed phonon field is induced in a crystal through a double pump excitation. Simulations are shown to validate the theoretical predictions and pave the way to future experiments. Shifting to the metamaterial field, we consider a viable technique to achieve artificial diamagnetism (the magnetic permeability mu is < 1). The proposed approach is based on the well established sphere-in-a-host model that is thoroughly described with

  10. Surface dependent behaviour of CdS LO-phonon mode

    International Nuclear Information System (INIS)

    Molina-Contreras, J R; Medina-Gutierrez, C; Frausto-Reyes, C; Trejo-Vazquez, R; Villalobos-Pina, F J; Romo-Luevano, G; Calixto, S

    2007-01-01

    In this paper, we develop a sensitive optical method to monitor the surface roughness in the investigation of surfaces. By applying this method to measure the RMS surface roughness of various surfaces, we found RMS values which are comparable to those obtained by atomic force microscopy measurements. In addition, we present a simple empirical model to calculate the RMS surface roughness which shows very good agreement with the surface roughness measurements taken by the method reported in this paper. Finally, the application of our method to the study of the LO-phonon mode of CdS suggests that its intensity is dominated by the surface roughness. This roughness dependent behaviour of the CdS LO-phonon mode is experimentally confirmed by using an excitation wavelength near its E 0 transition

  11. Surface dependent behaviour of CdS LO-phonon mode

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Contreras, J R [Departamento de IngenierIa Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256. Aguascalientes, Ags. (Mexico); Medina-Gutierrez, C [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique DIaz de Leon s/n, Fracc. Paseos de la Montana, CP 47460, Lagos de Moreno, Jal. (Mexico); Frausto-Reyes, C [Centro de Investigaciones en Optica AC, Unidad Aguascalientes, Prolong., Constitucion 607, Fracc. Reserva Loma Bonita, CP 20200, Apartado Postal 507, Ags. (Mexico); Trejo-Vazquez, R [Departamento de IngenierIa Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256. Aguascalientes, Ags. (Mexico); Villalobos-Pina, F J [Departamento de IngenierIa Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256. Aguascalientes, Ags. (Mexico); Romo-Luevano, G [Intel TecnologIa de Mexico, SA de CV, Systems Research Center-Mexico, Parque Industrial Tecnologico II, Periferico Sur 7980, edificio 4-E, 45600 Tlaquepaque, Jalisco (Mexico); Calixto, S [Centro de Investigaciones en Optica, AC, Loma del Bosque 115, Colonia Lomas del Campestre, CP 37150 Leon, Guanajuato (Mexico)

    2007-08-21

    In this paper, we develop a sensitive optical method to monitor the surface roughness in the investigation of surfaces. By applying this method to measure the RMS surface roughness of various surfaces, we found RMS values which are comparable to those obtained by atomic force microscopy measurements. In addition, we present a simple empirical model to calculate the RMS surface roughness which shows very good agreement with the surface roughness measurements taken by the method reported in this paper. Finally, the application of our method to the study of the LO-phonon mode of CdS suggests that its intensity is dominated by the surface roughness. This roughness dependent behaviour of the CdS LO-phonon mode is experimentally confirmed by using an excitation wavelength near its E{sub 0} transition.

  12. Thermal expansion in 2D honeycomb structures: Role of transverse phonon modes

    OpenAIRE

    Mann, Sarita; Jindal, V. K.

    2016-01-01

    Graphene and its derivatives including hexagonal BN are notorious for their large negative thermal expansion over a wide range of temperature which is quite unusual. We attempt to analyze this unusual behavior on the basis of character of the phonon modes. The linear thermal expansion coefficients (LTEC) of two-dimensional honeycomb structured pure graphene, h-BN and B/N doped graphene are studied using density functional perturbation theory (DFPT) under quasi harmonic approximation. The dyna...

  13. Acoustic modes of the phonon dispersion relation of NbD/sub x/ alloys

    International Nuclear Information System (INIS)

    Rowe, J.M.; Vagelatos, N.; Rush, J.J.; Flotow, H.E.

    1975-01-01

    The acoustic modes of the phonon dispersion relation in Nb, NbD 0 . 15 , and NbD 0 . 45 were measured at 473 0 K for phonons with wave vectors along the [100], [110], and [111] axes by coherent neutron scattering. The observed neutron groups for both alloys were well defined, with little or no apparent broadening. Results are compared to similar data for Nb--Mo alloys and with previous lattice-dynamics results for PdD 0 . 63 . This comparison shows that despite differences in detail, the general features of the dispersion relations of NbD/sub x/ and Nb--Mo are similar after allowing for the differences in lattice parameters for the two alloys. The measured dispersion curves and derived phonon frequency distributions for the Nb--D alloys are quite different from the analogous results for PdD 0 . 63 in that the average acoustic phonon frequencies increase with increasing deuterium concentration and lattice parameter

  14. The hydrogen-bond network of water supports propagating optical phonon-like modes.

    Science.gov (United States)

    Elton, Daniel C; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

  15. The electron–phonon coupling of fundamental, overtone, and combination modes and its effects on the resonance Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zhanlong; Wang, Shenghan; Gao, Shuqin [College of Physics, Jilin University, Changchun 130012 (China); Sun, Chenglin, E-mail: chenglin@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zuowei [College of Physics, Jilin University, Changchun 130012 (China)

    2015-12-15

    Highlights: • The Huang–Rhys factors and electron–phonon coupling constants are calculated. • The changes of overtone mode are larger than those of fundamental mode. • The variation pattern of electron–phonon coupling well interprets the changes of spectra. - Abstract: External field plays a very important role in the interaction between the π-electron transition and atomic vibration of polyenes. It has significant effects on both the Huang–Rhys factor and the electron–phonon coupling. In this paper, the visible absorption and resonance Raman spectra of all-trans-β-carotene are measured in the 345–295 K temperature range and it is found that the changes of the 0–1 and 0–2 vibration bands of the absorption spectra with the temperature lead to the different electron–phonon coupling of fundamental, overtone, and combination modes. The electron-phonon coupling constants of all the modes are calculated and analyzed under different temperatures. The variation law of the electron–phonon coupling with the temperature well interprets the changes of the resonance Raman spectra, such as the shift, intensity and line width of the overtone and combination modes, which are all greater than those of the fundamental modes.

  16. Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy.

    Science.gov (United States)

    Spirkoska, D; Abstreiter, G; Fontcuberta I Morral, A

    2008-10-29

    Gallium arsenide nanowires were synthesized by gallium-assisted molecular beam epitaxy. By varying the growth time, nanowires with diameters ranging from 30 to 160 nm were obtained. Raman spectra of the nanowire ensembles were measured. The small linewidth of the optical phonon modes agree with an excellent crystalline quality. A surface phonon mode was also revealed, as a shoulder at lower frequencies of the longitudinal optical mode. In agreement with the theory, the surface mode shifts to lower wavenumbers when the diameter of the nanowires is decreased or the environment dielectric constant increased.

  17. Optical and acoustic phonon modes in strained InGaAs/GaAs rolled up tubes

    Science.gov (United States)

    Angelova, T.; Shtinkov, N.; Ivanov, Ts.; Donchev, V.; Cantarero, A.; Deneke, Ch.; Schmidt, O. G.; Cros, A.

    2012-05-01

    Rolled-up semiconductor tubes of various diameters made of alternating In0.215Ga0.785As/GaAs layers have been investigated by means of Raman scattering. The optical and acoustic phonon modes of individual tubes have been studied and compared with the characteristics of the surrounding material. After tube formation, the frequency of the phonon modes shifts with respect to the as-grown material and disorder activated modes are observed. The frequency shifts are related to the residual strain in the tubes through the deformation potential approximation. Good agreement with atomistic valence force field simulations and x-ray micro-diffraction measurements is found. By comparison with x-ray data, a Raman strain constant K = 0.65 is proposed for In0.215Ga0.785As. In the low frequency range, acoustic mode doublets are observed on the tubes that are absent in the surrounding material. They show clear evidence of the formation of periodic superlattices after the rolling-up process, and give insight into the quality of their interfaces.

  18. Raman scattering by LO phonon-plasmon coupled modes in n-type InP

    OpenAIRE

    González Díaz, Germán; Blanco, N.; Artús, L.; Cuscó, R.; Ibáñez, J.

    1999-01-01

    We have studied LO phonon-plasmon coupled modes by means of Raman scattering in n-InP for carrier densities between 6x10(16) and 1x10(19) cm(-3). A line-shape theory based on the Lindhard-Mermin dielectric function that takes into account the nonparabolicity of the InP conduction band as well as temperature and finite wave-vector effects is used to fit the Raman spectra and extract accurate values of the electron density. The results obtained from the Lindhard-Mermin model are compared with t...

  19. Rayleigh Waves in Phononic Crystal Made of Multilayered Pillars: Confined Modes, Fano Resonances, and Acoustically Induced Transparency

    Science.gov (United States)

    Oudich, M.; Djafari-Rouhani, B.; Bonello, B.; Pennec, Y.; Hemaidia, S.; Sarry, F.; Beyssen, D.

    2018-03-01

    We present a design of phononic crystal based on pillars distributed on a substrate surface in which each pillar is constructed by a periodic stacking of PMMA and silicon layers. The pillar behaves like a one-dimensional phononic crystal which allows the creation of band gaps that prohibit wave propagation along the pillar. Thanks to this property, we show that confined modes are produced at the pillar-substrate interface which couples with surface acoustic waves (SAW) and causes their attenuation. Furthermore, by tailoring a defect inside the phononic pillar, we reveal the possibility to create confined cavity modes inside the band gap which can strongly couple with SAW. The cavity modes can be excited by SAW and the coupling produces sharp SAW transmissions. Additionally, we demonstrate that the coupling between the cavity modes and the confined modes at the pillar-substrate interface can give rise to a Fano-like resonance. We also evidence the possibility of generating an acoustic analogue of electromagnetically induced transparency for SAW with high transmission in a narrow bandwidth. The system presents perspectives for the design of high-quality-factor phononic excitation for optomechanic devices and phonon circuits based on SAW manipulation.

  20. Inelastic neutron studies of the low energy phonon excitations in the RENi2B2C superconductors (RE = Lu, Y, Ho, Er)

    International Nuclear Information System (INIS)

    Bullock, M.; Stassis, C.; Zarestky, J.; Goldman, A.; Canfield, P.

    1997-01-01

    The authors studied the low-energy phonon excitations for wavevectors close to the Fermi surface nesting vector rvec ξ m ≅ 0.55 rvec a. They find that above T c the frequencies of the Δ 4 [ζ00] lowest-lying optical and acoustic phonon modes decrease with decreasing temperature, for rvec ξ close to rvec ξ m , and there is a shift of intensity from the upper to the lower mode, an effect characteristic of coupled modes. From approximately 120K down to temperatures in the vicinity of T c , only a single unresolved peak is observed. Below T c the phonon spectra of the Y and Lu compounds change dramatically: they consist of a sharp peak at approximately 4.5 meV with a weak shoulder at the higher energy side. No such sharp peak was observed below T c in the Ho and Er compounds

  1. Evanescent coupling between surface and linear-defect guided modes in phononic crystals

    Science.gov (United States)

    Cicek, Ahmet; Salman, Aysevil; Adem Kaya, Olgun; Ulug, Bulent

    2016-01-01

    Evanescent coupling between surface and linear-defect waveguide modes in a two-dimensional phononic crystal of steel cylinders in air is numerically demonstrated. When the ratio of scatterer radii to the lattice constant is set to 0.47 in the square phononic crystal, the two types of modes start interacting if there is one-row separation between the surface and waveguide. Supercell band structure computations through the Finite Element Method suggest that the waveguide band is displaced significantly, whereas the surface band remains almost intact when the waveguide and surface are in close proximity. The two resultant hybrid bands are such that the coupling length, which varies between 8 and 22 periods, initially changes linearly with frequency, while a much sharper variation is observed towards the top of the lower hybrid band. Such small values facilitate the design of compact devices based on heterogeneous coupling. Finite-element simulations demonstrate bilateral coupling behaviour, where waves incident from either the surface or waveguide can efficiently couple to the other side. The coupling lengths calculated from simulation results are in agreement with the values predicted from the supercell band structure. The possible utilisation of the coupling scheme in sensing applications, especially in acoustic Doppler velocimetry, is discussed.

  2. Phonon interaction with coupled photonic-plasmonic modes in a phoxonic cavity

    Directory of Open Access Journals (Sweden)

    S. El-Jallal

    2016-12-01

    Full Text Available We present a theoretical investigation of the acousto-optic interaction in a two-dimensional phoxonic crystal cavity containing a metallic nanowire. The crystal is constituted by a square array of cylindrical holes in a TiO2 matrix containing a cavity inside which a gold nanowire is introduced. The optical modes of the cavity are therefore of combined photonic-plasmonic character. We calculate the strength of coupling between these modes and the localized phonons of the cavity, based on the “Moving Interface” mechanism of acousto-optic coupling. We discuss the coupling strength as a function of the size and position of the metallic nanowire and compare the results with those of a cavity without metallic particle.

  3. Confinement of acoustical modes due to the electron-phonon interaction within 2D-electron gas

    International Nuclear Information System (INIS)

    Kochelap, V.A.; Gulseren, O.

    1992-09-01

    We study the confinement of acoustical modes within 2DEG due only to the electron-phonon interaction. The confined modes split out from the bulk phonons even at uniform lattice parameters, when the 2DEG is created by means of modulation doping. The effect is more pronounced when the wave vector q of the modes increases and is maximum at q = 2 k F (k F is the Fermi wave vector). In the case of several electron sheets the additional features of the confinement effect appear. In the limit of the strong electron-phonon coupling and high surface concentration of the electrons the considered system can suffer Peierls-type phase transition. In this case periodical deformation of the lattice and charge density wave are confined within the electron sheet. (author). 18 refs, 2 figs

  4. Phase analysis of coherent radial-breathing-mode phonons in carbon nanotubes: Implications for generation and detection processes

    Science.gov (United States)

    Shimura, Akihiko; Yanagi, Kazuhiro; Yoshizawa, Masayuki

    2018-01-01

    In time-resolved pump-probe spectroscopy of carbon nanotubes, the fundamental understanding of the optical generation and detection processes of radial-breathing-mode (RBM) phonons has been inconsistent among the previous reports. In this study, the tunable-pumping/broadband-probing scheme was used to fully reveal the amplitude and phase of the phonon-modulated signals. We observed that signals detected off resonantly to excitonic transitions are delayed by π /2 radians with respect to resonantly detected signals, which demonstrates that RBM phonons are detected through dynamically modulating the linear response, not through adiabatically modulating the light absorption. Furthermore, we found that the initial phases are independent of the pump detuning across the first (E11) and the second (E22) excitonic resonances, evidencing that the RBM phonons are generated by the displacive excitation rather than stimulated Raman process.

  5. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress

    OpenAIRE

    Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.

    2013-01-01

    A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...

  6. Microscopic theory of cooperative spin crossover: Interaction of molecular modes with phonons

    Energy Technology Data Exchange (ETDEWEB)

    Palii, Andrew, E-mail: andrew.palii@uv.es, E-mail: klokishner@yahoo.com; Ostrovsky, Serghei; Reu, Oleg; Klokishner, Sophia, E-mail: andrew.palii@uv.es, E-mail: klokishner@yahoo.com [Institute of Applied Physics, Academy of Sciences of Moldova, Academy Str. 5, MD-2028 Kishinev (Moldova, Republic of); Tsukerblat, Boris [Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Decurtins, Silvio; Liu, Shi-Xia [Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern (Switzerland)

    2015-08-28

    In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz){sub 6}](BF{sub 4}){sub 2} crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.

  7. Observation of low- and high-energy Gamow-Teller phonon excitations in nuclei.

    Science.gov (United States)

    Fujita, Y; Fujita, H; Adachi, T; Bai, C L; Algora, A; Berg, G P A; von Brentano, P; Colò, G; Csatlós, M; Deaven, J M; Estevez-Aguado, E; Fransen, C; De Frenne, D; Fujita, K; Ganioğlu, E; Guess, C J; Gulyás, J; Hatanaka, K; Hirota, K; Honma, M; Ishikawa, D; Jacobs, E; Krasznahorkay, A; Matsubara, H; Matsuyanagi, K; Meharchand, R; Molina, F; Muto, K; Nakanishi, K; Negret, A; Okamura, H; Ong, H J; Otsuka, T; Pietralla, N; Perdikakis, G; Popescu, L; Rubio, B; Sagawa, H; Sarriguren, P; Scholl, C; Shimbara, Y; Shimizu, Y; Susoy, G; Suzuki, T; Tameshige, Y; Tamii, A; Thies, J H; Uchida, M; Wakasa, T; Yosoi, M; Zegers, R G T; Zell, K O; Zenihiro, J

    2014-03-21

    Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 "f-shell" nuclei in ((3)He, t) charge-exchange reactions. In the (42)Ca → (42)Sc reaction, most of the GT strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6-11 MeV region. In the (54)Fe → (54)Co reaction, the high-energy GT phonon excitation mainly carries the GT strength. The existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.

  8. Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses

    OpenAIRE

    Hudert, Florian; Bruchhausen, Axel; Issenmann, Daniel; Schecker, Olivier; Waitz, Reimar; Erbe, Artur; Scheer, Elke; Dekorsy, Thomas; Mlayah, Adnen; Huntzinger, Jean-Roch

    2009-01-01

    In this Rapid Communication we report the first time-resolved measurements of confined acoustic phonon modes in free-standing Si membranes excited by fs laser pulses. Pump-probe experiments using asynchronous optical sampling reveal the impulsive excitation of discrete acoustic modes up to the 19th harmonic order for membranes of two different thicknesses. The modulation of the membrane thickness is measured with fm resolution. The experimental results are compared with a theoretical model in...

  9. Phonons with orbital angular momentum

    International Nuclear Information System (INIS)

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-01-01

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  10. Effect of 10B isotope and vacancy defects on the phonon modes of two-dimensional hexagonal boron nitride

    Science.gov (United States)

    Sherajul Islam, Md.; Anindya, Khalid N.; Bhuiyan, Ashraful G.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    We report the details of the effects of the 10B isotope and those of B and N vacancies combined with the isotope on the phonon modes of two-dimensional hexagonal boron nitride (h-BN). The phonon density of states and localization problems are solved using the forced vibrational method, which is suitable for an intricate and disordered system. We observe an upward shift of Raman-active E2g-mode optical phonons (32 cm‑1) for a 100% 10B isotope, which matches well with the experiment and simple harmonic oscillator model. However, a downward shift of E2g-mode phonons is observed for B or N vacancies and the combination of the isotope and vacancy-type disordered BN. Strong localized eigenmodes are found for all types of defects, and a typical localization length is on the order of ∼7 nm for naturally occurring BN samples. These results are very important for understanding the heat dissipation and electron transport properties of BN-based nanoelectronics.

  11. Band gaps and cavity modes in dual phononic and photonic strip waveguides

    Directory of Open Access Journals (Sweden)

    Y. Pennec

    2011-12-01

    Full Text Available We discuss theoretically the simultaneous existence of phoxonic, i.e., dual phononic and photonic, band gaps in a periodic silicon strip waveguide. The unit-cell of this one-dimensional waveguide contains a hole in the middle and two symmetric stubs on the sides. Indeed, stubs and holes are respectively favorable for creating a phononic and a photonic band gap. Appropriate geometrical parameters allow us to obtain a complete phononic gap together with a photonic gap of a given polarization and symmetry. The insertion of a cavity inside the perfect structure provides simultaneous confinement of acoustic and optical waves suitable to enhance the phonon-photon interaction.

  12. Phonon-induced enhancement of the energy gap and critical current of superconducting aluminum films

    International Nuclear Information System (INIS)

    Seligson, D.; Clarke, J.

    1983-01-01

    Enhancements of the energy gap Δ and the critical current I/sub c/ have been induced in thin superconducting aluminum films near the transition temperature T/sub c/ by pulses of phonons at approximately 9 GHz. In terms of the change in temperature Vertical BardeltaT/T/sub c/Vertical Bar necessary to produce the same enhancement in equilibrium, the gap enhancement increased smoothly with phonon power at fixed temperature and decreasing temperature at fixed phonon power; however, very close to T/sub c/ the enhancement rolled off. At relatively low phonon powers, the data were in good agreement with the theory of Eckern, Schmid, Schmutz, and Schoen, but at higher power levels the data fell markedly below the predictions of the theory. The critical-current enhancements in terms of Vertical BardeltaT/T/sub c/Vertical Bar were always larger than the gap enhancements at the same temperature and phonon power. At fixed phonon power the critical-current enhancements were nearly independent of temperature, except very close to T/sub c/ where the enhancement became small. The inclusion of the nonequilibrium quasiparticle distribution and the kinetic energy of the supercurrent in the theory relating the critical-current enhancement to the gap enhancement did not resolve the discrepancies between the two enhancements. It appears likely that there is an additional mechanism for critical-current enhancement that has not yet been identified

  13. Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Saavedra, J. R. M.; Thygesen, Kristian Sommer

    2017-01-01

    We reveal new aspects of the interaction between plasmons and phonons in 2D materials that go beyond a mere shift and increase in plasmon width due to coupling to either intrinsic vibrational modes of the material or phonons in a supporting substrate. More precisely, we predict strong plasmon spl...

  14. Angular dispersion of oblique phonon modes in BiFeO.sub.3./sub. from micro-Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Pokorný, Jan; Karimi, S.; Reaney, I. M.

    2011-01-01

    Roč. 83, č. 2 (2011), "020101-1"-"020101-4" ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : BiFeO 3 * Raman scattering * phonon modes * multiferroic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://link.aps.org/doi/10.1103/PhysRevB.83.020101

  15. Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet

    Directory of Open Access Journals (Sweden)

    A. von Reppert

    2016-09-01

    Full Text Available We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Néel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.

  16. Effects of breathing and oblong mode phonons on transport properties in a single-electron transistor.

    Science.gov (United States)

    Nishiguchi, Norihiko; Wybourne, Martin N

    2010-02-17

    We investigate theoretically the transport characteristics of a single-electron transistor affected by the dynamic deformation of the device configuration due to phonons. By considering changes in capacitances and tunnel resistances caused by the breathing and oblong vibrations of the island that forms part of the transistor, we formulate the electron-phonon interaction peculiar to the device and derive its transport properties by means of the master equation. For a single electron transistor with a gold nanoparticle island of radius 1 nm, we demonstrate the contribution to the transport properties that originates from tunneling channels associated with THz phonon emission and absorption.

  17. Calculation of energy relaxation rates of fast particles by phonons in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P.; Campbell, Luke W.; Wu, Dangxin; Gao, Fei; Kerisit, Sebastien N.

    2015-03-01

    We present ab initio calculations of the temperature-dependent exchange of energy between a classical charged point-particle and the phonons of a crystalline material. The phonons, which are computed using density functional perturbation theory (DFPT) methods, interact with the mov- ing particle via the Coulomb interaction between the density induced in the material by phonon excitation and the charge of the classical particle. Energy relaxation rates are computed using time- dependent perturbation theory. The method, which is applicable wherever DFPT is, is illustrated with results for CsI, an important scintillator whose performance is affected by electron thermal- ization. We discuss the influence of the form assumed for quasiparticle dispersion on theoretical estimates of electron cooling rates.

  18. Sound and Noisy Light: Tuning Phonon Modes in Photo-switchable Nanostructures

    Science.gov (United States)

    Sklan, Sophia; Grossman, Jeffrey

    2014-03-01

    The coupling of light to structural vibrations is well known and results in phenomena like phonon polaritons, acousto-optics (where phonons modulate optical properties), and optomechanics (where light creates or absorbs phonons). Here we consider the question of whether light could also be used to modulate the properties of phonons. We examine photo-isomers (which change their shape under exposure to light), embedded in a nanostructure designed to amplify the effects of photo-switching. To isolate the effects of photo-isomerization (jump photo-switching and shot noise), we apply a combination of analytic and computational techniques to analyze the stochastic dynamics of a toy model of this system. Particular attention is paid to applying this model to explore the potential applications of the photo-switchable nanostructure.

  19. Observation of soft phonon mode in TbFe3(BO3)4 by inelastic neutron scattering

    Science.gov (United States)

    Pavlovskiy, M. S.; Shaykhutdinov, K. A.; Wu, L. S.; Ehlers, G.; Temerov, V. L.; Gudim, I. A.; Shinkorenko, A. S.; Podlesnyak, A.

    2018-02-01

    The phonon dispersion in terbium iron borate TbFe3(BO3)4 has been measured by inelastic neutron scattering in a temperature range 180 mode undergoes considerable broadening at the Λ point near the transition temperature that can be attributed to the anharmonic interference between transverse acoustic and optical modes.

  20. Optical phonon features of triclinic montebrasite : dispersion analysis and non-polar Raman modes.

    OpenAIRE

    Almeida, Rafael M.; Höfer, Sonja; Mayerhöfer, Thomas G.; Popp, Jürgen; Krambrock, Klaus; Lobo, Ricardo P. S. M.; Dias, Anderson; Moreira, Roberto Luiz

    2015-01-01

    Polarized infrared and Raman spectra of triclinic LiAl(PO4)(OH) [montebrasite] single crystal were recorded for appropriate optical configurations. Dispersion analysis was applied on the infrared reflectivity spectra taken at low incidence angle (11 ) to determine the oscillator parameters and the dipole directions of the polar phonons. In particular, all the 27 polar phonons, predicted by group theory for triclinic P1 structure,were determined. The obtained dielectric tensor para...

  1. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    International Nuclear Information System (INIS)

    Seligson, D.

    1983-01-01

    The enhancement of the energy gap, Δ, and critical current, i/sub c/, in superconducting aluminum thin films were under the influence of 8 to 10 GHz phonons. The phonons were generated by piezoelectric transduction of a 1 kW microwave pulse of about 1 μsec duration. By means of a quartz delay line, the phonons were allowed to enter the aluminum only after the microwaves had long since disappeared. The critical current was measured in long narrow Al strips, in which the current flow is 1-dimensional and well described by Ginsburg-Landau theory. To measure Δ the Al film was used as one electrode in a superconductor-insulator-superconductor tunnel junction whose current-voltage characteristic gave Δ directly. For the measurements of i/sub c/, the total critical current was measured in the presence of the phonon perturbation. For the measurements of Δ the change of Δ away from its equilibrium value was measured. In both cases the first measurements of enhancement of these macroscopic variables under phonon irradiation is reported. The gap-enhancement was found to be in good agreement with theory, but only for relatively and surprisingly low input power. The critical current measurements are predicted to be in rough agreement with the Δ measurements but this was not observed

  2. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  3. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    Science.gov (United States)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  4. Phonon thermal transport through tilt grain boundaries in strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Deng, Bowen; Chernatynskiy, Aleksandr [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-08-21

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.

  5. Phonon thermal transport through tilt grain boundaries in strontium titanate

    International Nuclear Information System (INIS)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr

    2014-01-01

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO 3 . Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO 3 contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies

  6. Surface phonons

    CERN Document Server

    Wette, Frederik

    1991-01-01

    In recent years substantial progress has been made in the detection of surface phonons owing to considerable improvements in inelastic rare gas scattering tech­ niques and electron energy loss spectroscopy. With these methods it has become possible to measure surface vibrations in a wide energy range for all wave vectors in the two-dimensional Brillouin zone and thus to deduce the complete surface phonon dispersion curves. Inelastic atomic beam scattering and electron energy loss spectroscopy have started to play a role in the study of surface phonons similar to the one played by inelastic neutron scattering in the investigation of bulk phonons in the last thirty years. Detailed comparison between experimen­ tal results and theoretical studies of inelastic surface scattering and of surface phonons has now become feasible. It is therefore possible to test and to improve the details of interaction models which have been worked out theoretically in the last few decades. At this point we felt that a concise, co...

  7. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2013-02-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  8. [A study of phonon vibration like modes for aggregation structure in silicate melts by high temperature Raman spectrum].

    Science.gov (United States)

    Xu, Pei-Cang; Li, Ru-Bi; Shang, Tong-Ming; Zhou, Jian; Sun, Jian-Hua; You, Jing-Lin

    2010-05-01

    Silicate melts are special fractal dimension system that is metastable state of near-way order and far-way disorder. In this paper, the size of nanometer aggregation structure and the frequences of phonon vibration like mode in the low dimension silicate series (CaO-Al2O3-SiO2 and Na2-Al2O3-SiO2 series) synthesized via high temperature melting and sol gel methods were measured by means of small-angle X-ray scattering (SAXS), low wavenumber Raman spectrum (LWRS) and high temperature Raman spectrum (HTRS in situ measuring). The nanometer self-similarity aggregation structure(it's size is about a few nm to a few tens nm) and phonic phonon vibration like modes of low temperature silicate gel, high temperature silicate melts and it's quenching glasses phases were obtained. So a quantitative method by HTRS for measuring the aggregation size in the high temperature melts was established. The results showed that the aggregation size of the silicate melts is smaller at high temperature than at room temperature and the number of bridge oxygen in one Si-O tetrahedron in network structure units is decreasing at high temperature. This study work provides important theory and information for deliberating geochemistry characteristic, crystallization & evolution of natural magma and enhancing performance of low dimension silicate matelials.

  9. Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons

    Science.gov (United States)

    Feng, Tianli; Ruan, Xiulin

    2018-01-01

    We have developed a formalism of the exact solution to linearized phonon Boltzmann transport equation (BTE) for thermal conductivity calculation including three- and four-phonon scattering. We find strikingly high four-phonon scattering rates in single-layer graphene (SLG) based on the optimized Tersoff potential. The reflection symmetry in graphene, which forbids the three-ZA (out-of-plane acoustic) scattering, allows the four-ZA processes ZA +ZA ⇌ZA +ZA and ZA ⇌ZA +ZA + ZA. As a result, the large phonon population of the low-energy ZA branch originated from the quadratic phonon dispersion leads to high four-phonon scattering rates, even much higher than the three-phonon scattering rates at room temperature. These four-phonon processes are dominated by the normal processes, which lead to a failure of the single mode relaxation time approximation. Therefore, we have solved the exact phonon BTE using an iterative scheme and then calculated the length- and temperature-dependent thermal conductivities. We find that the predicted thermal conductivity of SLG is lower than the previously predicted value from the three-phonon scattering only. The relative contribution of the ZA branch is reduced from 70% to 30% when four-phonon scattering is included. Furthermore, we have demonstrated that the four-phonon scattering in multilayer graphene and graphite is not strong due to the ZA splitting by interlayer van der Waals interaction. We also demonstrate that the five-phonon process in SLG is not strong due to the restriction of reflection symmetry.

  10. Phonon modes in Gd1-xCexBa2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    SH Mozaffari

    2009-08-01

    Full Text Available  XRD and Raman analyses were performed to probe the phase formation and the variation of the normal phonon frequencies of the high temperature superconductor GdBa2Cu3O7-δ upon Ce doping. It was found that in addition to the orthorhombic 123 phase, some nonsuperconducting peaks, which are mainly due to the BaCeO3 secondary phase, are also formed that suppress the superconducting transition temperature. Besides, analysis of the Raman peaks shows that substitutions of Ce for Gd in GdBa2Cu3O7-δ are restricted to low concentrations in favor of impurity island formation .

  11. Tunneling current noise spectra of biased impurity with a phonon mode

    International Nuclear Information System (INIS)

    Maslova, N. S.; Arseev, P. I.; Mantsevich, V. N.

    2016-01-01

    We report the results of theoretical investigations of the tunneling current noise spectra through a single-level impurity both in the presence and in the absence of electron–phonon interaction based on the nonequilibrium Green’s functions formalism. We show that due to the quantum nature of tunneling, the Fano factor is dramatically different from the Poisson limit both in the presence and in the absence of inelastic processes. The results are demonstrated to be sensitive to the tunneling contact parameters.

  12. Electromagnetic decay of two-phonon states

    International Nuclear Information System (INIS)

    Catara, F.; Chomaz, Ph.; Van Giai, N.; Paris-11 Univ., 91 - Orsay

    1991-01-01

    The electromagnetic decay of two-phonon states corresponding to the multi-excitation of giant resonances is studied. The calculations are performed within a boson expansion approach and the elementary modes are constructed in random phase approximation (RPA). The rates for direct transition of two-phonon states to the ground state turn out to be not negligibly smaller than those from the (single) giant resonances. The former transitions are accompanied by a γ-ray whose energy is equal to the sum of the two phonon energies. Thus the detection of such high energy γ-rays could provide a signature of the excitation of two-phonon states. (author) 9 refs., 3 tabs

  13. Characterizing phonon dynamics using stochastic sampling

    International Nuclear Information System (INIS)

    Kunal, K.; Aluru, N. R.

    2016-01-01

    Predicting phonon relaxation time from molecular dynamics (MD) requires a long simulation time to compute the mode energy auto-correlation function. Here, we present an alternative approach to infer the phonon life-time from an approximate form of the energy auto-correlation function. The method requires as an input a set of sampled equilibrium configurations. A stochastic sampling method is used to generate the equilibrium configurations. We consider a truncated Taylor series expansion of the phonon energy auto-correlation function. The different terms in the truncated correlation function are obtained using the stochastic sampling approach. The expansion terms, thus, obtained are in good agreement with the corresponding values obtained using MD. We then use the approximate function to compute the phonon relaxation time. The relaxation time computed using this method is compared with that obtained from the exact correlation function. The two values are in agreement with each other.

  14. Subwavelength waveguiding of surface phonons in pillars-based phononic crystal

    Directory of Open Access Journals (Sweden)

    Mahmoud Addouche

    2014-12-01

    Full Text Available In this study, we theoretically analyze the guiding of surface phonons through locally resonant defects in pillars-based phononic crystal. Using finite element method, we simulate the propagation of surface phonons through a periodic array of cylindrical pillars deposited on a semi-infinite substrate. This structure displays several band gaps, some of which are due to local resonances of the pillar. By introducing pillar defects inside the phononic structure, we show the possibility to perform a waveguiding of surface phonons based on two mechanisms that spatially confine the elastic energy in very small waveguide apertures. A careful choice of the height of the defect pillars, allows to shift the frequency position of the defect modes inside or outside the locally resonant band gaps and create two subwavelenght waveguiding mechanisms. The first is a classical mechanism that corresponds to the presence of the defect modes inside the locally resonant band gap. The seconde is due to the hybridation between the phonon resonances of defect modes and the surface phonons of the semi-infinite homogenous medium. We discuss the nature and the difference between both waveguiding phenomena.

  15. Quasiparticle phonon model description of low-energy states in 152Pr

    Science.gov (United States)

    Alexa, P.; Ramdhane, M.; Thiamova, G.; Simpson, G. S.; Faust, H. R.; Genevey, J.; Köster, U.; Materna, T.; Orlandi, R.; Pinston, J. A.; Scherillo, A.; Hons, Z.

    2018-03-01

    Delayed γ -ray and conversion-electron spectroscopy is performed on A =152 fission fragments, at the Lohengrin spectrometer of the Institut Laue-Langevin, providing a new decay scheme for 152Pr. The quasiparticle phonon model, combined with the particle-rotor model, which allows octupole correlations and Coriolis mixing to be taken into account, is applied to analyze its low-energy structure. The main configurations are found to be (π 3 /2 [422 ] ⊗ν 5 /2 [642 ] ) 1+ for the isomer and (π 3 /2 [541 ] ⊗ν 3 /2 [521 ] ) 3+ for the ground state.

  16. Magnetic driving energy of the tearing mode

    International Nuclear Information System (INIS)

    Adler, E.A.; Kulsrud, R.M.; White, R.B.

    1979-10-01

    The change in the magnetic energy density produced by a tearing mode is calculated exactly. The driving energy for the mode is found to come entirely from the region inside the tearing layer, although there is also a displacement of energy in the outer region which integrates to zero. The total change in magnetic energy is exactly equal to the change in a quadratic form related to a variational principle for the full resistive equations

  17. Quantifying electron-phonon coupling in CdTe{sub 1−x}Se{sub x} nanocrystals via coherent phonon manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Spann, B. T.; Xu, X., E-mail: xxu@purdue.edu [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-25

    We employ ultrafast transient absorption spectroscopy with temporal pulse shaping to manipulate coherent phonon excitation and quantify the strength of electron-phonon coupling in CdTe{sub 1−x}Se{sub x} nanocrystals (NCs). Raman active CdSe and CdTe longitudinal optical phonon (LO) modes are excited and probed in the time domain. By temporally controlling pump pulse pairs to coherently excite and cancel coherent phonons in the CdTe{sub 1−x}Se{sub x} NCs, we estimate the relative amount of optical energy that is coupled to the coherent CdSe LO mode.

  18. Hypersonic phononic crystals.

    Science.gov (United States)

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  19. Theoretical study of the phonon spectrum, phonon refraction and thermodynamic properties for explosive/additive interfaces

    Science.gov (United States)

    Long, Yao; Chen, Jun

    2018-01-01

    We develop a method to calculate the local vibrational mode and phonon refraction probability of a 1,3,5-triamino-2,4,6-trinitrobenzene/graphite interface, and use them to evaluate the interfacial free energy, heat capacity and thermal conductivity. We find that the heat exchange across the interface is sensitive with five incident phonon states. The frequencies, vibrational modes, refraction angles and refraction probabilities of the sensitive states are calculated. The relationship between vibrational modes and thermodynamic properties at the interface is obtained.

  20. Superconductivity in MgB2: Phonon modes and influence of carbon ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    sition. The mode at 560 cm. −1 shows a significant hardening and a corresponding decrease in linewidth, with the lowering of temperature, that can been accounted in terms of anharmonicity. Keywords. Superconductivity; MgB2; carbon-doping; susceptibility; resisti- vity; infrared spectroscopy. 1. Introduction and overview.

  1. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    KAUST Repository

    Tangi, Malleswararao

    2016-07-26

    The dislocation free Inx Al 1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C–610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of Inx Al 1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04–0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2 H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2 H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2 H phonons in Inx Al 1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important Inx Al 1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  2. Polar phonons and spin excitations coupling in multiferroic BiFeO3 crystals

    OpenAIRE

    Rovillain, P.; Cazayous, M.; Gallais, Y.; Sacuto, A.; Lobo, R. P. S. M.; Lebeugle, D.; Colson, D.

    2009-01-01

    Raman scattering measurements on BiFeO3 single crystals show an important coupling between the magnetic order and lattice vibrations. The temperature evolution of phonons shows that the lowest energy E and A1 phonon modes are coupled to the spin order up to the Neel temperature. Furthermore, low temperature anomalies associated with the spin re-orientation are observed simultaneously in both the E phonon and the magnon. These results suggest that magnetostriction plays an important role in Bi...

  3. Relaxation of strongly coupled electron and phonon fields after photoemission and high-energy part of ARPES spectra of cuprates

    Science.gov (United States)

    Myasnikova, A. E.; Zhileeva, E. A.; Moseykin, D. V.

    2018-03-01

    An approach to considering systems with a high concentration of correlated carriers and strong long-range electron–phonon interaction and to calculating the high-energy part of the angle-resolved photoemission spectroscopy (ARPES) spectra of such systems is suggested. Joint relaxation of strongly coupled fields—a field of correlated electrons and phonon field—after photoemission is studied to clarify the nature of characteristic features observed in the high-energy part of the ARPES spectra of cuprate superconductors. Such relaxation occurs in systems with strong predominantly long-range electron–phonon interaction at sufficiently high carrier concentration due to the coexistence of autolocalized and delocalized carriers. A simple method to calculate analytically a high-energy part of the ARPES spectrum arising is proposed. It takes advantage of using the coherent states basis for the phonon field in the polaron and bipolaron states. The approach suggested yields all the high-energy spectral features like broad Gaussian band and regions of ‘vertical dispersion’ being in good quantitative agreement with the experiments on cuprates at any doping with both types of carriers. Demonstrated coexistence of autolocalized and delocalized carriers in superconducting cuprates changes the idea about their ground state above the superconducting transition temperature that is important for understanding transport and magnetic properties. High density of large-radius autolocalized carriers revealed may be a key to the explanation of charge ordering in doped cuprates.

  4. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2007-01-01

    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...

  5. Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal

    Science.gov (United States)

    Quotane, Ilyasse; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    of existence of Fano resonances that can be fitted following a Fano-type expression. The variation of the Fano parameter that describes the asymmetry of such resonances as well as their width versus θ is studied in detail. In the case of an asymmetric structure (i.e., different solid layers), we show the existence of an incidence angle that enables to squeeze a resonance between two transmission zeros induced by the two solid layers. This resonance behaves like an AIT resonance, its position and width depend on the nature of the fluid and solid layers as well as on the difference between the thicknesses of the solid layers. (iii) In the case of a periodic structure (phononic crystal), we show that trapped modes and Fano resonances give rise, respectively, to dispersionless flat bands with zero group velocity and nearly flat bands with negative or positive group velocities. The analytical results presented here are obtained by means of the Green's function method which enables to deduce in closed form: dispersion curves, transmission and reflection coefficients, DOS, as well as the displacement fields. The proposed solid-fluid layered structures should have important applications for designing acoustic mirrors and acoustic filters as well as supersonic and subsonic materials.

  6. Phonon manipulation with phononic crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

    2012-01-01

    factor. In addition, the techniques and scientific understanding developed in the research can be applied to a wide range of materials, with the caveat that the thermal conductivity of such a material be dominated by phonon, rather than electron, transport. In particular, this includes several thermoelectric materials with attractive properties at elevated temperatures (i.e., greater than room temperature), such as silicon germanium and silicon carbide. It is reasonable that phononic crystal patterning could be used for high-temperature thermoelectric devices using such materials, with applications in energy scavenging via waste-heat recovery and thermoelectric cooling for high-performance microelectronic circuits. The only part of the ZT picture missing in this work was the experimental measurement of the Seebeck coefficient of our phononic crystal devices. While a first-order approximation indicates that the Seebeck coefficient should not change significantly from that of bulk silicon, we were not able to actually verify this assumption within the timeframe of the project. Additionally, with regards to future high-temperature applications of this technology, we plan to measure the thermal conductivity reduction factor of our phononic crystals as elevated temperatures to confirm that it does not diminish, given that the nominal thermal conductivity of most semiconductors, including silicon, decreases with temperature above room temperature. We hope to have the opportunity to address these concerns and further advance the state-of-the-art of thermoelectric materials in future projects.

  7. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  8. Search for the 3-phonon state of 40Ca

    International Nuclear Information System (INIS)

    Fallot, M.

    2002-09-01

    We study collective vibrational states of the nucleus: giant resonances and multiphonon states. It has been shown that multiphonon states, which are built with several superimposed giant resonances, can be excited in inelastic heavy ion scattering near the grazing angle. No three photon states have been observed until now. An experiment has been performed at GANIL, aiming at the observation of the 3-phonon state built with the giant quadrupole resonance (GQR) in 40 Ca, with the reaction 40 Ca + 40 Ca at 50 A.Me.V. The ejectile was identified in the SPEG spectrometer. Light charged particles were detected in 240 CsI scintillators of the INDRA 4π array. The analysis confirms the previous results about the GQR and the 2-phonon state in 40 Ca. For the first time, we have measured an important direct decay branch of the GQR by alpha particles. Applying the so-called 'missing energy method' to events containing three protons measured in coincidence with the ejectile, we observe a direct decay branch revealing the presence of a 3-phonon state in the excitation energy region expected for the triple GQR. Dynamical processes are also studied in the inelastic channel, emphasizing a recently discovered mechanism named towing-mode. We observe for the first time the towing-mode of alpha particles. The energies of multiphonon states in 40 Ca and 208 Pb have been computed microscopically including some anharmonicities via boson mapping methods. The basis of the calculation has been extended to the 3-phonon states. Our results show large anharmonicities (several MeV), due to the coupling of 3-phonon states to 2-phonon states. The extension of the basis to 4-phonon states has been performed for the first time. The inclusion of the 4 phonon states in the calculation did not affect the previous observations concerning the 2-phonon states. Preliminary results on the anharmonicities of the 3-phonon states are presented. (author)

  9. Measurement of surface phonon dispersion relations for LiF, NaF, and KCl through energy-analysed inelastic scattering of a helium atomic beam

    International Nuclear Information System (INIS)

    Doak, R.B.

    1981-01-01

    A crystal surface terminates abruptly one dimension of lattice periodicity, constituting a lattice defect with concomitant localized modes of vibration, termed surface phonons. Such surface phonons have previously been investigated in the long wavelength, non-dispersive regime. The present work reports the first observation of surface phonons in the short wavelength, dispersive range. The data allow for the first time a surface phonon dispersion curve to be plotted completely from origin to edge of the surface Brillouin zone. Measurements were made of phonons along the (anti GAMMA anti M) and (anti GAMMA anti X) azimuths of the LiF(001) surface and along the azimuth of NaF(001) and KC1(001) surfaces. The results are in substantial agreement with theoretical predictions, although for LiF the measured Rayleigh dispersion curve at M lies appreciably below the theoretical value, possibly reflecting the effects of surface relaxation. (orig.)

  10. Confined and interface phonons in combined cylindrical nanoheterosystem

    Directory of Open Access Journals (Sweden)

    O.M.Makhanets

    2006-01-01

    Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.

  11. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion

    Science.gov (United States)

    Zhou, Jiawei; Liao, Bolin; Qiu, Bo; Huberman, Samuel; Esfarjani, Keivan; Dresselhaus, Mildred S.; Chen, Gang

    2015-01-01

    Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect—a coupling phenomenon between electrons and nonequilibrium phonons—in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons. PMID:26627231

  12. Optimizing SuperCDMS phonon energy sensitivity by studying quasiparticle transport in Al films

    Science.gov (United States)

    Yen, Jeffrey; Shank, Benjamin; Cabrera, Blas; Moffatt, Robert; Redl, Peter; Brink, Paul; Tomada, Astrid; Cherry, Matt; Young, Betty; Tortorici, Teddy; Kreikebaum, John Mark

    2014-03-01

    In order to further improve the phonon energy sensitivity of Cryogenic Dark Matter Search (CDMS) detectors, we studied quasiparticle transport at ~ 40 mK in superconducting Al films similar in geometry to those used for CDMS detectors. Test structures of Al were deposited and photolithographically patterned on Si wafers using the same production-line equipment used to fabricate kg-scale CDMS detectors. Three Al film lengths and two film thicknesses were used in this study. In the test experiments described here, an 55Fe source was used to excite a NaCl reflector, producing 2.6 keV x-rays that hit our test devices after passing through a collimator. The impinging x-rays broke Cooper pairs in the Al films, producing quasiparticles that propagated into W transition edge sensors (TESs) coupled to the ends of the Al films. In this talk, we will give the motivation behind these studies, describe our experimental setup, and compare our data to results obtained using signal processing models constructed from basic physical parameters. We show that a non-linear, non-stationary optimal filter applied to the data allows us to precisely measure quasiparticle diffusion and other aspects of energy transport in our thin-film Al-W test devices. These results are being used to further optimize next-generation CDMS detectors.

  13. Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p -n junction

    Science.gov (United States)

    Melnick, Corey; Kaviany, Massoud

    2016-03-01

    The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons (Ep ,O) more energetic than the band gap (Δ Ee ,g) to generate power in a p-n junction. We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate that a pV material with Ep ,O≃Δ Ee ,g≫kBT , where kBT is the thermal energy, and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016), 10.1103/PhysRevB.93.125203], we tune the band gap of graphite within density functional theory through hydrogenation and the application of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a continued material search.

  14. The free energy principle, negative energy modes, and stability

    International Nuclear Information System (INIS)

    Morrison, P.J.; Kotschenreuther, M.

    1990-01-01

    This paper is concerned with instability of equilibria of Hamiltonian, fluid and plasma dynamical systems. Usually the dynamical equilibrium of interest is not the state of thermodynamic equilibrium, and does not correspond to a free energy minimum. The relaxation of this type of equilibrium is conventionally considered to be initiated by linear instability. However, there are many cases where linear instability is not present, but the equilibrium is nonlinearly unstable to arbitrarily small perturbations. This paper is about general free energy expressions for determining the presence of linear or nonlinear instabilities. These expressions are simple and practical, and can be obtained for all equilibria of all ideal fluid and plasma models. By free energy, we mean the energy change upon perturbations of the equilibrium that respect dynamical phase space constraints. This quantity is measured by a self-adjoint quadratic form, called δ 2 F. The free energy can result in instability when δ 2 F is indefinite; i.e. there exist accessible perturbations that lower the free energy of the system. A primary purpose of this paper is to tie together three manifestations of what we will refer to as negative energy modes. The first is the conventional plasma physics notion of negative energy mode that is based on the definition of the energy in a homogeneous dielectric medium. A negative energy mode is a normal mode of the medium (plasma) that possesses negative dielectric energy. The second manifestation occurs in finite degree-of-freedom Hamiltonian normal form theory. The quadratic part of a Hamiltonian in the vicinity of an equilibrium point, which possesses only distinct oscillatory eigenvalues, has an invariant signature. Thus in cases where the quadratic form is indefinite, it is natural to refer to the modes corresponding to the negative signature as negative energy modes

  15. Energy loss in degenerate semiconductors due to inelastic interaction with acoustic and piezoelectric phonons at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S; Bhattacharya, D P

    2011-01-01

    The energy loss rate of an electron in a degenerate semiconductor because of inelastic interaction with deformation potential and piezoelectric acoustic phonons is calculated in the case when the lattice temperature is low, so that the approximations of the well-known traditional theory are not valid. Compared to the traditional results and those for non-degenerate semiconductors, the theory here reveals a more complex and altogether different dependence of the loss rate on the carrier energy and the lattice temperature. The numerical results obtained here for Si and GaAs show how significantly the degeneracy level, the true phonon distribution or the inelasticity of the interaction affects the loss characteristics at low temperatures.

  16. Supra-ballistic phonons

    International Nuclear Information System (INIS)

    Russell, F.M.

    1989-05-01

    Energetic particles moving with a solid, either from nuclear reactions or externally injected, deposit energy by inelastic scattering processes which eventually appears as thermal energy. If the transfer of energy occurs in a crystalline solid then it is possible to couple some of the energy directly to the nuclei forming the lattice by generating phonons. In this paper the transfer of energy from a compound excited nucleus to the lattice is examined by introducing a virtual particle Π. It is shown that by including a Π in the nuclear reaction a substantial amount of energy can be coupled directly to the lattice. In the lattice this particle behaves as a spatially localized phonon of high energy, the so-called supra-ballistic phonon. By multiple inelastic scattering the supra-ballistic phonon eventually thermalizes. Because both the virtual particle Π and the equivalent supra-ballistic phonon have no charge or spin and can only exist within a lattice it is difficult to detect other than by its decay into thermal phonons. The possibility of a Π removing excess energy from a compound nucleus formed by the cold fusion of deuterium is examined. (Author)

  17. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey (United States); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Di Domizio, S. [Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma (Italy); Tomei, C. [INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2015-08-31

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.

  18. Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics

    Science.gov (United States)

    Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin

    2014-01-01

    Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La3+, Mg2+ and Al3+ ions with large ionic radius Ba2+, Zn2+ and Ti4+, respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings. PMID:25351166

  19. LO Phonon-Plasmon Coupled Modes in n-GaAs and n-InGaAs Epilayers Observed in the Berreman Geometry.

    Science.gov (United States)

    Ibáñez, Jordi; Tarhan, Enver; Ramdas, A. K.; Melloch, M. R.; Hernández, S.; Cuscó, R.; Artús, L.; Hopkinson, M.

    2003-03-01

    MBE-grown, Si doped epilayers of GaAs, 2-2.5μ m thick, were fabricated with an insertion layer of 200 Åthick AlAs separating them from the underlying GaAs substrate. They were separated from the substrate by selectively etching AlAs and floated onto a piece of Si wafer. The infrared transmission spectrum of the GaAs epilayers, measured in the oblique (Berreman) geometry, revealed distinct minima in p-polarization. Given epilayer thickness transverse optic phonon (ω_TO) and the high frequency LO phonon-plasmon coupled mode (ω_+). Analysis of the experimental data yielded the free carrier concentrations, ranging from 2.5 × 10^17 to 1.4 × 10^18 cm-3. The same technique with MBE-grown Si-doped In_0.53Ga_0.47As epilayers (0.5 to 1μ m thick, grown on InP and floated onto Si wafer pieces after a selective etching of the substrate) yielded ω+ modes corresponding to free carrier concentrations 8.2 × 10^16 to 2.7 × 10^19 cm-3. This work was supported by NSF Grant Nos. DMR0102699 and ECS-0129853 (Purdue group) and by the Spanish Ministry of Education and Culture (CSIC group).

  20. Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.

    Science.gov (United States)

    Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping

    2017-02-08

    Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQ m ∼ 2 × 10 12 Hz achieved here is larger than k B T base /h, which may enable the future realization of Rabi oscillations in the quantum regime.

  1. Grueneisen-approach for the experimental determination of transient spin and phonon energies from ultrafast x-ray diffraction data: gadolinium.

    Science.gov (United States)

    Koc, A; Reinhardt, M; von Reppert, A; Rössle, M; Leitenberger, W; Gleich, M; Weinelt, M; Zamponi, F; Bargheer, M

    2017-07-05

    We study gadolinium thin films as a model system for ferromagnets with negative thermal expansion. Ultrashort laser pulses heat up the electronic subsystem and we follow the transient strain via ultrafast x-ray diffraction. In terms of a simple Grueneisen approach, the strain is decomposed into two contributions proportional to the thermal energy of spin and phonon subsystems. Our analysis reveals that upon femtosecond laser excitation, phonons and spins can be driven out of thermal equilibrium for several nanoseconds.

  2. Nearest-neighbour-interaction model in the coupled-optical-phonon-mode theory of the infrared dispersion in monoclinic crystals: Application to Tutton salt single crystal.

    Science.gov (United States)

    Ivanovski, V; Ivanovski, G

    2010-05-01

    The coupled-optical-phonon-mode theory of Barker and Hopfield of two mode interaction in isotropic crystals has been extended to monoclinic crystals. The analytical expressions for the calculation of the dielectric tensor elements in the ac crystal plane have been derived. It has been shown that the interaction dielectric model is a generalized expression of the dielectric tensor for monoclinic case when no interaction between modes is present. Also, the results of Barker and Hopfield are obtained from this more general theory, when an isotropic case is considered. In order to be able to investigate real crystals, meaning extending the interactions to a large number of pairs of modes, but at the same time to make the fitting procedure possible, a model dielectric function taking into account the interaction between modes with closest frequencies has been derived. The validity of the model obtained has been tested on a Tutton salt single crystal of K(2)Co(SO(4))(2).6H(2)O. The recorded spectra from the ac crystal plane were fitted in order to obtain best fit parameters. The comparison between the experimentally recorded spectra and the model reflectance function give good results and verify this model to be applicable. Copyright 2010 Elsevier B.V. All rights reserved.

  3. ENERGY SAVING MODES DEFINITION OF TRAINS HANDLING

    Directory of Open Access Journals (Sweden)

    D. M. Kyslyi

    2016-02-01

    Full Text Available Purpose. Traction calculations with the definition of energy-efficient trajectories provide search for rational energy consumption depending on the time course of the train. When selecting energy-efficient trajectory of the train and the development of regime charts conducting trains must take into account variables such as: the profile of the site, weight train, locomotive series, etc. When increasing the speed of the growth it occurs the resistance movement, which is proportional to the square of the speed, which leads to higher costs of fuel and energy resources. In contrast, the reduction of costs due to the decrease in speed leads to an increase in travel time of the train, which should be consistent with the timetable and other technical and economic parameters, depending on the speed. The article describes one way to reduce the cost of energy for traction. The aim of the article is to reduce energy consumption by identifying energy-saving control modes. It occurs with the locomotive optimization function of control actions on the running time of the train and the flow of energy in the management of the train from the end of the acceleration to go to the coasts. Methodology. The technique of choice of energy saving path of the train and power control and electric locomotives with electric transmission provides the calculation of multiple paths with variable input data and parameters of the composition of the train situation. The methodology takes into account the uniform mathematical methods of search and parametric optimization. For uniformity of motion needed to slow down the accelerating forces are balanced. Findings. On the basis of calculations of multiple advanced algorithms determine the trajectories of energy-saving trains, built multiparametric locomotive power control function, which can reduce energy consumption by 11 to 13% depending on the weight of the train and the train situation. Originality. The author obtained the energy

  4. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  5. Lattice instability and soft phonons in single-crystal La/sub 2-//sub x/Sr/sub x/CuO4

    International Nuclear Information System (INIS)

    Boeni, P.; Axe, J.D.; Shirane, G.

    1988-01-01

    The dispersion of the low-lying phonon branches of several doped and undoped single crystals of La/sub 2-//sub x/Sr/sub x/CuO 4 have been investigated by using inelastic-neutron-scattering techniques. The zone-center modes are in good agreement with Raman measurements. The reported peaks in the phonon density of states show up at energies that correspond to extrema in the dispersion curves of the transverse and longitudinal acoustic branches near the zone boundary. The tetragonal-to-orthorhombic phase transition is caused by a softening of transverse-optic-phonon mode at the X point. The rotational nature of the soft mode leads to moderate weak electron-phonon coupling and the mode is unlikely to enhance significantly conventional phonon mediated superconductivity. We did not observe any evidence for the predicted breathing-mode instability near the zone boundary

  6. Phonon-induced optical superlattice.

    Science.gov (United States)

    de Lima, M M; Hey, R; Santos, P V; Cantarero, A

    2005-04-01

    We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments.

  7. Phonon, magnon and electron contributions to low temperature ...

    Indian Academy of Sciences (India)

    immediate important meanings to reveal the phenomenon of colossal magnetoresistance. The present ... (O) is symbolized by M+(M−)], κ∗ = 2κ for each direc- tional oscillation mode to get the acoustic phonon frequency ... 2.1 Electronic specific heat. The internal energy of electron gas is expressed as. U = U0 +. (. 2π3mV.

  8. Substrate induced tuning of compressive strain and phonon modes in large area MoS2 and WS2 van der Waals epitaxial thin films

    Science.gov (United States)

    Sahu, Rajib; Radhakrishnan, Dhanya; Vishal, Badri; Negi, Devendra Singh; Sil, Anomitra; Narayana, Chandrabhas; Datta, Ranjan

    2017-07-01

    Large area MoS2 and WS2 van der Waals epitaxial thin films with control over number of layers including monolayer is grown by pulsed laser deposition utilizing slower growth kinetics. The films grown on c-plane sapphire show stiffening of A1g and E12g phonon modes with decreasing number of layers for both MoS2 and WS2. The observed stiffening translate into the compressive strain of 0.52% & 0.53% with accompanying increase in fundamental direct band gap to 1.74 and 1.68 eV for monolayer MoS2 and WS2, respectively. The strain decays with the number of layers. HRTEM imaging directly reveals the nature of atomic registry of van der Waals layers with the substrate and the associated compressive strain. The results demonstrate a practical route to stabilize and engineer strain for this class of material over large area device fabrication.

  9. Time and momentum-resolved phonon decay

    Science.gov (United States)

    Reis, David

    2017-04-01

    The high brightness of x-ray free-electron lasers provides us a unique opportunity to measure lattice dynamics directly in the time domain and out of equilibrium. As a first step in this direction we demonstrate how ultrafast optical excitation creates temporal coherences in the mean-square phonon displacements spanning the Brillouin zone by a second-order squeezing process. This leads to broad-bandwidth high-resolution measurements of the phonon dispersion without the need for high-resolution monochromators or analyzers. We will also show how anharmonic phonon decay can be viewed as a parametric squeezing process, and present first momentum-resolved measurements of the downconversion of a coherent optical phonon into pairs of high-wavevector acoustic modes, information that cannot be obtained by spectroscopic measurements in the frequency domain. Supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  10. Large carrier-capture rate of P bI antisite in C H3N H3Pb I3 induced by heavy atoms and soft phonon modes

    Science.gov (United States)

    Li, Jiqiang; Zhu, Hai-Feng; Zhang, Yue-Yu; Yuan, Zhen-Kun; Chen, Shiyou; Gong, Xin-Gao

    2017-09-01

    The P bI antisite was reported to be a possible deep-level recombination-center defect in C H3N H3Pb I3 solar cells with a concentration higher than 1015c m-3 under I-poor conditions. However, whether it is really an effective nonradiative recombination center and limits the photovoltaic efficiency depends also on its cross sections for capturing the electron or hole carriers, which is difficult to determine in both experiment and theory. Here we use a recently developed method to overcome the high computational cost of electron-phonon coupling calculation and implement it in the standard first-principles code quantum espresso so that we can calculate the carrier-capture cross sections effectively for the point defects in complicated semiconductors, such as C H3N H3Pb I3 . The calculation showed that both the hole- and the electron-capture cross sections and capture rates of P bI are large relative to those of the point defects in conventional semiconductors, such as Si or GaP, which is attributed mainly to the heavy Pb-I atoms and the soft phonon modes in this Pb halide. Nonradiative recombination increases the thermal energy by exciting the phonons in the soft Pb-I lattice, whereas the contribution of the organic C H3N H3 group is negligible. Since P bI has a higher concentration under I-poor conditions, especially when the semiconductor is p -type, our results suggest that the minority-carrier lifetime and thus the photovoltaic efficiency should be very limited in p -type C H3N H3Pb I3 and p -type doping should be avoided for fabricating high-efficiency C H3N H3Pb I3 solar cells under I-poor conditions. Similar calculations can be used for studying the influence of various defects on the photovoltaic performance of other organic-inorganic hybrid and inorganic halide perovskites, shedding light on the design of high-efficiency solar cells.

  11. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.

    Science.gov (United States)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-10

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  12. Anisotropy and phonon modes from analysis of the dielectric function tensor and the inverse dielectric function tensor of monoclinic yttrium orthosilicate

    Science.gov (United States)

    Mock, A.; Korlacki, R.; Knight, S.; Schubert, M.

    2018-04-01

    We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2SiO5 using generalized spectroscopic ellipsometry from 40-1200 cm-1. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017), 10.1103/PhysRevB.95.165202], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain an excellent match between all measured and model-calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au and 22 Bu symmetry long-wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au symmetry and 22 Bu transverse and longitudinal optical mode parameters and their orientation within the monoclinic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys Rev. Lett. 117, 215502 (2016), 10.1103/PhysRevLett.117.215502].

  13. Quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1977-01-01

    The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strenght functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval

  14. Analysis of Energy Transmission Modes of Flyback Converter

    Directory of Open Access Journals (Sweden)

    GONG Shu

    2014-08-01

    Full Text Available It is of significance to investigate energy transmission modes of a flyback converter for its optimum design. In this paper, the ETMs of a flyback converter are divided into three modes, which are continuous conduction mode-complete inductor supply mode, continuous conduction mode- incomplete inductor supply mode and discontinuous conduction mode-incomplete inductor supply mode, respectively. A deep analysis of the operation is made, a reduction of the boundary condition between the modes is conducted and a comparison of current stress, transformer AP and output ripple voltage between the modes is performed. A 30W prototype is developed and its experiment is done. The experiment results are in agreement with the theoretical analysis quite well.

  15. Phonon dispersion in vanadium

    International Nuclear Information System (INIS)

    Ivanov, A.S.; Rumiantsev, A.Yu.

    1999-01-01

    Complete text of publication follows. Phonon dispersion curves in Vanadium metal are investigated by neutron inelastic scattering using three-axis spectrometers. Due to extremely low coherent scattering amplitude of neutrons in natural isotope mixture of vanadium the phonon frequencies could be determined in the energy range below about 15 meV. Several phonon groups were measured with the polarised neutron scattering set-up. It is demonstrated that the intensity of coherent inelastic scattering observed in the non-spin-flip channel vanishes in the spin-flip channel. The phonon density of states is measured on a single crystal keeping the momentum transfer equal to a vector of reciprocal lattice where the coherent inelastic scattering is suppressed. Phonon dispersion curves in vanadium, as measured by neutron and earlier by X-ray scattering, are described in frames of a charge-fluctuation model involving monopolar and dipolar degrees of freedom. The model parameters are compared for different transition metals with body-centred cubic-structure. (author)

  16. Phonon Transport in Semiconductor interface: An atomistic approach

    Science.gov (United States)

    Chalopin, Yann

    2010-03-01

    Thermal dissipation and thermal insulation are among crucial issues encountered in high speed electronics devices and thermoelectrics systems. Both applications rely on controlling the transport properties of the heat carriers at semiconductor interfaces. From microscopic perspective, it is of fundamental interest to understand how the transport of phonons is impacted by an interface formed by two semiconductor layers. In a typical junction, the mechanism of reflection/transmission of vibrational energy causes strong modifications in the conductance regime. Thus, it is important to address the thermal transport at a contact junction in the framework of phonon wave propagation. Our approach is based on the fluctuation/dissipation theorem in order to calculate the thermal conductance of an interface. Using molecular dynamics simulations, we address the problems associated to using Si/Ge Si/SiGe junctions. We propose a methodology that enables the recovery of the transmission of the phonon modes by correlating the atomic motions of the phonon modes. Furthermore, we conclude that the phonon transmission function can be reconstructed such that it is integrated in the spectral expression of the conductance.

  17. Probing phonons in plutonium

    International Nuclear Information System (INIS)

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-01-01

    ) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the Λ point are: C 11 = 35.3 ± 1.4 GPa, C 12 = 25.5 ± 1.5 GPa and C 44 = 30.53 ± 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure (delta)-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C(prime), a Kohn-like anomaly in the T 1 [011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for (delta)-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C(prime), a Kohn-like anomaly in the T 1 [011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which (delta)-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T 1 [011] branch, the energy maximum of the T[111] mode s

  18. Probing phonons in plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing (UIUC); (LLNL); (ESRF); (LANL)

    2010-11-16

    high resolution inelastic x-ray scattering (HRIXS) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the {Lambda} point are: C{sub 11} = 35.3 {+-} 1.4 GPa, C{sub 12} = 25.5 {+-} 1.5 GPa and C{sub 44} = 30.53 {+-} 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure {delta}-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which {delta}-Pu is a classic example. However, quantitative differences remain. These are the

  19. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    International Nuclear Information System (INIS)

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were [deltaT/T/sub c/] = -0.07, for i/sub c/ and [deltaT/T/sub c/] = -0.03 for Δ. The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the Δ measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered

  20. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were (deltaT/T/sub c/) = -0.07, for i/sub c/ and (deltaT/T/sub c/) = -0.03 for ..delta... The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the ..delta.. measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered.

  1. Phonon scattering at SWCNT–SWCNT junctions in branched carbon nanotube networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungkyu [Case Western Reserve University, Department of Mechanical and Aerospace Engineering (United States); Lee, Jonghoon [Wright Patterson Air Force Base, Air Force Research Laboratory (United States); Prakash, Vikas, E-mail: vikas.prakash@case.edu [Case Western Reserve University, Department of Mechanical and Aerospace Engineering (United States)

    2015-01-15

    In this research article, we analyze phonon scattering in branched single-walled carbon nanotube (SWCNT) networks with SWCNT–SWCNT T- and X- junctions using the wave packet method. Five phonon branches including the longitudinal acoustic, twisting, transverse acoustic, radial breathing, and flexural optical modes are selected to study energy reflection, ramification, and transmission through T- and X-junctions with (6,6) and (4,4) SWCNTs. The results of the simulations indicate that the diameter of SWCNTs affects phonon scattering at carbon nanotube junctions; T-junctions of (6,6) SWCNTs transmit energy more efficiently when compared to T-junctions with (4,4) SWCNTs. In addition, T-junctions of both (6,6) and (4,4) SWCNTs transmit vibrational energy more efficiently when compared to X-junctions in the same phonon frequency range—for example, in the case of the longitudinal acoustic branch, the average energy transmission at T-junctions for low-frequency phonons (lower than 6 THz) was found to be 1.8–2.4 times higher [for the case of (6.6) and (4,4) SWCNTs, respectively] when compared to the X-junctions. It is also observed that energy transmission at the T-junctions shows a dependency on the phonon group velocity with the higher group velocity phonons showing higher energy transmission; however, for the case of the X-junctions, there is little or no correlation observed between the group velocity and energy transmission indicating a complete energy redistribution of the incoming phonons at the junction. Moreover, for the SWCNT–SWCNT branched networks, the energy ramification at the T-junctions was found to be very similar to that at the X-junctions for both (6,6) and (4,4) SWCNTs indicating transverse thermal transport at the X-junctions to be as efficient as the T-junctions.

  2. Phonon scattering at SWCNT–SWCNT junctions in branched carbon nanotube networks

    International Nuclear Information System (INIS)

    Park, Jungkyu; Lee, Jonghoon; Prakash, Vikas

    2015-01-01

    In this research article, we analyze phonon scattering in branched single-walled carbon nanotube (SWCNT) networks with SWCNT–SWCNT T- and X- junctions using the wave packet method. Five phonon branches including the longitudinal acoustic, twisting, transverse acoustic, radial breathing, and flexural optical modes are selected to study energy reflection, ramification, and transmission through T- and X-junctions with (6,6) and (4,4) SWCNTs. The results of the simulations indicate that the diameter of SWCNTs affects phonon scattering at carbon nanotube junctions; T-junctions of (6,6) SWCNTs transmit energy more efficiently when compared to T-junctions with (4,4) SWCNTs. In addition, T-junctions of both (6,6) and (4,4) SWCNTs transmit vibrational energy more efficiently when compared to X-junctions in the same phonon frequency range—for example, in the case of the longitudinal acoustic branch, the average energy transmission at T-junctions for low-frequency phonons (lower than 6 THz) was found to be 1.8–2.4 times higher [for the case of (6.6) and (4,4) SWCNTs, respectively] when compared to the X-junctions. It is also observed that energy transmission at the T-junctions shows a dependency on the phonon group velocity with the higher group velocity phonons showing higher energy transmission; however, for the case of the X-junctions, there is little or no correlation observed between the group velocity and energy transmission indicating a complete energy redistribution of the incoming phonons at the junction. Moreover, for the SWCNT–SWCNT branched networks, the energy ramification at the T-junctions was found to be very similar to that at the X-junctions for both (6,6) and (4,4) SWCNTs indicating transverse thermal transport at the X-junctions to be as efficient as the T-junctions

  3. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  4. Tunable infrared reflectance by phonon modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  5. Tunable infrared reflectance by phonon modulation

    Science.gov (United States)

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  6. Evidence for phonon-mediated coupling in superconducting Ba1-xKxBiO3

    International Nuclear Information System (INIS)

    Hinks, D.G.; Dabrowski, B.; Richards, D.R.; Jorgensen, J.D.; Pei, S.; Zasadzinski, J.F.

    1989-01-01

    Superconducting Ba 1 - x K x BiO 3 , with a T c of 30 K, shows a large 18 O isotope effect which indicates that phonons are involved in the pairing mechanism. Superconducting energy gap measurements from IR reflectivity and tunneling are consistent with moderate coupling (2(cgd)/kT c = 3.5 ± 0.5). A characteristic phonon energy of about 40 meV would be required to obtain the high T c . Neutron scattering measurements show a large density of phonons in the range 40 to 80 meV and strong coupling of electrons to these modes is indicated in tunneling spectroscopy. Additional results are reported, including the structural phase diagram, which suggest that superconductivity is phonon mediated

  7. Microwave Detection of Electron-Phonon Interactions in a Cavity-Coupled Double Quantum Dot

    Science.gov (United States)

    Hartke, T. R.; Liu, Y.-Y.; Gullans, M. J.; Petta, J. R.

    2018-03-01

    Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive a steady state population in the DQD excited state, enabling a direct measurement of the electron-phonon coupling strength at the DQD transition energy. The amplitude and phase response of the cavity field exhibit oscillations that are periodic in the DQD energy level detuning due to the phonon modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a renormalization of the cavity center frequency by coupling to phonons.

  8. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  9. Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6.

    Science.gov (United States)

    Mittal, R; Zbiri, M; Schober, H; Achary, S N; Tyagi, A K; Chaplot, S L

    2012-12-19

    Recently colossal volume thermal expansion has been observed in the framework compounds Ag(3)Co(CN)(6) and Ag(3)Fe(CN)(6). We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and interpretation. Bonding is found to be very similar in the two compounds. At ambient pressure, modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted slightly to higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for a large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We have found that modes are mainly affected by the change in size of the unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes within the energy range 2-5 meV are strongly anharmonic and major contributors to thermal expansion in both systems. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes.

  10. Phonon dynamics in type-VIII silicon clathrates: Beyond the rattler concept

    Science.gov (United States)

    Norouzzadeh, Payam; Myles, Charles W.; Vashaee, Daryoosh

    2017-05-01

    Clathrates can form a type of guest-host solid structures that, unlike most crystalline solids, have very low thermal conductivity. It is generally thought that the guest atoms caged inside the host framework act as "rattlers" and induce lattice dynamics disorders responsible for the small thermal conductivity. We performed a systematic study of the lattice dynamical properties of type-VIII clathrates with alkali and alkaline-earth guests, i.e., X8S i46 (X =Na , K, Rb, Cs, Ca, Sr, and Ba). The energy dependent participation ratio (PR) and the atomic participation ratio of phonon modes extracted from density functional theory calculations revealed that the rattler concept is not adequate to describe the effect of fillers as they manifest strong hybridization with the framework. For the case of heavy fillers, such as Rb, Sr, Cs, and Ba, a phonon band gap was formed between the acoustic and optical branches. The calculated PR indicated that the fillers suppress the acoustic phonon modes and change the energy transport mechanism from propagative to diffusive or localized resulting in "phonon-glass" characteristics. This effect is stronger for the heavy fillers. Furthermore, in all cases, the guest insertion depressed the phonon bandwidth, reduced the Debye temperature, and reduced the phonon group velocity, all of which should lead to reduction of the thermal conductivity.

  11. Carbon nanowires: Phonon and π -electron confinement

    Science.gov (United States)

    Milani, Alberto; Tommasini, Matteo; Del Zoppo, Mirella; Castiglioni, Chiara; Zerbi, Giuseppe

    2006-10-01

    The phonon dispersion of an isolated linear chain of carbon atoms is studied by density functional theory. It is shown that the longitudinal optical phonon at the Γ point is affected by Kohn anomaly. Moreover the slope of this phonon branch is modulated by the degree of bond length alternation of the chain and reaches its maximum value in the case of the cumulenic structure (equalized bonds). Phonon dispersion curves of the infinite system computed for different values of the bond length alternation can be put in correspondence with the Raman active modes of finite carbon chains.

  12. Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1997-03-01

    We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.

  13. Plasmon–Phonon Coupling in Large-Area Graphene Dot and Antidot Arrays Fabricated by Nanosphere Lithography

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Wang, Weihua; Yan, Wei

    2014-01-01

    Nanostructured graphene on SiO2 substrates paves the way for enhanced light–matter interactions and explorations of strong plasmon–phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography......, with structural control down to the sub-100 nm regime. The interaction between graphene plasmon modes and the substrate phonons is experimentally demonstrated, and structural control is used to map out the hybridization of plasmons and phonons, showing coupling energies of the order 20 meV. Our findings...

  14. Reduction of acoustic-phonon deformation potential in one-dimensional array of Si quantum dot interconnected with tunnel oxides

    Science.gov (United States)

    Uno, Shigeyasu; Mori, Nobuya; Nakazato, Kazuo; Koshida, Nobuyoshi; Mizuta, Hiroshi

    2005-06-01

    The scattering potential for the acoustic deformation potential scattering in a one-dimensional silicon quantum dot array interconnected by thin oxide layers is theoretically investigated. One-dimensional phonon normal modes are numerically obtained using the linear atomic chain model. The strain caused by an acoustic-phonon vibration is absorbed by the oxide layers, resulting in the reduction of the strain in the Si dots. This effect eventually leads to ˜40% reduction of the scattering potential all over the structure. The amount of the reduction does not depend on the phonon energy, but rather on the ratio of the Si dot size to the oxide thickness.

  15. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  16. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  17. Negative energy modes and gravitational instability of interpenetrating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Casti, A.R.R.; Spiegel, E.A. [Columbia Univ., New York, NY (United States); Morrison, P.J. [Univ. of Texas, Austin, TX (United States)

    1998-09-01

    The authors study the longitudinal instabilities of two interpenetrating fluids interacting only through gravity. When one of the constituents is of relatively low density, it is possible to have a band of unstable wave numbers well separated from those involved in the usual Jeans instability. If the initial streaming is large enough, and there is no linear instability, the indefinite sign of the free energy has the possible consequence of explosive interactions between positive and negative energy modes in the nonlinear regime. The effect of dissipation on the negative energy modes is also examined.

  18. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    Science.gov (United States)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  19. Phonon anomalies and electron-phonon coupling of metal surfaces and thin films; Phononenanomalien und Elektron-Phonon-Kopplung an Metalloberflaechen und duennen Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Flach, B.

    2000-01-01

    This thesis has two topics: One is the investigation of an adsorbate induced phonon anomaly on W(110) and Mo{sub 1-x}Re{sub x}(110) (x = 5, 15, 25%) with inelastic helium atom scattering (HAS). The other one is the study of the growth, morphology and dynamics of ultra-thin lithium films deposited on W(110). In 1992 a giant phonon anomaly was found by J. Luedecke on the hydrogen saturated W(110) and Mo(110) surfaces. The anomaly consists of a deep and sharp indentation in the phonon dispersion curves in which the phonon energy nearly drops to zero ({omega}{sub 1}). In addition, a small and broad dip in the surface Rayleigh mode is observed ({omega}{sub 2}). The anomaly appears in the anti {gamma}-H- as well as in the anti {gamma}-S-direction of the surface Brillouin zone (SBZ). Since its first discovery, numerous other experimental and theoretical studies have followed. In the present work the effects is reinvestigated and experimental parameters, such as the crystal temperature and the incident energy, were changed in order to study their influence on the anomalous phonon behavior. In the case of H/Mo(110) the substrate was changed as well by alloying with small amounts of rhenium. In the present experiments a strong crystal temperature dependence of the {omega}{sub 2}-branch was found which leads to lower energies at the 'dip' for smaller temperatures, while the {omega}{sub 1}-anomaly remains unchanged. Such behavior agrees well with the picture that the {omega}{sub 2}-branch is due to a Kohn anomaly. (orig.)

  20. Search for the 3-phonon state of {sup 40}Ca; Recherche de l'etat a trois phonons dans le {sup 40}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Fallot, M

    2002-09-01

    We study collective vibrational states of the nucleus: giant resonances and multiphonon states. It has been shown that multiphonon states, which are built with several superimposed giant resonances, can be excited in inelastic heavy ion scattering near the grazing angle. No three photon states have been observed until now. An experiment has been performed at GANIL, aiming at the observation of the 3-phonon state built with the giant quadrupole resonance (GQR) in {sup 40}Ca, with the reaction {sup 40}Ca + {sup 40}Ca at 50 A.Me.V. The ejectile was identified in the SPEG spectrometer. Light charged particles were detected in 240 CsI scintillators of the INDRA 4{pi} array. The analysis confirms the previous results about the GQR and the 2-phonon state in {sup 40}Ca. For the first time, we have measured an important direct decay branch of the GQR by alpha particles. Applying the so-called 'missing energy method' to events containing three protons measured in coincidence with the ejectile, we observe a direct decay branch revealing the presence of a 3-phonon state in the excitation energy region expected for the triple GQR. Dynamical processes are also studied in the inelastic channel, emphasizing a recently discovered mechanism named towing-mode. We observe for the first time the towing-mode of alpha particles. The energies of multiphonon states in {sup 40}Ca and {sup 208}Pb have been computed microscopically including some anharmonicities via boson mapping methods. The basis of the calculation has been extended to the 3-phonon states. Our results show large anharmonicities (several MeV), due to the coupling of 3-phonon states to 2-phonon states. The extension of the basis to 4-phonon states has been performed for the first time. The inclusion of the 4 phonon states in the calculation did not affect the previous observations concerning the 2-phonon states. Preliminary results on the anharmonicities of the 3-phonon states are presented. (author)

  1. Phonon Scattering and Confinement in Crystalline Films

    Science.gov (United States)

    Parrish, Kevin D.

    The operating temperature of energy conversion and electronic devices affects their efficiency and efficacy. In many devices, however, the reference values of the thermal properties of the materials used are no longer applicable due to processing techniques performed. This leads to challenges in thermal management and thermal engineering that demand accurate predictive tools and high fidelity measurements. The thermal conductivity of strained, nanostructured, and ultra-thin dielectrics are predicted computationally using solutions to the Boltzmann transport equation. Experimental measurements of thermal diffusivity are performed using transient grating spectroscopy. The thermal conductivities of argon, modeled using the Lennard-Jones potential, and silicon, modeled using density functional theory, are predicted under compressive and tensile strain from lattice dynamics calculations. The thermal conductivity of silicon is found to be invariant with compression, a result that is in disagreement with previous computational efforts. This difference is attributed to the more accurate force constants calculated from density functional theory. The invariance is found to be a result of competing effects of increased phonon group velocities and decreased phonon lifetimes, demonstrating how the anharmonic contribution of the atomic potential can scale differently than the harmonic contribution. Using three Monte Carlo techniques, the phonon-boundary scattering and the subsequent thermal conductivity reduction are predicted for nanoporous silicon thin films. The Monte Carlo techniques used are free path sampling, isotropic ray-tracing, and a new technique, modal ray-tracing. The thermal conductivity predictions from all three techniques are observed to be comparable to previous experimental measurements on nanoporous silicon films. The phonon mean free paths predicted from isotropic ray-tracing, however, are unphysical as compared to those predicted by free path sampling

  2. Large spin-phonon coupling and magnetically induced phonon anisotropy in SrMO3 perovskites (M=V,Cr,Mn,Fe,Co)

    Science.gov (United States)

    Lee, Jun Hee; Rabe, Karin M.

    2011-09-01

    First-principles calculations reveal large zone-center spin-phonon coupling and magnetically-driven phonon anisotropy in cubic perovskites SrMO3 (M=V,Cr,Mn,Fe,Co). In particular, the frequency and splitting of the polar Slater mode is found to depend strongly upon magnetic ordering. The coupling is parameterized in a crystal-structure-dependent Heisenberg model, and its main features seen to arise from the Goodenough-Kanamori rules. This coupling can be expected to produce distinct low-energy alternative phases, resulting in a rich variety of coupled magnetic, structural, and electronic phase transitions driven by temperature, stress, electric field, and cation substitution.

  3. Bandgap measurements and the peculiar splitting of E{sub 2}{sup H} phonon modes of In{sub x}Al{sub 1-x}N nanowires grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Prabaswara, Aditya; Ooi, Boon S., E-mail: boon.ooi@kaust.edu.sa [Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Anjum, Dalaver H.; Yang, Yang [Adavanced nanofabrication Imaging and characterization, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; El-Desouki, Munir M. [National Center for Nanotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442-6086 (Saudi Arabia)

    2016-07-28

    The dislocation free In{sub x}Al{sub 1-x}N nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C–610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of In{sub x}Al{sub 1-x}N NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04–0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A{sub 1}(LO) phonons and single mode behavior for E{sub 2}{sup H} phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E{sub 2}{sup H} phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A{sub 1}(LO) and E{sub 2}{sup H} phonons in In{sub x}Al{sub 1-x}N NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important In{sub x}Al{sub 1-x}N nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  4. Phonon density of states and anharmonicity of UO2

    Science.gov (United States)

    Pang, Judy W. L.; Chernatynskiy, Aleksandr; Larson, Bennett C.; Buyers, William J. L.; Abernathy, Douglas L.; McClellan, Kenneth J.; Phillpot, Simon R.

    2014-03-01

    Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening, inherently, and the factor of ˜7 enhancement of the oxygen spectrum relative to the uranium component by the increased neutron sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasiharmonic PDOS spectra were neutron weighted and anharmonicity was introduced in an approximate way by convolution with wave-vector-weighted averages over our previously measured phonon linewidths for UO2, which are provided in numerical form. Comparisons between the PDOS measurements and the simulations show reasonable agreement overall, but they also reveal important areas of disagreement for both high and low temperatures. The discrepancies stem largely from a ˜10 meV compression in the overall bandwidth (energy range) of the oxygen-dominated optical phonons in the simulations. A similar linewidth-convoluted comparison performed with the PDOS spectrum of Dolling et al. obtained by shell-model fitting to their historical phonon dispersion measurements shows excellent agreement with the time-of-flight PDOS measurements reported here. In contrast, we show by comparisons of spectra in linewidth-convoluted form that recent first-principles simulations for UO2 fail to account for the PDOS spectrum determined from the measurements of Dolling et al. These results demonstrate PDOS measurements to be stringent tests for ab inito simulations of phonon physics in UO2 and they indicate further the need for advances in theory to address the lattice dynamics of UO2.

  5. Direct correlation of observed phonon anomalies and maxima in the generalized susceptibilities of transition metal carbides

    International Nuclear Information System (INIS)

    Gupta, M.J.; Freeman, A.B.

    1976-01-01

    The generalized susceptibility, chi(q), of both NbC and TaC determined from APW energy band calculations show large maxima to occur at precisely those q/sub max/ values at which soft phonon modes were observed by Smith. Maxima in chi(q) are predicted for other directions. The locus of these q/sub max/ values can be represented by a warped cube of dimension approximately 1.2(2π/a) in momentum space--in striking agreement with the soft mode surface proposed phenomenologically by Weber. In sharp contrast, the chi(q) calculated for both ZrC and HfC--for which no phonon anomalies have been observed--fall off in all symmetry directions away from the zone center. The phonon anomalies in the transition metal carbides are thus interpreted as due to an ''overscreening'' effect resulting from an anomalous increase of the response function of the conduction electrons

  6. Self-energy of zone-boundary phonons in germanium: Ab initio calculations versus neutron spin-echo measurements

    Czech Academy of Sciences Publication Activity Database

    Kulda, Jiří; Debernardi, A.; Cardona, M.; de Geuser, F.; Haller, E. E.

    2004-01-01

    Roč. 69, č. 4 (2004), 045209 ISSN 1098-0121 R&D Projects: GA AV ČR KSK1010104 Keywords : functional perturbation-theory * optical phonons Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.075, year: 2004

  7. Thermal effects on parallel resonance energy of whistler mode wave

    Indian Academy of Sciences (India)

    February 2006 physics pp. 467–472. Thermal effects on parallel resonance energy of whistler mode wave. DEVENDRAA SIINGH1, SHUBHA SINGH2 and R P SINGH2. 1Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pune 411 008, India. 2Department of Physics, Banaras Hindu University, Varanasi 221 ...

  8. Black hole elasticity and gapped transverse phonons in holography

    Science.gov (United States)

    Alberte, Lasma; Ammon, Martin; Baggioli, Matteo; Jiménez, Amadeo; Pujolàs, Oriol

    2018-01-01

    We study the elastic response of planar black hole (BH) solutions in a simple class of holographic models with broken translational invariance. We compute the transverse quasi-normal mode spectrum and the propagation speed of the lowest energy mode. We find that the speed of the lowest mode relates to the BH rigidity modulus as dictated by elasticity theory. This allows to identify these modes as transverse phonons — the pseudo Goldstone bosons of spontaneously broken translational invariance. In addition, we show that these modes have a mass gap controlled by an explicit source of the translational symmetry breaking. These results provide a new confirmation that the BHs in these models do exhibit solid properties that become more manifest at low temperatures. Also, by the AdS/CFT correspondence, this allows to extend the standard results from the effective field theory for solids to quantum-critical materials.

  9. Manipulation of Phonons with Phononic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Leseman, Zayd Chad [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-07-09

    There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.

  10. Relaxation between electrons and surface phonons of a ...

    Indian Academy of Sciences (India)

    Abstract. The energy relaxation between the hot degenerate electrons of a homoge- neously photoexcited metal film and the surface phonons (phonon wave vectors in two dimensions) is considered under Debye approximation. The state of electrons and phonons is described by equilibrium Fermi and Bose functions with ...

  11. Relaxation between electrons and surface phonons of a ...

    Indian Academy of Sciences (India)

    The energy relaxation between the hot degenerate electrons of a homogeneously photoexcited metal film and the surface phonons (phonon wave vectors in two dimensions) is considered under Debye approximation. The state of electrons and phonons is described by equilibrium Fermi and Bose functions with different ...

  12. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced......This paper presents a new class of switching-mode audio power amplifiers, which are capable of direct energy conversion from the AC mains to the audio output. They represent an ultimate integration of a switching-mode power supply and a Class D audio power amplifier, where the intermediate DC bus...

  13. Phonon emission in a degenerate semiconductor at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S.; Nag, S.; Bhattacharya, D.P.

    2015-01-01

    The characteristics of phonon growth in a degenerate semiconductor at low lattice temperatures have been studied for inelastic interaction of non-equilibrium electrons with the intravalley acoustic phonons. The energy of the phonon and the full form of the phonon distribution are taken into account. The results reveal significant changes in the growth characteristics compared to the same for a non-degenerate material

  14. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  15. Enhancing of optic phonon contribution in hydrodynamic phonon transport

    Science.gov (United States)

    de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.

    2015-10-01

    In the framework of the kinetic-collective model of phonon heat transport, we analyze how each range of the phonon frequency spectrum contributes to the total thermal conductivity both in the macro and the nanoscale. For this purpose, we use two case study samples: naturally occurring bulk silicon and a 115 nm of diameter silicon nanowire. We show that the contribution of high-energy phonons (optic branches) is non-negligible only when N-collisions are strongly present. This contribution increases when the effective size of the sample decreases, and it is found to be up to a 10% at room temperature for the 115 nm nanowire, corroborating preliminar ab-initio predictions.

  16. 78 FR 36315 - Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for...

    Science.gov (United States)

    2013-06-17

    .... National Impact Analysis--National Energy Savings and Net Present Value Analysis 1. General 2. Shipments a.... Monetizing Carbon Dioxide Emissions b. Social Cost of Carbon Values Used in Past Regulatory Analyses c.... Cumulative Regulatory Burden 3. National Impact Analysis a. Significance of Energy Savings b. Net Present...

  17. 77 FR 8525 - Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for...

    Science.gov (United States)

    2012-02-14

    .... National Impact Analysis--National Energy Savings and Net Present Value Analysis 1. General 2. Shipments 3... energy use. The cumulative national net present value (NPV) of total consumer costs and savings of the..., discounted to 2011. The industry net present value (INPV) is the sum of the discounted cash flows to the...

  18. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    Energy Technology Data Exchange (ETDEWEB)

    Meevasana, Warawat

    2010-05-26

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO{sub 3} (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La{sub 2}CuO{sub 4} by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO{sub 3}. Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a {lambda}{prime} {approx} 0.3 and an overall bandwidth renormalization suggesting an overall {lambda}{prime} {approx} 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  19. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

    International Nuclear Information System (INIS)

    Chase, T.; Trigo, M.; Reid, A. H.; Dürr, H. A.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Wang, X. J.; Reis, D. A.

    2016-01-01

    We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement

  20. Phonons from neutron powder diffraction

    Science.gov (United States)

    Dimitrov, D. A.; Louca, D.; Röder, H.

    1999-09-01

    The spherically averaged structure function S(\\|q\\|) obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of S(\\|q\\|) to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e., it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center (\\|q\\|≠0) phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure [dynamics from powder diffraction] has been successfully implemented as demonstrated here for two systems, a simple metal fcc Ni and an ionic crystal CaF2. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from neutron powder diffraction.

  1. Nonequilibrium phonon effects in midinfrared quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y. B., E-mail: yshi9@wisc.edu; Knezevic, I., E-mail: knezevic@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691 (United States)

    2014-09-28

    We investigate the effects of nonequilibrium phonon dynamics on the operation of a GaAs-based midinfrared quantum cascade laser over a range of temperatures (77–300 K) via a coupled ensemble Monte Carlo simulation of electron and optical-phonon systems. Nonequilibrium phonon effects are shown to be important below 200 K. At low temperatures, nonequilibrium phonons enhance injection selectivity and efficiency by drastically increasing the rate of interstage electron scattering from the lowest injector state to the next-stage upper lasing level via optical-phonon absorption. As a result, the current density and modal gain at a given field are higher and the threshold current density lower and considerably closer to experiment than results obtained with thermal phonons. By amplifying phonon absorption, nonequilibrium phonons also hinder electron energy relaxation and lead to elevated electronic temperatures.

  2. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    Directory of Open Access Journals (Sweden)

    A. Marino

    2016-03-01

    Full Text Available We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA2(NCS2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS states on the sub-picosecond timescale. The change of the electronic state (<50 fs induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules.

  3. Estimating Energy Consumption of Transport Modes in China Using DEA

    Directory of Open Access Journals (Sweden)

    Weibin Lin

    2015-04-01

    Full Text Available The rapid growth of transport requirements in China will incur increasing transport energy demands and associated environmental pressures. In this paper, we employ a generalized data envelopment analysis (DEA to evaluate the relative energy efficiency of rail, road, aviation and water transport from 1971 to 2011 by considering the energy input and passenger-kilometers (PKM and freight ton-kilometers (TKM outputs. The results show that the optimal energy efficiencies observed in 2011 are for rail and water transport, with the opposite observed for the energy efficiencies of aviation and road transport. In addition, we extend the DEA model to estimate future transport energy consumption in China. If each transport mode in 2020 is optimized throughout the observed period, the national transport energy consumption in 2020 will reach 497,701 kilotons coal equivalent (ktce, whereas the annual growth rate from 2011 to 2020 will be 5.7%. Assuming that efficiency improvements occur in this period, the estimated national transport energy consumption in 2020 will be 443,126 ktce, whereas the annual growth rate from 2011 to 2020 will be 4.4%, which is still higher than that of the national total energy consumption (3.8%.

  4. Tri-component phononic crystals for underwater anechoic coatings

    International Nuclear Information System (INIS)

    Zhao, Honggang; Liu, Yaozong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2007-01-01

    Localized resonance in phononic crystal, composed of three-dimensional arrays of composite units, has been discovered recently. The composite unit is a high-density sphere coated by soft silicon rubber. In this Letter, the absorptive properties induced by the localized resonance are systemically investigated. The mode conversions during the Mie scattering of a single coated lead sphere in unbounded epoxy are analyzed by referring the elements of the scattering matrix. Then the anechoic properties of a slab containing a plane of such composite scatterers are investigated with the multiple-scattering method by accounting the effects of the multiple scattering and the viscous dissipation. The results show that the longitudinal to transverse mode conversion nearby the locally resonant region is an effective way to enhance the anechoic performance of the finite slab of phononic crystal. Then, the influences of the viscoelasticity of the silicon rubber and the coating thickness on the acoustic properties of the finite slab are investigated for anechoic optimization. Finally, we synthetically consider the destructive scattering in the finite slab of phononic crystal and the backing, and design an anechoic slab composed of bi-layer coated spheres. The results show that the most of the incident energy is absorbed at the desired frequency band

  5. Frictional drag between quantum wells mediated by phonon exchange

    DEFF Research Database (Denmark)

    Bønsager, M.C.; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1998-01-01

    We use the Kubo formalism to evaluate the contribution of acoustic-phonon exchange to the frictional drag between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate (tau(D)(-l)). However, tau(D)(-l) becomes finite when phonon scattering from either...... lattice imperfections or electronic excitations is accounted for. In the case of GaAs quantum wells, we find that for a phonon mean free path l(ph) smaller than a critical value, imperfection scattering dominates and the drag rate varies as ln(l(ph)/d) over many orders of magnitude of the layer separation...... d. When l(ph) exceeds the critical value, the drag rate is dominated by coupling through an electron-phonon collective mode localized in the vicinity of the electron layers. We argue that the coupled electron-phonon mode may be observable for realistic parameters. Our theory is in good agreement...

  6. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    Science.gov (United States)

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  7. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus

    Science.gov (United States)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-01

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  8. Influence of two photon absorption induced free carriers on coherent polariton and phonon generation in ZnTe crystals

    Science.gov (United States)

    Kamaraju, N.; Kumar, Sunil; Freysz, Eric; Sood, A. K.

    2010-05-01

    Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in ⟨110⟩ cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).

  9. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.

    Science.gov (United States)

    Chang, I-Ya; Kim, DaeGwi; Hyeon-Deuk, Kim

    2016-07-20

    Quantum dot (QD) superlattices, periodically ordered array structures of QDs, are expected to provide novel photo-optical functions due to their resonant couplings between adjacent QDs. Here, we computationally demonstrated that electronic structures and phonon dynamics of a QD superlattice can be effectively and selectively controlled by manipulating its interior nanospace, where quantum resonance between neighboring QDs appears, rather than by changing component QD size, shape, compositions, etc. A simple H-passivated Si QD was examined to constitute one-, two-, and three-dimensional QD superlattices, and thermally fluctuating band energies and phonon modes were simulated by finite-temperature ab initio molecular dynamics (MD) simulations. The QD superlattice exhibited a decrease in the band gap energy enhanced by thermal modulations and also exhibited selective extraction of charge carriers out of the component QD, indicating its advantage as a promising platform for implementation in solar cells. Our dynamical phonon analyses based on the ab initio MD simulations revealed that THz-frequency phonon modes were created by an inter-QD crystalline lattice formed in the QD superlattice, which can contribute to low energy thermoelectric conversion and will be useful for direct observation of the dimension-dependent superlattice. Further, we found that crystalline and ligand-originated phonon modes inside each component QD can be independently controlled by asymmetry of the superlattice and by restriction of the interior nanospace, respectively. Taking into account the thermal effects at the finite temperature, we proposed guiding principles for designing efficient and space-saving QD superlattices to develop functional photovoltaic and thermoelectric devices.

  10. Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652

  11. Newly discovered failure mode in high energy density, energy storage capacitors

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Kemp, E.L.

    1978-07-01

    High energy density pulse capacitors, typified by the 10-kV, 170-μF unit, have become widely used in recent years. These units primarily were designed for lower cost and higher energy per unit volume. The life characteristics of these units have never been determined fully, but they have already been shown capable of lives much longer than originally expected. The Los Alamos Scientific Laboratory is now conducting an extended program to determine the long-term capabilities of these capacitors. This program is aimed not only at finding the statistical parameters of the failure distribution but also at determining the physical failure modes characteristic of such units. Recently, a new failure mode was found. This failure mode has prevented test samples of polypropylene-paper-dioctyl phthalate units from actually reaching the true potential life of the insulation. In this report, the new failure mechanism is examined and suggestions are made that could eliminate the failure mode

  12. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  13. Baseline projections of transportation energy consumption by mode: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  14. Energy spectrum and thermal properties of a terahertz quantum-cascade laser based on the resonant-phonon depopulation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Klochkov, A. N.; Glinskiy, I. A.; Zenchenko, N. V.; Ponomarev, D. S.; Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Zaycev, A. A. [National Research University of Electronic Technology (MIET) (Russian Federation); Zubov, F. I.; Zhukov, A. E.; Cirlin, G. E.; Alferov, Zh. I. [Russian Academy of Sciences, Saint Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)

    2017-04-15

    The dependences of the electronic-level positions and transition oscillator strengths on an applied electric field are studied for a terahertz quantum-cascade laser (THz QCL) with the resonant-phonon depopulation scheme, based on a cascade consisting of three quantum wells. The electric-field strengths for two characteristic states of the THz QCL under study are calculated: (i) “parasitic” current flow in the structure when the lasing threshold has not yet been reached; (ii) the lasing threshold is reached. Heat-transfer processes in the THz QCL under study are simulated to determine the optimum supply and cooling conditions. The conditions of thermocompression bonding of the laser ridge stripe with an n{sup +}-GaAs conductive substrate based on Au–Au are selected to produce a mechanically stronger contact with a higher thermal conductivity.

  15. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  16. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 : Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra

    NARCIS (Netherlands)

    Marashdeh, A.; Frankcombe, T.J.

    2008-01-01

    The dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski’s direct method. The

  17. The effect of n- and p-type doping on coherent phonons in GaN

    Science.gov (United States)

    Ishioka, Kunie; Kato, Keiko; Ohashi, Naoki; Haneda, Hajime; Kitajima, Masahiro; Petek, Hrvoje

    2013-05-01

    The effect of doping on the carrier-phonon interaction in wurtzite GaN is investigated by pump-probe reflectivity measurements using 3.1 eV light in near resonance with the fundamental band gap of 3.39 eV. Coherent modulations of the reflectivity due to the E2 and A1(LO) modes, as well as the 2A1(LO) overtone are observed. Doping of acceptor and donor atoms enhances the dephasing of the polar A1(LO) phonon via coupling with plasmons, with the effect of donors being stronger. Doping also enhances the relative amplitude of the coherent A1(LO) phonon with respect to that of the high-frequency E2 phonon, though it does not affect the relative intensity in Raman spectroscopic measurements. We attribute this enhanced coherent amplitude to the transient depletion field screening (TDFS) excitation mechanism, which, in addition to impulsive stimulated Raman scattering (ISRS), contributes to the generation of coherent polar phonons even for sub-band gap excitation. Because the TDFS mechanism requires photoexcitation of carriers, we argue that the interband transition is made possible at a surface with photon energies below the bulk band gap through the Franz-Keldysh effect.

  18. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles

    Science.gov (United States)

    Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo

    2018-01-01

    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric

  19. Temperature dependence of the dynamics of zone boundary phonons in ZnO:Li

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.

    2008-12-01

    Investigations of zone boundary phonons in ZnO:Li system (Li concentration: 10%) and their dynamics with temperature are reported. Additional modes at 127, 157, and 194 cm-1 are observed and assigned to zone boundary phonons at critical point M in the Brillouin zone [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] due to breakdown of crystal translational symmetry with Li incorporation in ZnO. Anharmonicity in peak frequency and linewidth of the zone boundary phonons in a temperature range from 100 to 1000 K is also analyzed taking into account the decay of zone boundary phonons into three- and four-phonon modes (cubic and quadratic anharmonicities). The anharmonic behavior of peak frequency is found to be feebly dependent on three-phonon decay process but thermal expansion of lattice together with four-phonon decay process appropriately defines the temperature dependence. Linewidths, however, follow the simple four-phonon decay mechanism. E2(low) mode, on the other hand, shows a linear temperature dependency and therefore follows a three-phonon decay channel. The calculated values of phonon lifetimes at 100 K for the 127, 157, 194 cm-1, and E2(low) modes are 8.23, 6.54, 5.32, and 11.39 ps. Decay of the zone boundary phonon modes compared to E2(low) mode reveals that dopant induced disorder has a strong temperature dependency.

  20. Electron-phonon heat exchange in quasi-two-dimensional nanolayers

    Science.gov (United States)

    Anghel, Dragos-Victor; Cojocaru, Sergiu

    2017-12-01

    We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film's surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron-phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (Te for the electrons temperature and Tph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, Te) or (d, Tph), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find P ∝ Te3.5 - Tph3.5. From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.

  1. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  2. Fluid phonons and inflaton quanta at the protoinflationary transition

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    Quantum and thermal fluctuations of an irrotational fluid are studied across the transition regime connecting a protoinflationary phase of decelerated expansion to an accelerated epoch driven by a single inflaton field. The protoinflationary inhomogeneities are suppressed when the transition to the slow roll phase occurs sharply over space-like hypersurfaces of constant energy density. If the transition is delayed, the interaction of the quasi-normal modes related, asymptotically, to fluid phonons and inflaton quanta leads to an enhancement of curvature perturbations. It is shown that the dynamics of the fluctuations across the protoinflationary boundaries is determined by the monotonicity properties of the pump fields controlling the energy transfer between the background geometry and the quasi-normal modes of the fluctuations. After corroborating the analytical arguments with explicit numerical examples, general lessons are drawn on the classification of the protoinflationary transition.

  3. Quantum non-demolition phonon counter with a hybrid optomechnical system

    Science.gov (United States)

    Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing

    2018-05-01

    A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.

  4. Phonon engineering for nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, Sylvie (Stanford University); Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H. (Idaho National Laboratory); Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  5. International Conference on Phonon Physics, 31 August-3 September 1981. Bloomington, Indiana,

    Science.gov (United States)

    1981-12-01

    optical phonons by generalized internal strains .................................... C6-537 B. PAIN .- Instabilities in thermal bath :phonon enhancement...transition from one mode tb two mode behavior. We can physically explain this claim as follows: the apparition ofa localised mode is the condition

  6. Phonons and Thermal Transport in Carbon Nanotube Systems

    National Research Council Canada - National Science Library

    Gartstein, Yuri

    2005-01-01

    "Due to the combination of a high speed of sound hard optical vibration modes and a large phonon mean free path carbon nanotubes prove to be the most efficient thermal conductors." (D Tornanek, 2005...

  7. Length-scale dependent phonon interactions

    CERN Document Server

    Srivastava, Gyaneshwar

    2014-01-01

    This book presents  a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions  in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phono...

  8. Phonon dispersion curves of CsCN

    Indian Academy of Sciences (India)

    Abstract. The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the ...

  9. Phonon density of states in nanocrystalline Fe

    Indian Academy of Sciences (India)

    Abstract. The Born–von Karman model is used to calculate phonon density of states (DOS) of nanocrystalline bcc Fe. It is found that there is an anisotropic stiffening in the interatomic force constants and hence there is shrinking in the nearest-neighbour distances in the nanophase. This leads to additional vibrational modes ...

  10. ``Forbidden'' phonon in the iron chalcogenide series

    Science.gov (United States)

    Fobes, David M.; Zaliznyak, Igor A.; Xu, Zhijun; Gu, Genda; Tranquada, John M.

    2015-03-01

    Recently, we uncovered evidence for the formation of a bond-order wave (BOW) leading to ferro-orbital order at low temperature, acting to stabilize the bicollinear AFM order, in the iron-rich parent compound, Fe1+yTe. Investigating the inelastic spectra centered near (100) in Fe1+yTe, a signature peak for the BOW formation in the monoclinic phase, we observed an acoustic phonon dispersion in both tetragonal and monoclinic phases. While a structural Bragg peak accompanies the mode in the monoclinic phase, in the tetragonal phase Bragg scattering at this Q is forbidden by symmetry, and we observed no elastic peak. This phonon mode was also observed in superconducting FeTe0.6Se0.4, where structural and magnetic transitions are suppressed. LDA frozen phonon calculations suggested that this mode could result from a spin imbalance between neighboring Fe atoms, but polarized neutron measurements revealed no additional magnetic scattering. We propose that this ``forbidden'' phonon mode may originate from dynamically broken symmetry, perhaps related to the strong dynamic spin correlations in these materials. Work at BNL was supported by BES, US DOE, under Contract No. DE-AC02-98CH10886. Research at ORNL's HFIR and SNS sponsored by Scientific User Facilities Division, BES, US DOE. We acknowledge the support of NIST, in providing neutron research facilities.

  11. Rayleigh waves, surface disorder, and phonon localization in nanostructures

    Science.gov (United States)

    Maurer, L. N.; Mei, S.; Knezevic, I.

    2016-07-01

    We introduce a technique to calculate thermal conductivity in disordered nanostructures: a finite-difference time-domain solution of the elastic-wave equation combined with the Green-Kubo formula. The technique captures phonon wave behavior and scales well to nanostructures that are too large or too surface disordered to simulate with many other techniques. We investigate the role of Rayleigh waves and surface disorder on thermal transport by studying graphenelike nanoribbons with free edges (allowing Rayleigh waves) and fixed edges (prohibiting Rayleigh waves). We find that free edges result in a significantly lower thermal conductivity than fixed ones. Free edges both introduce Rayleigh waves and cause all low-frequency modes (bulk and surface) to become more localized. Increasing surface disorder on free edges draws energy away from the center of the ribbon and toward the disordered edges, where it gets trapped in localized surface modes. These effects are not seen in ribbons with fixed boundary conditions and illustrate the importance of phonon-surface modes in nanostructures.

  12. Phonovoltaic. III. Electron-phonon coupling and figure of merit of graphene:BN

    Science.gov (United States)

    Melnick, Corey; Kaviany, Massoud

    2016-12-01

    The phonovoltaic cell harvests optical phonons like a photovoltaic harvests photons, that is, a nonequilibrium (hot) population of optical phonons (at temperature Tp ,O) more energetic than the band gap produces electron-hole pairs in a p -n junction, which separates these pairs to produce power. A phonovoltaic material requires an optical phonon mode more energetic than its band gap and much more energetic than the thermal energy (Ep ,O>Δ Ee ,g≫kBT ), which relaxes by generating electrons and power (at rate γ˙e -p) rather than acoustic phonons and heat (at rate γ˙p -p). Graphene (h-C) is the most promising material candidate: when its band gap is tuned to its optical phonon energy without greatly reducing the electron-phonon (e -p ) coupling, it reaches a substantial figure of merit [ZpV=Δ Ee ,gγ˙e -p/Ep ,O(γ˙e -p+γ˙p -p) ≈0.8 ] . A simple tight-binding (TB) model presented here predicts that lifting the sublattice symmetry of graphene in order to open a band gap proscribes the e -p interaction at the band edge, such that γ˙e -p→0 as Δ Ee ,g→Ep ,O . However, ab initio (DFT-LDA) simulations of layered h-C/BN and substitutional h-C:BN show that the e -p coupling remains substantial in these asymmetric crystals. Indeed, h-C:BN achieves a high figure of merit (ZpV≈0.6 ). At 300 K and for a Carnot limit of 0.5 (Tp ,O=600 K) , a h-C:BN phonovoltaic can reach an efficiency of ηpV≈0.2 , double the thermoelectric efficiency (Z T ≈1 ) under similar conditions.

  13. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  14. Non-equilibrium phonon generation and detection in microstructure devices

    KAUST Repository

    Hertzberg, J. B.

    2011-01-01

    We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ∼200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel junction (STJ). The phonons transiting the structure ballistically are detected by a second STJ, allowing comparison of direct with indirect transport pathways. This method may be applied to study how different phonon modes contribute to the thermal conductivity of nanostructures. © 2011 American Institute of Physics.

  15. Phonon-assisted tunneling and its dependence on pressure

    International Nuclear Information System (INIS)

    Roy, P.N.; Singh, A.P.; Thakur, B.N.

    1999-01-01

    First the mechanism of phonon-assisted tunneling has been investigated. The indirect tunnel current density has been computed after taking the amplitude of the time dependent perturbation as the energy of the lattice vibration. Later the pressure dependence of the phonon-assisted tunnel current has been computed using Payne's expression for the dependence of phonon frequency on pressure. Very good qualitative agreements are obtained between predicted and observed characteristics. (author)

  16. Confined Acoustic Phonons in Colloidal Nanorod Heterostructures Investigated by Nonresonant Raman Spectroscopy and Finite Elements Simulations.

    Science.gov (United States)

    Miscuglio, Mario; Lin, Miao-Ling; Di Stasio, Francesco; Tan, Ping-Heng; Krahne, Roman

    2016-12-14

    Lattice vibrational modes in cadmium chalcogenide nanocrystals (NCs) have a strong impact on the carrier dynamics of excitons in such confined systems and on the optical properties of these nanomaterials. A prominent material for light emitting applications are CdSe/CdS core-shell dot-in-rods. Here we present a detailed investigation of the acoustic phonon modes in such dot-in-rods by nonresonant Raman spectroscopy with laser excitation energy lower than their bandgap. With high signal-to-noise ratio in the frequency range from 5-50 cm -1 , we reveal distinct Raman bands that can be related to confined extensional and radial-breathing modes (RBM). Comparison of the experimental results with finite elements simulation and analytical analysis gives detailed insight into the localized nature of the acoustic vibration modes and their resonant frequencies. In particular, the RBM of dot-in-rods cannot be understood by an oscillation of a CdSe sphere embedded in a CdS rod matrix. Instead, the dot-in-rod architecture leads to a reduction of the sound velocity in the core region of the rod, which results in a redshift of the rod RBM frequency and localization of the phonon induced strain in vicinity of the core where optical transitions occur. Such localized effects potentially can be exploited as a tool to tune exciton-phonon coupling in nanocrystal heterostructures.

  17. Phononic Crystal Made of Multilayered Ridges on a Substrate for Rayleigh Waves Manipulation

    Directory of Open Access Journals (Sweden)

    Mourad Oudich

    2017-12-01

    Full Text Available We present a phononic crystal to achieve efficient manipulation of surface acoustic waves (SAW. The structure is made of finite phononic micro-ridges arranged periodically in a substrate surface. Each ridge is constructed by staking silicon and tungsten layers so that it behaves as one-dimensional phononic crystal which exhibits band gaps for elastic waves. The band gap allows the existence of resonance modes where the elastic energy is either confined within units in the free end of the ridge or the ones in contact with the substrate. We show that SAW interaction with localized modes in the free surface of the ridge gives rise to sharp attenuation in the SAW transmission, while the modes confined within the ridge/substrate interface cause broad band attenuations of SAW. Furthermore, we demonstrate that the coupling between the two kinds of modes within the band gap gives high SAW transmission amplitude in the form of Fano-like peaks with high quality factor. The structure could provide an interesting solution for accurate SAW control for sensing applications, for instance.

  18. Phonon dispersion relations for caesium thiocyanate

    International Nuclear Information System (INIS)

    Irving, M.A.; Smith, T.F.; Elcombe, M.M.

    1984-01-01

    Room temperature phonon dispersion relations for frequencies below 2 THz have been measured, along the three orthorhombic axes and selected diagonal directions by neutron inelastic scattering, for caesium thiocyanate. These curves, which represent 13 acoustic modes and 11 optic modes of vibration, do not agree with the dispersion behaviour calculated from the rigid-ion model developed by Ti and Ra to describe their Raman scattering observations

  19. Topological phononic insulator with robust pseudospin-dependent transport

    Science.gov (United States)

    Xia, Bai-Zhan; Liu, Ting-Ting; Huang, Guo-Liang; Dai, Hong-Qing; Jiao, Jun-Rui; Zang, Xian-Guo; Yu, De-Jie; Zheng, Sheng-Jie; Liu, Jian

    2017-09-01

    Topological phononic states, which facilitate unique acoustic transport around defects and disorders, have significantly revolutionized our scientific cognition of acoustic systems. Here, by introducing a zone folding mechanism, we realize the topological phase transition in a double Dirac cone of the rotatable triangular phononic crystal with C3 v symmetry. We then investigate the distinct topological edge states on two types of interfaces of our phononic insulators. The first one is a zigzag interface which simultaneously possesses a symmetric mode and an antisymmetric mode. Hybridization of the two modes leads to a robust pseudospin-dependent one-way propagation. The second one is a linear interface with a symmetric mode or an antisymmetric mode. The type of mode is dependent on the topological phase transition of the phononic insulators. Based on the rotatability of triangular phononic crystals, we consider several complicated contours defined by the topological zigzag interfaces. Along these contours, the acoustic waves can unimpededly transmit without backscattering. Our research develops a route for the exploration of the topological phenomena in experiments and provides an excellent framework for freely steering the acoustic backscattering-immune propagation within topological phononic structures.

  20. Phonon dispersion curves for CsCN

    International Nuclear Information System (INIS)

    Gaur, N.K.; Singh, Preeti; Rini, E.G.; Galgale, Jyostna; Singh, R.K.

    2004-01-01

    The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the orientation of cyanide molecules for the description of phonon dispersion curves of CsCN between the temperatures 195 and 295 K. Our results on PDCs in symmetric direction are in good agreement with the experimental data measured with inelastic neutron scattering technique. (author)

  1. Phonon-electron interactions in the two-dimensional electron gas in InGaAs-InAlAs modulation-doped field-effect transistor structures studied by Raman scattering

    Science.gov (United States)

    Maslar, J. E.; Dorsten, J. F.; Bohn, P. W.; Agarwala, S.; Adesida, I.; Caneau, C.; Bhat, R.

    1993-10-01

    Raman scattering by coupled longitudinal optic phonons and two-dimensional electron gas electrons in In0.53Ga0.47As-In0.52Al0.48As δ-doped heterostructures provides a powerful probe of electronic properties in these In-based structures. The two highest frequency modes, of the three coupled electron-phonon modes expected in this system, were observed, with the highest frequency mode being identified in InGaAs-based systems. The large dispersion of this mode makes it a particularly sensitive probe for changes in such properties as carrier concentration and subband energy. For structures with higher carrier concentrations coupling of the longitudinal optic phonon to multiple electron intersubband transitions is resolved. These measurements are particularly useful for heavily doped structures for which room-temperature Hall measurements cannot distinguish channel electrons from those in parallel conduction paths.

  2. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    International Nuclear Information System (INIS)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; Sahul, Raffi

    2017-01-01

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3 )O 3 ]–0.05PbTiO 3 ) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increase in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.

  3. Energy consumption and environmental effects of passenger transport modes. A life cycle study on passenger transport modes

    International Nuclear Information System (INIS)

    Kalenoja, H.

    1996-01-01

    Energy consumption and environmental effects of different passenger transport modes vary on the different stages of the fuel chain and during the production and maintenance of vehicles and infrastructure. Energy consumption and the environmental effects calculated per passenger mileage depend strongly on the vehicle occupancy. The properties of transport modes on urban areas and on the long distance transport have been evaluated in this study. The energy consumption and environmental effects calculated per passenger mileage have been assessed for passenger car, bus, tram, train, airplane and ferry. The emissions have been evaluated during the whole fuel chain. In this study only the airborne emissions have been taken into account. In the energy consumption calculations the energy content of vehicles and the infrastructure, energy consumption during the fuel chain and during the end use have been taken into consideration. (au)

  4. Room temperature ferromagnetism and phonon properties of pure and doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy, Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Bahoosh, S.G. [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5, J. Bouchier Blvd., 1164 Sofia (Bulgaria)

    2014-03-15

    We have considered the origin of RTFM in TiO{sub 2} nanoparticles (NPs). Further we have studied the properties of the E{sub g1} phonon mode. The phonon frequency of anatase TiO{sub 2} NPs increases whereas in the case of rutile TiO{sub 2} NPs it decreases as the particle size decreases. The phonon damping is always enhanced in the nanosized materials. The hardening of the E{sub g1} mode and the softening of the E{sub g3} mode in anatase TiO{sub 2} NPs could be explained with the different anharmonic spin–phonon interaction constants of these modes. The doping effects with different transition metal ions on the E{sub g1} phonon mode are also discussed. - Highlights: • The origin of RTFM in TiO{sub 2} nanoparticles is investigated. • With decreasing of particle size the phonon frequency of anatase and rutile TiO{sub 2} NPs increases and decreases, respectively. • This could be explained with the different anharmonic spin–phonon interaction constants of these modes. • The phonon damping is always enhanced in the nanosized materials. • The doping effects with different transition metal ions on the E{sub g1} phonon mode are also discussed.

  5. Energy and Exergy Performance of three FPSO Operational Modes

    DEFF Research Database (Denmark)

    Sánchez, Yamid Alberto Carranza; Junior, Silvio de Oliveira; da Silva, Julio Augusto Mendes

    2015-01-01

    Floating, Production, Storage and Offloading (FPSO) is a floating facility used in primary petroleum processing. In Brazil, most FPSOs have been installed in Campos Basin and new facilities may be implemented in the pre-salt area are projected to boost the Brazilian oil production. Crude oil...... composition has a significant influence on the operational mode of the FPSO. In this study, three operational modes of a FPSO are assessed: the first mode is used when the crude oil has the maximum water and CO2 contents, the second mode is implemented for a composition of 50% basic sediment and water (BSW......) in the crude oil, and the third mode is operated when the crude oil has the maximum oil and gas fractions. The FPSO facility configuration changes with the operational mode, and it is possible to have gas export, gas injection, and CO2 injection, in order to achieve the functional conditions established...

  6. Phonon-assisted decoherence and tunneling in quantum dot molecules

    DEFF Research Database (Denmark)

    Grodecka-Grad, Anna; Foerstner, Jens

    2011-01-01

    We study the influence of the phonon environment on the electron dynamics in a doped quantum dot molecule. A non-perturbative quantum kinetic theory based on correlation expansion is used in order to describe both diagonal and off-diagonal electron-phonon couplings representing real and virtual...... processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...

  7. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  8. Ionizing particle detection based on phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Arafa H., E-mail: arafa16@yahoo.com, E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  9. Birefringent phononic structures

    Directory of Open Access Journals (Sweden)

    I. E. Psarobas

    2014-12-01

    Full Text Available Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.

  10. Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique

    Science.gov (United States)

    Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori

    2017-03-01

    xLa2O3-(100 - x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm-1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.

  11. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  12. Quantization of Energy in 1D Model of Crystal Lattice with Local Perturbations Induced by Ion-Beam Impact

    Directory of Open Access Journals (Sweden)

    Minárik Stanislav

    2015-08-01

    Full Text Available In this paper, we propose theoretical basis for investigation of dynamics of acoustic phonons in a thin layers containing nano-scale structural inhomogeneities. One-dimensional (1D model of a crystal lattice was considered to reveal specific features of the processes arising in such system of phonons in equilibrium state. Standard quantization of energy of 1D ionic chain vibrating by acoustic frequencies was carried out while the presence of foreign ions in this chain was taken into account. Since only two dimensions are dominant in thin layers, only longitudinal vibrations of the chain in the plane of the layer were considered. Results showed that foreign ions affect the energy quantization. Phonon-phonon interaction between two phonon`s modes can be expected if the mass of foreign ions implanted by ion-beam differs from the mass of ions in the initial layer.

  13. Phonon-eigenspectrum-based formulation of the atomistic Green's function method

    Science.gov (United States)

    Sadasivam, Sridhar; Waghmare, Umesh V.; Fisher, Timothy S.

    2017-11-01

    While the atomistic Green's function (AGF) method has the potential to compute spectrally resolved phonon transport across interfaces, most prior formulations of the AGF method provide only the total phonon transmission function that includes contributions from all phonon branches or channels. In this work, we present a formulation of the conventional AGF technique in terms of phonon eigenspectra that provides a natural decomposition of the total transmission function into contributions from various phonon modes. The method involves the use of Dyson and Lippmann-Schwinger equations to determine surface Green's functions from the phonon eigenspectrum of the bulk, and establishes a direct connection between the transmission function and the bulk phonon spectra of the materials forming the interface. We elucidate our formulation of the AGF technique through its application to a microscopic picture of phonon mode conversion at Si-Ge interfaces with atomic intermixing. Intermixing of atoms near the interface is shown to increase the phase space available for phonon mode conversion and to enhance thermal interface conductance at moderate levels of atomic mixing. The eigenspectrum-based AGF method should be useful in determination of microscopic mechanisms of phonon scattering and identification of the specific modes that dominate thermal transport across an interface.

  14. Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena

    Science.gov (United States)

    Jin, Yongmei M.; Wang, Yu U.; Ren, Yang

    2015-12-01

    Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.

  15. Phononic crystals with one-dimensional defect as sensor materials

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2017-09-01

    Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.

  16. Effects of elastic anisotropy in phononic band-gap plates with two-dimensional lattices

    International Nuclear Information System (INIS)

    Hsu, Jin-Chen

    2013-01-01

    This study presents the effects of elastic anisotropy of constituent materials in square-lattice phononic-crystal plates. Using general elastodynamic calculations and the finite element (FE) method, this study analyses phononic-crystal plates constituted by (1) anisotropic scatterers embedded in an epoxy plate and (2) air holes etched on an anisotropic plate. The full band gaps can be modulated, opened and closed by changing the orientation of the square lattice relative to the crystallographic coordinate system of the anisotropic materials, and the elastic anisotropy varies the dispersion curves of the phononic-crystal plate waves with the rotation of the square lattice. Acoustic power transmission calculations show incident plate mode-dependent spectral gaps, the appearances of which in the frequency spectrum can also be modulated and shifted using elastic anisotropy. The effects of elastic anisotropy demonstrated here enable tailoring frequency band gaps and dispersion curves for functional control of acoustic-wave energy flows in phononic-crystal plates. Applications include acoustic waveguiding, confining, self-collimating and perfect acoustic focusing.

  17. Wave-vector-dependent electron-phonon coupling and the charge-density-wave transition in TbT e3

    Science.gov (United States)

    Maschek, M.; Rosenkranz, S.; Heid, R.; Said, A. H.; Giraldo-Gallo, P.; Fisher, I. R.; Weber, F.

    2015-06-01

    We present a high-energy-resolution inelastic x-ray scattering investigation of the soft phonon mode in the charge-density-wave (CDW) system TbT e3 . We analyze our data based on lattice dynamical calculations using density-functional-perturbation theory and find clear evidence that strongly momentum-dependent electron-phonon coupling defines the periodicity of the CDW superstructure: Our experiment reveals strong phonon softening and increased phonon linewidths over a large part in reciprocal space adjacent to the CDW ordering vector qCDW=(0 ,0 ,0.3 ) . Further, qCDW is clearly offset from the wave vector of (weak) Fermi surface nesting qFS=(0 ,0 ,0.25 ) , and our detailed analysis indicates that electron-phonon coupling is responsible for this shift. Hence, we can add TbT e3 , which was previously considered as a canonical CDW compound following the Peierls scenario, to the list of distinct charge-density-wave materials characterized by momentum-dependent electron-phonon coupling.

  18. Phonon optimized interatomic potential for aluminum

    Science.gov (United States)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  19. Phonon optimized interatomic potential for aluminum

    Directory of Open Access Journals (Sweden)

    Murali Gopal Muraleedharan

    2017-12-01

    Full Text Available We address the problem of generating a phonon optimized interatomic potential (POP for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA to optimize the free parameters in an empirical interatomic potential (EIP. For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT calculations. Existing potentials for aluminum, such as the embedded atom method (EAM and charge-optimized many-body (COMB3 potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE, employing Fermi’s Golden Rule to predict the phonon-phonon relaxation times.

  20. Phonon structures of GaN-based random semiconductor alloys

    Science.gov (United States)

    Zhou, Mei; Chen, Xiaobin; Li, Gang; Zheng, Fawei; Zhang, Ping

    2017-12-01

    Accurate modeling of thermal properties is strikingly important for developing next-generation electronics with high performance. Many thermal properties are closely related to phonon dispersions, such as sound velocity. However, random substituted semiconductor alloys AxB1-x usually lack translational symmetry, and simulation with periodic boundary conditions often requires large supercells, which makes phonon dispersion highly folded and hardly comparable with experimental results. Here, we adopt a large supercell with randomly distributed A and B atoms to investigate substitution effect on the phonon dispersions of semiconductor alloys systematically by using phonon unfolding method [F. Zheng, P. Zhang, Comput. Mater. Sci. 125, 218 (2016)]. The results reveal the extent to which phonon band characteristics in (In,Ga)N and Ga(N,P) are preserved or lost at different compositions and q points. Generally, most characteristics of phonon dispersions can be preserved with indium substitution of gallium in GaN, while substitution of nitrogen with phosphorus strongly perturbs the phonon dispersion of GaN, showing a rapid disintegration of the Bloch characteristics of optical modes and introducing localized impurity modes. In addition, the sound velocities of both (In,Ga)N and Ga(N,P) display a nearly linear behavior as a function of substitution compositions. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80481-0.

  1. Phonon thermal conductance of disordered graphene strips with armchair edges

    International Nuclear Information System (INIS)

    Shi Lipeng; Xiong Shijie

    2009-01-01

    Based on the model of lattice dynamics together with the transfer matrix technique, we investigate the thermal conductances of phonons in quasi-one-dimensional disordered graphene strips with armchair edges using Landauer formalism for thermal transport. It is found that the contributions to thermal conductance from the phonon transport near von Hove singularities is significantly suppressed by the presence of disorder, on the contrary to the effect of disorder on phonon modes in other frequency regions. Besides the magnitude, for different widths of the strips, the thermal conductance also shows different temperature dependence. At low temperatures, the thermal conductance displays quantized features of both pure and disordered graphene strips implying that the transmission of phonon modes at low frequencies are almost unaffected by the disorder

  2. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  3. Phonon superradiance and phonon laser effect in nanomagnets.

    Science.gov (United States)

    Chudnovsky, E M; Garanin, D A

    2004-12-17

    We show that the theory of spin-phonon processes in paramagnetic solids must take into account the coherent generation of phonons by the magnetic centers. This effect should drastically enhance spin-phonon rates in nanoscale paramagnets and in crystals of molecular nanomagnets.

  4. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond

    Science.gov (United States)

    Li, Nianbei; Ren, Jie; Wang, Lei; Zhang, Gang; Hänggi, Peter; Li, Baowen

    2012-07-01

    The form of energy termed heat that typically derives from lattice vibrations, i.e., phonons, is usually considered as waste energy and, moreover, deleterious to information processing. However, in this Colloquium, an attempt is made to rebut this common view: By use of tailored models it is demonstrated that phonons can be manipulated similarly to electrons and photons, thus enabling controlled heat transport. Moreover, it is explained that phonons can be put to beneficial use to carry and process information. In the first part ways are presented to control heat transport and to process information for physical systems which are driven by a temperature bias. In particular, a toolkit of familiar electronic analogs for use of phononics is put forward, i.e., phononic devices are described which act as thermal diodes, thermal transistors, thermal logic gates, and thermal memories. These concepts are then put to work to transport, control, and rectify heat in physically realistic nanosystems by devising practical designs of hybrid nanostructures that permit the operation of functional phononic devices; the first experimental realizations are also reported. Next, richer possibilities to manipulate heat flow by use of time-varying thermal bath temperatures or various other external fields are discussed. These give rise to many intriguing phononic nonequilibrium phenomena such as, for example, the directed shuttling of heat, geometrical phase-induced heat pumping, or the phonon Hall effect, which may all find their way into operation with electronic analogs.

  5. Classification of topological phonons in linear mechanical metamaterials.

    Science.gov (United States)

    Süsstrunk, Roman; Huber, Sebastian D

    2016-08-16

    Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk-edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials.

  6. Classification of topological phonons in linear mechanical metamaterials

    Science.gov (United States)

    Süsstrunk, Roman

    2016-01-01

    Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk–edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials. PMID:27482105

  7. Phonon heat transport in gallium arsenide

    Indian Academy of Sciences (India)

    The energy linewidth is found to be an extremely sensitive quantity in the transport phenomena of crystalline solids as a collection of large number of scattering processes, namely, boundary scattering, impurity scattering, multiphonon scattering, interference scattering, electron–phonon processes and resonance scattering.

  8. Preface: Phonons 2007

    Science.gov (United States)

    Perrin, Bernard

    2007-06-01

    logo.jpg" ALT="Conference logo"/> The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how phonons can help tracking dark matter. These 328

  9. Zero Net Energy Myths and Modes of Thought

    OpenAIRE

    Rajkovich, Nicholas B.

    2010-01-01

    The U.S. Department of Energy (DOE), the California Public Utilities Commission (CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly reduced needs for energy through efficiency gains with the balance of energy needs supplied by renewable technologies. The push to ZNE is a response to research indicating that atmospheric concentrations of greenhouse gases have increased sharp...

  10. Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering

    Science.gov (United States)

    Nika, D. L.; Pokatilov, E. P.; Balandin, A. A.; Fomin, V. M.; Rastelli, A.; Schmidt, O. G.

    2011-10-01

    One dimensional quantum-dot superlattices (1D-QDSLs) consisting of acoustically mismatched materials are demonstrated theoretically to possess sub-1 W m-1 K-1 thermal conductivity in the 50-400 K range of temperatures. We consider coherent Si/Ge 1D-QDSLs, as well as model Si/plastic, Si/SiO2 and Si/SiC 1D-QDSLs. The phonon energy spectra and group velocities are obtained in the framework of the face-centered cubic cell model of lattice dynamics. On this basis, lattice thermal conductivity is calculated. A strong reduction of lattice thermal conductivity in 1D-QDSL structures in comparison with homogeneous rectangular Si nanowires is explained by the exclusion of phonon modes folded in superlattice segments from the heat flow and by the decelerating action of Ge, SiO2, or plastic materials. Thus, the 1D-QDSL structures act as effective phonon filters, eliminating a significant number of phonon modes from thermal transport. The obtained results imply a perspective of quantum-dot superlattices as thermoelectric materials and thermal insulators.

  11. Interaction of optical and interface phonons and their anisotropy in GaAs/AlAs superlattices: Experiment and calculations

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V. A., E-mail: volodin@isp.nsc.ru [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Sachkov, V. A. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation); Sinyukov, M. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-05-15

    The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.

  12. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy.

    Science.gov (United States)

    Barrow, Steven J; Rossouw, David; Funston, Alison M; Botton, Gianluigi A; Mulvaney, Paul

    2014-07-09

    We present a scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) investigation of gold nanosphere chains with lengths varying from 1 to 5 particles. We show localized EELS signals from the chains and identify energy-loss peaks arising due to l = 1, 2, 3, 4, and 5 plasmon modes through the use of EELS mapping. We also show the evolution of the energy of these modes as the length of a given chain increases, and we find that a chain containing N particles can accommodate at least N experimentally observable modes, in addition to the transverse mode. As the chain length is increased by the addition of one more gold particle to the chain, the new N + 1 mode becomes the highest energy mode, while the existing modes lower their energy and eventually asymptote as they delocalize along the chain. We also show that modes become increasingly difficult to detect with the EELS technique as l approaches N. The data are compared to numerical simulations.

  13. [Empirical mode of combination of the wavelet threshold filtering and empirical mode decomposition (EMD) based on energy estimate].

    Science.gov (United States)

    Li, Xin; Wang, Huihui; Wang, Yueru; Zhao, Fangfang

    2011-12-01

    According to the frequency overlapping of intrinsic mode function (IMF) based on the temporal and spatial filtering of empirical mode decomposition (EMD), which will lead to the question of useful signals and noises filtered together, we proposed a method that numbers of IMF is determined by energy estimate, temporal and spatial filtering combing wavelet threshold and EMD integrating wavelet local signal characteristics of time and scale domain. This method not only used multi-resolution wavelet transform features, but also combined the EMD and Hilbert decomposition of the adaptive spectral analysis of instantaneous frequency and significance of the relationship between energy, so as to solve the problem of useful signal being weakened. With MIT/BIH ECG database standard data subjects, experimental results showed it was an effective method of data processing for handling this type of physiological signals under strong noise.

  14. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    KAUST Repository

    Yi, Yuanping

    2012-01-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing. © 2012 American Institute of Physics.

  15. Hydrodynamic states of phonons in insulators

    Directory of Open Access Journals (Sweden)

    S.A. Sokolovsky

    2012-12-01

    Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.

  16. ThermoPhonon

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-24

    ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces for a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.

  17. 3D continuum phonon model for group-IV 2D materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Lew Yan Voon, Lok C.; Gandi, Appala Naidu

    2017-01-01

    . In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained......, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included....

  18. Dispersion and density of states of phonons and electrons in an α-B12 crystal determined from first principles

    Science.gov (United States)

    Mavrin, B. N.; Reshetnyak, V. V.

    2017-07-01

    Using the DFT method, we study the phonon properties of an α-B12 rhombohedral crystal in the basis set of plane waves and its electronic structure in the localized basis set of Gaussians. It follows from the phonon dispersion that the crystal possesses a dynamical stability. The effective Born charges, the oscillator strengths, the transverse-longitudinal splitting, and the dielectric functions of dipole modes are calculated. We show that charge transfer from polar to equatorial atoms takes place in a B12 icosahedron, while B-B bonds have predominantly a covalent character. In the density of states of acoustic modes, we reveal a structure that can manifest itself in the spectra of disordered boron compounds. From the dispersion of electronic bands, the occurrence of an indirect energy gap follows. The overlap of partial densities implies the hybridization of s and p electronic states in boron atoms.

  19. Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Zhong Lin

    2015-01-01

    A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is shown that phonon couplings exist in pairs only; either between the electric...... piezoelectricity in a cubic structured material slab. First, it is shown that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric cubic slabs. Third...... potential and the lattice displacement coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components. The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three new conjectures that entirely stem from...

  20. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  1. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Lynch, D.W.

    2004-01-01

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals

  2. Phononic crystals fundamentals and applications

    CERN Document Server

    Adibi, Ali

    2016-01-01

    This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.

  3. Zero Net Energy Myths and Modes of Thought

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovich, Nicholas B.; Diamond, Rick; Burke, Bill

    2010-09-20

    The U.S. Department of Energy (DOE), the California Public Utilities Commission (CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly reduced needs for energy through efficiency gains with the balance of energy needs supplied by renewable technologies. The push to ZNE is a response to research indicating that atmospheric concentrations of greenhouse gases have increased sharply since the eighteenth century, resulting in a gradual warming of the Earth?s climate. A review of ZNE policies reveals that the organizations involved frame the ZNE issue in diverse ways, resulting in a wide variety of myths and a divergent set of epistemologies. With federal and state money poised to promote ZNE, it is timely to investigate how epistemologies, meaning a belief system by which we take facts and convert them into knowledge upon which to take action, and the propagation of myths might affect the outcome of a ZNE program. This paper outlines myths commonly discussed in the energy efficiency and renewable energy communities related to ZNE and describes how each myth is a different way of expressing"the truth." The paper continues by reviewing a number of epistemologies common to energy planning, and concludes that the organizations involved in ZNE should work together to create a"collaborative rationality" for ZNE. Through this collaborative framework it is argued that we may be able to achieve the ZNE and greenhouse gas mitigation targets.

  4. Phonon interactions with methyl radicals in single crystals

    Directory of Open Access Journals (Sweden)

    James W. Wells

    2017-04-01

    Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.

  5. Multifractality in edge localized modes in Japan Atomic Energy Research Institute Tokamak-60 Upgrade

    International Nuclear Information System (INIS)

    Bak, P.E.; Asakura, N.; Miura, Y.; Nakano, T.; Yoshino, R.

    2001-01-01

    The temporal losses of confinement during edge localized modes in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) show multifractal scaling and the spectra are generally smooth, but in some cases there are signs of discontinuous derivatives. Dynamics of the Sugama-Horton model, interpreted as edge localized modes, also display multifractal scaling. The spectra display singularities in the derivative, which can be interpreted as a phase transition. It is argued that the multifractal spectra of edge localized modes can be used to discriminate between different experimental discharges and validate edge localized mode models

  6. Weyl points and Fermi arcs in a chiral phononic crystal

    Science.gov (United States)

    Li, Feng; Huang, Xueqin; Lu, Jiuyang; Ma, Jiahong; Liu, Zhengyou

    2018-01-01

    Topological semimetals are materials whose band structure contains touching points that are topologically nontrivial and can host quasiparticle excitations that behave as Dirac or Weyl fermions. These so-called Weyl points not only exist in electronic systems, but can also be found in artificial periodic structures with classical waves, such as electromagnetic waves in photonic crystals and acoustic waves in phononic crystals. Due to the lack of spin and a difficulty in breaking time-reversal symmetry for sound, however, topological acoustic materials cannot be achieved in the same way as electronic or optical systems. And despite many theoretical predictions, experimentally realizing Weyl points in phononic crystals remains challenging. Here, we experimentally realize Weyl points in a chiral phononic crystal system, and demonstrate surface states associated with the Weyl points that are topological in nature, and can host modes that propagate only in one direction. As with their photonic counterparts, chiral phononic crystals bring topological physics to the macroscopic scale.

  7. A methodology to study cyclic debond growth at constant mode-mixity and energy release rate

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    It is well known that face/core debond crack propagation is governed by the critical energy release rate (fracture toughness) and mode-mixity at the crack tip. Thus, the current study focuses on the developing of a methodology to perform fatigue crack growth experiments of debonded sandwich...... structures under well controlled cyclic energy release rate and mode-mixity. The proposed methodology uses the mixed mode bending (MMB) sandwich specimen and MMB test rig. Crack length measurements are based on an analytically available compliance expression. Accurate fatigue crack growth measurements...

  8. Optical phonon scattering on electronic mobility in Al2O3/AlGaN/AlN/GaN heterostructures

    Science.gov (United States)

    Zhou, X. J.; Qu, Y.; Ban, S. L.; Wang, Z. P.

    2017-12-01

    Considering the built-in electric fields and the two-mode property of transverse optical phonons in AlGaN material, the electronic eigen-energies and wave functions are obtained by solving Schrödinger equation with the finite difference method. The dispersion relations and potentials of the optical phonons are given by the transfer matrix method. The mobility of the two dimensional electron gas influenced by the optical phonons in Al2O3/AlGaN/AlN/GaN heterostructures is investigated based on the theory of Lei-Ting force balance equation. It is found that the scattering from the half-space phonons is the main factor affecting the electronic mobility, and the influence of the other phonons can be ignored. The results show that the mobility decreases with increasing the thicknesses of Al2O3 and AlN layers, but there is no definite relationship between the mobility and the thickness of AlGaN barrier. The mobility is obviously reduced by increasing Al component in AlGaN crystal to show that the effect of ternary mixed crystals is important. It is also found that the mobility increases first and then decreases as the increment of the fixed charges, but decreases always with increasing temperature. The heterostructures constructed here can be good candidates as metal-oxide-semiconductor high-electron-mobility-transistors since they have higher electronic mobility due to the influence from interface phonons weakened by the AlN interlayer.

  9. Generalized Lorenz models and their routes to chaos. II. Energy-conserving horizontal mode truncations

    International Nuclear Information System (INIS)

    Roy, D.; Musielak, Z.E.

    2007-01-01

    All attempts to generalize the three-dimensional Lorenz model by selecting higher-order Fourier modes can be divided into three categories, namely: vertical, horizontal and vertical-horizontal mode truncations. The previous study showed that the first method allowed only construction of a nine-dimensional system when the selected modes were energy-conserving. The results presented in this paper demonstrate that a five-dimensional model is the lowest-order generalized Lorenz model that can be constructed by the second method and that its route to chaos is the same as that observed in the original Lorenz model. It is shown that the onset of chaos in both systems is determined by a number of modes that describe the vertical temperature difference in a convection roll. In addition, a simple rule that allows selecting modes that conserve energy for each method is derived

  10. Thermal effects on parallel resonance energy of whistler mode wave

    Indian Academy of Sciences (India)

    the transfer of energy from the solar wind to the magnetosphere is significantly enhanced. The effects include dramatic changes and intensification of the parti- cle population, the magnetic and electric fields and the electric currents in the ionosphere and magnetosphere, as well as Joule heating of the upper atmosphere.

  11. Proof mass effects on spiral electrode d33 mode piezoelectric diaphragm-based energy harvester

    KAUST Repository

    Shen, Zhiyuan

    2013-01-01

    This paper presents the characterization of an energy harvester using a piezoelectric diaphragm as the vibration energy conversion microstructure. The diaphragm containing the spiral electrode operates in the d33 mode. The energy harvesting performance of the diaphragm was characterized. The optimal resistance load and the working frequency were characterized. The resonance tuning and the energy harvesting enhancement due to a proof mass were verified. © 2013 IEEE.

  12. Phonon dispersion in Be

    International Nuclear Information System (INIS)

    Sharma, R.P.; Sharma, A.K.; Sharma, S.; Sinha, H.P.

    1979-01-01

    In a study of the lattice dynamics of Be a simple scheme has been developed in which the pairwise and long range forces are accounted on the lines of nonlocal theory and the short range three-body forces are included. This procedure of calculations has been applied to compute the phonon dispersion in Be and the results of investigation have been compared with the experimental data. (author)

  13. Acousto-optical phonon excitation in cubic piezoelectric slabs and crystal growth orientation effects

    DEFF Research Database (Denmark)

    Willatzen, Morten; Duggen, Lars

    2017-01-01

    In this paper we investigate theoretically the influence of piezoelectric coupling on phonon dispersion relations. Specifically we solve dispersion relations for a fully coupled zinc-blende freestanding quantum well for different orientations of the crystal unit cell. It is shown that the phonon...... mode density in GaAs can change by a factor of approximately 2–3 at qx a = 1 for different crystal-growth directions relative to the slab thickness direction. In particular, it is found that optical and acoustic phonon modes are always piezoelectrically coupled, independent of the crystal...... that the piezoelectric effect leads to a drastically enhanced coupling of acoustic and optical phonon modes and increase in the local phonon density of states near the plasma frequency where the permittivity approaches zero....

  14. Structural Properties and Phonon dispertion of NACl

    Directory of Open Access Journals (Sweden)

    R. Khoda-Bakhsh

    2001-06-01

    Full Text Available   Although many phenomena in condensed matter Physics can be understood on the basis of a model, there are also considerable number of physical properties of solid which can not be explained except in the framework of lattice dynamics.   We have calculated the phonon frequencies of Na Cl, using an approach which is a combination of frozen phonon and force constants methods in the framework of density functional pseudopotential theory. The dispersion relation curves, were calculated along symmetry direction Δ,  Σ  and  Ù. We also calculated Grunesein parameters for all modes at X and L points in Brillion zone. The calcutions are made in the framework of density functional and pseudopotential theory, using super cell method, with the valence orbitals expanded in plane waves.

  15. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Lawrence Berkeley Lab., CA

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 angstrom Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 angstrom, 500 angstrom, and 300 angstrom per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 angstrom/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 angstrom/side appear to correspond with the phonon transmission study

  16. Beryllium phonon spectrum from cold neutron measurements

    International Nuclear Information System (INIS)

    Bulat, I.A.

    1979-01-01

    The inelastic coherent scattering of neutrons with the initial energy E 0 =4.65 MeV on the spectrometer according to the time of flight is studied in polycrystalline beryllium. The measurements are made for the scattering angles THETA=15, 30, 45, 60, 75 and 90 deg at 293 K. The phonon spectrum of beryllium, i-e. g(w) is reestablished from the experimental data. The data obtained are compared with the data of model calculations. It is pointed out that the phonon spectrum of beryllium has a bit excessive state density in the energy range from 10 to 30 MeV. It is caused by the insufficient statistical accuracy of the experiment at low energy transfer

  17. Strong energy-momentum dispersion of phonon-dressed carriers in the lightly doped band insulator SrTiO3

    International Nuclear Information System (INIS)

    Meevasana, W; Chen, C-C; He, R H; Mo, S-K; Shen, Z-X; Zhou, X J; Moritz, B; Lu, D H; Moore, R G; Devereaux, T P; Fujimori, S-I; Baumberger, F; Van der Marel, D; Nagaosa, N; Zaanen, J

    2010-01-01

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle-resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises as to how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is that of perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10 000 at low temperatures, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped STO. In comparison to lightly doped Mott insulators, we find the signatures of only moderate el-ph coupling; a dispersion anomaly associated with the low-frequency optical phonon with a λ ' ∼0.3 and an overall bandwidth renormalization suggesting an overall λ ' ∼0.7 coming from the higher frequency phonons. Furthermore, we find no clear signatures of the large pseudogap or small-polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  18. Phonons in orientationally disordered neopentane C(CD3)4

    International Nuclear Information System (INIS)

    Debeau, M.; Depondt, P.; Hennion, B.; Reichardt, W.

    1993-01-01

    The phonons of deuteriated neopentane (C(CD 3 ) 4 single crystals in the orientationally disordered phase were measured at T=173 K by coherent inelastic neutron scattering, yielding very broad bands that spread, at a given energy, over a large portion of the Brillouin zone while sitting on an intense background. No librational mode was detected. Selection rule violations, presumably linked to disorder, were observed. The elastic constants are discussed in terms or rotational-translational coupling, and inelastic scattering results are compared with the molecular center of mass translational disorder as obtained from diffraction experiments providing a confirmation of a previous interpretation of these experiments. (orig.)

  19. Coherent generation of acoustic phonons in an optical microcavity

    International Nuclear Information System (INIS)

    Lanzillotti-Kimura, N D; Fainstein, A; Huynh, A; Perrin, B; Jusserand, B; Miard, A; LemaItre, A

    2007-01-01

    Coherent acoustic phonons confined in a nanocavity are generated in an optical microcavity. The confinement of the femtosecond light pulse in the optical resonator amplifies both processes, generation and detection of the acoustic phonons. In addition, due to the standing wave character of the photon field, phonons of wavevector q = 0 and q = 2k (k is the light wavenumber) contribute to both the generation and detection in time resolved reflectivity measurements, further optimizing the pump and probe experiments. Time resolved differential reflectivity experiments are reported as a function of laser energy. The optical cavity resonance is apparent in the amplitude and spectral features of the Fourier transformed signals

  20. Phonon properties of β-FeSi2 and photoluminescence

    Science.gov (United States)

    Maeda, Y.; Nakajima, T.; Matsukura, B.; Ikeda, T.; Hiraiwa, Y.

    We have investigated phonon properties of some β-FeSi2 crystals with characteristic light emission properties by using measurements of far-infrared absorption and photoluminescence in order to discuss a correlation between them. It has been found that there is a systematic correlation between phonon states and light emission efficiency and that the phonons above the energy of more than ∼44 meV may be effectively coupled to the optical indirect transition for the IR light emission from β-FeSi2 crystals.

  1. Electron-phonon coupling in the rare-earth metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Mertig, I.

    1990-01-01

    We have estimated the strength of the mass enhancement of the conduction electrons due to electron-phonon interaction in the rare metals Sc, Y, and La–Lu. The underlying self-consistent energy bands were obtained by means of the scalar relativistic linear-muffin-tin-orbital method, and the electron......-phonon parameters were calculated within the Gaspari-Gyorffy formulation. For the heavier rare earths Gd–Tm spin polarization was included both in the band-structure calculations and in the treatment of the electron-phonon coupling to take into account the spin splitting of the conduction electrons induced by the 4...

  2. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  3. Characteristics of global energy confinement in KSTAR L- and H-mode plasmas

    International Nuclear Information System (INIS)

    Kim, H.-S.; Na, Y.-S.; Jeon, Y.M.; Yoon, S.W.; Bak, J.G.; Bae, Y.S.; Kim, J.S.; Joung, M.; Jeong, J.-H.; Hong, S.H.; Kwak, J.-G.; Ghim, Y.-C.; Ahn, J.-W.; Kim, K.M.; Suzuki, T.; Kim, W.C.

    2014-01-01

    We evaluate the characteristics of global energy confinement in KSTAR (τ E,KSTAR ) quantitatively in three ways; firstly by comparing it with multi-machine scalings, secondly by deriving multiple regression equations for the L- and the H-mode plasmas, respectively, and lastly by comparing confinement enhancement of the H-mode phase with respect to the L-mode phase in each discharge defined as H exp . The KSTAR database exhibits τ E,KSTAR of ∼0.04 to ∼0.16 s and of ∼0.06 to ∼0.19 s in L-mode and in H-mode plasmas, respectively. The multiple regression equations derived by statistical analysis present the similar dependency on P L and higher dependency on I p compared with the multi-machine scalings, however the dependency on κ in both L- and H-mode plasmas draw the negative power dependency of κ −0.68 and κ −0.76 for H-mode and for L-mode database, respectively on the contrary to the positive dependency in all multi-machine empirical scalings. It is found that the energy confinement of both L-mode and H-mode of the discharges with H exp  > 1.5 can be well-predicted by multi-machine scalings, τ E,89L and τ E,92H . Apart from this, the H-mode confinement with 1.5  exp   E,89L . (paper)

  4. Reduction of thermal conductivity by low energy multi-Einstein optic modes

    Directory of Open Access Journals (Sweden)

    Huili Liu

    2016-06-01

    Full Text Available The lattice dynamics and thermal transport in Cu2-δSe compounds were investigated via theoretical calculations, neutron measurement, and characterization of thermal properties. The results show that binary ordered Cu2-δSe has an extremely low lattice thermal conductivity at low temperatures. The low energy multi-Einstein optic modes are the dominant approach obtaining such an extremely low lattice thermal conductivity. It is indicated that the damped vibrations of copper ions could contribute to the low energy multi-Einstein optic modes, especially for those low energy branches at 2–4 meV.

  5. Innovative current mode voltage mode control for distributed energy generation static systems; Controle inovador modo corrente modo tensao para sistemas estaticos de geracao distribuida de energia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Junior, Azauri Albano de; Maciel, Carlos Dias; Cichy, Elineri Cassia C.; Gongora, Vicente de Lima [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia], Emails: azaurijr@sel.eesc.usp.br, maciel@sel.eesc.usp.br, elineri@uol.com.br, vicente@ldapalm.com.br; Barbosa, Lucio dos Reis [Universidade Estadual de Londrina (UEL), PR (Brazil)], Email: lbarbosa@uel.br; Pereira, Adriano Alves [Universidade Federal de Uberlandia (UFU), MG (Brazil)], Email: aapereira@ufu.br

    2006-07-01

    This work focuses on control of power inverter technologies for connecting any possible Dc energy system to a single-phase using a Current Mode Voltage Mode Control-CMVMC. In this way a CMVMC can control only one power inverter in two operation modes. In current mode the control inject the active power in the utility and voltage control keeping loads always on with energy from the alternative DC sources. When installed near big centers the control will choose the correctly operation or current mode or voltage mode depend on if the utility is present or no. This advanced, robust control strategies can determine the maximum on-line limit current from the DC energy, without DC current component and also free of island operation. The feasibility of this new control was digitally simulated and implemented in analogic way. (author)

  6. Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials.

    Science.gov (United States)

    Wang, Ji; Yang, Jiashi; Li, Jiangyu

    2007-03-01

    Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.

  7. 3D continuum phonon model for group-IV 2D materials

    KAUST Repository

    Willatzen, Morten

    2017-06-30

    A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus be applied to any two-dimensional material. In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included.

  8. 3D continuum phonon model for group-IV 2D materials.

    Science.gov (United States)

    Willatzen, Morten; Lew Yan Voon, Lok C; Gandi, Appala Naidu; Schwingenschlögl, Udo

    2017-01-01

    A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus be applied to any two-dimensional material. In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included.

  9. Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides

    Directory of Open Access Journals (Sweden)

    Razi Dehghannasiri

    2016-12-01

    Full Text Available In this letter, we demonstrate a new design for integrated phononic crystal (PnC resonators based on confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this architecture, a PnC waveguide that supports a single mode at the desired resonance frequencies is terminated by two waveguide sections with no propagating mode at those frequencies (i.e., have mode gap. The proposed PnC resonators are designed through combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain analysis to achieve a smooth mode envelope. This design approach can benefit both membrane-based and surface-acoustic-wave-based architectures by confining the mode spreading in k-domain that leads to improved electromechanical excitation/detection coupling and reduced loss through propagating bulk modes.

  10. Fatigue Evaluation of Recycled Asphalt Mixture Based on Energy-Controlled Mode

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-01-01

    Full Text Available The fatigue properties of asphalt mixtures are important inputs for mechanistic-empirical pavement design. To understand the fatigue properties of asphalt mixtures better and to predict the fatigue life of asphalt mixtures more precisely, the energy-controlled test mode was introduced. Based on the implementation theory, the laboratory practice for the energy-controlled mode was realized using a four-point-bending fatigue test with multiple-step loading. In this mode, the fatigue performance of typical AC-20 asphalt specimens with various reclaimed asphalt pavement (RAP contents was tested and evaluated. Results show that the variation regulation of the dissipated energy and accumulative energy is compatible with the loading control principle, which proves the feasibility of the method. In addition, the fatigue life of the asphalt mixture in the energy-controlled mode was between that for the stress-controlled and strain-controlled modes. The specimen with a higher RAP content has a longer fatigue life and better fatigue performance.

  11. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  12. Phonon spectrum in a nanoparticle mechanically coupled to a substrate

    Science.gov (United States)

    Patton, K.

    2001-12-01

    We calculate the vibrational density-of-states in an insulating nanoparticle that is in weak mechanical contact with a semi-infinite substrate. The work is motivated by a recent experiment by Yang et al., where the low-energy phonon density-of-states of Y2O3 nanoparticles doped with Eu was measured. Preliminary results presented here, based on the conventional quasiparticle-pole approximation for the phonon propagator, are in reasonable agreement with experiment.

  13. Wave-vector-dependent electron-phonon coupling and the charge-density-wave transition in TbTe3

    Energy Technology Data Exchange (ETDEWEB)

    Maschek, M.; Rosenkranz, S.; Heid, R.; Said, A. H.; Giraldo-Gallo, P.; Fisher, I. R.; Weber, F.

    2015-06-01

    We present a high-energy-resolution inelastic x-ray scattering investigation of the soft phonon mode in the charge-density-wave (CDW) system TbTe3. We analyze our data based on lattice dynamical calculations using density-functional-perturbation theory and find clear evidence that strongly momentum-dependent electron-phonon coupling defines the periodicity of the CDW superstructure: Our experiment reveals strong phonon softening and increased phonon linewidths over a large part in reciprocal space adjacent to the CDW ordering vector q(CDW) = (0,0,0.3). Further, q(CDW) is clearly offset from the wave vector of (weak) Fermi surface nesting q(FS) = (0,0,0.25), and our detailed analysis indicates that electron-phonon coupling is responsible for this shift. Hence, we can add TbTe3, which was previously considered as a canonical CDW compound following the Peierls scenario, to the list of distinct charge-density-wave materials characterized by momentum-dependent electron-phonon coupling.

  14. Guiding and confinement of interface acoustic waves in solid-fluid pillar-based phononic crystals

    Directory of Open Access Journals (Sweden)

    M. F. Mohd Razip Wee

    2016-12-01

    Full Text Available Pillar-based phononic crystals exhibit some unique wave phenomena due to the interaction between surface acoustic modes of the substrate and local resonances supported by pillars. In this paper, we extend the investigations by taking into account the presence of a liquid medium. We particularly demonstrate that local resonances dramatically decrease the phase velocity of Scholte-Stoneley wave, which leads to a slow wave at the solid/fluid interface. Moreover, we show that increasing the height of pillars introduces a new set of branches of interface modes and drastically affects the acoustic energy localization. Indeed, while some modes display a highly confined pressure between pillars, others exponentially decay in the fluid or only propagate in the solid without disturbing the fluid pressure. These theoretical results, performed by finite element method, highlight a new acoustic wave confinement suitable in various applications such as acoustophoresis, lab on chip and microfluidics.

  15. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2.

    Science.gov (United States)

    Shafique, Aamir; Shin, Young-Han

    2017-12-06

    The effect of strain on the phonon properties such as phonon group velocity, phonon anharmonicity, phonon lifetime, and lattice thermal conductivity of monolayer 2H-MoTe 2 is studied by solving the Boltzmann transport equation based on first principles calculations. The phonon thermal transport properties of the unstrained monolayer 2H-MoTe 2 are compared to those of the strained case under different biaxial tensile strains. One of the common features of two-dimensional materials is the quadratic nature near the Γ point of the out-of-plane phonon flexural mode that disappears by applying tensile strain. We find that the lattice thermal conductivity of the monolayer 2H-MoTe 2 is very sensitive to strain, and the lattice thermal conductivity is reduced by approximately 2.5 times by applying 8% biaxial tensile strain due to the reduction in phonon group velocities and phonon lifetime. We also analyze how the contribution of each mode to lattice thermal conductivity changes with tensile strain. These results highlight that tensile strain is a key parameter in engineering phonon thermal transport properties in monolayer 2H-MoTe 2 .

  16. Electromagnetic excitation of phonons at C(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F L [Escuela de Ciencias, Universidad Autonoma ' Benito Juarez' de Oaxaca, Avenida Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oaxaca, 68120 (Mexico); Perez-Rodriguez, F, E-mail: fperez@sirio.ifuap.buap.m [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Post. J-48, Puebla 72570 (Mexico)

    2009-09-02

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  17. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  18. Electromagnetic excitation of phonons at C(001) surfaces

    International Nuclear Information System (INIS)

    Perez-Sanchez, F L; Perez-Rodriguez, F

    2009-01-01

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  19. Energy-dependence of skin-mode fraction in E1 excitations of neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Nakada H.

    2015-01-01

    Full Text Available We have extensively investigated characters of the low-energy E1 strengths in N > Z nuclei, by analyzing the transition densities obtained by the HF+RPA calculations with several effective interactions. Crossover behavior has been confirmed, from the skin mode at low energy to the pn mode at higher energy. Decomposing the E1 strengths into the skin-mode, pn-mode and interference fractions, we show that the ratio of the skin-mode strength to the full strength may be regarded as a generic function of the excitation energy, insensitive to nuclides and effective interactions, particularly beyond Ni.

  20. Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring

    Science.gov (United States)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2017-04-01

    We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.

  1. An adaptive two-stage energy-efficiency mechanism for the doze mode in EPON

    Science.gov (United States)

    Nikoukar, AliAkbar; Hwang, I.-Shyan; Su, Yu-Min; Liem, Andrew Tanny

    2016-07-01

    Sleep and doze power-saving modes are the common ways to reduce power consumption of optical network units (ONUs) in Ethernet passive optical network (EPON). The doze mode turns off the ONU transmitter when there is no traffic in the upstream direction while the sleep mode turns off the ONU transmitter and receiver. As the result, the sleep mode is more efficient compared to the doze mode, but it introduces additional complexity of scheduling and signaling, losses the clock synchronization and requires long clock recovery time; furthermore, it requires the cooperation of the optical line terminal (OLT) in the downstream direction to queue frames. To improve the energy-saving in the doze mode, a new two-stage mechanism is introduced that the doze sleep duration is extended for longer time with acceptable quality-of-services (QoS) metrics when ONU is idle in the current cycle. By this way the ONU enters the doze mode even in the high load traffic; moreover, the green dynamic bandwidth allocation (GBA) is proposed to calculate the doze sleep duration based on the ONU queue state and incoming traffic ratio. Simulation results show that the proposed mechanism significantly improves the energy-saving 74% and 54% when traffic load is from the light load to the high load in different traffic situations, and also promises the QoS performance.

  2. The energy flux of MHD wave modes excited by realistic photospheric drivers

    Science.gov (United States)

    Fedun, Viktor; Von Fay-Siebenburgen, Erdélyi Robert; Mumford, Stuart

    The mechanism(s) responsible for solar coronal heating are still an unresolved and challenging task. In the framework of 3D numerical modelling of MHD wave excitation and propagation in the strongly stratified solar atmosphere we analyse the mode coupling and estimate the wave energy partition which can be supplied to the upper layers of the solar atmosphere by locally decomposed slow, fast and Alfven modes. These waves are excited by a number of realistic photospheric drivers which are mimicking the random granular buffeting, the coherent global solar oscillations and swirly motion observed in e.g. magnetic bright points. Based on a self-similar approach, a realistic magnetic flux tubes configuration is constructed and implemented in the VALIIIC model of the solar atmosphere. A novel method for decomposing the velocity perturbations into parallel, perpendicular and azimuthal components in 3D geometry is developed using field lines to trace a volume of constant energy flux. This method is used to identify the excited wave modes propagating upwards from the photosphere and to compute the percentage energy contribution of each mode. We have found, that for all cases where torsional motion is present, the main contribution to the flux (60%) is by Alfven wave. In the case of the vertical driver it is found to mainly excite the fast- and slow-sausage modes and a horizontal driver primarily excites the slow kink mode.

  3. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    International Nuclear Information System (INIS)

    Gu, Xiaokun; Yang, Ronggui

    2015-01-01

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides

  4. The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions

    DEFF Research Database (Denmark)

    Ulstrup, Jens; Jortner, Joshua

    1975-01-01

    -frequency intramolecular degrees of feedom on the free energy relationship for series of closely related reactions was investigated for various model systems involving displacement of potential energy surfaces, frequency shift, and anharmonicity effects. The free energy plots are generally found to pass through a maximum...... and to be asymmetric with a slower decrease in the transition probability with increasing energy of reaction. For high-frequency intramolecular modes this provides a rationalization of the experimental observation of ''activationless'' regions. Isotope effects are discussed as also are the oscillatory free energy...

  5. Ultrafast optical generation of squeezed magnon states and long lifetime coherent LO phonons

    Science.gov (United States)

    Zhao, Jimin

    2005-12-01

    Ultrafast optical pulses have been used to generate, probe, and control low-energy elementary excitations in crystals. In particular, we report the first experimental demonstration of the generation of quantum squeezed states of magnons (collective spin-wave excitations) in a magnetic material, and new progress in experimental investigation of anharmonic interactions in a semiconductor. The mechanism for the magnon squeezing is two-magnon impulsive stimulated Raman scattering (ISRS). Femtosecond laser pulses have been used to coherently correlate degenerate counter-propagating magnons in the antiferromagnetic insulator MnF2. In the squeezed state, fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground-state quantum noise. Similar experiments were also performed in another antiferromagnetic insulator, FeF2, for which the squeezing effect is one order of magnitude larger. We have also investigated the anharmonic interaction of the low-frequency E2 phonon in ZnO through ISRS. Temperature dependence of the linewidth and frequency indicates that the two-phonon up-conversion process is the dominant decay channel and isotopic disorder may be the main limit on the lifetime at low temperature. We have observed the longest lifetime of an optical phonon mode in a solid (211 ps at 5 K). And we have found that pump-probe experiments, compared with spontaneous Raman spectroscopy, have extremely high accuracy in determining the frequency of a low-lying excitation.

  6. Thermal effects on the Raman phonon of few-layer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Zhi-Peng; Ang, Kah-Wee, E-mail: eleakw@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore); Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546 (Singapore)

    2015-12-01

    Two-dimensional phosphorene is a promising channel material for next generation transistor applications due to its superior carrier transport property. Here, we report the influence of thermal effects on the Raman phonon of few-layer phosphorene formed on hafnium-dioxide (HfO{sub 2}) high-k dielectric. When annealed at elevated temperatures (up to 200 °C), the phosphorene film was found to exhibit a blue shift in both the out-of-plane (A{sup 1}{sub g}) and in-plane (B{sub 2g} and A{sup 2}{sub g}) phonon modes as a result of compressive strain effect. This is attributed to the out-diffusion of hafnium (Hf) atoms from the underlying HfO{sub 2} dielectric, which compresses the phosphorene in both the zigzag and armchair directions. With a further increase in thermal energy beyond 250 °C, strain relaxation within phosphorene eventually took place. When this happens, the phosphorene was unable to retain its intrinsic crystallinity prior to annealing, as evident from the broadening of full-width at half maximum of the Raman phonon. These results provide an important insight into the impact of thermal effects on the structural integrity of phosphorene when integrated with high-k gate dielectric.

  7. Thermal effects on the Raman phonon of few-layer phosphorene

    Directory of Open Access Journals (Sweden)

    Zhi-Peng Ling

    2015-12-01

    Full Text Available Two-dimensional phosphorene is a promising channel material for next generation transistor applications due to its superior carrier transport property. Here, we report the influence of thermal effects on the Raman phonon of few-layer phosphorene formed on hafnium-dioxide (HfO2 high-k dielectric. When annealed at elevated temperatures (up to 200 °C, the phosphorene film was found to exhibit a blue shift in both the out-of-plane (A1g and in-plane (B2g and A2g phonon modes as a result of compressive strain effect. This is attributed to the out-diffusion of hafnium (Hf atoms from the underlying HfO2 dielectric, which compresses the phosphorene in both the zigzag and armchair directions. With a further increase in thermal energy beyond 250 °C, strain relaxation within phosphorene eventually took place. When this happens, the phosphorene was unable to retain its intrinsic crystallinity prior to annealing, as evident from the broadening of full-width at half maximum of the Raman phonon. These results provide an important insight into the impact of thermal effects on the structural integrity of phosphorene when integrated with high-k gate dielectric.

  8. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    Science.gov (United States)

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output.

  9. Basic equations of the quasiparticle-phonon nuclear model with the effects due to the Pauli principle and the phonon ground state correlations

    International Nuclear Information System (INIS)

    Nguyen Dinh Dang; Voronov, V.V.

    1983-01-01

    A system of basic equations of the quasiparticle-phonon model is obtained for energies and a structure of excited states described by the wave functions containing one- and two-phonon components. The effects due to the Pauli principle for two-phonon components and the phonon ground state correlations of a spherical nucleus are taken here into account. The quantitative estimations of these effects are given by a simplified scheme. The relation between these equations with the results from other theoretical approaches is discussed

  10. Mediating surface mode for intensive quasi-monochromatic evanescent wave tunneling

    Science.gov (United States)

    Jia, Zi-xun; Shuai, Yong; Zhang, Jia-hui; Tan, He-ping

    2017-11-01

    In this study, a quasi-monochromatic photon tunneling peak has been achieved in substrate-comb-substrate three bodies system. The near-field tunneling peak results from coupling between spoof surface mode and cavity mode, which has been further amplified by three bodies effect. The spoof surface mode originates from phonon vibration, and is manipulated by the structure into new surface mode. As a non-contact approach to generate high intensity and narrow bandwidth tunneling mode, current study has many application points in near-field spectroscopy and energy-conversion.

  11. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Potemkin, F V; Mareev, E I [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Khodakovskii, N G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  12. Phonon Screening in High-Temperature Superconductors

    International Nuclear Information System (INIS)

    Homes, C. C.; McConnell, A. W.; Clayman, B. P.; Bonn, D. A.; Liang, Ruixing; Hardy, W. N.; Inoue, M.; Negishi, H.; Fournier, P.; Greene, R. L.

    2000-01-01

    In good conductors optical phonons are usually screened, and therefore not observed. However, sharp features due to infrared-active modes in the copper-oxygen planes are observed in the optical conductivity of Pr 1.85 Ce 0.15 CuO 4 and YBa 2 Cu 3 O 6.95 . Oscillator strengths indicate that the screening of these modes is poor or totally absent. These materials are compared with η-Mo 4 O 11 , in which lattice modes appear suddenly below the charge-density wave transition. It is proposed that poor screening in the cuprates originates from fluctuating charge inhomogeneities in the copper-oxygen planes. (c) 2000 The American Physical Society

  13. Local symmetry breaking and spin–phonon coupling in SmCrO{sub 3} orthochromite

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, M. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Zaghrioui, M., E-mail: zaghrioui@univ-tours.fr [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Ta Phuoc, V.; Gervais, F. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Massa, Néstor E. [Laboratorio Nacional de Investigacion y Servicios en Espectroscopia Optica-Centro CEQUINOR, Universidad Nacional de La Plata, C. C. 962, 1900 La Plata (Argentina)

    2014-06-01

    Raman scattering and infrared reflectivity performed on polycrystalline SmCrO{sub 3} support strong influence of the antiferromagnetic order on phonon modes. Both measurements show softening of some modes below T{sub N}. Such a behavior is explained by spin–phonon coupling in this compound. Furthermore, temperature dependence of the infrared spectra has demonstrated important changes compared to the Raman spectra, suggesting strong structural modifications due to the cation displacements rather to those of the oxygen ions. Our results reveal that polar distortions originating in local symmetry breaking, i.e. local non-centrosymmetry, resulting in Cr off-centring. - Highlights: • We investigated Raman and infrared phonon modes of SmCrO{sub 3} versus temperature. • Results reveal strong influence of the antiferromagnetic order on phonon modes. • Temperature dependence of the infrared spectra shows strong structural modifications suggesting local symmetry breaking.

  14. Phonon Measurements and Model Calculations for Naphtalene-d8

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Pawley, G. S.; Dietrich, O. W.

    1977-01-01

    Measurements of the phonon dispersion curves in naphthalene-d8, (deuteration >99%), taken at 77K are presented. The experiments were done on two crystals, using the triple-axis neutron spectrometers at the medium flux reactor, DR3 at Riso. Most of the external or lattice modes have been measured...

  15. Phonon-enhanced crystal growth and lattice healing

    Science.gov (United States)

    Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna

    2013-05-28

    A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.

  16. A step closer to visualizing the electron___phonon interplay

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Lee, W.S.; Shen, Z.X.; /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept. /SLAC, PULSE

    2011-01-04

    dynamic information. This pump-probe experiment is reminiscent of the standard method used by bell makers for hundreds of years to judge the quality of their products (hitting a bell then listening to how the sound would fade away), albeit the relevant time scale here is way beyond tens of femtoseconds. Traditionally, ultrafast spectroscopy was carried out to study gas-phase reactions, but it has also been applied to study condensed phase systems since the development of reliable solid-state ultrafast lasers approximately a decade ago. In addition, the ability to control pulse width, wavelength, and amplification of the output of Ti:Sapphire lasers has further increased the capability of this experimental method. During the past decade, many ultrafast pump-probe experiments have been carried out in various fields by using different probing methods, such as photo-resistivity, fluorescence yield, and photoemission, and they have revealed much new information complementary to the equilibrium spectroscopy methods used before. Carbone et al. used the photon-pump, electron (diffraction)-probe method. The pumping photon pulse first drives the electrons in the sample into an oscillating mode along its polarization direction. Then during the delay time, these excited electrons can transfer excess energy to the adjacent nuclei and cause crystal lattice vibration on their way back to the equilibrium state. An ultrashort electron pulse is shot at the sample at various time delays {Delta}t and the diffraction pattern is collected. Because the electron diffraction pattern is directly related to the crystal lattice structure and its motion, this technique provides a natural way to study the electron-phonon coupling problem. Furthermore, by adjusting the pump pulse's relative polarization with respect to the Cu-O bond direction, Carbone et al. were able to acquire the electron-phonon coupling strength along different directions. Focusing on the lattice dynamic along the c axis

  17. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    International Nuclear Information System (INIS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2015-01-01

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO 2 and ZrO 2 high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al 2 O 3 , the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density

  18. The effects of governance modes on the energy matrix of Andean countries

    International Nuclear Information System (INIS)

    Fontaine, Guillaume

    2011-01-01

    This article addresses the consequences of different modes of energy governance on the energy matrix. Energy governance is understood as a regulation system of the energy related interplays between the State, the society and the economy. The energy matrix is a useful instrument for comparative policy analysis, since it informs us about production and consumption trends, by sources and sectors. Our central argument is that energy governance follows two different patterns, one hierarchical and the other cooperative, that are not necessarily determined by the initial factors allocation, and produce different effects on the energy matrix. Hierarchical governance is based on centralized decision-making and State-centered development, while co-governance is based on decentralized decision-making and market-oriented development. To develop this argument, we compare the energy matrix from the five Andean countries (Venezuela, Colombia, Ecuador, Peru and Bolivia).

  19. The effects of governance modes on the energy matrix of Andean countries

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Guillaume, E-mail: gfontaine@flacso.org.e [Latin American Faculty for Social Sciences (FLACSO), Research Laboratory on Governance, Quito (Ecuador)

    2011-05-15

    This article addresses the consequences of different modes of energy governance on the energy matrix. Energy governance is understood as a regulation system of the energy related interplays between the State, the society and the economy. The energy matrix is a useful instrument for comparative policy analysis, since it informs us about production and consumption trends, by sources and sectors. Our central argument is that energy governance follows two different patterns, one hierarchical and the other cooperative, that are not necessarily determined by the initial factors allocation, and produce different effects on the energy matrix. Hierarchical governance is based on centralized decision-making and State-centered development, while co-governance is based on decentralized decision-making and market-oriented development. To develop this argument, we compare the energy matrix from the five Andean countries (Venezuela, Colombia, Ecuador, Peru and Bolivia).

  20. Energy Cascade from Internal Modes in Non-uniformly Stratified Fluid through Excitation of Superharmonic Disturbances

    Science.gov (United States)

    Sutherland, B. R.

    2016-02-01

    It is well established that two-dimensional internal plane waves and modes in uniformly stratified fluid efficiently transfer energy to smaller scale waves and ultimately turbulent mixing through parametric subharmonic instability (PSI). The numerical simulations of MacKinnon & Winters (GRL 2005) predicted PSI should act efficiently to disrupt the internal tide. However, while in situ observations showed the presence of PSI, it was not found to be appreciable. One reason for the discrepancy between simulations and observations is that the former examined an internal mode in uniformly stratified fluid whereas, in reality, the internal tide exists in non-uniform stratification and is manifest as sinusoidal oscillations of the thermocline. Through theory supported by numerical simulations, it is shown that internal modes in non-uniform stratification immediately excite superharmonics, not subharmonic disturbances. These have double the horizontal wavenumber and double the frequency of the parent mode and hence move with the same horizontal phase speed of the parent mode. As the disturbances grow in amplitude, however, they interact with the parent mode generating small-scale vertically propagating internal waves within the strongly stratified layer. The occurrence of PSI over very long times can occur, as in the simulations of Hazewinkel and Winters (JPO 2011). However, a comprehensive understanding of the energy cascade from the internal tide to small scales must consider the evolution of excited superharmonic disturbances.

  1. Energy-Efficient Next-Generation Passive Optical Networks Based on Sleep Mode and Heuristic Optimization

    Science.gov (United States)

    Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik

    2015-05-01

    In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.

  2. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    Directory of Open Access Journals (Sweden)

    Bhavna Jain

    2015-01-01

    Full Text Available Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding and grid connected mode as well. In particular, a proper monitoring and control algorithm is required for transition between the modes. A wavelet based energy function is used for detection of grid disturbances as well as recovery of grid so that transition between the modes is made. To obtain good power quality LCL filter is used to reduce ripples. PLL is used for synchronization whenever mode changes from stand-alone to grid connected. Simulation results from a 10 kW wind energy conversion system are included to show the usefulness of the proposed methods. The control method is tested by generated gate pulses for single phase bridge inverter using field programmable gate array (FPGA.

  3. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  4. Generation of coherent optical phonons in ZnO using femtosecond lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Y. S. [Dept. of Applied Physics, Konkuk University, Chungju (Korea, Republic of); Lee, I. H.; Yee, K. J.; Lee, K. G.; Oh, E.; Kim, D. S. [School of Physics, Seoul National University, Seoul (Korea, Republic of)

    2002-07-01

    We report on coherent optical phonon oscillations in wuzite ZnO. The high- and low-frequency E{sub 2} modes are excited by the impulsive stimulated Raman scattering (ISRS), and detected through the electric sampling. The dephasing times at room temperature are measured to be 1.75 ps, 29.2 ps for high- and low-E{sub 2} mode, respectively. The relation of the coherent phonon amplitude with the spectral wide of femtosecond pump pulse is demonstrated.

  5. Energy confinement in Ohmic H-mode in TUMAN-3M

    International Nuclear Information System (INIS)

    Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Lebedev, S.V.; Levin, L.S.; Tukachinsky, A.S.

    1997-01-01

    The spontaneous transition from Ohmically heated limiter discharges into the regime with improved confinement termed as ''Ohmic H-mode'' has been investigated in ''TUMAN-3''. The typical signatures of H-mode in tokamaks with powerful auxiliary heating have been observed: sharp drop of D α radiation with simultaneous increase in the electron density and stored energy, suppression of the density fluctuations and establishing the steep gradient near the periphery. In 1994 new vacuum vessel had been installed in TUMAN-3 tokamak. The vessel has the same sizes as old one (R 0 =0.55 m, a 1 =0.24 m). New vessel was designed to reduce mechanical stresses in the walls during B T ramp phase of a shot. Therefore modified device - TUMAN-3M is able to produce higher B T and I p , up to 2 T and 0.2 MA respectively. During first experimental run device was operated in Ohmic Regime. In these experiments the possibility to achieve Ohmic H-mode was studied. The study of the parametric dependencies of the energy confinement time in both OH and Ohmic H-mode was performed. In Ohmic H-mode strong dependencies of τ E on plasma current and on input power and weak dependence on density were found. Energy confinement time in TUMAN-3/TUMAN-3M Ohmic H-mode has revealed good agreement with JET/DIII-D/ASDEX scaling for ELM-free H-mode, resulting in very long τ E at the high plasma current discharges. (author)

  6. Electron and Phonon Transport in Molecular Junctions

    DEFF Research Database (Denmark)

    Li, Qian

    transmission at the Fermi energy. We propose and analyze a way of using π   stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific......Molecular electronics provide the possibility to investigate electron and phonon transport at the smallest imaginable scale, where quantum effects can be investigated and exploited directly in the design. In this thesis, we study both electron transport and phonon transport in molecular junctions....... The system we are interested in here are π-stacked molecules connected with two semi-infinite leads. π-stacked aromatic rings, connected via π-π electronic coupling, provides a rather soft mechanical bridge while maintaining high electronic conductivity. We investigate electron transport...

  7. Energy-saving EPON Bandwidth Allocation Algorithm Supporting ONU's Sleep Mode

    Science.gov (United States)

    Zhang, Yinfa; Ren, Shuai; Liao, Xiaomin; Fang, Yuanyuan

    2014-09-01

    A new bandwidth allocation algorithm was presented by combining merits of the IPACT algorithm and the cyclic DBA algorithm based on the DBA algorithm for ONU's sleep mode. Simulation results indicate that compared with the normal mode ONU, the ONU's sleep mode can save about 74% of energy. The new algorithm has a smaller average packet delay and queue length in the upstream direction. While in the downstream direction, the average packet delay of the new algorithm is less than polling cycle Tcycle and the average queue length is less than the product of Tcycle and the maximum link rate. The new algorithm achieves a better compromise between energy-saving and ensuring quality of service.

  8. Rock Fracture Toughness Under Mode II Loading: A Theoretical Model Based on Local Strain Energy Density

    Science.gov (United States)

    Rashidi Moghaddam, M.; Ayatollahi, M. R.; Berto, F.

    2018-01-01

    The values of mode II fracture toughness reported in the literature for several rocks are studied theoretically by using a modified criterion based on strain energy density averaged over a control volume around the crack tip. The modified criterion takes into account the effect of T-stress in addition to the singular terms of stresses/strains. The experimental results are related to mode II fracture tests performed on the semicircular bend and Brazilian disk specimens. There are good agreements between theoretical predictions using the generalized averaged strain energy density criterion and the experimental results. The theoretical results reveal that the value of mode II fracture toughness is affected by the size of control volume around the crack tip and also the magnitude and sign of T-stress.

  9. Role of covalent defects on phonon softening in metallic carbon nanotubes.

    Science.gov (United States)

    Nguyen, Khoi T; Shim, Moonsub

    2009-05-27

    We have examined how electrical characteristics and charging dependent Raman G-band phonon softening in individual metallic carbon nanotubes are influenced by covalent defects. In addition to decreasing electrical conductance with increasing on/off current ratio eventually leading to semiconducting behavior, adding covalent defects reduces the degree of softening and broadening of longitudinal optical (LO) phonon mode of the G-band near the charge neutrality point where the bands cross. On the other hand, the transverse optical (TO) mode softening is enhanced by defects. Implications on the interpretation of Raman G-band phonon softening and on utilizing Raman spectroscopy to examine covalent functionalization are discussed.

  10. Hybrid magnon-phonons in the paraelectric antiferromagnet EuTiO3

    Science.gov (United States)

    Cao, Huibo; Delaire, Olivier; Hong, Jiawang; Hahn, Steven; Chi, Songxue; Ehlers, George; Abernathy, Douglas; Christianson, Andrew; Fernandez-Baca, Jaime; Chakoumakos, Bryan; Yan, Jiaqiang; Sales, Brian

    Magnetic perovskite titanate EuTiO3 has attracted a lot of attentions for its large spin-lattice coupling. It has a number of similarities with the well-studied quantum paraelectric SrTiO3 but a much higher cubic-tetragonal lattice transition at 290 K and an extra magnetic order at 5.5 K. The large difference between EuTiO3 and SrTiO3 has been attributed to the magnetic ion Eu2+, that couples with the structural properties. However the spin-lattice coupling mechanism has not been fully understood yet although many theoretical models have been proposed. We grew a large, high-quality isotopically-enriched EuTiO3 crystal for neutron scattering. The crystal and magnetic structures were calibrated with neutron diffraction at HB-3A at HFIR at ORNL at temperatures from 1.5 K to 450 K. The spin waves and phonons were measured in the temperature range of 1.5-400 K with HB-3 at HFIR, CNCS and ARCS at SNS at ORNL. I will report our new discovery of interaction between the soft ferroelectric phonon mode and likely (para)magnon mode, that is responsible for a giant magnetoelectric coupling in EuTiO3. The magnetic excitation and atomic displacements will be discussed. This work was supported by Office of Basic Energy Sciences, U.S. Department of Energy.

  11. Energy harvesting from an exercise bike using a switch-mode converter controlled generator

    DEFF Research Database (Denmark)

    Knott, Arnold; Lindberg-Poulsen, Kristian; Andersen, Thomas

    2010-01-01

    This paper investigates the feasibility of using an alternator as means of harvesting energy from a stationary exercise bicycle. A switch mode converter was designed to regulate the current in the alternator rotor winding, thus regulating the power required to pedal, and consequently the power...

  12. Failure Modes and Effects Analysis for Domestic Electric Energy Meter Using In-Service Data

    Science.gov (United States)

    Li, Ning; Yang, Jincheng; Sun, Yongquan; Wang, Gang; Zhang, Jiahai; Liu, Chun

    2018-01-01

    Field operation data for domestic electric energy meters are valuable for both manufactures and users, from this point of view, the main failure modes, failure numbers, installed time, and lifetime were analysed based on in-service data. The result could provide a reference for maintenance and reliability improvements.

  13. Senior High School Students' Preference and Reasoning Modes about Nuclear Energy Use.

    Science.gov (United States)

    Yang, Fang-Ying; Anderson, O. Roger

    2003-01-01

    Examines senior high school students' cognitive orientation toward scientific or social information, designated as information preference, and associated preferential reasoning modes when presented with an environmental issue concerning nuclear energy usage. Investigates the association of information preference variable with academic and personal…

  14. Adaptive sliding mode control of interleaved parallel boost converter for fuel cell energy generation system

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2013-01-01

    This paper deals with the problem of controlling energy generation systems including fuel cells (FCs) and interleaved boost power converters. The proposed nonlinear adaptive controller is designed using sliding mode control (SMC) technique based on the system nonlinear model. The latter accounts...

  15. Topology optimization of two-dimensional asymmetrical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hao-Wen [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Su, Xiao-Xing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2014-01-17

    The multiple elitist genetic algorithm with the adaptive fuzzy fitness granulation (AFFG) is used to design the phononic crystals with large relative bandgap width (BGW) for combined out-of-plane and in-plane wave modes. Without assumption on the symmetry of the unit-cell, we obtain an asymmetrical phononic crystal with the relative BGW which is quite larger than that of the optimized symmetrical structure. With the help of AFFG, the number of the fitness function evaluations is reduced by over 50% and the procedure converges 5 times faster than the conventional evolutionary algorithm to reach the same final fitness values.

  16. Electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    H. Khosroabadi

    2006-09-01

    Full Text Available   We explore the important role of the strong electron-phonon interaction in high temperature superconductivity through the study of the results of some important experiments, such as inelastic neutron and X-ray scattering, angle resolved photoemission spectroscopy, and isotope effects. We also present our computational results of the eigenvalues and eigenvectors of the Ag Raman modes, and the ionic displacement dependence of the electronic band structure by density functional theory. It is clearly evident that the role of phonons in the mechanism behind the high-temperature superconducting state should be seriously considered.

  17. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  18. Correlation between phonon anomaly along [211] and the Fermi surface nesting features with associated electron-phonon interactions in Ni2FeGa: A first principles study

    International Nuclear Information System (INIS)

    Chabungbam, Satyananda; Sahariah, Munima B.

    2015-01-01

    First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni 2 FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA 2 ) modes show anomaly along [211] direction in Ni 2 FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes

  19. Hydrogen local vibrational modes in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  20. Hydrogen local vibrational modes in semiconductors

    Science.gov (United States)

    McCluskey, Matthew Douglas

    Following a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient, exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen, the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the (111) direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, an anti-crossing is observed between the LVM and phonon modes.

  1. One-Dimensional Physics of Interacting Electrons and Phonons in Carbon Nanotubes

    Science.gov (United States)

    Deshpande, Vikram Vijay

    The one-dimensional (1D) world is quite different from its higher dimensional counterparts. For example, the electronic ground state in 1D is not a Fermi liquid as in most solids, due to the role of electron-electron interactions. Most commonly, electrons in 1D are described as a Luttinger liquid , where the low-energy excitations are decoupled bosonic charge and spin waves. Carbon nanotubes are clean 1D systems which have been shown to behave like a Luttinger liquid at high electron density. However, at low electron density and in the absence of disorder, the ground state is predicted to be a 1D Wigner crystal---an electron solid dominated by long-range Coulomb interaction. Moreover, short-range interaction mediated by the atomic lattice (umklapp scattering) is predicted to transform a nominal 1D metal into a Mott insulator. In this thesis, we develop techniques to make extremely clean nanotube single-electron transistors. We study them in the few-electron/hole regime using Coulomb blockade spectroscopy in a magnetic field. In semiconducting nanotubes, we map out the antiferromagnetic exchange coupling as a function of carrier number and find excellent agreement to a Wigner crystal model. In nominally metallic nanotubes, we observe a universal energy gap in addition to the single-particle bandgap, implying that nanotubes are never metallic. The magnitude, radius dependence and low-energy neutral excitations of this additional gap indicate a Mott insulating origin. Further, we use simultaneous electrical and Raman spectroscopy measurements to study the phonons scattered by an electric current. At high bias, suspended nanotubes show striking negative differential conductance, attributed to non-equilibrium phonons. We directly observe such "hot" phonon populations in the Raman response and also report preferential electron coupling to one of two optical phonon modes. In addition, using spatially-resolved Raman spectroscopy, we obtain a wealth of local information

  2. Renormalized modes in cuprate superconductors

    Science.gov (United States)

    Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.

    2018-04-01

    The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.

  3. Electrical switch to the resonant magneto-phonon effect in graphene.

    Science.gov (United States)

    Leszczynski, Przemyslaw; Han, Zheng; Nicolet, Aurelien A L; Piot, Benjamin A; Kossacki, Piotr; Orlita, Milan; Bouchiat, Vincent; Basko, Denis M; Potemski, Marek; Faugeras, Clement

    2014-03-12

    We report a comprehensive study of the tuning with electric fields of the resonant magneto-exciton optical phonon coupling in gated graphene. For magnetic fields around B ∼ 25 T that correspond to the range of the fundamental magneto-phonon resonance, the electron-phonon coupling can be switched on and off by tuning the position of the Fermi level in order to Pauli block the two fundamental inter-Landau level excitations. The effects of such a profound change in the electronic excitation spectrum are traced through investigations of the optical phonon response in polarization resolved magneto-Raman scattering experiments. We report on the observation of a splitting of the phonon feature with satellite peaks developing at particular values of the Landau level filling factor on the low or on the high energy side of the phonon, depending on the relative energy of the discrete electronic excitation and of the optical phonon. Shifts of the phonon energy as large as ±60 cm(-1) are observed close to the resonance. The intraband electronic excitation, the cyclotron resonance, is shown to play a relevant role in the observed spectral evolution of the phonon response.

  4. Intrinsic Energy Dissipation Limits in Nano and Micromechanical Resonators

    Science.gov (United States)

    Iyer, Srikanth Subramanian

    Resonant microelectromechanical Systems (MEMS) have enabled miniaturization of high-performance inertial sensors, radio-frequency filters, timing references and mass-based chemical sensors. Despite the increasing prevalence of MEMS resonators for these applications, the energy dissipation in these structures is not well-understood. Accurate prediction of the energy loss and the resulting quality factor (Q) has significant design implications because it is directly related to device performance metrics including sensitivity for resonant sensors, bandwidth for radio-frequency filters and phase-noise for timing references. In order to assess the future potential for MEMS resonators it is critically important to evaluate the energy dissipation limits, which will dictate the ultimate performance resonant MEMS devices can achieve. This work focuses on the derivation and evaluation of the intrinsic mechanical energy dissipation limit for single-crystal nano and micromechanical resonators due to anharmonic phonon-phonon scattering in the Akhiezer regime. The energy loss is derived using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the direction and polarization dependent mode-Gruneisen parameters in order to capture the strain-induced anharmonicity among phonon branches. Evaluation of the quality factor limit reveals that Akhiezer damping, previously thought to depend only on material properties, has a strong dependence on crystal orientation and resonant mode shape. The robust model provides a dissipation limit for all resonant modes including shear-mode vibrations, which have significantly reduced energy loss because dissipative phonon-phonon scattering is restricted to volume-preserving phonon branches, indicating that Lame or wine-glass mode resonators will have the highest upper limit on mechanical efficiency. Finally, the analytical dissipation model is integrated with commercial finite element software in order to

  5. Emission Spectral Control of a Silicon Light Emitting Diode Fabricated by Dressed-Photon-Phonon Assisted Annealing Using a Short Pulse Pair

    Directory of Open Access Journals (Sweden)

    Tadashi Kawazoe

    2014-01-01

    Full Text Available We fabricated a high-efficiency infrared light emitting diode (LED via dressed-photon-phonon (DPP assisted annealing of a p-n homojunctioned bulk Si crystal. The center wavelength in the electroluminescence (EL spectrum of this LED was determined by the wavelength of a CW laser used in the DPP-assisted annealing. We have proposed a novel method of controlling the EL spectral shape by additionally using a pulsed light source in order to control the number of phonons for the DPP-assisted annealing. In this method, the Si crystal is irradiated with a pair of pulses having an arrival time difference between them. The number of coherent phonons created is increased (reduced by tuning (detuning this time difference. A Si-LED was subjected to DPP-assisted annealing using a 1.3 μm (hν=0.94 eV CW laser and a mode-locked pulsed laser with a pulse width of 17 fs. When the number of phonons was increased, the EL emission spectrum broadened toward the high-energy side by 200 meV or more. The broadening towards the low-energy side was reduced to 120 meV.

  6. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics

    DEFF Research Database (Denmark)

    Tsaturyan, Yeghishe; Barg, Andreas; Simonsen, Anders

    2014-01-01

    Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum optomechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount...... so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane’s high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield...

  7. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  8. Research on hybrid transmission mode for HVDC with optimal thermal power and renewable energy combination

    Science.gov (United States)

    Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu

    2018-02-01

    With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.

  9. Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester

    Directory of Open Access Journals (Sweden)

    Jae Eun Kim

    2013-07-01

    Full Text Available We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.

  10. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    thought possible only a decade ago. This revolution of the ARPES technique and its scientific impact result from dramatic advances in four essential components: instrumental resolution and efficiency, sample manipulation, high quality samples and well-matched scientific issues. The purpose of this treatise is to go through the prominent results obtained from ARPES on cuprate superconductors. Because there have been a number of recent reviews on the electronic structures of high-T{sub c} materials, we will mainly present the latest results not covered previously, with a special attention given on the electron-phonon interaction in cuprate superconductors. What has emerged is rich information about the anomalous electron-phonon interaction well beyond the traditional views of the subject. It exhibits strong doping, momentum and phonon symmetry dependence, and shows complex interplay with the strong electron-electron interaction in these materials. ARPES experiments have been instrumental in identifying the electronic structure, observing and detailing the electron-phonon mode coupling behavior, and mapping the doping evolution of the high-T{sub c} cuprates. The spectra evolve from the strongly coupled, polaronic spectra seen in underdoped cuprates to the Migdal-Eliashberg like spectra seen in the optimally and overdoped cuprates. In addition to the marked doping dependence, the cuprates exhibit pronounced anisotropy with direction in the Brillouin zone: sharp quasiparticles along the nodal direction that broaden significantly in the anti-nodal region of the underdoped cuprates, an anisotropic electron-phonon coupling vertex for particular modes identified in the optimal and overdoped compounds, and preferential scattering across the two parallel pieces of Fermi surface in the antinodal region for all doping levels. This also contributes to the pseudogap effect. To the extent that the Migdal-Eliashberg picture applies, the spectra of the cuprates bear resemblance to that

  11. Photon control of phonons in mixed crystal quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ingale, Alka

    2003-12-15

    Coherent phonon oscillations in solids can be excited impulsively by a single femtosecond laser pulse whose duration is shorter than a phonon period. In the impulsive stimulated Raman scattering (ISRS) experiment, scattering of probe is monitored as a function of time with respect to pump to generate time domain spectra of coherent phonons. In this paper, we present one such study of CdSe{sub 0.68}Te{sub 0.32} (d{approx}80 A) quantum dots in glass matrix, i.e semiconductor-doped glass (SDG) RG780 from Schott, USA and the experiment was performed at Prof. Merlin's laboratory at the University of Michigan, USA. Here, we present first report of selectively driving only CdSe-like modes in these mixed crystal quantum dots using photon control with two pump beams.

  12. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    2002-07-01

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave-particle interactions

  13. ANALYSIS OF ENERGY EFFICIENCY OF OPERATING MODES OF ELECTRICAL SYSTEMS WITH THE TRACTION LOADS

    Directory of Open Access Journals (Sweden)

    V. E. Bondarenko

    2017-03-01

    Full Text Available Innovative scenarios of reliable energy supply of transportation process aimed at reducing the specific energy consumption and increase energy efficiency of the systems of electric traction. The paper suggests innovative energy saving directions in traction networks of railways and new circuit solutions accessing traction substations in energy systems networks, ensure energy security of the transportation process. To ensure the energy security of rail transport special schemes were developed to propose the concept of external power traction substations, which would increase the number of connections to the networks of 220 – 330 kV, as well as the creation of transport and energy corridors, development of its own supply of electric networks of 110 kV substations and mobile RP-110 kV of next generation. Therefore, the investment program of the structures owned by the Ukrainian Railways (Ukrzaliznytsia need to be synchronized in their technological characteristics, as well as the criteria of reliability and quality of power supply with the same external energy investment programs. It is found that without any load on left or right supplying arm one of two less loaded phases of traction transformer begins generating specific modes in the supplying three-phase line. Thus, modes of mobile substation cause leakage in one of the phases of the supply line of traction transformers of active-capacitive current, and as a result generating energy in the main power line of 154 kV, which is fixed and calculated by electricity meters. For these three phase mode supply network is necessary to use 1st algorithm, i.e. taking into account the amount of electricity as the energy in all phases. For effective application of reactive power compensation devices in the AC traction power supply systems it is proposed to develop regulatory documentation on necessity of application and the order of choice of parameters and placement of compensation systems taking into

  14. Hydrostatic stress dependence of the exciton-phonon coupled states in cylindrical quantum dots

    International Nuclear Information System (INIS)

    El Moussaouy, A.; Bria, D.; Nougaoui, A.

    2005-01-01

    We investigate theoretically the effects of compressive stress on the binding energy of an exciton in a cylindrical quantum dot (QD) using a variational procedure within the effective mass approximation. The stress was applied in the z direction and the interaction between the charge carriers (electron and hole) and confined longitudinal optical (LO) phonon modes was taken into account. Specific applications of these results are given for GaAs QDs embedded in a Ga 1-x Al x As semiconductor. The result shows that the binding energy and the polaronic correction increases linearly with increasing stress. Moreover, we obtain the binding energy and the polaronic contribution in the limit in which the QD turns into a quantum well

  15. Fuzzy sliding mode control of a doubly fed induction generator for wind energy conversion

    Directory of Open Access Journals (Sweden)

    A. Meroufel

    2013-12-01

    Full Text Available In this paper we present a nonlinear control using fuzzy sliding mode for wind energy conversion system based on a doubly-fed induction generator (DFIG supplied by an AC-AC converter. In the first place, we carried out briefly a study of modeling on the whole system. In order to control the power flowing between the stator of the DFIG and the grid, a proposed control design uses fuzzy logic technique is applied for implementing a fuzzy hitting control law to remove completely the chattering phenomenon on a conventional sliding mode control. The use of this method provides very satisfactory performance for the DFIG control, and the chattering effect is also reduced by the fuzzy mode. The machine is tested in association with a wind turbine. Simulations results are presented and discussed for the whole system.

  16. Microgrid energy management in grid-connected and islanding modes based on SVC

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Abdelsalam, Abdelazeem A.

    2014-01-01

    Highlights: • SVC is used to enhance the performance of a microgrid (MG). • MG performance is measured by some key performance indicators (KPIs). • KPIs comprise power loss, voltage deviation, power factor, THD and v/f deviation. • The microgrid is simulated in grid-connected and islanded modes. • Results show SVC stabilizes voltage, reduce losses and THD and enhance power factor. - Abstract: Microgrids are small scale energy grids that can provide adequate energy supply to cover regional demand by integrating renewable energy generation and storage technologies. This paper develops a high performance dynamic model of a microgrid system comprising a wind turbine, a PV, a fuel cell, a micro gas turbine generator, an energy storage, electric loads with variable load profile and flexible AC transmission system (FACTS) devices. The FACTS devices based on static VAR compensators have been employed as a supervisory controller. Key performance indicators such as microgrid power losses, buses voltage deviations, buses power factor, buses voltage total harmonic distortion and voltage-frequency deviation are used to evaluate the performance of this microgrid in grid-connected and islanding modes. The results obtained from the Matlab/Simulink environment show that the proposed microgrid design with SVC has the ability to meet its special requirements such as bus voltages stabilization, reduction of feeder losses, power factor enhancement and mitigation of total harmonic distortion using SVC in grid-connected and islanding modes

  17. Theory of generation of angular momentum of phonons by heat current and its conversion to spins

    Science.gov (United States)

    Hamada, Masato; Murakami, Shuichi

    Spin-rotation coupling in crystals will enable us to convert between spin current and mechanical rotations, as has been studied in surface acoustic waves, in liquid metals, and in carbon nanotubes. In this presentation we focus on angular momentum of phonons. In nonmagnetic crystals without inversion symmetry, we theoretically demonstrate that phonon modes generally have angular momenta depending on their wave vectors. In equilibrium the sum of the angular momenta is zero. On the other hand, if a heat current flows in the crystal, nonequilibrium phonon distribution leads to nonzero total angular momentum of phonons. It can be observed as a rotation of crystal itself, and as a spin current induced by these phonons via the spin-rotation coupling.

  18. Phonon-interference resonance effects by nanoparticles embedded in a matrix

    Science.gov (United States)

    Feng, Lei; Shiga, Takuma; Han, Haoxue; Ju, Shenghong; Kosevich, Yuriy A.; Shiomi, Junichiro

    2017-12-01

    We report an unambiguous phonon resonance effect originating from germanium nanoparticles embedded in silicon matrix. Our approach features the combination of the phonon wave-packet method with atomistic dynamics and the finite element method rooted in continuum theory. We find that multimodal phonon resonance, caused by destructive interference of coherent lattice waves propagating through and around the nanoparticle, gives rise to sharp and significant transmittance dips, blocking the lower-end frequency range of phonon transport that is hardly diminished by other nanostructures. The resonance is sensitive to the phonon coherent length, where the finiteness of the wave-packet width weakens the transmittance dip even when coherent length is longer than the particle diameter. Further strengthening of transmittance dips is possible by arraying multiple nanoparticles, which gives rise to the collective vibrational mode. Finally, it is demonstrated that these resonance effects can significantly reduce thermal conductance in the lower-end frequency range.

  19. Microwave measurements of energy lost to longitudinal modes by single electron bunches traversing periodic structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Loew, G.A.; Weaver, J.N.; Wilson, P.B.

    1981-10-01

    In the design of future linear colliders, it will be important to minimize the loss of beam energy due to the excitation of higher-order modes in the accelerator structure by single bunches of electrons or positrons. This loss is not only detrimental in itself but also gives rise to energy spectrum widening and transverse emittance growth. Microwave measurements made on disk-loaded and alternating-spoke structures to determine the loss to the longitudinal modes are described. In these measurements the Gaussian bunch is simulated by a current pulse of the same shape transmitted through the structure on an axial center conductor. Results to date are presented for the total longitudinal loss parameter per period K in volts per picocoulomb

  20. Dark solitons of the power-energy saturation model: application to mode-locked lasers

    International Nuclear Information System (INIS)

    Ablowitz, M J; Nixon, S D; Horikis, T P; Frantzeskakis, D J

    2013-01-01

    The generation and dynamics of dark solitons in mode-locked lasers is studied within the framework of a nonlinear Schrödinger equation which incorporates power-saturated loss, as well as energy-saturated gain and filtering. Mode-locking into single dark solitons and multiple dark pulses are found by employing different descriptions for the energy and power of the system defined over unbounded and periodic (ring laser) systems. Treating the loss, gain and filtering terms as perturbations, it is shown that these terms induce an expanding shelf around the soliton. The dark soliton dynamics are studied analytically by means of a perturbation method that takes into regard the emergence of the shelves and reveals their importance. (paper)

  1. Hybrid phonons in nanostructures

    CERN Document Server

    Ridley, Brian K

    2017-01-01

    Crystalline semiconductor nanostructures have special properties associated with electrons and lattice vibrations and their interaction, and this is the topic of the book. The result of spatial confinement of electrons is indicated in the nomenclature of nonostructures: quantum wells, quantum wires, and quantum dots. Confinement also has a profound effect on lattice vibrations and an account of this is the prime focus. The documentation of the confinement of acoustic modes goes back to Lord Rayleigh’s work in the late nineteenth century, but no such documentation exists for optical modes. Indeed, it is only comparatively recently that any theory of the elastic properties of optical modes exists, and the account given in the book is comprehensive. A model of the lattice dynamics of the diamond lattice is given that reveals the quantitative distinction between acoustic and optical modes and the difference of connection rules that must apply at an interface. The presence of interfaces in nanostructures forces ...

  2. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    International Nuclear Information System (INIS)

    Zhang Yue; Hu, Weiqiang; Ou Congjie; Chen Jincan

    2009-01-01

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions

  3. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yue [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Hu, Weiqiang [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Ou Congjie [College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Chen Jincan [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China)], E-mail: jcchen@xmu.edu.cn

    2009-06-15

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions.

  4. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers.

    Science.gov (United States)

    Shephard, Jonathan; Jones, J; Hand, D; Bouwmans, G; Knight, J; Russell, P; Mangan, B

    2004-02-23

    We report on the development of hollow-core photonic bandgap fibers for the delivery of high energy pulses for precision micromachining applications. Short pulses of (65ns pulse width) and energies of the order of 0.37mJ have been delivered in a single spatial mode through hollow-core photonic bandgap fibers at 1064nm using a high repetition rate (15kHz) Nd:YAG laser. The ultimate laser-induced damage threshold and practical limitations of current hollow-core fibers for the delivery of short optical pulses are discussed.

  5. Research on the Renewable Energy Industry Financing Efficiency Assessment and Mode Selection

    Directory of Open Access Journals (Sweden)

    Xiaohuan Lyu

    2018-01-01

    Full Text Available In recent years, environmental issues are attracting widespread attention by various countries around the world. In this context, the renewable energy industry has become a stimulus point for economic development and has great potential for development. Renewable energy industry financing is difficult due to its characteristics of high risk and long-term investment returns, and relying on existing financing channels make it present a glut of excess capacity. It is key to realize resource optimal allocation, solve overcapacity phenomenon and select the valid financing mode. This paper used Bloomberg New Energy Finance (BNEF data and the data envelopment analysis (DEA method to analyze the financing efficiency different parts of the global renewable energy industry and different ways of financing. It could be found that although the financing efficiency showed a trend of increasing year by year, the financing efficiency of each industry presented generally weak DEA efficiency, the comprehensive financing efficiency of wind power industry was higher. The article also found that the financing efficiency of project financing and Research and Development (R&D were relatively high, and the equity market and venture capital and private equity were less efficient. The results of this paper play an important role in the overall financing status cognizance of the renewable energy industry and give suggestions about valid financing mode choice.

  6. Phonon transport in a one-dimensional harmonic chain with long-range interaction and mass disorder

    Science.gov (United States)

    Zhou, Hangbo; Zhang, Gang; Wang, Jian-Sheng; Zhang, Yong-Wei

    2016-11-01

    Atomic mass and interatomic interaction are the two key quantities that significantly affect the heat conduction carried by phonons. Here, we study the effects of long-range (LR) interatomic interaction and mass disorder on the phonon transport in a one-dimensional harmonic chain with up to 105 atoms. We find that while LR interaction reduces the transmission of low-frequency phonons, it enhances the transmission of high-frequency phonons by suppressing the localization effects caused by mass disorder. Therefore, LR interaction is able to boost heat conductance in the high-temperature regime or in the large size regime, where the high-frequency modes are important.

  7. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    Energy Technology Data Exchange (ETDEWEB)

    Ceban, V., E-mail: victor.ceban@phys.asm.md; Macovei, M. A., E-mail: macovei@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of)

    2015-11-15

    The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

  8. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids

    Science.gov (United States)

    Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin

    2017-10-01

    For decades, the three-phonon scattering process has been considered to govern thermal transport in solids, while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at 1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space. Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.

  9. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering

    Science.gov (United States)

    Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2018-04-01

    We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.

  10. Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties

    Directory of Open Access Journals (Sweden)

    Po-Hsun Shih

    2017-10-01

    Full Text Available The impact of mixed defects on ZnO phononic and photonic properties at the nanoscale is only now being investigated. Here we report an effective strategy to study the distribution of defects along the growth direction of a single ZnO nanowire (NW, performed qualitatively as well as quantitatively using energy dispersive spectroscopy (EDS, confocal Raman-, and photoluminescence (PL-mapping technique. A non-concomitant near-infrared (NIR emission of 1.53 ± 0.01 eV was observed near the bottom region of 2.05 ± 0.05 μm along a single ZnO NW and could be successfully explained by the radiative recombination of shallowly trapped electrons V_O^(** with deeply trapped holes at V_Zn^''. A linear chain model modified from a phonon confinement model was used to describe the growth of short-range correlations between the mean distance of defects and its evolution with spatial position along the axial growth direction by fitting the E2H mode. Our results are expected to provide new insights into improving the study of the photonic and photonic properties of a single nanowire.

  11. Electron hopping and optic phonons in Eu3S4

    International Nuclear Information System (INIS)

    Guentherodt, G.

    1981-01-01

    Raman scattering on single crystals of Eu 3 S 4 does not show the allowed q=o phonon modes in the cubic phase and exhibits no new modes in the distorted low temperature phase (T 2- ions. This mode does not show any anomaly near the charge order -disorder phase transition Tsub(t)=186 K. Temperature tunable spin fluctuations associated with the temperature activated Eu 2+ → Eu 3+ electron hopping are detected in the scattering intensity, superimposed on the usual thermal spin disorder. (author)

  12. Excitation of Contained Modes by High Energy Nuclei and Correlated Cyclotron Emission

    Science.gov (United States)

    Coppi, B.; Penn, G.; Riconda, C.

    1997-12-01

    In experiments with fusing plasmas, enhanced radiation emission at the harmonics of the cyclotron frequency of fusion reaction products has been observed. A theory is presented that explains key features of these observations and indicates the possibility of extracting significant information about the fusion product population distribution, both in velocity space and over the plasma cross section. The considered model is consistent in particular with the fact that, in DT plasmas, the radiation peaks occur at frequencies corresponding to harmonics of the αparticles' cyclotron frequency Δαevaluated at the outer edge of the plasma column, and that a transition to a "continuum" spectrum at high frequencies ( ω≳7 Δ α) can be identified. In this model, the radiation is the result of the excitation of radially "contained" modes which are driven unstable by the fusion products. The modes considered to be responsible for the discrete part of the spectrum are spatially localized near the plasma edge. The radial containment, which is associated mainly with the inhomogeneity of the plasma density, is in fact a fundamental characteristic since only contained modes can grow out of a relatively weak mode-particle interaction and justify the detected emission power levels. The contained mode is a solution to a set of macroscopic equations, in which the electron motion is tied to that of the magnetic field (Hall effect). The growth rate has been evaluated considering the particle orbits in a toroidal confinement configuration and modelling the distribution function of the interacting particles with the energy at birth before slowing down occurs. The growth rate depends linearly on the α-particle density and can be larger than, or of the order of, the bounce frequency of the magnetically trapped α-particles, which can have a resonant interaction with the mode. According to the theoretical model presented, the discrete part of the observed spectrum of emission yields

  13. Modélisation de l'effet tunnel à un électron dans les dispositifs à nanocristaux semiconducteurs : effet tunnel à un électron assisté par phonon

    OpenAIRE

    Valentin, Audrey

    2008-01-01

    Within the frame of a study of nanocrystal-based devices as nanocrystal flash memory or single electron transistor, this work aims at accurately modelling the tunnel transport between two nanocrystals, which requires to take into account the energy level broadening induced by the electron-phonon coupling. The vibrational modes in silicon nanocrystals of varying sizes have first been calculated using the Adiabatic Bond Charge Model (ABCM). The results obtained present a very good agreement wit...

  14. Influence of the central mode and soft phonon on the microwave dielectric loss near the strain-induced ferroelectric phase transitions in Sr.sub.n+1./sub.Ti.sub.n./sub.O.sub.3n+1./sub..

    Czech Academy of Sciences Publication Activity Database

    Goian, Veronica; Kamba, Stanislav; Orloff, N.; Birol, T.; Lee, Ch.H.; Nuzhnyy, Dmitry; Booth, J.C.; Bernhagen, M.; Uecker, R.; Schlom, D. G.

    2014-01-01

    Roč. 90, č. 17 (2014), "174105-1"-"174105-10" ISSN 1098-0121 R&D Projects: GA MŠk LH13048; GA ČR GAP204/12/1163 Institutional support: RVO:68378271 Keywords : ferroelectrics * microwave properties * central mode * soft mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  15. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  16. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Matthew S. [Department; Ding, Wendu [Department; Li, Yuxiu [Center; College; Chapman, Craig T. [Department; Lei, Aiwen [College; Lin, Xiao-Min [Center; Chen, Lin X. [Department; Chemical; Schatz, George C. [Department; Schaller, Richard D. [Department; Center

    2017-12-08

    We demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result, change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.

  17. Tuning and switching the hypersonic phononic properties of elastic impedance contrast nanocomposites.

    Science.gov (United States)

    Sato, Akihiro; Pennec, Yan; Shingne, Nitin; Thurn-Albrecht, Thomas; Knoll, Wolfgang; Steinhart, Martin; Djafari-Rouhani, Bahram; Fytas, George

    2010-06-22

    Anodic aluminum oxide (AAO) containing arrays of aligned cylindrical nanopores infiltrated with polymers is a well-defined model system for the study of hypersound propagation in polymer nanocomposites. Hypersonic phononic properties of AAO/polymer nanocomposites such as phonon localization and anisotropic sound propagation can be tailored by adjusting elastic contrast and density contrast between the components. Changes in density and elastic properties of the component located in the nanopores induced by phase transitions allow reversible modification of the phononic band structure and mode switching. As example in case, the crystallization and melting of poly(vinylidene difluoride) inside AAO was investigated.

  18. Enhancement of power output by a new stress-applied mode on circular piezoelectric energy harvester

    Science.gov (United States)

    Shu, Fangming; Yang, Tongqing; Liu, Yaoze

    2018-04-01

    A new stress-applied mode is proposed on piezoelectric circular diaphragm energy harvester. Differing from the usual mode used in previous researches, the mass stick at the center of the diaphragm (PZT-51) is designed into an annular hollow shape. In this case, stress of the mass is applied along the edge of the copper sheet. A screw bonded with the undersurface of the diaphragm transfers force from the vibrator to the diaphragm. This device has a cylindrical shape and its volume is ˜7.9 cm3. With this new stress-applied mode, the piezoelectric energy harvester (with an optimal load of 18 kΩ, a mass of 30 g) could generate a maximum power output of ˜20.8 mW under 9.8 m.s-2 at its resonant frequency of ˜237 Hz. Meanwhile, the greater the hardness ratio between the ceramic and the copper sheet, the greater the advantages of the new structure.

  19. Irregular oscillatory patterns in the early-time region of coherent phonon generation in silicon

    Science.gov (United States)

    Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya

    2017-09-01

    Coherent phonon (CP) generation in an undoped Si crystal is theoretically investigated to shed light on unexplored quantum-mechanical effects in the early-time region immediately after the irradiation of ultrashort laser pulses. We examine time signals attributed to an induced charge density of an ionic core, placing the focus on the effects of the Rabi frequency Ω0 c v on the signals; this frequency corresponds to the peak electric-field of the pulse. It is found that at specific Ω0 c v's, where the energy of plasmon caused by photoexcited carriers coincides with the longitudinal-optical phonon energy, the energetically resonant interaction between these two modes leads to striking anticrossings, revealing irregular oscillations with anomalously enhanced amplitudes in the observed time signals. Also, the oscillatory pattern is subject to the Rabi flopping of the excited carrier density that is controlled by Ω0 c v. These findings show that the early-time region is enriched with quantum-mechanical effects inherent in the CP generation, though experimental signals are more or less masked by the so-called coherent artifact due to nonlinear optical effects.

  20. High mobility In0.75Ga0.25As quantum wells in an InAs phonon lattice

    Science.gov (United States)

    Chen, C.; Holmes, S. N.; Farrer, I.; Beere, H. E.; Ritchie, D. A.

    2018-03-01

    InGaAs based devices are great complements to silicon for CMOS, as they provide an increased carrier saturation velocity, lower operating voltage and reduced power dissipation (International technology roadmap for semiconductors (www.itrs2.net)). In this work we show that In0.75Ga0.25As quantum wells with a high mobility, 15 000 to 20 000 cm2 V‑1 s‑1 at ambient temperature, show an InAs-like phonon with an energy of 28.8 meV, frequency of 232 cm‑1 that dominates the polar-optical mode scattering from  ∼70 K to 300 K. The measured optical phonon frequency is insensitive to the carrier density modulated with a surface gate or LED illumination. We model the electron scattering mechanisms as a function of temperature and identify mechanisms that limit the electron mobility in In0.75Ga0.25As quantum wells. Background impurity scattering starts to dominate for temperatures  <100 K. In the high mobility In0.75Ga0.25As quantum well, GaAs-like phonons do not couple to the electron gas unlike the case of In0.53Ga0.47As quantum wells.

  1. Acoustic phonon dynamics in thin-films of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Glinka, Yuri D., E-mail: ydglinka@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Institute of Physics, National Academy of Sciences of Ukraine, Kiev 03028 (Ukraine); Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-04-28

    Transient reflectivity traces measured for nanometer-sized films (6–40 nm) of the topological insulator Bi{sub 2}Se{sub 3} revealed GHz-range oscillations driven within the relaxation of hot carriers photoexcited with ultrashort (∼100 fs) laser pulses of 1.51 eV photon energy. These oscillations have been suggested to result from acoustic phonon dynamics, including coherent longitudinal acoustic phonons in the form of standing acoustic waves. An increase of oscillation frequency from ∼35 to ∼70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the interplay between two different regimes employing traveling-acoustic-waves for films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR) modes for films thinner than 40 nm. The amplitude of oscillations decays rapidly for films below 15 nm thick when the indirect intersurface coupling in Bi{sub 2}Se{sub 3} films switches the FBAWR regime to that of the Lamb wave excitation. The frequency range of coherent longitudinal acoustic phonons is in good agreement with elastic properties of Bi{sub 2}Se{sub 3}.

  2. Influence of Stacking Fault Energy (SFE) on the deformation mode of stainless steels

    International Nuclear Information System (INIS)

    Li, X.; Van Renterghem, W.; Al Mazouzi, A.

    2008-01-01

    The sensibility to irradiation-assisted stress corrosion cracking (IASCC) of stainless steels in light water reactor (LWR) can be caused by the localisation of deformation that takes place in these materials. Dislocation channelling and twinning modes of deformation can induce localised plasticity leading to failure. Stacking fault energy (SFE) plays an important role in every process of plastic deformation behaviour, especially in twinning and dislocation channelling. In order to correlate localised deformation with stacking fault energy, this parameter has been experimentally determined by transmission electron microscope (TEM) using both dislocation node and multiple ribbons methods after compression in three different model alloys. Detailed deformation behaviour of three fabricated alloys with different stacking fault energy before and after tensile tests at temperatures from -150 deg C to 300 deg C, will be shown and discussed based on mechanical test and TEM observation. (authors)

  3. Blue and red shifted temperature dependence of implicit phonon shifts in Graphene

    OpenAIRE

    Mann, Sarita; Jindal, V. K.

    2017-01-01

    We have calculated the implicit shift for various modes of frequency in a pure graphene sheet. Thermal expansion and Gr\\"uneisen parameter which are required for implicit shift calculation have already been studied and reported. For this calculation, phonon frequencies are obtained using force constants derived from dynamical matrix calculated using VASP code where the density functional perturbation theory (DFPT) is used in interface with phonopy software. The implicit phonon shift shows an ...

  4. Structural transformations in silicon under exposure by femtosecond laser pulse: role of electron-hole plasma and phonon-phonon anharmonism

    CERN Document Server

    Kudryashov, S I

    2002-01-01

    It is experimentally shown for the first time that by the effect of the feed-up laser pulse of 100 fs duration on the silicon target the consecutive structural transitions of the substance into the new crystalline and liquid metallic phase occur both during the laser pulse feed-up and after 0.1-10 sup 3 ps, depending on the material excitation conditions. The thresholds of the observed structural transitions are determined and the phonon nodes, responsible for therefore, are identified. The structural transitions dynamics in the silicon by the 01.-10 sup 3 ps times is described within the frames of the model of the phonon modes instability, originating due to the plasma electron-hole effect and also due to the intra- and intermode phonon-phonon anharmonic interactions

  5. Coherent Phonons Spectroscopy in Si/SiGe superlattices

    Science.gov (United States)

    Michel, Helene; Ezzahri, Younes; Shakouri, Ali; Pernot, Gilles; Rampnoux, Jean-Michel; Dilhaire, Stefan

    2010-03-01

    Ultrafast pump-probe experiments have been extensively used for coherent zone-folded acoustic phonon spectroscopy in semiconductor superlattices (SL). Most of the spectroscopy studies have been realized via impulsive stimulated Raman scattering (ISRS). More recently some studies, focused on Si/SixGe1-x SL, have combined the spectroscopy via ISRS with the spectroscopy of phonons Bragg reflected via picosecond acoustic experiment. In the latter case, sample needs to be covered by a metallic film which serves as a transducer to convert the optical energy into an impulse heating and thermal expansion. This launches coherent acoustic phonons into the SL structure. Here we present a systematic study of coherent phonons in different Si/SixGe1-x SL structures with two different superlattice periods and transducer thicknesses. The measured acoustic spectrums show that the thickness of the transducer should be chosen as function as the SL period to be able to generate and detect both phonons Bragg reflected and excited by ISRS.

  6. Hole-phonon scattering in high magnetic fields

    International Nuclear Information System (INIS)

    Singh, Surendra; Verma, G.S.

    1980-01-01

    The relative importance of the elastic and inelastic phonon scatterings by shallow acceptors to the low temperature magneto-phonon conductivity of boron doped silicon has been investigated in the present work. It is shown that in the temoerature range 1-5deg K and for magnetic fields upto 55 KG the elastic scattering makes the major contribution towards phonon resistivity. Magnetic field removes the degenracy of the ground state and the phonon conductivity first falls as the level splittings become comparable to the dominant phonon energies (approximately 4 kBT) and then rises rapidly when the splittings become >> kBT. These features are reflected in the present computations with the new effective g values of the acceptor holes, which are given by gsub(3/2) = 2.33 and gsub(1/2) = 1.00. The discrepancy between theory and experiment regarding the absolute values of the ratio [K(H)/K(H=0)] still remains unresolved with the present magnetic level structure and g values. (author)

  7. Reduction of thermal conductivity in phononic nanomesh structures

    KAUST Repository

    Yu, Jen-Kan

    2010-07-25

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.

  8. Observation of energy oscillation between strongly-coupled counter-propagating ultra-high Q whispering gallery modes.

    Science.gov (United States)

    Yoshiki, Wataru; Chen-Jinnai, Akitoshi; Tetsumoto, Tomohiro; Tanabe, Takasumi

    2015-11-30

    We report the first experimental observation of an energy oscillation between two coupled ultra-high Q whispering gallery modes in the time domain. Two counter-propagating whispering gallery modes in a silica toroid microcavity were employed for this purpose. The combination of a large coupling coefficient between the two modes and an ultra-high Q factor, which creates a large Γ value of > 10, results in a clear energy oscillation. Our measurement is based on a drop-port measurement technique, which enables us to observe the light energy in the two modes directly. The oscillation period measured in the time domain precisely matched that inferred from mode splitting in the frequency domain, and the measured results showed excellent agreement with results calculated with the developed numerical model.

  9. Constitutive equation for polymer networks with phonon fluctuations

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Skov, Anne Ladegaard; Hassager, Ole

    2008-01-01

    Recent research by Xing [Phys. Rev. Lett. 98, 075502 (2007)] has provided an expression for the Helmholtz free energy related to phonon fluctuations in polymer networks. We extend this result by constructing the corresponding nonlinear constitutive equation, usable for entirely general, volume...

  10. First principles phonon calculations in materials science

    OpenAIRE

    Togo, Atsushi; Tanaka, Isao

    2015-01-01

    Phonon plays essential roles in dynamical behaviors and thermal properties, which are central topics in fundamental issues of materials science. The importance of first principles phonon calculations cannot be overly emphasized. Phonopy is an open source code for such calculations launched by the present authors, which has been world-widely used. Here we demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science.

  11. Magnetic modes in superlattices

    International Nuclear Information System (INIS)

    Oliveira, F.A.

    1990-04-01

    A first discussion of reciprocal propagation of magnetic modes in a superlattice is presented. In the absence of an applied external magnetic field a superllatice made of alternate layers of the type antiferromagnetic-non-magnetic materials presents effects similar to those of phonons in a dielectric superlattice. (A.C.A.S.) [pt

  12. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage

    International Nuclear Information System (INIS)

    Valverde, L.; Pino, F.J.; Guerra, J.; Rosa, F.

    2016-01-01

    Highlights: • A conceptual analysis of operation modes in energy storage plants is presented. • Key Performance Indicators to select operation modes are provided. • The approach has been applied to a laboratory hybrid power plant. • The methodology provides guidance for the operation of hybrid power plants. - Abstract: This paper is concerned with Operating Modes in hybrid renewable energy-based power plants with hydrogen as the intermediate energy storage medium. Six operation modes are defined according to plant topology and the possibility of operating electrolyzer and fuel cell at steady-power or partial load. A methodology for the evaluation of plant performance is presented throughout this paper. The approach includes a set of simulations over a fully validated model, which are run in order to compare the proposed operation modes in various weather conditions. Conclusions are drawn from the simulation stage using a set of Key Performance Indicators defined in this paper. This analysis yields the conclusion that certain modes are more appropriate from technical and practical standpoints when they are implemented in a real plant. From the results of the simulation assessment, selected operating modes are applied to an experimental hydrogen-based pilot plant to illustrate and validate the performance of the proposed operation modes. Experimental results confirmed the simulation study, pointing out the advantages and disadvantages of each operation mode in terms of performance and equipment durability.

  13. Cavity-type hypersonic phononic crystals

    International Nuclear Information System (INIS)

    Sato, A; Fytas, G; Pennec, Y; Djafari-Rouhani, B; Yanagishita, T; Masuda, H; Knoll, W

    2012-01-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter. (paper)

  14. Model of a single mode energy harvester and properties for optimal power generation

    International Nuclear Information System (INIS)

    Liao Yabin; Sodano, Henry A

    2008-01-01

    The process of acquiring the energy surrounding a system and converting it into usable electrical energy is termed power harvesting. In the last few years, the field of power harvesting has experienced significant growth due to the ever increasing desire to produce portable and wireless electronics with extended life. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their finite energy supply, which necessitates their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and covert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. The development of energy harvesting systems is greatly facilitated by an accurate model to assist in the design of the system. This paper will describe a theoretical model of a piezoelectric based energy harvesting system that is simple to apply yet provides an accurate prediction of the power generated around a single mode of vibration. Furthermore, this model will allow optimization of system parameters to be studied such that maximal performance can be achieved. Using this model an expression for the optimal resistance and a parameter describing the energy harvesting efficiency will be presented and evaluated through numerical simulations. The second part of this paper will present an experimental validation of the model and optimal parameters

  15. High energy radiation precursors to the collapse of black holes binaries based on resonating plasma modes

    Science.gov (United States)

    Coppi, B.

    2018-05-01

    The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.

  16. Dynamical dipole mode in fusion reactions at 16 MeV/nucleon and beam energy dependence

    International Nuclear Information System (INIS)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; Commara, M. La; Parascandolo, C.; Sandoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Cardella, G.; Filippo, E. De

    2009-01-01

    High-energy γ rays and light charged particles from the 36 Ar+ 96 Zr and 40 Ar+ 92 Zr reactions at E lab =16 and 15.1 MeV/nucleon, respectively, were measured in coincidence with evaporation residues by means of the MEDEA multidetector array coupled to four parallel plate avalanche counters. The aim of this experiment was to investigate the prompt γ radiation, emitted in the decay of the dynamical dipole mode, in the ∼16 MeV/nucleon energy range and to map its beam energy dependence, comparing the present results with our previous ones obtained at lower energies. The studied reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the region of Ce under the same conditions of excitation energy and spin. Light charged particle energy spectra were used to pin down the average excitation energy and the average mass of the system. By studying the γ-ray spectra of the charge symmetric reaction 40 Ar+ 92 Zr, the statistical giant dipole resonance (GDR) parameters and angular distribution were extracted, and a comparison of the linearized 90 deg. γ-ray spectra of the two reactions revealed a 12% extra yield in the GDR energy region for the more charge asymmetric system. The center-of-mass angular distribution data of this extra γ yield, compatible with a dipole oscillating along the symmetry axis of the dinuclear system, support its dynamical nature. The experimental findings are compared with theoretical predictions performed within a Boltzmann-Nordheim-Vlasov transport model and based on a collective bremsstrahlung analysis of the entrance channel reaction dynamics. An interesting sensitivity to the symmetry term of the equation of state and to in-medium effects on nucleon-nucleon (nn) cross sections is finally discussed.

  17. Optical phonons in PbTe/CdTe multilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. N.; Yakovlev, V. A. [Russian Academy of Sciences, Institute for Spectroscopy (Russian Federation); Kucherenko, I. V., E-mail: kucheren@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karczewski, G. [Polish Academy of Sciences, Institute of Physics (Poland); Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  18. Phonon anomalies in trilayer high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Dubroka, Adam; Munzar, Dominik

    2004-01-01

    We present an extension of the model proposed recently to account for dramatic chAes below T c (anomalies) of some c-axis polarized infrared-active phonons in bilayer cuprate superconductors, that applies to trilayer high-T c compounds. We discuss several types of phonon anomalies that can occur in these systems and demonstrate that our model is capable of explaining the spectral chAes occurring upon entering the superconducting state in the trilayer compound Tl 2 Ba 2 Ca 2 Cu 3 O 10 . The low-temperature spectra of this compound obtained by Zetterer and coworkers display an additional broad absorption band, similar to the one observed in underdoped YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . In addition, three phonon modes are strongly anomalous. We attribute the absorption band to the transverse Josephson plasma resonance, similar to that of the bilayer compounds. The phonon anomalies are shown to result from a modification of the local fields induced by the formation of the resonance. The spectral chAes in Tl 2 Ba 2 Ca 2 Cu 3 O 10 are compared with those occurring in Bi 2 Sr 2 Ca 2 Cu 3 O 10 , reported recently by Boris and coworkers

  19. Two-phonon giant resonances in 136Xe, 208Pb, and 238U

    International Nuclear Information System (INIS)

    Boretzky, K.; Gruenschloss, A.; Ilievski, S.; Adrich, P.; Aumann, T.; Bertulani, C.A.; Cub, J.; Dostal, W.; Eberlein, B.; Elze, T.W.; Emling, H.; Fallot, M.; Holeczek, J.; Holzmann, R.; Kozhuharov, C.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Leistenschneider, A.; Lubkiewicz, E.; Mordechai, S.; Ohtsuki, T.; Reiter, P.; Simon, H.; Stelzer, K.; Stroth, J.; Suemmerer, K.; Surowiec, A.; Wajda, E.; Walus, W.

    2003-07-01

    The excitation of the double-phonon giant dipole resonance was observed in heavy projectile nuclei impinging on targets of high nuclear charge with energies of 500-700 MeV/nucleon. New experimental data are presented for 136 Xe and 238 U together with further analysis of earlier data on 208 Pb. Differential cross sections dσ/dE * and dσ/dθ for electromagnetic excitations were deduced. Depending on the isotope, cross sections appear to be enhanced in comparison to those expected from a purely harmonic nuclear dipole response. The cumulative effect of excitations of two-phonon states composed of one dipole and one quadrupole phonon, of predicted anharmoniticies in the double-phonon dipole response, and of damping of the dipole resonance during the collision may account for the discrepancy. In addition, decay properties of two-phonon resonances were studied and compared to that of a statistical decay. (orig.)

  20. Direct observation of magnon-phonon coupling in yttrium iron garnet

    Science.gov (United States)

    Man, Haoran; Shi, Zhong; Xu, Guangyong; Xu, Yadong; Chen, Xi; Sullivan, Sean; Zhou, Jianshi; Xia, Ke; Shi, Jing; Dai, Pengcheng

    2017-09-01

    The magnetic insulator yttrium iron garnet (YIG) with a ferrimagnetic transition temperature of ˜560 K has been widely used in microwave and spintronic devices. Anomalous features in spin Seeback effect (SSE) voltages have been observed in Pt/YIG and attributed to magnon-phonon coupling. Here, we use inelastic neutron scattering to map out low-energy spin waves and acoustic phonons of YIG at 100 K as a function of increasing magnetic field. By comparing the zero and 9.1 T data, we find that instead of splitting and opening up gaps at the spin wave and acoustic phonon dispersion intersecting points, magnon-phonon coupling in YIG enhances the hybridized scattering intensity. These results are different from expectations of conventional spin-lattice coupling, calling for different paradigms to understand the scattering process of magnon-phonon interactions and the resulting magnon polarons.

  1. Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies

    Science.gov (United States)

    Ghasemi Baboly, M.; Reinke, C. M.; Griffin, B. A.; El-Kady, I.; Leseman, Z. C.

    2018-03-01

    Two dimensional SiC-air phononic crystals have been modeled, fabricated, and tested with a measured bandgap ranging from 665 to 693 MHz. Snowflake air inclusions on a hexagonal lattice were used for the phononic crystal. By manipulating the phononic crystal lattice and inserting circular inclusions, a waveguide was created at 680 MHz. The combined insertion loss and propagation loss for the waveguide is 8.2 dB, i.e., 39% of the energy is guided due to the high level of the confinement afforded by the phononic crystal. The SiC-air phononic crystals and waveguides were fabricated using a CMOS-compatible process, which allows for seamless integration of these devices into wireless communication systems operating at microwave frequencies.

  2. A shear-mode magnetoelectric heterostructure for harvesting external magnetic field energy

    Science.gov (United States)

    He, Wei; Zhang, Jitao; Lu, Yueran; Yang, Aichao; Qu, Chiwen; Yuan, Shuai

    2017-03-01

    In this paper, a magnetoelectric (ME) energy harvester is presented for scavenging external magnetic field energy. The proposed heterostructure consists of a Terfenol-D plate, a piezoelectric PZT5H plate, a NdFeB magnet, and two concentrators. The external magnetic field is concentrated to the Terfenol-D plate and the PZT5H plate working in shear-mode, which can potentially increase the magnetoelectric response. Experiments have been performed to verify the feasibility of the harvester. Under the magnetic field of 0.6 Oe, the device produces a RMS voltage of 0.53 V at the resonant frequency of 32.6 kHz. The corresponding output power reaches 44.96 μW across a 3.1 kΩ matching resistor.

  3. STOMP Sparse Vegetation Evapotranspiration Model for the Water-Air-Energy Operational Mode

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; White, Mark D.; Freeman, Eugene J.; Zhang, Z. F.

    2005-09-15

    The Water-Air-Energy (WAE) Operational Mode of the Subsurface Transport Over Multiple Phases (STOMP) numerical simulator solves the coupled conservation equations for water mass, air mass, and thermal energy in multiple dimensions. This addendum describes the theory, input file formatting, and application of a soil-vegetation-atmosphere transfer (SVAT) scheme for STOMP that is based on a sparse vegetation evapotranspiration model. The SVAT scheme is implemented as a boundary condition on the upper surface of the computational domain and has capabilities for simulating evaporation from bare surfaces as well as evapotranspiration from sparsely vegetated surfaces populated with single or multiple plant species in response to meteorological forcings. With this extension, the model calculates water mass, air mass and thermal energy across a boundary surface in addition to root-water transport between the subsurface and atmosphere. This mode represents the barrier extension of the WAE mode and is designated as STOMP-WAE-B. Input for STOMP-WAE-B is specified via three input cards and include: atmospheric conditions through the Atmospheric Conditions Card; time-invariant plant species data through the Plant Properties Card; and time varying plant species data through the Boundary Conditions Card. Two optional cards, the Observed Data and UCODE Control Cards allow use of STOMP-WAE with UCODE in an inverse mode to estimate model parameters. STOMP-WAE was validated by solving a number of test problems from the literature that included experimental observations as well as analytical or numerical solutions. Several of the UNSAT-H verification problems are included along with a benchmark simulation derived from a recently published intercode comparison for barrier design tools. Results show that STOMP is able to meet, and in most cases, exceed performance of other commonly used simulation codes without having to resort to may of their simplifying assumptions. Use of the fully

  4. Phonons in Solid Hydrogen and Deuterium Studied by Inelastic Coherent Neutron Scattering

    DEFF Research Database (Denmark)

    Nielsen, Mourits

    1973-01-01

    Phonon dispersion relations have been measured by coherent neutron scattering in solid para-hydrogen and ortho-deuterium. The phonon energies are found to be nearly equal in the two solids, the highest energy in each case lying close to 10 meV. The pressure and temperature dependence of the phonon...... energies have been measured in ortho-deuterium and the lattice change determined by neutron diffraction. When a pressure of 275 bar is applied, the phonon energies are increased by about 10%, and heating the crystal to near the melting point decreases them by about 7%. The densities of states, the specific...... heats, and the Debye temperatures have been deduced and found to be in agreement with the published experimental results. The Debye temperatures are 118 K for hydrogen and 114 K for deuterium. For hydrogen the Debye-Waller factor has been measured by incoherent neutron scattering and it corresponds...

  5. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    Science.gov (United States)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.

    2015-12-01

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  6. Renewable energies in France. New financing modes and challenges for French actors

    International Nuclear Information System (INIS)

    2014-11-01

    This document comprises three reports and a video. The first report is an executive summary which focuses on the main factors of evolution of the activity in the field of renewable energies, and stresses factors of change and their strategic consequences. The second report proposes a strategic analysis which addresses key challenges and problematic of the sector, analyses the evolution of competition, deciphers the strategies of the main operators, and tries to identify the best performing business models. It proposes an overview of the situation of the French market of renewable energies (hydraulic, wind, solar photovoltaic, solar thermal, biomass including biogas, waste combustion, geothermal and heat pumps), a precise description of renewable energy financing modes (notably four models: capital-investment, green bonds, institutional financing, participative financing), an analysis of opportunities for the different French renewable energy sectors on the medium term, and an identification of actors with an analysis of their market positioning. The third report proposes data which provide a comprehensive and structured overview of the market, of its dynamics and of operators. It presents the market environment (energy policy, energy assessment, housing fleet, GDP, other environmental factors), the French market of renewable energies (final consumption, primary production, turnover of 5 component suppliers and of 5 operators, renewable heat production and consumption, renewable electric power production and consumption), and the competitive environment (economic structure, overview of main manufacturers, exploiters and operators in France) with a more detailed presentation of 18 manufacturers, owners and operators). The video proposes a presentation of operational conclusions of this study

  7. High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Steinvurzel, P. E.; Chen, Y.

    2012-01-01

    We demonstrate, for the first time, four-wave mixing, in the 1-μm spectral regime, in an LMA silica fiber. Pumping a 618-μm2 LP07 mode (λo = 1038.4 nm) with a 1064.6-nm Nd:YAG laser results in the generation of modulation instability, and multiple Stokes/anti-Stokes lines, opening up the prospect...

  8. Research on the Operation Mode of Intelligent-town Energy Internet Based on Source-Load Interaction

    Science.gov (United States)

    Li, Hao; Li, Wen; Miao, Bo; Li, Bin; Liu, Chang; Lv, Zhipeng

    2018-01-01

    On the background of the rise of intelligence and the increasing deepening of “Internet +”application, the energy internet has become the focus of the energy research field. This paper, based on the fundamental understanding on the energy internet of the intelligent town, discusses the mode of energy supply in the source-load interactive region, and gives an in-depth study on the output characteristics of the energy supply side and the load characteristics of the demand side, so as to derive the law of energy-load interaction of the intelligent-town energy internet.

  9. Which Subsidy Mode Improves the Financial Performance of Renewable Energy Firms? A Panel Data Analysis of Wind and Solar Energy Companies between 2009 and 2014

    OpenAIRE

    Huiming Zhang; Yu Zheng; Dequn Zhou; Peifeng Zhu

    2015-01-01

    The effectiveness of subsidies in improving the performance of renewable energy firms has aroused significant research attention in recent years. As subsidy modes may affect corporate financial performance,we have chosen companies specializing in wind and solar energy in the Shanghai and Shenzhen stock markets as samples.The relationships between the subsidy modes and financial performance of these two types of companies are investigated with a panel data model. Results of the total sample in...

  10. Jauch-Piron system of imprimitivities for phonons. I. Localizability in discrete space

    Science.gov (United States)

    Banach, Zbigniew; Piekarski, Sławomir

    1993-01-01

    This paper is devoted to a discussion of the notion of localizability for phonons, i.e., quasiparticles arising from the harmonic vibrations of a system of n atoms bound to one another by elastic forces. The natural tools for the analysis of localizability are the projection operators Ê(Δ) acting on the Hilbert space of one-phonon states, where Δ is an arbitrary subset of the set that consists of n vectors specifying the equilibrium positions of n atoms. The expectation value of Ê(Δ) is the probability that the phonon belongs to the atoms whose equilibrium positions are characterized by the elements of Δ. For a strongly localizable phonon all of the projection operators Ê(Δ) commute with one another, whereas in the case of a weakly localizable phonon the operators Ê(Δ1) and Ê(Δ2) do not commute when Δ1 and Δ2 overlap. With the aid of the Jauch-Piron quantum theory of localization in space, the present paper describes the method of obtaining Ê(Δ) and also shows that if in the system of n atoms there exist normal modes of zero frequency, then the phonon is only weakly localizable. Given the explicit expression for Ê(Δ), one can define the number-of-phonons operator as well as the quasiparticle analogue (given in a companion paper) of the Wigner distribution function.

  11. Isotopic phonon effects in β-rhombohedral boron--non-statistical isotope distribution.

    Science.gov (United States)

    Werheit, H; Filipov, V; Kuhlmann, U; Schwarz, U; Armbrüster, M; Antadze, M

    2012-05-02

    On the basis of the spectra of IR- and Raman-active phonons, the isotopic phonon effects in β-rhombohedral boron are analysed for polycrystalline (10)B- and (11)B-enriched samples of different origin and high-purity (nat)B single crystals. Intra- and inter-icosahedral B-B vibrations are harmonic, hence meeting the virtual crystal approximation (VCA) requirements. Deviations from the phonon shift expected according to the VCA are attributed to the anharmonic share of the lattice vibrations. In the case of icosahedral vibrations, the agreement with calculations on α-rhombohedral boron by Shirai and Katayama-Yoshida is quite satisfactory. Phonon shifts due to isotopic disorder in (nat)B are separated and determined. Some phonon frequencies are sensitive to impurities. The isotopic phonon effects yield valuable specific information on the nature of the different phonon modes. The occupation of regular boron sites by isotopes deviates significantly from the random distribution. © 2012 IOP Publishing Ltd

  12. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  13. Vibrational frequencies via total-energy calculations. Applications to transition metals

    International Nuclear Information System (INIS)

    Ho, K.; Fu, C.L.; Harmon, B.N.

    1984-01-01

    The important longitudinal ((2/3),(2/3),(2/3)) vibrational modes in Mo, Nb, and bcc Zr as well as the H-point modes in Mo and Nb have been studied using the frozen-phonon approach. These entirely first-principles calculations involve the precise evaluation of the total crystalline energy as a function of lattice displacement and yield calculated phonon frequencies to within a few percent of the experimental values. Anharmonic terms are readily obtained and are found to be very important for causing the tendency toward the ω-phase instability in bcc Zr. The charge densities and single-particle energies obtained in the course of the calculations allow a detailed analysis of the electronic response to lattice distortions and the mechanisms causing phonon anomalies. The calculations also provide first-principles benchmarks at a few wave vectors where the validity of phenomenological models can be tested or their parameters determined

  14. Multimodal and omnidirectional beam splitters for Lamb modes in elastic plates

    Directory of Open Access Journals (Sweden)

    Yabin Jin

    2016-12-01

    Full Text Available Omnidirectional beam splitters for the simultaneous control of the three fundamental Lamb modes in an elastic plate are designed and numerically studied. Beam splitters consist in radially symmetric and inhomogeneous lenses designed to redirect the incoming energy towards a given angle. In this work, these devices are designed by means of graded phononic crystals combined with thickness variations of the plate. Numerical simulations are presented to show the performance of the designed devices.

  15. Phonon-like dynamics in glasses: Coupling between damping and fragility

    International Nuclear Information System (INIS)

    Bove, Livia E.; Petrillo, C.; Fontana, A.; Ivanov, A.; Dreyfus, C.; Sokolov, A.P.

    2006-01-01

    The high-frequency dynamics of two strong glasses, v-GeO 2 and v-ZnCl 2 , were studied by means of inelastic neutron scattering experiments carried out with three triple-axis spectrometers in order to selectively access either a wide kinematic region or a high-energy resolution. The experimental spectra show well-defined dispersive acoustic excitations coexisting with non-dispersive waves. A thorough analysis of the inelastic line shape of longitudinal acoustic excitations provides estimates of the damping factors, which can be compared to the results of several earlier inelastic X-ray estimates for a wide class of inorganic glasses. A striking relation is observed between the microscopic damping of phonon-like modes in these glasses well below T g and the fragility of the supercooled liquids approaching the glass transition, thus suggesting new means of investigation of the glass transition phenomenology

  16. Phonon bottleneck identification in disordered nanoporous materials

    Science.gov (United States)

    Romano, Giuseppe; Grossman, Jeffrey C.

    2017-09-01

    Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.

  17. Phonon number measurements using single photon opto-mechanics

    International Nuclear Information System (INIS)

    Basiri-Esfahani, S; Akram, U; Milburn, G J

    2012-01-01

    We describe a system composed of two coupled optical cavity modes with a coupling modulated by a bulk mechanical resonator. In addition, one of the cavity modes is irreversibly coupled to a single photon source. Our scheme is an opto-mechanical realization of the Jaynes–Cummings model where the qubit is a dual rail optical qubit while the bosonic degree of freedom is a matter degree of freedom realized as the bulk mechanical excitation. We show the possibility of engineering phonon number states of the mechanical oscillator in such a system by computing the conditional state of the mechanics after successive photon counting measurements. (paper)

  18. Phonon dispersion models for MgB{sub 2} with application of pressure

    Energy Technology Data Exchange (ETDEWEB)

    Alarco, Jose A., E-mail: jose.alarco@qut.edu.au; Talbot, Peter C., E-mail: p.talbot@qut.edu.au; Mackinnon, Ian D.R., E-mail: ian.mackinnon@qut.edu.au

    2017-05-15

    Highlights: • Ab initio DFT MgB{sub 2} phonon dispersion for pressures up to 20 GPa are presented. • Extent of E{sub 2g} phonon anomaly and thermal energy, T{sub δ,} are pressure dependent. • Phonon anomaly thermal energy equivalent to experimental T{sub c} values for MgB{sub 2}. • Computational method to measure T{sub δ} is an effective predictor of T{sub c}. - Abstract: We evaluate, via the Local Density and the Generalised Gradient Approximations to the Density Functional Theory (DFT), the change in form and extent of the E{sub 2g} phonon anomaly of MgB{sub 2} with increase in applied pressure up to 20 GPa. Ab initio DFT calculations on the phonon dispersion (PD) for MgB{sub 2} show a phonon anomaly symmetrically displaced around Γ, the reciprocal lattice origin. This anomaly is related to nesting between diametrically opposite sides of tubular elements of Fermi surfaces, which correspond to sigma bonding and run approximately parallel to the Γ–A reciprocal space direction. The anomaly is parallel to Γ–A and along Γ–M and Γ–K. The extent of the E{sub 2g} phonon anomaly, δ, along Γ–M and Γ–K is a measure of the thermal energy, T{sub δ}, that matches within error the experimental onset superconducting transition temperature, T{sub c}. Ab initio DFT calculations with pressure for −5 GPa < P < 20 GPa show a linear reduction in T{sub δ} that closely matches experimental T{sub c} values for MgB{sub 2}. For phonon-mediated superconductors with AlB{sub 2}–type structures, the thermal energy of the phonon anomaly, T{sub δ}, is a reliable predictor of T{sub c}.

  19. A new hybrid phononic crystal in low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z., E-mail: zhangz@dlut.edu.cn; Han, X.K.

    2016-11-25

    A novel hybrid phononic crystal is designed to obtain wider band gaps in low frequency range. The hybrid phononic crystal consists of rubber slab with periodic holes and plumbum stubs. In comparison with the phononic crystal without periodic holes, the new designed phononic crystal can obtain wider band gaps and better vibration damping characteristics. The wider band gap can be attributed to the interaction of local resonance and Bragg scattering. The controlling of the BG is explained by the strain energy of the hybrid PC and the introduced effective mass. The effects of the geometrical parameters and the shapes of the stubs and holes on the controlling of waves are further studied. - Highlights: • A novel hybrid PC structure is proposed in current work. The new designed hybrid PC shows wider BG in low frequency range and better vibration damping characteristics. • Strain energy and effective mass are introduced for the investigations on the mechanism of the controlling of BGs in PC structure. • The effects of the geometrical parameters and the shapes of the stubs and holes on the controlling of waves are further studied for optimal design.

  20. Energy levels of an anisotropic three-dimensional polaron in a magnetic field

    International Nuclear Information System (INIS)

    Brancus, D. E. N.; Stan, G.

    2001-01-01

    In the context of the improved Wigner-Brillouin theory, the energy levels are found of a Frohlich polaron in a uniaxial anisotropic polar semiconductor with complex structure, placed in a magnetic field directed either along the optical axis or orthogonal to it. All sources of anisotropy that are contained in the shape of constant-energy surfaces of the bare electron, the electron - optical-phonon interaction, and the frequency spectrum of the extraordinary phonon modes are considered. Analytical results for the electron-phonon interaction correction to the Landau levels below the optical-phonon continuum are given and, numerical results for the magnetic-field dependence of the cyclotron resonance frequency at low temperature are presented for the particular case of the layered semiconductors InSe and GaSe. Although the interaction between the bare electron and quasitransverse optical-phonon modes is weak, these modes play an important role in the pinning of Landau levels. The results given by Das Sarma for a two-dimensional isotropic magnetopolaron are generalized to the anisotropic uniaxial case by taking formally m # parallel→infinity# in the expression of the perturbed Landau levels found when the magnetic field is directed along the optical axis, m # parallel# being the component of the bare-electron effective-mass tensor along the optical axis

  1. The manifestation of spin-phonon coupling in CaMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Goian, V., E-mail: goian@fzu.cz; Kamba, S.; Borodavka, F.; Nuzhnyy, D.; Savinov, M. [Institute of Physics, The Czech Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Belik, A. A. [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-04-28

    Recently predicted presence of spin-phonon coupling in the CaMnO{sub 3} is experimentally confirmed in infrared (IR), Raman and time-domain THz spectra. Most of phonon frequencies seen below 350 cm{sup −1} exhibit significant shifts on cooling below antiferromagnetic phase transition at T{sub N} ≅ 120 K. Moreover, several new modes activate in the IR and Raman spectra on cooling below T{sub N}. Sum of phonon contributions to static permittivity exhibits small but reliable anomaly at T{sub N}. On the other hand, the spin-phonon coupling is not manifested in temperature dependence of radio-frequency permittivity, because intrinsic permittivity is screened by extrinsic contribution from conductivity, which enhances the permittivity to giant values.

  2. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes.

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xia, Xunfeng; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production.

  3. Upconversion Effects in Resonantly Pumped Er3+ and Pr3+ Doped Low Phonon-Energy Crystals for Eye-Safe Laser Applications

    Science.gov (United States)

    2015-07-14

    271-278 (2007). [15] Ferrier, A., Velazquez ,M., Doualan,J. L. and Moncorge, R., “Energy level and excited state absorption properties of Er3...Jian-hui, and Yang Gaobo, Optoelectronics Letters 8 (2012) 0273. [33] A. Ferrier, M. Velazquez , J. L. Doualan, and R. Moncorge, J. of AppL. Phys

  4. Effect of the energy deposition modes on the structural stability of pure zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Simeone, D. [Materiaux fonctionnels pour l' energie, CEA-CNRS-Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS, 92295 Chatenay-Malabry (France)], E-mail: david.simeone@cea.fr; Baldinozzi, G.; Gosset, D. [Materiaux fonctionnels pour l' energie, CEA-CNRS-Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS, 92295 Chatenay-Malabry (France); LeCaer, S. [DSM/DRECAM/SCM/URA 331 CNRS, CEA Saclay, 91191 Gif sur Yvette (France); Mazerolles, L. [CECM, UPR CNRS 2801, 94407 Vitry sur Seine (France); Monnet, I.; Bouffard, S. [CIRIL, CEA-CNRS-ENSICAEN, 14070 Caen Cedex 5 (France)

    2008-06-15

    One of the most important goals in materials science is to be able to design materials with specific properties. Irradiation seems to be a powerful tool for the design of advanced materials because of its ability to modify over different scales the microstructure of solids. Nowadays, it is clearly proved that irradiation induces order-disorder phase transitions in metallic alloys and in some ceramics. Recent investigations on pure monoclinic zirconia have clearly shown that a displacive phase transition can be induced by irradiation. In this work, the impact of the energy deposition modes on the structural stability of pure monoclinic ZrO{sub 2} is discussed in detail. Based on experimental evidences, a microscopic model is proposed to explain the displacive phase transition observed in this material after irradiation by low and high energy ions within the Landau theory framework. Even if defects generated by low and high energy ions are quite different, these defects are able to quench the same tetragonal phase in pure zirconia.

  5. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes

    Directory of Open Access Journals (Sweden)

    Bodee Nutho

    2014-11-01

    Full Text Available In the present study, our aim is to investigate the preferential binding mode and encapsulation of the flavonoid fisetin in the nano-pore of β-cyclodextrin (β-CD at the molecular level using various theoretical approaches: molecular docking, molecular dynamics (MD simulations and binding free energy calculations. The molecular docking suggested four possible fisetin orientations in the cavity through its chromone or phenyl ring with two different geometries of fisetin due to the rotatable bond between the two rings. From the multiple MD results, the phenyl ring of fisetin favours its inclusion into the β-CD cavity, whilst less binding or even unbinding preference was observed in the complexes where the larger chromone ring is located in the cavity. All MM- and QM-PBSA/GBSA free energy predictions supported the more stable fisetin/β-CD complex of the bound phenyl ring. Van der Waals interaction is the key force in forming the complexes. In addition, the quantum mechanics calculations with M06-2X/6-31G(d,p clearly showed that both solvation effect and BSSE correction cannot be neglected for the energy determination of the chosen system.

  6. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  7. Ballooning modes in the ELMO Bumpy Square configuration using the generalized kinetic energy principle

    International Nuclear Information System (INIS)

    Spong, D.A.

    1984-01-01

    In the bumpy square configuration, toroidal curvature is localized in the corner sections rather than uniformly distributed, as is the case in the existing circular ELMO Bumpy Torus (EBT) configuration. This feature, coupled with the fact that the magnetic field is higher in the corner sections, results in a number of distinct advantages with respect to particle confinement, heating, and transport. It might be expected, however, that ballooning modes should have some tendency to concentrate in the corner sections - especially along the outer field lines where the curvature and pressure gradients are unfavorable. Here we examine the stability of such a configuration using a ballooning mode equation derived from the generalized kinetic energy principle. The side and corner sections of the square are treated with a piecewise constant approximation and matched at a transition boundary to obtain the stability condition. This retains the ring-core coupling and yields both the low β/sub c/ diamagnetic well stabilization condition and a high-β/sub c/ stability limit analogous to the Lee-Van Dam-Nelson β/sub c/ limit, where β/sub c/ is the core plasma beta. Due to the high magnetic field in the corners and the relatively weak curvature there (approx. = 1/2 of the curvaure in the bumpy sections), this upper β/sub c/ limit is not significantly changed from that which would be present in the conventional circular bumpy torus configuration

  8. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  9. Negative refraction imaging of solid acoustic waves by two-dimensional three-component phononic crystal

    International Nuclear Information System (INIS)

    Li Jing; Liu Zhengyou; Qiu Chunyin

    2008-01-01

    By using of the multiple scattering methods, we study the negative refraction imaging effect of solid acoustic waves by two-dimensional three-component phononic crystals composed of coated solid inclusions placed in solid matrix. We show that localized resonance mechanism brings on a group of flat single-mode bands in low-frequency region, which provides two equivalent frequency surfaces (EFS) close to circular. The two constant frequency surfaces correspond to two Bloch modes, a right-handed and a left-handed, whose leading mode are respectively transverse (T) and longitudinal (L) modes. The negative refraction behaviors of the two kinds of modes have been demonstrated by simulation of a Gaussian beam through a finite system. High-quality far-field imaging by a planar lens for transverse or longitudinal waves has been realized separately. This three-component phononic crystal may thus serve as a mode selector in negative refraction imaging of solid acoustic waves

  10. Artificial Neural Networks for New Operating Modes Determination for Variable Energy Cyclotron

    International Nuclear Information System (INIS)

    Abd El- Kawy, M.; Ismail, M.Sh.; Abdel-Bary, M.; Ouda, M.M.

    2012-01-01

    An artificial neural network System (ANNS) has been designed to determine the required parameters for new Operating Modes for the MGC 20 cyclotron operation. The inputs of the ANN are the required beam parameters (the particle name, the particle energy, the beam intensity and the duty factor). The outputs of the ANN are the value of the required parameters that will be applied by the cyclotron operator to the cyclotron elements or devices. These elements are the magnetic lenses, the magnetic correctors, the concentric coils, and the harmonic coils. Four ANN have been used. The input signals are distributed to the Four ANN inputs. The outputs of the Four ANN will be calibrated and then directly applied by the operator to produce the required beam. A three layers ANN structure has been used and the feed forward back propagation algorithm has been used for training. The MATLAB software has been used to simulate the ANN structure

  11. Interaction of a single mode field cavity with the 1D XY model: Energy spectrum

    International Nuclear Information System (INIS)

    Tonchev, H; Donkov, A A; Chamati, H

    2016-01-01

    In this work we use the fundamental in quantum optics Jaynes-Cummings model to study the response of spin 1/2chain to a single mode of a laser light falling on one of the spins, a focused interaction model between the light and the spin chain. For the spin-spin interaction along the chain we use the XY model. We report here the exact analytical results, obtained with the help of a computer algebra system, for the energy spectrum in this model for chains of up to 4 spins with nearest neighbors interactions, either for open or cyclic chain configurations. Varying the sign and magnitude of the spin exchange coupling relative to the light-spin interaction we have investigated both cases of ferromagnetic or antiferromagnetic spin chains. (paper)

  12. Shelving-style QND phonon-number detection in quantum optomechanics

    International Nuclear Information System (INIS)

    Yanay, Yariv; Clerk, Aashish A

    2017-01-01

    We propose a new method for optomechanical quantum non-demolition detection of phonon number, based on a ‘shelving’ style measurement. The scheme uses a two-mode optomechanical system where the frequency splitting of the two photonic modes is near-resonant with the mechanical frequency. The combination of a strong optical drive and the underlying nonlinear optomechanical interaction gives rise to spin-like dynamics which facilitate the measurement. This approach allows phonon number measurement to be accomplished parametrically faster than in other schemes which are restricted to weak driving. (paper)

  13. Effect of pressure, temperature, fluorine doping, and rare earth elements on the phonon density of states of LFeAsO studied by nuclear inelastic scattering

    Science.gov (United States)

    Sergueev, I.; Hermann, R. P.; Bessas, D.; Pelzer, U.; Angst, M.; Schweika, W.; McGuire, M. A.; Sefat, A. S.; Sales, B. C.; Mandrus, D.; Rüffer, R.

    2013-02-01

    We have performed systematic studies of the lattice dynamics in LFeAsO (L=La, Ce, Pr, Nd, Sm) in the parent and in the ˜10% F-doped compounds as a function of pressure and temperature. We have found that the modifications in the partial Fe density of phonon states are mainly governed by the Fe-As bond length. The change of this bond length explains the change of the Fe density of phonon states above 25 meV. We further observe anomalies in the behavior of the phonon mode near 16 meV. In the parent phase, this mode softens anomalously upon cooling through the structural phase transition. Upon F doping, this mode hardens indicating a strong electron-phonon coupling. This suggests that the corresponding phonons play an important role in the competition between superconductivity and magnetism in these materials.

  14. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    Science.gov (United States)

    Shen, Xiaohan

    less than 100 nm was observed. The longitudinal acoustic phonon transport in silicon (Si) nanorod with confined diameter and length was investigated. The guided phonon modes in Si nanorod with different frequencies and wave vectors were observed. The mean-free-path of the guided phonons in Si nanorod was found to be larger than the effective phonon mean-free-path in Si film, because of the limited phonon scattering channels in Si nanorod. The phonon density of states and dispersion relation strongly depend on the size and boundary conditions of nanorod. Our work demonstrates the possibility of modifying the phonon transport properties in nanoscale materials by designing the size and boundary conditions, hence the control of thermal conductivity. In addition, the periodicity effect of nanostructures on acoustic phonon transport was investigated in silicon dioxide (SiO2) nanorod arrays. The lattice modes and mechanical eigenmodes were observed, and the pitch effect on lattice modes was discussed. A narrowband acoustic phonon spectroscopic technique with tunable frequency and spectral width throughout GHz frequency range has been developed to investigate the frequency-dependent acoustic phonon transport in nanoscale materials. The quadratic frequency dependence of acoustic attenuation of SiO2 and indium tin oxide (ITO) thin films was observed, and the acoustic attenuation of ITO was found to be larger than SiO2. Moreover, the acoustic control on mechanical resonance of nanoscale materials using the narrowband acoustic phonon source was demonstrated in tungsten thin film.

  15. Low temperature anomaly of LO phonons in La1.85Sr0.15CuO4 and YBa2Cu3O7

    International Nuclear Information System (INIS)

    Egami, T.; McQueeney, R. J.; Petrov, Y.; Yethiraj, M.; Shirane, G.; Endoh, Y.

    1999-01-01

    Inelastic neutron scattering measurements of La 1.85 Sr 0.15 CuO 4 and YBa 2 Cu 3 O 7 show that the dispersion of the high energy LO phonon mode along the (1,0,0) direction is strongly temperature dependent, and at low temperatures develops an anomalous feature indicative of dynamic cell-doubling. The anomaly does not change through superconducting transition and gradually disappears between 50 and 250 K in LSCO. Possible implications are discussed. (c) 1999 American Institute of Physics

  16. Anomalous Acoustic Plasmon Mode from Topologically Protected States

    Science.gov (United States)

    Jia, Xun; Zhang, Shuyuan; Sankar, Raman; Chou, Fang-Cheng; Wang, Weihua; Kempa, K.; Plummer, E. W.; Zhang, Jiandi; Zhu, Xuetao; Guo, Jiandong

    2017-09-01

    Plasmons, the collective excitations of electrons in the bulk or at the surface, play an important role in the properties of materials, and have generated the field of "plasmonics." We report the observation of a highly unusual acoustic plasmon mode on the surface of a three-dimensional topological insulator (TI) Bi2Se3 , using momentum resolved inelastic electron scattering. In sharp contrast to ordinary plasmon modes, this mode exhibits almost linear dispersion into the second Brillouin zone and remains prominent with remarkably weak damping not seen in any other systems. This behavior must be associated with the inherent robustness of the electrons in the TI surface state, so that not only the surface Dirac states but also their collective excitations are topologically protected. On the other hand, this mode has much smaller energy dispersion than expected from a continuous media excitation picture, which can be attributed to the strong coupling with surface phonons.

  17. Features of electron-phonon interactions in nanotubes with chiral symmetry in magnetic field

    CERN Document Server

    Kibis, O V

    2001-01-01

    Interaction of the electrons with acoustic phonons in the nanotube with chiral symmetry by availability of the magnetic field, parallel to the nanotube axis, is considered. It is shown that the electron energy spectrum is asymmetric relative to the electron wave vector inversion and for that reason the electron-phonon interaction appears to be different for similar phonons with mutually contrary directions of the wave vector. This phenomenon leads to origination of the electromotive force by the spatially uniform electron gas heating and to appearance of the quadrupole component in the nanotube volt-ampere characteristics

  18. Influence of the two-phonon admixture on the M1-resonance in spherical nuclei

    International Nuclear Information System (INIS)

    Ponomarev, V.Ju.; Stoyanov, Ch.; Vdovin, A.I.; Voronov, V.V.

    1979-01-01

    The influence of the two-phonon admixtures on the M1-resonance is spherical nuclei with mass numbers 60 <= A <= 140 is studied. The calculations are performed within the quasiparticle phonon nuclear model with factorized multipole and spin-multipole forces. In nuclei with the number of neutrons 50,82 the role of the two-phonon admixtures is insignificant whereas in other nuclei especially in those with strong pairing in the proton and neutron schemes it is significant. The radiative strength functions are calculated at the neutron binding energy. The results are compared with the experimental data and calculations of other authors

  19. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions

    DEFF Research Database (Denmark)

    Uskov, A. V.; Jauho, Antti-Pekka; Tromborg, Bjarne

    2000-01-01

    Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in Q......: second-order elastic interaction between quantum dot charge carriers and LO phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing....

  20. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.

    Science.gov (United States)

    Hu, Junhui; Jong, Januar; Zhao, Chunsheng

    2010-01-01

    To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.

  1. Proper and improper zero energy modes in Hartree-Fock theory and their relevance for symmetry breaking and restoration.

    Science.gov (United States)

    Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E

    2013-10-21

    We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.

  2. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    Science.gov (United States)

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  3. Phonon lineshapes in atom-surface scattering

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, E-28006 Madrid (Spain)

    2010-08-04

    Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.

  4. The Electron-Phonon Interaction in Strongly Correlated Systems

    International Nuclear Information System (INIS)

    Castellani, C.; Grilli, M.

    1995-01-01

    We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)

  5. Site-sensitive energy transfer modes in Ca3Al2O6: Ce(3+)/Tb(3+)/Mn(2+) phosphors.

    Science.gov (United States)

    Zhang, Jilin; He, Yani; Qiu, Zhongxian; Zhang, Weilu; Zhou, Wenli; Yu, Liping; Lian, Shixun

    2014-12-28

    Ce(3+)/Eu(2+), Tb(3+) and Mn(2+) co-doping in single-phase hosts is a common strategy to achieve white-light phosphors via energy transfer, which provides a high color rendering index (CRI) value and good color stability. However, not all hosts are suitable for white-light phosphors due to inefficient energy transfer. In this study, the site-sensitive energy transfer from different crystallographic sites of Ce(3+) to Tb(3+)/Mn(2+) in Ca3Al2O6 has been investigated in detail. The energy transfer from purplish-blue Ce(3+) to Tb(3+) is an electric dipole-dipole mode, and the calculated critical distance (Rc) suggests the existence of purplish-blue Ce(3+)-Tb(3+) clusters. No energy transfer is observed from purplish-blue Ce(3+) to Mn(2+). In co-doped phosphors based on greenish-blue Ce(3+), however, the radiative mode dominates the energy transfer from Ce(3+) to Tb(3+), and an electric dipole-quadrupole interaction is responsible for the energy transfer from Ce(3+) to Mn(2+). A detailed discussion on the site-sensitive energy transfer modes might provide a new aspect to discuss and understand the possibilities and mechanisms of energy transfer, according to certain crystallographic sites in a complex host with different cation sites, as well as provide a possible approach in searching for single-phase white-light-emitting phosphors.

  6. Electron-phonon coupling in one dimension

    International Nuclear Information System (INIS)

    Apostol, M.; Baldea, I.

    1981-08-01

    The Ward identity is derived for the electron-phonon coupling in one dimension and the spectrum of elementary excitations is calculated by assuming that the Fermi distribution is not strongly distorted by interaction. The electron-phonon vertex is renormalized in the case of the forward scattering and Migdal's theorem is discussed. A model is proposed for the giant Kohn anomaly. The dip in the phonon spectrum is obtained and found to be in agreement with the experimental data for KCP. (author)

  7. Robust Sliding Mode Control of Air Handling Unit for Energy Efficiency Enhancement

    Directory of Open Access Journals (Sweden)

    Awais Shah

    2017-11-01

    Full Text Available In order to achieve feasible and copacetic low energy consuming building, a robust and efficient air conditioning system is necessary. Since heating ventilation and air conditioning systems are nonlinear and temperature and humidity are coupled, application of conventional control is inappropriate. A multi-input multi-output nonlinear model is presented. The temperature and humidity of thermal zone are ascendance by the manipulation of the water and air flow rates. A sliding mode controller (SMC is designed to ensure robust performance of air handling unit in the presence of uncertainties. A simple proportional-integral-derivative (PID controller is used as a comparison template to highlight the efficiency of the proposed controller. To accomplish tracking targets, a variety of desired temperature and relative humidity commands (including ramp and combination with sequence of steps are investigated. According to simulation results, SMC transcends the PID controller in terms of settling time, steady state and rise time, which makes SMC more energy efficient.

  8. Experimental determination of the berilium phonon spectra using inelastic neutro scattering

    International Nuclear Information System (INIS)

    Sirota, N.N.; Bulat, I.A.

    1976-01-01

    A study has been made of in elastic scattering of cold neutrons with energies between 0.0022 and 0.00523 eV by polycrystalline beryllium and restoration of its phonon spectrum. The specimen studied is a block of polycrystalline beryllium. In the case of beryllium the averaging of coherent effects upon scattering on a thick specimen takes place as a result of multiple internal Bragg-type reflections of neutrons which undergo inelastic scattering with absorption of phonons. The thickness of the spheric averaging layer for Esub(6) = 0.00523 eV is almost equal to the maximum dimension of the Brillouin band. The phonon spectrum of beryllium for three mean energies used of incident neutrons has been demonstrated. The phonon spectrum of beryllium, measured for the first time, is of interest for quantitative calculations of a number of its physical properties

  9. Investigating the quasiparticle dynamics operating in the electrodes of superconducting tunnel junctions using nanosecond phonon pulses

    CERN Document Server

    Steele, A

    2000-01-01

    this thesis data from phonon experiments are used to directly determine values for the parameters of an STJ such as the quasiparticle loss and tunnel rates in its electrodes. It is also shown how the input energy, in the form of phonons capable of breaking Cooper pairs, and the corresponding charge output from the device can be determined. These values are then compared with those obtained from x-ray absorption data. This thesis is concerned with the use of nanosecond phonon pulses to study quasiparticle behaviour in the electrodes of high-quality niobium superconducting tunnel junctions (STJs). This work is part of a collaboration with the Astrophysics Research and Development Division of the European Space Agency (ESA) at ESTEC. STJs are being widely investigated as photon detectors over a broad range of the electromagnetic spectrum. They potentially offer excellent energy resolution, time response and photon counting capabilities. The primary aim of this research was to use phonon pulses to investigate qua...

  10. Electron-phonon interactions from first principles

    Science.gov (United States)

    Giustino, Feliciano

    2017-01-01

    This article reviews the theory of electron-phonon interactions in solids from the point of view of ab initio calculations. While the electron-phonon interaction has been studied for almost a century, predictive nonempirical calculations have become feasible only during the past two decades. Today it is possible to calculate from first principles many materials properties related to the electron-phonon interaction, including the critical temperature of conventional superconductors, the carrier mobility in semiconductors, the temperature dependence of optical spectra in direct and indirect-gap semiconductors, the relaxation rates of photoexcited carriers, the electron mass renormalization in angle-resolved photoelectron spectra, and the nonadiabatic corrections to phonon dispersion relations. In this article a review of the theoretical and computational framework underlying modern electron-phonon calculations from first principles as well as landmark investigations of the electron-phonon interaction in real materials is given. The first part of the article summarizes the elementary theory of electron-phonon interactions and their calculations based on density-functional theory. The second part discusses a general field-theoretic formulation of the electron-phonon problem and establishes the connection with practical first-principles calculations. The third part reviews a number of recent investigations of electron-phonon interactions in the areas of vibrational spectroscopy, photoelectron spectroscopy, optical spectroscopy, transport, and superconductivity.

  11. Realization of phonon laser with femtosecond technology

    Science.gov (United States)

    Sun, Chi-Kuang; Huang, Yue-Kai; Chern, Gia-Wei

    2002-06-01

    One of the most desirable properties of phonon system is sound amplification by stimulated emission of phonon radiation, coined as SASER or called phonon laser or acoustic laser, which is the acoustic counterpart of LASER. Phonon stimulated emission, or sound amplification, has been previously observed fro several occasions in extremely low temperatures, however a lasing behavior of the phonon oscillators has never been established. It is also desirable to build a phonon laser operating at room temperature. Here we present an optically pumped nano-sized phonon laser with an output acoustic wavelength of 9.3 nm, operating at room temperature. The nano phonon laser is composed by InGaN/GaN multiple-quantum-wells (MQWs). By using femtosecond ultraviolet pulses as pumping sources, coherent acoustic phonon amplification with large acoustic gain was observed. When the induced acoustic gain is higher than the acoustic loss due to its traveling nature, a clear laser-like threshold behavior was observed, which resembles a pulsed optical laser. This demonstration will open a new way toward nano-ultrasonics.

  12. Comparison of Sliding Mode Control and Fuzzy Logic control applied to Variable Speed Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Souhila Rached Zine

    2015-08-01

    Full Text Available wind energy features prominently as a supplementary energy booster. It does not pollute and is inexhaustible. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In This case, the MPPT control becomes important. To realize this control, strategy conventional Proportional and Integral (PI controller is usually used. However, this strategy cannot achieve better performance. This paper proposes other control methods of a turbine which optimizes its production such as fuzzy logic, sliding mode control. These methods improve the quality and energy efficiency. The proposed Sliding Mode Control (SMC strategy and the fuzzy controllers have presented attractive features such as robustness to parametric uncertainties of the turbine, simplicity of its design and good performances. The simulation result under Matlab\\Simulink has validated the performance of the proposed MPPT strategies.

  13. Influence of the electron-phonon iinteraction on phonon heat conduction in a molecular nanowire

    Directory of Open Access Journals (Sweden)

    Galović Slobodanka P.

    2006-01-01

    Full Text Available A model for phonon heat conduction in a molecular nanowire is developed. The calculation takes into account modification of the acoustic phonon dispersion relation due to the electron-phonon interaction. The results obtained are compared with models based upon a simpler, Callaway formula.

  14. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    Energy Technology Data Exchange (ETDEWEB)

    Toomes, R.; Booth, N.A.; Woodruff, D.P. [Univ. of Warwick, Coventry (United Kingdom)] [and others

    1997-04-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an `image` of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems.

  15. A triple hybrid micropower generator with simultaneous multi-mode energy harvesting

    Science.gov (United States)

    Uluşan, H.; Chamanian, S.; Pathirana, W. P. M. R.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2018-01-01

    This study presents a triple hybrid energy harvesting system that combines harvested power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters into a single DC supply. A power management circuit is designed and implemented in 180 nm standard CMOS technology based on the distinct requirements of each harvester, and is terminated with a Schottky diode to avoid reverse current flow. The system topology hence supports simultaneous power generation and delivery from low and high frequency vibrations as well as temperature differences in the environment. The ultra-low DC voltage harvested from TE generator is boosted with a cross-coupled charge-pump driven by an LC oscillator with fully-integrated center-tapped differential inductors. The EM harvester output was rectified with a self-powered and low drop-out AC/DC doubler circuit. The PZT interface electronics benefits from peak-to-peak cycle of the harvested voltage through a negative voltage converter followed by synchronous power extraction and DC-to-DC conversion through internal switches, and an external inductor. The hybrid system was tested with a wearable in-house EM energy harvester placed wrist of a jogger, a commercial low volume PZT harvester, and DC supply as the TE generator output. The system generates more than 1.2 V output for load resistances higher than 50 kΩ, which corresponds to 24 μW to power wearable sensors. Simultaneous multi-mode operation achieves higher voltage and power compared to stand-alone harvesting circuits, and generates up to 110 μW of output power. This is the first hybrid harvester circuit that simultaneously extracts energy from three independent sources, and delivers a single DC output.

  16. Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals.

    Science.gov (United States)

    Wei, Zhiyong; Wehmeyer, Geoff; Dames, Chris; Chen, Yunfei

    2016-10-07

    Molecular dynamics simulations are performed to investigate the thermal transport properties of a three-dimensional (3D) anisotropic phononic crystal consisting of silicon nanowires and films. The calculation shows that the in-plane thermal conductivity is negatively correlated with the out-of-plane thermal conductivity upon making geometric changes, whether varying the nanowire diameter or the film thickness. This enables the anisotropy ratio of thermal conductivity to be tailored over a wide range, in some cases by more than a factor of 20. Similar trends in thermal conductivity are also observed from an independent phonon ray tracing simulation considering only diffuse boundary scattering effects, though the range of anisotropy ratios is smaller than that obtained in MD simulation. By analyzing the phonon dispersion relation with varied geometric parameters, it is found that increasing the nanowire diameter increases the out-of-plane acoustic phonon group velocities, but reduces the in-plane longitudinal and fast transverse acoustic phonon group velocities. The calculated phonon irradiation further verified the negative correlation between the in-plane and the out-of-plane thermal conductivity. The proposed 3D phononic crystal may find potential application in thermoelectrics, energy storage, catalysis and sensing applications owing to its widely tailorable thermal conductivity.

  17. Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Daniele M. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Guo, Liang [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Lin, Jia [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Dou, Letian [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Yang, Peidong [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Fleming, Graham R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States)

    2017-06-29

    A hot phonon bottleneck may be responsible for slow hot carrier cooling in methylammonium lead iodide hybrid perovskite, creating the potential for more efficient hot carrier photovoltaics. In room-temperature 2D electronic spectra near the band edge, we observe in this paper amplitude oscillations due to a remarkably long lived 0.9 THz coherent phonon population at room temperature. This phonon (or set of phonons) is assigned to angular distortions of the Pb–I lattice, not coupled to cation rotations. The strong coupling between the electronic transition and the 0.9 THz mode(s), together with relative isolation from other phonon modes, makes it likely to cause a phonon bottleneck. Finally, the pump frequency resolution of the 2D spectra also enables independent observation of photoinduced absorptions and bleaches independently and confirms that features due to band gap renormalization are longer-lived than in transient absorption spectra.

  18. Phonon-mediated particle detection using superconducting tungsten transition-edge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, Kent David [Stanford U.

    1995-02-01

    most promising technology discussed here is a novel sensor in which the temperature of the superconducting W film is held constant within its transition by an electrothermal feedback process. Energy deposited in the film by a particle interaction is removed by a reduction in the feedback Joule heating. This mode of operation leads to substantial improvements in resolution, linearity, dynamic range, and count rate. The sensor consists of a low impedance W film pad that is voltage biased. Particle interactions cause current pulses that are measured with a DC SQUID array. The fundamental limits on the energy resolution of this detector are analyzed, and found to be below the rms thermodynamic energy fluctuations in the film, and better than any existing technology operating at the same temperature, count rate, and absorber heat capacity. The enhancement of this electrothermal feedback technology with quasiparticle trapping is also explored. In this approach, superconducting Al thin film pads are placed in electrical contact with W lines. When phonons enter the Al film, they create quasiparticles which diffuse into the W lines on times of ~ 100 ns. Once in the W films they are rapidly thermalized. This enhancement allows the instrumentation of large surface areas with smaller W heat capacity. Using the quasiparticle trap enhanced electrothermal feedback technology, an energy resolution of < 400 eV FWHM is measured for 6 keV x-rays interacting on the backside of a 1mm thick silicon substrate. This sensitivity is sufficient for the construction of a dark matter detector, which will begin this year. Finally, the application of these technologies to other problems, including high resolution x-ray spectroscopy, infrared bolometry, and the resolution of individual low energy (~ 1 eV) photons is described.

  19. Femtosecond study of A1g phonons in the strong 3D topological insulators: From pump-probe to coherent control

    Science.gov (United States)

    Hu, Jianbo; Igarashi, Kyushiro; Sasagawa, Takao; Nakamura, Kazutaka G.; Misochko, Oleg V.

    2018-01-01

    Fully symmetric A1g phonons are expected to play a dominant role in electron scattering in strong topological insulators (TIs), thus limiting the ballistic transport of future electronic devices. Here, we report on femtosecond time-resolved observation of a pair of A1g coherent phonons and their optical control in two strong 3D TIs, Bi2Te3 and Bi2Se3, by using a second pump pulse in ultrafast spectroscopy measurements. Along with well-defined phonon properties such as frequency and lifetime, an obvious phonon chirp has been observed, implying a strong coupling between photo-carriers and lattices. The coherent phonon manipulation, on the other hand, allows us to change the phonon amplitude selectively but does not affect either the frequency or coherence lifetime of the chosen mode.

  20. Topologically protected elastic waves in one-dimensional phononic crystals of continuous media

    Science.gov (United States)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-01-01

    We report the design of silica-based 1D phononic crystals (PnCs) with topologically distinct complete phononic bandgaps (PnBGs) and the observation of a topologically protected state of elastic waves at their interface. By choosing different structural parameters of unit cells, two PnCs can possess a common PnBG with different topological natures. At the interface between the two PnCs, a topological interface mode with a quality factor of ∼5,650 is observed in the PnBG. Spatial confinement of the interface mode is also confirmed by the photoelastic imaging technique. Such topologically protected elastic states are potentially applicable in the construction of novel phononic devices.

  1. Molecular-dynamics theory of the temperature-dependent surface phonons of W(001)

    International Nuclear Information System (INIS)

    Wang, C.Z.; Fasolino, A.; Tosatti, E.

    1987-04-01

    We study the temperature-dependent zone-boundary surface phonons across the c(2x2)→1x1 reconstruction phase transition of the clean W(001) surface. Velocity-velocity correlations and hence the phonon spectral densities are calculated by molecular dynamics for the surface atoms of a finite thickness (001) slab, with interatomic potentials established in a previous study of the surface statics. Our calculated k = (1/2,1/2)(2π/a) surface phonon are dominated by three main low-frequency modes. Of these, the longitudinal and the shear horizontal are reconstruction-related and display critical broadening and softening at the phase transition, while the third, the shear vertical, is basically unaffected. The reconstruction phase mode, shear horizontal, appears to be responsible for the phase fluctuations which destroy long-range order at the transition. (author). 30 refs, 12 figs

  2. THz elastic dynamics in finite-size CoFeB-MgO phononic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrichs, Henning, E-mail: hulrich@gwdg.de; Meyer, Dennis; Müller, Markus; Wittrock, Steffen; Mansurova, Maria [I. Physical Institute, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Walowski, Jakob; Münzenberg, Markus [Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany)

    2016-10-14

    In this article, we present the observation of coherent elastic dynamics in a nano-scale phononic superlattice, which consists of only 4 bilayers. We demonstrate how ultra-short light pulses with a length of 40 fs can be utilized to excite a coherent elastic wave at 0.535 THz, which persist over about 20 ps. In later steps of the elastic dynamics, modes with frequency of 1.7 THz and above appear. All these modes are related to acoustic band gaps. Thus, the periodicity strongly manifests in the wave physics, although the system under investigation has only a small number of spatial periods. To further illustrate this, we show how by breaking the translational invariance of the superlattice, these features can be suppressed. Discussed in terms of phonon blocking and radiation, we elucidate in how far our structures can be considered as useful building blocks for phononic devices.

  3. Edge energy transport barrier and turbulence in the I-mode regime on Alcator C-Moda)

    Science.gov (United States)

    Hubbard, A. E.; Whyte, D. G.; Churchill, R. M.; Cziegler, I.; Dominguez, A.; Golfinopoulos, T.; Hughes, J. W.; Rice, J. E.; Bespamyatnov, I.; Greenwald, M. J.; Howard, N.; Lipschultz, B.; Marmar, E. S.; Reinke, M. L.; Rowan, W. L.; Terry, J. L.

    2011-05-01

    We report extended studies of the I-mode regime [Whyte et al., Nucl. Fusion 50, 105005 (2010)] obtained in the Alcator C-Mod tokamak [Marmar et al., Fusion Sci. Technol. 51(3), 3261 (2007)]. This regime, usually accessed with unfavorable ion B × ∇B drift, features an edge thermal transport barrier without a strong particle transport barrier. Steady I-modes have now been obtained with favorable B × ∇B drift, by using specific plasma shapes, as well as with unfavorable drift over a wider range of shapes and plasma parameters. With favorable drift, power thresholds are close to the standard scaling for L-H transitions, while with unfavorable drift they are ˜ 1.5-3 times higher, increasing with Ip. Global energy confinement in both drift configurations is comparable to H-mode scalings, while density profiles and impurity confinement are close to those in L-mode. Transport analysis of the edge region shows a decrease in edge χeff, by typically a factor of 3, between L- and I-mode. The decrease correlates with a drop in mid-frequency fluctuations (f ˜ 50-150 kHz) observed on both density and magnetics diagnostics. Edge fluctuations at higher frequencies often increase above L-mode levels, peaking at f ˜ 250 kHz. This weakly coherent mode is clearest and has narrowest width (Δf/f ˜ 0.45) at low q95 and high Tped, up to 1 keV. The Er well in I-mode is intermediate between L- and H-mode and is dominated by the diamagnetic contribution in the impurity radial force balance, without the Vpol shear typical of H-modes.

  4. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.

    Science.gov (United States)

    Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A

    2013-07-24

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.

  5. Phonon scattering limited performance of monolayer MoS2 and WSe2 n-MOSFET

    Directory of Open Access Journals (Sweden)

    Amretashis Sengupta

    2015-02-01

    Full Text Available In this paper we show the effect of electron-phonon scattering on the performance of monolayer (1L MoS2 and WSe2 channel based n-MOSFETs. Electronic properties of the channel materials are evaluated using the local density approximation (LDA in density functional theory (DFT. For phonon dispersion we employ the small displacement / frozen phonon calculations in DFT. Thereafter using the non-equilibrium Green’s function (NEGF formalism, we study the effect of electron-phonon scattering and the contribution of various phonon modes on the performance of such devices. It is found that the performance of the WSe2 device is less impacted by phonon scattering, showing a ballisticity of 83% for 1L-WSe2 FET for channel length of 10 nm. Though 1L-MoS2 FET of similar dimension shows a lesser ballisticity of 75%. Also in the presence of scattering there exist a a 21–36% increase in the intrinsic delay time (τ and a 10–18% reduction in peak transconductance (gm for WSe2 and MoS2 devices respectively.

  6. Rigid unit modes in s p -s p2 hybridized carbon systems: Origin of negative thermal expansion

    Science.gov (United States)

    Kim, Cheol-Woon; Kang, Seoung-Hun; Kwon, Young-Kyun

    2015-12-01

    Using density functional theory combined with quasiharmonic approximation, we investigate the thermal expansion behaviors of three different types (α ,β , and γ ) of graphyne, which is a two-dimensional carbon allotrope composed of s p and s p2 bonds. For each type of graphyne, we obtain the temperature dependent area variation by minimizing its free energy calculated by considering all the phonon modes in the whole Brillouin zone. We find that all three types of graphyne exhibit negative in-plane thermal expansion up to T ≲1000 K. The observed in-plane thermal contraction can be attributed partially to the ripple effect, similarly in graphene. The ripple effect itself, however, is not sufficient to explain the anomalously larger thermal contraction found in graphyne than in graphene. Our deliberate analysis on the phonon modes observed in graphyne enables us to reveal another source causing such thermal expansion anomaly. We find that there are particular phonon modes with frequencies of around a few hundreds of cm-1 existing exclusively in graphyne that may fill empty spaces resulting in area reduction. These modes are identified as "rigid unit modes" corresponding to the libration of each rigid unit composed of s p2 bonds.

  7. Density of phonon states on NiO polycrystal

    International Nuclear Information System (INIS)

    Bulat, I.A.; Makovetskij, G.I.; Pashkovskij, Yu.L.; Semencheva, O.P.; Smolik, Ch.K.

    1984-01-01

    The density of phonon states g(epsilon) of nickel monoxide polycrystal was investigated by the method of inelastic scattering of cold neutrons with E 0 =4.43 MeV initial energy E 0 =4.43 MeV on the time-of-flight spectrometer at T=293 K. The obtained data are compared with existing results of calculations on the base of the simple shell model and the model, taking into account the deformation of bond angles

  8. Guiding of Plasmons and Phonons in Complex Three Dimensional Structures

    Science.gov (United States)

    2013-01-01

    scanning electron microscope (SEM). The ion beam allows the milling of the sample at well localized sites. This technique is most widely used in the...flux lines rather than microscopic effects on phonon transport, due to the relatively large curvatures involved. Further, grain boundaries likely...Hu, L. B., Choi, J. W., Yang , Y., Jeong, Sangmoo, Mantia, F. L., Cui, L., & Cui, Y. Highly conductive paper for energy-storage devices. P Natl Acad

  9. Splash, pop, sizzle: Information processing with phononic computing

    International Nuclear Information System (INIS)

    Sklan, Sophia R.

    2015-01-01

    Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics) have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic. 

  10. Infrared surface phonon polariton waveguides on SiC Substrate

    Science.gov (United States)

    Yang, Yuchen; Manene, Franklin M.; Lail, Brian A.

    2015-08-01

    Surface plasmon polariton (SPP) waveguides harbor many potential applications at visible and near-infrared (NIR) wavelengths. However, dispersive properties of the metal in the waveguide yields weakly coupled and lossy plasmonic modes in the mid and long wave infrared range. This is one of the major reasons for the rise in popularity of surface phonon polariton (SPhP) waveguides in recent research and micro-fabrication pursuit. Silicon carbide (SiC) is a good candidate in SPhP waveguides since it has negative dielectric permittivity in the long-wave infrared (LWIR) spectral region, indicative that coupling to surface phonon polaritons is realizable. Introducing surface phonon polaritons for waveguiding provides good modal confinement and enhanced propagation length. A hybrid waveguide structure at long-wave infrared (LWIR) is demonstrated in which an eigenmode solver approach in Ansys HFSS was applied. The effect of a three layer configuration i.e., silicon wire on a benzocyclobutene (BCB) dielectric slab on SiC, and the effects of varying their dimensions on the modal field distribution and on the propagation length, is presented.

  11. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E.C.; Kewisch, J.; Litvinenko, V.N.; Xu, W.

    2010-01-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R and D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R and D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  12. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Science.gov (United States)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E. C.; Kewisch, J.; Litvinenko, V. N.; Xu, Wencan

    2010-12-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R&D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  13. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2010-12-01

    Full Text Available Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC are based on energy recovery linacs (ERLs with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC temperatures in a prototype research and development (R&D five-cell niobium superconducting rf (SRF cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  14. Structure factors and phonon dispersion in liquid

    Indian Academy of Sciences (India)

    2Electronics Department, Narmada College of Science and Commerce, Bharuch 392 011,. India. E-mail: apratapmsu@yahoo.com. Abstract. The phonon spectra for .... Structure factors and phonon dispersion in liquid Li0.61Na0.39 alloy. [5] U Balucani and M Zoppi, Dynamics of the liquid state (Clarendon, Oxford, 1994).

  15. Resonant tunneling in a pulsed phonon field

    DEFF Research Database (Denmark)

    Kral, P.; Jauho, Antti-Pekka

    1999-01-01

    , The nonequilibrium spectral function for the resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by oscillations, whose time scale is set by the frequency...

  16. Longitudinal polar optical phonons in InN/GaN single and double het- erostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ardali, Sukru; Tiras, Engin [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey); Gunes, Mustafa; Balkan, Naci [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Ajagunna, Adebowale Olufunso; Iliopoulos, Eleftherios; Georgakilas, Alexandros [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion-Crete (Greece)

    2011-05-15

    Longitudinal optical phonon energy in InN epi-layers has been determined independently from the Raman spectroscopy and temperature dependent Hall mobility measurements. Raman spectroscopy technique can be used to obtain directly the LO energy where LO phonon scattering dominates transport at high temperature. Moreover, the Hall mobility is determined by the scattering of electrons with LO phonons so the data for the temperature dependence of Hall mobility have been used to calculate the effective energy of longitudinal optical phonons.The samples investigated were (i) single heterojunction InN with thicknesses of 1.08, 2.07 and 4.7 {mu}m grown onto a 40 nm GaN buffer and (ii) GaN/InN/AlN double heterojunction samples with InN thicknesses of 0.4, 0.6 and 0.8 {mu}m. Hall Effect measurements were carried out as a function of temperature in the range between T = 1.7 and 275 K at fixed magnetic and electric fields. The Raman spectra were obtained at room temperature. In the experiments, the 532 nm line of a nitrogen laser was used as the excitation source and the light was incident onto the samples along of the growth direction (c-axis). The results, obtained from the two independent techniques suggest the following: (1) LO phonon energies obtained from momentum relaxation experiments are generally slightly higher than those obtained from the Raman spectra. (2) LO phonon energy for the single heterojunctions does not depend on the InN thickness. (3) In double heterostructures, with smaller InN thicknesses and hence with increased strain, LO phonon energy increases by 3% (experimental accuracy is < 1%) when the InN layer thickness increases from 400 to 800 nm (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals

    Science.gov (United States)

    Wang, Gang; Liu, Yao-Zong; Wen, Ji-Hong; Yu, Dian-Long

    2006-02-01

    The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sánchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.

  18. Theoretical investigation of the phonon-assisted tunneling in TFET with an indirect band gap semiconductor

    Science.gov (United States)

    Chen, J.; Gong, J.

    2017-11-01

    There are intense recent interests in quantum tunneling transistor as a way to go beyond the metal-oxide-semiconductor transistors. Phonon-assisted tunneling (PAT) plays the dominating role in tunneling field effect transistors with an indirect band gap semiconductor. In this work, we provide a convenient expression based on Fermi gold rule to study the electron tunneling assisted by phonon from the valence band top to the conduction band bottom. Through the comparison with different phonon modes, the transverse acoustic phonon mode provides the largest contribution to PAT. The results of the transfer matrix model predict slightly higher tunneling current compared to the Wentzel-Kramers-Brillouin approximation which ignores the effect of the reflection wave. However, the current density calculated by using our method shows that there is about an order of the magnitude lager than Kane's model. Additionally, the temperature enhances the phonon-assisted Zener tunneling current densities. Our results shed some light on understanding the PAT in indirect band gap semiconductors.

  19. Phononic crystals and elastodynamics: Some relevant points

    Energy Technology Data Exchange (ETDEWEB)

    Aravantinos-Zafiris, N. [Dept. of Materials Science, University of Patras, Patras 26504 (Greece); Department of Sound and Musical Instruments Technology, Ionian Islands Technological Educational Institute, Lixouri, 28200 (Greece); Sigalas, M. M. [Dept. of Materials Science, University of Patras, Patras 26504 (Greece); Kafesaki, M. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1387, 70013 Heraklion, Crete (Greece); Dept. of Materials Science and Technology, Univ. of Crete (Greece); Economou, E. N. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1387, 70013 Heraklion, Crete (Greece); Dept. of Physics, Univ. of Crete (Greece)

    2014-12-15

    In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.

  20. Phononic crystals and elastodynamics: Some relevant points

    International Nuclear Information System (INIS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.

    2014-01-01

    In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated

  1. Heat flux induced blueshift of dominant phonon wavelength and its impact on thermal conductivity

    Directory of Open Access Journals (Sweden)

    Aymeric Ramiere

    2017-01-01

    Full Text Available The concept of dominant phonon wavelength is investigated in systems submitted to a heat flux at low temperatures. Using spectral energy distributions, a treatment of two-dimensional and three-dimensional structures is conducted in parallel. We demonstrate a significant reduction of the dominant phonon wavelength, up to 62%, due to a displacement of the phonon spectrum towards higher frequencies in presence of a heat flux. We name this phenomenon blueshift effect. A formula is provided to directly calculate the corrected dominant phonon wavelength. We illustrate the impact of the blueshift effect by showing that a temperature gradient of 10% at 4K yields a 20% reduction in the thermal conductivity. Therefore, ignoring the blueshift effect in a thermal model can notably alter the physical interpretation of measurements. The results suggest that an appropriate heat flux environment can improve thermoelectric device performances.

  2. Theoretical study of the transverse acoustic phonons of GaSb at ...

    Indian Academy of Sciences (India)

    Gallium antimonide (GaSb), like many III–V semiconductor compounds crystallizes in the cubic zinc-blende crystal ... and a structural phase transition to a high coordination phase appears. For GaSb the phase ... the changes in different phonon modes due to the change in the interatomic forces after the applications of ...

  3. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange

    Directory of Open Access Journals (Sweden)

    Lokteva Irina

    2011-01-01

    Full Text Available Abstract Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs. PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf

  4. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Poulikakos, Dimos

    2007-01-01

    The authors investigate the thermally driven mass transport of gold nanoparticles confined inside carbon nanotubes using molecular dynamics simulations. The observed thermophoretic motion of the gold nanoparticles correlates with the phonon dispersion exhibited by a standard carbon nanotube and......, in particular, with the breathing mode of the tube. Additionally, the results show an increased static friction for gold nanoparticles confines inside a zig-zag carbon nanotube when increasing the size length of the nanoparticles. However, an unexpected, opposite trend is observed for the same nanoparticles...

  5. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    Science.gov (United States)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  6. Soft mode and acoustic mode ferroelectric properties of deuterated ...

    Indian Academy of Sciences (India)

    and fifth order phonon anharmonic interaction terms as well as external electric field term in the crystal Hamilto- nian. Double-time temperature dependent Green's function is used to derive soft mode frequency, dielectric permi- ttivity, microwave absorption, quality factor, acoustic attenuation, electric conductivity, smooth ...

  7. Tidal energy redistribution among vertical modes in a fluid with a mid-depth pycnocline

    NARCIS (Netherlands)

    Bordois, L.; Auclair, F.; Paci, A.; Dossmann, Y.; Gerkema, T.; Nguyen, C.

    2016-01-01

    We modeled internal tide generation above a high sinusoidal ridge in a fluid with a mid-depth pycnocline and developed an original method to quantify internal tide vertical mode amplitude in two-dimensional-vertical simulations. Since lowest modes can propagate over considerable distances, while

  8. The Role of C-axis Polarized Phonons in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Timusk, T.; Homes, C. C.; Reichardt, W.

    1995-01-01

    We report on the optical conductivity of c-axis phonons in YBa 2 Cu 3 O 7-σ as a function of doping and temperature. At room temperature the frequencies and strengths of the modes are in good agreement with results from shell models based on neutron scattering. We discuss the apical oxygen mode which becomes asymmetric in underdoped materials and argue, with Burns, that the Au mode shifts from 570 cm -1 to 610 cm -1 for the two-fold coordinated copper sites in the chain layer in oxygen depleted materials. At low temperature there is a large transfer of c-axis phonon oscillator strength from O(4) apical and O (2, 3,) plane bending modes, to a very broad at 400 cm -1

  9. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.

    Science.gov (United States)

    Chen, Shumei; Li, Guixin; Lei, Dangyuan; Cheah, Kok Wai

    2013-10-07

    Plasmonic analogues of Rabi-splitting have been extensively studied in various metallic nanosystems hybridized with semiconductor quantum dots, nanocrystals and organic molecules, with a focus on the splitting energy gap where surface plasmon polaritons (SPPs) strongly couple with excitons. Similar strong coupling also occurs for individual metallic nanoparticles locating inside a photonic microcavity or nearby a waveguide due to the strong interaction between localized surface plasmons and photonic modes in the near-infrared wavelength range. In this work we study experimentally and theoretically the strong coupling between propagating SPPs and the Fabry-Perot (F-P) cavity mode in a metallic nanoparticle array-nanocavity hybrid system in the visible spectral range. The strong modal hybridization created giant modal anti-crossing which can be considered as the classical phenomenon of Rabi splitting i.e. a Rabi-analogue. In addition to the observation of a giant Rabi-analogue splitting energy of 148 meV at the strong coupling regime, we also reveal highly-efficient energy exchange between SPP and F-P modes at the low frequency dispersion branch through detailed numerical near-field studies and experimental phase delay analysis. The observed efficient mode conversion in the investigated plasmonic nanocavity is useful for designing novel nanophotonic devices, in which conventional photonic components need to be integrated with miniaturized plasmonic devices or vice versa.

  10. Phonon characteristics of high Tc superconductors from neutron Doppler broadening measurements

    International Nuclear Information System (INIS)

    Trela, W.J.; Kwei, G.H.; Lynn, J.E.; Meggers, K.

    1994-01-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La 2-x Ba x CuO 4 . Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra

  11. Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trela, W.J.; Kwei, G.H.; Lynn, J.E. [Los Alamos National Lab., NM (United States); Meggers, K. [Univ. of Kiel (Germany)

    1994-12-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.

  12. The impacts of different expansion modes on performance of small solar energy firms: perspectives of absorptive capacity.

    Science.gov (United States)

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-Long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance.

  13. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  14. Temperature Measurement by a Nanoscale Electron Probe Using Energy Gain and Loss Spectroscopy

    Science.gov (United States)

    Idrobo, Juan Carlos; Lupini, Andrew R.; Feng, Tianli; Unocic, Raymond R.; Walden, Franklin S.; Gardiner, Daniel S.; Lovejoy, Tracy C.; Dellby, Niklas; Pantelides, Sokrates T.; Krivanek, Ondrej L.

    2018-03-01

    Heat dissipation in integrated nanoscale devices is a major issue that requires the development of nanoscale temperature probes. Here, we report the implementation of a method that combines electron energy gain and loss spectroscopy to provide a direct measurement of the local temperature in the nanoenvironment. Loss and gain peaks corresponding to an optical-phonon mode in boron nitride were measured from room temperature to ˜1600 K . Both loss and gain peaks exhibit a shift towards lower energies as the sample is heated up. First-principles calculations of the temperature-induced phonon frequency shifts provide insights into the origin of this effect and confirm the experimental data. The experiments and theory presented here open the doors to the study of anharmonic effects in materials by directly probing phonons in the electron microscope.

  15. Peculiarities of FeSi phonon spectrum induced by a change of atomic volume

    Energy Technology Data Exchange (ETDEWEB)

    Parshin, P. P., E-mail: Parshin-PP@nrcki.ru, E-mail: neupar45@yandex.ru; Chumakov, A. I.; Alekseev, P. A. [National Research Center Kurchatov Institute (Russian Federation); Nemkovski, K. S. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Sciences (JCNS), Heinz Maier-Leibnitz Zentrum (MLZ) (Germany); Dubrovinskii, L. [Universität Bazreuth, Bayerisches Geoinstitut (Germany); Kantor, A. [European Synchrotron Radiation Facility (France); Perßon, J. [JARA-FIT Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) and Peter Grünberg Institut (PGI) (Germany); Rüffer, R. [European Synchrotron Radiation Facility (France)

    2016-12-15

    We analyze in detail the results of experimental investigations of the evolution of the thermal vibration spectra for iron atoms in iron monosilicide FeSi depending on two external parameters, viz., temperature T (in the range 46–297 K at pressure P = 0.1 MPa) and pressure P (in the range 0.1 MPa–43 GPa at temperature T = 297 K), obtained by nuclear inelastic scattering of synchrotron radiation. The decrease of the atomic volume is accompanied by a rearrangement of the phonon spectrum, which is manifested, in particular, in the splitting of the low-energy peak in the spectrum and in an increase of the energy for all phonons. The changes of the average energy of the iron atom vibrational spectrum and of the Debye energy with decreasing atomic volume are analyzed. Different versions of FeSi electron spectrum variation, which can be used to explain the observed phonon anomalies, are considered.

  16. Interface nano-confined acoustic waves in polymeric surface phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Travagliati, Marco, E-mail: marco.travagliati@iit.it [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Nardi, Damiano [JILA and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309 (United States); Giannetti, Claudio; Ferrini, Gabriele; Banfi, Francesco, E-mail: francesco.banfi@unicatt.it [i-LAMP and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia (Italy); Gusev, Vitalyi [LAUM, UMR-CNRS 6613, Université du Maine, av. O. Messiaen, 72085 Le Mans (France); Pingue, Pasqualantonio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Piazza, Vincenzo [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy)

    2015-01-12

    The impulsive acoustic dynamics of soft polymeric surface phononic crystals is investigated here in the hypersonic frequency range by near-IR time-resolved optical diffraction. The acoustic response is analysed by means of wavelet spectral methods and finite element modeling. An unprecedented class of acoustic modes propagating within the polymer surface phononic crystal and confined within 100 nm of the nano-patterned interface is revealed. The present finding opens the path to an alternative paradigm for characterizing the mechanical properties of soft polymers at interfaces and for sensing schemes exploiting polymers as embedding materials.

  17. Thermoelectric power of YBa2Cu3O7-δ: Phonon drag and multiband conduction

    International Nuclear Information System (INIS)

    Cohn, J.L.; Wolf, S.A.; Selvamanickam, V.; Salama, K.

    1991-01-01

    We report measurements of the a-b-plane thermopower (S) on crystalline YBa 2 Cu 3 O 7-δ (δ≤0.16) for temperatures below 310 K. Much sharper features in the T dependence of S are observed than have been previously reported. Both the temperature and oxygen-doping dependences of S, which have caused confusion, are consistently accounted for by conventional metallic theory for the first time. Strong phonon drag and two carrier species are indicated, with holes on the planes and electrons on the chains. An anomalous, positive component to S, observed for T 2 planes and optical-mode phonons

  18. Mobility and bulk electron-phonon interaction in two-dimensional materials

    DEFF Research Database (Denmark)

    Gunst, Tue; Brandbyge, Mads; Markussen, Troels

    2015-01-01

    -of-plane modes. However, we find that graphene only has a slightly higher mobility compared to silicene. For MoS2 we obtain several orders of magnitude lower mobilities and in agreement with other recent theoretical results. The simulations illustrate the predictive capabilities of the newly implemented......We present calculations of the phonon-limited mobility in intrinsic n-type monolayer graphene, silicene and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. Unlike graphene, the carriers in silicene show strong interaction with the out...

  19. Dynamic homogenization in the Nonlocal and Local regimes for a phononic superlattice: Resonant elastic metamaterial

    Directory of Open Access Journals (Sweden)

    J. Flores Méndez

    Full Text Available In this paper, we shall propose an elastic metamaterial based on a specific rubber/aluminum superlattice. We will calculate the frequency-dependent effective mass density and transverse elastic constant in the Local and Nonlocal homogenization regimes. Using the effective dynamic parameters, the phononic dispersion calculations of the homogenized elastic crystal show a second pass band for transverse modes where the superlattice behaves as a double-negative elastic metamaterial having simultaneously negative effective mass density and shear modulus. Which is very useful for designing resonant elastic metamaterials. Keywords: Metamaterial, Phononic crystal, Homogenization theory, Effective parameters, Dispersion relation

  20. DynaPhoPy: A code for extracting phonon quasiparticles from molecular dynamics simulations

    Science.gov (United States)

    Carreras, Abel; Togo, Atsushi; Tanaka, Isao

    2017-12-01

    We have developed a computational code, DYNAPHOPY, that allows us to extract the microscopic anharmonic phonon properties from molecular dynamics (MD) simulations using the normal-mode-decomposition technique as presented by Sun et al. (2014). Using this code we calculated the quasiparticle phonon frequencies and linewidths of crystalline silicon at different temperatures using both of first-principles and the Tersoff empirical potential approaches. In this work we show the dependence of these properties on the temperature using both approaches and compare them with reported experimental data obtained by Raman spectroscopy (Balkanski et al., 1983; Tsu and Hernandez, 1982).

  1. Phonon scattering in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.

    1979-01-01

    The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses

  2. Cooling of photoexcited carriers in graphene by internal and substrate phonons

    Science.gov (United States)

    Low, Tony; Perebeinos, Vasili; Kim, Raseong; Freitag, Marcus; Avouris, Phaedon

    2012-07-01

    We investigate the energy relaxation of hot carriers produced by photoexcitation of graphene through coupling to both intrinsic and remote (substrate) surface polar phonons using the Boltzmann equation approach. We find that the energy relaxation of hot photocarriers in graphene on commonly used polar substrates, under most conditions, is dominated by remote surface polar phonons. We also calculate key characteristics of the energy relaxation process, such as the transient cooling time and steady-state carrier temperatures and photocarrier densities, which determine the thermoelectric and photovoltaic photoresponse, respectively. Substrate engineering can be a promising route to efficient optoelectronic devices driven by hot carrier dynamics.

  3. Mesoscopic hydro-thermodynamics of phonons

    Directory of Open Access Journals (Sweden)

    Aurea R. Vasconcellos

    2013-07-01

    Full Text Available A generalized Hydrodynamics, referred to as Mesoscopic Hydro-Thermodynamics, of phonons in semiconductors is presented. It involves the descriptions of the motion of the quasi-particle density and of the energy density. The hydrodynamic equations, which couple both types of movement via thermo-elastic processes, are derived starting with a generalized Peierls-Boltzmann kinetic equation obtained in the framework of a Non-Equilibrium Statistical Ensemble Formalism, providing such Mesoscopic Hydro-Thermodynamics. The case of a contraction in first order is worked out in detail. The associated Maxwell times are derived and discussed. The densities of quasi-particles and of energy are found to satisfy coupled Maxwell-Cattaneo-like (hyperbolic equations. The analysis of thermo-elastic effects is done and applied to investigate thermal distortion in silicon mirrors under incidence of high intensity X-ray pulses in FEL facilities. The derivation of a generalized Guyer-Krumhansl equation governing the flux of heat and the associated thermal conductivity coefficient is also presented.

  4. Electron–phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron–phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron–phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron–phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron–phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron–phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron–phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron–phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron–phonon interaction.

  5. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2016-02-01

    The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.

  6. Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Krastev, Plamen G.

    2009-01-01

    The eigenfrequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an equation of state (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy E sym (ρ) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigenfrequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the w II -mode is found to exist only for neutron stars having a compactness of M/R≥0.1078 independent of the EOS used.

  7. Phonon linewidths in YNi2B2C

    Indian Academy of Sciences (India)

    Abstract. Phonons in a metal interact with conduction electrons which give rise to a finite linewidth. In the normal state, this leads to a Lorentzian shape of the phonon line. Density functional theory is able to predict the phonon linewidths as a function of wave vector for each branch of the phonon dispersion. An experimental ...

  8. Explaining the isotope effect on heat transport in L-mode with the collisional electron-ion energy exchange

    Science.gov (United States)

    Schneider, P. A.; Bustos, A.; Hennequin, P.; Ryter, F.; Bernert, M.; Cavedon, M.; Dunne, M. G.; Fischer, R.; Görler, T.; Happel, T.; Igochine, V.; Kurzan, B.; Lebschy, A.; McDermott, R. M.; Morel, P.; Willensdorfer, M.; the ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-06-01

    In ASDEX Upgrade (AUG), the normalised gyroradius {ρ\\star} was varied via a hydrogen isotope scan while keeping other dimensionless parameters constant. This was done in L-mode, to minimise the impact of pedestal stability on confinement. Power balance and perturbative transport analyses reveal that the electron heat transport is unaffected by the differences in isotope mass. Nonlinear simulations with the Gene code suggest that these L-mode discharges are ion temperature gradient (ITG) dominated. The different gyroradii due to the isotope mass do not necessarily result in a change of the predicted heat fluxes. This result is used in simulations with the Astra transport code to match the experimental profiles. In these simulations the experimental profiles and confinement times are reproduced with the same transport coefficients for hydrogen and deuterium plasmas. The mass only enters in the energy exchange term between electrons and ions. These numerical observations are supported by additional experiments which show a lower ion energy confinement compared to that of the electrons. Additionally, hydrogen and deuterium plasmas have a similar confinement when the energy exchange time between electrons and ions is matched. This strongly suggests that the observed isotope dependence in L-mode is not dominated by a gyroradius effect, but a consequence of the mass dependence in the collisional energy exchange between electrons and ions.

  9. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    OpenAIRE

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spe...

  10. The Effects of Different Electron-Phonon Couplings on the Spectral and Transport Properties of Small Molecule Single-Crystal Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Carmine Antonio Perroni

    2014-03-01

    Full Text Available Spectral and transport properties of small molecule single-crystal organic semiconductors have been theoretically analyzed focusing on oligoacenes, in particular on the series from naphthalene to rubrene and pentacene, aiming to show that the inclusion of different electron-phonon couplings is of paramount importance to interpret accurately the properties of prototype organic semiconductors. While in the case of rubrene, the coupling between charge carriers and low frequency inter-molecular modes is sufficient for a satisfactory description of spectral and transport properties, the inclusion of electron coupling to both low-frequency inter-molecular and high-frequency intra-molecular vibrational modes is needed to account for the temperature dependence of transport properties in smaller oligoacenes. For rubrene, a very accurate analysis in the relevant experimental configuration has allowed for the clarification of the origin of the temperature-dependent mobility observed in these organic semiconductors. With increasing temperature, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions has been calculated, including vertex corrections that give rise to a transport lifetime one order of magnitude smaller than the spectral lifetime of the states involved in the transport mechanism. The mobility always exhibits a power-law behavior as a function of temperature, in agreement with experiments in rubrene. In systems gated with polarizable dielectrics, the electron coupling to interface vibrational modes of the gate has to be included in addition to the intrinsic electron-phonon interaction. While the intrinsic bulk electron-phonon interaction affects the behavior of mobility in the coherent regime below room temperature, the coupling with interface modes is dominant for the

  11. One-dimensional hypersonic phononic crystals.

    Science.gov (United States)

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  12. Electron–phonon superconductivity in YIn3

    International Nuclear Information System (INIS)

    Billington, D; Llewellyn-Jones, T M; Maroso, G; Dugdale, S B

    2013-01-01

    First-principles calculations of the electron–phonon coupling were performed on the cubic intermetallic compound YIn 3 . The electron–phonon coupling constant was found to be λ ep = 0.42. Using the Allen–Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a T c of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron–phonon coupling is capable of producing the superconductivity in this compound. (paper)

  13. Normal processes of phonon-phonon scattering and thermal conductivity of germanium crystals with isotopic disorder

    CERN Document Server

    Kuleev, I G

    2001-01-01

    The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees

  14. Effect of nonlinear energy transport on neoclassical tearing mode stability in tokamak plasmas

    Science.gov (United States)

    Fitzpatrick, Richard

    2017-05-01

    An investigation is made into the effect of the reduction in anomalous perpendicular electron heat transport inside the separatrix of a magnetic island chain associated with a neoclassical tearing mode in a tokamak plasma, due to the flattening of the electron temperature profile in this region, on the overall stability of the mode. The onset of the neoclassical tearing mode is governed by the ratio of the divergences of the parallel and perpendicular electron heat fluxes in the vicinity of the island chain. By increasing the degree of transport reduction, the onset of the mode, as the divergence ratio is gradually increased, can be made more and more abrupt. Eventually, when the degree of transport reduction passes a certain critical value, the onset of the neoclassical tearing mode becomes discontinuous. In other words, when some critical value of the divergence ratio is reached, there is a sudden bifurcation to a branch of neoclassical tearing mode solutions. Moreover, once this bifurcation has been triggered, the divergence ratio must be reduced by a substantial factor to trigger the inverse bifurcation.

  15. Reproducibility of trabecular bone score with different scan modes using dual-energy X-ray absorptiometry: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Di Leo, Giovanni [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Pastor Lopez, Maria Juana; Ulivieri, Fabio M. [Servizio di Medicina Nucleare, Ospedale Maggiore, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Milano (Italy); Mai, Alessandro [Universita degli Studi di Milano, Tecniche di Radiologia Medica, per Immagini e Radioterapia, Milano (Italy); Sardanelli, Francesco [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-12

    The trabecular bone score (TBS) accounts for the bone microarchitecture and is calculated on dual-energy X-ray absorptiometry (DXA). We estimated the reproducibility of the TBS using different scan modes compared to the reproducibility bone mineral density (BMD). A spine phantom was used with a Hologic QDR-Discovery A densitometer. For each scan mode [fast array, array, high definition (HD)], 25 scans were automatically performed without phantom repositioning; a further 25 scans were performed with phantom repositioning. For each scan, the TBS was obtained. The coefficient of variation (CoV) was calculated as the ratio between standard deviation and mean; percent least significant change (LSC%) as 2.8 x CoV; reproducibility as the complement to 100 % of LSC%. Differences among scan modes were assessed using ANOVA. Without phantom repositioning, the mean TBS (mm{sup -1}) was: 1.352 (fast array), 1.321 (array), and 1.360 (HD); with phantom repositioning, it was 1.345, 1.332, and 1.362, respectively. Reproducibility of the TBS without phantom repositioning was 97.7 % (fast array), 98.3 % (array), and 98.2 % (HD); with phantom repositioning, it was 97.9 %, 98.7 %, and 98.4 %, respectively. LSC% was ≤2.26 %. Differences among scan modes were all statistically significant (p ≤ 0.019). Reproducibility of BMD was 99.1 % with all scan modes, while LSC% was from 0.86 % to 0.91 %. Reproducibility error of the TBS was 2-3-fold higher than that of BMD. Although statistically significant, differences in TBS among scan modes were within the highest LSC%. Thus, the three scan modes can be considered interchangeable. (orig.)

  16. Which Subsidy Mode Improves the Financial Performance of Renewable Energy Firms? A Panel Data Analysis of Wind and Solar Energy Companies between 2009 and 2014

    Directory of Open Access Journals (Sweden)

    Huiming Zhang

    2015-12-01

    Full Text Available The effectiveness of subsidies in improving the performance of renewable energy firms has aroused significant research attention in recent years. As subsidy modes may affect corporate financial performance,we have chosen companies specializing in wind and solar energy in the Shanghai and Shenzhen stock markets as samples.The relationships between the subsidy modes and financial performance of these two types of companies are investigated with a panel data model. Results of the total sample indicate that both indirect and non-innovative subsidy have significant effects on the financial performance of renewable energy companies. The regressive coefficient of the former,however, is a negative value, which illustrates that taxation, bonus, and other market-based mechanisms impair corporate profitability. Moreover, the influence of innovative subsidy is weak, which means that the subsidy used for research and development, technical demonstration, and other innovations of renewable energy enterprises have failed to effectively enhance corporate financial performance. In terms of sub-industries, the direct subsidy for wind energy companies has achieved a significant effect. Incomparison, the indirect subsidy and innovative subsidy acquired by solar energy companies have notably reduced corporate profitability. Thissuggests an urgent reform of subsidy policy for this industry is needed. The government should consider differences in the effects subsidies have for wind and solar energy companies when improving subsidy policy. In addition, market-based subsidy mechanisms should be perfected, and the structure of innovative subsidies should be ameliorated.

  17. Topological Design of Cellular Phononic Band Gap Crystals.

    Science.gov (United States)

    Li, Yang Fan; Huang, Xiaodong; Zhou, Shiwei

    2016-03-10

    This paper systematically investigated the topological design of cellular phononic crystals with a maximized gap size between two adjacent bands. Considering that the obtained structures may sustain a certain amount of static loadings, it is desirable to ensure the optimized designs to have a relatively high stiffness. To tackle this issue, we conducted a multiple objective optimization to maximize band gap size and bulk or shear modulus simultaneously with a prescribed volume fraction of solid material so that the resulting structures can be lightweight, as well. In particular, we first conducted the finite element analysis of the phononic band gap crystals and then adapted a very efficient optimization procedure to resolve this problem based on bi-directional evolutionary structure optimization (BESO) algorithm in conjunction with the homogenization method. A number of optimization results for maximizing band gaps with bulk and shear modulus constraints are presented for out-of-plane and in-plane modes. Numerical results showed that the optimized structures are similar to those obtained for composite case, except that additional slim connections are added in the cellular case to support the propagation of shear wave modes and meanwhile to satisfy the prescribed bulk or shear modulus constraints.

  18. Topological Design of Cellular Phononic Band Gap Crystals

    Directory of Open Access Journals (Sweden)

    Yang Fan Li

    2016-03-01

    Full Text Available This paper systematically investigated the topological design of cellular phononic crystals with a maximized gap size between two adjacent bands. Considering that the obtained structures may sustain a certain amount of static loadings, it is desirable to ensure the optimized designs to have a relatively high stiffness. To tackle this issue, we conducted a multiple objective optimization to maximize band gap size and bulk or shear modulus simultaneously with a prescribed volume fraction of solid material so that the resulting structures can be lightweight, as well. In particular, we first conducted the finite element analysis of the phononic band gap crystals and then adapted a very efficient optimization procedure to resolve this problem based on bi-directional evolutionary structure optimization (BESO algorithm in conjunction with the homogenization method. A number of optimization results for maximizing band gaps with bulk and shear modulus constraints are presented for out-of-plane and in-plane modes. Numerical results showed that the optimized structures are similar to those obtained for composite case, except that additional slim connections are added in the cellular case to support the propagation of shear wave modes and meanwhile to satisfy the prescribed bulk or shear modulus constraints.

  19. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    Science.gov (United States)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-11-01

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  20. Phonon induced optical gain in a current carrying two-level quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 1983963113 (Iran, Islamic Republic of); School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran (Iran, Islamic Republic of)

    2017-05-15

    In this work we consider a current carrying two level quantum dot (QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.