WorldWideScience

Sample records for mode output power

  1. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    Science.gov (United States)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang

    2016-04-01

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  2. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Zhen; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-04-15

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM{sub 01}. The existence of TM{sub 01} mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  3. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.

    Science.gov (United States)

    Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina

    2012-03-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.

  4. Mode control in a high gain relativistic klystron amplifier with 3 GW output power

    Science.gov (United States)

    Wu, Yang; Xie, Hong-Quan; Xu, Zhou

    2014-01-01

    Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.

  5. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    Science.gov (United States)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  6. Overmoded subterahertz surface wave oscillator with pure TM01 mode output

    International Nuclear Information System (INIS)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang; Wang, Jianguo; Li, Shuang

    2016-01-01

    Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM 01 mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM 01 mode. Moreover, the modified device here has the same power capacity as the previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM 01 mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave

  7. Silicon Integrated Dual-Mode Interferometer with Differential Outputs

    Directory of Open Access Journals (Sweden)

    Niklas Hoppe

    2017-09-01

    Full Text Available The dual-mode interferometer (DMI is an attractive alternative to Mach-Zehnder interferometers for sensor purposes, achieving sensitivities to refractive index changes close to state-of-the-art. Modern designs on silicon-on-insulator (SOI platforms offer thermally stable and compact devices with insertion losses of less than 1 dB and high extinction ratios. Compact arrays of multiple DMIs in parallel are easy to fabricate due to the simple structure of the DMI. In this work, the principle of operation of an integrated DMI with differential outputs is presented which allows the unambiguous phase shift detection with a single wavelength measurement, rather than using a wavelength sweep and evaluating the optical output power spectrum. Fluctuating optical input power or varying attenuation due to different analyte concentrations can be compensated by observing the sum of the optical powers at the differential outputs. DMIs with two differential single-mode outputs are fabricated in a 250 nm SOI platform, and corresponding measurements are shown to explain the principle of operation in detail. A comparison of DMIs with the conventional Mach-Zehnder interferometer using the same technology concludes this work.

  8. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Kostin, Yu O [Superlum Diodes Ltd., Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2014-10-29

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  9. Single-transverse-mode near-IR superluminescent diodes with cw output power up to 100 mW

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Kostin, Yu O; Yakubovich, S D

    2014-01-01

    A series of light-emitting modules based on single-mode quantum-well superluminescent diodes with centre emission wavelengths of about 790, 840, 960 and 1060 nm and a cw output power up to 100 mW in free space is developed. A sufficiently long service life of these devices is demonstrated. (lasers)

  10. Enhancement of power output by a new stress-applied mode on circular piezoelectric energy harvester

    Science.gov (United States)

    Shu, Fangming; Yang, Tongqing; Liu, Yaoze

    2018-04-01

    A new stress-applied mode is proposed on piezoelectric circular diaphragm energy harvester. Differing from the usual mode used in previous researches, the mass stick at the center of the diaphragm (PZT-51) is designed into an annular hollow shape. In this case, stress of the mass is applied along the edge of the copper sheet. A screw bonded with the undersurface of the diaphragm transfers force from the vibrator to the diaphragm. This device has a cylindrical shape and its volume is ˜7.9 cm3. With this new stress-applied mode, the piezoelectric energy harvester (with an optimal load of 18 kΩ, a mass of 30 g) could generate a maximum power output of ˜20.8 mW under 9.8 m.s-2 at its resonant frequency of ˜237 Hz. Meanwhile, the greater the hardness ratio between the ceramic and the copper sheet, the greater the advantages of the new structure.

  11. Brushless power generating system having reduced conducted emissions in output power

    International Nuclear Information System (INIS)

    Walton, D.N.; Dolan, C.F.; Shah, M.J.

    1991-01-01

    This patent describes a brushless electrical power generating system. It comprises an exciter for producing alternating current from an exciter rotor; a rectifier mounted for rotation with the rotor for producing a rectified control current from the alternating current; a common mode inductor, coupled to the rectifier, for cancelling common mode noise components within the rectified control current; and a main generator, having a rotating field winding mounted on a main generator rotor excited by the control current and producing an alternating current power output from a stator

  12. Sliding-mode control of single input multiple output DC-DC converter

    Science.gov (United States)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  13. Auxetic piezoelectric energy harvesters for increased electric power output

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2017-01-01

    Full Text Available This letter presents a piezoelectric bimorph with auxetic (negative Poisson’s ratio behaviors for increased power output in vibration energy harvesting. The piezoelectric bimorph comprises a 2D auxetic substrate sandwiched between two piezoelectric layers. The auxetic substrate is capable of introducing auxetic behaviors and thus increasing the transverse stress in the piezoelectric layers when the bimorph is subjected to a longitudinal stretching load. As a result, both 31- and 32-modes are simultaneously exploited to generate electric power, leading to an increased power output. The increasing power output principle was theoretically analyzed and verified by finite element (FE modelling. The FE modelling results showed that the auxetic substrate can increase the transverse stress of a bimorph by 16.7 times. The average power generated by the auxetic bimorph is 2.76 times of that generated by a conventional bimorph.

  14. Maximizing power output from continuous-wave single-frequency fiber amplifiers.

    Science.gov (United States)

    Ward, Benjamin G

    2015-02-15

    This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.

  15. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  16. About the selection of transverse modes in the X-band oversized oscillator with 2.5 GW output power

    International Nuclear Information System (INIS)

    Tsygankov, R V; Rostov, V V; Gunin, A V; Elchaninov, A A; Markov, A B; Ozur, G E

    2017-01-01

    The paper describes the numerical and experimental results of the microwave O-type oscillator based on an oversized slow wave structure (SWS). The feedback is applied to the design scheme, which provides intense modulation of the electron beam in the cathode-anode region and two special cavities before SWS. The selectivity of TM 02 operating mode occurs due to increased diffraction loss of parasitic modes in the cathode part. The slow wave structure consists of two identical sections with the phase-shifting region in between. The use of this configuration leads to the formation of a locked TM 01 wave, having good conditions for the transformation into the working mode TM 02 . In the experiments, a stable generation regime with pure TM 02 mode at a frequency of 10 GHz with an efficiency of about 30% and the output power of 2.5 GW in the magnetic field below the cyclotron resonance was obtained. (paper)

  17. Output power characteristics of the neutral xenon long laser

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

  18. Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output

    International Nuclear Information System (INIS)

    Yeh, C H; Shih, F Y; Wang, C H; Chow, C W; Chi, S

    2008-01-01

    In this investigation, we propose and investigate a stable and tunable dual-wavelength erbium-doped fiber (EDF) ring laser with self-injected Fabry-Perot laser diode (FP-LD) scheme. By using an FP-LD incorporated with a tunable bandpass filter (TBF) within the gain cavity, the fiber laser can lase at two single-longitudinal-mode (SLM) wavelengths simultaneously due to the self-injected operation. The proposed dual-wavelength laser has a good performance of the output power and optical side-mode suppression ratio (SMSR). The laser also shows a wide tuning range from 1523.08 to 1562.26 nm. Besides, the output stabilities of the fiber laser are also discussed

  19. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  20. High-power, cladding-pumped all-fiber laser with selective transverse mode generation property.

    Science.gov (United States)

    Li, Lei; Wang, Meng; Liu, Tong; Leng, Jinyong; Zhou, Pu; Chen, Jinbao

    2017-06-10

    We demonstrate, to the best of our knowledge, the first cladding-pumped all-fiber oscillator configuration with selective transverse mode generation based on a mode-selective fiber Bragg grating pair. Operating in the second-order (LP 11 ) mode, maximum output power of 4.2 W is obtained with slope efficiency of about 38%. This is the highest reported output power of single higher-order transverse mode generation in an all-fiber configuration. The intensity distribution profile and spectral evolution have also been investigated in this paper. Our work suggests the potential of realizing higher power with selective transverse mode operation based on a mode-selective fiber Bragg grating pair.

  1. Possible factors determining the non-linearity in the VO2-power output relationship in humans: theoretical studies.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2003-08-01

    At low power output exercise (below lactate threshold), the oxygen uptake increases linearly with power output, but at high power output exercise (above lactate threshold) some additional oxygen consumption causes a non-linearity in the overall VO(2) (oxygen uptake rate)-power output relationship. The functional significance of this phenomenon for human exercise tolerance is very important, but the mechanisms underlying it remain unknown. In the present work, a computer model of oxidative phosphorylation in intact skeletal muscle developed previously is used to examine the background of this relationship in different modes of exercise. Our simulations demonstrate that the non-linearity in the VO(2)-power output relationship and the difference in the magnitude of this non-linearity between incremental exercise mode and square-wave exercise mode (constant power output exercise) can be generated by introducing into the model some hypothetical factor F (group of associated factors) that accumulate(s) in time during exercise. The performed computer simulations, based on this assumption, give proper time courses of changes in VO(2) and [PCr] after an onset of work of different intensities, including the slow component in VO(2), well matching the experimental results. Moreover, if it is assumed that the exercise terminates because of fatigue when the amount/intensity of F exceed some threshold value, the model allows the generation of a proper shape of the well-known power-duration curve. This fact suggests that the phenomenon of the non-linearity of the VO(2)-power output relationship and the magnitude of this non-linearity in different modes of exercise is determined by some factor(s) responsible for muscle fatigue.

  2. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  3. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  4. Programmable Input Mode Instrumentation Amplifier Using Multiple Output Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pankiewicz Bogdan

    2017-03-01

    Full Text Available In this paper a programmable input mode instrumentation amplifier (IA utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA, which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC. IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.

  5. Operating modes and practical power flow analysis of bidirectional isolated power interface for distributed power systems

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • Four operating modes of Dual-Phase-Shift control for Dual Active Bridge converter are presented. • Effects of “minor parameters” such as the deadtime and power device voltage drops are analyzed. • Accurate power flow models with Dual-Phase-Shift control are developed and verified with experimental results. • Optimal operating mode is determined with respect to the efficiency improvement. • Measured efficiency of the Dual Active Bridge converter is improved up to 14%. - Abstract: Due to the intermittent nature of the renewable energy sources including photovoltaic and wind energy, the energy storage systems are essential to stabilize dc bus voltage. Considering the discharge depth of super-capacitors and energy-storage batteries, the bidirectional isolated power interface will operate for a wide range of voltage and power. This study focuses on in-depth analysis of the dual-active-bridge dc–dc converter that is controlled by the dual-phase-shift scheme to improve the conversion efficiency in distributed power system. The power flow of each operating mode with dual-phase-shift control is characterized based on a detailed analysis of the effects of “minor parameters”, including the deadtime and power device voltage drops. The complete output power plane of the dual-active-bridge converter with dual-phase-shift control is obtained and compared with experimental results. The optimal operating mode is determined according to the practical output power range and the power flow characteristics. Experimental evaluation shows the effectiveness of the proposed power flow model with dual-phase-shift control and significant efficiency improvement using the optimal mode of dual-phase-shift compared with the conventional phase shift control.

  6. Multi Carrier Modulator for Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael Andreas E.

    2008-01-01

    While switch-mode audio power amplifiers allow compact implementations and high output power levels due to their high power efficiency, they are very well known for creating electromagnetic interference (EMI) with other electronic equipment, in particular radio receivers. Lowering the EMI of swit...

  7. High-power and long-pulse operation of TE{sub 31,11} mode gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ryosuke, E-mail: ikeda.ryosuke@jaea.go.jp; Kajiwara, Ken; Oda, Yasuhisa; Takahashi, Koji; Sakamoto, Keishi

    2015-10-15

    Highlights: • We are under development of TE{sub 31,11} mode gyrotron to aim ITER specification. • HE{sub 11} mode purity reached 96% of ITER specification. • Mode competition was suppressed in initial phase of oscillation by anode voltage control. • Maximum output power of 1.2 MW was achieved. • Steady state operation of 500 MJ was achieved. - Abstract: The ITER electron cyclotron system is designed to inject a 20 MW RF beam by using twenty-four 170 GHz/1 MW gyrotrons. JAEA is currently developing a gyrotron having a high-order mode (TE{sub 31,11}) to reduce the heat load in the cavity resonator and achieve an output power greater than 1 MW. The measured radiation profile at the front of the diamond window agreed with the results of the calculation. In order to suppress RF loss in the equatorial and upper port launchers, a high-quality HE{sub 11} mode is required at the exit of the matching optics unit (MOU). An HE{sub 11} mode purity of 96% was achieved by finely adjusting the two mirrors in the MOU. During the oscillation start-up phase, mode competition with counter-rotating TE{sub 29,12} mode was observed on the higher magnetic field side which caused arcing and pressure increase in the gyrotron. To avoid the counter-rotating TE{sub 29,12} mode from being excited, a start-up scenario that controls the voltage between the anode and cathode electrodes at the initial phase of operation was introduced, which was able to achieve a stable start-up of TE{sub 31,11} mode. A 1.2 MW output power having a total electric efficiency of 43% was obtained in high-power experiments. In steady-state operation, a 1000 s oscillation length and output power of 0.51 MW was achieved.

  8. Design and optimization of G-band extended interaction klystron with high output power

    Science.gov (United States)

    Li, Renjie; Ruan, Cunjun; Zhang, Huafeng

    2018-03-01

    A ladder-type Extended Interaction Klystron (EIK) with unequal-length slots in the G-band is proposed and designed. The key parameters of resonance cavities working in the π mode are obtained based on the theoretical analysis and 3D simulation. The influence of the device fabrication tolerance on the high-frequency performance is analyzed in detail, and it is found that at least 5 μm of machining precision is required. Thus, the dynamic tuning is required to compensate for the frequency shift and increase the bandwidth. The input and output coupling hole dimensions are carefully designed to achieve high output power along with a broad bandwidth. The effect of surface roughness of the metallic material on the output power has been investigated, and it is proposed that lower surface roughness leads to higher output power. The focusing magnetic field is also optimized to 0.75 T in order to maintain the beam transportation and achieve high output power. With 16.5 kV operating voltage and 0.30 A beam current, the output power of 360 W, the efficiency of 7.27%, the gain of 38.6 dB, and the 3 dB bandwidth of 500 MHz are predicted. The output properties of the EIK show great stability with the effective suppression of oscillation and mode competition. Moreover, small-signal theory analysis and 1D code AJDISK calculations are carried out to verify the results of 3D PIC simulations. A close agreement among the three methods proves the relative validity and the reliability of the designed EIK. Thus, it is indicated that the EIK with unequal-length slots has potential for power improvement and bandwidth extension.

  9. High power blue LED development using different growth modes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong S.; Florescu, Doru I.; Ramer, Jeff C.; Merai, Vinod; Parekh, Aniruddh; Begarney, Michael J.; Armour, Eric A. [Veeco TurboDisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873 (United States); Lu Dong [Veeco TurboDisc Operations, 394 Elizabeth Avenue, Somerset, NJ 08873 (United States); School of Engineering, Rutgers University, Piscataway, NJ 08854 (United States)

    2004-09-01

    Blue high brightness light emitting diodes (HB-LEDs) have been developed using different growth modes in the active layers. Piezoelectric field engineering improves the optical output power in multiple quantum well (MQW) LEDs by inserting an optimized transitional superlattice (TSL) before the active MQW layers. Within single quantum well (SQW) LEDs, quasi-Quantum Dot (QD) growth for Indium localization has been realized. The SQW LED output power exceeds the strain engineered MQW LEDs. The experimental data indicates that Indium localization enhances overall quantum efficiency and results in increased output power for HB-LEDs. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Multilevel tracking power supply for switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Lazarevic, Vladan; Vasic, Miroslav

    2018-01-01

    to the power supply in order to improve efficiency. A 100 W prototype system was designed. Measured results show that systems employing envelope tracking can improve system efficiency from 2% to 12%, i.e. a factor of 6. The temperature rise is strongly reduced, especially for the switching power MOSFETs where......Switch-mode technology is the common choice for high efficiency audio power amplifiers. The dynamic nature of real audio reduces efficiency as less continuous output power can be achieved. Based on methods used for RF amplifiers this paper proposes to employ envelope tracking techniques...

  11. Modeling of mode purity in high power gyrotrons

    International Nuclear Information System (INIS)

    Cai, S.Y.; Antonsen, T.M. Jr.; Saraph, G.P.

    1993-01-01

    Spurious mode generation at the same frequency of the operational mode in a high power gyrotron can significantly reduce the power handling capability and the stability of a gyrotron oscillator because these modes are usually not matched at the output window and thus have high absorption and reflection rates. To study the generation of this kind of mode, the authors developed a numerical model based on an existing multimode self-consistent time-dependent computer code. This model includes both TE and TM modes and accounts for mode transformations due to the waveguide inhomogeneity. With this new tool, they study the mode transformation in the gyrotron and the possibility of excitation of parasitic TE and TM modes in the up taper section due to the gyroklystron mechanism. Their preliminary results show moderate excitation of both TE and TM modes at the same frequency as the main operating mode at locations near their cutoff. Details of the model and further simulation results will be presented

  12. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    Directory of Open Access Journals (Sweden)

    Q. Y. Lu

    2017-04-01

    Full Text Available Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  13. Low Power Very High Frequency Switch-Mode Power Supply with 50 V Input and 5 V Output

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequencyrange (30-300 MHz), a large step down ratio (10 times) and low output power (1 W). Several different invertersand rectifiers are analyzed and compared. The class E inverter and rectifier...... are selected based on complexity andefficiency estimates. Three different power stages are implemented; one with a large input inductor, one with a switch with small capacitances and one with a switch with low on resistance. The power stages are designed with the same specifications and efficiencies from 60...

  14. Wind Farm Active Power Dispatch for Output Power Maximizing Based on a Wind Turbine Control Strategy for Load Minimizing

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    2015-01-01

    Inclusion of the wake effect in the wind farm control design (WF) can increase the total captured power by wind turbines (WTs), which is usually implemented by derating upwind WTs. However, derating the WT without a proper control strategy will increase the structural loads, caused by operation...... in stall mode. Therefore, the WT control strategy for derating operation should be considered in the attempt at maximizing the total captured power while reducing structural loads. Moreover, electrical power loss on the transmission system inside a WF is also not negligible for maximizing the total output...... power of the WF. In this paper, an optimal active power dispatch strategy based on a WT derating strategy and considering the transmission loss is proposed for maximizing the total output power. The active power reference of each WT is chosen as the optimization variable. A partial swarm optimizing...

  15. Current-Driven Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Buhl, Niels Christian; Andersen, Michael A. E.

    2012-01-01

    The conversion of electrical energy into sound waves by electromechanical transducers is proportional to the current through the coil of the transducer. However virtually all audio power amplifiers provide a controlled voltage through the interface to the transducer. This paper is presenting...... a switch-mode audio power amplifier not only providing controlled current but also being supplied by current. This results in an output filter size reduction by a factor of 6. The implemented prototype shows decent audio performance with THD + N below 0.1 %....

  16. Mode transition coordinated control for a compound power-split hybrid car

    Science.gov (United States)

    Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna

    2017-03-01

    With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.

  17. Low-noise pulse-mode current power supply for magnetic field measurements of magnets for accelerators

    International Nuclear Information System (INIS)

    Omel'yanenko, M.M.; Borisov, V.V.; Donyagin, A.M.; Kostromin, S.A.; Makarov, A.A.; Khodzhibagiyan, G.G.; Shemchuk, A.V.

    2017-01-01

    The described pulse-mode current power supply has been designed and fabricated for the magnetic field measurement system of superconducting magnets for accelerators. The power supply is based on a current regulator with pass transistor bank in linear mode. The output current pulses (0-100 A) are produced by using the energy of preliminary charged capacitor bank (5-40 V), which is charged additionally after each pulse. There is no AC-line frequency and harmonics ripple in the output current, the relative noise level is less than -100 dB (or 10 -5 ) of RMS value (it is defined as the ratio of output RMS noise current to the maximal output current 100 A within the operating bandwidth, expressed in dB).

  18. Control and automatic alignment of the output mode cleaner of GEO 600

    Energy Technology Data Exchange (ETDEWEB)

    Prijatelj, M; Grote, H; Degallaix, J; Hewitson, M; Affeldt, C; Leong, J; Lueck, H; Strain, K A; Wittel, H; Willke, B; Danzmann, K [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Callinstr. 38, 30167 Hannover (Germany); Hild, S; Freise, A, E-mail: mirko.prijatelj@aei.mpg.d [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2010-05-01

    The implementation of a mode cleaner at the output port of the GEO 600 gravitational wave detector will be part of the upcoming transition from GEO 600 to GEO-HF. Part of the transition will be the move from a heterodyne readout to a DC readout scheme. DC readout performance will be limited by higher order optical modes and control sidebands present at the output port. For optimum performance of DC readout an output mode cleaner (OMC) will clean the output beam of these contributions. Inclusion of an OMC will introduce new noise sources whose magnitudes needed to be estimated and for which new control systems will be needed. In this article we set requirements on the performance of these control systems and investigate the simulated performance of different designs.

  19. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Fisher, Frank T

    2009-01-01

    Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ∼332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d 33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device

  20. Solar Power Station Output Inverter Control Design

    Directory of Open Access Journals (Sweden)

    J. Bauer

    2011-04-01

    Full Text Available The photovoltaic applications spreads in these days fast, therefore they also undergo great development. Because the amount of the energy obtained from the panel depends on the surrounding conditions, as intensity of the sun exposure or the temperature of the solar array, the converter must be connected to the panel output. The Solar system equipped with inverter can supply small loads like notebooks, mobile chargers etc. in the places where the supplying network is not present. Or the system can be used as a generator and it shall deliver energy to the supply network. Each type of the application has different requirements on the converter and its control algorithm. But for all of them the one thing is common – the maximal efficiency. The paper focuses on design and simulation of the low power inverter that acts as output part of the whole converter. In the paper the design of the control algorithm of the inverter for both types of inverter application – for islanding mode and for operation on the supply grid – is discussed. Attention is also paid to the design of the output filter that should reduce negative side effects of the converter on the supply network.

  1. Method for Prediction of the Power Output from Photovoltaic Power Plant under Actual Operating Conditions

    Science.gov (United States)

    Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.

    2017-04-01

    Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.

  2. Long-term WWER-440 dynamics in cyclic power output changes

    International Nuclear Information System (INIS)

    Petruzela, I.

    1989-01-01

    Xenon poisoning is one of the main factors limiting the operation of a nuclear power plant with a WWER-440 reactor in the variable load mode, when long-term dynamics applies to cyclic power output changes. An analysis of the xenon poisoning linearized transfer shows that a phase shift of 180deg takes place between the summed-up reactivity change due to a power change and the reactivity change due to xenon poisoning, this for a sine-wave power change with a period of 24 hours. Thus, the requirements are minimized for the change in reactivity of the control elements, and the maximum value can be achieved of released reactivity that can be utilized before the end of the campaign. (B.S.). 6 figs., 4 tabs., 9 refs

  3. Output Power Smoothing Control for a Wind Farm Based on the Allocation of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2018-06-01

    Full Text Available This paper presents a new output power smoothing control strategy for a wind farm based on the allocation of wind turbines. The wind turbines in the wind farm are divided into control wind turbines (CWT and power wind turbines (PWT, separately. The PWTs are expected to output as much power as possible and a maximum power point tracking (MPPT control strategy combining the rotor inertia based power smoothing method is adopted. The CWTs are in charge of the output power smoothing for the whole wind farm by giving the calculated appropriate power. The battery energy storage system (BESS with small capacity is installed to be the support and its charge and discharge times are greatly reduced comparing with the traditional ESSs based power smoothing strategies. The simulation model of the permanent magnet synchronous generators (PMSG based wind farm by considering the wake effect is built in Matlab/Simulink to test the proposed power smoothing method. Three different working modes of the wind farm are given in the simulation and the simulation results verify the effectiveness of the proposed power smoothing control strategy.

  4. Simulation of Distributed PV Power Output in Oahu Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-08-01

    Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presented by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.

  5. Output power analyses for the thermodynamic cycles of thermal power plants

    International Nuclear Information System (INIS)

    Sun Chen; Cheng Xue-Tao; Liang Xin-Gang

    2014-01-01

    Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed. (general)

  6. Call-related factors influencing output power from mobile phones.

    Science.gov (United States)

    Hillert, Lena; Ahlbom, Anders; Neasham, David; Feychting, Maria; Järup, Lars; Navin, Roshan; Elliott, Paul

    2006-11-01

    Mobile phone use is increasing but there is also concern for adverse health effects. Well-designed prospective studies to assess several health outcomes are required. In designing a study of mobile phone use, it is important to assess which factors need to be considered in classifying the exposure to radiofrequency fields (RF). A pilot study was performed in Sweden and in the UK 2002 to 2003 to test the feasibility of recruiting a cohort of mobile phone users from a random population sample and from mobile phone subscription lists for a prospective study. As one part of this pilot study, different factors were evaluated regarding possible influence on the output power of the phones. By local switch logging, information on calls made from predefined subscriptions or dedicated handsets were obtained and the output power of phones during calls made indoors and outdoors, in moving and stationary mode, and in rural as well in urban areas were compared. In this experiment, calls were either 1, 1.5 or 5 min long. The results showed that high mobile phone output power is more frequent in rural areas whereas the other factors (length of call, moving/stationary, indoor/outdoor) were of less importance. Urban and rural area should be considered in an exposure index for classification of the exposure to RF from mobile phones and may be assessed by first base station during mobile phone calls or, if this information is not available, possibly by using home address as a proxy.

  7. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    Science.gov (United States)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  8. Capacitor current feedback for output filter damping in switched-mode magnet power supplies

    International Nuclear Information System (INIS)

    Paven Kumar, M.R.; Kim, J.M.S.

    1994-01-01

    In magnet power supplies for a particle accelerator system, a second-order low-pass filter is used to reduce the output current ripple content within specifications. The output filter must be properly damped in order to avoid any large amplification at the resonant frequency and large transient responses of voltages and currents at the step change of the line voltage. Conventionally, a series combination of resistance and capacitance is added in parallel with the filter capacitor to provide the required damping. This approach, however, requires a large dc-blocking capacitor which has to be several times larger than the filter capacitor. In this paper, a filter damping technique using capacitor current feedback is presented. The basic concept of the capacitor current feedback is established using a linear model of the converter involved, and then a sampled-data model of the converter is used to analyze the filter damping technique. The filter damping effect of the capacitor current feedback is verified experimentally

  9. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  10. Design and development of bipolar 4-quadrant switch-mode power converter for superconducting magnets

    International Nuclear Information System (INIS)

    Yashwant Kumar; Thakur, S.K.; Ghosh, M.K.; Tiwari, T.P.; De, Anirban; Kumari, S.; Saha, S.

    2011-01-01

    A uniform zero crossing magnetic field in a magnet can be achieved by using bipolar power converter with four quadrant operation. A high current bipolar switch-mode power converter (rated ±27 V max , ±7V flat top, ±300A, 100 ppm) has been designed and developed indigenously at VECC Kolkata. Four quadrants operation is accomplished by using power IGBTs in an H-bridge configuration with switching frequency around 20 kHz. The switch-mode power converter is used because of high dynamic response, low output ripple, high efficiency and low input current harmonics. In this paper, circuit topology, function of system components and key system specifications of high current bipolar switch mode power converter is discussed. (author)

  11. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  12. Upper-limit on the Advanced Virgo output mode cleaner cavity length noise

    Science.gov (United States)

    Bonnand, R.; Ducrot, M.; Gouaty, R.; Marion, F.; Masserot, A.; Mours, B.; Pacaud, E.; Rolland, L.; Was, M.

    2017-09-01

    The Advanced Virgo detector uses two monolithic optical cavities at its output port to suppress higher order modes and radio frequency sidebands from the carrier light used for gravitational wave detection. These two cavities in series form the output mode cleaner. We present a measured upper limit on the length noise of these cavities that is consistent with the thermo-refractive noise prediction of 8×10-16~m~Hz-1/2 at 15 Hz. The cavity length is controlled using Peltier cells and piezo-electric actuators to maintain resonance on the incoming light. A length lock precision of 3.5×10-13 m is achieved. These two results are combined to demonstrate that the broadband length noise of the output mode cleaner in the 10-60 Hz band is at least a factor 10 below other expected noise sources in the Advanced Virgo detector design configuration.

  13. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  14. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann

    2012-01-01

    We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode inst...

  15. Active Power Factor Correction Using a Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Korhan KAYIŞLI

    2008-03-01

    Full Text Available In this paper, a sliding mode controller is designed for active shaping of the input current in the boost converter. Robustness of the designed controller is tested with variable output voltage references, different loads and network voltage variations. For the simulations, MATLAB/Simulink programme is used. From simulation results, the same phase was provided between input current and input voltage and nearly unity power factor was obtained.

  16. Robust output LQ optimal control via integral sliding modes

    CERN Document Server

    Fridman, Leonid; Bejarano, Francisco Javier

    2014-01-01

    Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...

  17. LOAD THAT MAXIMIZES POWER OUTPUT IN COUNTERMOVEMENT JUMP

    Directory of Open Access Journals (Sweden)

    Pedro Jimenez-Reyes

    2016-02-01

    Full Text Available ABSTRACT Introduction: One of the main problems faced by strength and conditioning coaches is the issue of how to objectively quantify and monitor the actual training load undertaken by athletes in order to maximize performance. It is well known that performance of explosive sports activities is largely determined by mechanical power. Objective: This study analysed the height at which maximal power output is generated and the corresponding load with which is achieved in a group of male-trained track and field athletes in the test of countermovement jump (CMJ with extra loads (CMJEL. Methods: Fifty national level male athletes in sprinting and jumping performed a CMJ test with increasing loads up to a height of 16 cm. The relative load that maximized the mechanical power output (Pmax was determined using a force platform and lineal encoder synchronization and estimating the power by peak power, average power and flight time in CMJ. Results: The load at which the power output no longer existed was at a height of 19.9 ± 2.35, referring to a 99.1 ± 1% of the maximum power output. The load that maximizes power output in all cases has been the load with which an athlete jump a height of approximately 20 cm. Conclusion: These results highlight the importance of considering the height achieved in CMJ with extra load instead of power because maximum power is always attained with the same height. We advise for the preferential use of the height achieved in CMJEL test, since it seems to be a valid indicative of an individual's actual neuromuscular potential providing a valid information for coaches and trainers when assessing the performance status of our athletes and to quantify and monitor training loads, measuring only the height of the jump in the exercise of CMJEL.

  18. Transverse mode instability in high-power ytterbium doped fiber ampliers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann

    The last couple of decades have brought an impressive growth in the output power of rare-earth doped fiber lasers and amplifiers, reaching the kW average power regime in both CW and pulsed systems. As a result, even though fiber lasers have excellent heat dissipation properties, thermal effects due...... is to provide a theoretical understanding of the thermo-optical effects in high-power ytterbium doped fiber amplifiers, with a particular emphasis on understanding the aforementioned mode instability issue. Two main approaches to the problem have been used. The first is the development of a numerical model...

  19. Neural Adaptive Sliding-Mode Control of a Vehicle Platoon Using Output Feedback

    Directory of Open Access Journals (Sweden)

    Maode Yan

    2017-11-01

    Full Text Available This paper investigates the output feedback control problem of a vehicle platoon with a constant time headway (CTH policy, where each vehicle can communicate with its consecutive vehicles. Firstly, based on the integrated-sliding-mode (ISM technique, a neural adaptive sliding-mode control algorithm is developed to ensure that the vehicle platoon is moving with the CTH policy and full state measurement. Then, to further decrease the measurement complexity and reduce the communication load, an output feedback control protocol is proposed with only position information, in which a higher order sliding-mode observer is designed to estimate the other required information (velocities and accelerations. In order to avoid collisions among the vehicles, the string stability of the whole vehicle platoon is proven through the stability theorem. Finally, numerical simulation results are provided to verify its effectiveness and advantages over the traditional sliding-mode control method in vehicle platoons.

  20. Measuring nuclear power plant output by neutrino detection

    International Nuclear Information System (INIS)

    Korovkin, V.A.; Kodanev, S.A.; Panashchenko, N.S.; Sokolov, D.A.; Solov'yanov, O.M.; Tverdovskii, N.D.; Yarichin, A.D.; Ketov, S.N.; Kopeikin, V.I.; Machulin, I.N.; Mikaelyan, L.A.; Sinev, V.V.

    1989-01-01

    Neutrino emission from a reactor is inseparably linked with the fission process of heavy nuclei: each fission contributes a specific amount to the overall power output and gives rise to neutrinos which are emitted by the fission fragments created. Using a detector to record the neutrino flux gives a curve for the number of nuclei undergoing fission and the reactor power output. The question of whether it is practically possible to make use of neutrino emission from reactors was first posed in the mid-70s in connection with preparations for neutrino research at the Roven nuclear power plant (RAES) and in 1986 at an IAEA symposium on the topic of guarantees. Since 1982, research has been carried on at RAES on the fundamental properties and interactions of neutrinos. Based on this research and in parallel with it, in 1983 specialists from the Kurchatov Nuclear Power Institute and RAES jointly conducted an experiment which demonstrated in principle the possibility of remotely measuring reactor power output using the neutrino emission. This experiment had extremely limited statistics and is of interest today as the first demonstration of practical usage of neutrino emission from a reactor. At present the statistics for detecting neutrino events have increased tenfold and experience in lengthy measurements has been accumulated. This allows better analysis for the possibilities of the method. This paper reviews neutrino detection, theoretical bases of the method, determining the fission scale values for converting a number of neutrinos into power output, and measuring the power output

  1. Iaverage current mode (ACM) control for switching power converters

    OpenAIRE

    2014-01-01

    Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.

  2. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  3. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    Science.gov (United States)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  4. Switching power supplies with multiple isolated output and unitary power factor with an only switch; Fonte chaveada com multiplas saidas isoladas e fator de potencia unitario com um unico interruptor

    Energy Technology Data Exchange (ETDEWEB)

    Canesin, Carlos Alberto

    1990-09-01

    The analysis and implementation of switching power supplies with multiple output, through the use of the D C/D C Single Ended Primary Inductance Converter - SEPIC is presented. The structure has a single switch mode processing stage, improved input power factor, with the use of the variable current hysteresis control, or, constant on time control. The analysis of the D C/D C SEPIC, output characteristics and computer simulation is presented. A switching power supply practical design and experimental results are presented to demonstrate the validity of the theoretical analysis. (author)

  5. Mixed-mode distribution systems for high average power electron cyclotron heating

    International Nuclear Information System (INIS)

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.

    1984-01-01

    The ELMO Bumpy Torus-Scale (EBT-S) experiment consists of 24 simple magnetic mirrors joined end-to-end to form a torus of closed magnetic field lines. In this paper, we first describe an 80% efficient mixed-mode unpolarized heating system which couples 28-GHz microwave power to the midplane of the 24 EBT-S cavities. The system consists of two radiused bends feeding a quasi-optical mixed-mode toroidal distribution manifold. Balancing power to the 24 cavities is determined by detailed computer ray tracing. A second 28-GHz electron cyclotron heating (ECH) system using a polarized grid high field launcher is described. The launcher penetrates the fundamental ECH resonant surface without a vacuum window with no observable breakdown up to 1 kW/cm 2 (source limited) with 24 kW delivered to the plasma. This system uses the same mixed-mode output as the first system but polarizes the launched power by using a grid of WR42 apertures. The efficiency of this system is 32%, but can be improved by feeding multiple launchers from a separate distribution manifold

  6. A Comparative Study of Analog Voltage-mode Control Methods for Ultra-Fast Tracking Power Supplies

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents a theoretical and experimental comparison of the standard PWM/PID voltage-mode control method for single-phase buck converters with two highperformance self-oscillating (a.k.a. sliding mode) control methods. The application considered is ultra-fast tracking power supplies...... (UFTPSs) for RF power amplifiers, where the switching converter needs to track a varying reference voltage precisely and quickly while maintaining low output impedance. The small-signal analyses performed on the different controllers show that the hysteretic-type controller can achieve the highest loop...

  7. Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester

    Directory of Open Access Journals (Sweden)

    Jae Eun Kim

    2013-07-01

    Full Text Available We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.

  8. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    Science.gov (United States)

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  9. Characterization of a pulsed mode high voltage power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Ghazali, A B; Ahmad, T S; Abdullah, N A

    2013-01-01

    This paper discusses the characterization of a pulsed mode high voltage power supply (HVPS) using LT1073 chip. The pulsed modulated signal generated from this chip is amplified using a step-up ferrite core transformer of 1:20 turn ratio and then further multiplied and converted into DC high voltage output using a diode-capacitor arrangement. The circuit is powered by a 9V alkaline battery but regulated at 5V supply. It was found that the output for this setup is 520V, 87 μA with 10% load regulation. This output is suitable to operate a pancake-type GM detector, typically model LND 7317 where the plateau is from 475V to 675V. It was also found that when a β-source with intensity of 120 cps is used, the power consumption of the circuit is 5 V, 10.1 mA only. When the battery was left 'on' for 40 hours continuously, the battery's voltage has dropped to 6.9V, meaning that the 5V supply as well as 520V output is still maintained. It is noted that the minimum output voltage of 475V has reached when the regulated supply has reduced to 4.6V and consequently the 9V battery dropped to 6.5V, and this had happened after approximately 3 days of continuous operation. The power efficiency for this circuitry was found to be 89.5%. This result has far better in performance since the commercial portable equipment of this type has normally specified that not less than 8 hours continuous operation only. On the circuit design for this power supply, it was found that the enveloped frequency is 133 Hz with approximately 50% duty cycle. The modulated frequency during 'on' state was found to be 256 KHz in which the majority of power consumption is required.

  10. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  11. Research and design of quasi-optical mode converter

    International Nuclear Information System (INIS)

    Liu Jianwei; Zhao Qing

    2013-01-01

    This paper presents a quasi-optical mode converter which can convert the output mode of gyrotrons and other high-power microwave oscillators into quasi-Gaussian beam, aiming to achieve transverse output of quasi-Gaussian beam TEM 00 mode. First, we analyze mode propagation in the waveguide and the working mechanism of the Vlasov launcher. Then the radiation fields are calculated using vector diffraction theory. At last a quasi-optical mode converter is designed to convert the 94 GHz, TE 62 mode millimeter wave into quasi-Gaussian beam with programming method. The results prove that quasi-Gaussian mode can be obtained at the output window with a simple Vlasov launcher and two mirrors, and the power transmission efficiency of the quasi-optical mode converter reaches to 87.5%. (authors)

  12. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  13. Output power distributions of terminals in a 3G mobile communication network.

    Science.gov (United States)

    Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan

    2012-05-01

    The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas. Copyright © 2011 Wiley Periodicals, Inc.

  14. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  15. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  16. Intermittent Smoothing Approaches for Wind Power Output: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Jabir

    2017-10-01

    Full Text Available Wind energy is one of the most common types of renewable energy resource. Due to its sustainability and environmental benefits, it is an emerging source for electric power generation. Rapid and random changes of wind speed makes it an irregular and inconsistent power source when connected to the grid, causing different technical problems in protection, power quality and generation dispatch control. Due to these problems, effective intermittent smoothing approaches for wind power output are crucially needed to minimize such problems. This paper reviews various intermittent smoothing approaches used in smoothing the output power fluctuations caused by wind energy. Problems associated with the inclusion of wind energy resources to grid are also briefly reviewed. From this review, it has been found that battery energy storage system is the most suitable and effective smoothing approach, provided that an effective control strategy is available for optimal utilization of battery energy system. This paper further demonstrates different control strategies built for battery energy storage system to obtain the smooth output wind power.

  17. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.

    Science.gov (United States)

    Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas

    2014-05-19

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  18. Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power

    OpenAIRE

    Gaponenko, M. S.; Kuleshov, N. V.; Südmeyer, T.

    2014-01-01

    We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM00 mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.

  19. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  20. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  1. Conversion of a reactor to partial power output

    International Nuclear Information System (INIS)

    Iljunin, W.G.; Kusnezow, I.A.; Murogow, W.M.; Schmelew, A.N.

    1975-01-01

    The method, among other things, involves an increase in the rate of secondary fissile material production in a fast breeder reactor if the flow of the working fluid through a turbine is reduced as a function of a given amount of reduction of the electric load. This objective will be served by a circuit and circuit variants, respectively, which include a high temperature cooling circuit with, for instance, a sodium cooled HTR, a low temperature cooling circuit with, for instance, a fast or thermal breeder reactor, a working fluid circuit with the turbine, and a heat consumption circuit. In the scheme suggested for operation in the partial power production mode it is envisaged that, as the electric load of the plant decreases the flow of the working fluid upstream of the turbine is kept constant by means of a control system in the working fluid circuit. Additional control systems are used to reduce the amount of heat transmitted by the breeder reactor to the working fluid. The excess amount of heat is distributed to the load connected. This again reduces the temperatures at the inlet and the outlet of the breeder reactor, thus raising its thermal power output. However, the flow through the breeder reactor remains constant all the time. (DG/RF) [de

  2. Output power distributions of mobile radio base stations based on network measurements

    International Nuclear Information System (INIS)

    Colombi, D; Thors, B; Persson, T; Törnevik, C; Wirén, N; Larsson, L-E

    2013-01-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  3. Output power distributions of mobile radio base stations based on network measurements

    Science.gov (United States)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  4. Predicting Output Power for Nearshore Wave Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Henock Mamo Deberneh

    2018-04-01

    Full Text Available Energy harvested from a Wave Energy Converter (WEC varies greatly with the location of its installation. Determining an optimal location that can result in maximum output power is therefore critical. In this paper, we present a novel approach to predicting the output power of a nearshore WEC by characterizing ocean waves using floating buoys. We monitored the movement of the buoys using an Arduino-based data collection module, including a gyro-accelerometer sensor and a wireless transceiver. The collected data were utilized to train and test prediction models. The models were developed using machine learning algorithms: SVM, RF and ANN. The results of the experiments showed that measurements from the data collection module can yield a reliable predictor of output power. Furthermore, we found that the predictors work better when the regressors are combined with a classifier. The accuracy of the proposed prediction model suggests that it could be extremely useful in both locating optimal placement for wave energy harvesting plants and designing the shape of the buoys used by them.

  5. Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    Directory of Open Access Journals (Sweden)

    Yaoyao Wang

    2014-01-01

    Full Text Available For the 4-DOF (degrees of freedom trajectory tracking control problem of underwater remotely operated vehicles (ROVs in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC technique is introduced in light of the equivalent output injection sliding mode observer (SMO and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time.

  6. Artificial Neural Networks to Predict the Power Output of a PV Panel

    Directory of Open Access Journals (Sweden)

    Valerio Lo Brano

    2014-01-01

    Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.

  7. Multi-decadal Variability of the Wind Power Output

    Science.gov (United States)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  8. Carnot efficiency at divergent power output

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2017-05-01

    The widely debated feasibility of thermodynamic machines achieving Carnot efficiency at finite power has been convincingly dismissed. Yet, the common wisdom that efficiency can only be optimal in the limit of infinitely slow processes overlooks the dual scenario of infinitely fast processes. We corroborate that efficient engines at divergent power output are not theoretically impossible, framing our claims within the theory of Stochastic Thermodynamics. We inspect the case of an electronic quantum dot coupled to three particle reservoirs to illustrate the physical rationale.

  9. Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser

    International Nuclear Information System (INIS)

    Chen Yue-E; Wang Yong; Qu Xi-Long

    2012-01-01

    Compared with traditional optical fiber lasers, double-clad photonic crystal fiber (PCF) lasers have larger surface-area-to-volume ratios. With an increase of output power, thermal effects may severely restrict output power and deteriorate beam quality of fiber lasers. We utilize the heat-conduction equations to estimate the maximum output power of a double-clad PCF laser under natural-convection, air-cooling, and water-cooling conditions in terms of a certain surface-volume heat ratio of the PCF. The thermal effects hence define an upper power limit of double-clad PCF lasers when scaling output power. (fundamental areas of phenomenology(including applications))

  10. Modeling the power output of piezoelectric energy harvesters

    KAUST Repository

    Al Ahmad, Mahmoud

    2011-04-30

    Design of experiments and multiphysics analyses were used to develop a parametric model for a d 33-based cantilever. The analysis revealed that the most significant parameters influencing the resonant frequency are the supporting layer thickness, piezoelectric layer thickness, and cantilever length. On the other hand, the most important factors affecting the charge output arethe piezoelectric thickness and the interdigitated electrode dimensions. The accuracy of the developed model was confirmed and showed less than 1% estimation error compared with a commercial simulation package. To estimate the power delivered to a load, the electric current output from the piezoelectric generator was calculated. A circuit model was built and used to estimate the power delivered to a load, which compared favorably to experimentally published power data on actual cantilevers of similar dimensions. © 2011 TMS.

  11. Modeling the power output of piezoelectric energy harvesters

    KAUST Repository

    Al Ahmad, Mahmoud; Alshareef, Husam N.

    2011-01-01

    Design of experiments and multiphysics analyses were used to develop a parametric model for a d 33-based cantilever. The analysis revealed that the most significant parameters influencing the resonant frequency are the supporting layer thickness, piezoelectric layer thickness, and cantilever length. On the other hand, the most important factors affecting the charge output arethe piezoelectric thickness and the interdigitated electrode dimensions. The accuracy of the developed model was confirmed and showed less than 1% estimation error compared with a commercial simulation package. To estimate the power delivered to a load, the electric current output from the piezoelectric generator was calculated. A circuit model was built and used to estimate the power delivered to a load, which compared favorably to experimentally published power data on actual cantilevers of similar dimensions. © 2011 TMS.

  12. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  13. S-Band AlGaN/GaN Power Amplifier MMIC with over 20 Watt Output Power

    NARCIS (Netherlands)

    Heijningen, M. van; Visser, G.C.; Wuerfl, J.; Vliet, F.E. van

    2008-01-01

    This paper presents the design of an S-band HPA MMIC in AlGaN/GaN CPW technology for radar TR-module application. The trade-offs of using an MMIC solution versus discrete power devices are discussed. The MMIC shows a maximum output power of 38 Watt at 37% Power Added Efficiency at 3.1 GHz. An output

  14. Design of Low Voltage Low Power CMOS OP-AMPS with Rail-to-Rail Input/Output Swing

    OpenAIRE

    Gopalaiah, SV; Shivaprasad, AP; Panigrahi, Sukanta K

    2004-01-01

    A novel input and output biasing circuit to extend the input common mode (CM) voltage range and the output swing to rail-to-rail in a low voltage op-amp in standard CMOS technology is presented. The input biasing circuit uses a Switched Capacitor Based Attenuator (SCBA) approach to establish rail-to-rail common mode input voltage range. And the output biasing circuit uses an Output Driver (OD), with floating bias to give the rail-to-rail swing at output stage. Three different OD schemes in op...

  15. Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications

    Directory of Open Access Journals (Sweden)

    Jukka Viinamäki

    2017-07-01

    Full Text Available The application of constant power control and inclusion of energy storage in grid-connected photovoltaic (PV energy systems may increase the use of two-stage system structures composed of DC–DC-converter-interfaced PV generator and grid-connected inverter connected in cascade. A typical PV-generator-interfacing DC–DC converter is a boost-power-stage converter. The renewable energy system may operate in three different operation modes—grid-forming, grid-feeding, and grid-supporting modes. In the last two operation modes, the outmost feedback loops are taken from the input terminal of the associated power electronic converters, which usually does not pose stability problems in terms of their input sources. In the grid-forming operation mode, the outmost feedback loops have to be connected to the output terminal of the associated power electronic converters, and hence the input terminal will behave as a negative incremental resistor at low frequencies. This property will limit the operation of the PV interfacing converter in either the constant voltage or constant current region of the PV generator for ensuring stable operation. The boost-power-stage converter can be applied as a voltage or current-fed converter limiting the stable operation region accordingly. The investigations of this paper show explicitly that only the voltage-fed mode would provide feasible dynamic and stability properties as a viable interfacing converter.

  16. Universal and inductorless DC/DC converter for multi-output power supplies in sensor and actuator networks

    Science.gov (United States)

    Saponara, Sergio; Ciarpi, Gabriele

    2017-05-01

    This work proposes a universal and inductorless DC/DC converter that can be used for a wide input range, from few V to 60 V, to regulate output voltages from 5 V down to 1 V in Sensor and Actuator Network nodes. The proposed converter has been developed within the Athenis3D European project. It is composed by a cascade of multiple switching capacitor stages, with a proper skip-mode control to implement both step-down and step-up converting ratios, thus regulating all input sources to a voltage of about 6 V. These switching stages are further cascaded with linear regulators, which can provide stable output voltages down to 1 V. The multi-output regulator has been realized as a single-chip in a low-cost 0.35 μm CMOS technology. It is available as a naked die or in a ceramic package. The only needed external components are surface mount capacitors, which can be integrated on top of the naked chip die, creating a 3D structure, using trench capacitors embedded in a passive interposing layer. This way the size of the power management unit is further minimized. An advantage of the proposed converter is that it isn't optimized for a particular input voltage, therefore it can be used with no constant input power, like power harvesting systems (e.g. solar cells, wind and water turbines) and very disturbed power supplies.

  17. Power output of field-based downhill mountain biking.

    Science.gov (United States)

    Hurst, Howard Thomas; Atkins, Stephen

    2006-10-01

    The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 +/- 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 +/- 129 W and 75 +/- 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 +/- 9 beats x min(-1) (89% of age-predicted maximum heart rate). Mean cadence (27 +/- 5 rev x min(-1)) was significantly related to speed (r = 0.51; P biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.

  18. Design of High-Voltage Switch-Mode Power Amplifier Based on Digital-Controlled Hybrid Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Yanbin Hou

    2016-01-01

    Full Text Available Compared with conventional Class-A, Class-B, and Class-AB amplifiers, Class-D amplifier, also known as switching amplifier, employs pulse width modulation (PWM technology and solid-state switching devices, capable of achieving much higher efficiency. However, PWM-based switching amplifier is usually designed for low-voltage application, offering a maximum output voltage of several hundred Volts. Therefore, a step-up transformer is indispensably adopted in PWM-based Class-D amplifier to produce high-voltage output. In this paper, a switching amplifier without step-up transformer is developed based on digital pulse step modulation (PSM and hybrid multilevel converter. Under the control of input signal, cascaded power converters with separate DC sources operate in PSM switch mode to directly generate high-voltage and high-power output. The relevant topological structure, operating principle, and design scheme are introduced. Finally, a prototype system is built, which can provide power up to 1400 Watts and peak voltage up to ±1700 Volts. And the performance, including efficiency, linearity, and distortion, is evaluated by experimental tests.

  19. Scaling Mode Shapes in Output-Only Structure by a Mass-Change-Based Method

    Directory of Open Access Journals (Sweden)

    Liangliang Yu

    2017-01-01

    Full Text Available A mass-change-based method based on output-only data for the rescaling of mode shapes in operational modal analysis (OMA is introduced. The mass distribution matrix, which is defined as a diagonal matrix whose diagonal elements represent the ratios among the diagonal elements of the mass matrix, is calculated using the unscaled mode shapes. Based on the theory of null space, the mass distribution vector or mass distribution matrix is obtained. A small mass with calibrated weight is added to a certain location of the structure, and then the mass distribution vector of the modified structure is estimated. The mass matrix is identified according to the difference of the mass distribution vectors between the original and modified structures. Additionally, the universal set of modes is unnecessary when calculating the mass distribution matrix, indicating that modal truncation is allowed in the proposed method. The mass-scaled mode shapes estimated in OMA according to the proposed method are compared with those obtained by experimental modal analysis. A simulation is employed to validate the feasibility of the method. Finally, the method is tested on output-only data from an experiment on a five-storey structure, and the results confirm the effectiveness of the method.

  20. Determinants of mobile phone output power in a multinational study: implications for exposure assessment

    DEFF Research Database (Denmark)

    Vrijheid, M; Madsen, Stine Mann; di Vecchia, Paolo

    2009-01-01

    OBJECTIVES: The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemi......OBJECTIVES: The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure...... on the average output power and the percentage call time at maximum power for each call. RESULTS: Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators...

  1. Analysis of losses within SMES system for compensating output fluctuation of wind power farm

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. I.; Kim, J. H.; Le, T. D.; Lee, D. H.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of); Yoon, Y. S. [Dept. of Electrical Engineering, Shin Ansan University, Ansan (Korea, Republic of); Yoon, K. Y. [Dept. of lectrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2014-12-15

    Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.

  2. Analysis of losses within SMES system for compensating output fluctuation of wind power farm

    International Nuclear Information System (INIS)

    Park, S. I.; Kim, J. H.; Le, T. D.; Lee, D. H.; Kim, H. M.; Yoon, Y. S.; Yoon, K. Y.

    2014-01-01

    Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.

  3. Basic study on dynamic reactive-power control method with PV output prediction for solar inverter

    Directory of Open Access Journals (Sweden)

    Ryunosuke Miyoshi

    2016-01-01

    Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.

  4. Theoretical study of the mode of the mass-selective nonstable axial output ions from the nonlinear trap

    International Nuclear Information System (INIS)

    Sudakov, M.Yu.

    2000-01-01

    One studied theoretically the mode of mass-selective unstable output of ions from three-dimensional quadrupole ion trap. One developed a method represent coordinates of ions per one period of supplying HF voltage with regard to nonlinear distortions of quadrupole potential. One derived equation for an envelope of ion oscillations in the form of motion equation of mass point in the efficient force field. One explained the effect of output delay of ions at presence of the field negative even harmonics. One proved that the positive even distortions of quadrupole potential favored realization of that mode and studied the dynamics of ions in the course of output [ru

  5. Control strategies to optimise power output in heave buoy energy convertors

    International Nuclear Information System (INIS)

    Abu Zarim, M A U A; Sharip, R M

    2013-01-01

    Wave energy converter (WEC) designs are always discussed in order to obtain an optimum design to generate the power from the wave. Output power from wave energy converter can be improved by controlling the oscillation in order to acquire the interaction between the WEC and the incident wave.The purpose of this research is to study the heave buoys in the interest to generate an optimum power output by optimising the phase control and amplitude in order to maximise the active power. In line with the real aims of this study which investigate the theory and function and hence optimise the power generation of heave buoys as renewable energy sources, the condition that influence the heave buoy must be understand in which to propose the control strategies that can be use to control parameters to obtain optimum power output. However, this research is in an early stage, and further analysis and technical development is require

  6. L to H-mode Power Threshold and Confinement Characteristics of H-modes in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Na, Y.S., E-mail: ftwalker.hyuns@gmail.com [Seoul National University, Seoul (Korea, Republic of); Ahn, J. W. [Oak Ridge National Laboratory, Oak Ridge (United States); Jeon, Y. M.; Yoon, S. W.; Lee, K. D.; Ko, W. H.; Bae, Y. S.; Kim, W. C.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-09-15

    Full text: Since KSTAR has obtained the H-mode in 2010 campaign, H-mode plasmas were routinely obtained with combined heating of NBI with maximum power of 1.5 MW and ECRH with maximum power of {approx} 0.3 MW and {approx} 0.6 MW for 110 GHz and 170 GHz, respectively. The L- to H-mode power threshold and confinement properties of KSTAR H-modes are investigated in this work. Firstly, the L- to H-mode power threshold and the power loss to the seperatrix are calculated by power balance analysis for about collected 400 shots. As a result, a trend of roll-over is observed in the power threshold of KSTAR H-mode compared with the multi-machine power threshold scaling in the low density regime. Dependence of the power threshold on other parameters are also investigated such as the X-point position and shaping parameters like as triangularity and elongation. In addition, the reason of reduction of power threshold in 2011 campaign compared with that in 2010 is addressed. Secondly, the confinement enhancement factors are calculated to evaluate the performance of KSTAR H-modes. The calculated H{sub 89-p} and H{sub 98} (y, 2) represent that the confinement is enhanced in most KSTAR H-mode discharges. Interestingly, even in L-mode phases, confinement is observed to be enhanced against the multi-machine scalings. H{sub exp} factor is newly introduced to evaluate the amount of confinement improvement in the H-mode phase compared with the L-mode phase in a single discharge. H{sub exp} exhibits that the global energy confinement time of the H-mode phase is improved about 1.3 - 2.0 times compared with that of the L-mode phase. Finally, interpretive and predictive numerical simulations are carried out using the ASTRA code for typical KSTAR H-mode discharges. The Weiland model and the GLF23 model are employed for calculating the anomalous contributions of both electron and ion heat transport in predictive simulations. For the H-mode phase, the Weiland model reproduces the experiment

  7. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  8. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  9. Research of the Power Plant Operational Modes

    Directory of Open Access Journals (Sweden)

    Koismynina Nina M.

    2017-01-01

    Full Text Available In this article the algorithm of the power plant operational modes research is offered. According to this algorithm the program for the modes analysis and connection power transformers choice is developed. The program can be used as educational means for studying of the power plant electric part, at the same time basic data are provided. Also the program can be used for the analysis of the working power plants modes. Checks of the entered data completeness and a choice correctness of the operational modes are provided in the program; in all cases of a deviation from the correct decisions to the user the relevant information is given.

  10. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    Energy Technology Data Exchange (ETDEWEB)

    Chirkov, A. V.; Kuftin, A. N. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ul' yanov Street, 603950 Nizhny Novgorod (Russian Federation); Denisov, G. G. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ul' yanov Street, 603950 Nizhny Novgorod (Russian Federation); University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation)

    2015-06-29

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator.

  11. Perspective gyrotron with mode converter for co- and counter-rotation operating modes

    International Nuclear Information System (INIS)

    Chirkov, A. V.; Kuftin, A. N.; Denisov, G. G.

    2015-01-01

    A gyrotron oscillator operating efficiently at modes of both rotations was developed and tested. The gyrotron operation can be switched between two modes: co- and counter rotating ones with respect to electron rotation in a resonance magnetic field. A synthesized mode converter provides output of both waves in the form of two different paraxial wave beams corresponding to direction of the mode rotation. Measured gyrotron power (up to 2 MW), interaction efficiency (34%), and diffraction losses in the mode converter (≈2%) agree well with the design values. The proposed gyrotron scheme alloys principal enhancement in the device parameters—possibility of electronic switching of output wave beam direction and possibility to arrange an effective scheme to provide frequency/phase locking of a gyrotron-oscillator

  12. High Power Tm3+-Doped Fiber Lasers Tuned by a Variable Reflective Output Coupler

    Directory of Open Access Journals (Sweden)

    Yulong Tang

    2008-01-01

    Full Text Available Wide wavelength tuning by a variable reflective output coupler is demonstrated in high-power double-clad Tm3+-doped silica fiber lasers diode-pumped at ∼790  nm. Varying the output coupling from 96% to 5%, the laser wavelength is tuned over a range of 106  nm from 1949 to 2055  nm. The output power exceeds 20  W over 90-nm range and the maximum output power is 32  W at 1949  nm for 51-W launched pump power, corresponding to a slope efficiency of ∼70%. Assisted with different fiber lengths, the tuning range is expanded to 240  nm from 1866 to 2107  nm with the output power larger than 10  W.

  13. Cladding-pumped ytterbium-doped fiber laser with radially polarized output.

    Science.gov (United States)

    Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A

    2014-09-15

    A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.

  14. Laser fiber cleaving techniques: effects on tip morphology and power output.

    Science.gov (United States)

    Vassantachart, Janna M; Lightfoot, Michelle; Yeo, Alexander; Maldonado, Jonathan; Li, Roger; Alsyouf, Muhannad; Martin, Jacob; Lee, Michael; Olgin, Gaudencio; Baldwin, D Duane

    2015-01-01

    Proper cleaving of reusable laser fibers is needed to maintain optimal functionality. This study quantifies the effect of different cleaving tools on power output of the holmium laser fiber and demonstrates morphologic changes using microscopy. The uncleaved tips of new 272 μm reusable laser fibers were used to obtain baseline power transmission values at 3 W (0.6 J, 5 Hz). Power output for each of four cleaving techniques-11-blade scalpel, scribe pen cleaving tool, diamond cleaving wheel, and suture scissors-was measured in a single-blinded fashion. Dispersion of light from the fibers was compared with manufacturer specifications and rated as "ideal," "acceptable," or "unacceptable" by blinded reviewers. The fiber tips were also imaged using confocal and scanning electron microscopy. Independent samples Kruskal-Wallis test and chi square were used for statistical analysis (αtrend that was highly significant (Ptrend as the power output results (P<0.001). Microscopy showed that the scribe pen produced small defects along the fiber cladding but maintained a smooth, flat core surface. The other cleaving techniques produced defects on both the core and cladding. Cleaving techniques produce a significant effect on the initial power transmitted by reusable laser fibers. The scribe pen cleaving tool produced the most consistent and highest average power output.

  15. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Chengbo, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Arif, Raz [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Physics Department, Faculty of Science, University of Sulaimani, Sulaimani, Kurdistan Region (Iraq); Lobach, Anatoly S.; Spitsina, Nataliya G. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Khudyakov, Dmitry V. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Physics Instrumentation Center of the Institute of General Physics A.M. Prokhorov Russian Academy of Sciences, Troitsk, Moscow Region 142190 (Russian Federation); Kazakov, Valery A. [Keldysh Center, Onezhskaya 8, Moscow 125438 (Russian Federation)

    2015-02-09

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  16. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  17. A study on electric power management for power producer-suppliers utilizing output of megawatt-solar power plants

    Directory of Open Access Journals (Sweden)

    Hirotaka Takano

    2016-01-01

    Full Text Available The growth in penetration of photovoltaic generation units (PVs has brought new power management ideas, which achieve more profitable operation, to Power Producer-Suppliers (PPSs. The expected profit for the PPSs will improve if they appropriately operate their controllable generators and sell the generated electricity to contracted customers and Power Exchanges together with the output of Megawatt-Solar Power Plants (MSPPs. Moreover, we can expect that the profitable cooperation between the PPSs and the MSPPs decreases difficulties in the supply-demand balancing operation for the main power grids. However, it is necessary that the PPSs treat the uncertainty in output prediction of PVs carefully. This is because there is a risk for them to pay a heavy imbalance penalty. This paper presents a problem framework and its solution to make the optimal power management plan for the PPSs in consideration with the electricity procurement from the MSPPs. The validity of the authors’ proposal is verified through numerical simulations and discussions of their results.

  18. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  19. A PASSIVELY MODE-LOCKED CR4+:FORSTERITE LASER WITH ELEСTRONICALLY CONTROLLED OUTPUT CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    S. A. Zolotovskaya

    2011-01-01

    Full Text Available Applicability of electronic control of laser output parameters to bulk solid-state laser sources is demonstrated. A single laser source with variable pulse duration for novel imaging and manipulation systems is presented. Stable passive mode-locking of a Cr4+:forsterite laser using a voltage controlled p-n junction quantum dot saturable absorber was achieved. Output shortening from 17,4 to 6,4 ps near-transform limited pulses was obtained by applying reverse bias.

  20. A Novel Sliding Mode Control Technique for Indirect Current Controlled Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2012-01-01

    Full Text Available A novel sliding mode control (SMC method for indirect current controlled three-phase parallel active power filter is presented in this paper. There are two designed closed loops in the system: one is the DC voltage controlling loop and the other is the reference current tracking loop. The first loop with a PI regulator is used to control the DC voltage approximating to the given voltage of capacitor, and the output of PI regulator through a low-pass filter is applied as the input of the power supply reference currents. The second loop implements the tracking of the reference currents using integral sliding mode controller, which can improve the harmonic treating performance. Compared with the direct current control technique, it is convenient to be implemented with digital signal processing system because of simpler system structure and better harmonic treating property. Simulation results verify that the generated reference currents have the same amplitude with the load currents, demonstrating the superior harmonic compensating effects with the proposed shunt active power filter compared with the hysteresis method.

  1. Uncertainties in predicting solar panel power output

    Science.gov (United States)

    Anspaugh, B.

    1974-01-01

    The problem of calculating solar panel power output at launch and during a space mission is considered. The major sources of uncertainty and error in predicting the post launch electrical performance of the panel are considered. A general discussion of error analysis is given. Examples of uncertainty calculations are included. A general method of calculating the effect on the panel of various degrading environments is presented, with references supplied for specific methods. A technique for sizing a solar panel for a required mission power profile is developed.

  2. Mode Adaptive Droop Control with Virtual Output Impedances for an Inverter-Based Flexible AC Microgrid

    DEFF Research Database (Denmark)

    Kim, Jaehong; Guerrero, Josep M.; Rodriguez, Pedro

    2011-01-01

    A decentralized power control method in a singlephase flexible acmicrogrid is proposed in this paper. Droop control is widely considered to be a good choice for managing the power flows between microgrid converters in a decentralized manner. In this work, to enhance the power loop dynamics, droop...... control combined with a derivative controller is used in islanded mode. In grid-connected mode, to strictly control the power factor in the point of common coupling (PCC), a droop method combined with an integral controller is adopted. Small-signal analysis of the proposed control is shown both...... in islanded and grid-connected mode. The proposed control scheme does not need any mode switching action. Thus, it is relatively simple in control for full mode of operation. Smooth transitions between the operation modes and the effectiveness of the proposed control scheme are evaluated through simulation...

  3. Investigation on the integral output power model of a large-scale wind farm

    Institute of Scientific and Technical Information of China (English)

    BAO Nengsheng; MA Xiuqian; NI Weidou

    2007-01-01

    The integral output power model of a large-scale wind farm is needed when estimating the wind farm's output over a period of time in the future.The actual wind speed power model and calculation method of a wind farm made up of many wind turbine units are discussed.After analyzing the incoming wind flow characteristics and their energy distributions,and after considering the multi-effects among the wind turbine units and certain assumptions,the incoming wind flow model of multi-units is built.The calculation algorithms and steps of the integral output power model of a large-scale wind farm are provided.Finally,an actual power output of the wind farm is calculated and analyzed by using the practical measurement wind speed data.The characteristics of a large-scale wind farm are also discussed.

  4. Hybrid-mode interleaved boost converter design for fuel cell electric vehicles

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • A high power interleaved boost converter is designed for a 150 kW high-power fuel cell electric vehicle application. • A hybrid-mode scheme is used: Mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. • Boundary conditions for different modes are determined with respect to switching duty ratio and load conditions. • With the proposed scheme, the power density is improved by 44.2% and 34.3% in terms of the converter volume and weight. - Abstract: For Fuel Cell Electric Vehicles, DC-DC power converters are essential to provide energy storage buffers between fuel cell stacks and the traction system because fuel cells show characteristics of low-voltage high-current output and wide output voltage variation. This paper presents a hybrid-mode two-phase interleaved boost converter for fuel cell electric vehicle application in order to improve the power density, minimize the input current ripple, and enhance the system efficiency. Two operation modes are adopted in the practical design: mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. The operation, design and control of the interleaved boost converter for different operating modes are discussed with their equivalent circuits. The boundary conditions are distinguished with respect to switching duty ratio and load conditions. Transitions between continuous conduction mode and discontinuous conduction mode are illustrated for the whole duty ratio range. The expressions for inductor current ripple, input current ripple and output voltage ripple are derived and verified by simulation and experimental tests. The efficiency and power density improvements are illustrated to verify the effectiveness of the proposed design scheme.

  5. Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz

    Science.gov (United States)

    Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.; hide

    2011-01-01

    Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.

  6. Maximum Power Output of Quantum Heat Engine with Energy Bath

    Directory of Open Access Journals (Sweden)

    Shengnan Liu

    2016-05-01

    Full Text Available The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation between the efficiency and power output is also discussed.

  7. REGULATION OF INSTANTANEOUS POWER OUTPUT VALUE IN MAGNETRON WITH CONTINUOUS GENERATION MODE (M-105-, M-112-TYPES BEING PART OF PLASMA TECHNOLOGICAL UNIT

    Directory of Open Access Journals (Sweden)

    S. V. Bordusov

    2010-01-01

    Full Text Available The paper presents results of investigations pertaining to the possibility of regulating instantaneous power output  in a magnetron of M-105 (M-112-type by changing the capacity value of a capacitor in structure diagram for doubling voltage of high-voltage power supply on the basis of a step-up transformer operating in the saturation regime.

  8. Over 19 W Single-Mode 1545 nm Er,Yb Codoped All-Fiber Laser

    Directory of Open Access Journals (Sweden)

    Jiadong Wu

    2017-01-01

    Full Text Available We report a high-power cladding-pumped Er,Yb codoped all-fiber laser with truly single transverse mode output. The fiber laser is designed to operate at 1545 nm by the use of a pair of fiber Bragg gratings (FBGs to lock and narrow the output spectrum, which can be very useful in generating the eye-safe ~1650 nm laser emission through the Stimulated Raman Scattering (SRS in silica fibers that is of interest in many applications. Two pieces of standard single-mode fibers are inserted into the laser cavity and output port to guarantee the truly single-mode output as well as good compatibility with other standard fiber components. We have obtained a maximum output power of 19.2 W at 1544.68 nm with a FWHM spectral width of 0.08 nm, corresponding to an average overall slope efficiency of 31.9% with respect to the launched pump power. This is, to the best of our knowledge, the highest output power reported from simple all-fiber single-mode Er,Yb codoped laser oscillator architecture.

  9. Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems

    International Nuclear Information System (INIS)

    Poursamad, Amir; Markazi, Amir H.D.

    2009-01-01

    This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.

  10. Inverted relativistic magnetron with a single axial output

    International Nuclear Information System (INIS)

    Ballard, W.P.; Earley, L.M.; Wharton, C.B.

    1986-01-01

    A twelve vane, 1 MV, S-band magnetron has been designed and tested. An inverted design was selected to minimize the parasitic axial electron losses. The stainless steel anode is approximately one wavelength long. One end is partially short-circuited to rf, while the other end has a mode transformer to couple the 3.16 GHz π-mode out into a TM 01 circular waveguide. The magnetron has a loaded output Q of about 100. Operation at 1 MV, 0.31 T, 5 kA routinely produces approx.150 MW peak rms and 100 MW average rms with pulse lengths adjustable from 5 to 70 ns. The microwave power pulse has a rise time of approx.2 ns. The output power is diagnosed using four methods: calorimetry, two circular-waveguide directional couplers installed on the magnetron, two transmitting-receiving systems, and gaseous breakdown. Operation at other voltages and magnetic fields shows that the oscillation frequency is somewhat dependent on the magnetron current. Frequency changes of approx.20 MHz/kA occur as the operating conditions are varied. A series of experiments varying the anode conductivity, the electron emission profile, and the output coupling transformer design showed that none of these significantly increased the output power. Therefore, we have concluded that this magnetron operates in saturation. Because of the anode lifetime and repeatability, this magnetron has the potential to be repetitively pulsed. 36 refs., 16 figs

  11. Mode control in a high-gain relativistic klystron amplifier

    Science.gov (United States)

    Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang

    2010-05-01

    Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.

  12. Power output and efficiency of a thermoelectric generator under temperature control

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Wu, Po-Hua; Wang, Xiao-Dong; Lin, Yu-Li

    2016-01-01

    Highlights: • Power output and efficiency of a thermoelectric generator (TEG) is studied. • Temperatures at the module’s surfaces are approximated by sinusoidal functions. • Mean output power and efficiency are enhanced by the temperature oscillation. • The maximum mean efficiency of the TEG in this study is 8.45%. • The phase angle of 180° is a feasible operation for maximizing the performance. - Abstract: Operation control is an effective way to improve the output power of thermoelectric generators (TEGs). The present study is intended to numerically investigate the power output and efficiency of a TEG and find the operating conditions for maximizing its performance. The temperature distributions at the hot side and cold side surfaces of the TEG are approximated by sinusoidal functions. The influences of the temperature amplitudes at the hot side surface and the cold side surface, the phase angle, and the figure-of-merit (ZT) on the performance of the TEG are analyzed. The predictions indicate that the mean output power and efficiency of the TEG are significantly enhanced by the temperature oscillation, whereas the mean absorbed heat by the TEG is slightly influenced. An increase in the temperature amplitude of the hot side surface and the phase angle can effectively improve the performance. For the phase angle of 0°, a smaller temperature amplitude at the cold side surface renders the better performance compared to that with a larger amplitude. When the ZT value increases from 0.736 to 1.8, the mean efficiency at the phase angle of 180° is amplified by a factor of 1.72, and the maximum mean efficiency is 8.45%. In summary, a larger temperature amplitude at the hot side surface with the phase angle of 180° is a feasible operation for maximizing the performance.

  13. Frequency resolved transverse mode instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.

    2013-01-01

    Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dy...

  14. Regulation of the output power at the resonant converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefanov, Goce G.; Sarac, Vasilija J. [University Goce Delecev-Stip, Faculty of Electrical Engineering, Radovis (Macedonia, The Former Yugoslav Republic of); Karadzinov, Ljupco V., E-mail: goce.stefanov@ugd.edu.mk [University Kiril and Methodyus-Skopje, FEIT Skopje(Macedonia, The Former Yugoslav Republic of)

    2011-07-01

    In this paper a method for regulating an alternating current voltage source with pair of IGBT transistor’s modules, in a full bridge configuration with series resonant converter is given. With the developed method a solution is obtained which can regulate the phase difference between output voltage and current through the inductor, in order to maintain maximum output power. Control electronic via feedback signals regulates the energy transfer to the tank by changing the pulse width of signals which are used as inputs to the gates of the IGBTs. By increasing or decreasing the pulse width transmitted to the various gates of the IGBT the energy transfer to the tank is increased or decreased . PowerSim simulations program is used for development of controlling methodology. Developed method is practically implemented in a prototype of the device for phase control of resonant converter with variable the resonant load. Key words: pulse width method, phase regulation , power converter.

  15. Probabilistic safety assessments of nuclear power plants for low power and shutdown modes

    International Nuclear Information System (INIS)

    2000-03-01

    Within the past several years the results of nuclear power plant operating experience and performance of probabilistic safety assessments (PSAs) for low power and shutdown operating modes have revealed that the risk from operating modes other than full power may contribute significantly to the overall risk from plant operations. These early results have led to an increased focus on safety during low power and shutdown operating modes and to an increased interest of many plant operators in performing shutdown and low power PSAs. This publication was developed to provide guidance and insights on the performance of PSA for shutdown and low power operating modes. The preparation of this publication was initiated in 1994. Two technical consultants meetings were conducted in 1994 and one in February 1999 in support of the development of this report

  16. Investigation on the Development of a Sliding Mode Controller for Constant Power Loads in Microgrids

    Directory of Open Access Journals (Sweden)

    Eklas Hossain

    2017-07-01

    Full Text Available To implement renewable energy resources, microgrid systems have been adopted and developed into the technology of choice to assure mass electrification in the next decade. Microgrid systems have a number of advantages over conventional utility grid systems, however, they face severe instability issues due to the continually increasing constant power loads. To improve the stability of the entire system, the load side compensation technique is chosen because of its robustness and cost effectiveness. In this particular occasion, a sliding mode controller is developed for a microgrid system in the presence of constant power loads to assure a certain control objective of keeping the output voltage constant at 480 V. After that, a robustness analysis of the sliding mode controller against parametric uncertainties was performed and the sliding mode controller’s robustness against parametric uncertainties, frequency variations, and additive white Gaussian noise (AWGN are presented. Later, the performance of the proportional integral derivative (PID and sliding mode controller are compared in the case of nonlinearity, parameter uncertainties, and noise rejection to justify the selection of the sliding mode controller over the PID controller. All the necessary calculations are reckoned mathematically and results are verified in a virtual platform such as MATLAB/Simulink with a positive outcome.

  17. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  18. Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation

    Science.gov (United States)

    Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi

    2016-09-01

    We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.

  19. Using machine learning to predict wind turbine power output

    International Nuclear Information System (INIS)

    Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P

    2013-01-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)

  20. The interdependence of Ca2+ activation, sarcomere length, and power output in the heart.

    Science.gov (United States)

    McDonald, Kerry S

    2011-07-01

    Myocardium generates power to perform external work on the circulation; yet, many questions regarding intermolecular mechanisms regulating power output remain unresolved. Power output equals force × shortening velocity, and some interesting new observations regarding control of these two factors have arisen. While it is well established that sarcomere length tightly controls myocyte force, sarcomere length-tension relationships also appear to be markedly modulated by PKA-mediated phosphorylation of myofibrillar proteins. Concerning loaded shortening, historical models predict independent cross-bridge mechanics; however, it seems that the mechanical state of one population of cross-bridges affects the activity of other cross-bridges by, for example, recruitment of cross-bridges from the non-cycling pool to the cycling force-generating pool during submaximal Ca(2+) activation. This is supported by the findings that Ca(2+) activation levels, myofilament phosphorylation, and sarcomere length are all modulators of loaded shortening and power output independent of their effects on force. This fine tuning of power output probably helps optimize myocardial energetics and to match ventricular supply with peripheral demand; yet, the discernment of the chemo-mechanical signals that modulate loaded shortening needs further clarification since power output may be a key convergent point and feedback regulator of cytoskeleton and cellular signals that control myocyte growth and survival.

  1. Influence of Intra-cell Traffic on the Output Power of Base Station in GSM

    Directory of Open Access Journals (Sweden)

    M. Mileusnic

    2014-06-01

    Full Text Available In this paper we analyze the influence of intracell traffic in a GSM cell on the base station output power. It is proved that intracell traffic increases this power. If offered traffic is small, the increase of output power is equal to the part of intracell traffic. When the offered traffic and, as the result, call loss increase, the increase of output power becomes less. The results of calculation are verified by the computer simulation of traffic process in the GSM cell. The calculation and the simulation consider the uniform distribution of mobile users in the cell, but the conclusions are of a general nature.

  2. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    Energy Technology Data Exchange (ETDEWEB)

    Dal Forno, Massimo [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, at the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.

  3. Optical design and suspension system of the KAGRA output mode-cleaner

    Science.gov (United States)

    Kasuya, Junko; Winterflood, John; Li, Ju; Somiya, Kentaro

    2018-02-01

    KAGRA is a Japanese large scale, underground, cryogenic gravitational telescope which is under construction in the Kamioka mine. For using cryogenic test masses, the sensitivity of KAGRA is limited mainly by quantum noise. In order to reduce quantum noise, KAGRA employs an output mode-cleaner (OMC) at the output port that filters out junk light but allows the gravitational wave signal to go through. The requirement of the KAGRA OMC is even more challenging than other telescopes in the world since KAGRA plans to tune the signal readout phase so that the signal-to-noise ratio for our primary target source can be maximized. A proper selection of optical parameters and anti-vibration devices is required for the robust operation of the OMC. In this proceeding, we show our final results of modal-model simulations, in which we downselected the cavity length, the round-trip Gouy phase shift, the finesse, and the seismic isolation ratio for the suspended optics.

  4. Self-Compensation of Astigmatism in Mode-Cleaners for Advanced Interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P; Zhao Chunnong; Ju Li; Blair, David G [School of Physics, University of Western Australia, Crawley, WA6009 (Australia)

    2006-03-02

    Using a conventional mode-cleaner with the output beam taken through a diagonal mirror it is impossible to achieve a non-astigmatic output. The geometrical astigmatism of triangular mode-cleaners for gravitational wave detectors can be self-compensated by thermally induced astigmatism in the mirrors substrates. We present results from finite element modelling of the temperature distribution of the suspended mode-cleaner mirrors and the associated beam profiles. We use these results to demonstrate and present a self-compensated mode-cleaner design. We show that the total astigmatism of the output beam can be reduced to 5x10{sup -3} for {+-}10% variation of input power about a nominal value when using the end mirror of the cavity as output coupler.

  5. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  6. Distributed Generation using Indirect Matrix Converter in Boost Operating Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2011-01-01

    , reverse power flow operation of IMC can be implemented to meet voltage boost requirement, where the input ac source is connected to the converter's voltage source side and the output utility grid or load is connected to the current source side. This paper proposes control schemes of IMC under reverse...... power flow operation for both grid-connected and isolated modes with distributed generation suggested as a potential application. In grid-connected mode, the commanded power must be extracted from the input ac source to the grid, in addition to guarantee sinusoidal input/output waveforms, unity input...

  7. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  8. A Current-Mode Common-Mode Feedback Circuit (CMFB) with Rail-to-Rail Operation

    Science.gov (United States)

    Suadet, Apirak; Kasemsuwan, Varakorn

    2011-03-01

    This paper presents a current-mode common-mode feedback (CMFB) circuit with rail-to-rail operation. The CMFB is a stand-alone circuit, which can be connected to any low voltage transconductor without changing or upsetting the existing circuit. The proposed CMFB employs current mirrors, operating as common-mode detector and current amplifier to enhance the loop gain of the CMFB. The circuit employs positive feedback to enhance the output impedance and gain. The circuit has been designed using a 0.18 μm CMOS technology under 1V supply and analyzed using HSPICE with BSIM3V3 device models. A pseudo-differential amplifier using two common sources and the proposed CMFB shows rail to rail output swing (± 0.7 V) with low common-mode gain (-36 dB) and power dissipation of 390 μW.

  9. A Free-Piston Linear Generator Control Strategy for Improving Output Power

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2018-01-01

    Full Text Available This paper presents a control strategy to improve the output power for a single-cylinder two-stroke free-piston linear generator (FPLG. The comprehensive simulation model of this FPLG is established and the operation principle is introduced. The factors that affect the output power are analyzed theoretically. The characteristics of the piston motion are studied. Considering the different features of the piston motion respectively in acceleration and deceleration phases, a ladder-like electromagnetic force control strategy is proposed. According to the status of the linear electric machine, the reference profile of the electromagnetic force is divided into four ladder-like stages during one motion cycle. The piston motions, especially the dead center errors, are controlled by regulating the profile of the electromagnetic force. The feasibility and advantage of the proposed control strategy are verified through comparison analyses with two conventional control strategies via MatLab/Simulink. The results state that the proposed control strategy can improve the output power by around 7–10% with the same fuel cycle mass.

  10. Implementing low power consumption in standby mode in the case of power supplies with power factor correction

    OpenAIRE

    Martín, Kevin; F., Pablo; G., Diego; Sebastián, Javier; Álvarez, Santiago

    2017-01-01

    This work analyzes different options to implement low power consumption in Switching Mode Power Supplies (SMPSs) with Power Factor Correction (PFC) when they are in standby mode. The standard SMPSs for power levels higher than 100 W are made up of two stages: a classical PFC stage based on a Boost Converter operating in the Continuous Conduction Mode and a second stage based on any type of isolated DC-DC converter. The value of the resistive sensors needed by the PFC control stage determines ...

  11. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  12. Integrating wind output with bulk power operations and wholesale electricity markets

    International Nuclear Information System (INIS)

    Hirst, E.

    2002-01-01

    Wind farms have three characteristics that complicate their widespread application as an electricity resource: limited control, unpredictability and variability. Therefore the integration of wind output into bulk power electric systems is qualitatively different from that of other types of generators. The electric system operator must move other generators up or down to offset the time-varying wind fluctuations. Such movements raise the costs of fuel and maintenance for these other generators. Not only is wind power different, it is new. The operators of bulk power systems have limited experience in integrating wind output into the larger system. As a consequence, market rules that treat wind fairly - neither subsidizing nor penalizing its operation - have not yet been developed. The lack of data and analytical methods encourages wind advocates and sceptics to rely primarily on their biases and beliefs in suggesting how wind should be integrated into bulk power systems. This project helps fill this data and analysis gap. Specifically, it develops and applies a quantitative method for the integration of a wind resource into a large electric system. The method permits wind to bid its output into a short-term forward market (specifically, an hour-ahead energy market) or to appear in real time and accept only intrahour and hourly imbalance payments for the unscheduled energy it delivers to the system. Finally, the method analyses the short-term (minute-to-minute) variation in wind output to determine the regulation requirement the wind resource imposes on the electrical system. (author)

  13. Non-linear control of the output stage of a solar microinverter

    Science.gov (United States)

    Lopez-Santos, Oswaldo; Garcia, Germain; Martinez-Salamero, Luis; Avila-Martinez, Juan C.; Seguier, Lionel

    2017-01-01

    This paper presents a proposal to control the output stage of a two-stage solar microinverter to inject real power into the grid. The input stage of the microinverter is used to extract the maximum available power of a photovoltaic module enforcing a power source behavior in the DC-link to feed the output stage. The work here reported is devoted to control a grid-connected power source inverter with a high power quality level at the grid side ensuring the power balance of the microinverter regulating the voltage of the DC-link. The proposed control is composed of a sinusoidal current reference generator and a cascade type controller composed by a current tracking loop and a voltage regulation loop. The current reference is obtained using a synchronized generator based on phase locked loop (PLL) which gives the shape, the frequency and phase of the current signal. The amplitude of the reference is obtained from a simple controller regulating the DC-link voltage. The tracking of the current reference is accomplished by means of a first-order sliding mode control law. The solution takes advantage of the rapidity and inherent robustness of the sliding mode current controller allowing a robust behavior in the regulation of the DC-link using a simple linear controller. The analytical expression to determine the power quality indicators of the micro-inverter's output is theoretically solved giving expressions relating the converter parameters. The theoretical approach is validated using simulation and experimental results.

  14. Theoretical analysis of the mode coupling induced by heat of large-pitch micro-structured fibers

    International Nuclear Information System (INIS)

    Zhang Hai-Tao; Hao Jie; Yan Ping; Gong Ma-Li; Chen Dan

    2015-01-01

    In this paper, a theoretical model to analyze the mode coupling induced by heat, when the fiber amplifier works at high power configuration, is proposed. The model mainly takes into consideration the mode field change due to the thermally induced refractive index change and the coupling between modes. A method to predict the largest average output power of fiber is also proposed according to the mode coupling theory. The largest average output power of a large pitch fiber with a core diameter of 190 μm and an available pulse energy of 100 mJ is predicted to be 540 W, which is the highest in large mode field fibers. (paper)

  15. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training.

    Directory of Open Access Journals (Sweden)

    J M Sarabia

    Full Text Available It has been suggested that strength training effects (i.e. neural or structural vary, depending on the total repetitions performed and velocity loss in each training set.The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training.Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]. The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM] and repetitions at maximum power (4 to 9 repetitions, or 'reps'. Volume (sets x repetitions was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%-66.6% of 1RM. The training programme ran over 11 weeks (2 sessions per week; 4-5 sets per session; 3-minute rests between sets, with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST and cortisol (SC concentrations. Rate of perceived exertion (RPE and power output were recorded in all sessions.Following the intermediate test, PPO was increased in the OP group for each load (10.9%-13.2%. Following the post-test, both experimental groups had increased 1RM (11.8%-13.8% and PPO for each load (14.1%-19.6%. Significant decreases in PPO were found for the TT group during all sets (4.9%-15.4%, along with significantly higher RPE (37%.OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE.

  16. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  17. An Improved Mathematical Model for Computing Power Output of Solar Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Abdul Qayoom Jakhrani

    2014-01-01

    Full Text Available It is difficult to determine the input parameters values for equivalent circuit models of photovoltaic modules through analytical methods. Thus, the previous researchers preferred to use numerical methods. Since, the numerical methods are time consuming and need long term time series data which is not available in most developing countries, an improved mathematical model was formulated by combination of analytical and numerical methods to overcome the limitations of existing methods. The values of required model input parameters were computed analytically. The expression for output current of photovoltaic module was determined explicitly by Lambert W function and voltage was determined numerically by Newton-Raphson method. Moreover, the algebraic equations were derived for the shape factor which involves the ideality factor and the series resistance of a single diode photovoltaic module power output model. The formulated model results were validated with rated power output of a photovoltaic module provided by manufacturers using local meteorological data, which gave ±2% error. It was found that the proposed model is more practical in terms of precise estimations of photovoltaic module power output for any required location and number of variables used.

  18. Parasitic oscillation in and suppression of a gyro BW mode in a low-Q 8 GHz gyrotron

    International Nuclear Information System (INIS)

    Muggli, P.; Tran, M.Q.; Tran, T.M.

    1991-12-01

    The parasitic oscillation of the TE o 21 gyrotron Backward Wave (gyro BW) mode is observed in a low-Q, 8 GHz TE o 011 gyrotron. Although at low power (P BW o 011 mode efficiency of less than 0.25. The parasitic oscillation is suppressed by operating the gyrotron with a negative magnetic field gradient along the electron beam, which allows the maximum efficiency to reach 0.40 and the output power to be multiplied by a factor varying from 1.4 to 1.7. The optimum efficiency curve of the TE o 011 mode indicates that the low-Q cavity behaves as a much higher Q diff cavity. Too large magnetic field gradient and α values favour the TE o 012 longitudinal mode, which oscillates in place of the TE o 011 mode and limits its maximum output power. This competitive process is responsible for the high-Q like output power. (author) 14 figs., 14 refs

  19. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ Al

  20. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  1. 915 MHz microwave ablation with high output power in in vivo porcine spleens

    International Nuclear Information System (INIS)

    Gao Yongyan; Wang Yang; Duan Yaqi; Li Chunling; Sun Yuanyuan; Zhang Dakun; Lu Tong; Liang Ping

    2010-01-01

    Objective: The purpose of this study was to evaluate the efficacy of 915 MHz microwave (MW) ablation with high output power in in vivo porcine spleens. Materials and methods: MW ablations were performed in 9 porcine spleens with an internally cooled 915 MHz antenna. Thermocouples were placed at 5, 10, 15, 20 mm away from the antenna to measure temperatures in real-time during MW emission. The energy was applied for 10 min at high output power of 60 W, 70 W or 80 W. Gross specimens were sectioned and measured to determine ablation size. Representative areas were examined by light microscopy and electron microscopy. Coagulation sizes and temperatures were compared among the three power groups. Results: Hematoxylin-eosin staining showed irreversible necrosis in the splenic coagulation area after MW ablation. As the power was increased, long-axis diameter enlarged significantly (p .05). The coagulation size of long-axis and short-axis diameter with 80 W in vivo spleen ablation was 6.43 ± 0.52 and 4.95 ± 0.30 cm, respectively. With the increase of output power, maximum temperatures at 5, 10, 15, 20 mm from the antenna were increased accordingly (p o C respectively. Conclusion: With internally cooled antenna and high output power, 915 MHz MW ablation in the spleen could produce irreversible tissue necrosis of clinical significance. MW ablation may be used as a promising minimally invasive method for the treatment of splenic diseases.

  2. S-Band AlGaN/GaN power amplifier MMIC with over 20 Watt output power

    NARCIS (Netherlands)

    van Heijningen, M; Visser, G.C.; Wurfl, J.; van Vliet, Frank Edward

    2008-01-01

    Abstract This paper presents the design of an S-band HPA MMIC in AlGaN/GaN CPW technology for radar TR-module application. The trade-offs of using an MMIC solution versus discrete power devices are discussed. The MMIC shows a maximum output power of 38 Watt at 37% Power Added Efficiency at 3.1 GHz.

  3. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    Science.gov (United States)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  4. Improving the Output Power Stability of a High Concentration Photovoltaic System with Supercapacitors: A Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Yu-Pei Huang

    2015-01-01

    Full Text Available The output power of a high concentration photovoltaic (HCPV system is very sensitive to fluctuating tracking errors and weather patterns. To help compensate this shortcoming, supercapacitors have been successfully incorporated into photovoltaic systems to improve their output power stability. This study examined the output power stability improvement of an HCPV module with a supercapacitor integrated into its circuit. Furthermore, the equivalent model of the experimental circuit is presented and analyzed. Experimental results suggest that integrating a supercapacitor into an HCPV module could improve its output power stability and further extend its acceptance angle. This paper provides preliminary data of the improvement and its evaluation method, which could be utilized for further improvements to an HCPV system.

  5. Maximizing Output Power of a Solar Panel via Combination of Sun Tracking and Maximum Power Point Tracking by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Mohsen Taherbaneh

    2010-01-01

    Full Text Available In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panel I-V curves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.

  6. Measuring power output intermittency and unsteady loading in a micro wind farm model

    OpenAIRE

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2016-01-01

    In this study porous disc models are used as a turbine model for a wind-tunnel wind farm experiment, allowing the measurement of the power output, thrust force and spatially averaged incoming velocity for every turbine. The model's capabilities for studying the unsteady turbine loading, wind farm power output intermittency and spatio temporal correlations between wind turbines are demonstrated on an aligned wind farm, consisting of 100 wind turbine models.

  7. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    Science.gov (United States)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  8. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  9. Methodological concerns for determining power output in the jump squat.

    Science.gov (United States)

    Cormie, Prue; Deane, Russell; McBride, Jeffrey M

    2007-05-01

    The purpose of this study was to investigate the validity of power measurement techniques during the jump squat (JS) utilizing various combinations of a force plate and linear position transducer (LPT) devices. Nine men with at least 6 months of prior resistance training experience participated in this acute investigation. One repetition maximums (1RM) in the squat were determined, followed by JS testing under 2 loading conditions (30% of 1RM [JS30] and 90% of 1RM [JS90]). Three different techniques were used simultaneously in data collection: (a) 1 linear position transducer (1-LPT); (b) 1 linear position transducer and a force plate (1-LPT + FP); and (c) 2 linear position transducers and a force place (2-LPT + FP). Vertical velocity-, force-, and power-time curves were calculated for each lift using these methodologies and were compared. Peak force and peak power were overestimated by 1-LPT in both JS30 and JS90 compared with 2-LPT + FP and 1-LPT + FP (p squat varies according to the measurement technique utilized. The 1-LPT methodology is not a valid means of determining power output in the jump squat. Furthermore, the 1-LPT + FP method may not accurately represent power output in free weight movements that involve a significant amount of horizontal motion.

  10. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Olama, Mohammed M. [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-09-01

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed to estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.

  11. GaN Power Stage for Switch-mode Audio Amplification

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Knott, Arnold; Poulsen, Søren Bang

    2015-01-01

    Gallium Nitride (GaN) based power transistors are gaining more and more attention since the introduction of the enhancement mode eGaN Field Effect Transistor (FET) which makes an adaptation from Metal-Oxide Semiconductor (MOSFET) to eGaN based technology less complex than by using depletion mode Ga......N FETs. This project seeks to investigate the possibilities of using eGaN FETs as the power switching device in a full bridge power stage intended for switch mode audio amplification. A 50 W 1 MHz power stage was built and provided promising audio performance. Future work includes optimization of dead...

  12. Somatotype variables related to strength and power output in male basketball players.

    Science.gov (United States)

    Buśko, Krzysztof; Pastuszak, Anna; Lipińska, Monika; Lipińska, Marta; Gryko, Karol

    2017-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscular strength, power output measured in maximal cycle ergometer exercise bouts, and maximal power output and height of rise of the body mass centre (jump height) measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), in male basketball players. Thirteen male basketball players (second division, age 19.4 ± 0.8 years, body height 192.9 ± 5.6 cm, body mass 88.8 ± 8.6 kg, training experience 9.3 ± 0.8 years) participated in the study. Somatotype was determined using the Heath-Carter method. Maximal joint torques were measured under static conditions. Power output was measured in 2 maximal cycle ergometer exercise bouts, 10 seconds each, with increasing external loads equal to 7.5 and 10.0% of the body weight (BW). All jump trials (ACMJ, CMJ and SPJ) were performed on a force plate. The mean somatotype of basketball players amounted to: 2.8-4.2-3.2. The sum of the joint torques for left and right lower extremities (0.613), trunk (0.631) and all six measured muscle groups (0.647) were significantly correlated (p jump during ACMJ, CMJ and SPJ trials. The power output measured in maximal cycle ergometer exercise bouts with increasing external loads was significantly correlated (p basketball players' anthropometric characteristics can influence their level of performance but it is not a decisive factor.

  13. Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power

    Science.gov (United States)

    Rahim, M.; Fill, M.; Felder, F.; Chappuis, D.; Corda, M.; Zogg, H.

    2009-12-01

    Mid-infrared vertical external cavity surface emitting lasers (VECSELs) emitting above 1 W output power in pulsed mode and up to 17 mW in continuous mode at -172 °C were realized. Emission wavelength changes from 5 μm at -172 °C to 3.6 μm at 20 °C heat sink temperature. The active medium is a one wavelength thick PbTe layer grown by molecular beam epitaxy on a Si-substrate. It is followed by a 2.5 pair Pb1-yEuyTe/EuTe epitaxial Bragg mirror. The cavity is completed with an external curved Pb1-yEuyTe/BaF2 mirror. The VECSEL is optically pumped with 1.55 μm wavelength laser and In-soldered to Cu heat sink. No microstructural processing is needed.

  14. Practical computer analysis of switch mode power supplies

    CERN Document Server

    Bennett, Johnny C

    2006-01-01

    When designing switch-mode power supplies (SMPSs), engineers need much more than simple "recipes" for analysis. Such plug-and-go instructions are not at all helpful for simulating larger and more complex circuits and systems. Offering more than merely a "cookbook," Practical Computer Analysis of Switch Mode Power Supplies provides a thorough understanding of the essential requirements for analyzing SMPS performance characteristics. It demonstrates the power of the circuit averaging technique when used with powerful computer circuit simulation programs. The book begins with SMPS fundamentals and the basics of circuit averaging models, reviewing most basic topologies and explaining all of their various modes of operation and control. The author then discusses the general analysis requirements of power supplies and how to develop the general types of SMPS models, demonstrating the use of SPICE for analysis. He examines the basic first-order analyses generally associated with SMPS performance along with more pra...

  15. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in [Faculty of Physical Sciences, Institute of Natural Sciences and Humanities, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Uttar Pradesh 225003 (India); Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Jain, P. K. [Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  16. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  17. Fabrication of a saturable absorber WS2 and its mode locking in solid-state laser

    Science.gov (United States)

    Zhang, Chun-Yu; Zhang, Ling; Tang, Xiao-Ying; Yang, Ying-Ying

    2018-04-01

    We report on a passively mode-locked Nd : LuVO4 laser using a type saturable absorber of tungsten disulfide (WS2) fabricated by chemical vapor deposition method. At the pump power of 3.3 W, 1.18-W average output power of continuous-wave mode-locked laser with optical conversion efficiency of 36% was achieved. To the best of our knowledge, this is the highest output power of passively mode-locked solid-state laser based on WS2. The repetition rate of passively mode-locked pulse was 80 MHz with the pulse energy of 14.8 nJ. Our experimental results show that WS2 is an excellent type of saturable absorber.

  18. Enhancing output power of a piezoelectric cantilever energy harvester using an oscillator

    International Nuclear Information System (INIS)

    Liu, Haili; Huang, Zhenyu; Xu, Tianzhu; Chen, Dayue

    2012-01-01

    The piezoelectric cantilever with a tip mass (Mass-PC), as a conventional vibration energy harvester, usually works at its fundamental frequency matching ambient excitation. By attaching an oscillator to a piezoelectric cantilever (Osc-PC), a double-mode energy harvester is developed to harvest more power from two matched ambient driving frequencies. Meanwhile, it allows the first operating frequency of the Osc-PC to be adjusted to be very low with only a limited mass attached. A distributed-parameter model of this harvester and the explicit expressions of its operating frequencies are derived to analyze and design the Osc-PC. Numerical investigations reveal that a heaver oscillator placed near the clamped end of the piezoelectric cantilever has better performance at the given exciting frequencies. Following the specified design criteria, an Osc-PC whose operating frequencies match two given exciting frequencies was constructed for the purpose of experimental testing. The results show that, compared to that of a corresponding Mass-PC whose operating frequency matches the lower exciting frequency, the energy harvesting efficiency of the Osc-PC increases by almost four times at the first operating frequency, while the output power at the second operating frequency of the Osc-PC accounts for 68% of that of the Mass-PC. (paper)

  19. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training

    Science.gov (United States)

    Moya-Ramón, M.; Hernández-Davó, J. L.; Fernandez-Fernandez, J.; Sabido, R.

    2017-01-01

    Background It has been suggested that strength training effects (i.e. neural or structural) vary, depending on the total repetitions performed and velocity loss in each training set. Purpose The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training). Methods Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]). The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM]) and repetitions at maximum power (4 to 9 repetitions, or ‘reps’). Volume (sets x repetitions) was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%–66.6% of 1RM). The training programme ran over 11 weeks (2 sessions per week; 4–5 sets per session; 3-minute rests between sets), with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO) with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST) and cortisol (SC) concentrations. Rate of perceived exertion (RPE) and power output were recorded in all sessions. Results Following the intermediate test, PPO was increased in the OP group for each load (10.9%–13.2%). Following the post-test, both experimental groups had increased 1RM (11.8%–13.8%) and PPO for each load (14.1%–19.6%). Significant decreases in PPO were found for the TT group during all sets (4.9%–15.4%), along with significantly higher RPE (37%). Conclusion OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE. PMID:29053725

  20. A combined compensation method for the output voltage of an insulated core transformer power supply

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.; Qin, B.; Chen, D. Z. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  1. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    Science.gov (United States)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any

  2. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    International Nuclear Information System (INIS)

    Zhang, Zehai

    2015-01-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE 11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation

  3. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zehai [College of Basic Education, National University of Defense Technology, Changsha, Hunan 410072 (China)

    2015-03-15

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE{sub 11} is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  4. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier

    Science.gov (United States)

    Zhang, Zehai

    2015-03-01

    Experimental study of parasitic mode suppression using electromagnetic attenuate material FeSiAl in an S-band Relativistic Klystron Amplifier (RKA) is presented in this paper. The FeSiAl powder is coated and sintered onto the inner surface of a drift tube which locates between the input and the middle cavity of the RKA. Cold tests show that the attenuate rate of the tube against parasitic mode TE11 is about 50%. Experiments carried out on the Torch-01 accelerator present that the tube is effective in suppressing the parasitic mode. Two typical outputs are obtained. When the diode voltage is on a moderate level, the RKA operates well and the parasitic mode is totally suppressed. The pulse length of the High Power Microwave (HPM) almost equals the electron beam pulse length and the HPM average output power is about 300 MW, with a power efficiency of 10%. When the diode voltage is on a higher level, the output power and efficiency rise but the parasitic mode oscillation occurred and the pulse length is shortened. By contrast, the parasitic mode oscillation is too strong for the RKA to operate normally with un-sintered drift tube. The experimental study implies that FeSiAl is effective in suppressing the parasitic mode oscillation in a certain extent. However, total suppression needs a deeper attenuate rate and further investigation.

  5. A Self-Oscillating Control Scheme for a Boost Converter Providing a Controlled Output Current

    DEFF Research Database (Denmark)

    Knott, Arnold; Pfaffinger, Gerhard R.; Andersen, Michael A. E.

    2011-01-01

    Most switched mode power supplies provide a regulated voltage at their output. However, there are applications requiring a controlled current. Among others are battery chargers, test equipment for converters driven by solar cells, and LED drivers. This paper describes a dc–dc power converter real...

  6. Switched-mode power supply apparatus and method

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead- time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power

  7. Switched-mode power supply apparatus and method

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead-time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power

  8. Flower-petal mode converter for NLC

    International Nuclear Information System (INIS)

    Hoag, H.A.; Tantawi, S.G.; Callin, R.; Deruyter, H.; Farkas, Z.D.; Ko, K.; Kroll, N.; Lavine, T.L.; Menegat, A.; Vlieks, A.E.

    1993-01-01

    It is important to minimize power loss in the waveguide system connecting klystron, pulse-compressor, and accelerator in an X-Band NLC. However, existing designs of klystron output cavity circuits and accelerator input couplers utilize rectangular waveguide which has relatively high transmission loss. It is therefore necessary to convert to and from the low-loss mode in circulator waveguide at each end of the system. A description is given of development work on high-power, high-vacuum open-quote flower-petal close-quote transducers, which convert the TE 10 mode in rectangular guide to the TE 01 mode in circular guide. A three-port modification of the flower petal device, which can be used as either a power combiner at the klystron or a power divider at the accelerator is also described

  9. Flower-petal mode converter for NLC

    International Nuclear Information System (INIS)

    Hoag, H.A.; Tantawi, S.G.; Callin, R.

    1993-04-01

    It is important to minimize power loss in the waveguide system connecting klystron, pulse-compressor, and accelerator in an X-Band NLC. However, existing designs of klystron output cavity circuits and accelerator input couplers utilize rectangular waveguide which has relatively high transmission loss. It is therefore necessary to convert to and from the low-loss mode in circular waveguide at each end of the system. A description is given of development work on high-power, high-vacuum 'flower-petal' transducers, which convert the TE 10 mode in rectangular guide to the TE 01 mode in circular guide. A three-port modification of the flower petal device, which can be used as either a power combiner at the klystron or a power divider at the accelerator is also described

  10. Linearised model for PV panel power output variation with changes ...

    Indian Academy of Sciences (India)

    PALLAVI BHARADWAJ

    2017-10-26

    Oct 26, 2017 ... change in system input, namely: irradiance and temperature, with its output, namely: array current and power. ... of a solar cell as shown in figure 1, with appropriate scaling according to ... measurement-based methods [8–13].

  11. Discontinuous Mode Power Supply

    Science.gov (United States)

    Lagadinos, John; Poulos, Ethel

    2012-01-01

    A document discusses the changes made to a standard push-pull inverter circuit to avoid saturation effects in the main inverter power supply. Typically, in a standard push-pull arrangement, the unsymmetrical primary excitation causes variations in the volt second integral of each half of the excitation cycle that could lead to the establishment of DC flux density in the magnetic core, which could eventually cause saturation of the main inverter transformer. The relocation of the filter reactor normally placed across the output of the power supply solves this problem. The filter reactor was placed in series with the primary circuit of the main inverter transformer, and is presented as impedance against the sudden changes on the input current. The reactor averaged the input current in the primary circuit, avoiding saturation of the main inverter transformer. Since the implementation of the described change, the above problem has not reoccurred, and failures in the main power transistors have been avoided.

  12. Ultra-Fast Tracking Power Supply with 4th order Output Filter and Fixed-Frequency Hysteretic Control

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    A practical solution is presented for the design of a non-isolated DC/DC power converter with very low output ripple voltage and very fast output voltage step response. The converter is intended for use as an envelope tracking power supply for an RFPA (Radio Frequency Power Amplifier) in a Tetra2...

  13. 5  W output power from a double-clad hybrid fiber with Yb-doped phosphate core and silicate cladding.

    Science.gov (United States)

    Wang, Longfei; He, Dongbing; Zhang, Lei; Yu, Chunlei; Feng, Suya; Wang, Meng; Chen, Danping; Hu, Lili

    2017-08-01

    For the first time, to the best of our knowledge, we report on the realization of a laser from a Yb-doped phosphate core/silicate cladding double-clad hybrid fiber. 5 W output power was extracted with 14.6% slope efficiency and a laser spectrum of a 1027 nm central wavelength from a 20 cm long single-mode fiber with a ∼10  μm core diameter in a 20%-4% laser cavity. The laser efficiency can be significantly enhanced by correspondingly adjusting and optimizing the laser oscillator.

  14. Smoothing of Grid-connected Wind-Diesel Power Output Using Energy Capacitor System

    Directory of Open Access Journals (Sweden)

    Adel A. Elbaset

    2014-06-01

    Full Text Available This paper presents a small hybrid power system consists of two types of power generation; wind turbine and diesel generation, DG connected to power distribution system. The fluctuations like random nature of wind power, turbulent wind, and sudden changes in load demand create imbalances in power distribution that can affect the frequency and the voltage in the power system. So, addition of Energy capacitor System, ECS is useful for compensation of fluctuating power, since it is capable of controlling both active and reactive power simultaneously and can smooth the output power flow. Hence, this paper proposes herein a dynamic model and simulation of a grid connected wind/DG based-ECS with power flow controllers between load and generation. Moreover, the paper presents a study to analyze the leveling of output fluctuation of wind power with the installation of ECS. To control the power exchanged between the ECS system and the AC grid, a load Following Control, LFC based supervisor is proposed with the aim to minimize variations of the power generated by the diesel generator. The interesting performance of the proposed supervisor is shown with the help of simulations. The computer simulation program is confirmed on a realistic circuit model which implemented in the Simulink environment of Matlab and works as if on line.

  15. Probabilistic Physics-Based Risk Tools Used to Analyze the International Space Station Electrical Power System Output

    Science.gov (United States)

    Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2004-01-01

    This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.

  16. Stand-Alone Microgrid Inverter Controller Design for Nonlinear, Unbalanced Load with Output Transformer

    Directory of Open Access Journals (Sweden)

    Jae-Uk Lim

    2018-04-01

    Full Text Available This paper proposes a technique that compensates for unbalance and nonlinearity in microgrid inverters with power transformers operating in stand-alone mode. When a microgrid inverter is operating in stand-alone mode, providing high-quality power is very important. When an unbalanced, nonlinear load is connected, zero sequence current and negative sequence current occur, which leads to an unbalanced output voltage. This paper examines why the zero sequence component occurs differently depending on the structure of a three-phase transformer connected to the inverter output terminal, and it proposes a method for controlling the zero sequence component. It also uses a resonant controller to remove the harmonics that correspond to the negative sequence component and the nonlinear component. The proposed elements were verified by a Powersim (PSIM simulation.

  17. Model output statistics applied to wind power prediction

    Energy Technology Data Exchange (ETDEWEB)

    Joensen, A; Giebel, G; Landberg, L [Risoe National Lab., Roskilde (Denmark); Madsen, H; Nielsen, H A [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)

    1999-03-01

    Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.

  18. Microbial fuel cells as power supply of a low-power temperature sensor

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  19. A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2017-01-01

    Full Text Available Wind power plant (WPP, photovoltaic generators (PV, cell-gas turbine (CGT, and pumped storage power station (PHSP are integrated into multienergy hybrid system (MEHS. Firstly, this paper presents MEHS structure and constructs a scheduling model with the objective functions of maximum economic benefit and minimum power output fluctuation. Secondly, in order to relieve the uncertainty influence of WPP and PV on system, robust stochastic theory is introduced to describe uncertainty and propose a multiobjective stochastic scheduling optimization mode by transforming constraint conditions with uncertain variables. Finally, a 9.6 MW WPP, a 6.5 MW PV, three CGT units, and an upper reservoir with 10 MW·h equivalent capacity are chosen as simulation system. The results show MEHS system can achieve the best operation result by using the multienergy hybrid generation characteristic. PHSP could shave peak and fill valley of load curve by optimizing pumping storage and inflowing generating behaviors based on the load supply and demand status and the available power of WPP and PV. Robust coefficients can relieve the uncertainty of WPP and PV and provide flexible scheduling decision tools for decision-makers with different risk attitudes by setting different robust coefficients, which could maximize economic benefits and minimize operation risks at the same time.

  20. Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes

    Directory of Open Access Journals (Sweden)

    Xi Wu

    2017-08-01

    Full Text Available The successful application of the unified power flow controller (UPFC provides a new control method for the secure and economic operation of power system. In order to make the full use of UPFC and improve the economic efficiency and static security of a power system, a preventive security-constrained power flow optimization method considering UPFC control modes is proposed in this paper. Firstly, an iterative method considering UPFC control modes is deduced for power flow calculation. Taking into account the influence of different UPFC control modes on the distribution of power flow after N-1 contingency, the optimization model is then constructed by setting a minimal system operation cost and a maximum static security margin as the objective. Based on this model, the particle swarm optimization (PSO algorithm is utilized to optimize power system operating parameters and UPFC control modes simultaneously. Finally, a standard IEEE 30-bus system is utilized to demonstrate that the proposed method fully exploits the potential of static control of UPFC and significantly increases the economic efficiency and static security of the power system.

  1. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Science.gov (United States)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  2. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines

    International Nuclear Information System (INIS)

    Li, Yanting; He, Yong; Su, Yan; Shu, Lianjie

    2016-01-01

    Highlights: • Suggests a nonparametric model based on MARS for output power prediction. • Compare the MARS model with a wide variety of prediction models. • Show that the MARS model is able to provide an overall good performance in both the training and testing stages. - Abstract: Both linear and nonlinear models have been proposed for forecasting the power output of photovoltaic systems. Linear models are simple to implement but less flexible. Due to the stochastic nature of the power output of PV systems, nonlinear models tend to provide better forecast than linear models. Motivated by this, this paper suggests a fairly simple nonlinear regression model known as multivariate adaptive regression splines (MARS), as an alternative to forecasting of solar power output. The MARS model is a data-driven modeling approach without any assumption about the relationship between the power output and predictors. It maintains simplicity of the classical multiple linear regression (MLR) model while possessing the capability of handling nonlinearity. It is simpler in format than other nonlinear models such as ANN, k-nearest neighbors (KNN), classification and regression tree (CART), and support vector machine (SVM). The MARS model was applied on the daily output of a grid-connected 2.1 kW PV system to provide the 1-day-ahead mean daily forecast of the power output. The comparisons with a wide variety of forecast models show that the MARS model is able to provide reliable forecast performance.

  3. New Scheme for Seamless Operation for Stand-Alone Power Systems

    Directory of Open Access Journals (Sweden)

    Hyun-Jun Kim

    2016-06-01

    Full Text Available On remote islands photovoltaic (PV panels with battery energy storage systems (BESSs supply electric power to customers in parallel operation with engine generators (EGs to reduce fuel consumption and environmental burden. A BESS operates in voltage control mode when it supplies power to loads alone, while it operates in current control mode when it supplies power to loads in parallel with the EG. This paper proposes a smooth mode change of the BESS from current control to voltage control by using initial value at the output of integral part in the voltage controller, and a smooth mode change from voltage control to current control by tracking the EG output voltage to the BESS output voltage using a phase-locked loop (PLL. The feasibility of the proposed scheme was verified through computer simulations and experiments with a scaled prototype.

  4. Balancing Europe's wind power output through spatial deployment informed by weather regimes.

    Science.gov (United States)

    Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini

    2017-08-01

    As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.

  5. Estimation of PV output power in moving and rocking hybrid energy marine ships

    International Nuclear Information System (INIS)

    Liu, Hongda; Zhang, Qing; Qi, Xiaoxia; Han, Yang; Lu, Fang

    2017-01-01

    Highlights: •A mathematical model for characterizing the ship PV output power is developed. •The impacts of the sea condition and ship type on the PV output power are analyzed. •The hybrid energy storage system is used to stabilize the PV fluctuation powers. •A SC configuration method based on maximum half period is applied. -- Abstract: In recent years, the application of solar energy and energy storage to ship power systems has shown promise as a method for both reducing annual carbon and nitrogen oxide emissions and improving ship energy efficiency in the maritime shipping industry. When a ship navigates at sea, it encounters a constant rocking motion that is affected by both the surrounding sea conditions and the ship’s navigation parameters. This motion increases the uncertainty involved in using solar energy and accelerates the aging of the ship’s energy storage battery to some extent. In this study, a universal mathematical model is established for the power generation by photovoltaic (PV) modules in which both the sea conditions and the ship’s integrated motion, including its basic movement along with the motion caused by rocking, are taken into account. Based on this model, the fluctuation characteristics of a ship’s PV output power are studied and determined using three different simulation scenarios. A binary energy storage scheme based on a decoupled PV output power is proposed in order to both stabilize the small-period PV power fluctuations and slow the aging of the actual battery caused by rocking. In addition, a super-capacitor (SC) configuration is constructed based on a maximum half cycle. Finally, the optimal energy storage capacities for this green ship are compared under both rocking and moving motion. In the case of rocking motion, the SCs are able to achieve an approximately 24.8–35.0% reduction in battery replacement. A shipping route between Shanghai, China and Sydney, Australia is considered to validate the practicality

  6. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    In this paper we discuss how different feedback gratings affect the tuning range and the output power of external feedback diode laser systems. A tunable high-power narrow-spectrum external-cavity diode laser system around 455 nm is investigated. The laser system is based on a high-power GaN diode...... laser in a Littrow external-cavity. Both a holographic diffraction grating and a ruled diffraction grating are used as feedback elements in the external cavity. The output power, spectral bandwidth, and tunable range of the external cavity diode laser system are measured and compared with the two...... gratings at different injected currents. When the holographic grating is used, the laser system can be tuned over a range of 1.4 nm with an output power around 530 mW. When the ruled grating is used, the laser system can be tuned over a range of 6.0 nm with an output power around 80 mW. The results can...

  7. A diode-pumped continuous-wave Nd:YAG laser with an average output power of 1 kW

    International Nuclear Information System (INIS)

    Lee, Sung Man; Cha, Byung Heon; Kim, Cheol Jung

    2004-01-01

    A diode-pumped Nd:YAG laser with an average output power of 1 kW is developed for industrial applications, such as metal cutting, precision welding, etc. To develop such a diode-pumped high power solid-state laser, a series of laser modules have been used in general with and without thermal birefringence compensation. For example, Akiyama et al. used three laser modules to obtain a output power of 5.4 kW CW.1 In the side-pumped Nd:YAG laser, which is a commonly used pump scheme to obtain high output power, the crystal rod has a short thermal focal length at a high input pump power, and the short thermal focal length in turn leads to beam distortion within a laser resonator. Therefore, to achieve a high output power with good stability, isotropic beam profile, and high optical efficiency, the detailed analysis of the resonator stability condition depending on both mirror distances and a crystal separation is essential

  8. Multi Carrier Modulation Audio Power Amplifier with Programmable Logic

    DEFF Research Database (Denmark)

    Christiansen, Theis; Andersen, Toke Meyer; Knott, Arnold

    2009-01-01

    While switch-mode audio power amplifiers allow compact implementations and high output power levels due to their high power efficiency, they are very well known for creating electromagnetic interference (EMI) with other electronic equipment. To lower the EMI of switch-mode (class D) audio power a...

  9. Maximal power output during incremental exercise by resistance and endurance trained athletes.

    Science.gov (United States)

    Sakthivelavan, D S; Sumathilatha, S

    2010-01-01

    This study was aimed at comparing the maximal power output by resistance trained and endurance trained athletes during incremental exercise. Thirty male athletes who received resistance training (Group I) and thirty male athletes of similar age group who received endurance training (Group II) for a period of more than 1 year were chosen for the study. Physical parameters were measured and exercise stress testing was done on a cycle ergometer with a portable gas analyzing system. The maximal progressive incremental cycle ergometer power output at peak exercise and carbon dioxide production at VO2max were measured. Highly significant (P biofeedback and perk up the athlete's performance.

  10. Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source.......Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source....

  11. Cd-diffused Pb/sub 1-x/Sn/sub x/Te lasers with high output

    International Nuclear Information System (INIS)

    Lo, W.

    1976-01-01

    Cd-diffused Pb 1 /sub -//subx/Sn/subx/Te (xapprox.0.13) diode lasers have been fabricated with cw output powers of 1.25 mW (single mode) and 2.4 mW (total) at 10.6 μm. These power levels are attributed to the low-temperature Cd diffusion, a new method of growing low-dislocation-density crystals, and to a contact resistance as low as 3x10 -5 Ω cm 2 . Multimode emission spectra are common for cw operation, but reducing the cavity width encourages single-mode emission, indicating the filamentary nature of modes in these devices

  12. Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans.

    Science.gov (United States)

    Zoladz, J A; Rademaker, A C; Sargeant, A J

    1995-01-01

    1. A slow component to pulmonary oxygen uptake (VO2) is reported during prolonged high power exercise performed at constant power output at, or above, approximately 60% of the maximal oxygen uptake. The magnitude of the slow component is reported to be associated with the intensity of exercise and to be largely accounted for by an increased VO2 across the exercising legs. 2. On the assumption that the control mechanism responsible for the increased VO2 is intensity dependent we hypothesized that it should also be apparent in multi-stage incremental exercise tests with the result that the VO2-power output relationship would be curvilinear. 3. We further hypothesized that the change in the VO2-power output relationship could be related to the hierarchical recruitment of different muscle fibre types with a lower mechanical efficiency. 4. Six subjects each performed five incremental exercise tests, at pedalling rates of 40, 60, 80, 100 and 120 rev min-1, over which range we expected to vary the proportional contribution of different fibre types to the power output. Pulmonary VO2 was determined continuously and arterialized capillary blood was sampled and analysed for blood lactate concentration ([lactate]b). 5. Below the level at which a sustained increase in [lactate]b was observed pulmonary VO2 showed a linear relationship with power output; at high power outputs, however, there was an additional increase in VO2 above that expected from the extrapolation of that linear relationship, leading to a positive curvilinear VO2-power output relationship. 6. No systematic effect on the magnitude or onset of the 'extra' VO2 was found in relation to pedalling rate, which suggests that it is not related to the pattern of motor unit recruitment in any simple way. PMID:8568657

  13. High power industrial picosecond laser from IR to UV

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  14. Mode distortion measurements on the Jefferson lab IR FEL

    CERN Document Server

    Benson, S V; Shinn, M

    2002-01-01

    We have previously reported on the analytical calculations of mirror distortion in a high-power FEL with a near-concentric cavity. This analysis allowed us to estimate the power level at which the FEL interaction would be affected, though no exact theory of FEL power vs. distortion exists at this point. Recently we have directly measured the mode size and beam quality as a function of power using a resonator with a center wavelength of 5 mu m. The resonator mirrors were calcium fluoride. This particular material exhibits a large amount of distortion for a given power but, due to the negative slope of refractive index vs. temperature, adds almost no optical phase distortion on the laser output. The mode in the cavity can thus be directly calculated from the measurements at the resonator output. The presence of angular jitter produced raw measurements inconsistent with cold cavity expectations. Removing the effects of the angular jitter, we derive results in agreement with cold cavity measurements. The result i...

  15. Passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm

    Science.gov (United States)

    Waritanant, Tanant; Major, Arkady

    2018-02-01

    A passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm was demonstrated with an intracavity birefringent filter as the wavelength selecting element. The average output powers achieved were 2.17 W and 2.18 W with optical-to-optical efficiency of 19.6% and 19.7%, respectively. The slope efficiencies were more than 31% at both output wavelengths. The pulse durations at the highest average output power were 10.3 ps and 8.4 ps, respectively. We believe that this is the first report of mode locking of a Nd:YVO4 laser operating at 1073 nm or 1085 nm lines.

  16. Predicting Power Output of Upper Body using the OMNI-RES Scale

    Directory of Open Access Journals (Sweden)

    Bautista Iker J.

    2014-12-01

    Full Text Available The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males ( voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94 between rating of perceived exertion (RPE and mean bar velocity (Velmean. The Pearson correlation analysis between real power output (PotReal and estimated power (PotEst showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.

  17. Research on Power Output Characteristics of Magnetic Core in Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    Rong-Ping GUO

    2014-07-01

    Full Text Available Magnetic core is the dominant factor in the performance of current transformer energy harvesting devices. The power output model of the magnetic core is established and verified through experiments. According to the actual application requirements, the concept of power density is proposed. The relationships of power density to air gap, material and dimension of the magnetic core are analyzed and verified through experiments.

  18. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  19. Calculation of the output power in self-amplified spontaneous radiation using scaling of power with number of simulation particles

    International Nuclear Information System (INIS)

    Yu, L.H.

    1998-01-01

    Recent advances in self-amplified spontaneous emission (SASE) experiments stimulate interest in quantitative comparison of measurements with theory. In this paper we show that the widely used simulation code TDA3D, developed by Tran and Wurtele [Comput. Phys. Commun. 54, 263 (1989)] even though a single frequency code, can be used to determine the output power in the SASE process with excellent approximation in the exponential growth regime. The method applies when the gain is not very high, which is a special advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power and the number of simulation particles in the code TDA3D: left-angle P right-angle=N λ ' /N λ left-angle P ' right-angle, where left-angle P right-angle is the output power and N λ is the line density of the electrons, while left-angle P ' right-angle is the calculated output power using a line density N λ ' of the number of simulation particles in the code TDA3D. Because of the scaling property, the number of simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison of our results with experiment yields new insight into the SASE process. copyright 1998 The American Physical Society

  20. Empirical investigation on using wind speed volatility to estimate the operation probability and power output of wind turbines

    International Nuclear Information System (INIS)

    Liu, Heping; Shi, Jing; Qu, Xiuli

    2013-01-01

    Highlights: ► Ten-minute wind speed and power generation data of an offshore wind turbine are used. ► An ARMA–GARCH-M model is built to simultaneously forecast wind speed mean and volatility. ► The operation probability and expected power output of the wind turbine are predicted. ► The integrated approach produces more accurate wind power forecasting than other conventional methods. - Abstract: In this paper, we introduce a quantitative methodology that performs the interval estimation of wind speed, calculates the operation probability of wind turbine, and forecasts the wind power output. The technological advantage of this methodology stems from the empowered capability of mean and volatility forecasting of wind speed. Based on the real wind speed and corresponding wind power output data from an offshore wind turbine, this methodology is applied to build an ARMA–GARCH-M model for wind speed forecasting, and then to compute the operation probability and the expected power output of the wind turbine. The results show that the developed methodology is effective, the obtained interval estimation of wind speed is reliable, and the forecasted operation probability and expected wind power output of the wind turbine are accurate

  1. Estimation of monthly wind power outputs of WECS with limited record period using artificial neural networks

    International Nuclear Information System (INIS)

    Tu, Yi-Long; Chang, Tsang-Jung; Chen, Cheng-Lung; Chang, Yu-Jung

    2012-01-01

    Highlights: ► ANN with short record training data is used to estimate power outputs in an existing station. ► The suitable numbers/parameters of input neurons for ANN are presented. ► Current wind speeds and previous power outputs are the most important input neurons. ► Choosing suitable input parameters is more important than choosing multiple parameters. - Abstract: For the brand new wind power industry, online recordings of wind power data are always in a relatively limited period. The aim of the study is to investigate the suitable numbers/parameters of input neurons for artificial neural networks under a short record of measured data. Measured wind speeds, wind directions (yaw angles) and power outputs with 10-min resolution at an existing wind power station, located at Jhongtun, Taiwan, are integrated to form three types of input neuron numbers and sixteen cases of input neurons. The first-10 days of each month in 2006 are used for data training to simulate the following 20-day power generation of the same month. The performance of various input neuron cases is evaluated. The simulated results show that using the first 10-day training data with adequate input neurons can estimate energy outputs well except the weak wind regime (May, June, and July). Among the input neuron parameters used, current wind speeds V(t) and previous power outputs P(t − 1) are the most important. Individually using one of them into input neurons can only provide satisfactory estimation. However, simultaneously using these two parameters into input neurons can give the best estimation. Thus, choosing suitable input parameters is more important than choosing multiple parameters.

  2. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    Science.gov (United States)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  3. Study on nuclear power plant project construction and management mode in China

    International Nuclear Information System (INIS)

    Wang Kai; Chen Lian

    2009-01-01

    Project management mode plays a key role in project construction, especially in nuclear power field. From the aspects of right, responsibility and benefit, this paper discussed the differences among the common used project management modes. Also the main kinds of the construction management modes used in China's nuclear power plants were summarized. At last, considering the experience of Ningde nuclear power plant, this paper put forward several perspectives about the selection of project management mode in nuclear power plant construction. (authors)

  4. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W

    Science.gov (United States)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.

    2018-02-01

    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  5. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes

    International Nuclear Information System (INIS)

    Wenzel, H; Crump, P; Pietrzak, A; Wang, X; Erbert, G; Traenkle, G

    2010-01-01

    The factors that limit both the continuous wave (CW) and the pulsed output power of broad-area laser diodes driven at very high currents are investigated theoretically and experimentally. The decrease in the gain due to self-heating under CW operation and spectral holeburning under pulsed operation, as well as heterobarrier carrier leakage and longitudinal spatial holeburning, are the dominant mechanisms limiting the maximum achievable output power.

  6. Radiative type-III ELMy H-mode in all-tungsten ASDEX Upgrade

    NARCIS (Netherlands)

    Rapp, J.; Kallenbach, A.; Neu, R.; Eich, T.; Fischer, R.; Herrmann, A.; Potzel, S.; van Rooij, G. J.; Zielinski, J. J.; ASDEX Upgrade team,

    2012-01-01

    The type-III ELMy H-mode might be the solution for an integrated ITER operation scenario fulfilling the fusion power amplification factor (output fusion power to input heating power) of Q = 10 with simultaneous acceptable steady-state and transient power loads to the plasma-facing components. This

  7. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    International Nuclear Information System (INIS)

    Kuznetsov, I.A.; Greenfield, M.J.; Mehta, Y.U.; Merchan-Merchan, W.; Salkar, G.; Saveliev, A.V.

    2011-01-01

    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  8. High output power reluctance electric motors with bulk high-temperature superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, L.K. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (Russian Federation)]. E-mail: kovalev@mail.sitek.net; Ilushin, K.V.; Penkin, V.T. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (RU)] [and others

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS)-YBCO and Bi-Ag-elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems. (author)

  9. State-of-the-art piezoelectric transformer-based switch mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    Inductorless switch mode power supplies based on piezoelectric transformers are used to replace conventional transformers in high power density switch mode power supplies. Even though piezoelectric-based converters exhibit a high d egree of nonlinearity, it is desirable to use piezoelectric transfo...... discusses power supplies with the trend evaluation of piezoelectric transformer-based converter topologies and control methods. The challenges of piezoelectric transformers regarding soft switching capability and nonlinearity are addressed. This paper can be used as a guideline f or choosing a proper...... topology of piezoelectric-based switch mode power supply and a control method for the required application....

  10. Development of an optical resonator with high-efficient output coupler for the JAERI far-infrared free-electron laser

    International Nuclear Information System (INIS)

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Sawamura, Masaru; Kikuzawa, Nobuhiro; Shizuma, Toshiyuki; Minehara, Eisuke

    2001-01-01

    An optical resonator with a high-efficient output coupler was developed for the JAERI far-infrared free-electron laser. The optical resonator is symmetrical near-concentric geometry with an insertable scraper output coupler. As a result of the development of the optical resonator, the JAERI-FEL has been successfully, lased with averaged power over 1 kW. Performance of the optical resonator with the output coupler was evaluated at optical wavelength of 22 μm by using an optical mode calculation code. The output coupling and diffractive loss with a dominant eigen-mode of the resonator were calculated using an iterative computation called Fox-Li procedure. An efficiency factor of the optical resonator was introduced for the evaluation of the optical resonator performance. The efficiency factor was derived by the amount of the output coupling and diffractive loss of the optical resonator. It was found that the optical resonator with the insertable scraper coupler was the most suitable to a high-power and high-efficient far-infrared free-electron laser. (author)

  11. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    Science.gov (United States)

    Chen, Gong; Beale, William T.

    1990-01-01

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

  12. Analyzing Power Supply and Demand on the ISS

    Science.gov (United States)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  13. Detecting, categorizing and forecasting large romps in wind farm power output using meteorological observations and WPPT

    DEFF Research Database (Denmark)

    Cutler, N.; Kay, M.; Jacka, K.

    2007-01-01

    The Wind Power Prediction Tool (WPPT) has been installed in Australia for the first time, to forecast the power output from the 65MW Roaring 40s Renewable Energy P/L Woolnorth Bluff Point wind form. This article analyses the general performance of WPPT as well as its performance during large romps...... (swings) in power output. In addition to this, detected large ramps are studied in detail and categorized. WPPT combines wind speed and direction forecasts from the Australian Bureau of Meteorology regional numerical weather prediction model, MesoLAPS, with real-time wind power observations to make hourly...... forecasts of the wind farm power output. The general performances of MesoLAPS and WPPTore evaluated over I year using the root mean square error (RMSE). The errors are significantly lower than for basic benchmark forecasts but higher than for many other WPPT installations, where the site conditions...

  14. Three-Input Single-Output Voltage-Mode Multifunction Filter with Electronic Controllability Based on Single Commercially Available IC

    Directory of Open Access Journals (Sweden)

    Supachai Klungtong

    2017-01-01

    Full Text Available This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP, band-reject (BR, low-pass (LP, high-pass (HP, and all-pass (AP functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.

  15. An ultra low-power off-line APDM-based switchmode power supply with very high conversion efficiency

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2001-01-01

    This article describes the results from the research work on design of a ultra low power off-line power supply with very high conversion efficiency. The input voltage is 230 VAC nominal and output voltage is 5 VDC. By ultra low power levels, an output power level in the area ranging from 50 m......W and up to 1000 mW is meant. The small power supply is intended for use as a standby power supply in mains operated equipment, which requires a small amount of power in standby mode....

  16. Adaptive double-integral-sliding-mode-maximum-power-point tracker for a photovoltaic system

    Directory of Open Access Journals (Sweden)

    Bidyadhar Subudhi

    2015-10-01

    Full Text Available This study proposed an adaptive double-integral-sliding-mode-controller-maximum-power-point tracker (DISMC-MPPT for maximum-power-point (MPP tracking of a photovoltaic (PV system. The objective of this study is to design a DISMC-MPPT with a new adaptive double-integral-sliding surface in order that MPP tracking is achieved with reduced chattering and steady-state error in the output voltage or current. The proposed adaptive DISMC-MPPT possesses a very simple and efficient PWM-based control structure that keeps switching frequency constant. The controller is designed considering the reaching and stability conditions to provide robustness and stability. The performance of the proposed adaptive DISMC-MPPT is verified through both MATLAB/Simulink simulation and experiment using a 0.2 kW prototype PV system. From the obtained results, it is found out that this DISMC-MPPT is found to be more efficient compared with that of Tan's and Jiao's DISMC-MPPTs.

  17. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  18. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  19. Standby-Loss Elimination in Server Power Supply

    Directory of Open Access Journals (Sweden)

    Jong-Woo Kim

    2017-07-01

    Full Text Available In a server power system, a standby converter is required in order to provide the standby output, monitor the system’s status, and communicate with the server power system. Since these functions are always required, losses from the standby converter are produced even though the system operates in normal mode. For these reasons, the losses deteriorate the total efficiency of the system. In this paper, a new structure is proposed to eliminate the losses from the standby converter of a server power supply. The key feature of the proposed structure is that the main direct current (DC/DC converter substitutes all of the output power of the standby converter, and the standby converter is turned off in normal mode. With the proposed structure, the losses from the standby converter can be eliminated in normal mode, and this leads to a higher efficiency in overall load conditions. Although the structure has been proposed in the previous work, very important issues such as a steady state analysis, the transient responses, and how to control the standby converter are not discussed. This paper presents these issues further. The feasibility of the proposed structure has been verified with 400 V link voltage, 12 V/62.5 A main output, and a 12 V/2.1 A standby output server power system.

  20. Enhancing the power output of the VA-955 UHF-TV klystron

    International Nuclear Information System (INIS)

    Bowen, O.N.; Lawson, J.Q.

    1977-01-01

    The Varian VA-955 UHF-TV klystron is rated at 50 kW CW, and four of these klystrons were used to provide 200 kW of RF power for lower hybrid heating experiments on the ATC machine at 800 MHz. These proven, production-type tubes were wanted to generate more power for larger type machines, such as the PDX. Varian was asked whether the tubes were capable of higher-power operation in pulsed applications. They replied that they had no experimental data but felt that the tubes were capable of greatly enhanced performance under pulsed conditions. By using cathode modulation instead of modulating anode control of the klystron, and thus limiting the time that high voltage is applied to the cathode, it was shown that the tube is capable of an output power of 200 kW for tens of milliseconds compared to its normal CW rating of 50 kW. A description is given of the experimental results, the required modifications to the klystron and output transmission circuit, the details of operation of the regulating modulator used to perform the experiment. Upgrade kits are now being fabricated to allow 200 kW operation of the two 50 kW units which were lent to General Atomic for Doublet II experiments

  1. Predicting Power Output of Upper Body using the OMNI-RES Scale.

    Science.gov (United States)

    Bautista, Iker J; Chirosa, Ignacio J; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E; Chirosa, Luis J; Robertson, Robert J

    2014-12-09

    The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.

  2. Discussion of manage mode for nuclear power construcation in China

    International Nuclear Information System (INIS)

    Gao Mingshi; Chen Hua

    2007-01-01

    This paper analyzed the development status of management mode for NPP construction and nuclear power engineering companies. Considering the national development plan of nuclear power, and making reference of the experiences of the successful construction of NPPs, the management mode for NPP construction in which the nuclear engineering companies are the main factors have been discussed. This paper proposed that EPC/TurnKey as the management mode for the nuclear power construction, led by the owner, and constructed by engineering companies according to the contracts, so as to establish a construction group with expertise knowledge. (authors)

  3. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  4. 110GHz-500kW long-pulse gyrotron with built-in quasi-optical mode converter

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Kariya, Tsuyoshi; Hayashi, Ken-ichi.

    1994-01-01

    We have designed, fabricated, and tested a 110 GHz-500 kW long-pulse gyrotron. The gyrotron incorporates a quasi-optical mode converter which transforms the oscillation mode, TE 22,2 , into a Gaussian radiation beam. The adoption of a built-in mode converter enabled us to design the electron beam collector so as to be capable of tolerating a 2 MW heat load. Attention was also paid to designing the gyrotron cavity and output window so as to permit long-pulse operations. In an experiment, we observed a maximum output power of 550 kW and achieved 1.3 s operation at a power level of 410 kW. (author)

  5. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  6. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  7. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2011-01-01

    output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2- values of the laser with lowest spatial coherence. The principle......Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest...... of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future....

  8. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    Science.gov (United States)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  9. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    Science.gov (United States)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  10. Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation

    Science.gov (United States)

    Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai

    2018-03-01

    The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.

  11. Diode array pumped, non-linear mirror Q-switched and mode-locked

    Indian Academy of Sciences (India)

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  12. Optimal Switching Table-Based Sliding Mode Control of an Energy Recovery Li-Ion Power Accumulator Battery Pack Testing System

    Directory of Open Access Journals (Sweden)

    Kil To Chong

    2013-10-01

    Full Text Available The main objective of the present work is to apply a sliding mode controller (SMC to medium voltage and high power output energy recovery Li-ion power accumulator battery pack testing systems (ERLPABTSs, which are composed of a three-level neutral-point-clamped (NPC three-phase voltage source inverter (VSI and a two-level buck-boost converter without an isolating transformer. An inner current decoupled control scheme for the aforementioned system is proposed and two sliding mode planes for active and reactive current control are designed based on the control scheme. An optimized switching table for current convergence is used according to the error sign of the equivalent input voltage and feedback voltage. The proposed ERLPABTS could be used to integrate discharging energy into the power grid when performing high accuracy current testing. The active and reactive power references for the grid-connected inverter are determined based on the discharging energy from the DC-DC converter. Simulations and experiments on a laboratory hardware platform using a 175 kW insulated gate bipolar transistor (IGBT-based ERLPABTS have been implemented and verified, and the performance is found satisfactory and superior to conventional ERLPABPTS.

  13. Index-antiguided planar waveguide lasers with large mode area

    Science.gov (United States)

    Liu, Yuanye

    The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that

  14. Bulk material management mode of general contractors in nuclear power project

    International Nuclear Information System (INIS)

    Zhang Jinyong; Zhao Xiaobo

    2011-01-01

    The paper introduces the characteristics of bulk material management mode in construction project, and the advantages and disadvantages of bulk material management mode of general contractors in nuclear power project. In combination with the bulk material management mode of China Nuclear Power Engineering Co., Ltd, some improvement measures have been put forward as well. (authors)

  15. Mode splitting effect in FEMs with oversized Bragg resonators

    Energy Technology Data Exchange (ETDEWEB)

    Peskov, N. Yu.; Sergeev, A. S. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Kaminsky, A. K.; Perelstein, E. A.; Sedykh, S. N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kuzikov, S. V. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Nizhegorodsky State University, Nizhny Novgorod (Russian Federation)

    2016-07-15

    Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and “cold” microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.

  16. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    Directory of Open Access Journals (Sweden)

    Johann Otto Pelz

    Full Text Available Currently, colour-coded duplex sonography (2D-CDS is clinical standard for detection and grading of internal carotid artery stenosis (ICAS. However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS for direct visualisation and quantification of ICAS.Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA reduction percentage and compared with 2D-CDS.There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%. Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90 followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81. Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51. Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}. In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57 than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51.Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard

  17. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    Science.gov (United States)

    Pelz, Johann Otto; Weinreich, Anna; Karlas, Thomas; Saur, Dorothee

    2017-01-01

    Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visualisation and quantification of ICAS. Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA) reduction percentage and compared with 2D-CDS. There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81). Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51). Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard imaging

  18. Application of second order sliding mode algorithms for output feedback control in hydraulic cylinder drives with profound valve dynamics

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.

    2016-01-01

    The application of second order sliding mode algorithms for output feedback control in hydraulic valve-cylinder drives appear attractive due to their simple realization and parametrization, and strong robustness toward bounded parameter variations and uncertainties. However, intrinsic nonlinear...

  19. Loss of power output and laser fibre degradation during 120 watt lithium-triborate HPS laser vaporisation of the prostate

    Science.gov (United States)

    Hermanns, Thomas; Sulser, Tullio; Hefermehl, Lukas J.; Strebel, Daniel; Michel, Maurice-Stephan; Müntener, Michael; Meier, Alexander H.; Seifert, Hans-Helge

    2009-02-01

    It has recently been shown that laser fibre deterioration leads to a significant decrease of power output during 80 W potassium titanyl phosphate (KTP) laser vaporisation (LV) of the prostate. This decrease results in inefficient vaporisation especially towards the end of the procedure. For the new 120 W lithium-triborate (LBO) High Performance System (HPS) laser not only higher power but also changes in beam characteristics and improved fibre quality have been advertised. However, high laser power has been identified as a risk factor for laser fibre degradation. Between July and September 2008 25 laser fibres were investigated during routine 120 W LBO-LV in 20 consecutive patients. Laser beam power was measured at baseline and after the application of every 25 kJ during the LV procedure. Postoperatively, the surgeon subjectively rated the performance of the respective fibre on a scale from 1 to 4 (1 indicating perfect and 4 insufficient performance). Additionally, microscopic examination of the fibre tip was performed. Median energy applied was 212 kJ. Changes of power output were similar for all fibres. Typically, a steep decrease of power output within the first 50 kJ was followed by a continuous mild decrease until the end of the procedure. After the application of 50 kJ the median power output was 63% (58-73% interquartile range) of the baseline value. The median power output at the end of the 275 kJ-lifespan of the fibres was 42% (40-47%). The median surgeons' rating of the overall performance of the laser fibres was 2 and the median estimated final decrease of power output 60%. Some degree of degradation at the emission window was microscopically detectable in all cases after the procedure. However, even after the application of 275 kJ, these structural changes were only moderate. Minor degradation of the laser fibre was associated with a significant decrease of power output during 120 W LBO-LV. However, following an early, steep decrease, power output

  20. Super short term forecasting of photovoltaic power generation output in micro grid

    Science.gov (United States)

    Gong, Cheng; Ma, Longfei; Chi, Zhongjun; Zhang, Baoqun; Jiao, Ran; Yang, Bing; Chen, Jianshu; Zeng, Shuang

    2017-01-01

    The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.

  1. Output power maximization of low-power wind energy conversion systems revisited: Possible control solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil [' ' Dunarea de Jos' ' University of Galati, 47, Domneasca, 800008-Galati (Romania)

    2010-02-15

    This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results. (author)

  2. Output power maximization of low-power wind energy conversion systems revisited: Possible control solutions

    International Nuclear Information System (INIS)

    Vlad, Ciprian; Munteanu, Iulian; Bratcu, Antoneta Iuliana; Ceanga, Emil

    2010-01-01

    This paper discusses the problem of output power maximization for low-power wind energy conversion systems operated in partial load. These systems are generally based on multi-polar permanent-magnet synchronous generators, who exhibit significant efficiency variations over the operating range. Unlike the high-power systems, whose mechanical-to-electrical conversion efficiency is high and practically does not modify the global optimum, the low-power systems global conversion efficiency is affected by the generator behavior and the electrical power optimization is no longer equivalent with the mechanical power optimization. The system efficiency has been analyzed by using both the maxima locus of the mechanical power versus the rotational speed characteristics, and the maxima locus of the electrical power delivered versus the rotational speed characteristics. The experimental investigation has been carried out by using a torque-controlled generator taken from a real-world wind turbine coupled to a physically simulated wind turbine rotor. The experimental results indeed show that the steady-state performance of the conversion system is strongly determined by the generator behavior. Some control solutions aiming at maximizing the energy efficiency are envisaged and thoroughly compared through experimental results.

  3. MODELING OF OPERATION MODES OF SHIP POWER PLANT OF COMBINED PROPULSION COMPLEX WITH CONTROL SYSTEM BASED ON ELECTRONIC CONTROLLERS

    Directory of Open Access Journals (Sweden)

    E. A. Yushkov

    2016-12-01

    Full Text Available Purpose. Designing of diagrams to optimize mathematic model of the ship power plant (SPP combined propulsion complexes (CPC for decreasing operational loss and increasing fuel efficiency with simultaneous load limiting on medium revolutions diesel generator (MRDG by criterion reducing of wear and increasing operation time between repairs. Methodology. After analyzing of ship power plant modes of CPC proposed diagrams to optimize mathematic model of the above mentioned complex. The model based on using of electronic controllers in automatic regulation and control systems for diesel and thruster which allow to actualize more complicated control algorithm with viewpoint of increasing working efficiency of ship power plant at normal and emergency modes. Results. Determined suitability of comparative computer modeling in MatLab Simulink for building of imitation model objects based on it block diagrams and mathematic descriptions. Actualized diagrams to optimize mathematic model of the ship’s power plant (SPP combined propulsion complexes (CPC with Azipod system in MatLab Simulink software package Ships_CPC for decreasing operational loss and increasing fuel efficiency with simultaneous load limiting on medium revolutions diesel generator (MRDG by criterion reducing of wear and increasing operation time between repairs. The function blocks of proposed complex are the main structural units which allow to investigate it normal and emergency modes. Originality. This model represents a set of functional blocks of the components SPP CPC, built on the principle of «input-output». For example, the function boxes outputs of PID-regulators of MRDG depends from set excitation voltage and rotating frequency that in turn depends from power-station load and respond that is a ship moving or dynamically positioning, and come on input (inputs of thruster rotating frequency PID-regulator models. Practical value. The results of researches planned to use in

  4. Efficient power combiner for THz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Seidfaraji, Hamide, E-mail: hsfaraji@unm.edu; Fuks, Mikhail I.; Christodoulou, Christos; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131-0001 (United States)

    2016-08-15

    Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE{sub 01} output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  5. Efficient power combiner for THz radiation

    Directory of Open Access Journals (Sweden)

    Hamide Seidfaraji

    2016-08-01

    Full Text Available Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC-made power combiner were achieved in simulations. Also, it is shown that the TE01 output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  6. Influence of mode competition on beam quality of fiber amplifier

    International Nuclear Information System (INIS)

    Xiao Qi-Rong; Yan Ping; Sun Jun-Yi; Chen Xiao; Ren Hai-Cui; Gong Ma-Li

    2014-01-01

    Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical model. In the experiment, the output beam-quality factor of a fiber amplifier, which is based on a Yb-doped double-clad large mode area fiber as a function of the seed beam quality and the pump power of the amplifier, is measured. The experimental results are consistent with the theoretical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Sliding mode load frequency control for multi-area time-delay power system with wind power integration

    DEFF Research Database (Denmark)

    Mi, Yang; Hao, Xuezhi; Liu, Yongjuan

    2017-01-01

    The interconnected time-delay power system has become an important issue for the open communication network. Meanwhile, due to the output power fluctuation of integrated wind energy, load frequency control (LFC) for power system with variable sources and loads has become more complicated. The novel...

  8. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    Science.gov (United States)

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  9. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    Science.gov (United States)

    2012-12-01

    completing the academic workload at NPS. Taking care of two toddlers all day, every day, is not an easy task. You make xxviii it seem effortless and...for the development of numerous thin-cell applications that meet the military’s requirements for ruggedness and power output. For example, the...2012, September 5). PV microinverters and power optimizers set for significant growth [PV Magazine Online]. Available: http://www.pv- magazine.com

  10. Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

    Science.gov (United States)

    Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu

    2013-10-01

    This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

  11. Design management of general contractor under nuclear power project EPC mode

    International Nuclear Information System (INIS)

    Su Shaojian

    2013-01-01

    Design management has not yet formed a theoretical system recognized, general contractor design managers under nuclear power project EPC Mode lack the clear theory basis. This paper aims to discuss Design management from the angle of general contractor under nuclear power project EPC mode, Gives the concept of design management Clearly, by Combining the characteristics of nuclear power project, Gives the specific content and meaning of the design management of nuclear power project. (authors)

  12. High power CW output from low confinement asymmetric structure diode laser

    NARCIS (Netherlands)

    Iordache, G.; Buda, M.; Acket, G.A.; Roer, van de T.G.; Kaufmann, L.M.F.; Karouta, F.; Jagadish, C.; Tan, H.H.

    1999-01-01

    High power continuous wave output from diode lasers using low loss, low confinement, asymmetric structures is demonstrated. An asymmetric structure with an optical trap layer was grown by metal organic vapour phase epitaxy. Gain guided 50 µm wide stripe 1-3 mm long diode lasers were studied. 1.8 W

  13. A Sepic Type Switched Mode Power Supply System For Battery Charging In An Electric Tricycle Auto-Rickshaw

    Directory of Open Access Journals (Sweden)

    Kureve

    2017-08-01

    Full Text Available This paper analyzes the plug-in electric tricycle Auto rickshaw battery charging system using a non-isolated DC-DC SEPIC converter which operates as a switched mode power supply SMPS. The control of dc voltage output is by varying the gating pulses duty cycle of the switch in the dc-dc converter using PID controller based PWM technique. The 60 V 30 A DC-DC SEPIC converter is designed to provide non-inverting voltage buck from the rectified AC mains for charging deep cycle battery bank in an electric auto rickshaw. The charger system is implemented using MATLABSimulink.

  14. Improvement of Output Power of ECF Micromotor

    Science.gov (United States)

    Yokota, Shinichi; Kawamura, Kiyomi; Takemura, Kenjiro; Edamura, Kazuya

    Electro-conjugate fluid (ECF) is a kind of dielectric fluids, which produces jet-flow (ECF jet) when subjected to a high DC voltage. By using the ECF jet, a new type of micromotor with simple structure and lightweight can be realized. Up to now, we developed a disk-plate type ECF micromotor with inner diameter of 9 mm. In this study, we develope novel ECF micromotors with inner diameter of 5 mm in order to improve the output power density. First, we designed and produced the ECF micromotors with 4-layered and 8-layered disk plate rotors. Then, the performances of the motors are measured. The experimental results confirm the motor developed has a higher performance than the previous ones.

  15. Theoretical analysis of mode instability in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2013-01-01

    We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo......-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability...

  16. Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh

    2017-01-01

    The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).

  17. Simulation of the output power of copper bromide lasers by the MARS method

    International Nuclear Information System (INIS)

    Iliev, I P; Voynikova, D S; Gocheva-Ilieva, S G

    2012-01-01

    The dependence of the output power of CuBr lasers (operating at wavelengths of 510.6 and 578.2 nm) on ten input physical parameters has been statistically analysed based on a large amount of experimental data accumulated for these lasers. Regression models have been built using the flexible nonparametric method of multivariate adaptive regression splines (MARS) to describe both linear and nonlinear local dependences. These models cover more than 97% initial data with an error comparable with the experimental error; they are applied to estimate and predict the output powers of both existing and future lasers. The advantage of the models constructed for estimating laser parameters over the standard parametric methods of multivariate factor and regression analysis is demonstrated.

  18. Characterization of the electrical output of flat-plate photovoltaic arrays

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.

  19. Aerobic capacity and peak power output of elite quadriplegic games players

    Science.gov (United States)

    Goosey‐Tolfrey, V; Castle, P; Webborn, N

    2006-01-01

    Background Participation in wheelchair sports such as tennis and rugby enables people with quadriplegia to compete both individually and as a team at the highest level. Both sports are dominated by frequent, intermittent, short term power demands superimposed on a background of aerobic activity. Objective To gain physiological profiles of highly trained British quadriplegic athletes, and to examine the relation between aerobic and sprint capacity. Methods Eight male quadriplegic athletes performed an arm crank exercise using an ergometer fitted with a Schoberer Rad Messtechnik (SRM) powermeter. The sprint test consisted of three maximum‐effort sprints of five seconds duration against a resistance of 2%, 3%, and 4% of body mass. The highest power output obtained was recorded (PPO). Peak oxygen consumption (V̇o2peak), peak heart rate (HRpeak), and maximal power output (POaer) were determined. Results Mean POaer was 67.7 (16.2) W, mean V̇o2peak was 0.96 (0.17) litres/min, and HRpeak was 134 (19) beats/min for the group. There was high variability among subjects. Peak power over the five second sprint for the group was 220 (62) W. There was a significant correlation between V̇o2peak (litres/min) and POaer (W) (r  =  0.74, p<0.05). Conclusions These British quadriplegic athletes have relatively high aerobic fitness when compared with the available literature. Moreover, the anaerobic capacity of these athletes appeared to be relatively high compared with paraplegic participants. PMID:16611721

  20. Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing

    Science.gov (United States)

    Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew

    2011-03-01

    This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.

  1. Optimal Output of Distributed Generation Based On Complex Power Increment

    Science.gov (United States)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  2. Multi-Output Power Converter, Operated from a Regulated Input Bus, for the Sireus Rate Sensor

    Directory of Open Access Journals (Sweden)

    Torrecilla Marcos Compadre

    2017-01-01

    Full Text Available This paper describes a DC to DC converter designed to meet the power supply requirements of the SiREUS Coarse Rate Sensor (CRS which is a 3-axis MEMS Rate Sensor (MRS that uses a resonating ring gyro and will be used in different ESA missions. The converter supplies +5V, −5V, 3.3V, 1.8V and 40V and it has been designed and prototyped by Clyde Space Ltd with the EQM and FM units being manufactured by Selex ES. The first model was designed for a 28V un-regulated bus and the second model presented here has been designed for a 50V regulated bus. PWM voltage regulation was not used because of the noise requirements and the regulated input bus allowed an unregulated power stage approach. There are also stringent volume and interface constraints, which also affected the design. For such reasons, a fixed dutycycle, quasi-resonant single-ended topology with output linear regulators has been implemented; having the advantages of providing low switching losses, low radiated and conducted noise and no over-voltage failure mode. This paper highlights the techniques used to satisfy stringent noise and protection requirements of the load.

  3. Narrow ridge waveguide high power single mode 1.3-μm InAs/InGaAs ten-layer quantum dot lasers

    Directory of Open Access Journals (Sweden)

    Cao Q

    2007-01-01

    Full Text Available AbstractTen-layer InAs/In0.15Ga0.85As quantum dot (QD laser structures have been grown using molecular beam epitaxy (MBE on GaAs (001 substrate. Using the pulsed anodic oxidation technique, narrow (2 μm ridge waveguide (RWG InAs QD lasers have been fabricated. Under continuous wave operation, the InAs QD laser (2 × 2,000 μm2 delivered total output power of up to 272.6 mW at 10 °C at 1.3 μm. Under pulsed operation, where the device heating is greatly minimized, the InAs QD laser (2 × 2,000 μm2 delivered extremely high output power (both facets of up to 1.22 W at 20 °C, at high external differential quantum efficiency of 96%. Far field pattern measurement of the 2-μm RWG InAs QD lasers showed single lateral mode operation.

  4. Coordinated Power Dispatch of a PMSG based Wind Farm for Output Power Maximizing Considering the Wake Effect and Losses

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    2016-01-01

    The energy loss in a wind farm (WF) caused by wake interaction between wind turbines (WTs) is quite high, which can be reduced by proper active power dispatch. The electrical loss inside a WF by improper active power and reactive power dispatch is also considerable. In this paper, a coordinated...... active power and reactive power dispatch strategy is proposed for a Permanent magnet synchronous generator (PMSG) based WF, in order to maximize the total output power by reducing the wake effect and losses inside the devices of the WF, including the copper loss and iron loss of PMSGs, losses inside...

  5. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  6. Optimized Envelope Tracking Power Supply for Tetra2 Base Station RF Power Amplifier

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    An ultra-fast tracking power supply (UFTPS) for envelope tracking in a 50kHz 64-QAM Tetra2 base station power amplification system is demonstrated. A simple method for optimizing the step response of the PID+PD sliding-mode control system is presented and demonstrated, along with a PLL-based scheme...... application. Also demonstrated is the effect of non-zero UFTPS output impedance on envelope tracking performance. At 13W average (156W peak) RF output, a reduction of DC input power consumption from 93W (14% efficiency) to 54W (24% efficiency) is obtained by moving from a fixed RF power amplifier supply...

  7. InP/InGaP quantum-dot SESAM mode-locked Alexandrite laser

    Science.gov (United States)

    Ghanbari, Shirin; Fedorova, Ksenia A.; Krysa, Andrey B.; Rafailov, Edik U.; Major, Arkady

    2018-02-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked Alexandrite laser was demonstrated. Using an InP/InGaP quantum-dot saturable absorber mirror, pulse duration of 420 fs at 774 nm was obtained. The laser was pumped at 532 nm and generated 325 mW of average output power in mode-locked regime with a pump power of 7.12 W. To the best of our knowledge, this is the first report of a passively mode-locked Alexandrite laser using SESAM in general and quantum-dot SESAM in particular.

  8. Saturation of the 2.71 µm laser output in erbium doped ZBLAN fibers

    NARCIS (Netherlands)

    Bedö, S.; Pollnau, Markus; Lüthy, W.; Weber, H.P.

    1995-01-01

    The saturation of the 2.71 μm laser output power has been investigated in an erbium doped ZBLAN single-mode fiber with an Er3+ concentration of 5000 ppm mol. The bleaching of the ground state, the absorption coefficient at the pump wavelength and the fluorescence intensities over a wide wavelength

  9. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    Science.gov (United States)

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A molecular low power CO/sub 2/ laser with a stabilized output frequency

    Energy Technology Data Exchange (ETDEWEB)

    Plinski, E.F.; Abramski, K.M.; Nowicki, R.; Pienkowski, J.; Rzepka, J.

    1983-01-01

    This laser has a resonator consisting of a spherical mirror with a slope radius of 10 meters and a reflecting diffraction grating (120 lines per millimeter). The use of this grating makes it possible to isolate one of the lines in the 10.4 or 9.4 micrometer bands. A mirror with a central hole 2.5 millimeters in diameter is mounted on a piezoceramic holder designed for tuning the resonator. Frequency stabilization is based on synchronous detection. An auxillary modulating signal injected to a specific section of the piezoceramic holder modulates the level of the laser. The change in the output power may be detected using an uncooled detector (Cd, Hg) Te. The error signal, injected to the holder, tunes the resonator so that it operates in the center of the output power curve.

  11. Sliding mode control of an autonomous parallel fuel cell-super capacitor power source

    Energy Technology Data Exchange (ETDEWEB)

    More, Jeronimo J. [Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires (Argentina). Facultad de Ingenieria. Lab. de Electronica Industrial, Control e Instrumentacion], Email: jmore@ing.unlp.edu.ar; Puleston, Paul F [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Kunusch, Cristian; Colomer, Jordi Riera I [Universitat Politecnica de Catalunya, Barcelona (Spain). Inst. de Robotica i Informatica Industrial (IRII)

    2010-07-01

    Nowadays, hydrogen fuel cell (FC) based systems emerge as one promising renewable alternative to fossil fuel systems in automotive and residential applications. However, their output dynamic response is relatively slow, mostly due to water and reactant gases dynamics. To overcome this limitation, FC-super capacitors (SCs) topologies can be used. The latter is capable of managing very fast power variations, presenting in addition high power density, long life cycle and good charge/discharge efficiency. In this work, a FC-SCs-based autonomous hybrid system for residential applications is considered. The FC and SCs are connected in parallel, through two separate DC/DC converters, to a DC bus. Under steady state conditions, the FC must deliver the load power requirement, while maintaining the SCs voltage regulated to the desired value. Under sudden load variations, the FC current rate must be limited to assure a safe transition to the new point of operation. During this current rate limitation mode, the SCs must deliver or absorb the power difference. To this end, a sliding mode strategy is proposed to satisfy to control objectives. The main one is the robust regulation of the DC bus voltage, even in the presence of system uncertainties and disturbances, such as load changes and FC voltage variations. Additionally, a second control objective is attained, namely to guarantee the adequate level of charge in the SCs, once the FC reaches the new steady state operation point. In this way, the system can meet the load power demand, even under sudden changes, and it can also satisfy a power demand higher than the nominal FC power, during short periods. The proposed control strategy is evaluated exhaustively by computer simulation considering fast load variations. The results presented in this work, corresponds to the first stage of a R and D collaboration project for the design and development of a novel FC-SCs-based autonomous hybrid system. In the next phase, the proposed

  12. Sliding mode control of an autonomous parallel fuel cell-super capacitor power source

    Energy Technology Data Exchange (ETDEWEB)

    More, Jeronimo J. [Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires (Argentina). Facultad de Ingenieria. Lab. de Electronica Industrial, Control e Instrumentacion], Email: jmore@ing.unlp.edu.ar; Puleston, Paul F. [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Kunusch, Cristian; Colomer, Jordi Riera I. [Universitat Politecnica de Catalunya, Barcelona (Spain). Inst. de Robotica i Informatica Industrial (IRII)

    2010-07-01

    Nowadays, hydrogen fuel cell (FC) based systems emerge as one promising renewable alternative to fossil fuel systems in automotive and residential applications. However, their output dynamic response is relatively slow, mostly due to water and reactant gases dynamics. To overcome this limitation, FC-super capacitors (SCs) topologies can be used. The latter is capable of managing very fast power variations, presenting in addition high power density, long life cycle and good charge/discharge efficiency. In this work, a FC-SCs-based autonomous hybrid system for residential applications is considered. The FC and SCs are connected in parallel, through two separate DC/DC converters, to a DC bus. Under steady state conditions, the FC must deliver the load power requirement, while maintaining the SCs voltage regulated to the desired value. Under sudden load variations, the FC current rate must be limited to assure a safe transition to the new point of operation. During this current rate limitation mode, the SCs must deliver or absorb the power difference. To this end, a sliding mode strategy is proposed to satisfy to control objectives. The main one is the robust regulation of the DC bus voltage, even in the presence of system uncertainties and disturbances, such as load changes and FC voltage variations. Additionally, a second control objective is attained, namely to guarantee the adequate level of charge in the SCs, once the FC reaches the new steady state operation point. In this way, the system can meet the load power demand, even under sudden changes, and it can also satisfy a power demand higher than the nominal FC power, during short periods. The proposed control strategy is evaluated exhaustively by computer simulation considering fast load variations. The results presented in this work, corresponds to the first stage of a R and D collaboration project for the design and development of a novel FC-SCs-based autonomous hybrid system. In the next phase, the proposed

  13. Optimal Velocity to Achieve Maximum Power Output – Bench Press for Trained Footballers

    OpenAIRE

    Richard Billich; Jakub Štvrtňa; Karel Jelen

    2015-01-01

    Optimal Velocity to Achieve Maximum Power Output – Bench Press for Trained Footballers In today’s world of strength training there are many myths surrounding effective exercising with the least possible negative effect on one’s health. In this experiment we focus on the finding of a relationship between maximum output, used load and the velocity with which the exercise is performed. The main objective is to find the optimal speed of the exercise motion which would allow us to reach the ma...

  14. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  15. Practical considerations for integrating switch mode audio amplifiers and loudspeakers for a higher power efficiency

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2004-01-01

    An integration of electrodynamic loudspeakers and switch mode amplifiers has earlier been proposed in [1]. The work presented in this paper is related to the practical aspects of integration of switch mode audio amplifiers and electro dynamic loudspeakers, using the speaker’s voice coil as output...

  16. Project quality management under EPC mode by the owner of nuclear power plant

    International Nuclear Information System (INIS)

    Xu Hui; Hu Miao

    2014-01-01

    As the first completely independent nuclear power project in China, Fangjiashan nuclear power project is constructed under EPC mode of general project contracting. This paper, taking the project as an example, aims to explore how the project owners carry out quality management for the installation project during the construction of the nuclear power plant based on EPC mode. It has certain reference value for the management of following nuclear power projects which adopting the EPC construction mode. It will play a positive role in improving China's overall self-management abilities in the nuclear power construction, and lay a solid foundation for follow-up nuclear power construction in China. (authors)

  17. Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Longzhao Sun

    2015-09-01

    Full Text Available Conditions for load-independent output voltage or current in two-coil wireless power transfer (WPT systems have been studied. However, analysis of load-independent output current in three-coil WPT system is still lacking in previous studies. This paper investigates the output current characteristics of a three-coil WPT system against load variations, and determines the operating frequency to achieve a constant output current. First, a three-coil WPT system is modeled by circuit theory, and the analytical expression of the root-mean-square of the output current is derived. By substituting the coupling coefficients, the quality factor, and the resonant frequency of each coil, we propose a method of calculating the frequency for load-independent output current in a three-coil WPT system, which indicates that there are two frequencies that can achieve load-independent output current. Experiments are conducted to validate these analytical results.

  18. Dynamic impedance compensation for wireless power transfer using conjugate power

    Science.gov (United States)

    Liu, Suqi; Tan, Jianping; Wen, Xue

    2018-02-01

    Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  19. Dynamic impedance compensation for wireless power transfer using conjugate power

    Directory of Open Access Journals (Sweden)

    Suqi Liu

    2018-02-01

    Full Text Available Wireless power transfer (WPT via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.

  20. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  1. H-Mode Turbulence, Power Threshold, ELM, and Pedestal Studies in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Menard, J.E.; Meyer, H.; Mueller, D.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.; Zweben, S.J.; Bell, M.G.; Bell, R.E.; Biewer, T.; Boedo, J.A.; Johnson, D.W.; Kaita, R.; Kugel, H.W.; Maqueda, R.J.; Munsat, T.; Raman, R.; Soukhanovskii, V.A.; Stevenson, T.; Stutman, D.

    2004-01-01

    High-confinement mode (H-mode) operation plays a crucial role in NSTX [National Spherical Torus Experiment] research, allowing higher beta limits due to reduced plasma pressure peaking, and long-pulse operation due to high bootstrap current fraction. Here, new results are presented in the areas of edge localized modes (ELMs), H-mode pedestal physics, L-H turbulence, and power threshold studies. ELMs of several other types (as observed in conventional aspect ratio tokamaks) are often observed: (1) large, Type I ELMs, (2) ''medium'' Type II/III ELMs, and (3) giant ELMs which can reduce stored energy by up to 30% in certain conditions. In addition, many high-performance discharges in NSTX have tiny ELMs (newly termed Type V), which have some differences as compared with ELM types in the published literature. The H-mode pedestal typically contains between 25-33% of the total stored energy, and the NSTX pedestal energy agrees reasonably well with a recent international multi-machine scaling. We find that the L-H transition occurs on a ∼100 (micro)sec timescale as viewed by a gas puff imaging diagnostic, and that intermittent quiescent periods precede the final transition. A power threshold identity experiment between NSTX and MAST shows comparable loss power at the L-H transition in balanced double-null discharges. Both machines require more power for the L-H transition as the balance is shifted toward lower single null. High field side gas fueling enables more reliable H-mode access, but does not always lead to a lower power threshold e.g., with a reduction of the duration of early heating. Finally the edge plasma parameters just before the L-H transition were compared with theories of the transition. It was found that while some theories can separate well-developed L- and H-mode data, they have little predictive value

  2. The left ventricle as a mechanical engine: from Leonardo da Vinci to the echocardiographic assessment of peak power output-to-left ventricular mass.

    Science.gov (United States)

    Dini, Frank L; Guarini, Giacinta; Ballo, Piercarlo; Carluccio, Erberto; Maiello, Maria; Capozza, Paola; Innelli, Pasquale; Rosa, Gian M; Palmiero, Pasquale; Galderisi, Maurizio; Razzolini, Renato; Nodari, Savina

    2013-03-01

    The interpretation of the heart as a mechanical engine dates back to the teachings of Leonardo da Vinci, who was the first to apply the laws of mechanics to the function of the heart. Similar to any mechanical engine, whose performance is proportional to the power generated with respect to weight, the left ventricle can be viewed as a power generator whose performance can be related to left ventricular mass. Stress echocardiography may provide valuable information on the relationship between cardiac performance and recruited left ventricular mass that may be used in distinguishing between adaptive and maladaptive left ventricular remodeling. Peak power output-to-mass, obtained during exercise or pharmacological stress echocardiography, is a measure that reflects the number of watts that are developed by 100 g of left ventricular mass under maximal stimulation. Power output-to-mass may be calculated as left ventricular power output per 100 g of left ventricular mass: 100× left ventricular power output divided by left ventricular mass (W/100 g). A simplified formula to calculate power output-to-mass is as follows: 0.222 × cardiac output (l/min) × mean blood pressure (mmHg)/left ventricular mass (g). When the integrity of myocardial structure is compromised, a mismatch becomes apparent between maximal cardiac power output and left ventricular mass; when this occurs, a reduction of the peak power output-to-mass index is observed.

  3. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser

    Science.gov (United States)

    Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2018-02-01

    Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.

  4. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    Directory of Open Access Journals (Sweden)

    Faghri Pouran D

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus

  5. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue.

    Science.gov (United States)

    Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J

    2008-04-26

    The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to whether or not progressive resistance

  6. Change in power output across a high-repetition set of bench throws and jump squats in highly trained athletes.

    Science.gov (United States)

    Baker, Daniel G; Newton, Robert U

    2007-11-01

    Athletes experienced in maximal-power and power-endurance training performed 1 set of 2 common power training exercises in an effort to determine the effects of moderately high repetitions upon power output levels throughout the set. Twenty-four and 15 athletes, respectively, performed a set of 10 repetitions in both the bench throw (BT P60) and jump squat exercise (JS P60) with a resistance of 60 kg. For both exercises, power output was highest on either the second (JS P60) or the third repetition (BT P60) and was then maintained until the fifth repetition. Significant declines in power output occurred from the sixth repetition onwards until the 10th repetition (11.2% for BT P60 and 5% for JS P60 by the 10th repetition). These findings suggest that athletes attempting to increase maximal power limit their repetitions to 2 to 5 when using resistances of 35 to 45% 1RM in these exercises.

  7. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    International Nuclear Information System (INIS)

    Bao, Rong; Li, Yongdong; Liu, Chunliang; Wang, Hongguang

    2016-01-01

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.

  8. Determination of input/output characteristics of full-bridge AC/DC/DC converter for arc welding

    OpenAIRE

    Stefanov, Goce; Karadzinov, Ljupco; Sarac, Vasilija; Cingoski, Vlatko; Gelev, Saso

    2016-01-01

    This paper describes the design and practical implementation of AC/DC/DC converter in mode of arc welding. An analysis of the operation of AC/DC/DC converter and its input/output characteristics are determined with computer simulations. The practical part is consisted of AC/DC/DC converter prototype for arc welding with output power of 3 kW and switching frequency of 64 kHz. The operation of AC/DC/DC converter is validated with experimental measurements.

  9. Input-output model of regional environmental and economic impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Johnson, M.H.; Bennett, J.T.

    1979-01-01

    The costs of delayed licensing of nuclear power plants calls for a more-comprehensive method of quantifying the economic and environmental impacts on a region. A traditional input-output (I-O) analysis approach is extended to assess the effects of changes in output, income, employment, pollution, water consumption, and the costs and revenues of local government disaggregated among 23 industry sectors during the construction and operating phases. Unlike earlier studies, this model uses nonlinear environmental interactions and specifies environmental feedbacks to the economic sector. 20 references

  10. Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players.

    Science.gov (United States)

    Yáñez-Silva, Aquiles; Buzzachera, Cosme F; Piçarro, Ivan Da C; Januario, Renata S B; Ferreira, Luis H B; McAnulty, Steven R; Utter, Alan C; Souza-Junior, Tacito P

    2017-01-01

    To determine the effects of a low dose, short-term Creatine monohydrate (Cr) supplementation (0.03 g.kg.d -1 during 14 d) on muscle power output in elite youth soccer players. Using a two-group matched, double blind, placebo-controlled design, nineteen male soccer players (mean age = 17.0 ± 0.5 years) were randomly assigned to either Cr ( N  = 9) or placebo ( N  = 10) group. Before and after supplementation, participants performed a 30s Wingate Anaerobic Test (WAnT) to assess peak power output (PPO), mean power output (MPO), fatigue index (FI), and total work. There were significant increases in both PPO and MPO after the Cr supplementation period ( P  ≤ 0.05) but not the placebo period. There were also significant increases in total work, but not FI, after the Cr supplementation and placebo periods ( P  ≤ 0.05). Notably, there were differences in total work between the Cr and placebo groups after ( P  ≤ 0.05) but not before the 14 d supplementation period. There is substantial evidence to indicate that a low-dose, short-term oral Cr supplementation beneficially affected muscle power output in elite youth soccer players.

  11. Exploring the new development approach of nuclear power insurance mode in China

    International Nuclear Information System (INIS)

    Zhang Dongyan

    2009-01-01

    The booming nuclear power market will bring about huge commercial opportunities for the nuclear power insurance in the future. Started from the current status and development trend of nuclear power insurance, this thesis discussed and prospected a new possible development approach of nuclear power insurance mode, which has adopted the conception of the risk management, with an aim to maintain the maximum benefit from risk management innovation to the nuclear power plants. This mode can be used to meet the expansion need of nuclear power sectors. Meanwhile, it can also promote the healthy development of the Chinese nuclear power insurance market. (authors)

  12. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    Science.gov (United States)

    Choi, E. M.; Marchewka, C. D.; Mastovsky, I.; Sirigiri, J. R.; Shapiro, M. A.; Temkin, R. J.

    2006-02-01

    A new result from a 110GHz gyrotron at MIT is reported with an output power of 1.67MW and an efficiency of 42% when operated at 97kV and 41A for 3μs pulses in the TE22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110GHz gyrotron.

  13. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    International Nuclear Information System (INIS)

    Choi, E.M.; Marchewka, C.D.; Mastovsky, I.; Sirigiri, J.R.; Shapiro, M.A.; Temkin, R.J.

    2006-01-01

    A new result from a 110 GHz gyrotron at MIT is reported with an output power of 1.67 MW and an efficiency of 42% when operated at 97 kV and 41 A for 3 μs pulses in the TE 22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43 MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE 19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110 GHz gyrotron

  14. Output Feedback Finite-Time Stabilization of Systems Subject to Hölder Disturbances via Continuous Fractional Sliding Modes

    Directory of Open Access Journals (Sweden)

    Aldo-Jonathan Muñoz-Vázquez

    2017-01-01

    Full Text Available The problem of designing a continuous control to guarantee finite-time tracking based on output feedback for a system subject to a Hölder disturbance has remained elusive. The main difficulty stems from the fact that such disturbance stands for a function that is continuous but not necessarily differentiable in any integer-order sense, yet it is fractional-order differentiable. This problem imposes a formidable challenge of practical interest in engineering because (i it is common that only partial access to the state is available and, then, output feedback is needed; (ii such disturbances are present in more realistic applications, suggesting a fractional-order controller; and (iii continuous robust control is a must in several control applications. Consequently, these stringent requirements demand a sound mathematical framework for designing a solution to this control problem. To estimate the full state in finite-time, a high-order sliding mode-based differentiator is considered. Then, a continuous fractional differintegral sliding mode is proposed to reject Hölder disturbances, as well as for uncertainties and unmodeled dynamics. Finally, a homogeneous closed-loop system is enforced by means of a continuous nominal control, assuring finite-time convergence. Numerical simulations are presented to show the reliability of the proposed method.

  15. Bimanual microincision phacoemulsification in treating hard cataracts using different power modes.

    Science.gov (United States)

    Liu, Yizhi; Jiang, Yuzhen; Wu, Mingxing; Liu, Yuhua; Zhang, Tieying

    2008-07-01

    To compare the performance of the Multiburst mode, the Shortpulse mode and the Whitestar technology of the Sovereign platform in treating hard cataracts with bimanual microincision phacoemulsification. 101 eyes with hard cataracts (nuclear density Grade 3 and Grade 4 or above) were randomized into three groups. Bimanual microincision phacoemulsification was performed using the Multiburst mode, the Shortpulse mode and the Whitestar technology of the Sovereign phacoemulsification machine respectively. The average power, total duration of ultrasonic power release (US Time), effective phaco time, complications, best-corrected visual acuity and rate of corneal endothelial cell loss were measured and compared among the study groups. For hard cataracts of various nuclear densities, average ultrasonic power was highest in the Whitestar group followed by the Shortpulse group. The Multiburst group had the highest US Time, effective phaco time and rate of corneal endothelial cell loss whereas the Whitestar Group had the lowest.The differences between the groups were found to be statistically significant by variation analysis and the Fisher's least significant difference procedure. However, there were no significant differences between the USTime values of the Shortpulse Group and the Whitestar Group (P = 0.051). In the Multiburst Group, wound burn occurred in one eye, and three eyes had abnormal fluctuations in the anterior chamber depth. The Whitestar technology showed the best performance in this study.The Multiburst mode was proved to be a relatively unsuitable ultrasonic power mode in treating hard cataracts with bimanual microincision phacoemulsification.

  16. Design of single-longitudinal-mode laser oscillator for edge Thomson scattering system in ITER

    International Nuclear Information System (INIS)

    Hatae, Takaki; Kusama, Yoshinori; Kubomura, Hiroyuki; Matsuoka, Shin-ichi

    2006-06-01

    A high output energy (5J) and high repetition rate (100 Hz) laser system is required for the edge Thomson scattering system in ITER. A YAG laser (Nd:YAG laser) is a first candidate for the laser system satisfying the requirements. It is important to develop a high beam quality and single longitudinal mode (SLM) laser oscillator in order to realize this high power laser system. In this design work, following activities relating to the SLM laser oscillator have been carried out: design of the laser head and the resonator, estimation of the output power for the SLM laser oscillator, consideration of the feedback control scheme and consideration of interface for amplification system to achieve required performance (5J, 100 Hz). It is expected that the designed laser diode (LD) pumped SLM laser oscillator realizes: 100 Hz of repetition rate, 10 mJ of output energy, 10 ns of pulse width, single longitudinal mode, TEM 00 of transversal mode, divergence less than 4 times of the diffraction limit, energy stability within 5%. (author)

  17. Trade secrets protection mode of nuclear power plant

    International Nuclear Information System (INIS)

    Zeng Bin

    2015-01-01

    The paper analyzes the legal environment in which nuclear power enterprises are stayed, and mainly discusses the business secret protection modes of China's nuclear power enterprises. It is expected to provide a revelation and help for these enterprises to protect their business secrets. Firstly, the paper briefly expounds the legal basis of business secret protection and China's legalization status in this regard. Then it mainly puts forward the business secret management framework and postulations for nuclear power enterprises, and key points in application and protection of nuclear power business secret. (author)

  18. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    Science.gov (United States)

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  19. Numerical design and analysis of a compact TE10 to TE01 mode transducer

    International Nuclear Information System (INIS)

    Tantawi, S.; Ko, K.; Kroll, N.

    1993-04-01

    A high-power low-loss mode transducer design has been proposed to adapt the output of the X-Band klystron, WR90 rectangular waveguide, to the input of the pulse compression system, SLED II, which utilizes overmoded circular waveguides operating in the low-loss TE 01 mode. This device is much more compact than the conventional Marie type mode converters. The device splits the incoming klystron output into two separate rectangular guides that are then fed into a circular guide through a four-slot arrangement. We will use both MAFIA and HFSS to calculate the transmission properties of the three-dimensional structure. We will also determine the extent of mode contamination and compare the numerical results with experiments

  20. New information technologies in operative control of modes in regional electrical power systems

    OpenAIRE

    ANDREY D. TEVJASHEV; TATJANA B. TIMOFEEVA

    2003-01-01

    The problem of development of software for management of modes in electrical power systems in connection with casual character of a load in network is considered. The stochastic mathematical model of a system for operating control of modes in regional electrical power systems is offered. The methods for problem solving of operating control and operating planning of operational modes in regional electrical power systems are developed. The application of the developed models and methods will al...

  1. SOLAR PHOTOVOLTAIC OUTPUT POWER FORECASTING USING BACK PROPAGATION NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    B. Jency Paulin

    2016-01-01

    Full Text Available Solar Energy is an important renewable and unlimited source of energy. Solar photovoltaic power forecasting, is an estimation of the expected power production, that help the grid operators to better manage the electric balance between power demand and supply. Neural network is a computational model that can predict new outcomes from past trends. The artificial neural network is used for photovoltaic plant energy forecasting. The output power for solar photovoltaic cell is predicted on hourly basis. In historical dataset collection process, two dataset was collected and used for analysis. The dataset was provided with three independent attributes and one dependent attributes. The implementation of Artificial Neural Network structure is done by Multilayer Perceptron (MLP and training procedure for neural network is done by error Back Propagation (BP. In order to train and test the neural network, the datasets are divided in the ratio 70:30. The accuracy of prediction can be done by using various error measurement criteria and the performance of neural network is to be noted.

  2. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  3. 270 nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Over 60 mW Continuous Wave Output Power

    Science.gov (United States)

    Grandusky, James R.; Chen, Jianfeng; Gibb, Shawn R.; Mendrick, Mark C.; Moe, Craig G.; Rodak, Lee; Garrett, Gregory A.; Wraback, Michael; Schowalter, Leo J.

    2013-03-01

    In this letter, the achievement of over 60 mW output power from pseudomorphic ultraviolet light-emitting diodes in continuous wave operation is reported. Die thinning and encapsulation improved the photon extraction efficiency to over 15%. Improved thermal management and a high characteristic temperature resulted in a low thermal rolloff up to 300 mA injection current with an output power of 67 mW, an external quantum efficiency (EQE) of 4.9%, and a wall plug efficiency (WPE) of 2.5% for a single-chip device emitting at 271 nm in continuous wave operation.

  4. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    Science.gov (United States)

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  5. High power laser diodes of 2 μm AlGaAsSb/InGaSb type I quantum-wells

    International Nuclear Information System (INIS)

    Liao Yongping; Zhang Yu; Xing Junliang; Wei Sihang; Hao Hongyue; Wang Guowei; Xu Yingqiang; Niu Zhichuan

    2015-01-01

    2 μm AlGaAsSb/InGaSb type-I quantum-well high-power laser diodes (LDs) are grown using molecular beam epitaxy. Stripe-type waveguide single LD (single emitter) and array LD (four emitters) devices without facet coatings are fabricated. For the single LDs (single emitter) device, the maximum output power under continuous wave (CW) operation is 0.5 W at 10 °C with a threshold current density of 150 A/cm 2 and a slope efficiency of 0.17 W/A, the output powers under the pulse mode in the 5% duty cycles are much higher, up to 0.98 W. For the array LD devices, the maximum output powers are 1.02 W under the CW mode and 3.03 W under the pulse mode at room temperature. (paper)

  6. Output Power Control of Wind Turbine Generator by Pitch Angle Control using Minimum Variance Control

    Science.gov (United States)

    Senjyu, Tomonobu; Sakamoto, Ryosei; Urasaki, Naomitsu; Higa, Hiroki; Uezato, Katsumi; Funabashi, Toshihisa

    In recent years, there have been problems such as exhaustion of fossil fuels, e. g., coal and oil, and environmental pollution resulting from consumption. Effective utilization of renewable energies such as wind energy is expected instead of the fossil fuel. Wind energy is not constant and windmill output is proportional to the cube of wind speed, which cause the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce fluctuating components, there is a method to control pitch angle of blades of the windmill. In this paper, output power leveling of wind turbine generator by pitch angle control using an adaptive control is proposed. A self-tuning regulator is used in adaptive control. The control input is determined by the minimum variance control. It is possible to compensate control input to alleviate generating power fluctuation with using proposed controller. The simulation results with using actual detailed model for wind power system show effectiveness of the proposed controller.

  7. Power-aware transceiver design for half-duplex bidirectional chip-to-chip optical interconnects

    International Nuclear Information System (INIS)

    Sangirov Jamshid; Ukaegbu Ikechi Augustine; Lee Tae-Woo; Park Hyo-Hoon; Sangirov Gulomjon

    2013-01-01

    A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal–oxide–semiconductor (CMOS) technology. The transceiver can detect the presence and absence of received signals and saves 55% power in Rx enabled mode and 45% in Tx enabled mode. The chip occupies an area of 1.034 mm 2 and achieves a 3-dB bandwidth of 6 GHz and 7 GHz in Tx and Rx modes, respectively. The disabled outputs for the Tx and Rx modes are isolated with 180 dB and 139 dB, respectively, from the enabled outputs. Clear eye diagrams are obtained at 4.25 Gbps for both the Tx and Rx modes. (semiconductor integrated circuits)

  8. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  9. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing

    Science.gov (United States)

    Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.

    2017-02-01

    A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.

  10. Single-temporal-mode photon generation beyond the low-power regime

    DEFF Research Database (Denmark)

    McKinstrie, C. J.; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    Nondegenerate four-wave mixing in a strongly-birefringent fiber generates signal and idler photons that are associated with only one pair of temporal modes, for a wide range of pump powers. Nonlinear phase modulation degrades the heralded-signal purity only slightly.......Nondegenerate four-wave mixing in a strongly-birefringent fiber generates signal and idler photons that are associated with only one pair of temporal modes, for a wide range of pump powers. Nonlinear phase modulation degrades the heralded-signal purity only slightly....

  11. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  12. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  13. Current Mode Neutron Noise Measurements in the Zero Power Reactor CROCUS

    Science.gov (United States)

    Pakari, O.; Lamirand, V.; Perret, G.; Braun, L.; Frajtag, P.; Pautz, A.

    2018-01-01

    The present article is an overview of developments and results regarding neutron noise measurements in current mode at the CROCUS zero power facility. Neutron noise measurements offer a non-invasive method to determine kinetic reactor parameters such as the prompt decay constant at criticality α = βeff / λ, the effective delayed neutron fraction βeff, and the mean generation time λ for code validation efforts. At higher detection rates, i.e. above 2×104 cps in the used configuration at 0.1 W, the previously employed pulse charge amplification electronics with BF3 detectors yielded erroneous results due to dead time effects. Future experimental needs call for higher sensitivity in detectors, higher detection rates or higher reactor powers, and thus a generally more versatile measurement system. We, therefore, explored detectors operated with current mode acquisition electronics to accommodate the need. We approached the matter in two ways: 1) By using the two compensated 10B-coated ionization chambers available in CROCUS as operational monitors. The compensated current signal of these chambers was extracted from coremonitoring output channels. 2) By developing a new current mode amplification station to be used with other available detectors in core. Characteristics and first noise measurements of the new current system are presented. We implemented post-processing of the current signals from 1)and 2) with the APSD/CPSD method to determine α. At two critical states (0.5 and 1.5 W), using the 10B ionization chambers and their CPSD estimate, the prompt decay constant was measured after 1.5 hours to be α=(156.9 ± 4.3) s-1 (1σ). This result is within 1σ of statistical uncertainties of previous experiments and MCNPv5-1.6 predictions using the ENDF/B-7.1 library. The newsystem connected to a CFUL01 fission chamber using the APSDestimate at 100 mW after 33 min yielded α = (160.8 ± 6.3) s-1, also within 1σ agreement. The improvements to previous neutron noise

  14. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  15. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system

    Science.gov (United States)

    Chen, Xiaohang; Wang, Yuan; Cai, Ling; Zhou, Yinghui

    2015-10-01

    Based on the current models of phosphoric acid fuel cells (PAFCs) and thermoelectric generators (TGs), a new hybrid system is proposed, in which the effects of multi-irreversibilities resulting from the activation, concentration, and ohmic overpotentials in the PAFC, Joule heat and heat leak in the TG, finite-rate heat transfer between the TG and the heat reservoirs, and heat leak from the PAFC to the environment are taken into account. Expressions for the power output and efficiency of the PAFC, TG, and hybrid system are analytically derived and directly used to discuss the performance characteristics of the hybrid system. The optimal relationship between the electric currents in the PAFC and TG is obtained. The maximum power output is numerically calculated. It is found that the maximum power output density of the hybrid system will increase about 150 Wm-2, compared with that of a single PAFC. The problem how to optimally match the load resistances of two subsystems is discussed. Some significant results for practical hybrid systems are obtained.

  16. Inverter communications using output signal

    Science.gov (United States)

    Chapman, Patrick L.

    2017-02-07

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  17. Development of a 10-decade single-mode reactor flux monitoring system

    International Nuclear Information System (INIS)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-01-01

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs

  18. Low jitter and high power all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2003-01-01

    A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW.......A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW....

  19. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    International Nuclear Information System (INIS)

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Yao, Jianquan; Zheng, Yi; Wang, Tongtong

    2015-01-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO 4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz. (paper)

  20. Modelling of a synchronous offshore pumping mode airborne wind energy farm

    International Nuclear Information System (INIS)

    Coleman, J.; Ahmad, H.; Pican, E.; Toal, D.

    2014-01-01

    A wind farm for the deployment of pumping mode AWE (airborne wind energy) systems is presented in this paper. The topology presented is suitable for the deployment of such systems in a marine or similarly inaccessible environment. A brief technical description of AWE is provided, outlining the background, motivation and approaches taken by this emerging technology. A method of providing a continuous power supply from a cluster of AWE systems whose individual operation produces a periodic power supply is outlined. This method employs direct drive, directly interconnected permanent magnet synchronous generators on a local bus. A full-scale power converter is located at the point of grid connection, providing compliant power output for the remote cluster. In the case of a marine environment deployment, the power electronics are located onshore where maintenance and repair can be readily performed without the delays and costs associated with offshore maintenance and repair. The direct interconnection of synchronous generators introduces the requirement for a control system to control the connection of offline machines to the energised bus. A mathematical model of the system is outlined and the implementation of this model in Simulink is detailed. Simulation results under varied operating conditions are presented and discussed. - Highlights: • Airborne wind energy (AWE) is an emerging novel approach to wind energy. • ‘Pumping mode’ AWE devices in individual operation produce a periodic power output. • We do not reverse the generator during pumping mode operation. • We directly interconnect multiple AWE devices to provide continuous power output. • Simulation of proposed AWE farm operations presented, with encouraging results

  1. The effect of pole's height on the output performance of solar power ...

    African Journals Online (AJOL)

    Solar energy is a renewable (non-conventional) source of energy supply that has been used as a reliable energy source in view of its economic importance and its wide range of applications. In this study the effect of pole's height on the output performance of solar power system has been investigated. A solar panel of 45 ...

  2. Power scheduling in islanded-mode microgrids using fuel cell vehicles

    NARCIS (Netherlands)

    Alavi, Farid; Van De Wouw, Nathan; De Schutter, Bart

    2018-01-01

    We consider power scheduling in a microgrid operated in the islanded mode. It is assumed that at any time all the renewable energy sources are generating the maximum achievable electrical power based on the weather conditions and the power balance of the microgrid is exclusively done by a fleet of

  3. Relationships among peak power output, peak bar velocity, and mechanomyographic amplitude during the free-weight bench press exercise.

    Science.gov (United States)

    Stock, Matt S; Beck, Travis W; Defreitas, Jason M; Dillon, Michael A

    2010-10-01

    The purpose of this study was to examine the relationships among mechanomyographic (MMG) amplitude, power output, and bar velocity during the free-weight bench press exercise. Twenty-one resistance-trained men [one-repetition maximum (1-RM) bench press = 125.4+18.4 kg] performed bench press muscle actions as explosively as possible from 10% to 90% of the 1-RM while peak power output and peak bar velocity were assessed with a TENDO Weightlifting Analyzer. During each muscle action, surface MMG signals were detected from the right and left pectoralis major and triceps brachii, and the concentric portion of the range of motion was selected for analysis. Results indicated that power output increased from 10% to 50% 1-RM, followed by decreases from 50% to 90% 1-RM, but MMG amplitude for each of the muscles increased from 10 to 80% 1-RM. The results of this study indicate that during the free-weight bench press exercise, MMG amplitude was not related to power output, but was inversely related to bar velocity and directly related to the external load being lifted. In future research, coaches and sport scientists may be able to estimate force/torque production from individual muscles during multi-joint, dynamic constant external resistance muscle actions.

  4. Stable TEM00-mode Nd:YAG solar laser operation by a twisted fused silica light-guide

    Science.gov (United States)

    Bouadjemine, R.; Liang, D.; Almeida, J.; Mehellou, S.; Vistas, C. R.; Kellou, A.; Guillot, E.

    2017-12-01

    To improve the output beam stability of a TEM00-mode solar-pumped laser, a twisted fused silica light-guide was used to achieve uniform pumping along a 3 mm diameter and 50 mm length Nd:YAG rod. The concentrated solar power at the focal spot of a primary parabolic mirror with 1.18 m2 effective collection area was efficiently coupled to the entrance aperture of a 2D-CPC/2V-shaped pump cavity, within which the thin laser rod was pumped. Optimum solar laser design parameters were found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 2.3 W continuous-wave TEM00-mode 1064 nm laser power was measured, corresponding to 1.96 W/m2 collection efficiency and 2.2 W laser beam brightness figure of merit. Excellent TEM00-mode laser beam profile at M2 ≤ 1.05 and very good output power stability of less than 1.6% were achieved. Heliostat orientation error dependent laser power variation was considerably less than previous solar laser pumping schemes.

  5. W5″ Test: A simple method for measuring mean power output in the bench press exercise.

    Science.gov (United States)

    Tous-Fajardo, Julio; Moras, Gerard; Rodríguez-Jiménez, Sergio; Gonzalo-Skok, Oliver; Busquets, Albert; Mujika, Iñigo

    2016-11-01

    The aims of the present study were to assess the validity and reliability of a novel simple test [Five Seconds Power Test (W5″ Test)] for estimating the mean power output during the bench press exercise at different loads, and its sensitivity to detect training-induced changes. Thirty trained young men completed as many repetitions as possible in a time of ≈5 s at 25%, 45%, 65% and 85% of one-repetition maximum (1RM) in two test sessions separated by four days. The number of repetitions, linear displacement of the bar and time needed to complete the test were recorded by two independent testers, and a linear encoder was used as the criterion measure. For each load, the mean power output was calculated in the W5″ Test as mechanical work per time unit and compared with that obtained from the linear encoder. Subsequently, 20 additional subjects (10 training group vs. 10 control group) were assessed before and after completing a seven-week training programme designed to improve maximal power. Results showed that both assessment methods correlated highly in estimating mean power output at different loads (r range: 0.86-0.94; p bench press exercise in subjects who have previous resistance training experience.

  6. Output regularization of SVM seizure predictors: Kalman Filter versus the "Firing Power" method.

    Science.gov (United States)

    Teixeira, Cesar; Direito, Bruno; Bandarabadi, Mojtaba; Dourado, António

    2012-01-01

    Two methods for output regularization of support vector machines (SVMs) classifiers were applied for seizure prediction in 10 patients with long-term annotated data. The output of the classifiers were regularized by two methods: one based on the Kalman Filter (KF) and other based on a measure called the "Firing Power" (FP). The FP is a quantification of the rate of the classification in the preictal class in a past time window. In order to enable the application of the KF, the classification problem was subdivided in a two two-class problem, and the real-valued output of SVMs was considered. The results point that the FP method raise less false alarms than the KF approach. However, the KF approach presents an higher sensitivity, but the high number of false alarms turns their applicability negligible in some situations.

  7. Warm-up Practices in Elite Boxing Athletes: Impact on Power Output.

    Science.gov (United States)

    Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco

    2017-01-01

    Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. Warm-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine warm-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between warm-up and boxing activity. Six male boxers were assessed while performing standardized prefight warm-up routines. Core and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after warm-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in warm-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-warm-up values. Results suggest routine warm-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the warm-up effects.

  8. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    Science.gov (United States)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  9. A high-order mode extended interaction klystron at 0.34 THz

    Science.gov (United States)

    Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan

    2017-02-01

    We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.

  10. Tokamak plasma transport simulation in the presence of neoclassical tearing modes

    International Nuclear Information System (INIS)

    Takahashi, Y.; Yamazaki, K.; Arimoto, H.; Shoji, T.; Garcia, J.

    2008-01-01

    For the prediction of the ITER plasmas, the effect of the neoclassical tearing mode (NTM) on the plasma confinement has been calculated using the 1.5-dimensional equilibrium and transport simulation code TOTAL. The time evolution of the NTM magnetic island has been analyzed using the modified Rutherford equation for a ITER normal shear plasma. The anomalous transport model used here is GLF23. The saturated magnetic island widths are w/a - 0.048 at 3/2 mode and w/a - 0.21 at 2/1 mode, and the reduction in fusion power output by NTM is 27% at the 3/2 mode, 82% at the 2/1 mode, and 89% at the 3/2 + 2/1 double mode. The stabilization effect of the electron cyclotron current drive (ECCD) with EC is also clarified. The threshold of ECCD power for the full stabilization is ∼10[MW] against the 3/2 mode, and ∼23[MW] against the 2/1 mode. (author)

  11. Design of a High Performance Green-Mode PWM Controller IC with Smart Sensing Protection Circuits

    Directory of Open Access Journals (Sweden)

    Shen-Li Chen

    2014-08-01

    Full Text Available A design of high performance green-mode pulse-width-modulation (PWM controller IC with smart sensing protection circuits for the application of lithium-ion battery charger (1.52 V ~ 7.5 V is investigated in this paper. The protection circuits architecture of this system mainly bases on the lithium battery function and does for the system design standard of control circuit. In this work, the PWM controller will be with an automatic load sensing and judges the system operated in the operating mode or in the standby mode. Therefore, it reduces system’s power dissipation effectively and achieves the saving power target. In the same time, many protection sensing circuits such as: (1 over current protection (OCP and under current protection (UCP, (2 over voltage protection (OVP and under voltage protection (UVP, (3 loading determintion and short circuit protection (SCP, (4 over temperature protection (OTP, (5 VDD surge-spiking protection are included. Then, it has the characteristics of an effective monitoring the output loading and the harm prevention as a battery charging. Eventually, this green-mode pulse-width-modulation (PWM controller IC will be that the operation voltage is 3.3 V, the operation frequency is 0.98 MHz, and the output current range is from 454 mA to 500 mA. Meanwhile, the output convert efficiency is range from 74.8 % to 91 %, the power dissipation efficiency in green-mode is 25 %, and the operation temperature range is between -20 0C ~ 114 0C.

  12. Multipolar modes in dielectric disk resonator for wireless power transfer

    Science.gov (United States)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2017-09-01

    We demonstrate a magnetic resonant WPT system based on dielectric disk resonators and investigated the WPT efficiency as a function of separation. It has been demonstrated that the power transfer can be achieved at different multipolar modes. The numerical study shows that the highest WPT efficiency of 99% can be obtained for the MQ mode in an ideal case. However, the efficiency of MQ mode decays much faster than the MD mode which suggests that a trade-off has to be made in the practical WPT system design.

  13. Load power device and system for real-time execution of hierarchical load identification algorithms

    Science.gov (United States)

    Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh

    2017-11-14

    A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.

  14. High Output Piezo/Triboelectric Hybrid Generator

    Science.gov (United States)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-03-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA.cm-2, and average power density of ~4.44 mW.cm-2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics.

  15. High Output Piezo/Triboelectric Hybrid Generator

    Science.gov (United States)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-01-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA·cm−2, and average power density of ~4.44 mW·cm−2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics. PMID:25791299

  16. Radiation monitoring data on the power-up test of HTTR. Results up to 20 MW operation

    International Nuclear Information System (INIS)

    Ashikagaya, Yoshinobu; Nakazawa, Takashi; Yoshino, Toshiaki; Yasu, Katsuji

    2002-01-01

    The High Temperature Engineering Test Reactor (HTTR) have completed the Power-up test of 9 MW (the single and parallel loaded operation) in the rated operation mode. After that the Power-up test in the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW (the single and parallel loaded operation) were performed between January 16, 2001 and June 10, 2001. This report describes the radiation monitoring data carried out during the HTTR Power-up test in the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW. The followings were concluded from these radiation monitoring data. The monitoring of radioactive gaseous effluents and the radiation protection for the works will be easy to do and the exposure dose of the workers will be kept the low level. (author)

  17. A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying-Hui; Niu, Xin-Jian; Wang, Hui [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu (China); Jia, Nan; Duan, Yaoyong [The Chinese People' s Armed Police Force Academy, Hebei (China); Li, Zheng-Hong [Science and Technology on High Power Microwave Laboratory, Institute of Applied Electronics, CAEP, Mianyang (China); Cheng, Hui [Microwave Department, Sichuan Jiuzhou Electric Appliance Group Co., Ltd., Mianyang (China); Yang, Xiao-Chuan [Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang (China)

    2016-07-15

    The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding to 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.

  18. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin

    2015-12-22

    Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing.

  19. Implementation of a Model Output Statistics based on meteorological variable screening for short‐term wind power forecast

    DEFF Research Database (Denmark)

    Ranaboldo, Matteo; Giebel, Gregor; Codina, Bernat

    2013-01-01

    A combination of physical and statistical treatments to post‐process numerical weather predictions (NWP) outputs is needed for successful short‐term wind power forecasts. One of the most promising and effective approaches for statistical treatment is the Model Output Statistics (MOS) technique....... The proposed MOS performed well in both wind farms, and its forecasts compare positively with an actual operative model in use at Risø DTU and other MOS types, showing minimum BIAS and improving NWP power forecast of around 15% in terms of root mean square error. Further improvements could be obtained...

  20. H-mode confinement properties close to the power threshold in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Ryter, F; Fuchs, J; Schneider, W; Sips, A; Staebler, A; Stober, J

    2008-01-01

    Confinement properties close to the H-mode power threshold are studied in the ASDEX Upgrade tokamak. The results show that good confinement can be obtained close to the threshold with Type-I ELMs. The existence of Type-I ELMs does not necessarily require the heating power to be higher than the H-Mode power threshold, but it requires collisionality to be low enough. At higher collisionality Type-III ELMs replace the Type-I ELMs and confinement time is reduced by about 20%

  1. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W

    DEFF Research Database (Denmark)

    Midilli, Yakup; Efunbajo, Oyewole Benjamin; Şimşek, Bartu

    2017-01-01

    laser were also addressed in this study. Finally, we have tested this system for high power experimentation and obtained 67% maximum optical-to-optical efficiency at an approximately 110 W output power level. To the best of our knowledge, this is the first 1018 nm ytterbium-doped all-fiber laser pumped...

  2. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...

  3. Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.

    Science.gov (United States)

    Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y

    2012-04-15

    A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America

  4. A four-port launcher for a multi-moded DLDS power distribution system

    International Nuclear Information System (INIS)

    Eppley, K.; Li, Z.; Miller, R.; Nantista, C.; Tantawi, S.

    1998-06-01

    The authors describe a structure for launching the TE 01 and both polarizations of TE 12 modes into a highly overmoded low loss circular waveguide providing remote transmission for a multi-moded Delay Line Distribution System (DLDS). The power from four sources is delivered to four structure ports by rectangular waveguide, and the mode for each pulse subsection is selected by varying the relative phases of the sources. The four ports symmetrically feed a section of waveguide with a fourfold symmetric four-leaf clover-like (or quatrefoil) cross section, dimensioned so as to propagate only four TE modes, characterized as 0, π/2 (two polarizations), and π modes. The 0 and π/2 modes are well matched, the π mode only moderately so. A low loss taper transforms the initial cross section to a circular cross section; the 0 mode transforming to TE 01 , the π/2 to TE 11 , the π to TE 21 , all with negligible mode conversion. A sausage type mode transducer then converts TE 11 to TE 12 (a lower loss mode), and the diameter is then expanded to the full ∼five inch diameter of the delay line. A separate structure to divert power from the last pulse subsection to the local group of accelerator structures is required

  5. An ultra-low power output capacitor-less low-dropout regulator with slew-rate-enhanced circuit

    Science.gov (United States)

    Cheng, Xin; Zhang, Yu; Xie, Guangjun; Yang, Yizhong; Zhang, Zhang

    2018-03-01

    An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE) circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA. The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV. Moreover, the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively. Project supported by the National Natural Science Foundation of China (Nos. 61401137, 61404043, 61674049).

  6. Scaling of the H-mode power threshold for ITER

    International Nuclear Information System (INIS)

    1998-01-01

    Analysis of the latest ITER H-mode threshold database is presented. The power necessary for the transition to H-mode is estimated for ITER, with or without the inclusion of radiation losses from the bulk plasma, in terms of the main engineering variables. The main geometrical variables (aspect ratio ε, elongation κ and average triangularity δ) are also included in the analysis. The H-mode transition is also considered from the point of view of the local edge variables, and the electron temperature at 90% of the poloidal flux is expressed in terms of both local and global variables. (author)

  7. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  8. Generalized design of high performance shunt active power filter with output LCL filter

    DEFF Research Database (Denmark)

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    parameters, interactions between resonance damping and harmonic compensation, bandwidth design of the closed-loop system, and active damping implementation with fewer current sensors. These described design concerns, together with their generalized design procedure, are applied to an analytical example......This paper concentrates on the design, control, and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate for harmonic currents produced by nonlinear loads in a three-phase three-wire power system. With an LCL filter added at its output...

  9. The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe

    Science.gov (United States)

    Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul

    2018-03-01

    Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.

  10. Estimation of international output-energy relation. Effects of alternative output measures

    International Nuclear Information System (INIS)

    Shrestha, R.M.

    2000-01-01

    This paper analyzes the output-energy relationship with alternative measures of output and energy. Our analysis rejects the hypothesis of non-diminishing returns to energy consumption when GDP at purchasing power parities is used as the output measure unlike the case with GNP at market exchange rates. This finding also holds when energy input includes the usage of both commercial and traditional fuels. 13 refs

  11. Design of a 300-Watt Isolated Power Supply with Minimized Circuit Input-to-Output Parasitic Capacitance

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Petersen, Lars Press; Knott, Arnold

    2014-01-01

    This paper presents the design of a 300-Watt isolated power supply for MOS gate driver circuit in medium and high voltage applications. The key feature of the developed power supply is having a very low circuit input-to-output parasitic capacitance, thus maximizing its noise immunity. This makes...

  12. Power System Oscillation Modes Identifications: Guidelines for Applying TLS-ESPRIT Method

    Science.gov (United States)

    Gajjar, Gopal R.; Soman, Shreevardhan

    2013-05-01

    Fast measurements of power system quantities available through wide-area measurement systems enables direct observations for power system electromechanical oscillations. But the raw observations data need to be processed to obtain the quantitative measures required to make any inference regarding the power system state. A detailed discussion is presented for the theory behind the general problem of oscillatory mode indentification. This paper presents some results on oscillation mode identification applied to a wide-area frequency measurements system. Guidelines for selection of parametes for obtaining most reliable results from the applied method are provided. Finally, some results on real measurements are presented with our inference on them.

  13. Intra-Minute Cloud Passing Forecasting Based on a Low Cost IoT Sensor—A Solution for Smoothing the Output Power of PV Power Plants

    Science.gov (United States)

    Sukič, Primož; Štumberger, Gorazd

    2017-01-01

    Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly. PMID:28505078

  14. The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint.

    Science.gov (United States)

    Phillips, Shaun M; Findlay, Scott; Kavaliauskas, Mykolas; Grant, Marie Clare

    2014-05-01

    The objective of the study was to investigate the influence of serial administration of a carbohydrate (CHO) mouth rinse on performance, metabolic and perceptual responses during a cycle sprint. Twelve physically active males (mean (± SD) age: 23.1 (3.0) years, height: 1.83 (0.07) m, body mass (BM): 86.3 (13.5) kg) completed the following mouth rinse trials in a randomized, counterbalanced, double-blind fashion; 1. 8 x 5 second rinses with a 25 ml CHO (6% w/v maltodextrin) solution, 2. 8 x 5 second rinses with a 25 ml placebo (PLA) solution. Following mouth rinse administration, participants completed a 30 second sprint on a cycle ergometer against a 0.075 g·kg(-1) BM resistance. Eight participants achieved a greater peak power output (PPO) in the CHO trial, resulting in a significantly greater PPO compared with PLA (13.51 ± 2.19 vs. 13.20 ± 2.14 W·kg(-1), p 0.05). No significant between-trials difference was reported for fatigue index, perceived exertion, arousal and nausea levels, or blood lactate and glucose concentrations. Serial administration of a CHO mouth rinse may significantly improve PPO during a cycle sprint. This improvement appears confined to the first 5 seconds of the sprint, and may come at a greater relative cost for the remainder of the sprint. Key pointsThe paper demonstrates that repeated administration of a carbohydrate mouth rinse can significantly improve peak power output during a single 30 second cycle sprint.The ergogenic effect of the carbohydrate mouth rinse may relate to the duration of exposure of the oral cavity to the mouth rinse, and associated greater stimulation of oral carbohydrate receptors.The significant increase in peak power output with the carbohydrate mouth rinse may come at a relative cost for the remainder of the sprint, evidenced by non-significantly lower mean power output and a greater fatigue index in the carbohydrate vs. placebo trial.Serial administration of a carbohydrate mouth rinse may be beneficial for

  15. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  16. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    Directory of Open Access Journals (Sweden)

    Chu Xiao Guang

    2014-01-01

    Full Text Available The objective of this paper is to construct a wind generator system (WGS loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  17. L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber

    International Nuclear Information System (INIS)

    Du, J; Zhang, S M; Li, H F; Meng, Y C; Li, X L; Hao, Y P

    2012-01-01

    We have proposed and demonstrated an L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber (SA). By adjusting the pump power and the polarization controller, we have experimentally observed L-band fundamental and harmonic mode-locked optical pulses. The fundamental optical pulse has the duration of 1.3 ps, and the maximum average output power of 13.16 mW at the incident pump power of 98.8 mW. The order of the harmonic mode-locked optical pulses can be changed over the range from the second to the fourth. From the experimental results, we deduced that the likely origin of the harmonic mode-locked self-stabilization was the result of global and local soliton interactions induced by the unstability continuous wave (CW) components

  18. A 9.61-W, b-cut Tm,Ho:YAP laser in Q-switched mode operation

    Science.gov (United States)

    Li, Guoxing; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang

    2018-02-01

    A high energy of b-cut Tm, Ho:YAlO3 laser is reported in the paper. The laser operated in acousto-optical Qswitched mode at 2.12 μm. The output average power of 9.61 W was achieved at the pulse repetition frequency of 10 kHz ,and the power of 11.6 W was acquired in continuous wave mode. Moreover, the energy per pulse of 0.961 mJ in 64.4 ns was acquired at 10 kHz with a 14.92-kW peak power.

  19. Characteristics of switched reluctance motor operating in continuous and discontinuous conduction mode

    Directory of Open Access Journals (Sweden)

    Ćalasan Martin P.

    2013-01-01

    Full Text Available This paper presents mechanical characteristics of Switched Reluctance Motor (SRM when it operates in Discontinuous Conduction Mode (DCM or in Continuous Conduction Mode (CCM, i.e. when the current through the phase coils (windings flows discontinuously or continuously. Firstly, in order to maximize the output power of SRM optimization of its control parameters was performed, such that the peak and RMS values of the current do not exceed the predefined values. The optimal control parameters vs. rotation speed, as well as the corresponding characteristics of torque, power and efficiency. It is shown that with CCM the machine torque (power, at high speed, can be increased.

  20. Energy harvesting from an exercise bike using a switch-mode converter controlled generator

    DEFF Research Database (Denmark)

    Knott, Arnold; Lindberg-Poulsen, Kristian; Andersen, Thomas

    2010-01-01

    output of the bike. The complete controller design consists of this power stage, a control circuit, a startup circuit and an overvoltage protection circuit. A functional overview of the entire controller is presented in the paper, along with in-depth descriptions of the specific subcircuits designed....... The system is self-starting and does not require an external power source. There are two modes of operation: Voltage regulated 12V output for connection to a standard inverter, and unregulated output for charging of a 24V battery, with direct linear control of the rotor current, thus simulating road bike...... gearing. Prototype bikes were built and used at several events, and the functionality was experimentally verified....

  1. 2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser

    Science.gov (United States)

    Du, Tuanjie; Li, Weiwei; Ruan, Qiujun; Wang, Kaijie; Chen, Nan; Luo, Zhengqian

    2018-05-01

    We report direct generation of a high-power, large-energy dissipative soliton resonance (DSR) in a 2 µm Tm-doped double-clad fiber laser. A compact σ-shaped cavity is formed by a fiber Bragg grating and a 10/90 fiber loop mirror (FLM). The 10/90 FLM is not only used as an output mirror, but also acts as a nonlinear optical loop mirror for initiating mode locking. The mode-locked laser can deliver high-power, nanosecond DSR pulses at 2005.9 nm. We further perform a comparison study of the effect of the FLM’s loop length on the mode-locking threshold, peak power, pulse energy, and optical spectrum of the DSR pulses. We achieve a maximum average output power as high as 1.4 W, a maximum pulse energy of 353 nJ, and a maximum peak power of 84 W. This is, to the best of our knowledge, the highest power for 2 µm DSR pulses obtained in a mode-locked fiber laser.

  2. Wind tunnel study of the power output spectrum in a micro wind farm

    International Nuclear Information System (INIS)

    Bossuyt, Juliaan; Meyers, Johan; Howland, Michael F.; Meneveau, Charles

    2016-01-01

    Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies. (paper)

  3. Correlation of COD and BOD of domestic wastewater with the power output of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A M; Ataullah,; Shaheen, A; Ahmad, I; Malik, F; Shahid, H A [Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, University Road, Karachi-75300 (Pakistan). Research Laboratory of Bioenergy, Department of Chemistry

    2011-04-15

    This research article deals with the studies on the development of the correlation of COD, BOD, and BOD/sub 5/ of domestic wastewater (DWW), and fermented domestic wastewater (FDWW) with the power output of the microbial fuel cell (MFC). The fermentation of DWW was carried out with yeast (Saccharomyces cerevisiae), and yogurt bacteria (Streptococcus lactis) to produce biohydrogen which was converted to the electrical energy through the development of microbial fuel cell (MFC). The values of COD, BOD, and BOD/sub 5/ for yogurt fermented domestic wastewater (Yogurt-FDWW) were found to be greater than the values of yeast fermented domestic wastewater (Yeast-FDWW). The power output of DWW and FDWW was increased with the increase in COD, BOD and BOD/sub 5/ values. The main objective of this article is to develop the renewable alternative of fossil fuels which are the major cause of global warming and global pollution. (author)

  4. Correlation of COD and BOD of domestic wastewater with the power output of bioreactor

    International Nuclear Information System (INIS)

    Khan, A.M.; Ataullah; Shaheen, A.; Ahmad, I.; Malik, F.; Shahid, H.A.

    2011-01-01

    This research article deals with the studies on the development of the correlation of COD, BOD, and BOD/sub 5/ of domestic wastewater (DWW), and fermented domestic wastewater (FDWW) with the power output of the microbial fuel cell (MFC). The fermentation of DWW was carried out with yeast (Saccharomyces cerevisiae), and yogurt bacteria (Streptococcus lactis) to produce biohydrogen which was converted to the electrical energy through the development of microbial fuel cell (MFC). The values of COD, BOD, and BOD/sub 5/ for yogurt fermented domestic wastewater (Yogurt-FDWW) were found to be greater than the values of yeast fermented domestic wastewater (Yeast-FDWW). The power output of DWW and FDWW was increased with the increase in COD, BOD and BOD/sub 5/ values. The main objective of this article is to develop the renewable alternative of fossil fuels which are the major cause of global warming and global pollution. (author)

  5. Guaranteed performance in reaching mode of sliding mode ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    addresses the design of constant plus proportional rate reaching law-based SMC for second-order ... Reaching mode; sliding mode controlled systems; output tracking ... The uncertainty in the input distribution function g is expressed as.

  6. The effect of a transient thermal lens on the Nd:YVO4 laser output

    International Nuclear Information System (INIS)

    Yi, Jonghoon; Lee, Kangin; Kim, Youngjung; Kwon, Jinhyuk

    2010-01-01

    A Nd:YVO 4 laser was pumped by using a diode laser, which has maximum cw pump power of 1 W. The driving current of the diode laser was modulated to have a square waveform. The Nd:YVO 4 laser output power increased linearly and then saturated when the quasi-cw diode laser pulse was focused on the crystal. When the same diode laser pulse was applied on the crystal, transient thermal lensing in the Nd:YVO 4 crystal was monitored by using a probe beam in a non-lasing condition. The TEM 00 mode diameter of the laser was calculated as a function of the focal length of the thermal lens. The results indicated that transient thermal lensing in the crystal was the main cause of the temporally varying output.

  7. The Role of Visual Feedback on Power Output During Intermittent Wingate Testing in Ice Hockey Players

    Directory of Open Access Journals (Sweden)

    Petr Stastny

    2018-04-01

    Full Text Available Background: Visual feedback may help elicit peak performance during different types of strength and power testing, but its effect during the anaerobic Wingate test is unexplored. Therefore, the purpose of this study was to determine the effect of visual feedback on power output during a hockey-specific intermittent Wingate test (AnWT6x6 consisting of 6 stages of 6 s intervals with a 1:1 work-to-rest ratio. Methods: Thirty elite college-aged hockey players performed the AnWT6x6 with either constant (n = 15 visual feedback during all 6 stages (CVF or restricted (n = 15 visual feedback (RVF where feedback was shown only during the 2nd through 5th stages. Results: In the first stage, there were moderate-to-large effect sizes for absolute peak power (PP output and PP relative to body mass and PP relative to fat-free mass. However, the remaining stages (2–6 displayed small or negligible effects. Conclusions: These data indicate that visual feedback may play a role in optimizing power output in a non-fatigued state (1st stage, but likely does not play a role in the presence of extreme neuromuscular fatigue (6th stage during Wingate testing. To achieve the highest peak power, coaches and researchers could provide visual feedback during Wingate testing, as it may positively influence performance in the early stages of testing, but does not result in residual fatigue or negatively affect performance during subsequent stages.

  8. Output characteristics of Stirling thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong; Zhao Liang

    2008-01-01

    A thermoacoustic engine (TE), which converts thermal energy into acoustic power by the thermoacoustic effect, shows several advantages due to the absence of moving parts, such as high reliability and long lifetime associated with reduced manufacturing costs. Power output and efficiency are important criteria of the performance of a TE. In order to increase the acoustic power output and thermal efficiency of a Stirling TE, the acoustic power distribution in the engine is studied with the variable load method. It is found that the thermal efficiency is independent of the output locations along the engine under the same acoustic power output. Furthermore, when the pressure ratio is kept constant at one location along the TE, it is beneficial to increasing the thermal efficiency by exporting more acoustic power. With nitrogen of 2.5 MPa as working gas and the pressure ratio at the compliance of 1.20 in the experiments, the acoustic power is measured at the compliance and the resonator simultaneously. The maximum power output, thermal efficiency and exergy efficiency reach 390.0 W, 11.2% and 16.0%, which are increased by 51.4%, 24.4% and 19.4%, respectively, compared to those with a single R-C load with 750 ml reservoir at the compliance. This research will be instructive for increasing the efficiency and making full use of the acoustic energy of a TE

  9. 275 C Downhole Switched-Mode Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Chris Hutchens; Vijay Madhuravasal

    2008-08-31

    A vee-square (V2) control based controller IC is developed for a switch mode power supply capable of operating at extreme temperature/harsh environment conditions. A buck type regulator with silicon carbide power junction field effect transistors (JFET) as power devices is used to analyze the performance of controller. Special emphases are made on the analog sub-blocks--voltage reference, operational transconductance amplifier and comparator as individual building blocks. Transformer coupled gate drives and high temperature operable magnetic cores and capacitors are identified and tested for use in the design. Conventional ceramic chip packaging of ICs combined with lead carrier type mounting of passive filter components is introduced for hybrid packaging of the complete product. The developed SMPS is anticipated to support the operation of down-hole microcontrollers and other electronics devices that require low/medium power filtered dc inputs over an operating temperature of 275 C.

  10. Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor

    Science.gov (United States)

    Peytavit, E.; Lepilliet, S.; Hindle, F.; Coinon, C.; Akalin, T.; Ducournau, G.; Mouret, G.; Lampin, J.-F.

    2011-11-01

    It is shown from accurate on-wafer measurement that continuous wave output powers of 1.2 mW at 50 GHz and 0.35 mW at 305 GHz can be generated by photomixing in a low temperature grown GaAs photoconductor using a metallic mirror Fabry-Pérot cavity. The output power is improved by a factor of about 100 as compared to the previous works on GaAs photomixers. A satisfactory agreement between the theory and the experiment is obtained in considering both the contribution of the holes and the electrons to the total photocurrent.

  11. Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer

    Science.gov (United States)

    Ahmad, H.; Jasim, A. A.

    2017-07-01

    A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.

  12. A model to predict the power output from wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Landberg, L. [Riso National Lab., Roskilde (Denmark)

    1997-12-31

    This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.

  13. Initial operation of a high-power quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Fliflet, A.W.; Hargreaves, T.A.; Manheimer, W.M.; Fischer, R.P.; Barsanti, M.L.

    1990-01-01

    Results from the initial operating of a high-power quasi-optical gyrotron based on the 90-kV 50-A Varian VUW-8144 electron gun are reported. The output power and efficiency have been measured for a resonator mirror separation of 19.4 cm with a magnetic field of 4.95 T, corresponding to resonator output coupling of 1.9%, and for a resonator mirror separation of 21.4 cm with a magnetic field of 4.7 T, corresponding to a resonator output coupling of 3.1%. Operation was multimoded with 3--6 modes excited in the range of 125--130 GHz for the 4.95-T magnetic field. A peak efficiency of 15% at an output power of 161 kW was obtained for a gun voltage of 93 kV and a current of 12 A. A peak-output power of 364 kW at an efficiency of 10% was obtained at a voltage of 95.6 kV and 37.5 A

  14. Power output of microbial fuel cell emphasizing interaction of anodic binder with bacteria

    Science.gov (United States)

    Li, Hongying; Liao, Bo; Xiong, Juan; Zhou, Xingwang; Zhi, Huozhen; Liu, Xiang; Li, Xiaoping; Li, Weishan

    2018-03-01

    Electrochemically active biofilm is necessary for the electron transfer between bacteria and anodic electrode in microbial fuel cells and selecting the type of anodic electrode material that favours formation of electrochemically active biofilm is crucial for the microbial fuel cell operation. We report a new finding that the interaction of anodic binder with bacteria plays more important role than its hydrophilicity for forming an electrochemically active biofilm, which is emphasized by applying poly(bisphenol A-co-epichorohydrin) as an anodic binder of the microbial fuel cell based on carbon nanotubes as anodic electrode and Escherichia coli as bacterium. The physical characterizations and electrochemical measurements demonstrate that poly(bisphenol A-co-epichorohydrin) exhibits a strong interaction with bacteria and thus provides the microbial fuel cell with excellent power density output. The MFC using poly(bisphenol A-co-epichorohydrin) reaches a maximum power density output of 3.8 W m-2. This value is larger than that of the MFCs using polytetrafluoroethylene that has poorer hydrophilicity, or polyvinyl alcohol that has better hydrophilicity but exhibits weaker interaction with bacteria than poly(bisphenol A-co-epichorohydrin).

  15. Transmission of laser pulses with high output beam quality using step-index fibers having large cladding

    Science.gov (United States)

    Yalin, Azer P; Joshi, Sachin

    2014-06-03

    An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.

  16. The Most Economical Mode of Power Supply for Remote and Less Developed Areas in China: Power Grid Extension or Micro-Grid?

    Directory of Open Access Journals (Sweden)

    Sen Guo

    2017-05-01

    Full Text Available There are still residents without access to electricity in some remote and less developed areas of China, which lead to low living standards and hinder sustainable development for these residents. In order to achieve the strategic targets of solving China’s energy poverty, realizing basic energy service equalization, and comprehensively building up a moderately prosperous society, several policies have been successively promulgated in recent years, which aim to solve the electricity access issue for residents living in remote and less developed areas. It is of great importance to determine the most economical mode of power supply in remote and less developed areas, which directly affects the economic efficiency of public investment projects. Therefore, this paper focuses on how to select the most economical power supply mode for rural electrification in China. Firstly, the primary modes to supply electricity for residents living in the remote and less developed areas are discussed, which include power grid extension mode and micro-grid mode. Secondly, based on the levelized cost of electricity (LCOE technique, the life cycle economic cost accounting model for different power supply modes are built. Finally, taking a minority nationality village in Yunnan province as an example, the empirical analysis is performed, and the LCOEs of various possible modes for rural electrification are accounted. The results show that the photovoltaic (PV-based independent micro-grid system is the most economical due to the minimum LCOE, namely 0.658 RMB/kWh. However, other power supply modes have much higher LCOEs. The LCOEs of power grid extension model, wind-based independent micro-grid system and biomass-based independent micro-grid system are 1.078 RMB/kWh, 0.704 RMB/kWh and 0.885 RMB/kWh, respectively. The proposed approach is effective and practical, which can provide reference for rural electrification in China.

  17. Fast Reactive Power Sharing, Circulating Current and Resonance Suppression for Parallel Inverters Using Resistive-Capacitive Output Impedance

    DEFF Research Database (Denmark)

    Chen, Yandong; Guerrero, Josep M.; Shuai, Zhikang

    2016-01-01

    In this paper, an inverter using resistivecapacitive output impedance (RC-type inverter) is proposed not only to provide fast reactive power sharing to support microgrid voltage, and but also to reduce circulating currents and damp high-frequency resonances among inverters. Introducing the RC......-frequency resonances among parallel inverters are quantitatively analyzed. The control parameters are systematically selected, and effect of virtual complex impedance on the inverter output voltage is depicted. The RC-type inverter can reduce circulating currents and damp resonances due to different equivalent output...

  18. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    Science.gov (United States)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  19. Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes

    International Nuclear Information System (INIS)

    Peng, Jinqing; Lu, Lin; Yang, Hongxing; Ma, Tao

    2015-01-01

    Highlights: • A ventilated photovoltaic double-skin façade (PV-DSF) using semi-transparent a-Si was reported. • The impact of different ventilation modes on the power performance of PV-DSF was studied experimentally. • The SHGCs and U-values of PV-DSFs under different ventilation modes were calculated and compared. • An optimum operating strategy was proposed for this PV-DSF to achieve the best energy efficiency. - Abstract: This paper studied the thermal and power performances of a ventilated photovoltaic façade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin façade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400 mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum

  20. Muscle power output properties using the stretch-shortening cycle of the upper limb and their relationships with a one-repetition maximum bench press.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Demura, Shinichi

    2006-05-01

    The purpose of this study was to examine the output properties of muscle power by the dominant upper limb using SSC, and the relationships between the power output by SSC and a one-repetition maximum bench press (1 RM BP) used as a strength indicator of the upper body. Sixteen male athletes (21.4+/-0.9 yr) participated in this study. They pulled a load of 40% of maximum voluntary contraction (MVC) at a stretch by elbow flexion of the dominant upper limb in the following three preliminary conditions: static relaxed muscle state (SR condition), isometric muscle contraction state (ISO condition), and using SSC (SSC condition). The velocity with a wire load via a pulley during elbow flexion was measured accurately using a power instrument with a rotary encoder, and the muscle power curve was drawn from the product of the velocity and load. Significant differences were found among all evaluation parameters of muscle power exerted from the above three conditions and the parameters regarding early power output during concentric contraction were larger in the SSC condition than the SR and ISO conditions. The parameters on initial muscle contraction velocity when only using SSC significantly correlated with 1 RM BP (r=0.60-0.62). The use of SSC before powerful elbow flexion may contribute largely to early explosive power output during concentric contraction. Bench press capacity relates to a development of the above early power output when using SSC.

  1. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams

    International Nuclear Information System (INIS)

    Bjoerk, Peter; Knoeoes, Tommy; Nilsson, Per

    2004-01-01

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm 2 ), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber

  2. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams.

    Science.gov (United States)

    Björk, Peter; Knöös, Tommy; Nilsson, Per

    2004-10-07

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm2), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber hampers

  3. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  4. Brief communication: On the influence of vertical wind shear on the combined power output of two model wind turbines in yaw

    Directory of Open Access Journals (Sweden)

    J. Schottler

    2017-08-01

    Full Text Available The effect of vertical wind shear on the total power output of two aligned model wind turbines as a function of yaw misalignment of the upstream turbine is studied experimentally. It is shown that asymmetries of the power output of the downstream turbine and the combined power of both with respect to the upstream turbine's yaw misalignment angle can be linked to the vertical wind shear of the inflow.

  5. Modes of Power in Technical and Professional Visuals.

    Science.gov (United States)

    Barton, Ben F.; Barton, Marthalee S.

    1993-01-01

    Treats visuals as sites of power inscription. Advances a Foucauldian design model based on the Panoptican--Jeremy Bentham's architectural figure for empowerment based on bimodal surveillance. Notes that numerous examples serve in demonstrating that maximum effectiveness results when visuals foster simultaneous viewing in the two panoptic modes,…

  6. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Science.gov (United States)

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  7. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Directory of Open Access Journals (Sweden)

    WenBo Xiao

    Full Text Available In this article, we introduced an artificial neural network (ANN based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-, multi-crystalline (multi-, and amorphous (amor- crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  8. Autonomous Control Strategy of DC Microgrid for Islanding Mode Using Power Line Communication

    Directory of Open Access Journals (Sweden)

    Dong-Keun Jeong

    2018-04-01

    Full Text Available This paper proposes a DC-bus signaling (DBS method for autonomous power management in a DC microgrid, used to improve its reliability. Centralized power management systems require communication between the power sources and loads. However, the DBS method operates based on the common DC-bus voltage and does not require communication. Based on the DC-bus voltage band, the DC-bus voltage can be used to inform the status of the DC-bus in various scenarios. The DC microgrid operates independently to maintain the system stably in the DC-bus voltage band. The DC microgrid can be divided into a grid-connected mode and an islanding mode. This paper proposes a control strategy based on power management of various independent components in islanding mode. In addition, the autonomous control method for switching the converter’s operation between grid-connected mode and islanding mode is proposed. A DC microgrid test bed consisting of a grid-connected AC/DC converter, a bidirectional DC/DC converter, a renewable energy simulator, DC home appliances and a DC-bus protector is used to test the proposed control strategy. The proposed autonomous control strategy is experimentally verified using the DC microgrid test bed.

  9. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  10. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  11. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  12. Gallium nitride based transistors for high-efficiency microwave switch-mode amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Maroldt, Stephan

    2012-07-01

    Highly-efficient switch-mode power amplifiers form key elements in future fully-digital base stations for mobile communication. This novel digital base station concept reduces system energy consumption, complexity, size and costs, while the flexibility in terms of multi-band operation and signal modulation improves. In this work, innovative core circuits for digital high-efficiency class-D and class-S power amplifiers based on gallium nitride (GaN) technology were developed for the application in digital base stations. A combination of optimized GaN devices and improvements in circuit design allow a highly-efficient switch-mode operation at mobile communication frequencies between 0.45 GHz and 2 GHz. Transistor device modeling for switch-mode operation, the simulation environment, and a broadband measurement system were established for the design and evaluation of digital switchmode power amplifiers. The design of broadband core circuits for switch-mode amplifier concepts was analyzed for dual-stage amplifier circuits, using an initial GaN technology with a gate length of 0.25 {mu}m. A speed-enhanced driver stage improved the circuit switching speed sufficiently above 1 GHz. Speed and efficiency of the amplifier core circuits were studied related to transistor parameters like cut-off frequency or gate capacitance. A reduced gate length was found to improve the switching speed, while a lower on-resistance allows the reduction of the inherent static losses of the GaN-based switches. Apart from this, the restriction of a 50 Ohm environment was found to be a major output power and switching speed limitation, due to a poor switching drive capability of the input capacitance of the GaN circuit. Finally, the optimized transistor and circuit design with an output gate width of 1.2 mm were effectively implemented in the given environment for an operation up to 2 GHz with a high drain efficiency of >65% and a digital output power of 5 W. A maximum output power of 9.7 W and a

  13. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator

    International Nuclear Information System (INIS)

    Almonacid, F.; Pérez-Higueras, P.J.; Fernández, Eduardo F.; Hontoria, L.

    2014-01-01

    Highlights: • The output of the majority of renewables energies depends on the variability of the weather conditions. • The short-term forecast is going to be essential for effectively integrating solar energy sources. • A new method based on artificial neural network to predict the power output of a PV generator one hour ahead is proposed. • This new method is based on dynamic artificial neural network to predict global solar irradiance and the air temperature. • The methodology developed can be used to estimate the power output of a PV generator with a satisfactory margin of error. - Abstract: One of the problems of some renewables energies is that the output of these kinds of systems is non-dispatchable depending on variability of weather conditions that cannot be predicted and controlled. From this point of view, the short-term forecast is going to be essential for effectively integrating solar energy sources, being a very useful tool for the reliability and stability of the grid ensuring that an adequate supply is present. In this paper a new methodology for forecasting the output of a PV generator one hour ahead based on dynamic artificial neural network is presented. The results of this study show that the proposed methodology could be used to forecast the power output of PV systems one hour ahead with an acceptable degree of accuracy

  14. Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems

    International Nuclear Information System (INIS)

    Su, Yan; Chan, Lai-Cheong; Shu, Lianjie; Tsui, Kwok-Leung

    2012-01-01

    Highlights: ► We develop online prediction models for solar photovoltaic system performance. ► The proposed prediction models are simple but with reasonable accuracy. ► The maximum monthly average minutely efficiency varies 10.81–12.63%. ► The average efficiency tends to be slightly higher in winter months. - Abstract: This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R 2 . The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9 am to 4 pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.

  15. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  16. Modeling of Combined Heat and Power Plant Based on a Multi-Stage Gasifier and Internal Combustion Engines of Various Power Outputs

    Science.gov (United States)

    Khudyakova, G. I.; Kozlov, A. N.; Svishchev, D. A.

    2017-11-01

    The paper is concerned with an integrated system of internal combustion engine and mini combined heat and power plant (ICE-CHP). The system is based on multi-stage wood biomass gasification. The use of producer gas in the system affects negatively the internal combustion engine performance and, therefore, reduces the efficiency of the ICE-CHP plant. A mathematical model of an internal combustion engine running on low-calorie producer gas was developed using an overview of Russian and foreign manufacturers of reciprocating units, that was made in the research. A thermal calculation was done for four-stroke gas engines of different rated power outputs (30, 100 and 250 kW), running on producer gas (CO2 - 10.2, CO - 45.8, N2 - 38.8%). Thermal calculation demonstrates that the engine exhaust gas temperature reaches 500 - 600°C at the rated power level and with the lower engine power, the temperature gets higher. For example, for an internal combustion engine power of 1000 kW the temperature of exhaust gases equals 400°C. A comparison of the efficiency of engine operation on natural gas and producer gas shows that with the use of producer gas the power output declines from 300 to 250 kWe. The reduction in the effective efficiency in this case makes up 2%. The measures are proposed to upgrade the internal combustion engine to enable it to run on low-calorie producer gas.

  17. W-band power amplifier MMIC with 400 mW output power in 0.1 μm AlGaN/GaN technology

    NARCIS (Netherlands)

    Heijningen,M. van; Rodenburg, M.; Vliet, F.E. van; Massler, M.; Tessmann, A.; Brückner, F.; Müller, S.; Schwantuschke, D.; Quay; Narhi, T.

    2012-01-01

    The 0.1 μm AlGaN/GaN technology and design of two W-band power amplifiers in this technology are described. The dual-stage amplifier reaches an output power of 400 mW at 90 GHz at an operation bias of 20 V. Two designs with different driver to final stage gate width ratio are discussed. More than 10

  18. Design of all solid state tunable single-mode Ti: sapphire laser for nuclear industry

    International Nuclear Information System (INIS)

    Lee, J.H.; Nam, S.M.; Lee, Y.J.; Lee, J.M.; Horn, Roland E.; Wendt, Klaus

    1999-01-01

    We designed a Ti:Sapphire laser pumped by a diode laser pumped solid state laser (DPSSL). The DPSSL was intra-cavity frequency doubled and it had 20 W output power. The Ti:Sapphire laser was designed for single longitudinal mode lasing. For single mode lasing, the laser used several solid etalons. We simulated temporal evolution of the laser pulse and single pass amplification rate of the photons in each modes from rate equations. From the result, we found that single mode lasing is viable in this cavity

  19. Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Pryor, Sara; Frandsen, Sten Tronæs

    2010-01-01

    There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate power output predictions for large offshore wind farms...

  20. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system.

    Science.gov (United States)

    Bombelli, Paolo; Zarrouati, Marie; Thorne, Rebecca J; Schneider, Kenneth; Rowden, Stephen J L; Ali, Akin; Yunus, Kamran; Cameron, Petra J; Fisher, Adrian C; Ian Wilson, D; Howe, Christopher J; McCormick, Alistair J

    2012-09-21

    Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all

  1. An evaluation of effects of large-scale introduction of renewable power on capacities and operation modes of power generation systems in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Hiromi; Yabe, Kuniaki; Bando, Shigeru; Nagai, Yu

    2014-01-01

    This study aims to establish a methodology to adequately evaluate an optimal power generation mix in Japan taking into account load frequency control (LFC) capacity and operation modes of power plants in case of a large-scale introduction of photovoltaic and wind power. For this purpose, the authors gave such an improvement to the MM-OPG model, a power generation mix optimization model, which it can deal with different operation modes of pumped hydro power in addition to those of thermal power sources. Using the model, the authors calculated the optimal power generation mix and its corresponding operation modes of Japan's power systems in 2030 with additional insights to 2020, and obtained the following results. (1) Introduction of photovoltaic and wind can be substituted for a limited capacity of conventional power sources. The introduction of 150 GW that consists of 108GW of photovoltaic and 42GW of wind in 2030 can replace no greater than 0.5 GW of conventional power sources. (2) The introduction of the renewables will affect the operation patterns of thermal and pumped hydro power generation. The capacity factor of variable speed pumped hydro will be much greater than that of fixed speed pumped hydro since the former can supply LFC at pump modes as well as generation modes. The capacity factor of LNG combined cycle plants decreases from 43% to 29% in the case with the introduction of 150GW of renewables in 2030. On the same assumption, the average cost of power generation excluding the renewables increases by up to 0.55 JPY/kWh in 2030. (author)

  2. Advanced specialty fiber designs for high power fiber lasers

    Science.gov (United States)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  3. Analysis and evaluation of the power amplifier device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Ryu, J. W. [Kongju National University, Gongju (Korea, Republic of)

    2011-11-15

    We developed a master oscillator power amplifier (MOPA) type fiber amplifier for the separation of the Ca-48 isotope by using a fiber laser. The ytterbium (Yb)-doped end-capped rod-type photonic crystal fiber (PCF) was used as a gain medium of MOPA amplifier. The PCFs used in our experiments were a 56-cm and an 81-cm rod-type end-capped Yb-doped double-clad PM fibers 'DC-285/100-PM-Yb-Rod', with a 100-{mu}m core (NA 0.02) and a 285-{mu}m cladding (NA 0.6) fabricated by NKT Photonics. The mode field diameter (MFD) of the rod-type PCF was 75-{mu}m, and an absorption efficiency of 30 dB/m at 976 nm and a low NA 0.02 helped to sustain the excellent lasing beam quality. We obtained an output power of 112 W at a pump power of 380 W with a repetition rate of 150 kHz. The measured pulse width was 13 ns at 150 kHz, 1056 nm. The laser beam quality shows a single mode amplification characteristics with a beam quality factor values of M2 are 2 -3. The PCF launching efficiency reached a maximum value of 86.7% with an average efficiencies of above 80%. At a pump power of 250 W and seed power input of 4 W, the CW PCF amplifier was found to generate average output powers of 138 W, 110 W, and 82 W at 1056-nm, 1070-nm, and 1089-nm wavelengths, respectively. The amplified PCF output beam had a line width of 70 MHz full width at half maximum (FWHM). These PCF amplified beams had good beam qualities with M2values of less than 1.8 at all three wavelengths. The gain saturation seed input power in the 81-cm PCF was found to be {approx}6 W at 1056 nm. The temperature of the PCF core reached over 230 .deg. C at the pumping section of the PCF. The temperatures of the end-cap heads on both the pumping and the output end-cap sides were 81.4 .deg. C and 35.7 .deg. C, respectively. The PCF amplifier maintained good polarization mode characteristics with an average DOP of over 87%. The slight decrease in the DOP oat output powers over 170 W output power may have been caused by a

  4. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  5. Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system

    Directory of Open Access Journals (Sweden)

    Sabah Miqoi

    2017-03-01

    Full Text Available In this paper a new maximum power point tracking method based on fuzzy sliding mode control is proposed, and employed in a PV water pumping system based on a DC-DC boost converter, to produce maximum power from the solar panel hence more speed in the DC motor and more water quantity. This method combines two different tracking techniques sliding mode control and fuzzy logic; our controller is based on sliding mode control, then to give better stability and enhance the power production a fuzzy logic technique was added. System modeling, sliding method definition and the new control method presentation are represented in this paper. The results of the simulation that are compared to both sliding mode controller and perturbation and observation method demonstrate effectiveness and robustness of the proposed controller.

  6. Saturated Adaptive Output-Feedback Power-Level Control for Modular High Temperature Gas-Cooled Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2014-11-01

    Full Text Available Small modular reactors (SMRs are those nuclear fission reactors with electrical output powers of less than 300 MWe. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear plants with high safety-level and economical competitive power. Power-level control is crucial in providing grid-appropriation for all types of SMRs. Usually, there exists nonlinearity, parameter uncertainty and control input saturation in the SMR-based plant dynamics. Motivated by this, a novel saturated adaptive output-feedback power-level control of the MHTGR is proposed in this paper. This newly-built control law has the virtues of having relatively neat form, of being strong adaptive to parameter uncertainty and of being able to compensate control input saturation, which are given by constructing Lyapunov functions based upon the shifted-ectropies of neutron kinetics and reactor thermal-hydraulics, giving an online tuning algorithm for the controller parameters and proposing a control input saturation compensator respectively. It is proved theoretically that input-to-state stability (ISS can be guaranteed for the corresponding closed-loop system. In order to verify the theoretical results, this new control strategy is then applied to the large-range power maneuvering control for the MHTGR of the HTR-PM plant. Numerical simulation results show not only the relationship between regulating performance and control input saturation bound but also the feasibility of applying this saturated adaptive control law practically.

  7. Self-mode-locked AlGaInP-VECSEL

    Science.gov (United States)

    Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.

    2017-10-01

    We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.

  8. 2-kW single-mode fiber laser employing bidirectional-pump scheme

    Science.gov (United States)

    Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai

    2018-01-01

    2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2<=1.2 and the spectral FWHM bandwidth is 4.34nm. There is no transverse mode instability and the output power stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.

  9. Numerical simulation of waveguide input/output couplers for a planar mm-wave linac cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1994-01-01

    A double-sided planar mm-wave linear accelerating cavity structure has been studied. The input/output couplers for the accelerating cavity structure have been designed using the Hewlett-Packard High Frequency Structure Simulator (HFSS). The program is a frequency domain finite element 3-D field solver and can include matched port boundary conditions. The power transmission property of the structure is calculated in the frequency domain. The dimensions of the, coupling cavities and the irises at the input/output ports are adjusted to have the structure matched to rectangular waveguides. The field distributions in the accelerating structure for the 2π/3-mode traveling wave are shown

  10. A triple hybrid micropower generator with simultaneous multi-mode energy harvesting

    Science.gov (United States)

    Uluşan, H.; Chamanian, S.; Pathirana, W. P. M. R.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2018-01-01

    This study presents a triple hybrid energy harvesting system that combines harvested power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters into a single DC supply. A power management circuit is designed and implemented in 180 nm standard CMOS technology based on the distinct requirements of each harvester, and is terminated with a Schottky diode to avoid reverse current flow. The system topology hence supports simultaneous power generation and delivery from low and high frequency vibrations as well as temperature differences in the environment. The ultra-low DC voltage harvested from TE generator is boosted with a cross-coupled charge-pump driven by an LC oscillator with fully-integrated center-tapped differential inductors. The EM harvester output was rectified with a self-powered and low drop-out AC/DC doubler circuit. The PZT interface electronics benefits from peak-to-peak cycle of the harvested voltage through a negative voltage converter followed by synchronous power extraction and DC-to-DC conversion through internal switches, and an external inductor. The hybrid system was tested with a wearable in-house EM energy harvester placed wrist of a jogger, a commercial low volume PZT harvester, and DC supply as the TE generator output. The system generates more than 1.2 V output for load resistances higher than 50 kΩ, which corresponds to 24 μW to power wearable sensors. Simultaneous multi-mode operation achieves higher voltage and power compared to stand-alone harvesting circuits, and generates up to 110 μW of output power. This is the first hybrid harvester circuit that simultaneously extracts energy from three independent sources, and delivers a single DC output.

  11. Online channel operation mode: Game theoretical analysis from the supply chain power structure

    Directory of Open Access Journals (Sweden)

    Song Huang

    2015-11-01

    Full Text Available Purpose: Dual-channels have been widely used in practice, and the pricing decisions and the online channel operation mode choice have been the core problems in dual-channel supply chain management. This paper focuses on the online channel operation mode choice from the supply chain power structures based on game theoretical analysis. Design/methodology/approach: This paper utilizes three kinds of game theoretical models to analyze the impact of supply chain power structures on the optimal pricing and online channel operation mode choice. Findings: Results derived in this paper indicate that when the self-price elasticity is large, the power structures have no direct impact on the decisions. However, when the self-price elasticity is small and customers’ preference for the online channel is low, then in the MS market, it is better for the retailer to operate the online channel, while in the RS market or in the VN market, it is better for the manufacturer to operate the online channel. Research limitations/implications: In this paper, we do not consider stochastic demand and asymmetric information, which may not well suit the reality. Originality/value: This paper provides a different perspective to analyze the impact of supply chain power structures on the pricing decisions and online channel operation mode choice. The comparison of these two online channel operation modes in this paper is also a unique point.

  12. Investigation of crosstalk in self oscillating switch mode audio power amplifier

    DEFF Research Database (Denmark)

    Birch, Thomas Haagen; Ploug, Rasmus Overgaard; Iversen, Niels Elkjær

    2012-01-01

    channel self oscillating switch mode power amplier (class D). A step by step reduction of elements in an amplier built for this task, is used for methodically determining the actual presence and origins of crosstalk. The investigation shows that the crosstalk is caused by couplings in the self oscillating......Self oscillating switch mode power ampliers are known to be susceptible to interchannel disturbances also known as crosstalk. This phenomenon has a signicant impact on the performance of an amplier of this type. The goal of this paper is to investigate the presence and origins of crosstalk in a two...

  13. Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output

    Directory of Open Access Journals (Sweden)

    Robert S. Whitney

    2016-05-01

    Full Text Available This work considers the nonlinear scattering theory for three-terminal thermoelectric devices used for power generation or refrigeration. Such systems are quantum phase-coherent versions of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. It considers an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. It is shown that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot’s bound. The bound is exactly the same as previously found for two-terminal devices and can be achieved by three-terminal systems with or without broken time-reversal symmetry, i.e., chiral and non-chiral thermoelectrics.

  14. A novel method for predicting the power outputs of wave energy converters

    Science.gov (United States)

    Wang, Yingguang

    2018-03-01

    This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

  15. Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules

    International Nuclear Information System (INIS)

    Obara, Shin’ya; Konno, Daisuke; Utsugi, Yuta; Morel, Jorge

    2014-01-01

    Highlights: • Characteristics of a large-scale power plant using bifacial solar cell is described. • Conversion efficiency of bifacial photovoltaics obtained using 3D-CAD modeling. • Power supply of bifacial PV can be matched with demand by adjusting the orientation. - Abstract: Bifacial photovoltaics are widely investigated with the aim of reducing the amount of silicon used and increasing conversion efficiencies. The output power of bifacial photovoltaics depends on the quantity of solar radiation incident on the reverse face. Furthermore, controlling the orientation can distribute the times of peak power output in the morning and afternoon to better match the demand. In this study, the demand patterns of individual houses or the whole Hokkaido region were analyzed assuming the substitution of a conventional large-scale electric power system with one using bifacial photovoltaics. The supply–demand balances and electrical storage capacities were investigated. When comparing a large scale solar power plant (mega-solar power plant) using monofacial photovoltaics or vertical bifacial photovoltaics (in which the orientation could be adjusted), the supply–demand could be better balanced for individual houses in the latter case, thereby allowing the storage capacity to be reduced. A bifacial solar module was modeled by 3D-CAD (three dimensional computer aided design) and thermal fluid analysis. The module temperature distribution of bifacial photovoltaics was calculated with respect to the environmental conditions (wind flow, direct and diffuse solar radiation, etc.) and internal heat generation, as well as the orientation of the solar panels. Furthermore, the output power of bifacial photovoltaics can be easily obtained from the analysis result of modular temperature distribution and the relation between temperature and output power

  16. Gain compression and its dependence on output power in quantum dot lasers

    Science.gov (United States)

    Zhukov, A. E.; Maximov, M. V.; Savelyev, A. V.; Shernyakov, Yu. M.; Zubov, F. I.; Korenev, V. V.; Martinez, A.; Ramdane, A.; Provost, J.-G.; Livshits, D. A.

    2013-06-01

    The gain compression coefficient was evaluated by applying the frequency modulation/amplitude modulation technique in a distributed feedback InAs/InGaAs quantum dot laser. A strong dependence of the gain compression coefficient on the output power was found. Our analysis of the gain compression within the frame of the modified well-barrier hole burning model reveals that the gain compression coefficient decreases beyond the lasing threshold, which is in a good agreement with the experimental observations.

  17. Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.

    Science.gov (United States)

    Faupin, Arnaud; Borel, Benoit; Meyer, Christophe; Gorce, Philippe; Watelain, Eric

    2013-11-01

    This study aimed to first investigate synchronous (SYN) versus asynchronous (ASY) mode of propulsion and, second, investigate the wheel camber effects on sprinting performance as well as temporal parameters. Seven wheelchair basketball players performed four maximal eight-second sprints on a wheelchair ergometer. They repeated the test according to two modes of propulsion (SYN and ASY) and two wheel cambers (9° and 15°). The mean maximal velocity and push power output was greater in the synchronous mode compared to the asynchronous mode for both camber angles. However, the fluctuation in the velocity profile is inferior for ASY versus SYN mode for both camber angles. Greater push time/cycle time (Pt/Ct) and arm frequency (AF) for synchronous mode versus asynchronous mode and inversely, lesser Ct and rest time (Rt) values for the synchronous mode, for which greater velocity were observed. SYN mode leads to better performance than ASY mode in terms of maximal propulsion velocity. However, ASY propulsion allows greater continuity of the hand-rim force application, reducing fluctuations in the velocity profile. The camber angle had no effect on ASY and SYN mean maximal velocity and push power output. The study of wheelchair propulsion strategies is important for better understanding physiological and biomechanical impacts of wheelchair propulsion for individuals with disabilities. From a kinematical point of view, this study highlights synchronous mode of propulsion to be more efficient, with regards to mean maximal velocity reaching during maximal sprinting exercises. Even if this study focuses on well-trained wheelchair athletes, results from this study could complement the knowledge on the physiological and biomechanical adaptations to wheelchair propulsion and therefore, might be interesting for wheelchair modifications for purposes of rehabilitation.

  18. Trends of the electricity output, power conversion efficiency, and the grid emission factor in North Korea

    Science.gov (United States)

    Yeo, M. J.; Kim, Y. P.

    2017-12-01

    Recently, concerns about the atmospheric environmental problems in North Korea (NK) have been growing. According to the World Health Organization (WHO) (2017), NK was the first ranked country in mortality rate attributed to household and ambient air pollution in 2012. Reliable energy-related data in NK were needed to understand the characteristics of air quality in NK. However, data from the North Korean government were limited. Nevertheless, we could find specific energy-related data produced by NK in the Project Design Documents (PDDs) of the Clean Development Mechanism (CDM) submitted to the United Nations Framework Convention on Climate Change (UNFCCC). There were the 6 registered CDM projects hosted by North Korea, developed as small hydropower plants. Several data of each power plant, such as the electricity output, connected to the Eastern Power Grid (EPG) or the Western Power Grid (WPG) in North Korea were provided in the CDM PDDs. We (1) figured out the trends of the electricity output, the `power conversion efficiency' which we defined the amount of generated electricity to the supplied input primary energy for power generation, and fuel mix as grid emission factor in NK as using the data produced by NK between 2005 and 2009, (2) discussed the operating status of the thermal power plants in NK, and (3) discussed the energy/environmental-related policies and the priority issues in NK in this study.

  19. Measuring cutaneous thermal nociception in group-housed pigs using laser technique - effects of laser power output

    DEFF Research Database (Denmark)

    Herskin, Mette S.; Ladevig, Jan; Arendt-Nielsen, Lars

    2009-01-01

    Nociceptive testing is a valuable tool in the development of pharmaceutical products, for basic nociceptive research, and for studying changes in pain sensitivity is investigated after inflammatory states or nerve injury. However, in pigs only very limited knowledge about nociceptive processes...... nociceptive stimulation from a computer-controlled CO2-laser beam applied to either the caudal part of the metatarsus on the hind legs or the shoulder region of gilts. In Exp. 1, effects of laser power output (0, 0.5, 1, 1.5 and 2 W) on nociceptive responses toward stimulation on the caudal aspects...... of the metatarsus were examined using 15 gilts kept in one group and tested in individual feeding stalls after feeding. Increasing the power output led to gradually decreasing latency to respond (P 

  20. A new solar power output prediction based on hybrid forecast engine and decomposition model.

    Science.gov (United States)

    Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando

    2018-06-12

    Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  2. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod; Andersen, Michael A. E.

    2009-01-01

    An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-–carrier distortion-–is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input...... and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic comparator input average voltage with the output average voltage. This easily causes total harmonic distortion...... figures in excess of 0.1–0.2%, inadequate for high-quality audio applications. Carrier distortion is shown to be minimized when the feedback system is designed to provide a triangular carrier (sliding) signal at the input of a hysteretic comparator. The proposed optimization method is experimentally...

  3. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution

    Directory of Open Access Journals (Sweden)

    W. Song

    2012-03-01

    Full Text Available An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.

  4. Power blue and green laser diodes and their applications

    Science.gov (United States)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  5. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    International Nuclear Information System (INIS)

    Carta, Jose A.; Ramirez, Penelope; Velazquez, Sergio

    2008-01-01

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error ε made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R 2 statistic (R a 2 ). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R a 2 statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R a 2 increases

  6. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    Science.gov (United States)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  7. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  8. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser

    International Nuclear Information System (INIS)

    Yu, Zhenhua; Zhang, Xiao; Dong, Xinzheng; Tian, Jinrong; Song, Yanrong; Wang, Yonggang

    2014-01-01

    We demonstrate a highly stable mode locked fiber laser based on single wall carbon nanotubes. The mode locking is achieved by the evanescent field interaction of the propagating light with a single wall carbon nanotube saturable absorber in a microfiber. The pulse width is 66 fs, which, to the best of our knowledge, is the shortest pulse achieved in a carbon nanotube mode locked fiber laser. The maximum average output power is 26 mW, which is about 20 times larger than that of a typical carbon nanotube mode locked fiber laser. The center of the wavelength is 1555 nm, with 54 nm spectral width. The repetition rate is 146 MHz. To investigate the laser’s stability, the output pulses are monitored for 120 h and there is no significant degradation of the laser spectral width or shape. (paper)

  9. Fourier band-power E/B-mode estimators for cosmic shear

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew R.; Rozo, Eduardo

    2016-01-20

    We introduce new Fourier band-power estimators for cosmic shear data analysis and E/B-mode separation. We consider both the case where one performs E/B-mode separation and the case where one does not. The resulting estimators have several nice properties which make them ideal for cosmic shear data analysis. First, they can be written as linear combinations of the binned cosmic shear correlation functions. Secondly, they account for the survey window function in real-space. Thirdly, they are unbiased by shape noise since they do not use correlation function data at zero separation. Fourthly, the band-power window functions in Fourier space are compact and largely non-oscillatory. Fifthly, they can be used to construct band-power estimators with very efficient data compression properties. In particular, we find that all of the information on the parameters Ωm, σ8 and ns in the shear correlation functions in the range of ~10–400 arcmin for single tomographic bin can be compressed into only three band-power estimates. Finally, we can achieve these rates of data compression while excluding small-scale information where the modelling of the shear correlation functions and power spectra is very difficult. Given these desirable properties, these estimators will be very useful for cosmic shear data analysis.

  10. Power requirements for superior H-mode confinement on Alcator C-Mod: experiments in support of ITER

    International Nuclear Information System (INIS)

    Hughes, J.W.; Reinke, M.L.; Terry, J.L.; Brunner, D.; Greenwald, M.; Hubbard, A.E.; LaBombard, B.; Lipschultz, B.; Ma, Y.; Wolfe, S.; Wukitch, S.J.; Loarte, A.

    2011-01-01

    Power requirements for maintaining sufficiently high confinement (i.e. normalized energy confinement time H 98 ≥ 1) in H-mode and its relation to H-mode threshold power scaling, P th , are of critical importance to ITER. In order to better characterize these power requirements, recent experiments on the Alcator C-Mod tokamak have investigated H-mode properties, including the edge pedestal and global confinement, over a range of input powers near and above P th . In addition, we have examined the compatibility of impurity seeding with high performance operation, and the influence of plasma radiation and its spatial distribution on performance. Experiments were performed at 5.4 T at ITER relevant densities, utilizing bulk metal plasma facing surfaces and an ion cyclotron range of frequency waves for auxiliary heating. Input power was scanned both in stationary enhanced D α (EDA) H-modes with no large edge localized modes (ELMs) and in ELMy H-modes in order to relate the resulting pedestal and confinement to the amount of power flowing into the scrape-off layer, P net , and also to the divertor targets. In both EDA and ELMy H-mode, energy confinement is generally good, with H 98 near unity. As P net is reduced to levels approaching that in L-mode, pedestal temperature diminishes significantly and normalized confinement time drops. By seeding with low-Z impurities, such as Ne and N 2 , high total radiated power fractions are possible, along with substantial reductions in divertor heat flux (>4x), all while maintaining H 98 ∼ 1. When the power radiated from the confined versus unconfined plasma is examined, pedestal and confinement properties are clearly seen to be an increasing function of P net , helping to unify the results with those from unseeded H-modes. This provides increased confidence that the power flow across the separatrix is the correct physics basis for ITER extrapolation. The experiments show that P net /P th of one or greater is likely to lead to H

  11. Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength

    International Nuclear Information System (INIS)

    Kang, Z; Li, Q; Gao, X J; Jia, Z X; Qin, G S; Qin, W P; Zhang, L; Feng, Y

    2014-01-01

    Gold nanorods (GNRs) were used as a saturable absorber (SA) for passive mode-locking at 1 μm wavelength. The GNR-SA film was fabricated by mixing GNRs with sodium carboxymethylcellulose. The longitudinal surface plasmon resonance absorption of GNRs was used to induce mode-locking. By using the GNR-SA film, stable passive mode-locking at 1039 nm was experimentally demonstrated in an ytterbium-doped fiber laser cavity pumped by a 980 nm laser diode. The laser produced ∼440 ps pulses with a repetition rate of 36.6 MHz and an average output power of ∼1.25 mW for a pump power of ∼82 mW. (letter)

  12. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from...

  13. Pellet bed reactor for multi-modal space power

    International Nuclear Information System (INIS)

    Buden, D.; Williams, K.; Mast, P.; Mims, J.

    1987-01-01

    A review of forthcoming space power needs for both civil and military missions indicates that power requirements will be in the tens of megawatts. The electrical power requirements are envisioned to be twofold: long-duration lower power levels will be needed for station keeping, communications, and/or surveillance; short-duration higher power levels will be required for pulsed power devices. These power characteristics led to the proposal of a multi-modal space power reactor using a pellet bed design. Characteristics desired for such a multimegawatt reactor power source are standby, alert, and pulsed power modes; high-thermal output heat source (approximately 1000 MWt peak power); long lifetime station keeping power (10 to 30 years); high temperature output (1500 K to 1800 K); rapid-burst power transition; high reliability (above 95 percent); and stringent safety standards compliance. The proposed pellet bed reactor is designed to satisfy these characteristics

  14. Input-output analysis of high-speed axisymmetric isothermal jet noise

    Science.gov (United States)

    Jeun, Jinah; Nichols, Joseph W.; Jovanović, Mihailo R.

    2016-04-01

    We use input-output analysis to predict and understand the aeroacoustics of high-speed isothermal turbulent jets. We consider axisymmetric linear perturbations about Reynolds-averaged Navier-Stokes solutions of ideally expanded turbulent jets with jet Mach numbers 0.6 parabolized stability equations (PSE), and this mode dominates the response. For subsonic jets, however, the singular values indicate that the contributions of sub-optimal modes to noise generation are nearly equal to that of the optimal mode, explaining why the PSE do not fully capture the far-field sound in this case. Furthermore, high-fidelity large eddy simulation (LES) is used to assess the prevalence of sub-optimal modes in the unsteady data. By projecting LES source term data onto input modes and the LES acoustic far-field onto output modes, we demonstrate that sub-optimal modes of both types are physically relevant.

  15. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    Science.gov (United States)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible

  16. Rational Design Approach for Enhancing Higher-Mode Response of a Microcantilever in Vibro-Impacting Mode

    Directory of Open Access Journals (Sweden)

    Ieva Migliniene

    2017-12-01

    Full Text Available This paper proposes an approach for designing an efficient vibration energy harvester based on a vibro-impacting piezoelectric microcantilever with a geometric shape that has been rationally modified in accordance with results of dynamic optimization. The design goal is to increase the amplitudes of higher-order vibration modes induced during the vibro-impact response of the piezoelectric transducer, thereby providing a means to improve the energy conversion efficiency and power output. A rational configuration of the energy harvester is proposed and it is demonstrated that the new design retains essential modal characteristics of the optimal microcantilever structures, further providing the added benefit of less costly fabrication. The effects of structural dynamics associated with advantageous exploitation of higher vibration modes are analyzed experimentally by means of laser vibrometry as well as numerically via transient simulations of microcantilever response to random excitation. Electrical characterization results indicate that the proposed harvester outperforms its conventional counterpart (based on the microcantilever of the constant cross-section in terms of generated electrical output. Reported results may serve for the development of impact-type micropower generators with harvesting performance that is enhanced by virtue of self-excitation of large intensity higher-order mode responses when the piezoelectric transducer is subjected to relatively low-frequency excitation with strongly variable vibration magnitudes.

  17. Diode-pumped passively mode-locked Nd:LuVO4 laser with LT-In0.25Ga0.75As saturable absorber

    International Nuclear Information System (INIS)

    Li, T; Zhao, S; Li, Y; Zhuo, Z; Yang, K; Li, G; Li, D; Yu, Z

    2009-01-01

    A diode pumped passively mode-locked Nd:LuVO 4 laser with a low temperature (LT) In 0.25 Ga 0.75 As absorber is realized in this paper. An In 0.25 Ga 0.75 As single-quantum-well absorber, which is grown by use of the metal-organic chemical-vapor deposition technique, acts as nonlinear absorber and output coupler simultaneously. A special cavity is designed to keep the power density on In 0.25 Ga 0.75 As under its damage threshold. Both the Q-switched and continuous-wave (cw) mode locking operation are experimentally realized. An average output power of 5.9 W with pulse width of 4.9 ps is achieved at the pump power of 22 W, corresponding to an optical conversion efficiency of 26.8%

  18. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    Science.gov (United States)

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  19. Variable self-powered light detection CMOS chip with real-time adaptive tracking digital output based on a novel on-chip sensor.

    Science.gov (United States)

    Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain

    2017-10-02

    This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.

  20. Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2013-11-01

    Full Text Available Operation of wind power generation in a large farm is quite challenging in a smart grid owing to uncertain weather conditions. Consequently, operators must accurately forecast wind speed/power in the dispatch center to carry out unit commitment, real power scheduling and economic dispatch. This work presents a novel method based on the integration of empirical mode decomposition (EMD with artificial neural networks (ANN to forecast the short-term (1 h ahead wind speed/power. First, significant parameters for training the ANN are identified using the correlation coefficients. These significant parameters serve as inputs of the ANN. Owing to the volatile and intermittent wind speed/power, the historical time series of wind speed/power is decomposed into several intrinsic mode functions (IMFs and a residual function through EMD. Each IMF becomes less volatile and therefore increases the accuracy of the neural network. The final forecasting results are achieved by aggregating all individual forecasting results from all IMFs and their corresponding residual functions. Real data related to the wind speed and wind power measured at a wind-turbine generator in Taiwan are used for simulation. The wind speed forecasting and wind power forecasting for the four seasons are studied. Comparative studies between the proposed method and traditional methods (i.e., artificial neural network without EMD, autoregressive integrated moving average (ARIMA, and persistence method are also introduced.

  1. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  2. Design of the all solid high-voltage power supply for a gyrotron body

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yihua [School of Mathematics and Physics, University of South China, Hengyang, 421001 (China); Chen, Wenguang, E-mail: 430000485393@usc.edu.cn [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Hu, Bo [School of Electrical Engineering, University of South China, Hengyang, 421001 (China); Rao, Jun; Huang, Mei; Kang, Zihua; Feng, Kun [Southwestern Institute of Physics, Chengdu, 610041 (China); Huang, Jiaqi [School of Electrical Engineering, University of South China, Hengyang, 421001 (China)

    2017-04-15

    Highlights: • Completed design of all solid-state high-voltage power supply for gyrotron body on HL-2M ECRH. • Consist of 58 PSM modules and one BUCK module, controlled by DSP system. • Fabricated full voltage 35 kV, 200 mA BPS and tested in dummy load. • The BPS can operate in three modes: single pulse mode, multi-pulse modulation mode and the six-level preset mode. - Abstract: Gyrotron plays an important role in the research of electron cyclotron resonance heating (ECRH) on Tokomak. The high-frequency switched power supply technology and pulse step modulation (PSM) technology are used in the development of the all solid high-voltage body power supply (BPS) for 1 MW/105 GHz Gyrotron on ECRH system. Firstly, the basic structure of the BPS and its control system are introduced. Secondly, the software control algorithm of voltage stabilization and modulate method are developed. Finally, the design is verified by the experiments. The experimental results of the single pulse mode, the multi-pulse modulation mode and the six-level preset mode, are shown. The output voltage of the power supply can reach 35 kV and the current at about 200 mA, which are adjustable in the full range. The maximum modulation frequency can reach 1 kHz and the front edge of the pulse can be adjust from 0 to 3 ms and the accuracy of the output voltage is less than 100 V. The results show that the control method is feasible and can be applied to other high power microwave sources.

  3. 408-fs SESAM mode locked Cr:ZnSe laser

    Science.gov (United States)

    Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu

    2018-01-01

    We report self-starting femtosecond operation of a 127-MHz SESAM mode locked Cr:ZnSe laser around 2420 nm. A thulium doped double clad fiber laser at 1908 nm was used as the pumping source. In the normal dispersion regime, stable pulse pairs with constant phase differences in the multipulse regime were observed. The maximum output power was 342 mW with respect to incident pump power of 4.8 W and the corresponding slope efficiency was 10.4%. By inserting a piece of sapphire plate, dispersion compensation was achieved and the intra-cavity dispersion was moved to the anomalous regime. A maximum output power of 403 mW was obtained and the corresponding slope efficiency was 12.2%. Pulse width was measured to be 408 fs by a collinear autocorrelator using two-photon absorption in an InGaAs photodiode. The laser spectrum in multipulse operation showed a clear periodic modulation.

  4. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Yüksel Oğuz

    2013-01-01

    Full Text Available The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  5. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    Science.gov (United States)

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  6. High Power Diode Lasers with External Feedback: Overview and Prospects

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2012-01-01

    In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...... with a good beam quality. Tapered diode laser systems with external-cavity feedback around 800 and 1060 nm can deliver more than 2 W output power with diffraction-limited beam quality and can be operated in single-longitudinal mode. These high-brightness, narrow linewidth, and tunable external-cavity diode...... lasers emerge as the next generation of compact lasers that have the potential of replacing conventional high power laser systems in many existing applications....

  7. 130 kV 130 A high voltage switching mode power supply for neutral beam injectors-Control issues and algorithms

    International Nuclear Information System (INIS)

    Ganuza, D.; Garcia, F.; Zulaika, M.; Perez, A.; Jones, T.T.C.

    2005-01-01

    The company JEMA has delivered to the Joint European Torus (JET facility in Culham) two high voltage switching mode power supplies (HVSMPS) each rated 130 kVdc and 130 A. One HVSMPS feeds the grids of two PINI loads. This paper describes the main control issues and the algorithms developed for the project. The most demanding requirements from the control point of view is an absolute accuracy of ±1300 V and the possibility of performing up to 255 re-applications of the high voltage during a 20 s pulse. Keeping the output voltage ripple to the specified tolerance has been a major achievement of the control system. Since the output stage is formed of several modules (120) connected in series, their stray capacitance to ground significantly influences the individual contribution of each single module to the global output voltage. Two complementary techniques have been used to balance the effects of the stray capacities. The fast re-applications requirement has a significant impact on the intermediate dc link. This section is composed of a capacity of 0.83 F, which feeds the 120 invertor modules. The dc link is fed by a 12 pulse SCR rectifier, whose matching transformers are connected to the 36 kV grid. Every re-application and every voltage shutdown supposes a quasi-instantaneous power step of 17 MW. Fast open loop algorithms have been implemented in order to keep the dc link voltage within acceptable margins. Moreover, the HVSMPS output characteristics have to be maintained during the rapid and important voltage fluctuations of the 36 kV mains (28-37 kV). The general control system is based on a Simatic S7 PLC, and a SCADA user interface. Up to 1000 signals are acquired. The control system has shown to be also a useful tool to allow for a rapid and accurate identification of faults and their origin

  8. Design and experiment of a cross-shaped mode converter for high-power microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shengren, E-mail: 785751053@qq.com; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2013-12-15

    A compact mode converter, which is capable of converting a TM{sub 01} mode into a circularly polarized TE{sub 11} mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  9. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Lægsgaard, Jesper

    2014-01-01

    We present a coupled-mode model of transverse mode instability in high-power fiber amplifiers, which takes the effect of gain saturation into account. The model provides simple semi-analytical formulas for the mode instability threshold, which are valid also for highly saturated amplifiers...

  10. Power inverter implementing phase skipping control

    Science.gov (United States)

    Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa

    2016-10-18

    A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.

  11. Switched-mode converters (one quadrant)

    CERN Document Server

    Barrade, P

    2006-01-01

    Switched-mode converters are DC/DC converters that supply DC loads with a regulated output voltage, and protection against overcurrents and short circuits. These converters are generally fed from an AC network via a transformer and a conventional diode rectifier. Switched-mode converters (one quadrant) are non-reversible converters that allow the feeding of a DC load with unipolar voltage and current. The switched-mode converters presented in this contribution are classified into two families. The first is dedicated to the basic topologies of DC/DC converters, generally used for low- to mid-power applications. As such structures enable only hard commutation processes, the main drawback of such topologies is high commutation losses. A typical multichannel evolution is presented that allows an interesting decrease in these losses. Deduced from this direct DC/DC converter, an evolution is also presented that allows the integration of a transformer into the buck and the buck–boost structure. This enables an int...

  12. Core Power Control of the fast nuclear reactors with estimation of the delayed neutron precursor density using Sliding Mode method

    International Nuclear Information System (INIS)

    Ansarifar, G.R.; Nasrabadi, M.N.; Hassanvand, R.

    2016-01-01

    Highlights: • We present a S.M.C. system based on the S.M.O for control of a fast reactor power. • A S.M.O has been developed to estimate the density of delayed neutron precursor. • The stability analysis has been given by means Lyapunov approach. • The control system is guaranteed to be stable within a large range. • The comparison between S.M.C. and the conventional PID controller has been done. - Abstract: In this paper, a nonlinear controller using sliding mode method which is a robust nonlinear controller is designed to control a fast nuclear reactor. The reactor core is simulated based on the point kinetics equations and one delayed neutron group. Considering the limitations of the delayed neutron precursor density measurement, a sliding mode observer is designed to estimate it and finally a sliding mode control based on the sliding mode observer is presented. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. Sliding Mode Control (SMC) is one of the robust and nonlinear methods which have several advantages such as robustness against matched external disturbances and parameter uncertainties. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability.

  13. Some observations on stray magnetic fields and power outputs from short-wave diathermy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R.W.M.; Dunscombe, P.B.

    1984-04-01

    Recent years have seen increasing interest in the possible hazards arising from the use of nonionizing electromagnetic radiation. Relatively large and potentially hazardous fields are to be found in the vicinity of short-wave and microwave equipment used in physiotherapy departments to produce therapeutic temperature rises. This note reports the results of measurements of the stray magnetic field and power output of a conventional short-wave diathermy unit when applied to tissue-equivalent phantoms. The dependence of these quantities on the variables, i.e. power setting of the unit, capacitor plate size, phantom size and phantom-capacitor plate separation, are discussed.

  14. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  15. Review of tearing mode stabilization by RF power in tokamaks

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Zohm, H.

    1999-01-01

    Control of tearing modes by means of heating and current drive inside the magnetic islands is one of the most important applications of RF power in tokamak reactors. The theoretical basis of this concept is reviewed, focusing on aspects related to RF-plasma interaction. Applications to the stabilization of neoclassical tearing modes in ITER by Electron Cyclotron Current Drive are presented to illustrate the basic physical dependences. The most significant experimental results and prospects for future applications are also discussed

  16. Study on a New Operational Mode of Economic Operation of Islanded Microgrids Using Electric Springs

    Directory of Open Access Journals (Sweden)

    Zhao Zhiyu

    2018-01-01

    Full Text Available With the increasing penetration of intermittent renewable energy sources (RESs into microgrids, the original operation mode of power generation determined by load demand faces severe challenges due to the uncertainties of the RESs power output. The electric springs(ESs, as an emerging technology has been verified to be effective in enabling load demand to follow power generation and stabilizing fluctuation of RESs output. This paper presents a new mode of economic operation for island microgrids including non-critical loads with embedded electric springs. Its connotation includes that i the capacity of energy storage can be reduced through the interaction of the energy storage system (ESS and the electric springs, ii the electric springs reduce the stress of peak load regulation and operational cost and iii the demand of microgrids system for ramping ability of generation units is reduced with the buffer of the electric springs. Numerical results show that the coordinated operation between electric springs and energy storage system of microgrids can bring down the investment cost for the ESS and short-term operational cost in the aspect of economic dispatch, reducing requirements for the capacity and ramp ability of the energy storage system in microgrids. Energy buffering can be achieved with lower cost and the load demand can follow power generation in the new operational mode of islanded microgrids using electric springs.

  17. Development and Operation of Dual-Mode Analyzers for Wireless Power Consortium/Power Matters Alliance Wireless Power Systems.

    Science.gov (United States)

    Um, Keehong

    2016-05-01

    We have designed a protocol analyzer to be used in wireless power systems and analyzed the operation of wireless chargers defined by standards of Qi of Wireless Power Consortium (WPC) and Power Matters Alliance (PMA) protocols. The integrated circuit (IC, or microchip) developed so far for wireless power transmission is not easily adopted by chargers for specific purposes. A device for measuring the performance of test equipment currently available is required to transform and expand the types of protocol. Since a protocol analyzer with these functions is required, we have developed a device that can analyze the two protocols of WPC and PMA at the same time. As a result of our research, we present a dual-mode system that can analyze the protocols of both WPC and PMA.

  18. The Acute Effect of Upper-Body Complex Training on Power Output of Martial Art Athletes as Measured by the Bench Press Throw Exercise

    Science.gov (United States)

    Liossis, Loudovikos Dimitrios; Forsyth, Jacky; Liossis, Ceorge; Tsolakis, Charilaos

    2013-01-01

    The purpose of this study was to examine the acute effect of upper body complex training on power output, as well as to determine the requisite preload intensity and intra-complex recovery interval needed to induce power output increases. Nine amateur-level combat/martial art athletes completed four distinct experimental protocols, which consisted of 5 bench press repetitions at either: 65% of one-repetition maximum (1RM) with a 4 min rest interval; 65% of 1RM with an 8 min rest; 85% of 1RM with a 4 min rest; or 85% of 1RM with an 8 min rest interval, performed on different days. Before (pre-conditioning) and after (post-conditioning) each experimental protocol, three bench press throws at 30% of 1RM were performed. Significant differences in power output pre-post conditioning were observed across all experimental protocols (F=26.489, partial eta2=0.768, p=0.001). Mean power output significantly increased when the preload stimulus of 65% 1RM was matched with 4 min of rest (p=0.001), and when the 85% 1RM preload stimulus was matched with 8 min of rest (p=0.001). Moreover, a statistically significant difference in power output was observed between the four conditioning protocols (F= 21.101, partial eta2=0.913, p=0.001). It was concluded that, in complex training, matching a heavy preload stimulus with a longer rest interval, and a lighter preload stimulus with a shorter rest interval is important for athletes wishing to increase their power production before training or competition. PMID:24511352

  19. Evaluation of Residue Based Power Oscillation Damping Control of Inter-area Oscillations for Static Power Sources

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Iov, Florin

    2012-01-01

    Low frequency inter-area oscillations are known stability issue of large interconnected electrical grids. It was demonstrated that additional control loop can be applied for static power sources, like FACTS, HVDC or modern Wind Power Plants, to modulate their power output and successfully attenuate......, it is proposed to give more attention to additional indices like transfer function zero location and interactions between mode of interest and other system dynamics. Consequently, additional rules are proposed for residue based damping control design....

  20. Cable Insulation Breakdowns in the Modulator with a Switch Mode High Voltage Power Supply

    CERN Document Server

    Cours, A

    2004-01-01

    The Advanced Photon Source modulators are PFN-type pulsers with 40 kV switch mode charging power supplies (PSs). The PS and the PFN are connected to each other by 18 feet of high-voltage (HV) cable. Another HV cable connects two separate parts of the PFN. The cables are standard 75 kV x-ray cables. All four cable connectors were designed by the PS manufacturer. Both cables were operating at the same voltage level (about 35 kV). The PS’s output connector has never failed during five years of operation. One of the other three connectors failed approximately five times more often than the others. In order to resolve the failure problem, a transient analysis was performed for all connectors. It was found that transient voltage in the connector that failed most often was subjected to more high-frequency, high-amplitude AC components than the other three connectors. It was thought that these components caused partial discharge in the connector insulation and led to the insulation breakdown. Modification o...

  1. An efficient high-voltage power supply for a photomultiplier tube

    NARCIS (Netherlands)

    Ainutdinov, VM; Vonsovskii, NN; Kompaniets, KG; Kozyr, AI; Mikhailov, YV

    2003-01-01

    An adjustable power supply for a photomultiplier tube operating in the pulsed spectrometric mode with a wide range of linearity is described. The power consumed by the source is 50 mW. The output voltage is varied from 800 to 2000 V. The maximum ripple amplitude is 2.5 mV.

  2. New VCSEL technology with scalability for single mode operation and densely integrated arrays

    Science.gov (United States)

    Zhao, Guowei; Demir, Abdullah; Freisem, Sabine; Zhang, Yu; Liu, Xiaohang; Deppe, Dennis G.

    2011-06-01

    Data are presented demonstrating a new lithographic vertical-cavity surface-emitting laser (VCSEL) technology, which produces simultaneous mode- and current-confinement only by lithography and epitaxial crystal growth. The devices are grown by solid source molecular beam epitaxy, and have lithographically defined sizes that vary from 3 μm to 20 μm. The lithographic process allows the devices to have high uniformity throughout the wafer and scalability to very small size. The 3 μm device shows a threshold current of 310 μA, the slope efficiency of 0.81 W/A, and the maximum output power of more than 5 mW. The 3 μm device also shows single-mode single-polarization operation without the use of surface grating, and has over 25 dB side-mode-suppression-ratio up to 1 mW of output power. The devices have low thermal resistance due to the elimination of oxide aperture. High reliability is achieved by removal of internal strain caused by the oxide, stress test shows no degradation for the 3 μm device operating at very high injection current level of 142 kA/cm2 for 1000 hours, while at this dive level commercial VCSELs fail rapidly. The lithographic VCSEL technology can lead to manufacture of reliable small size laser diode, which will have application in large area 2-D arrays and low power sensors.

  3. Coupling/Tradeoff Analysis and Novel Containment Control for Reactive Power, Output Voltage in Islanded Micro-Grid

    DEFF Research Database (Denmark)

    Han, Renke; Meng, Lexuan; Guerrero, Josep M.

    2016-01-01

    Based on the hierarchical control structure in islanded Micro-Grid (MG) systems, the coupling/tradeoff effects in different control levels are analyzed in details. In the primary level, analyses of the coupling effects among droop control gains, line impedance differences, output reactive power...

  4. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    Energy Technology Data Exchange (ETDEWEB)

    Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Ramirez, Penelope; Velazquez, Sergio [Department of Renewable Energies, Technological Institute of the Canary Islands, Pozo Izquierdo Beach s/n, 35119 Santa Lucia, Gran Canaria, Canary Islands (Spain)

    2008-10-15

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error {epsilon} made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R{sup 2} statistic (R{sub a}{sup 2}). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R{sub a}{sup 2} statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R{sub a}{sup 2} increases. (author)

  5. Research status of large mode area single polarization active fiber

    Science.gov (United States)

    Xiao, Chun; Zhang, Ge; Yang, Bin-hua; Cheng, Wei-feng; Gu, Shao-yi

    2018-03-01

    As high power fiber laser used more and more widely, to increase the output power of fiber laser and beam quality improvement have become an important goal for the development of high power fiber lasers. The use of large mode fiber is the most direct and effective way to solve the nonlinear effect and fiber damage in the fiber laser power lifting process. In order to reduce the effect of polarization of the fiber laser system, the study found that when introduces a birefringence in the single-mode fiber, the polarization state changes caused by the birefringence is far greater than the random polarization state changes, then the external disturbance is completely submerged, finally the polarization can be controlled and stabilized. Through the fine design of the fiber structure, if the birefringence is high enough to achieve the separation of the two polarization states, the fiber will have a different cut-off mechanism to eliminate polarization which is not need, which will realize single mode single polarization transmission in a band. In this paper, different types of single polarization fiber design are presented and the application of these fibers are also discussed.

  6. Scalable multi-segment phase mask for spatial power splitting and mode division demultiplexing

    NARCIS (Netherlands)

    Chen, H.; Koonen, A.M.J.

    2013-01-01

    Multi-segment Phase Mask (MSPM) designs for spatial power splitting and mode division demultiplexing are verified through simulation and experiments. Coupler insertion loss and mode dependent loss are calculated. A spatial light modulator is used to emulate the proposed MSPMs.

  7. Super power generators

    International Nuclear Information System (INIS)

    Martin, T.H.; Johnson, D.L.; McDaniel, D.H.

    1977-01-01

    PROTO II, a super power generator, is presently undergoing testing at Sandia Laboratories. It has operated with an 80 ns, 50 ns, 35 ns, and 20 ns positive output pulse high voltage mode and achieved total current rates of rise of 4 x 10 14 A/s. The two sided disk accelerator concept using two diodes has achieved voltages of 1.5 MV and currents of 4.5 MA providing a power exceeding 6 TW in the electron beam and 8 TW in the transmission lines. A new test bed named MITE (Magnetically Insulated Transmission Experiment) was designed and is now being tested. The pulse forming lines are back to back short pulse Blumleins which use untriggered water switching. Output data showing a ten ns half width power pulse peaking above one terrawatt were obtained. MITE is a module being investigated for use in the Electron Beam Fusion Accelerator and will be used to test the effects of short pulses propagating down vacuum transmission lines

  8. New method for designing serial resonant power converters

    Science.gov (United States)

    Hinov, Nikolay

    2017-12-01

    In current work is presented one comprehensive method for design of serial resonant energy converters. The method is based on new simplified approach in analysis of such kind power electronic devices. It is grounded on supposing resonant mode of operation when finding relation between input and output voltage regardless of other operational modes (when controlling frequency is below or above resonant frequency). This approach is named `quasiresonant method of analysis', because it is based on assuming that all operational modes are `sort of' resonant modes. An estimation of error was made because of the a.m. hypothesis and is compared to the classic analysis. The `quasiresonant method' of analysis gains two main advantages: speed and easiness in designing of presented power circuits. Hence it is very useful in practice and in teaching Power Electronics. Its applicability is proven with mathematic modelling and computer simulation.

  9. Endurance training decreases the non-linearity in the oxygen uptake-power output relationship in humans.

    Science.gov (United States)

    Majerczak, Joanna; Korostynski, Michal; Nieckarz, Zenon; Szkutnik, Zbigniew; Duda, Krzysztof; Zoladz, Jerzy A

    2012-03-01

    In this study, we hypothesized that 5 weeks of cycling endurance training can decrease the magnitude of the non-proportional increase in oxygen uptake (V(O(2))) to power output relationship (V(O(2)) 'excess') at exercise intensities exceeding the lactate threshold (LT). Ten untrained, physically active men performed a bout of incremental cycling exercise until exhaustion before and after training. The mitochondrial DNA copy number, myosin heavy chain composition and content of uncoupling protein 3 and sarcoplasmic reticulum Ca(2+)-ATPases (SERCAs) were analysed in muscle biopsies taken from vastus lateralis before and after training. The training resulted in an enhancement of the power-generating capabilities at maximal oxygen uptake (V(O(2)max)) by ∼7% (P = 0.002) despite there being no changes in V(O(2)max) (P = 0.49). This effect was due to a considerable reduction in the magnitude of the V(O(2)) 'excess' (P 0.05) were found after training. We conclude that the training-induced increase in power-generating capabilities at V(O(2)max) was due to attenuation of the V(O(2)) 'excess' above the LT. This adaptive response seems to be related to the improvement of muscle metabolic stability, as judged by a lowering of plasma ammonia concentration. The enhancement of muscle metabolic stability after training could be caused by a decrease in ATP usage at a given power output owing to downregulation of SERCA2 pumps.

  10. Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique

    International Nuclear Information System (INIS)

    Feili, Hamid Reza; Akar, Navid; Lotfizadeh, Hossein; Bairampour, Mohammad; Nasiri, Sina

    2013-01-01

    Highlights: • Using Failure Modes and Effects Analysis (FMEA) to find potential failures in geothermal power plants. • We considered 5 major parts of geothermal power plants for risk analysis. • Risk Priority Number (RPN) is calculated for all failure modes. • Corrective actions are recommended to eliminate or decrease the risk of failure modes. - Abstract: Renewable energy plays a key role in the transition toward a low carbon economy and the provision of a secure supply of energy. Geothermal energy is a versatile source as a form of renewable energy that meets popular demand. Since some Geothermal Power Plants (GPPs) face various failures, the requirement of a technique for team engineering to eliminate or decrease potential failures is considerable. Because no specific published record of considering an FMEA applied to GPPs with common failure modes have been found already, in this paper, the utilization of Failure Modes and Effects Analysis (FMEA) as a convenient technique for determining, classifying and analyzing common failures in typical GPPs is considered. As a result, an appropriate risk scoring of occurrence, detection and severity of failure modes and computing the Risk Priority Number (RPN) for detecting high potential failures is achieved. In order to expedite accuracy and ability to analyze the process, XFMEA software is utilized. Moreover, 5 major parts of a GPP is studied to propose a suitable approach for developing GPPs and increasing reliability by recommending corrective actions for each failure mode

  11. Photovoltaic array: Power conditioner interface characteristics

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  12. Improving power grid transient stability by plug-in electric vehicles

    International Nuclear Information System (INIS)

    Gajduk, Andrej; Kocarev, Ljupco; Todorovski, Mirko; Kurths, Juergen

    2014-01-01

    Plug-in electric vehicles (PEVs) can serve in discharge mode as distributed energy and power resources operating as vehicle-to-grid (V2G) devices and in charge mode as loads or grid-to-vehicle devices. It has been documented that PEVs serving as V2G systems can offer possible backup for renewable power sources, can provide reactive power support, active power regulation, load balancing, peak load shaving, can reduce utility operating costs and can generate revenue. Here we show that PEVs can even improve power grid transient stability, that is, stability when the power grid is subjected to large disturbances, including bus faults, generator and branch tripping, and sudden large load changes. A control strategy that regulates the power output of a fleet of PEVs based on the speed of generator turbines is proposed and tested on the New England 10-unit 39-bus power system. By regulating the power output of the PEVs we show that (1) speed and voltage fluctuations resulting from large disturbances can be significantly reduced up to five times, and (2) the critical clearing time can be extended by 20–40%. Overall, the PEVs control strategy makes the power grid more robust. (paper)

  13. Highly efficient 400  W near-fundamental-mode green thin-disk laser.

    Science.gov (United States)

    Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou

    2016-01-01

    We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.

  14. A multi-channel AC power supply controller

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Ma Xiaoli; Zhou Bo; Yin Weiwei

    2003-01-01

    A multi-channel ac power supply controller developed recently by authors is introduced briefly in this paper. This controller is a computer controlled multi-electronic-switch device. This controller was developed for the automatic control and monitoring system of a 220 V ac power supply system, it is a key front-end device of the automatic control and monitoring system. There is an electronic switch in each channel, the rated load power is ≤1 kW/each channel. Another function is to sample the 220 V ac output voltage so that computer can monitor the operation state of each electronic switch. Through these switches, the 220 V ac power supply is applied to some device or apparatus that need to be powered by 220 V ac power supply. In the design, a solid-state relay was employed as an electronic switch. This controller can be connected in cascade mode. There are 8 boxes at most can be connected in cascade mode. The length of control word is 8 bit, which contains addressing information and electronic switch state setting information. The sampling output of the controller is multiplexed. It is only one bit that indicates the operating state of an electronic switch. This controller has been used in an automatic control and monitoring system for 220 V ac power supply system

  15. Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus; Crunteanu, A.; Jelinek, M.

    2003-01-01

    Rib waveguides have been fabricated in pulsed-laser-deposited Ti:sapphire layers using photolithographic patterning and subsequent Ar+-beam milling. Fluorescence output powers up to 300 W have been observed from the ribs following excitation by a 3-W multiline argon laser. Mode intensity profiles

  16. Information needs in nuclear power plants during low power operation modes

    Energy Technology Data Exchange (ETDEWEB)

    Tommila, Teemu; Fantoni, Paolo F.; Zander, Ralf M.

    1998-02-01

    During the past few years an increasing attention has been paid to the safety of shutdown and refuelling operations. It has turned out that the risks during shutdown may be comparable to the risks of power operation. The goal of this report is to identify information requirements related to low power operating modes of nuclear power plants. These include, for example, warm and cold shutdowns, refuelling and maintenance, as well as related state transitions such as start-up and shut-down. The focus of the report is on planned refuelling outages and the role of the control room in managing the outage activities. As a starting point, the basic terminology and characteristics of low power operation are discussed. The current situation at nuclear power plants and some recent developments in information technology are reviewed. End-users' requirements and enabling technologies are combined in order to identify the opportunities for new information technology tools in low power operation. The required features of process control systems and maintenance information systems are described. Common plant modelling techniques, open software architectures and functional structuring of the process control system are suggested to be the key issues in the long-term development of operator support systems. On a shorter time scale, new tools solving limited practical problems should be developed and evaluated. This would provide a basis for the features needed for low power operation, including for example, outage planning, on-line risk monitoring, management of outage tasks, adaptive alarm handling, computerised procedures and task-oriented human interfaces. (author)

  17. The H-mode power threshold in JET

    Energy Technology Data Exchange (ETDEWEB)

    Start, D F.H.; Bhatnagar, V P; Campbell, D J; Cordey, J G; Esch, H P.L. de; Gormezano, C; Hawkes, N; Horton, L; Jones, T T.C.; Lomas, P J; Lowry, C; Righi, E; Rimini, F G; Saibene, G; Sartori, R; Sips, G; Stork, D; Thomas, P; Thomsen, K; Tubbing, B J.D.; Von Hellermann, M; Ward, D J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    New H-mode threshold data over a range of toroidal field and density values have been obtained from the present campaign. The scaling with n{sub e} B{sub t} is almost identical with that of the 91/92 period for the same discharge conditions. The scaling with toroidal field alone gives somewhat higher thresholds than the older data. The 1991/2 database shows a scaling of P{sub th} (power threshold) with n{sub e} B{sub t} which is approximately linear and agrees well with that observed on other tokamaks. For NBI and carbon target tiles the threshold power is a factor of two higher with the ion {Nu}B drift away from the target compared with the value found with the drift towards the target. The combination of ICRH and beryllium tiles appears to be beneficial for reducing P{sub th}. The power threshold is largely insensitive to plasma current, X-point height and distance between the last closed flux surface and the limiter, at least for values greater than 2 cm. (authors). 3 refs., 6 figs.

  18. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  19. Duplicating MC-15 Output with Python and MCNP

    Energy Technology Data Exchange (ETDEWEB)

    McSpaden, Alexander Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-23

    Two Python scripts have been written that process the output files of MCNP6 into a format that mimics the list-mode output of Los Alamos National Laboratory’s MC-15 and NPOD neutron detection systems. This report details the methods implemented in these scripts and instructions on their use.

  20. Chaos in high-power high-frequency gyrotrons

    International Nuclear Information System (INIS)

    Airila, M.

    2004-01-01

    Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D