WorldWideScience

Sample records for mlc leaf position

  1. Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC

    International Nuclear Information System (INIS)

    Rangel, Alejandra; Dunscombe, Peter

    2009-01-01

    The objective determination of performance standards for radiation therapy equipment requires, ideally, establishing the quantitative relationship between performance deviations and clinical outcome or some acceptable surrogate. In this simulation study the authors analyzed the dosimetric impact of random (leaf by leaf) and systematic (entire leaf bank) errors in the position of the MLC leaves on seven clinical prostate and seven clinical head and neck IMRT plans delivered using a dynamic MLC. In-house software was developed to incorporate normally distributed errors of up to ±2 mm in individual leaf position or systematic errors (±1 and ±0.5 mm in all leaves of both leaf banks or +1 mm in one bank only) into the 14 plans, thus simulating treatment delivery using a suboptimally performing MLC. The dosimetric consequences of suboptimal MLC performance were quantified using the equivalent uniform doses (EUDs) of the clinical target volumes and important organs at risk (OARs). The deviation of the EUDs of the selected structures as the performance of the MLC deteriorated was used as the objective surrogate of clinical outcome. Random errors of 2 mm resulted in negligible changes for all structures of interest in both sites. In contrast, systematic errors can lead to potentially significant dosimetric changes that may compromise clinical outcome. If a 2% change in EUD of the target and 2 Gy for the OARs were adopted as acceptable levels of deviation in dose due to MLC effects alone, then systematic errors in leaf position will need to be limited to 0.3 mm. This study provides guidance, based on a dosimetric surrogate of clinical outcome, for the development of one component, leaf position accuracy of performance standards for multileaf collimators.

  2. Evaluation of two methods of predicting MLC leaf positions using EPID measurements

    International Nuclear Information System (INIS)

    Parent, Laure; Seco, Joao; Evans, Phil M.; Dance, David R.; Fielding, Andrew

    2006-01-01

    In intensity modulated radiation treatments (IMRT), the position of the field edges and the modulation within the beam are often achieved with a multileaf collimator (MLC). During the MLC calibration process, due to the finite accuracy of leaf position measurements, a systematic error may be introduced to leaf positions. Thereafter leaf positions of the MLC depend on the systematic error introduced on each leaf during MLC calibration and on the accuracy of the leaf position control system (random errors). This study presents and evaluates two methods to predict the systematic errors on the leaf positions introduced during the MLC calibration. The two presented methods are based on a series of electronic portal imaging device (EPID) measurements. A comparison with film measurements showed that the EPID could be used to measure leaf positions without introducing any bias. The first method, referred to as the 'central leaf method', is based on the method currently used at this center for MLC leaf calibration. It mimics the manner in which leaf calibration parameters are specified in the MLC control system and consequently is also used by other centers. The second method, a new method proposed by the authors and referred to as the ''individual leaf method,'' involves the measurement of two positions for each leaf (-5 and +15 cm) and the interpolation and extrapolation from these two points to any other given position. The central leaf method and the individual leaf method predicted leaf positions at prescribed positions of -11, 0, 5, and 10 cm within 2.3 and 1.0 mm, respectively, with a standard deviation (SD) of 0.3 and 0.2 mm, respectively. The individual leaf method provided a better prediction of the leaf positions than the central leaf method. Reproducibility tests for leaf positions of -5 and +15 cm were performed. The reproducibility was within 0.4 mm on the same day and 0.4 mm six weeks later (1 SD). Measurements at gantry angles of 0 deg., 90 deg., and 270 deg

  3. SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error

    Energy Technology Data Exchange (ETDEWEB)

    Ju, S; Hong, C; Kim, M; Chung, K; Kim, J; Han, Y; Ahn, S; Chung, S; Shin, E; Shin, J; Kim, H; Kim, D; Choi, D [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed without the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.

  4. A quantitative method to the analysis of MLC leaf position and speed based on EPID and EBT3 film for dynamic IMRT treatment with different types of MLC.

    Science.gov (United States)

    Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Wang, Bin; Liu, Xiaowei

    2017-07-01

    A quantitative method based on the electronic portal imaging system (EPID) and film was developed for MLC position and speed testing; this method was used for three MLC types (Millennium, MLCi, and Agility MLC). To determine the leaf position, a picket fence designed by the dynamic (DMLC) model was used. The full-width half-maximum (FWHM) values of each gap measured by EPID and EBT3 were converted to the gap width using the FWHM versus nominal gap width relationship. The algorithm developed for the picket fence analysis was able to quantify the gap width, the distance between gaps, and each individual leaf position. To determine the leaf speed, a 0.5 × 20 cm 2 MLC-defined sliding gap was applied across a 14 × 20 cm 2 symmetry field. The linacs ran at a fixed-dose rate. The use of different monitor units (MUs) for this test led to different leaf speeds. The effect of leaf transmission was considered in a speed accuracy analysis. The difference between the EPID and film results for the MLC position is less than 0.1 mm. For the three MLC types, twice the standard deviation (2 SD) is provided; 0.2, 0.4, and 0.4 mm for gap widths of three MLC types, and 0.1, 0.2, and 0.2 mm for distances between gaps. The individual leaf positions deviate from the preset positions within 0.1 mm. The variations in the speed profiles for the EPID and EBT3 results are consistent, but the EPID results are slightly better than the film results. Different speeds were measured for each MLC type. For all three MLC types, speed errors increase with increasing speed. The analysis speeds deviate from the preset speeds within approximately 0.01 cm s -1 . This quantitative analysis of MLC position and speed provides an intuitive evaluation for MLC quality assurance (QA). © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. Improving IMRT-plan quality with MLC leaf position refinement post plan optimization

    International Nuclear Information System (INIS)

    Niu Ying; Zhang Guowei; Berman, Barry L.; Parke, William C.; Yi Byongyong; Yu, Cedric X.

    2012-01-01

    Purpose: In intensity-modulated radiation therapy (IMRT) planning, reducing the pencil-beam size may lead to a significant improvement in dose conformity, but also increase the time needed for the dose calculation and plan optimization. The authors develop and evaluate a postoptimization refinement (POpR) method, which makes fine adjustments to the multileaf collimator (MLC) leaf positions after plan optimization, enhancing the spatial precision and improving the plan quality without a significant impact on the computational burden. Methods: The authors’ POpR method is implemented using a commercial treatment planning system based on direct aperture optimization. After an IMRT plan is optimized using pencil beams with regular pencil-beam step size, a greedy search is conducted by looping through all of the involved MLC leaves to see if moving the MLC leaf in or out by half of a pencil-beam step size will improve the objective function value. The half-sized pencil beams, which are used for updating dose distribution in the greedy search, are derived from the existing full-sized pencil beams without need for further pencil-beam dose calculations. A benchmark phantom case and a head-and-neck (HN) case are studied for testing the authors’ POpR method. Results: Using a benchmark phantom and a HN case, the authors have verified that their POpR method can be an efficient technique in the IMRT planning process. Effectiveness of POpR is confirmed by noting significant improvements in objective function values. Dosimetric benefits of POpR are comparable to those of using a finer pencil-beam size from the optimization start, but with far less computation and time. Conclusions: The POpR is a feasible and practical method to significantly improve IMRT-plan quality without compromising the planning efficiency.

  6. Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer

    International Nuclear Information System (INIS)

    Mu, G; Ludlum, E; Xia, P

    2008-01-01

    The dosimetric impact of random and systematic multi-leaf collimator (MLC) leaf position errors is relatively unknown for head and neck intensity-modulated radiotherapy (IMRT) patients. In this report we studied 17 head and neck IMRT patients, including 12 treated with simple plans ( 100 segments). Random errors (-2 to +2 mm) and systematic errors (±0.5 mm and ±1 mm) in MLC leaf positions were introduced into the clinical plans and the resultant dose distributions were analyzed based on defined endpoint doses. The dosimetric effect was insignificant for random MLC leaf position errors up to 2 mm for both simple and complex plans. However, for systematic MLC leaf position errors, we found significant dosimetric differences between the simple and complex IMRT plans. For 1 mm systematic error, the average changes in D 95% were 4% in simple plans versus 8% in complex plans. The average changes in D 0.1cc of the spinal cord and brain stem were 4% in simple plans versus 12% in complex plans. The average changes in parotid glands were 9% in simple plans versus 13% for the complex plans. Overall, simple IMRT plans are less sensitive to leaf position errors than complex IMRT plans

  7. Quality assurance of MLC leaf position accuracy and relative dose effect at the MLC abutment region using an electronic portal imaging device

    International Nuclear Information System (INIS)

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Koizumi, Masahiko; Ogata, Toshiyuki; Takahashi, Yutaka; Yoshioka, Yasuo

    2012-01-01

    We investigated an electronic portal image device (EPID)-based method to see whether it provides effective and accurate relative dose measurement at abutment leaves in terms of positional errors of the multi-leaf collimator (MLC) leaf position. A Siemens ONCOR machine was used. For the garden fence test, a rectangular field (0.2x20 cm) was sequentially irradiated 11 times at 2-cm intervals. Deviations from planned leaf positions were calculated. For the nongap test, relative doses at the MLC abutment region were evaluated by sequential irradiation of a rectangular field (2x20 cm) 10 times with a MLC separation of 2 cm without a leaf gap. The integral signal in a region of interest was set to position A (between leaves) and B (neighbor of A). A pixel value at position B was used as background and the pixel ratio (A/Bx100) was calculated. Both tests were performed at four gantry angles (0, 90, 180 and 270deg) four times over 1 month. For the nongap test the difference in pixel ratio between the first and last period was calculated. Regarding results, average deviations from planned positions with the garden fence test were within 0.5 mm at all gantry angles, and at gantry angles of 90 and 270deg tended to decrease gradually over the month. For the nongap test, pixel ratio tended to increase gradually in all leaves, leading to a decrease in relative doses at abutment regions. This phenomenon was affected by both gravity arising from the gantry angle, and the hardware-associated contraction of field size with this type of machine. (author)

  8. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Sen; Li, Guangjun; Wang, Maojie; Jiang, Qinfeng; Zhang, Yingjie [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wei, Yuquan, E-mail: yuquawei@vip.sina.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2013-07-01

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.

  9. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NARCIS (Netherlands)

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-01-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter

  10. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NARCIS (Netherlands)

    Visser, Ruurd; J., Godart; Wauben, D.J.L.; Langendijk, J.; van 't Veld, A.A.; Korevaar, E.W.

    2016-01-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a

  11. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  12. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  13. Calibration and quality assurance for rounded leaf-end MLC systems

    International Nuclear Information System (INIS)

    Graves, Maria N.; Thompson, Antoinette V.; Martel, Mary K.; McShan, Daniel L.; Fraass, Benedick A.

    2001-01-01

    Multileaf collimator (MLC) systems are available on most commercial linear accelerators, and many of these MLC systems utilize a design with rounded leaf ends and linear motion of the leaves. In this kind of system, the agreement between the digital MLC position readouts and the light field or radiation field edges must be achieved with software, since the leaves do not move in a focused motion like that used for most collimator jaw systems. In this work we address a number of the calibration and quality assurance issues associated with the acceptance, commissioning, and routine clinical use of this type of MLC system. These issues are particularly important for MLCs used for various types of intensity modulated radiation therapy (IMRT) and small, conformal fields. For rounded leaf end MLCs, it is generally not possible to make both the light and radiation field edges agree with the digital readout, so differences between the two kinds of calibrations are illustrated in this work using one vendor's MLC system. It is increasingly critical that the MLC leaf calibration be very consistent with the radiation field edges, so in this work a methodology for performing accurate radiation field size calibration is discussed. A system external to the vendor's MLC control system is used to correct or handle limitations in the MLC control system. When such a system of corrections is utilized, it is found that the MLC radiation field size can be defined with an accuracy of approximately 0.3 mm, much more accurate than most vendor's specifications for MLC accuracy. Quality assurance testing for such a calibration correction system is also demonstrated

  14. Influence of MLC leaf width on biologically adapted IMRT plans

    Energy Technology Data Exchange (ETDEWEB)

    Roedal, Jan; Soevik, Aaste; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway)), E-mail: jan.rodal@radiumhospitalet.no

    2010-10-15

    Introduction. High resolution beam delivery may be required for optimal biology-guided adaptive therapy. In this work, we have studied the influence of multi leaf collimator (MLC) leaf widths on the treatment outcome following adapted IMRT of a hypoxic tumour. Material and methods. Dynamic contrast enhanced MR images of a dog with a spontaneous tumour in the nasal region were used to create a tentative hypoxia map following a previously published procedure. The hypoxia map was used as a basis for generating compartmental gross tumour volumes, which were utilised as planning structures in biologically adapted IMRT. Three different MLCs were employed in inverse treatment planning, with leaf widths of 2.5 mm, 5 mm and 10 mm. The number of treatment beams and the degree of step-and-shoot beam modulation were varied. By optimising the tumour control probability (TCP) function, optimal compartmental doses were derived and used as target doses in the inverse planning. Resulting IMRT dose distributions and dose volume histograms (DVHs) were exported and analysed, giving estimates of TCP and compartmental equivalent uniform doses (EUDs). The impact of patient setup accuracy was simulated. Results. The MLC with the smallest leaf width (2.5 mm) consistently gave the highest TCPs and compartmental EUDs, assuming no setup error. The difference between this MLC and the 5 mm MLC was rather small, while the MLC with 10 mm leaf width gave considerably lower TCPs. When including random and systematic setup errors, errors larger than 5 mm gave only small differences between the MLC types. For setup errors larger than 7 mm no differences were found between non-uniform and uniform dose distributions. Conclusions. Biologically adapted radiotherapy may require MLCs with leaf widths smaller than 10 mm. However, for a high probability of cure it is crucial that accurate patient setup is ensured.

  15. Hyperbolic projections of siemens 3d-mlc leaf paths

    International Nuclear Information System (INIS)

    Menzies, N.

    2004-01-01

    Full text: The Siemens Primus linear accelerator has the option of being fitted with a multi-leaf collimator (3D-MLC) that is marketed as having 'double focus', to achieve a constant dose penumbra for all leaf settings. This is achieved by moving the leaves through arcs (similar to some conventional collimator jaws), as well as shaping the leaf side-faces as divergent planes from the x-ray source. One consequence of the mechanical design of the 3D-MLC is that as individual leaves are moved, their projections from the light / x-ray source to the treatment plane follow paths that are hyperbolic, as shown in the figure below. (The eccentricity of the hyperbola is a function of leaf number / distance from centre.) The trajectories of the MLC leaves were modelled (in a spreadsheet) using geometrical projections of the MLC leaves to the treatment plane, with construction details provided in Siemens documentation. The results were checked against the image of the leaf in the linac light field. This problem belongs to the class of conic sections in mathematics, where the intersection of a plane with both nappes of a double right circular cone results in a hyperbola. The good agreement between the model and the light field image provided confirmation of the MLC construction details. AS/NZS 4434.1:1996 (reproduced from IEC 976:1989) provides specifications for maximum deviation from orthogonality of adjacent edges, which can be interpreted for MLC collimators to parallelism of the direction of leaf travel and the adjacent collimator edge (e.g. Elekta ATS). However for the Siemens 'double focused' MLC, it is demonstrated that the geometrical construction of the MLC militates against the leaf image being used for this kind of test. It is also demonstrated that at last one commercial treatment planning system models the Siemens leaf trajectories linearly. The clinical significance of the error in this model is shown to be negligible. Copyright (2004) Australasian College of

  16. Results of daily monitoring of positioning MLC multi leaf collimator for Siemens 160 with an array of cameras; Resultados de control diario del poscionamiento del colimador multilaminas 160 MLC de Siemens mediante un array de camaras

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fernandez, A.; Rodriguez Rodriguez, C.; Martin Martin, G.; Saez Beltran, M.

    2011-07-01

    Modern techniques of radiotherapy, and in particular the intensity-modulated radiotherapy (IMRT), require sub-millimeter accuracy in the positioning of multi leaf collimators to ensure that patients receive the prescribed dose. It is difficult to include checks of positioning accuracy as high on the agendas of regular monitoring of the accelerators of a hospital. This paper presents the results of a method that enables rapid verification of the position of the sheets with an accuracy of tenths of a millimeter by using an ionization chamber array. The procedure has been applied to the daily control of the two accelerators of our service for 12 months.

  17. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  18. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors

    International Nuclear Information System (INIS)

    Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter

    2010-01-01

    Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets (±1 mm in two banks, ±0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  19. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter [Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2, Canada and Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada) and Department of Oncology, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada)

    2010-07-15

    Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets ({+-}1 mm in two banks, {+-}0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  20. SU-E-T-646: Quality Assurance of Truebeam Multi-Leaf Collimator Using a MLC QA Phantom

    International Nuclear Information System (INIS)

    Zhang, J; Lu, J; Hong, D

    2015-01-01

    Purpose: To perform a routine quality assurance procedure for Truebeam multi-leaf collimator (MLC) using MLC QA phantom, verify the stability and reliability of MLC during the treatment. Methods: MLC QA phantom is a specialized phantom for MLC quality assurance (QA), and contains five radio-opaque spheres that are embedded in an “L” shape. The phantom was placed isocentrically on the Truebeam treatment couch for the tests. A quality assurance plan was setted up in the Eclipse v10.0, the fields that need to be delivered in order to acquire the necessary images, the MLC shapes can then be obtained by the images. The images acquired by the electronic portal imaging device (EPID), and imported into the PIPSpro software for the analysis. The tests were delivered twelve weeks (once a week) to verify consistency of the delivery, and the images are acquired in the same manner each time. Results: For the Leaf position test, the average position error was 0.23mm±0.02mm (range: 0.18mm∼0.25mm). The Leaf width was measured at the isocenter, the average error was 0.06mm±0.02mm (range: 0.02mm∼0.08mm) for the Leaf width test. Multi-Port test showed the dynamic leaf shift error, the average error was 0.28mm±0.03mm (range: 0.2mm∼0.35mm). For the leaf transmission test, the average inter-leaf leakage value was 1.0%±0.17% (range: 0.8%∼1.3%) and the average inter-bank leakage value was 32.6%±2.1% (range: 30.2%∼36.1%). Conclusion: By the test of 12 weeks, the MLC system of the Truebeam is running in a good condition and the MLC system can be steadily and reliably carried out during the treatment. The MLC QA phantom is a useful test tool for the MLC QA

  1. Dosimetric impact of systematic MLC positional errors on step and shoot IMRT for prostate cancer: a planning study

    International Nuclear Information System (INIS)

    Ung, N.M.; Wee, L.; Harper, C.S.

    2010-01-01

    Full text: The positional accuracy of multi leaf collimators (MLC) is crucial in ensuring precise delivery of intensity-modulated radiotherapy (IMRT). The aim of this planning study was to investigate the dosimetric impact of systematic MLC errors on step and shoot IMRT of prostate cancer. Twelve MLC leaf banks perturbations were introduced to six prostate IMRT treatment plans to simulate MLC systematic errors. Dose volume histograms (OYHs) were generated for the extraction of dose endpoint parameters. Plans were evaluated in terms of changes to the defined endpoint dose parameters, conformity index (CI) and healthy tissue avoidance (HTA) to planning target volume (PTY), rectum and bladder. Negative perturbations of MLC had been found to produce greater changes to endpoint dose parameters than positive perturbations of MLC (p < 0.05). Negative and positive synchronized MLC perturbations of I mm resulted in median changes of -2.32 and 1.78%, respectively to 095% of PTY whereas asynchronized MLC perturbations of the same direction and magnitude resulted in median changes of 1.18 and 0.90%, respectively. Doses to rectum were generally more sensitive to systematic MLC errors compared to bladder. Synchronized MLC perturbations of I mm resulted in median changes of endpoint dose parameters to both rectum and bladder from about I to 3%. Maximum reduction of -4.44 and -7.29% were recorded for CI and HTA, respectively, due to synchronized MLC perturbation of I mm. In summary, MLC errors resulted in measurable amount of dose changes to PTY and surrounding critical structures in prostate LMRT. (author)

  2. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    International Nuclear Information System (INIS)

    Moore, Douglas; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for the trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al

  3. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Ruan, Dan [Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2016-01-15

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for the trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al

  4. SU-F-T-469: A Clinically Observed Discrepancy Between Image-Based and Log- Based MLC Position

    Energy Technology Data Exchange (ETDEWEB)

    Neal, B; Ahmed, M; Siebers, J [University of Virginia Health System, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To present a clinical case which challenges the base assumption of log-file based QA, by showing that the actual position of a MLC leaf can suddenly deviate from its programmed and logged position by >1 mm as observed with real-time imaging. Methods: An EPID-based exit-fluence dosimetry system designed to prevent gross delivery errors was used in cine mode to capture portal images during treatment. Visual monitoring identified an anomalous MLC leaf pair gap not otherwise detected by the automatic position verification. The position of the erred leaf was measured on EPID images and log files were analyzed for the treatment in question, the prior day’s treatment, and for daily MLC test patterns acquired on those treatment days. Additional standard test patterns were used to quantify the leaf position. Results: Whereas the log file reported no difference between planned and recorded positions, image-based measurements showed the leaf to be 1.3±0.1 mm medial from the planned position. This offset was confirmed with the test pattern irradiations. Conclusion: It has been clinically observed that log-file derived leaf positions can differ from their actual positions by >1 mm, and therefore cannot be considered to be the actual leaf positions. This cautions the use of log-based methods for MLC or patient quality assurance without independent confirmation of log integrity. Frequent verification of MLC positions through independent means is a necessary precondition to trusting log file records. Intra-treatment EPID imaging provides a method to capture departures from MLC planned positions. Work was supported in part by Varian Medical Systems.

  5. Dosimetric impact of systematic MLC positional errors on step and shoot IMRT for prostate cancer: a planning study

    International Nuclear Information System (INIS)

    Ung, N.M.; Harper, C.S.; Wee, L.

    2011-01-01

    Full text: The positional accuracy of multileaf collimators (MLC) is crucial in ensuring precise delivery of intensity-modulated radiotherapy (IMRT). The aim of this planning study was to investigate the dosimetric impact of systematic MLC positional errors on step and shoot IMRT of prostate cancer. A total of 12 perturbations of MLC leaf banks were introduced to six prostate IMRT treatment plans to simulate MLC systematic positional errors. Dose volume histograms (DVHs) were generated for the extraction of dose endpoint parameters. Plans were evaluated in terms of changes to the defined endpoint dose parameters, conformity index (CI) and healthy tissue avoidance (HTA) to planning target volume (PTV), rectum and bladder. Negative perturbations of MLC had been found to produce greater changes to endpoint dose parameters than positive perturbations of MLC (p 9 5 of -1.2 and 0.9% respectively. Negative and positive synchronised MLC perturbations of I mm in one direction resulted in median changes in D 9 5 of -2.3 and 1.8% respectively. Doses to rectum were generally more sensitive to systematic MLC en-ors compared to bladder (p < 0.01). Negative and positive synchronised MLC perturbations of I mm in one direction resulted in median changes in endpoint dose parameters of rectum and bladder from 1.0 to 2.5%. Maximum reduction of -4.4 and -7.3% were recorded for conformity index (CI) and healthy tissue avoidance (HT A) respectively due to synchronised MLC perturbation of 1 mm. MLC errors resulted in dosimetric changes in IMRT plans for prostate. (author)

  6. SU-F-T-303: Quantification of MLC Positioning Accuracy in VMAT Delivery of Head and Neck Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Yang, F [University Of Miami, Miami, FL (United States)

    2016-06-15

    Purpose: Knowing MLC leaf positioning error over the course of treatment would be valuable for treatment planning, QA design, and patient safety. The objective of the current study was to quantify the MLC positioning accuracy for VMAT delivery of head and neck treatment plans. Methods: A total of 837 MLC log files were collected from 14 head and neck cancer patients undergoing full arc VMAT treatment on one Varian Trilogy machine. The actual and planned leaf gaps were extracted from the retrieved MLC log files. For a given patient, the leaf gap error percentage (LGEP), defined as the ratio of the actual leaf gap over the planned, was evaluated for each leaf pair at all the gantry angles recorded over the course of the treatment. Statistics describing the distribution of the largest LGEP (LLGEP) of the 60 leaf pairs including the maximum, minimum, mean, Kurtosis, and skewness were evaluated. Results: For the 14 studied patients, their PTV located at tonsil, base of tongue, larynx, supraglottis, nasal cavity, and thyroid gland with volume ranging from 72.0 cm{sup 3} to 602.0 cm{sup 3}. The identified LLGEP differed between patients. It ranged from 183.9% to 457.7% with a mean of 368.6%. For the majority of the patients, the LLGEP distributions peaked at non-zero positions and showed no obvious dependence on gantry rotations. Kurtosis and skewness, with minimum/maximum of 66.6/217.9 and 6.5/12.6, respectively, suggested relatively more peaked while right-skewed leaf error distribution pattern. Conclusion: The results indicate pattern of MLC leaf gap error differs between patients of lesion located at similar anatomic site. Understanding the systemic mechanisms underlying these observed error patterns necessitates examining more patient-specific plan parameters in a large patient cohort setting.

  7. Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC)

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, F C P du; Leal, A; Stathakis, S; Xiong, W; Ma, C-M [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States)

    2006-04-21

    A study is presented that characterizes megavoltage electron beams delivered through an existing double-focused photon multi-leaf collimator (pMLC) using film measurements in a solid water phantom. Machine output stability and linearity were evaluated as well as the effect of source-to-surface distance (SSD) and field size on the penumbra for electron energies between 6 and 18 MeV over an SSD range of 60-100 cm. Penumbra variations as a function of field size, depth of measurement and the influence of the jaws were also studied. Field abutment, field flatness and target coverage for segmented beams were also addressed. The measured field size for electrons transported through the pMLC was the same as that for an x-ray beam up to SSDs of 70 cm. At larger SSD, the lower energy electron fields deviated from the projected field. Penumbra data indicated that 60 cm SSD was the most favourable treatment distance. Backprojection of P{sub 20-80} penumbra data yielded a virtual source position located at 98.9 cm from the surface for 18 MeV electrons. For 6 MeV electrons, the virtual source position was at a distance of 82.6 cm. Penumbra values were smaller for small beam slits and reached a near-constant value for field widths larger than 5 cm. The influence of the jaws had a small effect on the penumbra. The R{sub 90} values ranged from 1.4 to 4.8 cm between 6 and 21 MeV as measured at 60 cm SSD for a 9 x 9 cm{sup 2} field. Uniformity and penumbra improvement could be demonstrated using weighted abutted fields especially useful for small segments. No detectable electron leakage through the pMLC was observed. Bremsstrahlung measurements taken at 60 cm SSD for a 9 x 9 cm{sup 2} field as shaped by the pMLC compared within 1% to bremsstrahlung measurements taken at 100 cm SSD for a 10 x 10 cm{sup 2} electron applicator field at 100 cm SSD.

  8. Leaf transmission reduction using moving jaws for dynamic MLC IMRT

    International Nuclear Information System (INIS)

    Schmidhalter, D.; Fix, M. K.; Niederer, P.; Mini, R.; Manser, P.

    2007-01-01

    The aim of this work is to investigate to what extent it is possible to use the secondary collimator jaws to reduce the transmitted radiation through the multileaf collimator (MLC) during an intensity modulated radiation therapy (IMRT). A method is developed and introduced where the jaws follow the open window of the MLC dynamically (dJAW method). With the aid of three academic cases (Closed MLC, Sliding-gap, and Chair) and two clinical cases (prostate and head and neck) the feasibility of the dJAW method and the influence of this method on the applied dose distributions are investigated. For this purpose the treatment planning system Eclipse and the Research-Toolbox were used as well as measurements within a solid water phantom were performed. The transmitted radiation through the closed MLC leads to an inhomogeneous dose distribution. In this case, the measured dose within a plane perpendicular to the central axis differs up to 40% (referring to the maximum dose within this plane) for 6 and 15 MV. The calculated dose with Eclipse is clearly more homogeneous. For the Sliding-gap case this difference is still up to 9%. Among other things, these differences depend on the depth of the measurement within the solid water phantom and on the application method. In the Chair case, the dose in regions where no dose is desired is locally reduced by up to 50% using the dJAW method instead of the conventional method. The dose inside the chair-shaped region decreased up to 4% if the same number of monitor units (MU) as for the conventional method was applied. The undesired dose in the volume body minus the planning target volume in the clinical cases prostate and head and neck decreased up to 1.8% and 1.5%, while the number of the applied MU increased up to 3.1% and 2.8%, respectively. The new dJAW method has the potential to enhance the optimization of the conventional IMRT to a further step

  9. SU-G-JeP2-03: Automatic Quantification of MLC Positional Accuracy in An MRI Guided Radiotherapy System

    International Nuclear Information System (INIS)

    Li, X; Studenski, M; Yang, F; Dogan, N; Lamichhane, N; Padgett, K

    2016-01-01

    Purpose: MRI-guided-radiotherapy (MRIGRT) systems lack many features of traditional Linac based RT systems and specialized tests need to be developed to evaluate MLC performance. This work describes automatic tools for the analysis of positional accuracy of an MLC equipped MRIGRT system. Methods: This MLC analysis tool was developed for the MRIdian™ RT system which has three Co-60 equipped treatment heads each with a double focused MLC containing 30 leaf pairs, leaf thickness is 1.05cm defined at isocenter (SAD 105 cm). For MLC positional analysis a picket fence test was performed using a 25.4cm × 25.4cm Gafchromic™ RTQA2 film placed between 5cm solidwater and a 30cm × 30cm × 1cm jigwire phantom with seven embedded parallel metal strips 4cm apart. A plan was generated to deliver 2Gy per field and seven 23.1cm × 2cm fields centered over each wire in the phantom. For each leaf pair the center of the radiation profile was determined by fitting the horizontal profile with a Gaussian model and determining the center of the FWHM. This was compared with the metal strip location to determine any deviation. The following metrics were used to evaluate the deviations per gantry angle including maximum, minimum, mean, Kurtosis, and skewness. Results: The identified maximum/mean leaf deviations are, 1.32/0.55 mm for gantry 0°, 1.59/0.76 mm for gantry 90°, and 1.19/0.39 mm for gantry 270°. The percentage of leaf deviation less than 1mm are 90.0% at 0°, 74.6% at 90°, and 97.0% at 270°. Kurtosis/skewness of the leaf deviation are 2.41/0.14 at 0°, 2.53/0.23 at 90°, 3.33/0.83 at 270°, respectively. Conclusion: This work presents an automatic tool for evaluation of the MLC position accuracy of the MRIdian™ radiotherapy system which can be used to benchmark the performance of the MLC system for each treatment head and track the results longitudinally.

  10. SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy

    International Nuclear Information System (INIS)

    Liang, X; Zhu, T

    2014-01-01

    Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakage in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification

  11. Dynamic-MLC leaf control utilizing on-flight intensity calculations: A robust method for real-time IMRT delivery over moving rigid targets

    International Nuclear Information System (INIS)

    McMahon, Ryan; Papiez, Lech; Rangaraj, Dharanipathy

    2007-01-01

    An algorithm is presented that allows for the control of multileaf collimation (MLC) leaves based entirely on real-time calculations of the intensity delivered over the target. The algorithm is capable of efficiently correcting generalized delivery errors without requiring the interruption of delivery (self-correcting trajectories), where a generalized delivery error represents anything that causes a discrepancy between the delivered and intended intensity profiles. The intensity actually delivered over the target is continually compared to its intended value. For each pair of leaves, these comparisons are used to guide the control of the following leaf and keep this discrepancy below a user-specified value. To demonstrate the basic principles of the algorithm, results of corrected delivery are shown for a leading leaf positional error during dynamic-MLC (DMLC) IMRT delivery over a rigid moving target. It is then shown that, with slight modifications, the algorithm can be used to track moving targets in real time. The primary results of this article indicate that the algorithm is capable of accurately delivering DMLC IMRT over a rigid moving target whose motion is (1) completely unknown prior to delivery and (2) not faster than the maximum MLC leaf velocity over extended periods of time. These capabilities are demonstrated for clinically derived intensity profiles and actual tumor motion data, including situations when the target moves in some instances faster than the maximum admissible MLC leaf velocity. The results show that using the algorithm while calculating the delivered intensity every 50 ms will provide a good level of accuracy when delivering IMRT over a rigid moving target translating along the direction of MLC leaf travel. When the maximum velocities of the MLC leaves and target were 4 and 4.2 cm/s, respectively, the resulting error in the two intensity profiles used was 0.1±3.1% and -0.5±2.8% relative to the maximum of the intensity profiles. For

  12. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer

    International Nuclear Information System (INIS)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-01-01

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v max while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information. (note)

  13. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer.

    Science.gov (United States)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-11-21

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v(max) while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information.

  14. SU-F-T-530: Characterization of a 60-Leaf Motorized MLC Designed for Cobalt-60 Units

    International Nuclear Information System (INIS)

    Xu, L; Smith, L; Ciresianu, A

    2016-01-01

    Purpose: In a continuing effort to improve conformal radiation therapy with Cobalt-60 units, a 60-leaf MLC was designed, manufactured, and released to market. This work describes the physics measurements taken to characterize the clinical performance of this MLC. Methods: A 60 leaf MLC was custom designed with tungsten leaves of 4.5 cm height, single focused, achieving field size of 30×30 cm^2 when mounted on a 100cm SAD Cobalt-60 unit. Leakage and output factor measurements were performed using a single ion chamber in a solid water phantom. Penumbra and surface dose were measured using scanning chambers and diodes in a water phantom. Radiation-light coincidence measurements were performed using radiographic films. Results: With MLC mounted, measured penumbras at all depths are smaller than with jaws only. Surface doses were not significantly affected by the presence of MLC, and remained below values recommended by regulatory bodies. Light-radiation coincidences were found to be better than 3 mm for all field sizes. Leakage through the MLC was found to be strongly dependent on field size, increasing from 1.0 % for a 10×10 cm field to 2.0% for a 30×30 cm field. Such results meet the requirements of IEC 60601-2-11. The MLC was found to have significant influence on the output factor, when field size defined by MLC is significantly smaller than field size defined by jaws. Such effect is also observed on linear accelerators, but it is more pronounced on Cobalt-60 units. A 10×10 “diamond” MLC shape inside a 14×14 cm jaw showed output factor that is 5.7% higher than 10×10 cm field defined by matching MLC and jaws. Conclusion: The MLC offers clinically acceptable performance in penumbra, surface dose, and light-radiation coincidence. Several units of this MLC have recently been installed and used clinically. Validation of Cobalt-60 based IMRT with this MLC is ongoing. The authors are employees of Best Theratrnics Ltd.

  15. SU-F-T-530: Characterization of a 60-Leaf Motorized MLC Designed for Cobalt-60 Units

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L; Smith, L; Ciresianu, A [Best Theratronics, Ottawa, ON (Canada)

    2016-06-15

    Purpose: In a continuing effort to improve conformal radiation therapy with Cobalt-60 units, a 60-leaf MLC was designed, manufactured, and released to market. This work describes the physics measurements taken to characterize the clinical performance of this MLC. Methods: A 60 leaf MLC was custom designed with tungsten leaves of 4.5 cm height, single focused, achieving field size of 30×30 cm^2 when mounted on a 100cm SAD Cobalt-60 unit. Leakage and output factor measurements were performed using a single ion chamber in a solid water phantom. Penumbra and surface dose were measured using scanning chambers and diodes in a water phantom. Radiation-light coincidence measurements were performed using radiographic films. Results: With MLC mounted, measured penumbras at all depths are smaller than with jaws only. Surface doses were not significantly affected by the presence of MLC, and remained below values recommended by regulatory bodies. Light-radiation coincidences were found to be better than 3 mm for all field sizes. Leakage through the MLC was found to be strongly dependent on field size, increasing from 1.0 % for a 10×10 cm field to 2.0% for a 30×30 cm field. Such results meet the requirements of IEC 60601-2-11. The MLC was found to have significant influence on the output factor, when field size defined by MLC is significantly smaller than field size defined by jaws. Such effect is also observed on linear accelerators, but it is more pronounced on Cobalt-60 units. A 10×10 “diamond” MLC shape inside a 14×14 cm jaw showed output factor that is 5.7% higher than 10×10 cm field defined by matching MLC and jaws. Conclusion: The MLC offers clinically acceptable performance in penumbra, surface dose, and light-radiation coincidence. Several units of this MLC have recently been installed and used clinically. Validation of Cobalt-60 based IMRT with this MLC is ongoing. The authors are employees of Best Theratrnics Ltd.

  16. SU-G-TeP4-07: Automatic EPID-Based 2D Measurement of MLC Leaf Offset as a Quality Control Tool

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, T; Moran, J [The University of Michigan, Ann Arbor, MI (United States); Schultz, B [University of Michigan, Ann Arbor, MI (United States); Kim, G [University of California, San Diego, La Jolla, CA (United States); Barnes, M [Calvary Mater Hospital Newcastle, Warratah, NSW (Australia); Perez, M [North Sydney Cancer Center, Sydney (Australia); Farrey, K [University of Chicago, Chicago, IL (United States); Popple, R [University Alabama Birmingham, Birmingham, AL (United States); Greer, P [Calvary Mater Newcastle, Newcastle (Australia)

    2016-06-15

    Purpose: The MLC dosimetric leaf gap (DLG) and transmission are measured parameters which impact the dosimetric accuracy of IMRT and VMAT plans. This investigation aims to develop an efficient and accurate routine constancy check of the physical DLG in two dimensions. Methods: The manufacturer’s recommended DLG measurement method was modified by using 5 fields instead of 11 and by utilizing the Electronic Portal Imaging Device (EPID). Validations were accomplished using an ion chamber (IC) in solid water and a 2D IC array. EPID data was collected for 6 months on multiple TrueBeam linacs using both Millennium and HD MLCs at 5 different clinics in an international consortium. Matlab code was written to automatically analyze the images and calculate the 2D results. Sensitivity was investigated by introducing deliberate leaf position errors. MLC calibration and initialization history was recorded to allow quantification of their impact. Results were analyzed using statistical process control (SPC). Results: The EPID method took approximately 5 minutes. Due to detector response, the EPID measured DLG and transmission differed from the IC values but were reproducible and consistent with changes measured using the ICs. For the Millennium MLC, the EPID measured DLG and transmission were both consistently lower than IC results. The EPID method was implemented as leaf offset and transmission constancy tests (LOC and TC). Based on 6 months of measurements, the initial leaf-specific action thresholds for changes from baseline were set to 0.1 mm. Upper and lower control limits for variation were developed for each machine. Conclusion: Leaf offset and transmission constancy tests were implemented on Varian HD and Millennium MLCs using an EPID and found to be efficient and accurate. The test is effective for monitoring MLC performance using dynamic delivery and performing process control on the DLG in 2D, thus enhancing dosimetric accuracy. This work was supported by a grant

  17. SU-E-P-36: Evaluation of MLC Positioning Errors in Dynamic IMRT Treatments by Analyzing Dynalog Files

    International Nuclear Information System (INIS)

    Olasolo, J; Pellejero, S; Gracia, M; Gallardo, N; Martin, M; Lozares, S; Maneru, F; Bragado, L; Miquelez, S; Rubio, A

    2015-01-01

    Purpose: To assess the accuracy of MLC positioning in Varian linear accelerator, in dynamic IMRT technique, from the analysis of dynalog files generated by the MLC controller. Methods: In Clinac accelerators (pre-TrueBeam technology), control system has an approximately 50ms delay (one control cycle time). Then, the system compares the measured position to the planned position corresponding to the next control cycle. As it has been confirmed by Varian technical support, this effect causes that measured positions appear in dynalogs one cycle out of phase with respect to the planned positions. Around 9000 dynalogs have been analyzed, coming from the three linear accelerators of our center (one Trilogy and two Clinac 21EX) equipped with a Millennium 120 MLC. In order to compare our results to recent publications, leaf positioning errors (RMS and 95th percentile) are calculated with and without delay effect. Dynalogs have been analyzed using a in-house Matlab software. Results: The RMS errors were 0.341, 0.339 and 0.348mm for each Linac; being the average error 0.343 mm. The 95th percentiles of the error were 0.617, 0.607 and 0.625; with an average of 0.617mm. A recent multi-institution study carried out by Kerns et al. found a mean leaf RMS error of 0.32mm and a 95th percentile error value of 0.64mm.Without delay effect, mean leaf RMS errors obtained were 0.040, 0.042 and 0.038mm for each treatment machine; being the average 0.040mm. The 95th percentile error values obtained were 0.057, 0.058 and 0.054 mm, with an average of 0.056mm. Conclusion: Results obtained for the mean leaf RMS error and the mean 95th percentile were consistent with the multi-institution study. Calculated error statistics with delay effect are significantly larger due to the speed proportional and systematic leaf offset. Consequently it is proposed to correct this effect in dynalogs analysis to determine the MLC performance

  18. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    International Nuclear Information System (INIS)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David; Beck, James; Poirier, Yannick; Malkoske, Kyle

    2016-01-01

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 series linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.

  19. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    Energy Technology Data Exchange (ETDEWEB)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David; Beck, James; Poirier, Yannick; Malkoske, Kyle [Simcoe-Muskoka Regional Cancer Centre (Canada)

    2016-08-15

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 series linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.

  20. An experimental comparison of conventional two-bank and novel four-bank dynamic MLC tracking

    International Nuclear Information System (INIS)

    Davies, G A; Clowes, P; McQuaid, D; Evans, P M; Webb, S; Poludniowski, G

    2013-01-01

    The AccuLeaf mMLC featuring four multileaf-collimator (MLC) banks has been used for the first time for an experimental comparison of conventional two-bank with novel four-bank dynamic MLC tracking of a two-dimensional sinusoidal respiratory motion. This comparison was performed for a square aperture, and for three conformal treatment apertures from clinical radiotherapy lung cancer patients. The system latency of this prototype tracking system was evaluated and found to be 1.0 s and the frequency at which MLC positions could be updated, 1 Hz, and therefore accurate MLC tracking of irregular patient motion would be difficult with the system in its current form. The MLC leaf velocity required for two-bank-MLC and four-bank-MLC tracking was evaluated for the apertures studied and a substantial decrease was found in the maximum MLC velocity required when four-banks were used for tracking rather than two. A dosimetric comparison of the two techniques was also performed and minimal difference was found between two-bank-MLC and four-bank-MLC tracking. The use of four MLC banks for dynamic MLC tracking is shown to be potentially advantageous for increasing the delivery efficiency compared with two-bank-MLC tracking where difficulties are encountered if large leaf shifts are required to track motion perpendicular to the direction of leaf travel. (paper)

  1. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system

    International Nuclear Information System (INIS)

    Burmeister, Jay; McDermott, Patrick N.; Bossenberger, Todd; Ben-Josef, Edgar; Levin, Kenneth; Forman, Jeffrey D.

    2004-01-01

    This study investigates the influence of multileaf collimator (MLC) leaf width on intensity modulated radiation therapy (IMRT) plans delivered via the segmented multileaf collimator (SMLC) technique. IMRT plans were calculated using the Corvus treatment planning system for three brain, three prostate, and three pancreas cases using leaf widths of 0.5 and 1 cm. Resulting differences in plan quality and complexity are presented here. Plans calculated using a 1 cm leaf width were chosen over the 0.5 cm leaf width plans in seven out of nine cases based on clinical judgment. Conversely, optimization results revealed a superior objective function result for the 0.5 cm leaf width plans in seven out of the nine comparisons. The 1 cm leaf width objective function result was superior only for very large target volumes, indicating that expanding the solution space for plan optimization by using narrower leaves may result in a decreased probability of finding the global minimum. In the remaining cases, we can conclude that we are often not utilizing the objective function as proficiently as possible to meet our clinical goals. There was often no apparent clinically significant difference between the two plans, and in such cases the issue becomes one of plan complexity. A comparison of plan complexity revealed that the average 1 cm leaf width plan required roughly 60% fewer segments and over 40% fewer monitor units than required by 0.5 cm leaf width plans. This allows a significant decrease in whole body dose and total treatment time. For very complex IMRT plans, the treatment delivery time may affect the biologically effective dose. A clinically significant improvement in plan quality from using narrower leaves was evident only in cases with very small target volumes or those with concavities that are small with respect to the MLC leaf width. For the remaining cases investigated in this study, there was no clinical advantage to reducing the MLC leaf width from 1 to 0.5 cm. In

  2. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  3. Technical Note: A novel leaf sequencing optimization algorithm which considers previous underdose and overdose events for MLC tracking radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW 2006 (Australia)

    2016-01-15

    Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events are taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.

  4. The effect of electron collimator leaf shape on the build-up dose in narrow electron MLC fields

    International Nuclear Information System (INIS)

    Vatanen, T; Vaeaenaenen, A; Lahtinen, T; Traneus, E

    2009-01-01

    Previously, we have found that the build-up dose from abutting narrow electron beams formed with unfocussed electron multi-leaf collimator (eMLC) steal leaves was higher than with the respective open field. To investigate more closely the effect of leaf material and shape on dose in the build-up region, straight, round (radius 1.5 cm) and leaf ends with a different front face angle of α (leaf front face pointing towards the beam axis at an angle of 90 - α) made of steel, brass and tungsten were modelled using the BEAMnrc code. Based on a treatment head simulation of a Varian 2100 C/D linac, depth-dose curves and profiles in water were calculated for narrow 6, 12 and 20 MeV eMLC beams (width 1.0 cm, length 10 cm) at source-to-surface distances (SSD) of 102 and 105 cm. The effects of leaf material and front face angle were evaluated based on electron fluence, angle and energy spectra. With a leaf front face angle of 15 deg., the dose in the build-up region of the 6 MeV field varied between 91 and 100%, while for straight and round leaf shapes the dose varied between 89 and 100%. The variation was between 94 and 100% for 12 and 20 MeV. For abutting narrow 6 MeV fields with total field size 5 x 10 cm 2 , the build-up doses at 5 mm depth for the face angle 15 deg. and straight and round leaf shapes were 96% and 86% (SSD 102 cm) and 89% and 85% (SSD 105 cm). With higher energies, the effect of eMLC leaf shape on dose at 5 mm was slight (3-4% units with 12 MeV) and marginal with 20 MeV. The fluence, energy and angle spectra for total and leaf scattered electrons were practically the same for different leaf materials with 6 MeV. With high energies, the spectra for tungsten were more peaked due to lower leaf transmission. Compared with straight leaf ends, the face angle of 15 deg. and round leaf ends led to a 1 mm (for 6 MeV) and between 1 and 5 mm (12 and 20 MeV at a SSD of 105 cm) decrease of therapeutic range and increase of the field size, respectively. However

  5. Using the volumetric effect of a finite-sized detector for routine quality assurance of multileaf collimator leaf positioning

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) is an advanced form of radiation therapy and promises to improve dose conformation while reducing the irradiation to the sensitive structures. The modality is, however, more complicated than conventional treatment and requires much more stringent quality assurance (QA) to ensure what has been planned can be achieved accurately. One of the main QA tasks is the assurance of positioning accuracy of multileaf collimator (MLC) leaves during IMRT delivery. Currently, the routine quality assurance of MLC in most clinics is being done using radiographic films with specially designed MLC leaf sequences. Besides being time consuming, the results of film measurements are difficult to quantify and interpret. In this work, we propose a new and effective technique for routine MLC leaf positioning QA. The technique utilizes the fact that, when a finite-sized detector is placed under a leaf, the relative output of the detector will depend on the relative fractional volume irradiated. A small error in leaf positioning would change the fractional volume irradiated and lead to a deviation of the relative output from the normal reading. For a given MLC and detector system, the relation between the relative output and the leaf displacement can be easily established through experimental measurements and used subsequently as a quantitative means for detecting possible leaf positional errors. The method was tested using a linear accelerator with an 80-leaf MLC. Three different locations, including two locations on central plane (X1=X2=0) and one point on an off-central plane location (X1=-7.5, X=7.5), were studied. Our results indicated that the method could accurately detect a leaf positional change of ∼0.1 mm. The method was also used to monitor the stability of MLC leaf positioning for five consecutive weeks. In this test, we intentionally introduced two positional errors in the testing MLC leaf sequences: -0.2 mm and 1.2 mm. The technique

  6. SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data

    International Nuclear Information System (INIS)

    Haddad, K; Alopoor, H

    2016-01-01

    Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parameters of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.

  7. SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, K; Alopoor, H [Shiraz University, Shiraz, I.R. Iran (Iran, Islamic Republic of)

    2016-06-15

    Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parameters of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.

  8. SU-E-P-21: Impact of MLC Position Errors On Simultaneous Integrated Boost Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chengqiang, L; Yin, Y; Chen, L [Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117 (China)

    2015-06-15

    Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans. Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.

  9. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul [Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, Korea 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Department of Radiation Oncology, Asan Medical Center, Seoul, 138-736 (Korea, Republic of); Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Radiation Physics Laboratory, Sydney Medical School, University of Sydney, 2006 (Australia)

    2011-07-15

    Purpose: In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. Methods: The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a {gamma}-test with a 3%/3 mm criterion. Results: The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the {gamma}-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation

  10. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    Science.gov (United States)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of

  11. Dose domain regularization of MLC leaf patterns for highly complex IMRT plans

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dan; Yu, Victoria Y.; Ruan, Dan; Cao, Minsong; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States); O’Connor, Daniel [Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-04-15

    Purpose: The advent of automated beam orientation and fluence optimization enables more complex intensity modulated radiation therapy (IMRT) planning using an increasing number of fields to exploit the expanded solution space. This has created a challenge in converting complex fluences to robust multileaf collimator (MLC) segments for delivery. A novel method to regularize the fluence map and simplify MLC segments is introduced to maximize delivery efficiency, accuracy, and plan quality. Methods: In this work, we implemented a novel approach to regularize optimized fluences in the dose domain. The treatment planning problem was formulated in an optimization framework to minimize the segmentation-induced dose distribution degradation subject to a total variation regularization to encourage piecewise smoothness in fluence maps. The optimization problem was solved using a first-order primal-dual algorithm known as the Chambolle-Pock algorithm. Plans for 2 GBM, 2 head and neck, and 2 lung patients were created using 20 automatically selected and optimized noncoplanar beams. The fluence was first regularized using Chambolle-Pock and then stratified into equal steps, and the MLC segments were calculated using a previously described level reducing method. Isolated apertures with sizes smaller than preset thresholds of 1–3 bixels, which are square units of an IMRT fluence map from MLC discretization, were removed from the MLC segments. Performance of the dose domain regularized (DDR) fluences was compared to direct stratification and direct MLC segmentation (DMS) of the fluences using level reduction without dose domain fluence regularization. Results: For all six cases, the DDR method increased the average planning target volume dose homogeneity (D95/D5) from 0.814 to 0.878 while maintaining equivalent dose to organs at risk (OARs). Regularized fluences were more robust to MLC sequencing, particularly to the stratification and small aperture removal. The maximum and

  12. Multileaf collimator leaf position verification and analysis for adaptive radiation therapy using a video-optical method

    Science.gov (United States)

    Sethna, Sohrab B.

    External beam radiation therapy is commonly used to eliminate and control cancerous tumors. High-energy beams are shaped to match the patient's specific tumor volume, whereby maximizing radiation dose to malignant cells and limiting dose to normal tissue. A multileaf collimator (MLC) consisting of multiple pairs of tungsten leaves is used to conform the radiation beam to the desired treatment field. Advanced treatment methods utilize dynamic MLC settings to conform to multiple treatment fields and provide intensity modulated radiation therapy (IMRT). Future methods would further increase conformity by actively tracking tumor motion caused by patient cardiac and respiratory motion. Leaf position quality assurance for a dynamic MLC is critical as variation between the planned and actual leaf positions could induce significant errors in radiation dose. The goal of this research project is to prototype a video-optical quality assurance system for MLC leaf positions. The system captures light-field images of MLC leaf sequences during dynamic therapy. Image acquisition and analysis software was developed to determine leaf edge positions. The mean absolute difference between QA prototype predicted and caliper measured leaf positions was found to be 0.6 mm with an uncertainty of +/- 0.3 mm. Maximum errors in predicted positions were below 1.0 mm for static fields. The prototype served as a proof of concept for quality assurance of future tumor tracking methods. Specifically, a lung tumor phantom was created to mimic a lung tumor's motion from respiration. The lung tumor video images were superimposed on MLC field video images for visualization and analysis. The toolbox is capable of displaying leaf position, leaf velocity, tumor position, and determining errors between planned and actual treatment fields for dynamic radiation therapy.

  13. Comparison of two methods for quantifying the accuracy of the positioning of the blades of the MLC

    International Nuclear Information System (INIS)

    Garcia Yip, Fernando; Silvestre Patallo, Ileana; Diaz Moreno, Rogelio

    2009-01-01

    Conformal radiotherapy treatment (3DCRT) and intensity modulated (IMRT) require more accurate positioning of the blades collimator. The procedure Stanford Quality Control (QC) is based MLC determine the possibility of small errors in positioning (<1mm) to from the variation that occurs in the relative response of a small detector depending on the irradiated fraction of its volume. The aim of this work was to establish a methodology to characterize quantitatively individual displacements of each layer, taking into account the tolerances established for 3DCRT and IMRT are ± 1mm. We determined the accuracy of the positioning of the throttle blades MLC Elekta Precise linear (S/N1220) of INOR. The MLC has 40 pairs of sheets tungsten 1 cm wide at the isocenter. The lower jaws of the collimator side is backed by the MLC. We compare two variants Stanford technique, one, using as detector portal imaging system Electronics (EPID) and the other using the two-dimensional camera system ionization 2D array (PTW 729). We used analysis tools programmed in MatLab image and application to MLC Checker processing the signals of the 2D array. We established the reference values of the relative response of detectors employees (EPID and 2D array) for the 40 pairs of blades to MLC and positions of both banks from 13cm-13cm and up to 1cm intervals. It implemented a procedure for the routine application of this test in MLC monthly checks. Procedure was applied as part of systematic quality control of MLC and found the mean error of positioning of each blade from the implementation of the QC procedure and to carry out this work. It was verified that the linac MLC 1220 of INOR meets tolerances established for the delivery of advanced treatment techniques 3D conformal radiotherapy and IMRT. (author)

  14. An MLC calibration method using a detector array

    International Nuclear Information System (INIS)

    Simon, Thomas A.; Kahler, Darren; Simon, William E.; Fox, Christopher; Li, Jonathan; Palta, Jatinder; Liu, Chihray

    2009-01-01

    Purpose: The authors have developed a quantitative calibration method for a multileaf collimator (MLC) which measures individual leaf positions relative to the MLC backup jaw on an Elekta Synergy linear accelerator. Methods: The method utilizes a commercially available two-axis detector array (Profiler 2; Sun Nuclear Corporation, Melbourne, FL). To calibrate the MLC bank, its backup jaw is positioned at the central axis and the opposing jaw is retracted to create a half-beam configuration. The position of the backup jaws field edge is then measured with the array to obtain what is termed the radiation defined reference line. The positions of the individual leaf ends relative to this reference line are then inferred by the detector response in the leaf end penumbra. Iteratively adjusting and remeasuring the leaf end positions to within specifications completes the calibration. Using the backup jaw as a reference for the leaf end positions is based on three assumptions: (1) The leading edge of an MLC leaf bank is parallel to its backup jaw's leading edge, (2) the backup jaw position is reproducible, and (3) the measured radiation field edge created by each leaf end is representative of that leaf's position. Data from an electronic portal imaging device (EPID) were used in a similar analysis to check the results obtained with the array. Results: The relative leaf end positions measured with the array differed from those measured with the EPID by an average of 0.11 ±0.09 mm per leaf. The maximum leaf positional change measured with the Profiler 2 over a 3 month period was 0.51 mm. A leaf positional accuracy of ±0.4 mm is easily attainable through the iterative calibration process. The method requires an average of 40 min to measure both leaf banks. Conclusions: This work demonstrates that the Profiler 2 is an effective tool for efficient and quantitative MLC quality assurance and calibration.

  15. An MLC calibration method using a detector array

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Thomas A.; Kahler, Darren; Simon, William E.; Fox, Christopher; Li, Jonathan; Palta, Jatinder; Liu, Chihray [Department of Nuclear and Radiological Engineering, University of Florida, 202 Nuclear Science Building, Gainesville, Florida 32611-8300 (United States); Sun Nuclear Corporation, 425-A Pineda Court, Melbourne, Florida 32940 (United States) and Department of Radiation Oncology, Health Science Center, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States); Department of Radiation Oncology, Health Science Center, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States); Sun Nuclear Corporation, 425-A Pineda Court, Melbourne, Florida 32940 (United States); Department of Radiation Oncology, Tulane University, 1415 Tulane Ave, HC65, New Orleans, Louisiana 70112 (United States); Department of Radiation Oncology, Health Science Center, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States)

    2009-10-15

    Purpose: The authors have developed a quantitative calibration method for a multileaf collimator (MLC) which measures individual leaf positions relative to the MLC backup jaw on an Elekta Synergy linear accelerator. Methods: The method utilizes a commercially available two-axis detector array (Profiler 2; Sun Nuclear Corporation, Melbourne, FL). To calibrate the MLC bank, its backup jaw is positioned at the central axis and the opposing jaw is retracted to create a half-beam configuration. The position of the backup jaws field edge is then measured with the array to obtain what is termed the radiation defined reference line. The positions of the individual leaf ends relative to this reference line are then inferred by the detector response in the leaf end penumbra. Iteratively adjusting and remeasuring the leaf end positions to within specifications completes the calibration. Using the backup jaw as a reference for the leaf end positions is based on three assumptions: (1) The leading edge of an MLC leaf bank is parallel to its backup jaw's leading edge, (2) the backup jaw position is reproducible, and (3) the measured radiation field edge created by each leaf end is representative of that leaf's position. Data from an electronic portal imaging device (EPID) were used in a similar analysis to check the results obtained with the array. Results: The relative leaf end positions measured with the array differed from those measured with the EPID by an average of 0.11 {+-}0.09 mm per leaf. The maximum leaf positional change measured with the Profiler 2 over a 3 month period was 0.51 mm. A leaf positional accuracy of {+-}0.4 mm is easily attainable through the iterative calibration process. The method requires an average of 40 min to measure both leaf banks. Conclusions: This work demonstrates that the Profiler 2 is an effective tool for efficient and quantitative MLC quality assurance and calibration.

  16. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques

    International Nuclear Information System (INIS)

    Hernandez, V.; Abella, R.; Calvo, J. F.; Jurado-Bruggemann, D.; Sancho, I.; Carrasco, P.

    2015-01-01

    Purpose: Several authors have recommended a 2 mm tolerance for multileaf collimator (MLC) positioning in sliding window treatments. In volumetric modulated arc therapy (VMAT) treatments, however, the optimal tolerance for MLC positioning remains unknown. In this paper, the authors present the results of a multicenter study to determine the optimal tolerance for both techniques. Methods: The procedure used is based on dynalog file analysis. The study was carried out using seven Varian linear accelerators from five different centers. Dynalogs were collected from over 100 000 clinical treatments and in-house software was used to compute the number of tolerance faults as a function of the user-defined tolerance. Thus, the optimal value for this tolerance, defined as the lowest achievable value, was investigated. Results: Dynalog files accurately predict the number of tolerance faults as a function of the tolerance value, especially for low fault incidences. All MLCs behaved similarly and the Millennium120 and the HD120 models yielded comparable results. In sliding window techniques, the number of beams with an incidence of hold-offs >1% rapidly decreases for a tolerance of 1.5 mm. In VMAT techniques, the number of tolerance faults sharply drops for tolerances around 2 mm. For a tolerance of 2.5 mm, less than 0.1% of the VMAT arcs presented tolerance faults. Conclusions: Dynalog analysis provides a feasible method for investigating the optimal tolerance for MLC positioning in dynamic fields. In sliding window treatments, the tolerance of 2 mm was found to be adequate, although it can be reduced to 1.5 mm. In VMAT treatments, the typically used 5 mm tolerance is excessively high. Instead, a tolerance of 2.5 mm is recommended

  17. Effect of MLC Leaf Width and PTV Margin on the Treatment Planning of Intensity-Modulated Stereotactic Radiosurgery (IMSRS) or Radiotherapy (IMSRT)

    International Nuclear Information System (INIS)

    Chang Jenghwa; Yenice, Kamil M.; Jiang Kailiu; Hunt, Margie; Narayana, Ashwatha

    2009-01-01

    We studied the effect of MLC (multileaf collimator) leaf width and PTV (planning target volume) margin on treatment planning of intensity modulated stereotactic radiosurgery (IMSRS) or radiotherapy (IMSRT). Twelve patients previously treated with IMSRS/IMSRT were retrospectively planned with 5- and 3-mm MLC leaf widths and 3- and 2-mm PTV margins using the already contoured clinical target volume and critical structures. The same beam arrangement, planning parameters, and optimization method were used in each of the 4 plans for a given patient. Each plan was normalized so that the prescription dose covered at least 99% of the PTV. Plan indices - D mean (mean dose), conformity index (CI), V 70 (volume receiving ≥ 70% of the prescription dose), and V 50 (volume receiving ≥ 50% of the prescription dose) - were calculated from the dose-volume histograms (DVHs) of the PTV, normal tissue, and organs at risk (OARs). Hypothesis testing was performed on the mean ratios of plan indices to determine the statistical significance of the relative differences. The PTV was well covered for all plans, as no significant differences were observed for D 95 , V 95 , D max , D min , and D mean of the PTV. The irradiated volume was ∼23% smaller when 2-mm instead of 3-mm PTV margin was used, but it was only reduced by ∼6% when the MLC leaf width was reduced from 5 mm to 3 mm. For normal tissue and brainstem, V 70 , V 50 , and D mean were reduced more effectively by a decrease in MLC width, while D mean of optic nerve and chiasm were more sensitive to a change in PTV margin. The DVH statistics for the PTV and normal structures from the treatment plan with 5-mm MLC and 2-mm PTV margin were equal to those with 3-mm MLC and 3-mm PTV margin. PTV margin reduction is more effective in sparing the normal tissue and OARs than a reduction in MLC leaf width. For IMSRS, where highly accurate setup and small PTV margins are routinely employed, the use of 5-mm MLC is therefore less desirable.

  18. Evaluation of optimization strategies and the effect of initial conditions on IMAT optimization using a leaf position optimization algorithm

    International Nuclear Information System (INIS)

    Oliver, Mike; Jensen, Michael; Chen, Jeff; Wong, Eugene

    2009-01-01

    Intensity-modulated arc therapy (IMAT) is a rotational variant of intensity-modulated radiation therapy (IMRT) that can be implemented with or without angular dose rate variation. The purpose of this study is to assess optimization strategies and initial conditions using a leaf position optimization (LPO) algorithm altered for variable dose rate IMAT. A concave planning target volume (PTV) with a central cylindrical organ at risk (OAR) was used in this study. The initial IMAT arcs were approximated by multiple static beams at 5 deg. angular increments where multi-leaf collimator (MLC) leaf positions were determined from the beam's eye view to irradiate the PTV but avoid the OAR. For the optimization strategy, two arcs with arc ranges of 280 deg. and 150 deg. were employed and plans were created using LPO alone, variable dose rate optimization (VDRO) alone, simultaneous LPO and VDRO and sequential combinations of these strategies. To assess the MLC initialization effect, three single 360 deg. arc plans with different initial MLC configurations were generated using the simultaneous LPO and VDRO. The effect of changing optimization degrees of freedom was investigated by employing 3 deg., 5 deg. and 10 deg. angular sampling intervals for the two 280 deg., two 150 deg. and single arc plans using LPO and VDRO. The objective function value, a conformity index, a dose homogeneity index, mean dose to OAR and normal tissues were computed and used to evaluate the treatment plans. This study shows that the best optimization strategy for a concave target is to use simultaneous MLC LPO and VDRO. We found that the optimization result is sensitive to the choice of initial MLC aperture shapes suggesting that an LPO-based IMAT plan may not be able to overcome local minima for this geometry. In conclusion, simultaneous MLC leaf position and VDRO are needed with the most appropriate initial conditions (MLC positions, arc ranges and number of arcs) for IMAT.

  19. SU-E-T-605: Performance Evaluation of MLC Leaf-Sequencing Algorithms in Head-And-Neck IMRT

    International Nuclear Information System (INIS)

    Jing, J; Lin, H; Chow, J

    2015-01-01

    Purpose: To investigate the efficiency of three multileaf collimator (MLC) leaf-sequencing algorithms proposed by Galvin et al, Chen et al and Siochi et al using external beam treatment plans for head-and-neck intensity modulated radiation therapy (IMRT). Methods: IMRT plans for head-and-neck were created using the CORVUS treatment planning system. The plans were optimized and the fluence maps for all photon beams determined. Three different MLC leaf-sequencing algorithms based on Galvin et al, Chen et al and Siochi et al were used to calculate the final photon segmental fields and their monitor units in delivery. For comparison purpose, the maximum intensity of fluence map was kept constant in different plans. The number of beam segments and total number of monitor units were calculated for the three algorithms. Results: From results of number of beam segments and total number of monitor units, we found that algorithm of Galvin et al had the largest number of monitor unit which was about 70% larger than the other two algorithms. Moreover, both algorithms of Galvin et al and Siochi et al have relatively lower number of beam segment compared to Chen et al. Although values of number of beam segment and total number of monitor unit calculated by different algorithms varied with the head-and-neck plans, it can be seen that algorithms of Galvin et al and Siochi et al performed well with a lower number of beam segment, though algorithm of Galvin et al had a larger total number of monitor units than Siochi et al. Conclusion: Although performance of the leaf-sequencing algorithm varied with different IMRT plans having different fluence maps, an evaluation is possible based on the calculated number of beam segment and monitor unit. In this study, algorithm by Siochi et al was found to be more efficient in the head-and-neck IMRT. The Project Sponsored by the Fundamental Research Funds for the Central Universities (J2014HGXJ0094) and the Scientific Research Foundation for the

  20. SU-E-T-605: Performance Evaluation of MLC Leaf-Sequencing Algorithms in Head-And-Neck IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J; Lin, H [Hefei University of Technology, Hefei, Anhui (China); Chow, J [Princess Margaret Hospital, Toronto, ON (Canada)

    2015-06-15

    Purpose: To investigate the efficiency of three multileaf collimator (MLC) leaf-sequencing algorithms proposed by Galvin et al, Chen et al and Siochi et al using external beam treatment plans for head-and-neck intensity modulated radiation therapy (IMRT). Methods: IMRT plans for head-and-neck were created using the CORVUS treatment planning system. The plans were optimized and the fluence maps for all photon beams determined. Three different MLC leaf-sequencing algorithms based on Galvin et al, Chen et al and Siochi et al were used to calculate the final photon segmental fields and their monitor units in delivery. For comparison purpose, the maximum intensity of fluence map was kept constant in different plans. The number of beam segments and total number of monitor units were calculated for the three algorithms. Results: From results of number of beam segments and total number of monitor units, we found that algorithm of Galvin et al had the largest number of monitor unit which was about 70% larger than the other two algorithms. Moreover, both algorithms of Galvin et al and Siochi et al have relatively lower number of beam segment compared to Chen et al. Although values of number of beam segment and total number of monitor unit calculated by different algorithms varied with the head-and-neck plans, it can be seen that algorithms of Galvin et al and Siochi et al performed well with a lower number of beam segment, though algorithm of Galvin et al had a larger total number of monitor units than Siochi et al. Conclusion: Although performance of the leaf-sequencing algorithm varied with different IMRT plans having different fluence maps, an evaluation is possible based on the calculated number of beam segment and monitor unit. In this study, algorithm by Siochi et al was found to be more efficient in the head-and-neck IMRT. The Project Sponsored by the Fundamental Research Funds for the Central Universities (J2014HGXJ0094) and the Scientific Research Foundation for the

  1. Impact of MLC leaf width on the quality of the dose distribution in partial breast irradiation

    International Nuclear Information System (INIS)

    Height, Felicity J.; Kron, Tomas; Willis, David; Chua, Boon H.

    2012-01-01

    Partial-breast irradiation (PBI) aims to limit the target volume for radiotherapy in women with early breast cancer after partial mastectomy to the region at highest risk of local recurrence, the tumor bed. Multileaf collimators are used to achieve conformal radiation beam portals required for PBI. Narrower leaf widths are generally assumed to allow more conformal shaping of beam portals around irregularly shaped target volumes. The aim was to compare 5-mm and 10-mm leaf widths for patients previously treated using PBI and assess subsequent planning target volume (PTV) coverage and organ at risk (OAR) doses for 16 patients. Several plans (5-mm leaf width or 10-mm leaf width) were generated for each patient using the original treated plan as the basis for attempts at further optimization. Alternating between different leaf widths found no significant difference in terms of overall PTV coverage and OAR doses between treatment plans. Optimization of the original treated plan allowed a small decrease in ipsilateral breast dose, which was offset by a lower PTV minimum. No significant dosimetric difference was found to support an advantage of 5-mm over 10-mm leaf width in this setting.

  2. SU-E-T-627: Precision Modelling of the Leaf-Bank Rotation in Elekta’s Agility MLC: Is It Necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Vujicic, M; Belec, J [Ottawa Hospital Cancer Centre, Ottawa, ON (Canada); Heath, E; Gholampourkashi, S [Carleton University, Ottawa, ON (Canada); Cygler, J [The Ottawa Hospital Cancer Centre, Ottawa, ON (Canada)

    2015-06-15

    Purpose: To demonstrate the method used to determine the leaf bank rotation angle (LBROT) as a parameter for modeling the Elekta Agility multi-leaf collimator (MLC) for Monte Carlo simulations and to evaluate the clinical impact of LBROT. Methods: A detailed model of an Elekta Infinity linac including an Agility MLC was built using the EGSnrc/BEAMnrc Monte Carlo code. The Agility 160-leaf MLC is modelled using the MLCE component module which allows for leaf bank rotation using the parameter LBROT. A precise value of LBROT is obtained by comparing measured and simulated profiles of a specific field, which has leaves arranged in a repeated pattern such that one leaf is opened and the adjacent one is closed. Profile measurements from an Agility linac are taken with gafchromic film, and an ion chamber is used to set the absolute dose. The measurements are compared to Monte Carlo (MC) simulations and the LBROT is adjusted until a match is found. The clinical impact of LBROT is evaluated by observing how an MC dose calculation changes with LBROT. A clinical Stereotactic Body Radiation Treatment (SBRT) plan is calculated using BEAMnrc/DOSXYZnrc simulations with different input values for LBROT. Results: Using the method outlined above, the LBROT is determined to be 9±1 mrad. Differences as high as 4% are observed in a clinical SBRT plan between the extreme case (LBROT not modeled) and the nominal case. Conclusion: In small-field radiation therapy treatment planning, it is important to properly account for LBROT as an input parameter for MC dose calculations with the Agility MLC. More work is ongoing to elucidate the observed differences by determining the contributions from transmission dose, change in field size, and source occlusion, which are all dependent on LBROT. This work was supported by OCAIRO (Ontario Consortium of Adaptive Interventions in Radiation Oncology), funded by the Ontario Research Fund.

  3. SU-E-T-627: Precision Modelling of the Leaf-Bank Rotation in Elekta’s Agility MLC: Is It Necessary?

    International Nuclear Information System (INIS)

    Vujicic, M; Belec, J; Heath, E; Gholampourkashi, S; Cygler, J

    2015-01-01

    Purpose: To demonstrate the method used to determine the leaf bank rotation angle (LBROT) as a parameter for modeling the Elekta Agility multi-leaf collimator (MLC) for Monte Carlo simulations and to evaluate the clinical impact of LBROT. Methods: A detailed model of an Elekta Infinity linac including an Agility MLC was built using the EGSnrc/BEAMnrc Monte Carlo code. The Agility 160-leaf MLC is modelled using the MLCE component module which allows for leaf bank rotation using the parameter LBROT. A precise value of LBROT is obtained by comparing measured and simulated profiles of a specific field, which has leaves arranged in a repeated pattern such that one leaf is opened and the adjacent one is closed. Profile measurements from an Agility linac are taken with gafchromic film, and an ion chamber is used to set the absolute dose. The measurements are compared to Monte Carlo (MC) simulations and the LBROT is adjusted until a match is found. The clinical impact of LBROT is evaluated by observing how an MC dose calculation changes with LBROT. A clinical Stereotactic Body Radiation Treatment (SBRT) plan is calculated using BEAMnrc/DOSXYZnrc simulations with different input values for LBROT. Results: Using the method outlined above, the LBROT is determined to be 9±1 mrad. Differences as high as 4% are observed in a clinical SBRT plan between the extreme case (LBROT not modeled) and the nominal case. Conclusion: In small-field radiation therapy treatment planning, it is important to properly account for LBROT as an input parameter for MC dose calculations with the Agility MLC. More work is ongoing to elucidate the observed differences by determining the contributions from transmission dose, change in field size, and source occlusion, which are all dependent on LBROT. This work was supported by OCAIRO (Ontario Consortium of Adaptive Interventions in Radiation Oncology), funded by the Ontario Research Fund

  4. TU-AB-BRC-04: Commissioning of a New MLC Model for the GEPTS Monte Carlo System: A Model Based On the Leaf and Interleaf Effective Density

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Tahanout, F; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To commission a new MLC model for the GEPTS Monte Carlo system. The model is based on the concept of leaves and interleaves effective densities Methods: GEPTS is a Monte Carlo system to be used for external beam planning verification. GEPTS incorporates detailed photon and electron transport algorithms (Med.Phys. 29, 2002, 835). A new GEPTS model for the Varian Millennium MLC is presented. The model accounts for: 1) thick (1 cm) and thin (0.5 cm) leaves, 2) tongue-and-groove design, 3) High-Transmission (HT) and Low-Transmission (LT) interleaves, and 4) rounded leaf end. Leaf (and interleaf) height is set equal to 6 cm. Instead of modeling air gaps, screw holes, and complex leaf heads, “effective densities” are assigned to: 1) thin leaves, 2) thick leaves, 3) HT-, and 4) LT-interleaves. Results: The new MLC model is used to calculate dose profiles for Closed-MLC and Tongue-and-Groove fields at 5 cm depth for 6, 10 and 15 MV Varian beams. Calculations are compared with 1) Pin-point ionization chamber transmission ratios and 2) EBT3 Radiochromic films. Pinpoint readings were acquired beneath thick and thin leaves, and HT and LT interleaves. The best fit of measured dose profiles was obtained for the following parameters: Thick-leaf density = 16.1 g/cc, Thin-leaf density = 17.2 g/cc; HT Interleaf density = 12.4 g/cc, LT Interleaf density = 14.3 g/cc; Interleaf thickness = 1.1 mm. Attached figures show comparison of calculated and measured transmission ratios for the 3 energies. Note this is the only study where transmission profiles are compared with measurements for 3 different energies. Conclusion: The new MLC model reproduces transmission measurements within 0.1%. The next step is to implement the MLC model for real plans and quantify the improvement in dose calculation accuracy gained using this model for IMRT plans with high modulation factors.

  5. Validation of quality control tests of a multi leaf collimator using electronic portal image devices and commercial software; Validacion de unas pruebas de control de calidad del colimador multilamina utilizando dispositivos electronicos de imagen portal y una aplicacion comercial

    Energy Technology Data Exchange (ETDEWEB)

    Latorre-Musoll, A.; Jornet Sala, N.; Carrasco de Fez, P.; Edualdo Puell, T.; Ruiz Martinez, A.; Ribas Morales, M.

    2013-07-01

    We describe a daily quality control procedure of the multi leaf collimator (MLC) based on electronic portal image devices and commercial software. We designed tests that compare portal images of a set of static and dynamic MLC configurations to a set of reference images using commercial portal dosimetry software. Reference images were acquired using the same set of MLC configurations after the calibration of the MLC. To assess the sensitivity to detect MLC under performances, we modified the MLC configurations by inserting a range of leaf position and speed errors. Distance measurements on portal images correlated with leaf position errors down to 0.1 mm in static MLC configurations. Dose differences between portal images correlated both with speed errors down to 0.5% of the nominal leaf velocities and with leaf position errors down to 0.1 mm in dynamic MLC configurations. The proposed quality control procedure can assess static and dynamic MLC configurations with high sensitivity and reliability. (Author)

  6. Treatment planning systems for external whole brain radiation therapy: With and without MLC (multi leaf collimator) optimization

    Science.gov (United States)

    Budiyono, T.; Budi, W. S.; Hidayanto, E.

    2016-03-01

    Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).

  7. Treatment planning systems for external whole brain radiation therapy: With and without MLC (multi leaf collimator) optimization

    International Nuclear Information System (INIS)

    Budiyono, T; Budi, W S; Hidayanto, E

    2016-01-01

    Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%). (paper)

  8. Verification of multileaf collimator leaf positions using an electronic portal imaging device

    International Nuclear Information System (INIS)

    Samant, Sanjiv S.; Zheng Wei; Parra, Nestor Andres; Chandler, Jason; Gopal, Arun; Wu Jian; Jain Jinesh; Zhu Yunping; Sontag, Marc

    2002-01-01

    An automated method is presented for determining individual leaf positions of the Siemens dual focus multileaf collimator (MLC) using the Siemens BEAMVIEW(PLUS) electronic portal imaging device (EPID). Leaf positions are computed with an error of 0.6 mm at one standard deviation (σ) using separate computations of pixel dimensions, image distortion, and radiation center. The pixel dimensions are calculated by superimposing the film image of a graticule with the corresponding EPID image. A spatial correction is used to compensate for the optical distortions of the EPID, reducing the mean distortion from 3.5 pixels (uncorrected) per localized x-ray marker to 2 pixels (1 mm) for a rigid rotation and 1 pixel for a third degree polynomial warp. A correction for a nonuniform dosimetric response across the field of view of the EPID images is not necessary due to the sharp intensity gradients across leaf edges. The radiation center, calculated from the average of the geometric centers of a square field at 0 deg. and 180 deg. collimator angles, is independent of graticule placement error. Its measured location on the EPID image was stable to within 1 pixel based on 3 weeks of repeated extensions/retractions of the EPID. The MLC leaf positions determined from the EPID images agreed to within a pixel of the corresponding values measured using film and ionization chamber. Several edge detection algorithms were tested: contour, Sobel, Roberts, Prewitt, Laplace, morphological, and Canny. These agreed with each other to within ≤1.2 pixels for the in-air EPID images. Using a test pattern, individual MLC leaves were found to be typically within 1 mm of the corresponding record-and-verify values, with a maximum difference of 1.8 mm, and standard deviations of <0.3 mm in the daily reproducibility. This method presents a fast, automatic, and accurate alternative to using film or a light field for the verification and calibration of the MLC

  9. SU-F-T-629: Effect of Multi-Leaf Collimator (MLC) Width On Plan Quality of Single-Isocenter VMAT Intracranial Stereotactic Radiosurgery for Multiple Metastases

    International Nuclear Information System (INIS)

    Kraus, J; Thomas, E; Wu, X; Fiveash, J; Popple, R

    2016-01-01

    Purpose: Single-isocenter VMAT has been shown able to create high quality plans for complex intracranial multiple metastasis SRS cases. Linacs capable of the technique are typically outfitted with an MLC that consists of a combination of 5 mm and 10 mm leaves (standard) or 2.5 mm and 5 mm leaves (high-definition). In this study, we test the hypothesis that thinner collimator leaves are associated with improved plan quality. Methods: Ten multiple metastasis cases were identified and planned for VMAT SRS using a 10 MV flattening filter free beam. Plans were created for a standard (std) and a high-definition (HD) MLC. Published values for leaf transmission factor and dosimetric leaf gap were utilized. All other parameters were invariant. Conformity (plan and individual target), moderate isodose spill (V50%), and low isodose spill (mean brain dose) were selected for analysis. Results: Compared to standard MLC, HD-MLC improved overall plan conformity (median: Paddick CI-HD = 0.83, Paddick CI-std = 0.79; p = 0.004 and median: RTOG CI-HD =1.18, RTOG CI-std =1.24; p = 0.01 ), improved individual lesion conformity (median: Paddick CI-HD,i =0.77, Paddick CI-std,i =0.72; p < 0.001 and median: RTOG CI-HD,i = 1.28, RTOG CI-std,i =1.35; p < 0.001), improved moderate isodose spill (median: V50%-HD = 37.0 cc, V50%-std = 45.7 cc; p = 0.002), and improved low dose spill (median: dmean-HD = 2.90 Gy, dmean-std = 3.19 Gy; p = 0.002). Conclusion: For the single-isocenter VMAT SRS of multiple metastasis plans examined, use of HD-MLC modestly improved conformity, moderate isodose, and low isodose spill compared to standard MLC. However, in all cases we were able to generate clinically acceptable plans with the standard MLC. More work is need to further quantify the difference in cases with higher numbers of small targets and to better understand any potential clinical significance. This research was supported in part by Varian Medical Systems.

  10. SU-F-T-629: Effect of Multi-Leaf Collimator (MLC) Width On Plan Quality of Single-Isocenter VMAT Intracranial Stereotactic Radiosurgery for Multiple Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, J; Thomas, E; Wu, X; Fiveash, J; Popple, R [University Alabama Birmingham, Birmingham, AL (United States)

    2016-06-15

    Purpose: Single-isocenter VMAT has been shown able to create high quality plans for complex intracranial multiple metastasis SRS cases. Linacs capable of the technique are typically outfitted with an MLC that consists of a combination of 5 mm and 10 mm leaves (standard) or 2.5 mm and 5 mm leaves (high-definition). In this study, we test the hypothesis that thinner collimator leaves are associated with improved plan quality. Methods: Ten multiple metastasis cases were identified and planned for VMAT SRS using a 10 MV flattening filter free beam. Plans were created for a standard (std) and a high-definition (HD) MLC. Published values for leaf transmission factor and dosimetric leaf gap were utilized. All other parameters were invariant. Conformity (plan and individual target), moderate isodose spill (V50%), and low isodose spill (mean brain dose) were selected for analysis. Results: Compared to standard MLC, HD-MLC improved overall plan conformity (median: Paddick CI-HD = 0.83, Paddick CI-std = 0.79; p = 0.004 and median: RTOG CI-HD =1.18, RTOG CI-std =1.24; p = 0.01 ), improved individual lesion conformity (median: Paddick CI-HD,i =0.77, Paddick CI-std,i =0.72; p < 0.001 and median: RTOG CI-HD,i = 1.28, RTOG CI-std,i =1.35; p < 0.001), improved moderate isodose spill (median: V50%-HD = 37.0 cc, V50%-std = 45.7 cc; p = 0.002), and improved low dose spill (median: dmean-HD = 2.90 Gy, dmean-std = 3.19 Gy; p = 0.002). Conclusion: For the single-isocenter VMAT SRS of multiple metastasis plans examined, use of HD-MLC modestly improved conformity, moderate isodose, and low isodose spill compared to standard MLC. However, in all cases we were able to generate clinically acceptable plans with the standard MLC. More work is need to further quantify the difference in cases with higher numbers of small targets and to better understand any potential clinical significance. This research was supported in part by Varian Medical Systems.

  11. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    Science.gov (United States)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  12. An MLC-based linac QA procedure for the characterization of radiation isocenter and room lasers' position

    International Nuclear Information System (INIS)

    Rosca, Florin; Lorenz, Friedlieb; Hacker, Fred L.; Chin, Lee M.; Ramakrishna, Naren; Zygmanski, Piotr

    2006-01-01

    We have designed and implemented a new stereotactic linac QA test with stereotactic precision. The test is used to characterize gantry sag, couch wobble, cone placement, MLC offsets, and room lasers' positions relative to the radiation isocenter. Two MLC star patterns, a cone pattern, and the laser line patterns are recorded on the same imaging medium. Phosphor plates are used as imaging medium due to their sensitivity to red light. The red light of room lasers erases some of the irradiation information stored on the phosphor plates enabling accurate and direct measurements for the position of room lasers and radiation isocenter. Using film instead of the phosphor plate as imaging medium is possible, however, it is less practical. The QA method consists of irradiating four phosphor plates that record the gantry sag between the 0 deg.and 180 deg.gantry angles, the position and stability of couch rotational axis, the sag between the 90 deg.and 270 deg.gantry angles, the accuracy of cone placement on the collimator, the MLC offsets from the collimator rotational axis, and the position of laser lines relative to the radiation isocenter. The estimated accuracy of the method is ±0.2 mm. The observed reproducibility of the method is about ±0.1 mm. The total irradiation/illumination time is about 10 min per image. Data analysis, including the phosphor plate scanning, takes less than 5 min for each image. The method characterizes the radiation isocenter geometry with the high accuracy required for the stereotactic radiosurgery. In this respect, it is similar to the standard ball test for stereotactic machines. However, due to the usage of the MLC instead of the cross-hair/ball, it does not depend on the cross-hair/ball placement errors with respect to the lasers and it provides more information on the mechanical integrity of the linac/couch/laser system. Alternatively, it can be used as a highly accurate QA procedure for the nonstereotactic machines. Noteworthy is its

  13. The application in detection the position accuracy of the multi-leaf collimator of Varian linear accelerator with dynamic therapy log files

    International Nuclear Information System (INIS)

    Li Changhu; Xu Liming; Teng Jianjian; Ge Wei; Zhang Jun; Ma Guangdong

    2010-01-01

    Objective: To explorer the application in detection the position accuracy of the multileaf collimator of Varian accelerator with dynamic therapy log files. Methods: A pre-designed MLC format files named PMLC for two Varian accelerators, the dynamic treatment log files were recorded 10 times on a different date, and be converted into the MLC format files named DMLC, compared with the original plan PMLC, so we can analysis two files for each leaf position deviation. In addition, we analysis the repeatability of MLC leaves position accuracy between 10 dynalog files of two accelerators. Results: No statistically significant difference between the average position of the 10 times leaf position of the two accelerators,their were 0.29 -0.29 and 0.29 -0.30 (z = -0.77, P=0.442). About 40%, 30%, 20% and 10% of the leaf position deviation was at ≤0.2 mm, 0.3 mm, 0.5 mm and 0.4 mm, respectively. the maximum value was 0.5 mm. More than 86% of the leaf position are completely coincident between 10 dynamic treatment files of two accelerators. The rate of position deviation no more 0. 05 mm was 96. 6% and 97.3%, respectively. And the maximum value was 0.09 mm. Conclusions: Dynamic treatment log file is a splendid tool in testing the actual position of multi-leaf collimator. The multi-leaf collimator of two accelerators be detected are precise and stabilized. (authors)

  14. SU-E-T-205: MLC Predictive Maintenance Using Statistical Process Control Analysis.

    Science.gov (United States)

    Able, C; Hampton, C; Baydush, A; Bright, M

    2012-06-01

    MLC failure increases accelerator downtime and negatively affects the clinic treatment delivery schedule. This study investigates the use of Statistical Process Control (SPC), a modern quality control methodology, to retrospectively evaluate MLC performance data thereby predicting the impending failure of individual MLC leaves. SPC, a methodology which detects exceptional variability in a process, was used to analyze MLC leaf velocity data. A MLC velocity test is performed weekly on all leaves during morning QA. The leaves sweep 15 cm across the radiation field with the gantry pointing down. The leaf speed is analyzed from the generated dynalog file using quality assurance software. MLC leaf speeds in which a known motor failure occurred (8) and those in which no motor replacement was performed (11) were retrospectively evaluated for a 71 week period. SPC individual and moving range (I/MR) charts were used in the analysis. The I/MR chart limits were calculated using the first twenty weeks of data and set at 3 standard deviations from the mean. The MLCs in which a motor failure occurred followed two general trends: (a) no data indicating a change in leaf speed prior to failure (5 of 8) and (b) a series of data points exceeding the limit prior to motor failure (3 of 8). I/MR charts for a high percentage (8 of 11) of the non-replaced MLC motors indicated that only a single point exceeded the limit. These single point excesses were deemed false positives. SPC analysis using MLC performance data may be helpful in detecting a significant percentage of impending failures of MLC motors. The ability to detect MLC failure may depend on the method of failure (i.e. gradual or catastrophic). Further study is needed to determine if increasing the sampling frequency could increase reliability. Project was support by a grant from Varian Medical Systems, Inc. © 2012 American Association of Physicists in Medicine.

  15. SU-F-T-402: The Effect of Extremely Narrow MLC Leaf Width On the Plan Quality of VMAT for Prostate Cancer

    International Nuclear Information System (INIS)

    Kim, J; Park, S; Kim, J; Choi, C; Park, J

    2016-01-01

    Purpose: To investigate the effect of multi-leaf collimators (MLCs) with leaf width of 1.25 mm on the plan quality of volumetric modulated arc therapy (VMAT) for prostate cancer. Methods: A total of 20 patients with prostate cancer were retrospectively selected. Using a high definition MLC (HD MLC), primary and boost VMAT plans with two full arcs were generated for each patient (original plan). After that, by shifting patient CT images by 1.25 mm in the cranio-caudal direction between the 1st and the 2nd arc, we simulated fluences made with MLCs with leaf width of 1.25 mm. After shifting, primary and boost plans were generated for each patient (shifted plan). A sum plan was generated by summation of the primary and boost plan for each patient. Dose-volumetric parameters were calculated and compared. Results: Both homogeneity index (HI) and conformity index (CI) of the shifted plans were better than those of the original plans in primary plans (HI = 0.044 vs. 0.040 with p < 0.001 and CI = 1.056 vs. 1.044 with p = 0.006). Similarly, the shifted plans for boost target volume showed better homogeneity and conformity than did the original plans (HI = 0.042 vs. 0.037 with p = 0.006 and CI = 1.015 vs. 1.009 with p < 0.001). The total body volumes of the original plans irradiated by the prescription dose were larger than those of the shifted plans in sum plans (60.9 cc vs. 49.0 cc with p = 0.007). Conclusion: Use of extremely narrow MLCs could increase dose homogeneity and conformity of the target volume for prostate VMAT. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A02036331).

  16. Characterization and linear array LA48 Commissioner for measuring the position of the multi leaf collimator

    International Nuclear Information System (INIS)

    Conles Picos, I.; Cenizo de Castro, E.; Aparicio martin, A. R.; Barrio Lazo, F.; Cesteros Morante, M. J.

    2011-01-01

    The protocol of Quality Control of electron accelerators for medical use of SEFM proposed for multi leaf collimation system (MLC) to verify the positioning of the blades connect. To do this you must find a system with sufficient accuracy and precision and, if possible, easy to assemble and offers real-time results. One of these teams is the Linear Array of PTW-Freiburg (LA48), which consists of a row of 47 ionization chambers, of 0008 cc and 8 mm apart from each other. In this paper, we describe our process of characterization and LA48 commissioner. (Author)

  17. SU-G-BRB-03: Assessing the Sensitivity and False Positive Rate of the Integrated Quality Monitor (IQM) Large Area Ion Chamber to MLC Positioning Errors

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, E McKenzie; DeMarco, J; Steers, J; Fraass, B [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readings are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott Foundation.

  18. A proposal for quality assurance of multi-leaf collimators

    International Nuclear Information System (INIS)

    Hounsell, A R; Jordan, T J; Williams, P C

    1995-01-01

    Multi-leaf collimators (MLC's) are rapidly entering clinical service in many Institutes through-out the World. Commercial MLC's are reliable but highly complex devices that have new and sometimes complex maintenance and quality assurance (QA) requirements. The experience gained from installing the prototype Philips MLC and from using and maintaining two production model Philips MLC's - one four years old, one six months old - will be used to define the requirements of a QA schedule for MLC's. Problems specific to MLC's such as leaf positioning and radiation leakage between the leaves will be discussed and methods for measuring these problems presented. Recommendations for the frequency for performing these checks based on our experiences will be made. Preventative maintenance times, machine down times due to the MLC and planned Quality Control down times will be reported

  19. A multi-institution evaluation of MLC log files and performance in IMRT delivery

    International Nuclear Information System (INIS)

    Kerns, James R; Childress, Nathan; Kry, Stephen F

    2014-01-01

    The multileaf collimator (MLC) is a critical component to accurate intensity-modulated radiotherapy (IMRT) delivery. This study examined MLC positional accuracy via MLC logs from Varian machines from six institutions and three delivery techniques to evaluate typical positional accuracy and treatment and mechanical parameters that affect accuracy. Typical accuracy achieved was compared against TG-142 recommendations for MLC performance; more appropriate recommendations are suggested. Over 85,000 Varian MLC treatment logs were collected from six institutions and analyzed with FractionCHECK. Data were binned according to institution and treatment type to determine overall root mean square (RMS) and 95 th percentile error values, and then to look for correlations between those errors and with mechanical and treatment parameters including mean and maximum leaf speed, gantry angle, beam-on time, mean leaf error, and number of segments. Results of treatment logs found that leaf RMS error and 95 th percentile leaf error were consistent between institutions, but varied by treatment type. The step and shoot technique had very small errors: the mean RMS leaf error was 0.008 mm. For dynamic treatments the mean RMS leaf error was 0.32 mm, while volumetric-modulated arc treatment (VMAT) showed an RMS leaf error of 0.46 mm. Most MLC leaf errors were found to be well below TG-142 recommended tolerances. For the dynamic and VMAT techniques, the mean and maximum leaf speeds were significantly linked to the leaf RMS error. Additionally, for dynamic delivery, the mean leaf error was correlated with RMS error, whereas for VMAT the average gantry speed was correlated. For all treatments, the RMS error and the 95 th percentile leaf error were correlated. Restricting the maximum leaf speed can help improve MLC performance for dynamic and VMAT deliveries. Furthermore, the tolerances of leaf RMS and error counts for all treatment types should be tightened from the TG-142 values to make them

  20. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions

    International Nuclear Information System (INIS)

    Xu Jun; Papanikolaou, Nikos; Shi Chengyu; Jiang, Steve B

    2009-01-01

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  1. Introduction and feasibility study of the HD-270 MLC

    International Nuclear Information System (INIS)

    Kim, Dae Young; Kim Won Taek; Lee, Hwa Jung; Lee, Kang Hyeok

    2003-01-01

    The multileaf collimator(MLC) has many advantages, but use of the MLC increased effective penumbra and isodose undulation in dose distribution compared with that of an alloy block. In this work, we introduced the HD-270 MLC, which can improve the above disadvantages of MLC, and reported its feasibility study. The HD-270 MLC is a technique which combines the use of the existing Siemens multileaf collimator(3D MLC) with patient translation perpendicular to the leaf plane. The technique produces a smoothed isodose distribution with the reduced isodose undulation and effective penumbra. To assess the efficacy of the HD-270 technique and determine the appropriate resolution, a polygonal shaped MLC field was made to produce field edge angles from 0 degree to 75 degree with a step of 15 degree. Each HD-270 group was generated according to the allowed resolution, i. e., 5, 3, and 2 mm. The experiment was carried out on Primus, a Siemens linear accelerator configured with HD-270 MLC. The total 60 MU of 6 MV photon beam was delivered to X-Omat film (Kodak, USA) at a SAD of 100 cm and 1.5 cm depth in solid water phantom. Exposed films were scanned by Lumiscan75(LUMISYS) and analyzed using RIT113 software (Radiological Imaging Technology Inc., USA). To test the mechanical accuracy of table movement, the transverse, longitudinal, and vertical positions were controlled by a consol with ±5 mm, ±4 mm, ±3 mm, and ±2 mm steps, and then measured using a dial gauge with an accuracy of 0.001 inch. During the experiments, the table loaded with about 50 Kg human phantom to simulate the real treatment situation. The effective penumbra and isodose undulation became larger with increase the resolution and field edge angle. The accuracy of the table movement on each direction is good within the ±1 mm. Clinical use of the MLC can be increased by using of the HD-270 MLC which complements to the disadvantages of the MLC.

  2. TH-AB-202-02: Real-Time Verification and Error Detection for MLC Tracking Deliveries Using An Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    J Zwan, B; Colvill, E; Booth, J; J O’Connor, D; Keall, P; B Greer, P

    2016-01-01

    Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3) field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm 2 (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.

  3. Optimized dose conformation of multi-leaf collimator fields

    International Nuclear Information System (INIS)

    Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.

    1996-01-01

    Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some

  4. Implementation of a program for quality assurance on leaf positioning accuracy using Gafchromic® RTQA2 films

    International Nuclear Information System (INIS)

    Girardi, Andrea; Anglesio, Silvia; Trevisiol, Edoardo; Amadore, Gianluca; Redda, Maria Grazia Ruo

    2014-01-01

    In radiotherapy treatments the correct dose delivery to the target volume and the consequent conservation of healthy tissues is affected by multileaf collimator (MLC) leaf positioning accuracy and reproducibility, mostly in intensity-modulated radiation therapy (IMRT): For this reason a quality assurance (QA) program is necessary to ensure the best treatment possible to each patient. The aim of this study is the implementation of a method using Gafchromic ® RTQA 2 films to perform routine QA on the MLC, both for qualitative and quantitative analysis. A flatbed document scanner (Epson 10000XL) was used in conjunction with radiochromic detector; a scanning protocol was firstly defined to improve readout accuracy. RTQA2 films were irradiated with 6 MV X-rays at different dose levels to obtain calibration curve. To evaluate the leaf positioning accuracy in different conditions, a rhomboidal shape and a field consisting in three rectangular segments were selected. The images quantitative analysis was handled with a program developed in MATLAB to evaluate the differences between expected and measured leaves positions. The reproducibility and global uncertainty of the method were estimated to be equal to 0.5% and 0.6 mm, respectively. Moreover, a qualitative test was performed: A garden picket fence field, consisting in multiple segments 2 x 22 cm 2 , was realized setting known leaves shifts to test the method sensitivity. The picket fence test shows that the method is able to detect displacements equal to 1 mm. The results suggest that Gafchromic ® RTQA2 films represent a reliable tool to perform MLC routine QA. (author)

  5. MLC quality assurance using EPID: A fitting technique with subpixel precision

    International Nuclear Information System (INIS)

    Mamalui-Hunter, Maria; Li, Harold; Low, Daniel A.

    2008-01-01

    Amorphous silicon based electronic portal imaging devices (EPIDs) have been shown to be a good alternative to radiographic film for routine quality assurance (QA) of multileaf collimator (MLC) positioning accuracy. In this work, we present a method of acquiring an EPID image of a traditional strip-test image using analytical fits of the interleaf and leaf abutment image signatures. After exposure, the EPID image pixel values are divided by an open field image to remove EPID response and radiation field variations. Profiles acquired in the direction orthogonal to the leaf motion exhibit small peaks caused by interleaf leakage. Gaussian profiles are fitted to the interleaf leakage peaks, the results of which are, using multiobjective optimization, used to calculate the image rotational angle with respect to the collimator axis of rotation. The relative angle is used to rotate the image to align the MLC leaf travel to the image pixel axes. The leaf abutments also present peaks that are fitted by heuristic functions, in this case modified Lorentzian functions. The parameters of the Lorentzian functions are used to parameterize the leaf gap width and positions. By imaging a set of MLC fields with varying gaps forming symmetric and asymmetric abutments, calibration curves with regard to relative peak height (RPH) versus nominal gap width are obtained. Based on this calibration data, the individual leaf positions are calculated to compare with the nominal programmed positions. The results demonstrate that the collimator rotation angle can be determined as accurate as 0.01 deg. . A change in MLC gap width of 0.2 mm leads to a change in RPH of about 10%. For asymmetrically produced gaps, a 0.2 mm MLC leaf gap width change causes 0.2 pixel peak position change. Subpixel resolution is obtained by using a parameterized fit of the relatively large abutment peaks. By contrast, for symmetrical gap changes, the peak position remains unchanged with a standard deviation of 0

  6. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT

    International Nuclear Information System (INIS)

    Kim, Jung-in; Park, So-Yeon; Kim, Hak Jae; Kim, Jin Ho; Ye, Sung-Joon; Park, Jong Min

    2014-01-01

    To investigate the sensitivity of various gamma criteria used in the gamma-index method for patient-specific volumetric modulated arc therapy (VMAT) quality assurance (QA) for stereotactic body radiation therapy (SBRT) using a flattening filter free (FFF) photon beam. Three types of intentional misalignments were introduced to original high-definition multi-leaf collimator (HD-MLC) plans. The first type, referred to Class Out, involved the opening of each bank of leaves. The second type, Class In, involved the closing of each bank of leaves. The third type, Class Shift, involved the shifting of each bank of leaves towards the ground. Patient-specific QAs for the original and the modified plans were performed with MapCHECK2 and EBT2 films. The sensitivity of the gamma-index method using criteria of 1%/1 mm, 1.5%/1.5 mm, 1%/2 mm, 2%/1 mm and 2%/2 mm was investigated with absolute passing rates according to the magnitudes of MLCs misalignments. In addition, the changes in dose-volumetric indicators due to the magnitudes of MLC misalignments were investigated. The correlations between passing rates and the changes in dose-volumetric indicators were also investigated using Spearman’s rank correlation coefficient (γ). The criterion of 2%/1 mm was able to detect Class Out and Class In MLC misalignments of 0.5 mm and Class Shift misalignments of 1 mm. The widely adopted clinical criterion of 2%/2 mm was not able to detect 0.5 mm MLC errors of the Class Out or Class In types, and also unable to detect 3 mm Class Shift errors. No correlations were observed between dose-volumetric changes and gamma passing rates (γ < 0.8). Gamma criterion of 2%/1 mm was found to be suitable as a tolerance level with passing rates of 90% and 80% for patient-specific VMAT QA for SBRT when using MapCHECK2 and EBT2 film, respectively

  7. EPID-based verification of the MLC performance for dynamic IMRT and VMAT

    International Nuclear Information System (INIS)

    Rowshanfarzad, Pejman; Sabet, Mahsheed; Barnes, Michael P.; O’Connor, Daryl J.; Greer, Peter B.

    2012-01-01

    Purpose: In advanced radiotherapy treatments such as intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), verification of the performance of the multileaf collimator (MLC) is an essential part of the linac QA program. The purpose of this study is to use the existing measurement methods for geometric QA of the MLCs and extend them to more comprehensive evaluation techniques, and to develop dedicated robust algorithms to quantitatively investigate the MLC performance in a fast, accurate, and efficient manner. Methods: The behavior of leaves was investigated in the step-and-shoot mode by the analysis of integrated electronic portal imaging device (EPID) images acquired during picket fence tests at fixed gantry angles and arc delivery. The MLC was also studied in dynamic mode by the analysis of cine EPID images of a sliding gap pattern delivered in a variety of conditions including different leaf speeds, deliveries at fixed gantry angles or in arc mode, and changing the direction of leaf motion. The accuracy of the method was tested by detection of the intentionally inserted errors in the delivery patterns. Results: The algorithm developed for the picket fence analysis was able to find each individual leaf position, gap width, and leaf bank skewness in addition to the deviations from expected leaf positions with respect to the beam central axis with sub-pixel accuracy. For the three tested linacs over a period of 5 months, the maximum change in the gap width was 0.5 mm, the maximum deviation from the expected leaf positions was 0.1 mm and the MLC skewness was up to 0.2°. The algorithm developed for the sliding gap analysis could determine the velocity and acceleration/deceleration of each individual leaf as well as the gap width. There was a slight decrease in the accuracy of leaf performance with increasing leaf speeds. The analysis results were presented through several graphs. The accuracy of the method was assessed as 0.01 mm

  8. Study of the positioning of the films of the MLC by a Test of bands and your influence in the clinic dosimetry in IMRT

    International Nuclear Information System (INIS)

    Serrano Zabaleta, S.; Millan Cebrian, E.; Calvo Carrillo, S.; Alba Escorihuela, V.; Garcia Romero, A.; Ortega Pardina, P.; Canella Anoz, M.; Hernandez Vitoria, A.

    2015-01-01

    We performed a test of adjacent bands inspired by the proposed in AAPM Report No. 72, we provides a parameter characterizing the state of the MLC as to the actual position of its blades. This test has been validated by studying repeatability and reproducibility and has found the correlation between the parameter and creep detected by the ILD. Subsequently it has studied the impact of changes in the positioning of the blades on clinical dosimetry in IMRT patients, reconstructing the patient dose by Matrix Evolution team and Compass software, IBA Dosimetry. (Author)

  9. Implementation of a Quality Control using portal imaging dynamic MLC; Implementacion de un programa de control de calidad de MLC dinamico mediante imagen portal

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Freire, C. J.; Vazquez Galinanes, A.; Collado Chamorro, P. M.; Diaz Pascual, V.; Gomez Amez, J.; Sanchez Martinez, S.; Ossola Lentati, G. A

    2011-07-01

    The precision in the correct beam irradiation in the treatment of highly modulated Intensity Modulated Radiation Therapy (IMRT) depends largely on the characteristics and behavior of the multi leaf collimator (MLC). Quality control (QC) of this element is essential to ensure proper delivery of the beams calculated. It is important to know the absolute position of each sheet, the motion characteristics of each behavior and stability. Among the numerous methods for carrying out the QC MLC, the use of portal imaging is a practical and high resolution. This paper describes the development of a quality control program based dynamic MLC portal image, self-developed software that enables analysis and the results of two years experience following the implementation of IMRT treatments at our center. (Author)

  10. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  11. An EPID-based method for comprehensive verification of gantry, EPID and the MLC carriage positional accuracy in Varian linacs during arc treatments

    International Nuclear Information System (INIS)

    Rowshanfarzad, Pejman; McGarry, Conor K; Barnes, Michael P; Sabet, Mahsheed; Ebert, Martin A

    2014-01-01

    In modern radiotherapy, it is crucial to monitor the performance of all linac components including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method has been introduced in conjunction with an algorithm to investigate the stability of these systems during arc treatments with the aim of ensuring the accuracy of linac mechanical performance. The Varian EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in MLC carriages as a result of linac rotation were separately investigated by acquisition of EPID images of a simple phantom comprised of 5 ball-bearings during arc delivery. A fast and robust software package was developed for automated analysis of image data. Twelve Varian linacs of different models were investigated. The average EPID sag was within 1 mm for all tested linacs. All machines showed less than 1 mm gantry sag. Changes in SDD values were within 1.7 mm except for three linacs of one centre which were within 9 mm. Values of EPID skewness and tilt were negligible in all tested linacs. The maximum sag in MLC leaf bank assemblies was around 1 mm. The EPID sag showed a considerable improvement in TrueBeam linacs. The methodology and software developed in this study provide a simple tool for effective investigation of the behaviour of linac components with gantry rotation. It is reproducible and accurate and can be easily performed as a routine test in clinics

  12. SU-E-T-312: Dosimetric Consideration for the Agility MLC When Planning Rotational SRT/SBRT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Kong, X; Harris, J; Spitznagel, D; Walker, J [Avera Medical Group - Radiation Oncology, Sioux Falls, SD (United States)

    2015-06-15

    Purpose: To analyze the radiation transmission of the Agility MLC and make recommendation based on the MLC dosimetric characteristics for SRT, SBRT and VMAT planning Method and Materials: Agility MLC is the newest model from Elekta and has no back up diaphragm behind leaves for this generation. Leaves are single focused with rounded end; composed of leafs each 0.5cm wide, 9cm thick, constructed from tungsten alloy and provide low transmission <0.5%. Total radiation transmission from leaves and diaphragm is <0.13%. A 360degree arc was generated using iCom tools; leaves were programmed closed while keeping the diaphragm fully open to maximize the MLC transmission effect. Gafchromic EBT films were sandwiched between 4cm of solid water and situated at midplane to take dose measurement. 5000MU was delivered using 6MV VersaHD, various collimator angles, and a 5cm central axis offset was tested also. Films were scanned with Epson 10000XL scanner and analyzed using DoseLab Pro. Results: Due to the rounded leaf end and nature of rotation therapy, dose accumulation through the leaf gap is significant. By offsetting the leaf gap from central axis, this accumulation can be greatly reduced. There are dark bands showing accumulation of interleaf transmission which is improved by increasing collimator angle from 0 to 45dgree. However for 45 degree, in most cases, there are larger volumes sweeping under MLC alone, which needs considered planning. Conclusions: While inter-leaf leakage is minimized by using collimator angles greater than 0 degrees, the location of the leaf gap must also be managed. The leaf gap position becomes critically important when the treatment area is off axis such is the case when more than one PTV is being treated. With VMAT for SRT, SBRT becoming a more popular planning technique, special attention needs to be paid when initially setting up the field geometry.

  13. An automatic CT-guided adaptive radiation therapy technique by online modification of multileaf collimator leaf positions for prostate cancer

    International Nuclear Information System (INIS)

    Court, Laurence E.; Dong Lei; Lee, Andrew K.; Cheung, Rex; Bonnen, Mark D.; O'Daniel, Jennifer; Wang He; Mohan, Radhe; Kuban, Deborah

    2005-01-01

    Purpose: To propose and evaluate online adaptive radiation therapy (ART) using in-room computed tomography (CT) imaging that detects changes in the target position and shape of the prostate and seminal vesicles (SVs) and then automatically modifies the multileaf collimator (MLC) leaf pairs in a slice-by-slice fashion. Methods and materials: For intensity-modulated radiation therapy (IMRT) using a coplanar beam arrangement, each MLC leaf pair projects onto a specific anatomic slice. The proposed strategy assumes that shape deformation is a function of only the superior-inferior (SI) position. That is, there is no shape change within a CT slice, but each slice can be displaced in the anteroposterior (AP) or right-left (RL) direction relative to adjacent slices. First, global shifts (in SI, AP, and RL directions) were calculated by three-dimensional (3D) registration of the bulk of the prostate in the treatment planning CT images with the daily CT images taken immediately before treatment. Local shifts in the AP direction were then found using slice-by-slice registration, in which the CT slices were individually registered. The translational shift within a slice could then be projected to a translational shift in the position of the corresponding MLC leaf pair for each treatment segment for each gantry angle. Global shifts in the SI direction were accounted for by moving the open portal superiorly or inferiorly by an integral number of leaf pairs. The proposed slice-by-slice registration technique was tested by using daily CT images from 46 CT image sets (23 each from 2 patients) taken before the standard delivery of IMRT for prostate cancer. A dosimetric evaluation was carried out by using an 8-field IMRT plan. Results: The shifts and shape change of the prostate and SVs could be separated into 3D global shifts in the RL, AP, and SI directions, plus local shifts in the AP direction, which were different for each CT slice. The MLC leaf positions were successfully

  14. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Du Weiliang; Gao Song; Wang Xiaochun; Kudchadker, Rajat J. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2012-04-15

    Purpose: Gantry sag is one of the well-known sources of mechanical imperfections that compromise the spatial accuracy of radiation dose delivery. The objectives of this study were to quantify the gantry sag on multiple linear accelerators (linacs), to investigate a multileaf collimator (MLC)-based strategy to compensate for gantry sag, and to verify the gantry sag and its compensation with film measurements. Methods: The authors used the Winston-Lutz method to measure gantry sag on three Varian linacs. A ball bearing phantom was imaged with megavolt radiation fields at 10 deg. gantry angle intervals. The images recorded with an electronic portal imaging device were analyzed to derive the radiation isocenter and the gantry sag, that is, the superior-inferior wobble of the radiation field center, as a function of the gantry angle. The authors then attempted to compensate for the gantry sag by applying a gantry angle-specific correction to the MLC leaf positions. The gantry sag and its compensation were independently verified using film measurements. Results: Gantry sag was reproducible over a six-month measurement period. The maximum gantry sag was found to vary from 0.7 to 1.0 mm, depending on the linac and the collimator angle. The radiation field center moved inferiorly (i.e., away from the gantry) when the gantry was rotated from 0 deg. to 180 deg. After the MLC leaf position compensation was applied at 90 deg. collimator angle, the maximum gantry sag was reduced to <0.2 mm. The film measurements at gantry angles of 0 deg. and 180 deg. verified the inferior shift of the radiation fields and the effectiveness of MLC compensation. Conclusions: The results indicate that gantry sag on a linac can be quantitatively measured using a simple phantom and an electronic portal imaging device. Reduction of gantry sag is feasible by applying a gantry angle-specific correction to MLC leaf positions at 90 deg. collimator angle.

  15. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    International Nuclear Information System (INIS)

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck af Rosenschoeld, Per

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358 deg. arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy x 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45 deg. or 315 deg. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system

  16. 6 MV dosimetric characterization of the 160 MLC, the new Siemens multileaf collimator

    International Nuclear Information System (INIS)

    Tacke, Martin B.; Nill, Simeon; Haering, Peter; Oelfke, Uwe

    2008-01-01

    New technical developments constantly aim at improving the outcome of radiation therapy. With the use of a computer-controlled multileaf collimator (MLC), the quality of the treatment and the efficiency in patient throughput is significantly increased. New MLC designs aim to further enhance the advantages. In this article, we present the first detailed experimental investigation of the new 160 MLC TM , Siemens Medical Solutions. The assessment included the experimental investigation of typical MLC characteristics such as leakage, tongue-and-groove effect, penumbra, leaf speed, and leaf positioning accuracy with a 6 MV treatment beam. The leakage is remarkably low with an average of 0.37% due to a new design principle of slightly tilted leaves instead of the common tongue-and-groove design. But due to the tilt, the triangular tongue-and-groove effect occurs. Its magnitude of approximately 19% is similar to the dose defect measured for MLCs with the common tongue-and-groove design. The average longitudinal penumbra measured at depth d max =15 mm with standard 100x100 mm 2 fields is 4.1±0.5 mm for the central range and increases to 4.9±1.3 mm for the entire field range of 400x400 mm 2 . The increase is partly due to the single-focusing design and the large distance between the MLC and the isocenter enabling a large patient clearance. Regarding the leaf speed, different velocity tests were performed. The positions of the moving leaves were continuously recorded with the kilovoltage-imaging panel. The maximum leaf velocities measured were 42.9±0.6 mm/s. In addition, several typical intensity-modulated radiation therapy treatments were performed and the delivery times compared to the Siemens OPTIFOCUS MLC. An average decrease of 11% in delivery time was observed. The experimental results presented in this article indicate that the dosimetric characteristics of the 160 MLC are capable of improving the quality of dose delivery with respect to precision and dose

  17. SU-E-T-479: IMRT Plan Recalculation in Patient Based On Dynalog Data and the Effect of a Single Failing MLC Motor

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, M [Vantage Oncology, San Bernardino, CA (United States); Mitrou, E [Centre Hospitalier de l’Universite de Montreal, Montreal, QC (Canada)

    2015-06-15

    Purpose: Using Linac dynamic logs (Dynalogs) we evaluate the impact of a single failing MLC motor on the deliverability of an IMRT plan by assessing the recalculated dose volume histograms (DVHs) taking the delivered MLC positions and beam hold-offs into consideration. Methods: This is a retrospective study based on a deteriorating MLC motor (leaf 36B) which was observed to be failing via Dynalog analysis. To investigate further, Eclipse-importable MLC files were generated from Dynalogs to recalculate the actual delivered dose and to assess the clinical impact through DVHs. All deliveries were performed on a Varian 21EX linear accelerator equipped with Millennium-120 MLC. The analysis of Dynalog files and subsequent conversion to Eclipse-importable MLC files were all performed by in-house programming in Python. Effects on plan DVH are presented in the following section on a particular brain-IMRT plan which was delivered with a failing MLC motor which was then replaced. Results: Global max dose increased by 13.5%, max dose to the brainstem PRV increased by 8.2%, max dose to the optic chiasm increased by 7.6%, max dose to optic nerve increased by 8.8% and the mean dose to the PTV increased by 7.9% when comparing the original plan to the fraction with the failing MLC motor. The reason the dose increased was due to the failure being on the B-bank which is the lagging side on a sliding window delivery, therefore any failures on this side will cause an over-irradiation as the B-bank leaves struggles to keep the window from growing. Conclusion: Our findings suggest that a single failing MLC motor may jeopardize the entire delivery. This may be due to the bad MLC motor drawing too much current causing all MLCs on the same bank to underperform. This hypothesis will be investigated in a future study.

  18. SU-E-T-479: IMRT Plan Recalculation in Patient Based On Dynalog Data and the Effect of a Single Failing MLC Motor

    International Nuclear Information System (INIS)

    Morcos, M; Mitrou, E

    2015-01-01

    Purpose: Using Linac dynamic logs (Dynalogs) we evaluate the impact of a single failing MLC motor on the deliverability of an IMRT plan by assessing the recalculated dose volume histograms (DVHs) taking the delivered MLC positions and beam hold-offs into consideration. Methods: This is a retrospective study based on a deteriorating MLC motor (leaf 36B) which was observed to be failing via Dynalog analysis. To investigate further, Eclipse-importable MLC files were generated from Dynalogs to recalculate the actual delivered dose and to assess the clinical impact through DVHs. All deliveries were performed on a Varian 21EX linear accelerator equipped with Millennium-120 MLC. The analysis of Dynalog files and subsequent conversion to Eclipse-importable MLC files were all performed by in-house programming in Python. Effects on plan DVH are presented in the following section on a particular brain-IMRT plan which was delivered with a failing MLC motor which was then replaced. Results: Global max dose increased by 13.5%, max dose to the brainstem PRV increased by 8.2%, max dose to the optic chiasm increased by 7.6%, max dose to optic nerve increased by 8.8% and the mean dose to the PTV increased by 7.9% when comparing the original plan to the fraction with the failing MLC motor. The reason the dose increased was due to the failure being on the B-bank which is the lagging side on a sliding window delivery, therefore any failures on this side will cause an over-irradiation as the B-bank leaves struggles to keep the window from growing. Conclusion: Our findings suggest that a single failing MLC motor may jeopardize the entire delivery. This may be due to the bad MLC motor drawing too much current causing all MLCs on the same bank to underperform. This hypothesis will be investigated in a future study

  19. SU-E-T-545: MLC Distance Travelled as a Predictor for Motor Failure

    International Nuclear Information System (INIS)

    Stathakis, S; Defoor, D; Linden, P; Kirby, N; Papanikolaou, N; Mavroidis, P

    2015-01-01

    Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. An in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours

  20. SU-E-T-545: MLC Distance Travelled as a Predictor for Motor Failure

    Energy Technology Data Exchange (ETDEWEB)

    Stathakis, S; Defoor, D; Linden, P; Kirby, N; Papanikolaou, N [UTHSCSA, San Antonio, TX (United States); Mavroidis, P [University of North Carolina, Chapel Hill, NC (United States)

    2015-06-15

    Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. An in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.

  1. Implementation and acceptance of dynamic MLC for IMRT and VMAT

    International Nuclear Information System (INIS)

    Garcia, B.; Marquina, J.; Ramirez, J.; Gonzales, A.

    2014-08-01

    The use of Multi-leaf Collimator (MLC) in Intensity-Modulated Radiation Therapy (IMRT) for dynamic treatment techniques as Volumetric Modulated Arc Therapy (VMAT) makes that the movement controls as the speed of the MLC are quantified by means of an acceptance test. The objective determination of the operation regulations of the radiotherapy equipment requires ideally the establishment of the quantitative relationship among the performance deviations and clinical results or some acceptable substitute. Different protocols exist detailed with parameters and acceptance ranges according to the MLC thickness. In our case the acceptance test was carried out for 120-MLC of Trilogy equipment brand Varian. For all the test were used 300-200 Um for each formed beam lets; source-surface distance (SSD) of 100 cm. 9 acceptance tests were used each one with different purposes like to quantify, synchronization, stability, complexity, precision, positioning, conformity, dynamic movements for the case of dynamic wedges, consecutive moves, among others, for the measurements were used film badges dosimetry (Gafchromic Ebt-3 scanner Epson expression 10000 XL); additionally the results were compared with a diodes arrangement Map-Check 2 brand Sun Nuclear; that consists of 1527 diodes prepared in a field of 32 x 26 cm located at a distance of 1 cm parallel, 0.5 cm diagonally. All the developed tests were inside the acceptance tolerance parameters when comparing the obtained result regarding the badges and the Map-Check was found a discrepancy of 0.01%, what gives a treatment certainty to the moment to impart volumetric dose in dynamic fields to the patients. (Author)

  2. Implementation and acceptance of dynamic MLC for IMRT and VMAT; Implementacion y aceptacion de MLC dinamicos para IMRT y VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B.; Marquina, J.; Ramirez, J.; Gonzales, A., E-mail: bertha.garcia@aliada.com.pe [ALIADA, Oncologia Integral, Av. Jose Galvez Barrenechea 1044, San Isidro, Lima 27 (Peru)

    2014-08-15

    The use of Multi-leaf Collimator (MLC) in Intensity-Modulated Radiation Therapy (IMRT) for dynamic treatment techniques as Volumetric Modulated Arc Therapy (VMAT) makes that the movement controls as the speed of the MLC are quantified by means of an acceptance test. The objective determination of the operation regulations of the radiotherapy equipment requires ideally the establishment of the quantitative relationship among the performance deviations and clinical results or some acceptable substitute. Different protocols exist detailed with parameters and acceptance ranges according to the MLC thickness. In our case the acceptance test was carried out for 120-MLC of Trilogy equipment brand Varian. For all the test were used 300-200 Um for each formed beam lets; source-surface distance (SSD) of 100 cm. 9 acceptance tests were used each one with different purposes like to quantify, synchronization, stability, complexity, precision, positioning, conformity, dynamic movements for the case of dynamic wedges, consecutive moves, among others, for the measurements were used film badges dosimetry (Gafchromic Ebt-3 scanner Epson expression 10000 XL); additionally the results were compared with a diodes arrangement Map-Check 2 brand Sun Nuclear; that consists of 1527 diodes prepared in a field of 32 x 26 cm located at a distance of 1 cm parallel, 0.5 cm diagonally. All the developed tests were inside the acceptance tolerance parameters when comparing the obtained result regarding the badges and the Map-Check was found a discrepancy of 0.01%, what gives a treatment certainty to the moment to impart volumetric dose in dynamic fields to the patients. (Author)

  3. Monte Carlo modeling and simulations of the High Definition (HD120) micro MLC and validation against measurements for a 6 MV beam

    International Nuclear Information System (INIS)

    Borges, C.; Zarza-Moreno, M.; Heath, E.; Teixeira, N.; Vaz, P.

    2012-01-01

    Purpose: The most recent Varian micro multileaf collimator (MLC), the High Definition (HD120) MLC, was modeled using the BEAMNRC Monte Carlo code. This model was incorporated into a Varian medical linear accelerator, for a 6 MV beam, in static and dynamic mode. The model was validated by comparing simulated profiles with measurements. Methods: The Varian Trilogy (2300C/D) accelerator model was accurately implemented using the state-of-the-art Monte Carlo simulation program BEAMNRC and validated against off-axis and depth dose profiles measured using ionization chambers, by adjusting the energy and the full width at half maximum (FWHM) of the initial electron beam. The HD120 MLC was modeled by developing a new BEAMNRC component module (CM), designated HDMLC, adapting the available DYNVMLC CM and incorporating the specific characteristics of this new micro MLC. The leaf dimensions were provided by the manufacturer. The geometry was visualized by tracing particles through the CM and recording their position when a leaf boundary is crossed. The leaf material density and abutting air gap between leaves were adjusted in order to obtain a good agreement between the simulated leakage profiles and EBT2 film measurements performed in a solid water phantom. To validate the HDMLC implementation, additional MLC static patterns were also simulated and compared to additional measurements. Furthermore, the ability to simulate dynamic MLC fields was implemented in the HDMLC CM. The simulation results of these fields were compared with EBT2 film measurements performed in a solid water phantom. Results: Overall, the discrepancies, with and without MLC, between the opened field simulations and the measurements using ionization chambers in a water phantom, for the off-axis profiles are below 2% and in depth-dose profiles are below 2% after the maximum dose depth and below 4% in the build-up region. On the conditions of these simulations, this tungsten-based MLC has a density of 18.7 g

  4. SU-E-T-784: Using MLC Log Files for Daily IMRT Delivery Verification

    Energy Technology Data Exchange (ETDEWEB)

    Stathakis, S; Defoor, D; Linden, P; Kirby, N; Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States)

    2015-06-15

    Purpose: To verify daily intensity modulated radiation therapy (IMRT) treatments using multi-leaf collimator (MLC) log files. Methods: The MLC log files from a NovalisTX Varian linear accelerator were used in this study. The MLC files were recorded daily for all patients undergoing IMRT or volumetric modulated arc therapy (VMAT). The first record of each patient was used as reference and all records for subsequent days were compared against the reference. An in house MATLAB software code was used for the comparisons. Each MLC log file was converted to a fluence map (FM) and a gamma index (γ) analysis was used for the evaluation of each daily delivery for every patient. The tolerance for the gamma index was set to 2% dose difference and 2mm distance to agreement while points with signal of 10% or lower of the maximum value were excluded from the comparisons. Results: The γ between each of the reference FMs and the consecutive daily fraction FMs had an average value of 99.1% (ranged from 98.2 to 100.0%). The FM images were reconstructed at various resolutions in order to study the effect of the resolution on the γ and at the same time reduce the time for processing the images. We found that the comparison of images with the highest resolution (768×1024) yielded on average a lower γ (99.1%) than the ones with low resolution (192×256) (γ 99.5%). Conclusion: We developed an in-house software that allows us to monitor the quality of daily IMRT and VMAT treatment deliveries using information from the MLC log files of the linear accelerator. The information can be analyzed and evaluated as early as after the completion of each daily treatment. Such tool can be valuable to assess the effect of MLC positioning on plan quality, especially in the context of adaptive radiotherapy.

  5. Management of the interplay effect when using dynamic MLC sequences to treat moving targets

    International Nuclear Information System (INIS)

    Court, Laurence E.; Wagar, Matthew; Ionascu, Dan; Berbeco, Ross; Chin, Lee

    2008-01-01

    Interplay between organ motion and leaf motion has been shown to generally have a small dosimetric impact for most clinical intensity-modulated radiation therapy treatments. However, it has also been shown that for some MLC sequences there can be large daily variations in the delivered dose, depending on details of patient motion or the number of fractions. This study investigates guidelines for dynamic MLC sequences that will keep daily dose variations due to the interplay between organ motion and leaf motion within 10%. Dose distributions for a range of MLC separations (0.2-5.0 cm) and displacements between adjacent MLCs (0-1.5 cm) were exported from ECLIPSE to purpose-written software, which simulated the dose distribution delivered to a moving target. Target motion parallel and perpendicular to the MLC motion was investigated for a range of amplitudes (0.5-4.0 cm), periods (1.5-10 s), and MLC speeds (0.1-3.0 cm/s) with target motions modeled as sin 6 . Results were confirmed experimentally by measuring the dose delivered to an ion chamber array in a moving phantom for different MLC sequences. The simulation results were used to identify MLC sequences that kept dose variations within 10% compared to the dose delivered with no motion. The maximum allowable MLC speed, when target motion is parallel to the MLC motion, was found to be a simple function of target period and MLC separation. When the target motion is perpendicular to MLC motion, the maximum allowable MLC speed can be described as a function of MLC separation and the displacement of adjacent MLCs. These guidelines were successfully applied to two-dimensional motion, and a simple program was written to import MLC sequence files and evaluate whether the maximum daily dose discrepancy caused by the interplay effect will be larger than 10%. This software was experimentally evaluated, and found to conservatively predict whether a given MLC sequence could give large daily dose discrepancies

  6. Results of daily monitoring of positioning MLC multileaf collimator for Siemens 160 with an array of cameras

    International Nuclear Information System (INIS)

    Lopez Fernandez, A.; Rodriguez Rodriguez, C.; Martin Martin, G.; Saez Beltran, M.

    2011-01-01

    Modern techniques of radiotherapy, and in particular the intensity-modulated radiotherapy (IMRT), require sub-millimeter accuracy in the positioning of multileaf collimators to ensure that patients receive the prescribed dose. It is difficult to include checks of positioning accuracy as high on the agendas of regular monitoring of the accelerators of a hospital. This paper presents the results of a method that enables rapid verification of the position of the sheets with an accuracy of tenths of a millimeter by using an ionization chamber array. The procedure has been applied to the daily control of the two accelerators of our service for 12 months.

  7. Study of the positioning of the films of the MLC by a Test of bands and your influence in the clinic dosimetry in IMRT; Estudio del posicionamiento de las laminas del MLC mediante un test de bandas y su influencia en la dosimetria clinica en IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Serrano Zabaleta, S.; Millan Cebrian, E.; Calvo Carrillo, S.; Alba Escorihuela, V.; Garcia Romero, A.; Ortega Pardina, P.; Canella Anoz, M.; Hernandez Vitoria, A.

    2015-07-01

    We performed a test of adjacent bands inspired by the proposed in AAPM Report No. 72, we provides a parameter characterizing the state of the MLC as to the actual position of its blades. This test has been validated by studying repeatability and reproducibility and has found the correlation between the parameter and creep detected by the ILD. Subsequently it has studied the impact of changes in the positioning of the blades on clinical dosimetry in IMRT patients, reconstructing the patient dose by Matrix Evolution team and Compass software, IBA Dosimetry. (Author)

  8. An EPID response calculation algorithm using spatial beam characteristics of primary, head scattered and MLC transmitted radiation

    International Nuclear Information System (INIS)

    Rosca, Florin; Zygmanski, Piotr

    2008-01-01

    We have developed an independent algorithm for the prediction of electronic portal imaging device (EPID) response. The algorithm uses a set of images [open beam, closed multileaf collimator (MLC), various fence and modified sweeping gap patterns] to separately characterize the primary and head-scatter contributions to EPID response. It also characterizes the relevant dosimetric properties of the MLC: Transmission, dosimetric gap, MLC scatter [P. Zygmansky et al., J. Appl. Clin. Med. Phys. 8(4) (2007)], inter-leaf leakage, and tongue and groove [F. Lorenz et al., Phys. Med. Biol. 52, 5985-5999 (2007)]. The primary radiation is modeled with a single Gaussian distribution defined at the target position, while the head-scatter radiation is modeled with a triple Gaussian distribution defined downstream of the target. The distances between the target and the head-scatter source, jaws, and MLC are model parameters. The scatter associated with the EPID is implicit in the model. Open beam images are predicted to within 1% of the maximum value across the image. Other MLC test patterns and intensity-modulated radiation therapy fluences are predicted to within 1.5% of the maximum value. The presented method was applied to the Varian aS500 EPID but is designed to work with any planar detector with sufficient spatial resolution

  9. Potential of discrete Gaussian edge feathering method for improving abutment dosimetry in eMLC-delivered segmented-field electron conformal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.; Parker, Brent C.; Price, Michael J. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States) and Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States) and Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 (United States)

    2011-12-15

    Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of the higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge

  10. MANUAL LOGIC CONTROLLER (MLC)

    OpenAIRE

    Claude Ziad Bayeh

    2015-01-01

    The “Manual Logic Controller” also called MLC, is an electronic circuit invented and designed by the author in 2008, in order to replace the well known PLC (Programmable Logic Controller) in many applications for its advantages and its low cost of fabrication. The function of the MLC is somewhat similar to the well known PLC, but instead of doing it by inserting a written program into the PLC using a computer or specific software inside the PLC, it will be manually programmed in a manner to h...

  11. Leaf position optimization for step-and-shoot IMRT

    International Nuclear Information System (INIS)

    Gersem, Werner de; Claus, Filip; Wagter, Carlos de; Duyse, Bart van; Neve, Wilfried de

    2001-01-01

    Purpose: To describe the theoretical basis, the algorithm, and implementation of a tool that optimizes segment shapes and weights for step-and-shoot intensity-modulated radiation therapy delivered by multileaf collimators. Methods and Materials: The tool, called SOWAT (Segment Outline and Weight Adapting Tool) is applied to a set of segments, segment weights, and corresponding dose distribution, computed by an external dose computation engine. SOWAT evaluates the effects of changing the position of each collimating leaf of each segment on an objective function, as follows. Changing a leaf position causes a change in the segment-specific dose matrix, which is calculated by a fast dose computation algorithm. A weighted sum of all segment-specific dose matrices provides the dose distribution and allows computation of the value of the objective function. Only leaf position changes that comply with the multileaf collimator constraints are evaluated. Leaf position changes that tend to decrease the value of the objective function are retained. After several possible positions have been evaluated for all collimating leaves of all segments, an external dose engine recomputes the dose distribution, based on the adapted leaf positions and weights. The plan is evaluated. If the plan is accepted, a segment sequencer is used to make the prescription files for the treatment machine. Otherwise, the user can restart SOWAT using the new set of segments, segment weights, and corresponding dose distribution. The implementation was illustrated using two example cases. The first example is a T1N0M0 supraglottic cancer case that was distributed as a multicenter planning exercise by investigators from Rotterdam, The Netherlands. The exercise involved a two-phase plan. Phase 1 involved the delivery of 46 Gy to a concave-shaped planning target volume (PTV) consisting of the primary tumor volume and the elective lymph nodal regions II-IV on both sides of the neck. Phase 2 involved a boost of

  12. Monte Carlo study of MLC fields for cobalt therapy machine

    Directory of Open Access Journals (Sweden)

    Komanduri M Ayyangar

    2014-01-01

    Full Text Available An automated Multi-Leaf Collimator (MLC system has been developed as add-on for the cobalt-60 teletherapy machines available in India. The goal of the present computational study is to validate the MLC design using Monte Carlo (MC modeling. The study was based on the Kirloskar-supplied Phoenix model machines that closely match the Atomic Energy of Canada Limited (AECL theratron-80 machine. The MLC is a retrofit attachment to the collimator assembly, with 14 non-divergent leaf pairs of 40 mm thick, 7 mm wide, and 150 mm long tungsten alloy plates with rounded edges and 20 mm tongue and 2 mm groove in each leaf. In the present work, the source and collimator geometry has been investigated in detail to arrive at a model that best represents the measured dosimetric data. The authors have studied in detail the proto-I MLC built for cobalt-60. The MLC field sizes were MC simulated for 2 × 2 cm 2 to 14 × 14 cm 2 square fields as well as irregular fields, and the percent depth dose (PDD and profile data were compared with ROPS† treatment planning system (TPS. In addition, measured profiles using the IMATRIXX system‡ were also compared with the MC simulations. The proto-I MLC can define radiation fields up to 14 × 14 cm΂ within 3 mm accuracy. The maximum measured leakage through the leaf ends in closed condition was 3.4% and interleaf leakage observed was 7.3%. Good agreement between MC results, ROPS and IMATRIXX results has been observed. The investigation also supports the hypothesis that optical and radiation field coincidence exists for the square fields studied with the MLC. Plots of the percent depth dose (PDD data and profile data for clinically significant irregular fields have also been presented. The MC model was also investigated to speed up the calculations to allow calculations of clinically relevant conformal beams.

  13. Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy

    International Nuclear Information System (INIS)

    Hogstrom, Kenneth R.; Boyd, Robert A.; Antolak, John A.; Svatos, Michelle M.; Faddegon, Bruce A.; Rosenman, Julian G.

    2004-01-01

    An electron multileaf collimator (eMLC) has been designed that is unique in that it retracts to 37 cm from the isocenter [63-cm source-to-collimator distance (SCD)] and can be deployed to distances of 20 and 10 cm from the isocenter (80 and 90 cm SCD, respectively). It is expected to be capable of arc therapy at 63 cm SCD; isocentric, fixed-beam therapy at 80 cm SCD; and source-to-surface distance (SSD), fixed-beam therapy at 90 cm SCD. In all positions, its leaves could be used for unmodulated or intensity-modulated therapy. Our goal in the present work is to describe the general characteristics of the eMLC and to demonstrate that its leakage characteristics and dosimetry are adequate for SSD, fixed-beam therapy as an alternative to Cerrobend cutouts with applicators once the prototype's leaves are motorized. Our eMLC data showed interleaf electron leakage at 15 MeV to be less than 0.1% based on a 0.0025 cm manufacturing tolerance, and lateral electron leakage at 5 and 15 MeV to be less than 2%. X-ray leakage through the leaves was 1.6% at 15 MeV. Our data showed that beam penumbra was independent of direction and leaf position. The dosimetric properties of square fields formed by the eMLC were very consistent with those formed by Cerrobend inserts in the 20x20 cm 2 applicator. Output factors exhibited similar field-size dependence. Airgap factors exhibited almost identical field-size dependence at two SSDs (105 and 110 cm), consistent with the common assumption that airgap factors are applicator independent. Percent depth-dose curves were similar, but showed variations up to 3% in the buildup region. The pencil-beam algorithm (PBA) fit measured data from the eMLC and applicator-cutout systems equally well, and the resulting two-dimensional (2-D) dose distributions, as predicted by the PBA, agreed well at common airgap distance. Simulating patient setups for breast and head and neck treatments showed that almost all fields could be treated using similar SSDs as

  14. Characterization and linear array LA48 Commissioner for measuring the position of the multi leaf collimator; Caracterizacion y comisionado del linear array LA48 para medir el posicionamiento del colimador multilaminas

    Energy Technology Data Exchange (ETDEWEB)

    Conles Picos, I.; Cenizo de Castro, E.; Aparicio martin, A. R.; Barrio Lazo, F.; Cesteros Morante, M. J.

    2011-07-01

    The protocol of Quality Control of electron accelerators for medical use of SEFM proposed for multi leaf collimation system (MLC) to verify the positioning of the blades connect. To do this you must find a system with sufficient accuracy and precision and, if possible, easy to assemble and offers real-time results. One of these teams is the Linear Array of PTW-Freiburg (LA48), which consists of a row of 47 ionization chambers, of 0008 cc and 8 mm apart from each other. In this paper, we describe our process of characterization and LA48 commissioner. (Author)

  15. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara

    2018-02-01

    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  16. Real-time dynamic MLC tracking for inversely optimized arc radiotherapy

    DEFF Research Database (Denmark)

    Falk, Marianne; af Rosenschöld, Per Munck; Keall, Paul

    2010-01-01

    Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory.......Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory....

  17. Manual multi-leaf collimator for electron beam shaping - a feasibility study

    International Nuclear Information System (INIS)

    Ravindran, B Paul; Singh, I Rabi Raja; Brindha, S; Sathyan, S

    2002-01-01

    In electron beam therapy, lead or low melting point alloy (LMA) sheet cutouts of sufficient thickness are commonly used to shape the beam. In order to avoid making cutouts for each patient, an attempt has been made to develop a manual multi-leaf collimator for electron beams (eMLC). The eMLC has been developed using LMA for a 15x15 cm 2 applicator. Electron beam characteristics such as depth dose, beam profiles, surface dose, output factors and virtual source position with the eMLC have been studied and compared with those of an applicator electron beam. The interleaf leakage radiation has also been measured with film dosimetry. Depth dose values obtained using the eMLC were found to be identical to those with the applicator for depths larger than D max . However, a decrease in the size of the beam penumbra with the eMLC and increase in the values of surface dose, output factors and virtual source position with eMLC were observed. The leakage between the leaves was less than 5% and the leakage between the opposing leaves was 15%, which could be minimized further by careful positioning of the leaves. It is observed that it is feasible to use such a manual eMLC for patients and eliminate the fabrication of cutouts for each patient

  18. 3CML: a software application for quality control of multi leaf collimators

    International Nuclear Information System (INIS)

    Miras, H.; Perez, M. A.; Macias, J.; Moreno, J. C.; Campo, J. L.; Ortiz, M.; Arrans, R.; Ortiz, A.; Terron, J. A.; Fernandez, D.

    2011-01-01

    The treatments of intensity modulated radiotherapy (IMRT) require a deep knowledge of the accuracy, precision and reproducibility of positioning of the plates that make up the multi leaf collimator (MLC). We have developed a computer application, 3CML, to analyze an image corresponding to a pattern of separate bands irradiation to determine the deviations of the positioning of the blades on the nominal values.

  19. Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT

    International Nuclear Information System (INIS)

    Yang, Y.; Xing, L.; Li, J.G.; Palta, J.; Chen, Y.; Luxton, Gary; Boyer, A.

    2003-01-01

    Independent verification of the MU settings and dose calculation of IMRT treatment plans is an important step in the IMRT quality assurance (QA) procedure. At present, the verification is mainly based on experimental measurements, which are time consuming and labor intensive. Although a few simplified algorithms have recently been proposed for the independent dose (or MU) calculation, head scatter has not been precisely taken into account in all these investigations and the dose validation has mainly been limited to the central axis. In this work we developed an effective computer algorithm for IMRT MU and dose validation. The technique is superior to the currently available computer-based MU check systems in that (1) it takes full consideration of the head scatter and leaf transmission effects; and (2) it allows a precise dose calculation at an arbitrary spatial point instead of merely a point on the central axis. In the algorithm the dose at an arbitrary spatial point is expressed as a summation of the contributions of primary and scatter radiation from all beamlets. Each beamlet is modulated by a dynamic modulation factor (DMF), which is determined by the MLC leaf trajectories, the head scatter, the jaw positions, and the MLC leaf transmission. A three-source model was used to calculate the head scatter distribution for irregular segments shaped by MLC and the scatter dose contributions were computed using a modified Clarkson method. The system reads in MLC leaf sequence files (or RTP files) generated by the Corvus (NOMOS Corporation, Sewickley, PA) inverse planning system and then computes the doses at the desired points. The algorithm was applied to study the dose distributions of several testing intensity modulated fields and two multifield Corvus plans and the results were compared with Corvus plans and experimental measurements. The final dose calculations at most spatial points agreed with the experimental measurements to within 3% for both the specially

  20. Motion management during IMAT treatment of mobile lung tumors-A comparison of MLC tracking and gated delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Pommer, Tobias; Keall, Paul

    2014-01-01

    Purpose:To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). Methods: Motion management with MLC tracking and gating was evaluated for four...... tracking reduced the effects of the target movements, although the gated delivery showed a better dosimetric accuracy and enabled a larger reduction of the margins in some cases. MLC tracking did not prolong the treatment time compared to delivery with no motion compensation while gating had a considerably...... of the dosimetric error contributions showed that the gated delivery mainly had errors in target localization, while MLC tracking also had contributions from MLC leaf fitting and leaf adjustment. The average treatment time was about three times longer with gating compared to delivery with MLC tracking (that did...

  1. SU-C-BRB-04: Characteristics and Performance Evaluation of the First Commercial MLC for a Robotic Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Fuerweger, C [Erasmus MC Cancer Institute, Rotterdam (Netherlands); European Cyberknife Center Munich, Munich, DE (Germany); Prins, P; Coskan, H; Heijmen, B [Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2015-06-15

    Purpose: To assess characteristics and performance of the “Incise™” MLC (41 leaf pairs, 2.5mm width, FFF linac) mounted on the robotic SRS/SBRT platform “CyberKnife M6™” in a pre-clinical 5 months (11/2014–03/2015) test period. Methods: Beam properties were measured with unshielded diodes and EBT3 film. The CyberKnife workspace for MLC was analyzed by transforming robot node coordinates (cranial / body paths) into Euler geometry. Bayouth tests for leaf / bank position accuracy were performed in standard (A/P) and clinically relevant non-standard positions, before and after exercising the MLC for 10+ minutes. Total system and delivery accuracy were assessed in End-to-End tests and dosimetric verification of exemplary plans. Stability over time was evaluated in Picket-Fence-and adapted Winston-Lutz-tests (AQA) for different collimator angles. Results: Penumbrae (80–20%, with 100%=2*dose at inflection point; SAD 80cm; 10cm depth) parallel / perpendicular to leaf motion were 2.87/2.64mm for the smallest (0×76×0.75cm{sup 2}) and 5.34/4.94mm for the largest (9.76×9.75cm{sup 2}) square field. MLC circular field penumbrae exceeded fixed cones by 10–20% (e.g. 60mm: 4.0 vs. 3.6mm; 20mm: 3.6 vs. 2.9mm). Interleaf leakage was <0.5%. Clinically accessible workspace with MLC covered (non-coplanar) gantry angles of [-113°;+112°] (cranial) and [-108°;+102°] (body), and collimator angles of [-100°;+107°] (cranial) and [-91°;+100°] (body). Average leaf position offsets were ≤0.2mm in 14 standard A/P Bayouth tests and ≤0.6mm in 8 non-standard direction tests. Pre-test MLC exercise increased jaggedness (range ±0.3mm vs. ±0.5mm) and allowed to identify one malfunctioning leaf motor. Total system accuracy with MLC was 0.39±0.06mm in 6 End-to-End tests. Picket-Fence and AQA showed no adverse trends during the test period. Conclusion: The Incise™ MLC for CyberKnife M6™ displayed high accuracy and mechanical stability over the test period. The

  2. SU-C-BRB-04: Characteristics and Performance Evaluation of the First Commercial MLC for a Robotic Delivery System

    International Nuclear Information System (INIS)

    Fuerweger, C; Prins, P; Coskan, H; Heijmen, B

    2015-01-01

    Purpose: To assess characteristics and performance of the “Incise™” MLC (41 leaf pairs, 2.5mm width, FFF linac) mounted on the robotic SRS/SBRT platform “CyberKnife M6™” in a pre-clinical 5 months (11/2014–03/2015) test period. Methods: Beam properties were measured with unshielded diodes and EBT3 film. The CyberKnife workspace for MLC was analyzed by transforming robot node coordinates (cranial / body paths) into Euler geometry. Bayouth tests for leaf / bank position accuracy were performed in standard (A/P) and clinically relevant non-standard positions, before and after exercising the MLC for 10+ minutes. Total system and delivery accuracy were assessed in End-to-End tests and dosimetric verification of exemplary plans. Stability over time was evaluated in Picket-Fence-and adapted Winston-Lutz-tests (AQA) for different collimator angles. Results: Penumbrae (80–20%, with 100%=2*dose at inflection point; SAD 80cm; 10cm depth) parallel / perpendicular to leaf motion were 2.87/2.64mm for the smallest (0×76×0.75cm 2 ) and 5.34/4.94mm for the largest (9.76×9.75cm 2 ) square field. MLC circular field penumbrae exceeded fixed cones by 10–20% (e.g. 60mm: 4.0 vs. 3.6mm; 20mm: 3.6 vs. 2.9mm). Interleaf leakage was <0.5%. Clinically accessible workspace with MLC covered (non-coplanar) gantry angles of [-113°;+112°] (cranial) and [-108°;+102°] (body), and collimator angles of [-100°;+107°] (cranial) and [-91°;+100°] (body). Average leaf position offsets were ≤0.2mm in 14 standard A/P Bayouth tests and ≤0.6mm in 8 non-standard direction tests. Pre-test MLC exercise increased jaggedness (range ±0.3mm vs. ±0.5mm) and allowed to identify one malfunctioning leaf motor. Total system accuracy with MLC was 0.39±0.06mm in 6 End-to-End tests. Picket-Fence and AQA showed no adverse trends during the test period. Conclusion: The Incise™ MLC for CyberKnife M6™ displayed high accuracy and mechanical stability over the test period. The specific Cyber

  3. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC; Calculo independiente de dosis del TPS Iplan en radioterapia conformada con MLC

    Energy Technology Data Exchange (ETDEWEB)

    Adrada, A.; Tello, Z.; Medina, L.; Garrigo, E.; Venencia, D., E-mail: jorge.alberto.adrada@gmail.com [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina)

    2014-08-15

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  4. Use of an amorphous silicon EPID for measuring MLC calibration at varying gantry angle

    International Nuclear Information System (INIS)

    Clarke, M F; Budgell, G J

    2008-01-01

    Amorphous silicon electronic portal imaging devices (EPIDs) are used to perform routine quality control (QC) checks on the multileaf collimators (MLCs) at this centre. Presently, these checks are performed at gantry angle 0 0 and are considered to be valid for all other angles. Since therapeutic procedures regularly require the delivery of MLC-defined fields to the patient at a wide range of gantry angles, the accuracy of the QC checks at other gantry angles has been investigated. When the gantry is rotated to angles other than 0 0 it was found that the apparent pixel size measured using the EPID varies up to a maximum value of 0.0015 mm per pixel due to a sag in the EPID of up to 9.2 mm. A correction factor was determined using two independent methods at a range of gantry angles between 0 deg. and 360 deg. The EPID was used to measure field sizes (defined by both x-jaws and MLC) at a range of gantry angles and, after this correction had been applied, any residual gravitational sag was studied. It was found that, when fields are defined by the x-jaws and y-back-up jaws, no errors of greater than 0.5 mm were measured and that these errors were no worse when the MLC was used. It was therefore concluded that, provided the correction is applied, measurements of the field size are, in practical terms, unaffected by gantry angle. Experiments were also performed to study how the reproducibility of individual leaves is affected by gantry angle. Measurements of the relative position of each individual leaf (minor offsets) were performed at a range of gantry angles and repeated three times. The position reproducibility was defined by the RMS error in the position of each leaf and this was found to be 0.24 mm and 0.21 mm for the two leaf banks at a gantry angle of 0 0 . When measurements were performed at a range of gantry angles, these reproducibility values remained within 0.09 mm and 0.11 mm. It was therefore concluded that the calibration of the Elekta MLC is stable at

  5. SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, A; Perrin, D; Fontenot, J [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States)

    2016-06-15

    Purpose: To compare IMRT QA pass rates before and after an in-house MLC leaf calibration procedure. Methods: The MLC leaves and backup jaws on four Elekta linear accelerators with MLCi2 heads were calibrated using the EPID-based RIT Hancock Test as the means for evaluation. The MLCs were considered to be successfully calibrated when they could pass the Hancock Test with criteria of 1 mm jaw position tolerance, and 1 mm leaf position tolerance. IMRT QA results were collected pre- and postcalibration and analyzed using gamma analysis with 3%/3mm DTA criteria. AAPM TG-119 test plans were also compared pre- and post-calibration, at both 2%/2mm DTA and 3%/3mm DTA. Results: A weighted average was performed on the results for all four linear accelerators. The pre-calibration IMRT QA pass rate was 98.3 ± 0.1%, compared with the post-calibration pass rate of 98.5 ± 0.1%. The TG-119 test plan results showed more of an improvement, particularly at the 2%/2mm criteria. The averaged results were 89.1% pre and 96.1% post for the C-shape plan, 94.8% pre and 97.1% post for the multi-target plan, 98.6% pre and 99.7% post for the prostate plan, 94.7% pre and 94.8% post for the head/neck plan. Conclusion: The patient QA results did not show statistically significant improvement at the 3%/3mm DTA criteria after the MLC calibration procedure. However, the TG-119 test cases did show significant improvement at the 2%/2mm level.

  6. TomoTherapy MLC verification using exit detector data

    Energy Technology Data Exchange (ETDEWEB)

    Chen Quan; Westerly, David; Fang Zhenyu; Sheng, Ke; Chen Yu [TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States); Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Xinghua Cancer Hospital, Xinghua, Jiangsu 225700 (China); Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, California 90095 (United States); TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States)

    2012-01-15

    Purpose: Treatment delivery verification (DV) is important in the field of intensity modulated radiation therapy (IMRT). While IMRT and image guided radiation therapy (IGRT), allow us to create more conformal plans and enables the use of tighter margins, an erroneously executed plan can have detrimental effects on the treatment outcome. The purpose of this study is to develop a DV technique to verify TomoTherapy's multileaf collimator (MLC) using the onboard mega-voltage CT detectors. Methods: The proposed DV method uses temporal changes in the MVCT detector signal to predict actual leaf open times delivered on the treatment machine. Penumbra and scattered radiation effects may produce confounding results when determining leaf open times from the raw detector data. To reduce the impact of the effects, an iterative, Richardson-Lucy (R-L) deconvolution algorithm is applied. Optical sensors installed on each MLC leaf are used to verify the accuracy of the DV technique. The robustness of the DV technique is examined by introducing different attenuation materials in the beam. Additionally, the DV technique has been used to investigate several clinical plans which failed to pass delivery quality assurance (DQA) and was successful in identifying MLC timing discrepancies as the root cause. Results: The leaf open time extracted from the exit detector showed good agreement with the optical sensors under a variety of conditions. Detector-measured leaf open times agreed with optical sensor data to within 0.2 ms, and 99% of the results agreed within 8.5 ms. These results changed little when attenuation was added in the beam. For the clinical plans failing DQA, the dose calculated from reconstructed leaf open times played an instrumental role in discovering the root-cause of the problem. Throughout the retrospective study, it is found that the reconstructed dose always agrees with measured doses to within 1%. Conclusions: The exit detectors in the TomoTherapy treatment

  7. TomoTherapy MLC verification using exit detector data

    International Nuclear Information System (INIS)

    Chen Quan; Westerly, David; Fang Zhenyu; Sheng, Ke; Chen Yu

    2012-01-01

    Purpose: Treatment delivery verification (DV) is important in the field of intensity modulated radiation therapy (IMRT). While IMRT and image guided radiation therapy (IGRT), allow us to create more conformal plans and enables the use of tighter margins, an erroneously executed plan can have detrimental effects on the treatment outcome. The purpose of this study is to develop a DV technique to verify TomoTherapy's multileaf collimator (MLC) using the onboard mega-voltage CT detectors. Methods: The proposed DV method uses temporal changes in the MVCT detector signal to predict actual leaf open times delivered on the treatment machine. Penumbra and scattered radiation effects may produce confounding results when determining leaf open times from the raw detector data. To reduce the impact of the effects, an iterative, Richardson-Lucy (R-L) deconvolution algorithm is applied. Optical sensors installed on each MLC leaf are used to verify the accuracy of the DV technique. The robustness of the DV technique is examined by introducing different attenuation materials in the beam. Additionally, the DV technique has been used to investigate several clinical plans which failed to pass delivery quality assurance (DQA) and was successful in identifying MLC timing discrepancies as the root cause. Results: The leaf open time extracted from the exit detector showed good agreement with the optical sensors under a variety of conditions. Detector-measured leaf open times agreed with optical sensor data to within 0.2 ms, and 99% of the results agreed within 8.5 ms. These results changed little when attenuation was added in the beam. For the clinical plans failing DQA, the dose calculated from reconstructed leaf open times played an instrumental role in discovering the root-cause of the problem. Throughout the retrospective study, it is found that the reconstructed dose always agrees with measured doses to within 1%. Conclusions: The exit detectors in the TomoTherapy treatment systems

  8. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Medina, L.; Garrigo, E.; Venencia, D.

    2014-08-01

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  9. 3CML: a software application for quality control of multi leaf collimators; 3CML: una aplicacion informatica para el control de calidad de colimadores multilaminas

    Energy Technology Data Exchange (ETDEWEB)

    Miras, H.; Perez, M. A.; Macias, J.; Moreno, J. C.; Campo, J. L.; Ortiz, M.; Arrans, R.; Ortiz, A.; Terron, J. A.; Fernandez, D.

    2011-07-01

    The treatments of intensity modulated radiotherapy (IMRT) require a deep knowledge of the accuracy, precision and reproducibility of positioning of the plates that make up the multi leaf collimator (MLC). We have developed a computer application, 3CML, to analyze an image corresponding to a pattern of separate bands irradiation to determine the deviations of the positioning of the blades on the nominal values.

  10. Quantitative analysis of the errors positioning of a multi leaf collimator for volumetric arcoterapia treatments

    International Nuclear Information System (INIS)

    Gomez Gonzalez, N.; Garcia Repiso, S.; Martin Rincon, C.; Cons Perez, N.; Saez Beltran, M.; Delgado Aparicio, J. M.; Perez alvarez, M. E.; Verde Velasco, J. M.; Ramos Pacho, J. A.; Sena Espinel, E. de

    2013-01-01

    The precision in the positioning of the multi leaf collimation system of a linear accelerator is critical, especially in treatments of IMRT, where small mistakes can cause relevant dosimetry discrepancies regarding the calculated plan. To assess the accuracy and repeatability of the blades positioning can be used controls, including the one known as fence test whose image pattern allows you to find anomalies in a visual way. The objective of this study is to develop a method which allows to quantify the positioning errors of the multi leaf collimator from this test. (Author)

  11. An independent dose calculation algorithm for MLC-based stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lorenz, Friedlieb; Killoran, Joseph H.; Wenz, Frederik; Zygmanski, Piotr

    2007-01-01

    We have developed an algorithm to calculate dose in a homogeneous phantom for radiotherapy fields defined by multi-leaf collimator (MLC) for both static and dynamic MLC delivery. The algorithm was developed to supplement the dose algorithms of the commercial treatment planning systems (TPS). The motivation for this work is to provide an independent dose calculation primarily for quality assurance (QA) and secondarily for the development of static MLC field based inverse planning. The dose calculation utilizes a pencil-beam kernel. However, an explicit analytical integration results in a closed form for rectangular-shaped beamlets, defined by single leaf pairs. This approach reduces spatial integration to summation, and leads to a simple method of determination of model parameters. The total dose for any static or dynamic MLC field is obtained by summing over all individual rectangles from each segment which offers faster speed to calculate two-dimensional dose distributions at any depth in the phantom. Standard beam data used in the commissioning of the TPS was used as input data for the algorithm. The calculated results were compared with the TPS and measurements for static and dynamic MLC. The agreement was very good (<2.5%) for all tested cases except for very small static MLC sizes of 0.6 cmx0.6 cm (<6%) and some ion chamber measurements in a high gradient region (<4.4%). This finding enables us to use the algorithm for routine QA as well as for research developments

  12. The effects of applied nitrogen fertilizer and leaf positions on levels ...

    African Journals Online (AJOL)

    Leaves were harvested at market maturity (vegetative phase) at three different leaf positions, basal (oldest), middle (younger) and upper (youngest) and were subjected to ... The concentration of β-carotene, vitamin C and Zn were significantly higher in the leaves in the middle part than in the basal and upper leaves.

  13. Evaluating efficiency of coaxial MLC VMAT plan for spine SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sang Jun; Mun, Jun Ki; Kim, Dae Ho; Yoo, Suk Hyun [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-12-15

    The purpose of the study is to evaluate the efficiency of Coaxial MLC VMAT plan (Using 273° and 350° collimator angle) That the leaf motion direction aligned with axis of OAR (Organ at risk, It means spinal cord or cauda equine in this study.) compare to Universal MLC VMAT plan (using 30° and 330 ° collimator angle) for spine SBRT. The 10 cases of spine SBRT that treated with VMAT planned by Coaxial MLC and Varian TBX were enrolled. Those cases were planned by Eclipse (Ver. 10.0.42, Varian, USA), PRO3 (Progressive Resolution Optimizer 10.0.28) and AAA (Anisotropic Analytic Algorithm Ver. 10.0.28) with coplanar 260 ° arcs and 10MV FFF (Flattening filter free). Each arc has 273° and 350 ° collimator angle, respectively. The Universal MLC VMAT plans are based on existing treatment plans. Those plans have the same parameters of existing treatment plans but collimator angle. To minimize the dose difference that shows up randomly on optimizing, all plans were optimized and calculated twice respectively. The calculation grid is 0.2 cm and all plans were normalized to the target V100%=90%. The indexes of evaluation are V10Gy, D0.03cc, Dmean of OAR (Organ at risk, It means spinal cord or cauda equine in this study.), H.I (Homogeneity index) of the target and total MU. All Coaxial VMAT plans were verified by gamma test with Mapcheck2 (Sun Nuclear Co., USA), Mapphan (Sun Nuclear Co., USA) and SNC patient (Sun Nuclear Co., USA Ver 6.1.2.18513). The difference between the coaxial and the universal VMAT plans are follow. The coaxial VMAT plan is better in the V10Gy of OAR, Up to 4.1%, at least 0.4%, the average difference was 1.9% and In the D0.03cc of OAR, Up to 83.6 cGy, at least 2.2 cGy, the average difference was 33.3 cGy. In Dmean, Up to 34.8 cGy, at least -13.0 cGy, the average difference was 9.6 cGy that say the coaxial VMAT plans are better except few cases. H.I difference Up to 0.04, at least 0.01, the average difference was 0.02 and the difference of average

  14. Theoretical analysis of radiation field penumbra from a multi leaf collimator

    International Nuclear Information System (INIS)

    Li Shidong; Boyer, Arthur; Findley, David; Mok, Ed

    1996-01-01

    of the leaf end radius to 5 cm. Therefore, the light field edge and the point-source radiation fluence edge are displaced from each other by less than 0.5 mm for all leaf positions. However, calculations for a different MLC geometry, an upper-jaw-replacement MLC without secondary collimation, predict a tripling of the displacements. Conclusion: The observed penumbra of 2 mm-4 mm for the MLC leaf end is not due primarily to the shape of the leaf end, but rather is due to other factors such as the extra focal scatter. This explains the observed similarity of the MLC penumbra to focused collimator jaw penumbra. Coincidence of the light field with the radiation field is theoretically predicted (and experimentally observed) throughout the range of motion of the leaves to be within 0.5 mm. The calibration of the leaf position must account for the nonlinear relation between the physical location of the leaf (as determined by an encoder) and the true position of the light and radiation field edges. This investigation was supported in part by PHS grant number CA43840 awarded by the National Cancer Institute

  15. SU-G-JeP1-05: Clinical Impact of MLC Tracking for Lung SABR

    Energy Technology Data Exchange (ETDEWEB)

    Caillet, V; Colvill, E [Faculty of Medecine, The University of Sydney, Sydney, NSW (Australia); Royal North Shore Hospital, Sydney, NSW (Australia); Szymura, K; Stevens, M; Booth, J [Royal North Shore Hospital, Sydney, NSW (Australia); Keall, P [Faculty of Medecine, The University of Sydney, Sydney, NSW (Australia)

    2016-06-15

    Purpose: The objective of this study was to investigate the dosimetric benefits of multi-leaf collimator (MLC) tracking for lung SABR treatments in end-to-end clinically realistic planning and delivery scenarios. Methods: The clinical benefits of MLC tracking were assessed using previously delivered treatment plans and physical experiments. The 10 most recent single lesion lung SABR patients were re-planned following a 4D-GTV-based real-time adaptive protocol (PTV defined as the end-of-exhalation GTV plus 5.0 mm margins). The plans were delivered on a Trilogy Varian linac. Electromagnetic transponders (Calypso, Varian Medical Systems, USA) were embedded into a programmable moving phantom (HexaMotion platform) tracked with the Varian Calypso system. For each physical experiment, the MLC positions were collected and used as input for dose reconstruction. For both planned and physical experiments, the OAR dose metrics from the conventional and real-time adaptive SABR plans (Mean Lung Dose (MLD), V20 for lung, and near-maximum dose (D2%) for spine and heart) were statistically compared. The Wilcoxon test was used to compare plan and physical experiment dose metrics. Results: While maintaining target coverage, percentage reductions in dose metrics to the OARs were observed for both planned and physical experiments. Comparing the two plans showed MLD percentage reduction (MLDr) of 25.4% (absolute differences of 1.41 Gy) and 28.9% (1.29%) for the V20r. D2% percentage reduction for spine and heart were respectively 27.9% (0.3 Gy) and 20.2% (0.3 Gy). For the physical experiments, MLDr was 23.9% (1.3 Gy), and V20r 37.4% (1.6%). D2% reduction for spine and heart were respectively 27.3% (0.3 Gy) and 19.6% (0.3 Gy). For both plans and physical experiments, significant OAR dose differences (p<0.05) were found between the conventional SABR and real-time adaptive plans. Conclusion: Application of MLC tracking for lung SABR patients has the potential to reduce the dose to OARs

  16. Technical Note: Using k-means clustering to determine the number and position of isocenters in MLC-based multiple target intracranial radiosurgery.

    Science.gov (United States)

    Yock, Adam D; Kim, Gwe-Ya

    2017-09-01

    To present the k-means clustering algorithm as a tool to address treatment planning considerations characteristic of stereotactic radiosurgery using a single isocenter for multiple targets. For 30 patients treated with stereotactic radiosurgery for multiple brain metastases, the geometric centroids and radii of each met were determined from the treatment planning system. In-house software used this as well as weighted and unweighted versions of the k-means clustering algorithm to group the targets to be treated with a single isocenter, and to position each isocenter. The algorithm results were evaluated using within-cluster sum of squares as well as a minimum target coverage metric that considered the effect of target size. Both versions of the algorithm were applied to an example patient to demonstrate the prospective determination of the appropriate number and location of isocenters. Both weighted and unweighted versions of the k-means algorithm were applied successfully to determine the number and position of isocenters. Comparing the two, both the within-cluster sum of squares metric and the minimum target coverage metric resulting from the unweighted version were less than those from the weighted version. The average magnitudes of the differences were small (-0.2 cm 2 and 0.1% for the within cluster sum of squares and minimum target coverage, respectively) but statistically significant (Wilcoxon signed-rank test, P k-means clustering algorithm represented an advantage of the unweighted version for the within-cluster sum of squares metric, and an advantage of the weighted version for the minimum target coverage metric. While additional treatment planning considerations have a large influence on the final treatment plan quality, both versions of the k-means algorithm provide automatic, consistent, quantitative, and objective solutions to the tasks associated with SRS treatment planning using a single isocenter for multiple targets. © 2017 The Authors. Journal

  17. Performance of a multi leaf collimator system for MR-guided radiation therapy.

    Science.gov (United States)

    Cai, Bin; Li, Harold; Yang, Deshan; Rodriguez, Vivian; Curcuru, Austen; Wang, Yuhe; Wen, Jie; Kashani, Rojano; Mutic, Sasa; Green, Olga

    2017-12-01

    The purpose of this study was to investigate and characterize the performance of a Multi Leaf Collimator (MLC) designed for Cobalt-60 based MR-guided radiation therapy system in a 0.35 T magnetic field. The MLC design and unique assembly features in the ViewRay MRIdian system were first reviewed. The RF cage shielding of MLC motor and cables were evaluated using ACR phantoms with real-time imaging and quantified by signal-to-noise ratio. The dosimetric characterizations, including the leaf transmission, leaf penumbra, tongue-and-groove effect, were investigated using radiosensitive films. The output factor of MLC-defined fields was measured with ionization chambers for both symmetric fields from 2.1 × 2.1 cm 2 to 27.3 × 27.3 cm 2 and asymmetric fields from 10.5 × 10.5 cm 2 to 10.5 × 2.0 cm 2 . Multi leaf collimator (MLC) positional accuracy was assessed by delivering either a picket fence (PF) style pattern on radiochromic films with wire-jig phantom or double and triple-rectangular patterns on ArcCheck-MR (Sun Nuclear, Melbourne, FL, USA) with gamma analysis as the pass/fail indicator. Leaf speed tests were performed to assess the capability of full range leaf travel within manufacture's specifications. Multi leaf collimator plan delivery reproducibility was tested by repeatedly delivering both open fields and fields with irregular shaped segments over 1-month period. Comparable SNRs within 4% were observed for MLC moving and stationary plans on vendor-reconstructed images, and the direct k-space reconstructed images showed that the three SNRs are within 1%. The maximum leaf transmission for all three MLCs was less than 0.35% and the average leakage was 0.153 ± 0.006%, 0.151 ± 0.008%, and 0.159 ± 0.015% for head 1, 2, and 3, respectively. Both the leaf edge and leaf end penumbra showed comparable values within 0.05 cm, and the measured values are within 0.1 cm with TPS values. The leaf edge TG effect indicated 10% underdose and the leaf end TG showed a

  18. Dose deviations caused by positional inaccuracy of multileaf collimator in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Wang, H.C.; Chui, C.S.; Tsai, H.Y.; Chen, C.H.; Tsai, L.F.

    2008-01-01

    Introduction: Multileaf collimator (MLC) is currently a widely used system in the delivery of intensity modulated radiotherapy (IMRT). The accuracy of the multileaf position plays an important role in the final outcome of the radiation treatment. According to ICRU recommendation, a dose inaccuracy over than 5% of prescribed dose affects treatment results. In order to quantify the influence of leaf positional errors on dose distribution, we set different MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases. Two-dimensional dose distributions of radiotherapy plans with different leaf displacements generated with a commercial treatment planning system. And verification films were used to measure two-dimensional dose distributions. Then a computerized dose comparison system will be introduced to analyze the dose deviations. Materials/methods: We assumed MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases by simulating the different leaf displacements with a commercial treatment planning system. Then we transferred the treatment plans with different leaf offset that may be happened in clinical situation to linear accelerator. Verification films (Kodat EDR2) were well positioned within solid water phantoms to be irradiated by the simulated plans. The films were scanned to display two-dimensional dose distributions. Finally, we compared with the dose distributions with MLC positional inaccuracy by a two-dimensional dose comparison software to analyze the deviations in Gamma indexes and normalized agreement test (NAT) values. Results: In general, the data show that larger leaf positional error induces larger dose error. More fields used for treatment generate lesser errors. Besides, leaf position relative to a field influences the degree of dose error. A leaf lying close to the border of a field leads to a more significant dose deviation than a leaf in the center. Algorithms for intensity modulation also affect

  19. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  20. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    Science.gov (United States)

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  1. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    International Nuclear Information System (INIS)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-01-01

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450±10 G. The carriage motor tolerated up to 2000±10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600±10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance

  2. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    Science.gov (United States)

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  3. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view

    International Nuclear Information System (INIS)

    McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech

    2008-01-01

    An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (1D) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated

  4. Detailed analysis of latencies in image-based dynamic MLC tracking

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2010-01-01

    Purpose: Previous measurements of the accuracy of image-based real-time dynamic multileaf collimator (DMLC) tracking show that the major contributor to errors is latency, i.e., the delay between target motion and MLC response. Therefore the purpose of this work was to develop a method for detailed analysis of latency contributions during image-based DMLC tracking. Methods: A prototype DMLC tracking system integrated with a linear accelerator was used for tracking a phantom with an embedded fiducial marker during treatment delivery. The phantom performed a sinusoidal motion. Real-time target localization was based on x-ray images acquired either with a portal imager or a kV imager mounted orthogonal to the treatment beam. Each image was stored in a file on the imaging workstation. A marker segmentation program opened the image file, determined the marker position in the image, and transferred it to the DMLC tracking program. This program estimated the three-dimensional target position by a single-imager method and adjusted the MLC aperture to the target position. Imaging intervals ΔT image from 150 to 1000 ms were investigated for both kV and MV imaging. After the experiments, the recorded images were synchronized with MLC log files generated by the MLC controller and tracking log files generated by the tracking program. This synchronization allowed temporal analysis of the information flow for each individual image from acquisition to completed MLC adjustment. The synchronization also allowed investigation of the MLC adjustment dynamics on a considerably finer time scale than the 50 ms time resolution of the MLC log files. Results: For ΔT image =150 ms, the total time from image acquisition to completed MLC adjustment was 380±9 ms for MV and 420±12 ms for kV images. The main part of this time was from image acquisition to completed image file writing (272 ms for MV and 309 ms for kV). Image file opening (38 ms), marker segmentation (4 ms), MLC position

  5. Detailed analysis of latencies in image-based dynamic MLC tracking

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Ruan, Dan; Keall, Paul J. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Oncology and Department of Medical Physics, Aarhus University Hospital, 8000 Aarhus (Denmark); Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Radiation Oncology, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2010-09-15

    Purpose: Previous measurements of the accuracy of image-based real-time dynamic multileaf collimator (DMLC) tracking show that the major contributor to errors is latency, i.e., the delay between target motion and MLC response. Therefore the purpose of this work was to develop a method for detailed analysis of latency contributions during image-based DMLC tracking. Methods: A prototype DMLC tracking system integrated with a linear accelerator was used for tracking a phantom with an embedded fiducial marker during treatment delivery. The phantom performed a sinusoidal motion. Real-time target localization was based on x-ray images acquired either with a portal imager or a kV imager mounted orthogonal to the treatment beam. Each image was stored in a file on the imaging workstation. A marker segmentation program opened the image file, determined the marker position in the image, and transferred it to the DMLC tracking program. This program estimated the three-dimensional target position by a single-imager method and adjusted the MLC aperture to the target position. Imaging intervals {Delta}T{sub image} from 150 to 1000 ms were investigated for both kV and MV imaging. After the experiments, the recorded images were synchronized with MLC log files generated by the MLC controller and tracking log files generated by the tracking program. This synchronization allowed temporal analysis of the information flow for each individual image from acquisition to completed MLC adjustment. The synchronization also allowed investigation of the MLC adjustment dynamics on a considerably finer time scale than the 50 ms time resolution of the MLC log files. Results: For {Delta}T{sub image}=150 ms, the total time from image acquisition to completed MLC adjustment was 380{+-}9 ms for MV and 420{+-}12 ms for kV images. The main part of this time was from image acquisition to completed image file writing (272 ms for MV and 309 ms for kV). Image file opening (38 ms), marker segmentation (4 ms

  6. Slope position and Soil Lithological Effects on Live Leaf Nitrogen Concentration.

    Science.gov (United States)

    Szink, I.; Adams, T. S.; Orr, A. S.; Eissenstat, D. M.

    2017-12-01

    Soil lithology has been shown to have an effect on plant physiology from the roots to the leaves. Soils at ridgetop positions are typically more shallow and drier than soils at valley floor positions. Additionally, sandy soils tend to have a much lower water holding capacity and can be much harder for plants to draw nutrients from. We hypothesized that leaves from trees in shale derived soil at ridgetop positions will have lower nitrogen concentration than those in valley floor positions, and that this difference will be more pronounced in sandstone derived soils. This is due to the movement of nitrogen through the soil in a catchment, and the holding and exchange capacities of shale and sandstone lithologies. To test this, we collected live leaves using shotgun sampling from two locations in Central Pennsylvania from the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO); one location where soils are underlain by the Rose Hill Shale, and one from where soils are underlain by the Tuscarora Sandstone formation. We then measured, dried, and massed in order to determine specific leaf area (SLA). Afterwards, we powderized the leaves to determined their C:N ratio using a CE Instruments EA 1110 CHNS-O elemental Analyzer based on the "Dumas Method". We found that live leaves of the same species at higher elevations had lower nitrogen concentrations than those at lower elevations, which is consistent with our hypothesis. However, the comparison of leaves from all species in the catchment is not as strong, suggesting that there is a species specific effect on nitrogen concentration within leaves. We are currently processing additional leaves from other shale and sandstone sites. These results highlight the effect of abiotic environments on leaf nutrient concentrations, and the connection between belowground and aboveground tree physiology.

  7. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  8. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  9. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts

    International Nuclear Information System (INIS)

    Van Kesteren, Z; Janssen, T M; Damen, E; Van Vliet-Vroegindeweij, C

    2012-01-01

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V 95% was reduced by 0.02 using the thin MLC. The V 65% of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V 95% was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains to be proven

  10. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts.

    Science.gov (United States)

    van Kesteren, Z; Janssen, T M; Damen, E; van Vliet-Vroegindeweij, C

    2012-05-21

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V(95%) was reduced by 0.02 using the thin MLC. The V(65%) of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V(95%) was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains

  11. Clinical significance of multi-leaf collimator calibration errors

    International Nuclear Information System (INIS)

    Norvill, Craig; Jenetsky, Guy

    2016-01-01

    This planning study investigates the clinical impact of multi-leaf collimator (MLC) calibration errors on three common treatment sites; head and neck (H&N), prostate and stereotactic body radiotherapy (SBRT) for lung. All plans used using either volumetric modulated adaptive therapy or dynamic MLC techniques. Five patient plans were retrospectively selected from each treatment site, and MLC errors intentionally introduced. MLC errors of 0.7, 0.4 and 0.2 mm were sufficient to cause major violations in the PTV planning criteria for the H&N, prostate and SBRT lung plans. Mean PTV dose followed a linear trend with MLC error, increasing at rates of 3.2–5.9 % per millimeter depending on treatment site. The results indicate that an MLC quality assurance program that provides sub-millimeter accuracy is an important component of intensity modulated radiotherapy delivery techniques.

  12. A method for testing the performance and the accuracy of the binary MLC used in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Steffen; Schubert, Kai; Klueter, Sebastian; Oetzel, Dieter; Debus, Juergen [University Hospital Heidelberg (Germany). Dept. of Radiation Oncology

    2013-08-01

    During a helical tomotherapy a binary MLC is used for fluence modulation. The 64 pneumatically driven leaves of the MLC are either completely open or closed. Th e fast and frequent leaf movements result in a high demand of accuracy and stability of the MLC. This article is based on the analytical investigation of the accuracy and the stability of the MLC. Different patterns of MLC movements were generated to investigate the characteristics of the MLC. One of the considered aspects contains the friction between the leaves. The influence of variations of the compressed air on the MLC was also explored. The integrated MVCT detector of the tomotherapy system deposits the treatment data in a matrix. The detector is triggered with the linear accelerator, which is pulsed by 300Hz. The data matrix is available after the treatment. An IDL (Interactive Data Language) routine was programmed in order to analyse the matrix. The points of time, at which the leaves open (POT), and the period, in which the leaves stay open (LOT), were measured and compared with the desired values. That procedure has been repeated several times a week for approximately 6 months to investigate the stability of the MLC. Relative deviations of the LOT from -0.4% to -5.4% were measured. The friction between the leaves had no significant influence on the LOT. The available compressed air, that is used to move the leaves, depends on the number of moving leaves and also on the previous movements of the MLC. Variations of the compressed air resulted in deviations of the LOT from -1.8% to -3.7%. The measured POT deviates from the programmed POT up to -18.4ms {+-} 0.7ms. This maximal deviation correlates with a shift of the gantry angle of 0.52 which is negligible. The MLC has shown a stable behaviour over the 6 months. A separate consideration of the leaves showed no higher standard deviation of the LOT than {+-} 0.7ms during the investigated time. The variation between the different leaves is much higher

  13. A method for testing the performance and the accuracy of the binary MLC used in helical tomotherapy

    International Nuclear Information System (INIS)

    Lissner, Steffen; Schubert, Kai; Klueter, Sebastian; Oetzel, Dieter; Debus, Juergen

    2013-01-01

    During a helical tomotherapy a binary MLC is used for fluence modulation. The 64 pneumatically driven leaves of the MLC are either completely open or closed. Th e fast and frequent leaf movements result in a high demand of accuracy and stability of the MLC. This article is based on the analytical investigation of the accuracy and the stability of the MLC. Different patterns of MLC movements were generated to investigate the characteristics of the MLC. One of the considered aspects contains the friction between the leaves. The influence of variations of the compressed air on the MLC was also explored. The integrated MVCT detector of the tomotherapy system deposits the treatment data in a matrix. The detector is triggered with the linear accelerator, which is pulsed by 300Hz. The data matrix is available after the treatment. An IDL (Interactive Data Language) routine was programmed in order to analyse the matrix. The points of time, at which the leaves open (POT), and the period, in which the leaves stay open (LOT), were measured and compared with the desired values. That procedure has been repeated several times a week for approximately 6 months to investigate the stability of the MLC. Relative deviations of the LOT from -0.4% to -5.4% were measured. The friction between the leaves had no significant influence on the LOT. The available compressed air, that is used to move the leaves, depends on the number of moving leaves and also on the previous movements of the MLC. Variations of the compressed air resulted in deviations of the LOT from -1.8% to -3.7%. The measured POT deviates from the programmed POT up to -18.4ms ± 0.7ms. This maximal deviation correlates with a shift of the gantry angle of 0.52 which is negligible. The MLC has shown a stable behaviour over the 6 months. A separate consideration of the leaves showed no higher standard deviation of the LOT than ± 0.7ms during the investigated time. The variation between the different leaves is much higher than

  14. Comparison of dosimetric properties of three commercial multi leaf collimator systems

    International Nuclear Information System (INIS)

    Hoever, K.H.; Hesse, B.M.; Haering, P.; Rhein, B.; Bannach, B.; Doll, T.; Doerner, K.J.

    1996-01-01

    densitometry respectively agree very well within +/- 2%. This is true for the maximum measurable field size of 30.1 x 30.7 cm 2 . We consider the beam image system BIS-710 to be well suited for real-time verification and quality assurance of all MLC-generated irradiation fields. In the penumbra measurements only small differences between the different collimators have been found. The values ranged from 4.5 mm to 7 mm depending on leaf position and field size. The differences in the transmission measurements were between less than 1.5% and 5%. Conclusion: The data from this comparative study prove that between the three MLC compared up to now there is only a small difference in the average leaf-end and leaf-side penumbras. Significant differences do, however, exist in the measured transmission of the collimator leaves

  15. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Larsson, Tobias; Keall, P.

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced......-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The dosimetric results were evaluated using gamma index evaluation with static target measurements as reference. Results: The plan quality...

  16. Geometric leaf placement strategies

    International Nuclear Information System (INIS)

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  17. SU-F-T-289: MLC Fluence Sonogram Based Delivery Quality Assurance for Bilateral Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder; Mahendran, Ramu; Selvan, Tamil; Duraikannu, Palani [Division of Radiation Oncology, Medanta The Medicity, Gurgaon, Haryana (India); Raj, Nambi [Department of Physics, School of Advanced sciences, VIT University, Vellore (India); Arunai, N

    2016-06-15

    Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without any phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.

  18. First evaluation of the feasibility of MLC tracking using ultrasound motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F., E-mail: martin.fast@icr.ac.uk; O’Shea, Tuathan P., E-mail: tuathan.oshea@nhs.net; Nill, Simeon; Oelfke, Uwe; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2016-08-15

    Purpose: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. Methods: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity’s real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. Results: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400–1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. Conclusions: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.

  19. First evaluation of the feasibility of MLC tracking using ultrasound motion estimation

    International Nuclear Information System (INIS)

    Fast, Martin F.; O’Shea, Tuathan P.; Nill, Simeon; Oelfke, Uwe; Harris, Emma J.

    2016-01-01

    Purpose: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. Methods: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity’s real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. Results: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400–1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. Conclusions: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.

  20. A computer program to automatically control the multi leaf collimator; Un programa informatico para el control automatico del colimador multilamina

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Galiano, P.; Crelgo Alonso, D.; Gonzalez Sancho, J. M.; Fernandez Garcia, J.; Vivanco Parellada, J.

    2012-07-01

    A computer program to automatically analyze strip test images for MLC leaf positioning quality assurance was developed and assessed. The program is fed with raw individual segment images in DICOM format supplied by the accelerator software and it automatically carries out all the steps in the leaf positioning quality control test (image merging, image analysis, storing and reporting). A comprehensive description of the software, that allows a relatively easy implementation, is shown. To check the performance of the program, a series of test fields with intentionally introduced errors were used. The obtained Measurement uncertainty of any individual leaf position was lower than 0.15 mm with gantry at 0 degree centigrade. At another gantry angles (90 degree centigrade, 180 degree centigrade and 270 degree centigrade) the dispersion of the measurements was larger, specially towards the external positions of the leafs, probably due to a slight rotation of the EPID caused by gravity. That reduces the useful area of the MLC to control when gantry angles different from 0 degree centigrade are used. In conclusion, this technique is fast enough to be carried out in a daily basis being also very precise and reliable. (Author)

  1. Validation of dynamic MLC-controller log files using a two-dimensional diode array

    International Nuclear Information System (INIS)

    Li, Jonathan G.; Dempsey, James F.; Ding Li; Liu, Chihray; Palta, Jatinder R.

    2003-01-01

    Intensity-modulated radiation therapy (IMRT) delivered with multi-leaf collimator (MLC) in the step-and-shoot mode uses multiple static MLC segments to achieve intensity modulation. For typical IMRT treatment plans, significant numbers of segments are delivered with monitor units (MUs) of much less than 10. Verification of the ability of the linear accelerator (linac) to deliver small MU segments accurately is an important step in the IMRT commissioning and quality assurance (QA) process. Recent studies have reported large discrepancies between the intended and delivered segment MUs. These discrepancies could potentially cause large errors in the delivered patient dose. We have undertaken a systematic study to evaluate the accuracy of the dynamic MLC log files, which are created automatically by our commercial MLC workstation after each delivery, in recording the fractional MU delivered in the step-and-shoot mode. Two linac models were evaluated with simple-geometry leaf sequences and delivered with different total MUs and different nominal dose rates. A commercial two-dimensional diode array was used for the measurement. Large discrepancies between the intended and delivered segment MUs were found. The discrepancies were larger for small MU segments at higher dose rate, with some small MU segments completely undelivered. The recorded fractional MUs in the log files were found to agree with what was delivered within the limits of our experimental uncertainty. Our results indicate that it is important to verify the delivery accuracy of small MU segments that could potentially occur in a patient treatment and that the log files are useful in checking the integrity of the linac delivery once validated. Thus validated log files can be used as a QA tool for general IMRT delivery and patient-specific plan verification

  2. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure.

    Science.gov (United States)

    Yoo, Yun Joo; Sun, Lei; Poirier, Julia G; Paterson, Andrew D; Bull, Shelley B

    2017-02-01

    By jointly analyzing multiple variants within a gene, instead of one at a time, gene-based multiple regression can improve power, robustness, and interpretation in genetic association analysis. We investigate multiple linear combination (MLC) test statistics for analysis of common variants under realistic trait models with linkage disequilibrium (LD) based on HapMap Asian haplotypes. MLC is a directional test that exploits LD structure in a gene to construct clusters of closely correlated variants recoded such that the majority of pairwise correlations are positive. It combines variant effects within the same cluster linearly, and aggregates cluster-specific effects in a quadratic sum of squares and cross-products, producing a test statistic with reduced degrees of freedom (df) equal to the number of clusters. By simulation studies of 1000 genes from across the genome, we demonstrate that MLC is a well-powered and robust choice among existing methods across a broad range of gene structures. Compared to minimum P-value, variance-component, and principal-component methods, the mean power of MLC is never much lower than that of other methods, and can be higher, particularly with multiple causal variants. Moreover, the variation in gene-specific MLC test size and power across 1000 genes is less than that of other methods, suggesting it is a complementary approach for discovery in genome-wide analysis. The cluster construction of the MLC test statistics helps reveal within-gene LD structure, allowing interpretation of clustered variants as haplotypic effects, while multiple regression helps to distinguish direct and indirect associations. © 2016 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.

  3. Low temperature leaf photosynthesis of a Miscanthus germplasm collection correlates positively to shoot growth rate and specific leaf area

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Sørensen, Kirsten Kørup; Andersen, Mathias Neumann

    2016-01-01

    and CO2 response curves were obtained from 11 of the genotypes, and shoot growth rate was measured under field conditions. Key Results A positive linear relationship was found between SLA and light-saturated photosynthesis (Asat) across genotypes, and also between shoot growth rate under cool field...... conditions and A1000 at 14 °C in a climate chamber. When lowering the temperature from 24 to 14 °C, one M. sacchariflorus exhibited significantly higher Asat and maximum photosynthetic rate in the CO2 response curve (Vmax) than other genotypes at 14 °C, except M. × giganteus ‘Hornum’. Several genotypes...... returned to their pre-chilling A1000 values when the temperature was increased to 24 °C after 24 d growth at 14 °C. Conclusions One M. sacchariflorus genotype had similar or higher photosynthetic capacity than M. × giganteus, and may be used for cultivation together with M. × giganteus or for breeding new...

  4. Preliminary studies for implementation of a MCL quality control using EPID (Portal Dosimetry); Estudos preliminares para implementacao de um controle de qualidade de MLC com o uso do EPID (Portal Dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Fabio R.; Furnari, Laura [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina

    2016-07-01

    A Quality Control (CQ) to ensure the expected performance of a Multileaf Collimator System (MLC) is essential for delivering dose in a safety and appropriate way. The time required for equipment control and dosimetry may be lowered when the Electronic Portal Image Device (EPID) is used. The aim of this paper was to check the resolution limits of the detection system for IMRT mode, and to do the analysis of three tests of MLC performance: Picket Fence, Slinding GAP, MLC versus Gantry. A Varian iX Clinac equipped with an 80 leaf Millennium MLC and with amorphous silicon based EPID (aS1000) was use. The EPID proved Effective, where errors up to 0,5 mm can be detected. Information about interleaf transmissions, dose profile and gravity influence in the leaf banks also were included. (author)

  5. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    Science.gov (United States)

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  6. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L. on Two Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Bipul Biswas

    2013-01-01

    Full Text Available Aim. To determine the antimicrobial potential of guava (Psidium guajava leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water. The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  7. Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy

    International Nuclear Information System (INIS)

    Liakoura, V.; Stefanou, M.; Manetas, Y.; Cholevas, C.; Karabourniotis, G.

    1997-01-01

    In Olea europaea trichome density and UV-B absorbing compounds of leaf hairs and the lamina proper of leaves located in south-facing, north-facing and the internal of the canopy were positively correlated to the UV-B midday instant irradiance measured in September at these three different positions of the canopy. The correlation between these three parameters and the receiving photosynthetically active radiation (PAR), however, was weaker. In Quercus ilex, trichome density and its UV-B absorbing capacity were considerably higher in the exposed, south-facing leaves, compared to the deeply shaded ones; the UV-B absorbing capacity of the de-haired lamina, however, was the same. In the broad-leaved, alpine rosette of Verbascum speciosum, one could distinguish two areas on the leaves, one exposed and one shaded by the superimposed lamina. Although trichome density and the UV-B absorbing compounds of the de-haired leaf were the same in the two areas, the UV-B absorbing capacity of hairs was considerably increased in the exposed region. In V. speciosum, exposure induced also qualitative changes in the UV-B absorbance profile, apparently due to the formation of new flavonoid compounds absorbing maximally at 345–350 nm. In all other cases, the differences were mainly quantitative. The results support the postulate of a function of leaf hairs as a UV-B radiation screen and suggest that trichome density and/or its UV-B absorbing capacity may depend on irradiance during leaf development

  8. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field

    International Nuclear Information System (INIS)

    Tissue, D. T.; Lewis, J. D.; Wullschleger, S. D.; Amthro, J. S.; Griffin, K. L.; Anderson, O. R.

    2002-01-01

    The effects of elevated carbon dioxide and canopy position on leaf respiration in sweetgum trees in a closed canopy forest were measured in an effort to determine if, and why, enriched atmospheric carbon dioxide might affect leaf respiration in sweetgum. To account for the dark respiratory response to growth in elevated carbon dioxide, cell ultrastructure and cytochrome c oxidase activity in leaves were measured at different seasonal growth periods. Leaf respiration under light conditions was also estimated to determine whether elevated carbon dioxide affected daytime respiration. Results showed that long-term exposure to elevated carbon dioxide did not effect night-time or day- time respiration in trees grown in a plantation in the field. Canopy position affected night-time respiration partially, through the effects on leaf soluble sugar, starch, nitrogen and leaf mass per unit area. In carbon dioxide partial pressure the effects of canopy position were insignificant. It was concluded that elevated carbon dioxide does not directly impact leaf respiration in sweetgum and assuming no changes in leaf nitrogen or leaf chemical composition, the long-term effects on respiration in this species will be minimal. 50 refs., 4 tabs., 3 figs

  9. Simultaneous minimization of leaf travel distance and tongue-and-groove effect for segmental intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Dai Jianrong; Que, William

    2004-01-01

    This paper introduces a method to simultaneously minimize the leaf travel distance and the tongue-and-groove effect for IMRT leaf sequences to be delivered in segmental mode. The basic idea is to add a large enough number of openings through cutting or splitting existing openings for those leaf pairs with openings fewer than the number of segments so that all leaf pairs have the same number of openings. The cutting positions are optimally determined with a simulated annealing technique called adaptive simulated annealing. The optimization goal is set to minimize the weighted summation of the leaf travel distance and tongue-and-groove effect. Its performance was evaluated with 19 beams from three clinical cases; one brain, one head-and-neck and one prostate case. The results show that it can reduce the leaf travel distance and (or) tongue-and-groove effect; the reduction of the leaf travel distance reaches its maximum of about 50% when minimized alone; the reduction of the tongue-and-groove reaches its maximum of about 70% when minimized alone. The maximum reduction in the leaf travel distance translates to a 1 to 2 min reduction in treatment delivery time per fraction, depending on leaf speed. If the method is implemented clinically, it could result in significant savings in treatment delivery time, and also result in significant reduction in the wear-and-tear of MLC mechanics

  10. SU-F-T-429: Craniospinal Irradiation by VMAT Technique: Impact of FFF Beam and High Resolution MLC On Plan Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T; Sarkar, B; Munshi, A; Mohanti, B [Fortis Memorial Research Institute, Gurgaon, Haryana (India)

    2016-06-15

    Purpose: Objective of this study was to evaluate the impact of using flattening filter free (FFF) beam with 0.5 cm multileaf collimator (MLC) leaves over conventional flattened beam with 1 cm leaf width MLC on the treatment plan quality in cranio-spinal irradiation (CSI). Methods: For five medulloblastoma cases (3 males and 2 females), who were previously treated by volumetric modulated arc therapy (VMAT) technique using conventional flattened beam shaped by 1 cm width MLC leaves, four test plans were generated and compared against the delivered plan. These retrospective plans consisted of four different combinations of flattened and FFF beams from Elekta’s Agility treatment head with 0.5 cm width MLC leaves. Sparing of organs at risks (OAR) in terms of dose to 5%, 50%, 75% and 90% volumes, mean and maximum dose were evaluated. Results: All plans satisfied the planning objective of covering 95% of PTV by at least 95% of prescription dose. Marginal variation of dose spillage was observed between different VMAT plans at very low dose range (1–5 Gy). Variation in dose statistics for PTVs and OARs were within 1% or 1 Gy. Amongst the five plans, the plan with flattened beam with 1 cm MLC had the highest number of MUs, 2.13 times higher than the plan with Agility MLC with FFF beam that had the least number of MUs. No statistically significant difference (p≥0.05) was observed between the reference plan and the retrospectively generated plans in terms of PTV coverage, cold spot, hot spot and organ at risk doses. Conclusion: In the treatment of CSI cases by VMAT technique, FFF beams and/or finer width MLC did not exhibit advantage over the flattened beams or wider MLC in terms of plan quality except for reduction in MUs.

  11. Leakage of the Siemens 160 MLC multileaf collimator on a dual energy linear accelerator

    International Nuclear Information System (INIS)

    Klueter, Sebastian; Sroka-Perez, Gabriele; Schubert, Kai; Debus, Juergen

    2011-01-01

    Multileaf collimators (MLCs) have been in clinical use for many years and meanwhile are commonly used to deliver intensity-modulated radiotherapy (IMRT) beams. For this purpose it is important to know their dosimetric properties precisely, one of them being inter- and intraleaf leakage. The Siemens 160 MLC features a single focus design with flat-sided and tilted leaves instead of tongue-and-groove. The leakage performance of the 160 MLC was investigated on a dual energy linear accelerator Siemens ARTISTE with 6 MV and 18 MV photon energies. While the intraleaf leakage amounted to nearly the same dose for 6 and for 18 MV, a much higher interleaf leakage for 6 MV was measured. It could be reduced by simply rotating the collimator, and also by changing the voltage applied to the beam steering coils. The leakage of the 160 MLC is shown to be sensitive to beam alignment. This is of special interest for dual energy accelerators, as the two focal spots of both energies, neither in position nor in shape, do not necessarily always coincide. As a consequence of that, a higher leakage can be expected for one out of two energies for the 160 MLC. (note)

  12. Characterization of an amorphous silicon flat panel for controlling the positioning accuracy of sheet; Caracterizacion de un panel plano de silicio amorfo para control de la exactitud en el posicionamiento de laminas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Gonzalez, V.; Gimeno, J.; Dolores, V. de los; Pastor, V.; Crispin, V.; Guardino, C.

    2011-07-01

    It has established a method for measuring the position of the blades in a multi leaf collimator (MLC) used to measure dose portal imaging device (EPID) of amorphous silicon, and verified its accuracy using radiochromic films and measures water with diode Cuba, techniques perfectly well validated in our institution. This dose profiles are studied for each sheet and determine their position at the point which has 50% of the dose in the open field.

  13. Evaluation of a leaf position optimization tool for intensity modulated radiation therapy of head and neck cancer

    International Nuclear Information System (INIS)

    Claus, Filip; Gersem, Werner de; Vanhoutte, Ilse; Duthoy, Wim; Remouchamps, Vincent; Wagter, Carlos de; Neve, Wilfried de

    2001-01-01

    Background and purpose: Since 1996, patients are treated at Ghent University Hospital with a multi-segment technique using MultiLeaf Collimators. The segments were obtained by using the Beam's eye view projections of the planning target volume (PTV) and the organs at risk (OARs), after which the segments weights were optimized. To investigate if optimization of the leaf positions would further improve the intensity modulated radiation therapy (IMRT) plans, a tool optimizing leaf positions and segment weights simultaneously, was developed. This tool is called SOWAT, which is the acronym for segment outline and weight adapting tool. Material and methods: The tool evaluates the effects of changing the position of each collimating leaf of all segments on the value of the objective function. Only changes that improve the value of the objective function are retained. Between December 1999 and January 2001, 30 head and neck patients were treated with IMRT. Two patient groups were distinguished: pharyngeal and laryngeal tumors (n=17) and sinonasal tumors (n=13). A specific set of physical endpoints was evaluated for each group. Dose statistics of the treatment plans without and with SOWAT were analyzed. Results: When using SOWAT for the pharyngeal and laryngeal cases, the PTV dose homogeneity increased with a median of 11% (range 2-27%), while the maximum dose to the spinal cord was decreased for 14 of the 17 patients. In four plans where parotid function preservation was a goal, the parotid mean dose was lower than 26 Gy in one plan without SOWAT, and in four plans with SOWAT. For the sinonasal tumors, the PTV dose homogeneity increased with a median of 7% (range 1-14%). SOWAT lowered the mean dose to 53 of the 63 optic pathway structures (retina, optic nerve and optic chiasm). SOWAT leaves the number of segments unchanged and has little or no effect on the delivery time. Conclusions: SOWAT is a powerful tool to perform the final optimization of IMRT plans, without

  14. A computer-controlled high resolution micro-multi-leaf collimator for stereotactic conformal radio-therapy

    International Nuclear Information System (INIS)

    Schlegel, Wolfgang; Pastyr, Otto; Kubesch, Rudolf; Diemer, Torsten; Kuester, Gunnilla; Rhein, Bernhard; Hoever, Karl-Heinz

    1997-01-01

    The micro-MLC consists of 40 tungsten leaf pairs of 1mm thickness, thus reaching a leaf width of 1.6 mm and a maximum field size of 73 x 64 mm at isocenter distance. There is a maximum overtravel of 24 mm and a max. speed of 1.5 cm/sec. The mechanical and electronical tests which we performed with the prototype Micro-MLC showed, that the time needed to move all leaves from fully open to fully close is approximately 2 seconds Repeatability and absolute positioning data are in the range of 0.2 mm. Penumbra, interleaf leakage penetration were investigated using film dosimetry and Monte Carlo calculations. The results (penetration 0.5% at 15 MV X-rays, mean interleaf leakage 0.8%, max. interleaf leakage 2.5%) are in good agreement with the design specifications. Conclusion With the motor driven Micro-MLC we have designed and developed a beam shaping device which will significantly facilitate and improve stereotactic treatment techniques for lesions in the brain and head and neck area. The system meets all requirements of conformal treatment techniques, including multiple static irregular shaped fields, dynamic field shaping as well as intensity modulated beams. Due to the flexibility and the modularity of the design, the system offers an optimal basis for the development of accessory-MLCs with larger field sizes

  15. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland.

    Science.gov (United States)

    Weerasinghe, Lasantha K; Creek, Danielle; Crous, Kristine Y; Xiang, Shuang; Liddell, Michael J; Turnbull, Matthew H; Atkin, Owen K

    2014-06-01

    We explored the impact of canopy position on leaf respiration (R) and associated traits in tree and shrub species growing in a lowland tropical rainforest in Far North Queensland, Australia. The range of traits quantified included: leaf R in darkness (RD) and in the light (RL; estimated using the Kok method); the temperature (T)-sensitivity of RD; light-saturated photosynthesis (Asat); leaf dry mass per unit area (LMA); and concentrations of leaf nitrogen (N), phosphorus (P), soluble sugars and starch. We found that LMA, and area-based N, P, sugars and starch concentrations were all higher in sun-exposed/upper canopy leaves, compared with their shaded/lower canopy and deep-shade/understory counterparts; similarly, area-based rates of RD, RL and Asat (at 28 °C) were all higher in the upper canopy leaves, indicating higher metabolic capacity in the upper canopy. The extent to which light inhibited R did not differ significantly between upper and lower canopy leaves, with the overall average inhibition being 32% across both canopy levels. Log-log RD-Asat relationships differed between upper and lower canopy leaves, with upper canopy leaves exhibiting higher rates of RD for a given Asat (both on an area and mass basis), as well as higher mass-based rates of RD for a given [N] and [P]. Over the 25-45 °C range, the T-sensitivity of RD was similar in upper and lower canopy leaves, with both canopy positions exhibiting Q10 values near 2.0 (i.e., doubling for every 10 °C rise in T) and Tmax values near 60 °C (i.e., T where RD reached maximal values). Thus, while rates of RD at 28 °C decreased with increasing depth in the canopy, the T-dependence of RD remained constant; these findings have important implications for vegetation-climate models that seek to predict carbon fluxes between tropical lowland rainforests and the atmosphere. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields

    International Nuclear Information System (INIS)

    Gersh, J

    2015-01-01

    Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case. Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts

  17. WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields

    Energy Technology Data Exchange (ETDEWEB)

    Gersh, J [Gibbs Cancer Center and Research Institute - Pelham, Greer, SC (United States); Spectrum Medical Physics, LLC, Greenville, SC (United States)

    2015-06-15

    Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case. Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts

  18. SU-E-J-67: Evaluation of Adaptive MLC Morphing for Online Correction of Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, R; Qin, A; Yan, D [William Beaumont Hospital, Royal Oak, MI (United States)

    2015-06-15

    Purpose: Online adaptive MLC morphing is desirable over translational couch shifts to accommodate target position as well as anatomic changes. A reliable method of adaptive MLC segment to target during prostate cancer IMRT treatment is proposed and evaluated by comparison with daily online-image guidance (IGRT) correction and online-IMRT planning. Methods: The MLC adaptive algorithm involves following steps; move the MLC segments according to target translational shifts, and then morph the segment shape to maintain the spatial relationship between the planning-target contour and MLC segment. Efficacy of this method was evaluated retrospectively using daily-CBCT images on seven prostate patients treated with seven-beam IMRT treatment to deliver 64Gy in 20 fractions. Daily modification was simulated with three approaches; daily-IGRT correction based on implanted radio-markers, adaptive MLC morphing, and online-IMRT planning, with no-residual variation. The selected dosimetric endpoints and nEUD (normalized equivalent uniform dose to online-IMRT planning) of each organ of interest were determined for evaluation and comparison. Results: For target(prostate), bladder and rectal-wall, the mean±sd of nEUD were 97.6%+3.2%, 103.9%±4.9% and 97.4%±1.1% for daily-IGRT correction; and 100.2%+0.2%, 108.9%±5.1% and 99.8%±1.2% for adaptive MLC morphing, respectively. For daily-IGRT correction, adaptive MLC morphing and online-IMRT planning, target D99 was <95% of the prescription dose in 30%, 0% and 0% of 140 fractions, respectively. For the rectal-wall, D5 exceeded 105% of the planned-D5 in 2.8%, 11.4% and 0% of 140 fractions, respectively. For the bladder, Dmax exceeded 105% of the planned-D5 in 2.8%, 5.6% and 0% of 140 fractions, respectively. D30 of bladder and rectal-wall were well within the planned-D30 for all three approaches. Conclusion: The proposed method of adaptive MLC morphing can be beneficial for the prostate patient population with large deformation and

  19. SU-E-J-67: Evaluation of Adaptive MLC Morphing for Online Correction of Prostate Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Sandhu, R; Qin, A; Yan, D

    2015-01-01

    Purpose: Online adaptive MLC morphing is desirable over translational couch shifts to accommodate target position as well as anatomic changes. A reliable method of adaptive MLC segment to target during prostate cancer IMRT treatment is proposed and evaluated by comparison with daily online-image guidance (IGRT) correction and online-IMRT planning. Methods: The MLC adaptive algorithm involves following steps; move the MLC segments according to target translational shifts, and then morph the segment shape to maintain the spatial relationship between the planning-target contour and MLC segment. Efficacy of this method was evaluated retrospectively using daily-CBCT images on seven prostate patients treated with seven-beam IMRT treatment to deliver 64Gy in 20 fractions. Daily modification was simulated with three approaches; daily-IGRT correction based on implanted radio-markers, adaptive MLC morphing, and online-IMRT planning, with no-residual variation. The selected dosimetric endpoints and nEUD (normalized equivalent uniform dose to online-IMRT planning) of each organ of interest were determined for evaluation and comparison. Results: For target(prostate), bladder and rectal-wall, the mean±sd of nEUD were 97.6%+3.2%, 103.9%±4.9% and 97.4%±1.1% for daily-IGRT correction; and 100.2%+0.2%, 108.9%±5.1% and 99.8%±1.2% for adaptive MLC morphing, respectively. For daily-IGRT correction, adaptive MLC morphing and online-IMRT planning, target D99 was <95% of the prescription dose in 30%, 0% and 0% of 140 fractions, respectively. For the rectal-wall, D5 exceeded 105% of the planned-D5 in 2.8%, 11.4% and 0% of 140 fractions, respectively. For the bladder, Dmax exceeded 105% of the planned-D5 in 2.8%, 5.6% and 0% of 140 fractions, respectively. D30 of bladder and rectal-wall were well within the planned-D30 for all three approaches. Conclusion: The proposed method of adaptive MLC morphing can be beneficial for the prostate patient population with large deformation and

  20. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.

    Science.gov (United States)

    Ipsen, Svenja; Bruder, Ralf; O'Brien, Rick; Keall, Paul J; Schweikard, Achim; Poulsen, Per R

    2016-10-01

    With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2

  1. An effective method for smoothing the staggered dose distribution of multi-leaf collimator field edge

    International Nuclear Information System (INIS)

    Hwang, I.-M.; Lin, S.-Y.; Lee, M.-S.; Wang, C.-J.; Chuang, K.-S.; Ding, H.-J.

    2002-01-01

    Purpose: To smooth the staggered dose distribution that occurs in stepped leaves defined by a multi-leaf collimator (MLC). Materials and methods: The MLC Shaper program controlled the stepped leaves, which were shifted in a traveling range, the pattern of shift was from the position of out-bound to in-bound with a one-segment (cross-bound), three-segment, and five-segment shifts. Film was placed at a depth of 1.5 cm and irradiated with the same irradiation dose used for the cerrobend block experiment. Four field edges with the MLC defining at 15 deg., 30 deg., 45 deg., 60 deg. angels relative to the jaw edge were performed, respectively, in this study. For the field edge defined by the multi-segment technique, the amplitude of the isodose lines for 50% isodose line and both the 80% and 20% isodose lines were measured. The effective penumbra widths with 90-10% and 80-20% distances for different irradiations were determined at four field edges with the MLC defining at 15 deg., 30 deg., 45 deg., 60 deg. angels relative to the jaw edge. Results: Use of the five-segment technique for multi-leaf collimation at the 60 deg. angle field edge smoothes each isodose line into an effectively straight line, similar to the pattern achieved using a cerrobend block. The separation of these lines is also important. The 80-20% effective penumbra width with five-segment techniques (8.23 mm) at 60 deg. angle relative to the jaw edge is little wider (1.9 times) than the penumbra of cerrobend block field edge (4.23 mm). We also found that the 90-10% effective penumbra width with five-segment techniques (12.68 mm) at 60 deg. angle relative to the jaw edge is little wider (1.28 times) than the penumbra of cerrobend block field edge (9.89 mm). Conclusion: The multi-segment technique is effective in smoothing the MLC staggered field edge. The effective penumbra width with more segment techniques at larger degree angles relative to the field edge is little wider than the penumbra for a

  2. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view

    International Nuclear Information System (INIS)

    McQuaid, D; Webb, S

    2006-01-01

    A new modification of the dynamic multileaf collimator (dMLC) delivery technique for intensity-modulated therapy (IMRT) is outlined. This technique enables the tracking of a target moving through rigid-body translations in a 2D trajectory in the beam's eye view. The accuracy of the delivery versus that of deliveries with no tracking and of 1D tracking techniques is quantified with clinically derived intensity-modulated beams (IMBs). Leaf trajectories calculated in the target-reference frame were iteratively synchronized assuming regular target motion. This allowed the leaves defined in the lab-reference frame to simultaneously follow the target motion and to deliver the required IMB without violation of the leaf maximum-velocity constraint. The leaves are synchronized until the gradient of the leaf position at every instant is less than a calculated maximum. The delivered fluence in the target-reference frame was calculated with a simple primary-fluence model. The new 2D tracking technique was compared with the delivered fluence produced by no-tracking deliveries and by 1D tracking deliveries for 33 clinical IMBs. For the clinical IMBs normalized to a maximum fluence of 200 MUs, the rms difference between the desired and the delivered IMB was 15.6 ± 3.3 MU for the case of a no-tracking delivery, 7.9 ± 1.6 MU for the case where only the primary component of motion was corrected and 5.1 ± 1.1 MU for the 2D tracking delivery. The residual error is due to interpolation and sampling effects. The 2D tracking delivery technique requires an increase in the delivery time evaluated as between 0 and 50% of the unsynchronized delivery time for each beam with a mean increase of 13% for the IMBs tested. The 2D tracking dMLC delivery technique allows an optimized IMB to be delivered to moving targets with increased accuracy and with acceptable increases in delivery time. When combined with real-time knowledge of the target motion at delivery time, this technique facilitates

  3. TH-AB-202-03: A Novel Tool for Computing Deliverable Doses in Dynamic MLC Tracking Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Fast, M; Kamerling, C; Menten, M; Nill, S; Oelfke, U [The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom); Crijns, S; Raaymakers, B [University Medical Center Utrecht, Utrecht (Netherlands)

    2016-06-15

    Purpose: In tracked dynamic multi-leaf collimator (MLC) treatments, segments are continuously adapted to the target centroid motion in beams-eye-view. On-the-fly segment adaptation, however, potentially induces dosimetric errors due to the finite MLC leaf width and non-rigid target motion. In this study, we outline a novel tool for computing the 4d dose of lung SBRT plans delivered with MLC tracking. Methods: The following automated workflow was developed: A) centroid tracking, where the initial segments are morphed to each 4dCT phase based on the beams-eye-view GTV shift (followed by a dose calculation on each phase); B) re-optimized tracking, in which all morphed initial plans from (A) are further optimised (“warm-started”) in each 4dCT phase using the initial optimisation parameters but phase-specific volume definitions. Finally, both dose sets are accumulated to the reference phase using deformable image registration. Initial plans were generated according to the RTOG-1021 guideline (54Gy, 3-Fx, equidistant 9-beam IMRT) on the peak-exhale (reference) phase of a phase-binned 4dCT. Treatment planning and delivery simulations were performed in RayStation (research v4.6) using our in-house segment-morphing algorithm, which directly links to RayStation through a native C++ interface. Results: Computing the tracking plans and 4d dose distributions via the in-house interface takes 5 and 8 minutes respectively for centroid and re-optimized tracking. For a sample lung SBRT patient with 14mm peak-to-peak motion in sup-inf direction, mainly perpendicular leaf motion (0-collimator) resulted in small dose changes for PTV-D95 (−13cGy) and GTV-D98 (+18cGy) for the centroid tracking case compared to the initial plan. Modest reductions of OAR doses (e.g. spinal cord D2: −11cGy) were achieved in the idealized tracking case. Conclusion: This study presents an automated “1-click” workflow for computing deliverable MLC tracking doses in RayStation. Adding a non

  4. TH-AB-202-03: A Novel Tool for Computing Deliverable Doses in Dynamic MLC Tracking Treatments

    International Nuclear Information System (INIS)

    Fast, M; Kamerling, C; Menten, M; Nill, S; Oelfke, U; Crijns, S; Raaymakers, B

    2016-01-01

    Purpose: In tracked dynamic multi-leaf collimator (MLC) treatments, segments are continuously adapted to the target centroid motion in beams-eye-view. On-the-fly segment adaptation, however, potentially induces dosimetric errors due to the finite MLC leaf width and non-rigid target motion. In this study, we outline a novel tool for computing the 4d dose of lung SBRT plans delivered with MLC tracking. Methods: The following automated workflow was developed: A) centroid tracking, where the initial segments are morphed to each 4dCT phase based on the beams-eye-view GTV shift (followed by a dose calculation on each phase); B) re-optimized tracking, in which all morphed initial plans from (A) are further optimised (“warm-started”) in each 4dCT phase using the initial optimisation parameters but phase-specific volume definitions. Finally, both dose sets are accumulated to the reference phase using deformable image registration. Initial plans were generated according to the RTOG-1021 guideline (54Gy, 3-Fx, equidistant 9-beam IMRT) on the peak-exhale (reference) phase of a phase-binned 4dCT. Treatment planning and delivery simulations were performed in RayStation (research v4.6) using our in-house segment-morphing algorithm, which directly links to RayStation through a native C++ interface. Results: Computing the tracking plans and 4d dose distributions via the in-house interface takes 5 and 8 minutes respectively for centroid and re-optimized tracking. For a sample lung SBRT patient with 14mm peak-to-peak motion in sup-inf direction, mainly perpendicular leaf motion (0-collimator) resulted in small dose changes for PTV-D95 (−13cGy) and GTV-D98 (+18cGy) for the centroid tracking case compared to the initial plan. Modest reductions of OAR doses (e.g. spinal cord D2: −11cGy) were achieved in the idealized tracking case. Conclusion: This study presents an automated “1-click” workflow for computing deliverable MLC tracking doses in RayStation. Adding a non

  5. SU-F-T-465: Two Years of Radiotherapy Treatments Analyzed Through MLC Log Files

    Energy Technology Data Exchange (ETDEWEB)

    Defoor, D [University of Texas HSC SA, New Braunfles, TX (United States); Kabat, C; Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States); Stathakis, S [Cancer Therapy and Research Center, San Antonio, TX (United States)

    2016-06-15

    Purpose: To present treatment statistics of a Varian Novalis Tx using more than 90,000 Varian Dynalog files collected over the past 2 years. Methods: Varian Dynalog files are recorded for every patient treated on our Varian Novalis Tx. The files are collected and analyzed daily to check interfraction agreement of treatment deliveries. This is accomplished by creating fluence maps from the data contained in the Dynalog files. From the Dynalog files we have also compiled statistics for treatment delivery times, MLC errors, gantry errors and collimator errors. Results: The mean treatment time for VMAT patients was 153 ± 86 seconds while the mean treatment time for step & shoot was 256 ± 149 seconds. Patient’s treatment times showed a variation of 0.4% over there treatment course for VMAT and 0.5% for step & shoot. The average field sizes were 40 cm2 and 26 cm2 for VMAT and step & shoot respectively. VMAT beams contained and average overall leaf travel of 34.17 meters and step & shoot beams averaged less than half of that at 15.93 meters. When comparing planned and delivered fluence maps generated using the Dynalog files VMAT plans showed an average gamma passing percentage of 99.85 ± 0.47. Step & shoot plans showed an average gamma passing percentage of 97.04 ± 0.04. 5.3% of beams contained an MLC error greater than 1 mm and 2.4% had an error greater than 2mm. The mean gantry speed for VMAT plans was 1.01 degrees/s with a maximum of 6.5 degrees/s. Conclusion: Varian Dynalog files are useful for monitoring machine performance treatment parameters. The Dynalog files have shown that the performance of the Novalis Tx is consistent over the course of a patients treatment with only slight variations in patient treatment times and a low rate of MLC errors.

  6. The MLC tongue-and-groove effect on IMRT dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States). E-mail: jun@reyes.stanford.edu; Pawlicki, Todd; Chen Yan; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2001-04-01

    We have investigated the tongue-and-groove effect on the IMRT dose distributions for a Varian MLC. We have compared the dose distributions calculated using the intensity maps with and without the tongue-and-groove effect. Our results showed that, for one intensity-modulated treatment field, the maximum tongue-and-groove effect could be up to 10% of the maximum dose in the dose distributions. For an IMRT treatment with multiple gantry angles ({>=} 5), the difference between the dose distributions with and without the tongue-and-groove effect was hardly visible, less than 1.6% for the two typical clinical cases studied. After considering the patient setup errors, the dose distributions were smoothed with reduced and insignificant differences between plans with and without the tongue-and-groove effect. Therefore, for a multiple-field IMRT plan ({>=} 5), the tongue-and-groove effect on the IMRT dose distributions will be generally clinically insignificant due to the smearing effect of individual fields. The tongue-and-groove effect on an IMRT plan with small number of fields (<5) will vary depending on the number of fields in a plan (coplanar or non-coplanar), the MLC leaf sequences and the patient setup uncertainty, and may be significant (>5% of maximum dose) in some cases, especially when the patient setup uncertainty is small ({<=} 2 mm). (author)

  7. Incorporating multi-leaf collimator leaf sequencing into iterative IMRT optimization

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Lauterbach, Marc; Keall, Paul J.; Mohan, Radhe

    2002-01-01

    Intensity modulated radiation therapy (IMRT) treatment planning typically considers beam optimization and beam delivery as separate tasks. Following optimization, a multi-leaf collimator (MLC) or other beam delivery device is used to generate fluence patterns for patient treatment delivery. Due to limitations and characteristics of the MLC, the deliverable intensity distributions often differ from those produced by the optimizer, leading to differences between the delivered and the optimized doses. Objective function parameters are then adjusted empirically, and the plan is reoptimized to achieve a desired deliverable dose distribution. The resulting plan, though usually acceptable, may not be the best achievable. A method has been developed to incorporate the MLC restrictions into the optimization process. Our in-house IMRT system has been modified to include the calculation of the deliverable intensity into the optimizer. In this process, prior to dose calculation, the MLC leaf sequencer is used to convert intensities to dynamic MLC sequences, from which the deliverable intensities are then determined. All other optimization steps remain the same. To evaluate the effectiveness of deliverable-based optimization, 17 patient cases have been studied. Compared with standard optimization plus conversion to deliverable beams, deliverable-based optimization results show improved isodose coverage and a reduced dose to critical structures. Deliverable-based optimization results are close to the original nondeliverable optimization results, suggesting that IMRT can overcome the MLC limitations by adjusting individual beamlets. The use of deliverable-based optimization may reduce the need for empirical adjustment of objective function parameters and reoptimization of a plan to achieve desired results

  8. Penumbra characteristics of square photon beams delimited by a GEMS multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Briot, E; Julia, F [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France)

    1995-12-01

    A multi-leaf collimator (MLC) has been designed to replace directly the standard collimator of a SATURNE IV Series linac. It consists of 2 x 32 tungsten leaves and one set of upper block jaws. Isodose curves and dose profiles were measured for symmetric fields at the depth of the maximum and the reference depths for 6 MV, 10 MV, 18 MV photon beams. The penumbra (80%-20%) corresponding to the face and the side of the leaves have been compared with the standard collimators. Along with the X direction, the field delimitation is performed primarily with the leaves which are continuously variable in position. Along the Y direction, the field is initially approximated by the closure of opposite leaf pairs; then the Y upper jaws produce the exact size of the required field. As the leaves move linearly the penumbra (80%-20%) corresponding to the leaf ends is minimized and held constant at all positions by curvature of their faces. Penumbra obtained with the superposition of leaves and Y jaws depend on their relative position. The penumbra is minimum when the leaf side and the Y jaw edge coincide and the comparison of the measurement values with the conventional collimator shows that the differences are within 1 mm. When the leaves delineating the field are not entirely covered by the Y block upper jaws, the penumbra increases, and the junction of the opposing leaves, a width increase up to 3.5 mm has been measured.

  9. Technical Note: Motion-perturbation method applied to dosimetry of dynamic MLC target tracking—A proof-of-concept

    Energy Technology Data Exchange (ETDEWEB)

    Feygelman, Vladimir, E-mail: vladimir.feygelman@moffitt.org; Tonner, Brian; Hunt, Dylan; Zhang, Geoffrey; Moros, Eduardo [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States)

    2015-11-15

    Purpose: Previous studies show that dose to a moving target can be estimated using 4D measurement-guided dose reconstruction based on a process called virtual motion simulation, or VMS. A potential extension of VMS is to estimate dose during dynamic multileaf collimator (MLC)-tracking treatments. The authors introduce a modified VMS method and quantify its performance as proof-of-concept for tracking applications. Methods: Direct measurements with a moving biplanar diode array were used to verify accuracy of the VMS dose estimates. A tracking environment for variably sized circular MLC apertures was simulated by sending preprogrammed control points to the MLC while simultaneously moving the accelerator treatment table. Sensitivity of the method to simulated tracking latency (0–700 ms) was also studied. Potential applicability of VMS to fast changing beam apertures was evaluated by modeling, based on the demonstrated dependence of the cumulative dose on the temporal dose gradient. Results: When physical and virtual latencies were matched, the agreement rates (2% global/2 mm gamma) between the VMS and the biplanar dosimeter were above 96%. When compared to their own reference dose (0 induced latency), the agreement rates for VMS and biplanar array track closely up to 200 ms of induced latency with 10% low-dose cutoff threshold and 300 ms with 50% cutoff. Time-resolved measurements suggest that even in the modulated beams, the error in the cumulative dose introduced by the 200 ms VMS time resolution is not likely to exceed 0.5%. Conclusions: Based on current results and prior benchmarks of VMS accuracy, the authors postulate that this approach should be applicable to any MLC-tracking treatments where leaf speeds do not exceed those of the current Varian accelerators.

  10. Technical Note: Motion-perturbation method applied to dosimetry of dynamic MLC target tracking—A proof-of-concept

    International Nuclear Information System (INIS)

    Feygelman, Vladimir; Tonner, Brian; Hunt, Dylan; Zhang, Geoffrey; Moros, Eduardo; Stambaugh, Cassandra; Nelms, Benjamin E.

    2015-01-01

    Purpose: Previous studies show that dose to a moving target can be estimated using 4D measurement-guided dose reconstruction based on a process called virtual motion simulation, or VMS. A potential extension of VMS is to estimate dose during dynamic multileaf collimator (MLC)-tracking treatments. The authors introduce a modified VMS method and quantify its performance as proof-of-concept for tracking applications. Methods: Direct measurements with a moving biplanar diode array were used to verify accuracy of the VMS dose estimates. A tracking environment for variably sized circular MLC apertures was simulated by sending preprogrammed control points to the MLC while simultaneously moving the accelerator treatment table. Sensitivity of the method to simulated tracking latency (0–700 ms) was also studied. Potential applicability of VMS to fast changing beam apertures was evaluated by modeling, based on the demonstrated dependence of the cumulative dose on the temporal dose gradient. Results: When physical and virtual latencies were matched, the agreement rates (2% global/2 mm gamma) between the VMS and the biplanar dosimeter were above 96%. When compared to their own reference dose (0 induced latency), the agreement rates for VMS and biplanar array track closely up to 200 ms of induced latency with 10% low-dose cutoff threshold and 300 ms with 50% cutoff. Time-resolved measurements suggest that even in the modulated beams, the error in the cumulative dose introduced by the 200 ms VMS time resolution is not likely to exceed 0.5%. Conclusions: Based on current results and prior benchmarks of VMS accuracy, the authors postulate that this approach should be applicable to any MLC-tracking treatments where leaf speeds do not exceed those of the current Varian accelerators

  11. SU-E-T-114: Analysis of MLC Errors On Gamma Pass Rates for Patient-Specific and Conventional Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, D; Ehler, E [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: To evaluate whether a 3D patient-specific phantom is better able to detect known MLC errors in a clinically delivered treatment plan than conventional phantoms. 3D printing may make fabrication of such phantoms feasible. Methods: Two types of MLC errors were introduced into a clinically delivered, non-coplanar IMRT, partial brain treatment plan. First, uniformly distributed random errors of up to 3mm, 2mm, and 1mm were introduced into the MLC positions for each field. Second, systematic MLC-bank position errors of 5mm, 3.5mm, and 2mm due to simulated effects of gantry and MLC sag were introduced. The original plan was recalculated with these errors on the original CT dataset as well as cylindrical and planar IMRT QA phantoms. The original dataset was considered to be a perfect 3D patient-specific phantom. The phantoms were considered to be ideal 3D dosimetry systems with no resolution limitations. Results: Passing rates for Gamma Index (3%/3mm and no dose threshold) were calculated on the 3D phantom, cylindrical phantom, and both on a composite and field-by-field basis for the planar phantom. Pass rates for 5mm systematic and 3mm random error were 86.0%, 89.6%, 98% and 98.3% respectively. For 3.5mm systematic and 2mm random error the pass rates were 94.7%, 96.2%, 99.2% and 99.2% respectively. For 2mm systematic error with 1mm random error the pass rates were 99.9%, 100%, 100% and 100% respectively. Conclusion: A 3D phantom with the patient anatomy is able to discern errors, both severe and subtle, that are not seen using conventional phantoms. Therefore, 3D phantoms may be beneficial for commissioning new treatment machines and modalities, patient-specific QA and end-to-end testing.

  12. SU-E-T-114: Analysis of MLC Errors On Gamma Pass Rates for Patient-Specific and Conventional Phantoms

    International Nuclear Information System (INIS)

    Sterling, D; Ehler, E

    2015-01-01

    Purpose: To evaluate whether a 3D patient-specific phantom is better able to detect known MLC errors in a clinically delivered treatment plan than conventional phantoms. 3D printing may make fabrication of such phantoms feasible. Methods: Two types of MLC errors were introduced into a clinically delivered, non-coplanar IMRT, partial brain treatment plan. First, uniformly distributed random errors of up to 3mm, 2mm, and 1mm were introduced into the MLC positions for each field. Second, systematic MLC-bank position errors of 5mm, 3.5mm, and 2mm due to simulated effects of gantry and MLC sag were introduced. The original plan was recalculated with these errors on the original CT dataset as well as cylindrical and planar IMRT QA phantoms. The original dataset was considered to be a perfect 3D patient-specific phantom. The phantoms were considered to be ideal 3D dosimetry systems with no resolution limitations. Results: Passing rates for Gamma Index (3%/3mm and no dose threshold) were calculated on the 3D phantom, cylindrical phantom, and both on a composite and field-by-field basis for the planar phantom. Pass rates for 5mm systematic and 3mm random error were 86.0%, 89.6%, 98% and 98.3% respectively. For 3.5mm systematic and 2mm random error the pass rates were 94.7%, 96.2%, 99.2% and 99.2% respectively. For 2mm systematic error with 1mm random error the pass rates were 99.9%, 100%, 100% and 100% respectively. Conclusion: A 3D phantom with the patient anatomy is able to discern errors, both severe and subtle, that are not seen using conventional phantoms. Therefore, 3D phantoms may be beneficial for commissioning new treatment machines and modalities, patient-specific QA and end-to-end testing

  13. A leaf sequencing algorithm to enlarge treatment field length in IMRT

    International Nuclear Information System (INIS)

    Xia Ping; Hwang, Andrew B.; Verhey, Lynn J.

    2002-01-01

    With MLC-based IMRT, the maximum usable field size is often smaller than the maximum field size for conventional treatments. This is due to the constraints of the overtravel distances of MLC leaves and/or jaws. Using a new leaf sequencing algorithm, the usable IMRT field length (perpendicular to the MLC motion) can be mostly made equal to the full length of the MLC field without violating the upper jaw overtravel limit. For any given intensity pattern, a criterion was proposed to assess whether an intensity pattern can be delivered without violation of the jaw position constraints. If the criterion is met, the new algorithm will consider the jaw position constraints during the segmentation for the step and shoot delivery method. The strategy employed by the algorithm is to connect the intensity elements outside the jaw overtravel limits with those inside the jaw overtravel limits. Several methods were used to establish these connections during segmentation by modifying a previously published algorithm (areal algorithm), including changing the intensity level, alternating the leaf-sequencing direction, or limiting the segment field size. The algorithm was tested with 1000 random intensity patterns with dimensions of 21x27 cm2, 800 intensity patterns with higher intensity outside the jaw overtravel limit, and three different types of clinical treatment plans that were undeliverable using a segmentation method from a commercial treatment planning system. The new algorithm achieved a success rate of 100% with these test patterns. For the 1000 random patterns, the new algorithm yields a similar average number of segments of 36.9±2.9 in comparison to 36.6±1.3 when using the areal algorithm. For the 800 patterns with higher intensities outside the jaw overtravel limits, the new algorithm results in an increase of 25% in the average number of segments compared to the areal algorithm. However, the areal algorithm fails to create deliverable segments for 90% of these

  14. Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLC1 cause folding defects

    NARCIS (Netherlands)

    Duarri, A.; Teijido, O.; Lopez-Hernandez, T.; Scheper, G.C.; Barriere, H.; Boor, P.K.I.; Aguado, F.; Zorzano, A.; Palacin, M.; Martinez, A; Lukacs, G.L.; van der Knaap, M.S.; Nunes, V.; Estevez, R.

    2008-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, most often caused by mutations in the MLC1 gene. MLC1 is an oligomeric plasma membrane (PM) protein of unknown function expressed mainly in glial cells and neurons. Most disease-causing missense

  15. Capability of leaf interdigitation with different inverse planning strategies in Monaco: an investigation of representative tumour sites

    International Nuclear Information System (INIS)

    Duan, Jinghao; Meng, Xiangjuan; Liu, Tonghai; Yin, Yong

    2016-01-01

    The aim of this study was to experimentally assess the dosimetric impact of leaf interdigitation using different inverse treatment strategies for representative tumour sites and to identify the situations in which leaf interdigitation can benefit these tumour sites. Sixty previously treated patients (15 nasopharyngeal carcinoma (NPC), 15 multiple brain metastasis (MBM), 15 cervical cancer and 15 prostate cancer) were re-planned for volumetric modulated arc therapy (VMAT), sliding window IMRT (dMLC) and step-and-shoot IMRT (ssIMRT) with and without leaf interdigitation. Various dosimetric variables, such as PTV coverage, OARs sparing, delivery efficiency and planning time, were evaluated for each plan. In addition, a protocol developed by our group was applied to identify the situations in which leaf interdigitation can achieve benefits in clinical practice. Leaf interdigitation produced few benefits in PTV homogeneity for the MBM VMAT plans and NPC ssIMRT plans. For OARs, sparing was equivalent with and without leaf interdigitation. Leaf interdigitation showed an increase in MUs for dMLC plans and a decrease in MUs for ssIMRT plans. Leaf interdigitation resulted in an increase in segments for dMLC plans and a decrease in segments for NPC and MBM ssIMRT plans. For beam on time, leaf interdigitation showed an increase in MBM dMLC, NPC ssIMRT and prostate ssIMRT plans. In addition, leaf interdigitation saved planning time for VMAT and dMLC plans but increased planning time for ssIMRT plans. Leaf interdigitation does not improve plan quality when performing inverse treatment strategies, regardless of whether the target is simple or complex. However, it influences the delivery efficiency and planning time. Based on these observations, our study suggests that leaf interdigitation should be utilized when performing MBM VMAT plans and NPC ssIMRT plans. The online version of this article (doi:10.1186/s13014-016-0655-1) contains supplementary material, which is available to

  16. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    Science.gov (United States)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  17. Fast regional readout CMOS image sensor for dynamic MLC tracking

    International Nuclear Information System (INIS)

    Zin, H; Harris, E; Osmond, J; Evans, P

    2014-01-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ∼400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  18. The impact of leaf width and plan complexity on DMLC tracking of prostate intensity modulated arc therapy

    DEFF Research Database (Denmark)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per Rugaard

    2013-01-01

    Purpose: Intensity modulated arc therapy (IMAT) is commonly used to treat prostate cancer. The purpose of this study was to evaluate the impact of leaf width and plan complexity on dynamic multileaf collimator (DMLC) tracking for prostate motion management during IMAT treatments.Methods: Prostate...... IMAT plans were delivered with either a high-definition MLC (HDMLC) or a Millennium MLC (M-MLC) (0.25 and 0.50 cm central leaf width, respectively), with and without DMLC tracking, to a dosimetric phantom that reproduced four prostate motion traces. The plan complexity was varied by applying leaf....... The corresponding pass rates without tracking were 87.6% (range 76.2%-94.7%) and 91.1% (range 81.4%-97.6%), respectively. Decreased plan complexity improved the pass rate when static target measurements were used as reference, but not with the planned dose as reference. The main cause of tracking errors was leaf...

  19. TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy

    International Nuclear Information System (INIS)

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S; Fast, M; Nill, S; Oelfke, U; Denis de Senneville, B

    2016-01-01

    Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), the cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or

  20. TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S [University Medical Center Utrecht, Utrecht (Netherlands); Fast, M; Nill, S; Oelfke, U [The Institute of Cancer Research, London (United Kingdom); Denis de Senneville, B [University Medical Center Utrecht, Utrecht (Netherlands); IMB, UMR 5251 CNRS/University of Bordeaux, Talence, FR (France)

    2016-06-15

    Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), the cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or

  1. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy

    Science.gov (United States)

    Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2018-01-01

    This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.

  2. Validation of Varian TrueBeam electron phase–spaces for Monte Carlo simulation of MLC-shaped fields

    International Nuclear Information System (INIS)

    Lloyd, Samantha A. M.; Gagne, Isabelle M.; Zavgorodni, Sergei; Bazalova-Carter, Magdalena

    2016-01-01

    Purpose: This work evaluates Varian’s electron phase–space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. Methods: Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and PENELOPE-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm 2 MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm 2 ). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm 2 and jaw positions that range from the MLC-field size to 40 × 40 cm 2 . Results: Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO’s 12 MeV, 20 × 20 cm 2 field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm 2 field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm 2 fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. Conclusions: TrueBeam electron phase–spaces available from Varian have been

  3. Validation of Varian TrueBeam electron phase–spaces for Monte Carlo simulation of MLC-shaped fields

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Samantha A. M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 3P6 5C2 (Canada); Gagne, Isabelle M., E-mail: imgagne@bccancer.bc.ca; Zavgorodni, Sergei [Department of Medical Physics, BC Cancer Agency–Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2 (Canada); Bazalova-Carter, Magdalena [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2 (Canada)

    2016-06-15

    Purpose: This work evaluates Varian’s electron phase–space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. Methods: Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and PENELOPE-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm{sup 2} MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm{sup 2}). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm{sup 2} and jaw positions that range from the MLC-field size to 40 × 40 cm{sup 2}. Results: Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO’s 12 MeV, 20 × 20 cm{sup 2} field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm{sup 2} field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm{sup 2} fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. Conclusions: TrueBeam electron phase

  4. An analytical approach for optimizing the leaf design of a multi-leaf collimator in a linear accelerator

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der

    2008-01-01

    In this study, we present an analytical approach for optimizing the leaf design of a multi-leaf collimator (MLC) in a linear accelerator. Because leaf designs vary between vendors, our goal is to characterize and quantify the effects of different compromises which have to be made between performance parameters. Subsequently, an optimal leaf design for an earlier proposed six-bank MLC which combines a high-resolution field-shaping ability with a large field size is determined. To this end a model of the linac is created that includes the following parameters: the source size, the maximum field size, the distance between source and isocenter, and the leaf's design parameters. First, the optimal radius of the leaf tip was found. This optimum was defined by the requirement that the fluence intensity should fall from 80% of the maximum value to 20% in a minimal distance, defining the width of the fluence penumbra. A second requirement was that this penumbra width should be constant when a leaf moves from one side of the field to the other. The geometric, transmission and total penumbra width (80-20%) were calculated depending on the design parameters. The analytical model is in agreement with Elekta, Varian and Siemens collimator designs. For leaves thinner than 4 cm, the transmission penumbra becomes dominant, and for leaves close to the source the geometric penumbra plays a role. Finally, by choosing the leaf thickness of 3.5 cm, 4 cm and 5 cm from the lowest to the highest bank, respectively, an optimal leaf design for a six-bank MLC is achieved

  5. Identification of an MLC suppressor cell population in acute leukemia

    International Nuclear Information System (INIS)

    Bryan, C.F.; Broxmeyer, H.E.; Hansen, J.; Pollack, M.; Dupont, B.

    1978-01-01

    The MLC data from the 20 nonsuppressing patients and the 10 suppressing leukemia patients were analyzed with regard to HLA-A, -B, and -C antigens in the leukemia patients and compared with the presence or absence of suppression. These results demonstrate a significant increase (p < 0.02, Mann-Whitney U test) of HLA antigens Al, A3, and A11 in the leukemia suppressor group. Seven of the 10 leukemia patients showing suppression were A1, A3, or A11, while only 4 of the 20 nonsuppressing leukemia patients carried any of these three HLA-A antigens. The studies demonstrate that a nonspecific suppression of MLC responses is observed in 33% of the patients with acute leukemia

  6. SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J; Lin, H [Hefei University of Technology, Hefei, Anhui (China); Chow, J [Princess Margaret Cancer Centre, Toronto, ON (Canada)

    2016-06-15

    Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beam profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  7. SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy

    International Nuclear Information System (INIS)

    Jing, J; Lin, H; Chow, J

    2016-01-01

    Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beam profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  8. Characterization of an extendable multi-leaf collimator for clinical electron beams

    Science.gov (United States)

    O'Shea, Tuathan P.; Ge, Yuanyuan; Foley, Mark J.; Faddegon, Bruce A.

    2011-12-01

    An extendable x-ray multi-leaf collimator (eMLC) is investigated for collimation of electron beams on a linear accelerator. The conventional method of collimation using an electron applicator is impractical for conformal, modulated and mixed beam therapy techniques. An eMLC would allow faster, more complex treatments with potential for reduction in dose to organs-at-risk and critical structures. The add-on eMLC was modelled using the EGSnrc Monte Carlo code and validated against dose measurements at 6-21 MeV with the eMLC mounted on a Siemens Oncor linear accelerator at 71.6 and 81.6 cm source-to-collimator distances. Measurements and simulations at 8.4-18.4 cm airgaps showed agreement of 2%/2 mm. The eMLC dose profiles and percentage depth dose curves were compared with standard electron applicator parameters. The primary differences were a wider penumbra and up to 4.2% reduction in the build-up dose at 0.5 cm depth, with dose normalized on the central axis. At 90 cm source-to-surface distance (SSD)--relevant to isocentric delivery--the applicator and eMLC penumbrae agreed to 0.3 cm. The eMLC leaves, which were 7 cm thick, contributed up to 6.3% scattered electron dose at the depth of maximum dose for a 10 × 10 cm2 field, with the thick leaves effectively eliminating bremsstrahlung leakage. A Monte Carlo calculated wedge shaped dose distribution generated with all six beam energies matched across the maximum available eMLC field width demonstrated a therapeutic (80% of maximum dose) depth range of 2.1-6.8 cm. Field matching was particularly challenging at lower beam energies (6-12 MeV) due to the wider penumbrae and angular distribution of electron scattering. An eMLC isocentric electron breast boost was planned and compared with the conventional applicator fixed SSD plan, showing similar target coverage and dose to critical structures. The mean dose to the target differed by less than 2%. The low bremsstrahlung dose from the 7 cm thick MLC leaves had the added

  9. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    Science.gov (United States)

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. The qTSN positive effect on panicle and flag leaf size of rice is associated with an early down-regulation of tillering

    Directory of Open Access Journals (Sweden)

    Dewi Erika eAdriani

    2016-01-01

    Full Text Available The qTSN4 was identified as rice QTL (Quantitative Traits Locus increasing total spikelet number per panicle and flag leaf area but potentially reducing panicle number depending on the environment. So far, this trade-off was mainly observed at grain maturity and not specifically studied in details, limiting the apprehension of the agronomic interest of qTSN4. This study aimed to understand the effect of qTSN4 and of the environment on panicle sizing, its trade-off with panicle number and finally plant grain production. It compared two high yielding genotypes to their Near Isogenic Lines (NIL carrying either QTL qTSN4 or qTSN12, two distinct QTLs contributing to the enlarged panicle size, thereafter designated as qTSN. Traits describing C sink (organ appearance rate, size, biomass and source (leaf area, photosynthesis, sugar availability were dynamically characterized along plant and/or panicle development within two trials (greenhouse, field, each comparing two treatments contrasting for plant access to light (with or without shading, high or low planting densities. The positive effect of qTSN on panicle size and flag leaf area of the main tiller was confirmed. More precisely, it could be shown that qTSN increased leaf area and internode cross-section, and in some cases of the photosynthetic rate and starch reserves, of the top 3-4 phytomers of the main tiller. This was accompanied by an earlier tillering cessation, that coincided with the initiation of these phytomers, and an enhanced of panicle size on the main tiller. Plant leaf area at flowering was not affected by qTSN but fertile tiller number was reduced to an extent that depended on the environment. Accordingly, plant grain production was enhanced by qTSN only under shading in the greenhouse experiment, where panicle number was not affected and photosynthesis and starch storage in internodes was enhanced. The effect of qTSN on rice phenotype was thus expressed before panicle initiation

  11. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms.

    Science.gov (United States)

    Fogliata, Antonella; Lobefalo, Francesca; Reggiori, Giacomo; Stravato, Antonella; Tomatis, Stefano; Scorsetti, Marta; Cozzi, Luca

    2016-10-01

    Small field measurements are challenging, due to the physical characteristics coming from the lack of charged particle equilibrium, the partial occlusion of the finite radiation source, and to the detector response. These characteristics can be modeled in the dose calculations in the treatment planning systems. Aim of the present work is to evaluate the MU calculation accuracy for small fields, defined by jaw or MLC, for anisotropic analytical algorithm (AAA) and Acuros XB algorithms, relative to output measurements on the beam central axis. Single point output factor measurement was acquired with a PTW microDiamond detector for 6 MV, 6 and 10 MV unflattened beams generated by a Varian TrueBeam STx equipped with high definition-MLC. Fields defined by jaw or MLC apertures were set; jaw-defined: 0.6 × 0.6, 0.8 × 0.8, 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 10 × 10 cm 2 ; MLC-defined: 0.5 × 0.5 cm 2 to the maximum field defined by the jaw, with 0.5 cm stepping, and jaws set to: 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 10 × 10 cm 2 . MU calculation was obtained with 1 mm grid in a virtual water phantom for the same fields, for AAA and Acuros algorithms implemented in the Varian eclipse treatment planning system (version 13.6). Configuration parameters as the effective spot size (ESS) and the dosimetric leaf gap (DLG) were varied to find the best parameter setting. Differences between calculated and measured doses were analyzed. Agreement better than 0.5% was found for field sizes equal to or larger than 2 × 2 cm 2 for both algorithms. A dose overestimation was present for smaller jaw-defined fields, with the best agreement, averaged over all the energies, of 1.6% and 4.6% for a 1 × 1 cm 2 field calculated by AAA and Acuros, respectively, for a configuration with ESS = 1 mm for both X and Y directions for AAA, and ESS = 1.5 and 0 mm for X and Y directions for Acuros. Conversely, a calculated dose underestimation was found for small MLC-defined fields, with the

  12. Comparison of measured and calculated doses for narrow MLC defined fields

    International Nuclear Information System (INIS)

    Lydon, J.; Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: The introduction of Intensity Modulated Radiotherapy (IMRT) has led to the use of narrow fields in the delivery of radiation doses to patients. Such fields are not well characterized by calculation methods commonly used in radiotherapy treatment planning systems. The accuracy of the dose calculation algorithm must therefore be investigated prior to clinical use. This study looked at symmetrical and asymmetrical 0.1 to 3cm wide fields delivered with a Varian CL2100C 6MV photon beam. Measured doses were compared to doses calculated using Pinnacle, the ADAC radiotherapy treatment planning system. Two high resolution methods of measuring dose were used. A MOSFET detector in a water phantom and radiographic film in a solid water phantom with spatial resolutions of 10 and 89μm respectively. Dose calculations were performed using the collapsed cone convolution algorithm in Pinnacle with a 0.1cm dose calculation grid in the MLC direction. The effect of Pinnacle not taking into account the rounded leaf ends was simulated by offsetting the leaves by 0.1cm in the dose calculation. Agreement between measurement and calculation is good for fields of 1cm and wider. However, fields of less than 1cm width can show a significant difference between measurement and calculation

  13. The typical RB76 recombination breakpoint of the invasive recombinant tomato yellow leaf curl virus of Morocco can be generated experimentally but is not positively selected in tomato.

    Science.gov (United States)

    Belabess, Z; Urbino, C; Granier, M; Tahiri, A; Blenzar, A; Peterschmitt, M

    2018-01-02

    TYLCV-IS76 is an unusual recombinant between the highly recombinogenic tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), two Mediterranean begomoviruses (Geminiviridae). In contrast with the previously reported TYLCV/TYLCSV recombinants, it has a TYLCSV derived fragment of only 76 nucleotides, and has replaced its parental viruses in natural conditions (Morocco, Souss region). The viral population shift coincided with the deployment of the popular Ty-1 resistant tomato cultivars, and according to experimental studies, has been driven by a strong positive selection in such resistant plants. However, although Ty-1 cultivars were extensively used in Mediterranean countries, TYLCV-IS76 was not reported outside Morocco. This, in combination with its unusual recombination pattern suggests that it was generated through a rare and possibly multistep process. The potential generation of a recombination breakpoint (RB) at locus 76 (RB76) was investigated over time in 10 Ty-1 resistant and 10 nearly isogenic susceptible tomato plants co-inoculated with TYLCV and TYLCSV clones. RB76 could not be detected in the recombinant progeny using the standard PCR/sequencing approach that was previously designed to monitor the emergence of TYLCV-IS76 in Morocco. Using a more sensitive PCR test, RB76 was detected in one resistant and five susceptible plants. The results are consistent with a very low intra-plant frequency of RB76 bearing recombinants throughout the test and support the hypothesis of a rare emergence of TYLCV-IS76. More generally, RBs were more scattered in resistant than in susceptible plants and an unusual RB at position 141 (RB141) was positively selected in the resistant cultivar; interestingly, RB141 bearing recombinants were detected in resistant tomato plants from the field. Scenarios of TYLCV-IS76 pre-emergence are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A finger leaf design for dual layer MLCs

    International Nuclear Information System (INIS)

    Cui Weijie; Dai Jianrong

    2010-01-01

    Objective: To introduce a finger leaf design that is applied to dual layer MLCs. Methods: An optimization model was firstly constructed to describe the problem of determining leaf end shapes,and the corresponding problems were then solved by the simplex search method or the simulated annealing technique. Optimal parameters for arc shapes of leaf end projections were obtained, and a comparison was done between optimized MLCs and conventional MLCs in terms of field conformity. The optimization process was based on 634 target fields selected from the patient data base of a treatment planning system. Areas of these fields ranged from 20.0 to 602.7 cm with a mean and its standard deviation of (125.7 ± 0.0) cm 2 . Results: The optimized leaf end shapes projected to the isocenter plane were semicircles. With the finger leaf design, the total area of discrepancy regions between MLC fields and target fields was reduced by 32.3%. Conclusions: The finger leaf design improves the conformity of the MLC shaped fields to the desired target fields. (authors)

  15. Quantitative analysis of the errors positioning of a multi leaf collimator for volumetric arcoterapia treatments; Analisis cuantitativo de los errores de posicionamiento de un colimador multilaminas para tratamientos de arcoterapia volumetrica

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Gonzalez, N.; Garcia Repiso, S.; Martin Rincon, C.; Cons Perez, N.; Saez Beltran, M.; Delgado Aparicio, J. M.; Perez alvarez, M. E.; Verde Velasco, J. M.; Ramos Pacho, J. A.; Sena Espinel, E. de

    2013-07-01

    The precision in the positioning of the multi leaf collimation system of a linear accelerator is critical, especially in treatments of IMRT, where small mistakes can cause relevant dosimetry discrepancies regarding the calculated plan. To assess the accuracy and repeatability of the blades positioning can be used controls, including the one known as fence test whose image pattern allows you to find anomalies in a visual way. The objective of this study is to develop a method which allows to quantify the positioning errors of the multi leaf collimator from this test. (Author)

  16. Measurement and correction of leaf open times in helical tomotherapy

    International Nuclear Information System (INIS)

    Sevillano, David; Mínguez, Cristina; Sánchez, Alicia; Sánchez-Reyes, Alberto

    2012-01-01

    Purpose: The binary multileaf collimator (MLC) is one of the most important components in helical tomotherapy (HT), as it modulates the dose delivered to the patient. However, methods to ensure MLC quality in HT treatments are lacking. The authors obtained data on the performance of the MLC in treatments administered in their department in order to assess possible delivery errors due to the MLC. Correction methods based on their data are proposed. Methods: Twenty sinograms from treatments delivered using both of the authors HT systems were measured and analyzed by recording the fluence collected by the imaging detector. Planned and actual sinograms were compared using distributions of leaf open time (LOT) errors, as well as differences in fluence reconstructed at each of the 51 projections into which the treatment planning system divides each rotation for optimization purposes. They proposed and applied a method based on individual leaf error correction and the increase in projection time to prevent latency effects when LOT is close to projection time. In order to analyze the dosimetric impact of the corrections, inphantom measurements were made for four corrected treatments. Results: The LOTs measured were consistent with those planned. Most of the mean errors in LOT distributions were within 1 ms with standard deviations of over 4 ms. Reconstructed fluences showed good results, with over 90% of points passing the 3% criterion, except in treatments with a short mean LOT, where the percentage of passing points was as low as 66%. Individual leaf errors were as long as 4 ms in some cases. Corrected sinograms improved error distribution, with standard deviations of over 3 ms and increased percentages of points passing 3% in the fluence per angle analysis, especially in treatments with a short mean LOT and those that were more subject to latency effects. The minimum percentage of points within 3% increased to 86%. In-phantom measurements of the corrected treatments

  17. Measurement and correction of leaf open times in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sevillano, David; Minguez, Cristina; Sanchez, Alicia; Sanchez-Reyes, Alberto [Department of Medical Physics, Tomotherapy Unit, Grupo IMO, Madrid 28010 (Spain)

    2012-11-15

    Purpose: The binary multileaf collimator (MLC) is one of the most important components in helical tomotherapy (HT), as it modulates the dose delivered to the patient. However, methods to ensure MLC quality in HT treatments are lacking. The authors obtained data on the performance of the MLC in treatments administered in their department in order to assess possible delivery errors due to the MLC. Correction methods based on their data are proposed. Methods: Twenty sinograms from treatments delivered using both of the authors HT systems were measured and analyzed by recording the fluence collected by the imaging detector. Planned and actual sinograms were compared using distributions of leaf open time (LOT) errors, as well as differences in fluence reconstructed at each of the 51 projections into which the treatment planning system divides each rotation for optimization purposes. They proposed and applied a method based on individual leaf error correction and the increase in projection time to prevent latency effects when LOT is close to projection time. In order to analyze the dosimetric impact of the corrections, inphantom measurements were made for four corrected treatments. Results: The LOTs measured were consistent with those planned. Most of the mean errors in LOT distributions were within 1 ms with standard deviations of over 4 ms. Reconstructed fluences showed good results, with over 90% of points passing the 3% criterion, except in treatments with a short mean LOT, where the percentage of passing points was as low as 66%. Individual leaf errors were as long as 4 ms in some cases. Corrected sinograms improved error distribution, with standard deviations of over 3 ms and increased percentages of points passing 3% in the fluence per angle analysis, especially in treatments with a short mean LOT and those that were more subject to latency effects. The minimum percentage of points within 3% increased to 86%. In-phantom measurements of the corrected treatments

  18. An MLC-based version for the ecliptic method for the determination of backscatter into the beam monitor chambers in photon beams of medical accelerators

    International Nuclear Information System (INIS)

    Nelli, Flavio Enrico

    2016-01-01

    A very simple method to measure the effect of the backscatter from secondary collimators into the beam monitor chambers in linear accelerators equipped with multi-leaf collimators (MLC) is presented here. The backscatter to the monitor chambers from the upper jaws of the secondary collimator was measured on three beam-matched linacs by means of three methods: this new methodology, the ecliptic method, and assessing the variation of the beam-on time per monitor unit with dose rate feedback disabled. This new methodology was used to assess the backscatter characteristics of asymmetric over-traveling jaws. Excellent agreement between the backscatter values measured using the new methodology introduced here and the ones obtained using the other two methods was established. The experimental values reported here differ by less than 1 % from published data. The sensitivity of this novel technique allowed differences in backscatter due to the same opening of the jaws, when placed at different positions on the beam path, to be resolved. The introduction of the ecliptic method has made the determination of the backscatter to the monitor chambers an easy procedure. The method presented here for machines equipped with MLCs makes the determination of backscatter to the beam monitor chambers even easier, and suitable to characterize linacs equipped with over-traveling asymmetric secondary collimators. This experimental procedure could be simply implemented to fully characterize the backscatter output factor constituent when detailed dosimetric modeling of the machine’s head is required. The methodology proved to be uncomplicated, accurate and suitable for clinical or experimental environments.

  19. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    International Nuclear Information System (INIS)

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y

    2014-01-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD 10 of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R 80 matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs

  20. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations.

    Science.gov (United States)

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  1. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2015-01-01

    Full Text Available Maximum likelihood classifier (MLC and support vector machines (SVM are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  2. Comparison of MLC error sensitivity of various commercial devices for VMAT pre-treatment quality assurance.

    Science.gov (United States)

    Saito, Masahide; Sano, Naoki; Shibata, Yuki; Kuriyama, Kengo; Komiyama, Takafumi; Marino, Kan; Aoki, Shinichi; Ashizawa, Kazunari; Yoshizawa, Kazuya; Onishi, Hiroshi

    2018-05-01

    The purpose of this study was to compare the MLC error sensitivity of various measurement devices for VMAT pre-treatment quality assurance (QA). This study used four QA devices (Scandidos Delta4, PTW 2D-array, iRT systems IQM, and PTW Farmer chamber). Nine retrospective VMAT plans were used and nine MLC error plans were generated for all nine original VMAT plans. The IQM and Farmer chamber were evaluated using the cumulative signal difference between the baseline and error-induced measurements. In addition, to investigate the sensitivity of the Delta4 device and the 2D-array, global gamma analysis (1%/1, 2%/2, and 3%/3 mm), dose difference (1%, 2%, and 3%) were used between the baseline and error-induced measurements. Some deviations of the MLC error sensitivity for the evaluation metrics and MLC error ranges were observed. For the two ionization devices, the sensitivity of the IQM was significantly better than that of the Farmer chamber (P < 0.01) while both devices had good linearly correlation between the cumulative signal difference and the magnitude of MLC errors. The pass rates decreased as the magnitude of the MLC error increased for both Delta4 and 2D-array. However, the small MLC error for small aperture sizes, such as for lung SBRT, could not be detected using the loosest gamma criteria (3%/3 mm). Our results indicate that DD could be more useful than gamma analysis for daily MLC QA, and that a large-area ionization chamber has a greater advantage for detecting systematic MLC error because of the large sensitive volume, while the other devices could not detect this error for some cases with a small range of MLC error. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. The beta1 subunit of the Na,K-ATPase pump interacts with megalencephalic leucoencephalopathy with subcortical cysts protein 1 (MLC1) in brain astrocytes: new insights into MLC pathogenesis.

    Science.gov (United States)

    Brignone, Maria S; Lanciotti, Angela; Macioce, Pompeo; Macchia, Gianfranco; Gaetani, Matteo; Aloisi, Francesca; Petrucci, Tamara C; Ambrosini, Elena

    2011-01-01

    Megalencephalic leucoencephalopathy with subcortical cysts (MLC) is a rare congenital leucodystrophy caused by mutations in MLC1, a membrane protein of unknown function. MLC1 expression in astrocyte end-feet contacting blood vessels and meninges, along with brain swelling, fluid cysts and myelin vacuolation observed in MLC patients, suggests a possible role for MLC1 in the regulation of fluid and ion homeostasis and cellular volume changes. To identify MLC1 direct interactors and dissect the molecular pathways in which MLC1 is involved, we used NH2-MLC1 domain as a bait to screen a human brain library in a yeast two-hybrid assay. We identified the β1 subunit of the Na,K-ATPase pump as one of the interacting clones and confirmed it by pull-downs, co-fractionation assays and immunofluorescence stainings in human and rat astrocytes in vitro and in brain tissue. By performing ouabain-affinity chromatography on astrocyte and brain extracts, we isolated MLC1 and the whole Na,K-ATPase enzyme in a multiprotein complex that included Kir4.1, syntrophin and dystrobrevin. Because Na,K-ATPase is involved in intracellular osmotic control and volume regulation, we investigated the effect of hypo-osmotic stress on MLC1/Na,K-ATPase relationship in astrocytes. We found that hypo-osmotic conditions increased MLC1 membrane expression and favoured MLC1/Na,K-ATPase-β1 association. Moreover, hypo-osmosis induced astrocyte swelling and the reversible formation of endosome-derived vacuoles, where the two proteins co-localized. These data suggest that through its interaction with Na,K-ATPase, MLC1 is involved in the control of intracellular osmotic conditions and volume regulation in astrocytes, opening new perspectives for understanding the pathological mechanisms of MLC disease.

  4. Refinement of MLC modeling improves commercial QA dosimetry system for SRS and SBRT patient-specific QA.

    Science.gov (United States)

    Hillman, Yair; Kim, Josh; Chetty, Indrin; Wen, Ning

    2018-04-01

    Mobius 3D (M3D) provides a volumetric dose verification of the treatment planning system's calculated dose using an independent beam model and a collapsed cone convolution superposition algorithm. However, there is a lack of investigation into M3D's accuracy and effectiveness for stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) quality assurance (QA). Here, we collaborated with the vendor to develop a revised M3D beam model for SRS/SBRT cases treated with a 6X flattening filter-free (FFF) beam and high-definition multiple leaf collimator (HDMLC) on an Edge linear accelerator. Eighty SRS/SBRT cases, planned with AAA dose algorithm and validated with Gafchromic film, were compared to M3D dose calculations using 3D gamma analysis with 2%/2 mm gamma criteria and a 10% threshold. A revised beam model was developed by refining the HD-MLC model in M3D to improve small field dose calculation accuracy and beam profile agreement. All cases were reanalyzed using the revised beam model. The impact of heterogeneity corrections for lung cases was investigated by applying lung density overrides to five cases. For the standard and revised beam models, respectively, the mean gamma passing rates were 94.6% [standard deviation (SD): 6.1%] and 98.0% [SD: 1.7%] (for the overall patient), 88.2% [SD: 17.3%] and 93.8% [SD: 6.8%] (for the brain PTV), 71.4% [SD: 18.4%] and 81.5% [SD: 14.3%] (for the lung PTV), 83.3% [SD: 16.7%] and 67.9% [SD: 23.0%] (for the spine PTV), and 78.6% [SD: 14.0%] and 86.8% [SD: 12.5%] (for the PTV of all other sites). The lung PTV mean gamma passing rates improved from 74.1% [SD: 7.5%] to 89.3% [SD: 7.2%] with the lung density overridden. The revised beam model achieved an output factor within 3% of plastic scintillator measurements for 2 × 2 cm 2 MLC field size, but larger discrepancies are still seen for smaller field sizes which necessitate further improvement of the beam model. Special attention needs to be paid to small field

  5. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S; Bruder, R; Schweikard, A [University of Luebeck, Luebeck, DE (United States); O’Brien, R; Keall, P [University of Sydney, Sydney (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark)

    2016-06-15

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker was rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the

  6. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, T [The State University of New York at Buffalo (United States); Wang, IZ [The State University of New York at Buffalo (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  7. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay; Li, Jonathan

    2004-01-01

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  8. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2004-02-07

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  9. SU-G-BRC-16: Theory and Clinical Implications of the Constant Dosimetric Leaf Gap (DLG) Approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kumaraswamy, L; Xu, Z; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States); Bailey, D [Northside Hospital, Atlanta, GA (United States); Schmitt, J [RadAmerica, LLC--MedStar Health, Baltimore, MD (United States)

    2016-06-15

    Purpose: Commercial dose calculation algorithms incorporate a single DLG value for a given beam energy that is applied across an entire treatment field. However, the physical processes associated with beam generation and dose delivery suggest that the DLG is not constant. The aim of this study is to evaluate the variation of DLG among all leaf pairs, to quantify how this variation impacts delivered dose, and to establish a novel method to correct dose distributions calculated using the approximation of constant DLG. Methods: A 2D diode array was used to measure the DLG for all 60 leaf pairs at several points along each leaf pair travel direction. This approach was validated by comparison to DLG values measured at select points using a 0.6 cc ion chamber with the standard formalism. In-house software was developed to enable incorporation of position dependent DLG values into dose distribution optimization and calculation. The accuracy of beam delivery of both the corrected and uncorrected treatment plans was studied through gamma pass rate evaluation. A comparison of DVH statistics in corrected and uncorrected treatment plans was made. Results: The outer 20 MLC leaf pairs (1.0 cm width) have DLG values that are 0.32 mm (mean) to 0.65 mm (maximum) lower than the central leaf-pair. VMAT plans using a large number of 1 cm wide leaves were more accurately delivered (gamma pass rate increased by 5%) and dose coverage was higher (D100 increased by 3%) when the 2D DLG was modeled. Conclusion: Using a constant DLG value for a given beam energy will result in dose optimization, dose calculation and treatment delivery inaccuracies that become significant for treatment plans with high modulation complexity scores delivered with 1 cm wide leaves.

  10. SU-E-T-11: A Dosimetric Comparison of Robotic Prostatic Radiosugery Using Multi- Leaf Collimation Vs Circular Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J; Yang, J; Lamond, J; Lavere, N; Laciano, R; Ding, W; Arrigo, S; Brady, L [Philadelphia Cyberknife, Philadelphia, PA (United States)

    2014-06-01

    Purpose: The study compared the dosimetry plans of Stereotatic Body Radiotherapy (SBRT) prostate cancer patients using the M6 Cyberknife with Multi-leaf Collimation (MLC) compared with the plans using G4 Cyberknife with circular collimators. Methods: Eight previously treated prostate cancer patients' SBRT plans using circular collimators, designed with Multiplan v3.5.3, were used as a benchmark. The CT, contours and the optimization scripts were imported into Multiplan v5.0 system and replanned with MLC. The same planning objectives were used: more than 95% of PTV received 36.25Gy, 90% of prostate received 40Gy and maximum dose <45Gy, in five fractions. For organs at risk, less than 1cc of rectum received 36Gy and less than 10cc of bladder received 37Gy. Plans were evaluated on parameters derived from dose volume. The beam number, MU and delivery time were recorded to compare the treatment efficiency. Results: The mean CTV volume was 41.3cc (27.5∼57.6cc) and mean PTV volume was 76.77cc (59.1∼99.7cc). The mean PTV coverage was comparable between MLC (98.87%) and cone (98.74%). MLC plans had a slightly more favorable homogeneity index (1.22) and conformity index (1.17), than the cone (1.24 and 1.15). The mean rectum volume of 36 Gy (0.52cc) of MLC plans was slightly larger than cone (0.38cc) and the mean bladder volume of 37 Gy was smaller in MLC (1.82cc) than in cone plans (3.09cc). The mean number of nodes and beams were 65.9 and 80.5 in MLC vs 65.9 and 203.6 in cone. The mean MUs were significantly less for MLC plans (24,228MUs) than cone (32,347MUs). The total delivery time (which included 5 minutes for setup) was less, 29.6min (26∼32min) for MLC vs 45min (35∼55min) for cone. Conclusion: While the differences in the dosimetry between the MLC and circular collimator plans were rather minor, the MLC plans were much more efficient and required significantly less treatment time.

  11. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Young, L; Yang, F [University of Washington, Seattle, WA (United States)

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber and EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.

  12. SU-G-BRB-10: New Generation of High Frame-Rate and High Spatial-Resolution EPID QA System for Full-Body MLC-Based Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Han, B; Xing, L; Wang, L

    2016-01-01

    Purpose: To systematically investigate an ultra-high spatial-resolution amorphous silicon flat-panel electronic portal imaging device (EPID) for MLC-based full-body robotic radiosurgery geometric and dosimetric quality assurance (QA). Methods: The high frame-rate and ultra-high spatial resolution EPID is an outstanding detector for measuring profiles, MLC-shaped radiosurgery field aperture verification, and small field dosimetry. A Monte Carlo based technique with a robotic linac specific response and calibration is developed to convert a raw EPID-measured image of a radiosurgery field into water-based dose distribution. The technique is applied to measure output factors and profiles for 6MV MLC-defined radiosurgery fields with various sizes ranging from 7.6mm×7.7mm to 100mm×100.1mm and the results are compared with the radiosurgery diode scan measurements in water tank. The EPID measured field sizes and the penumbra regions are analyzed to evaluate the MLC positioning accuracy. Results: For all MLC fields, the EPID measured output factors of MLC-shaped fields are in good agreement with the diode measurements. The mean output difference between the EPID and diode measurement is 0.05±0.87%. The max difference is −1.33% for 7.6mm×7.7mm field. The MLC field size derived from the EPID measurements are in good agreement comparing to the diode scan result. For crossline field sizes, the mean difference is −0.17mm±0.14mm with a maximum of −0.35mm for the 30.8mm×30.8mm field. For inline field sizes, the mean difference is +0.08mm±0.18mm with a maximum of +0.45mm for the 100mm×100.1mm field. The high resolution EPID is able to measure the whole radiation field, without the need to align the detector center perfectly at field center as diode or ion chamber measurement. The setup time is greatly reduced so that the whole process is possible for machine and patient-specific QA. Conclusion: The high spatial-resolution EPID is proved to be an accurate and efficient

  13. A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation.

    Science.gov (United States)

    Sikora, M; Dohm, O; Alber, M

    2007-08-07

    A dedicated, efficient Monte Carlo (MC) accelerator head model for intensity modulated stereotactic radiosurgery treatment planning is needed to afford a highly accurate simulation of tiny IMRT fields. A virtual source model (VSM) of a mini multi-leaf collimator (MLC) (the Elekta Beam Modulator (EBM)) is presented, allowing efficient generation of particles even for small fields. The VSM of the EBM is based on a previously published virtual photon energy fluence model (VEF) (Fippel et al 2003 Med. Phys. 30 301) commissioned with large field measurements in air and in water. The original commissioning procedure of the VEF, based on large field measurements only, leads to inaccuracies for small fields. In order to improve the VSM, it was necessary to change the VEF model by developing (1) a method to determine the primary photon source diameter, relevant for output factor calculations, (2) a model of the influence of the flattening filter on the secondary photon spectrum and (3) a more realistic primary photon spectrum. The VSM model is used to generate the source phase space data above the mini-MLC. Later the particles are transmitted through the mini-MLC by a passive filter function which significantly speeds up the time of generation of the phase space data after the mini-MLC, used for calculation of the dose distribution in the patient. The improved VSM model was commissioned for 6 and 15 MV beams. The results of MC simulation are in very good agreement with measurements. Less than 2% of local difference between the MC simulation and the diamond detector measurement of the output factors in water was achieved. The X, Y and Z profiles measured in water with an ion chamber (V = 0.125 cm(3)) and a diamond detector were used to validate the models. An overall agreement of 2%/2 mm for high dose regions and 3%/2 mm in low dose regions between measurement and MC simulation for field sizes from 0.8 x 0.8 cm(2) to 16 x 21 cm(2) was achieved. An IMRT plan film verification

  14. SU-G-BRA-16: Target Dose Comparison for Dynamic MLC Tracking and Mid- Ventilation Planning in Lung Radiotherapy Subject to Intrafractional Baseline Drifts

    Energy Technology Data Exchange (ETDEWEB)

    Menten, MJ; Fast, MF; Nill, S; Oelfke, U [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2016-06-15

    Purpose: Lung tumor motion during radiotherapy can be accounted for by expanded treatment margins, for example using a mid-ventilation planning approach, or by localizing the tumor in real-time and adapting the treatment beam with multileaf collimator (MLC) tracking. This study evaluates the effect of intrafractional changes in the average tumor position (baseline drifts) on these two treatment techniques. Methods: Lung stereotactic treatment plans (9-beam IMRT, 54Gy/3 fractions, mean treatment time: 9.63min) were generated for three patients: either for delivery with MLC tracking (isotropic GTV-to-PTV margin: 2.6mm) or planned with a mid-ventilation approach and delivered without online motion compensation (GTV-to-PTV margin: 4.4-6.3mm). Delivery to a breathing patient was simulated using DynaTrack, our in-house tracking and delivery software. Baseline drifts in cranial and posterior direction were simulated at a rate of 0.5, 1.0 or 1.5mm/min. For dose reconstruction, the corresponding 4DCT phase was selected for each time point of the delivery. Baseline drifts were accounted for by rigidly shifting the CT to ensure correct relative beam-to-target positioning. Afterwards, the doses delivered to each 4DCT phase were accumulated deformably on the mid-ventilation phase using research RayStation v4.6 and dose coverage of the GTV was evaluated. Results: When using the mid-ventilation planning approach, dose coverage of the tumor deteriorated substantially in the presence of baseline drifts. The reduction in D98% coverage of the GTV in a single fraction ranged from 0.4-1.2, 0.6-3.3 and 4.5-6.2Gy, respectively, for the different drift rates. With MLC tracking the GTV D98% coverage remained unchanged (+/− 0.1Gy) regardless of drift. Conclusion: Intrafractional baseline drifts reduce the tumor dose in treatments based on mid-ventilation planning. In rare, large target baseline drifts tumor dose coverage may drop below the prescription, potentially affecting clinical

  15. A six-bank multi-leaf system for high precision shaping of large fields

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der; Raaymakers, B W; Kotte, A N T J; Welleweerd, J; Lagendijk, J J W

    2004-01-01

    In this study, we present the design for an alternative MLC system that allows high precision shaping of large fields. The MLC system consists of three layers of two opposing leaf banks. The layers are rotated 60 deg. relative to each other. The leaves in each bank have a standard width of 1 cm projected at the isocentre. Because of the symmetry of the collimator set-up it is expected that collimator rotation will not be required, thus simplifying the construction considerably. A 3D ray tracing computer program was developed in order to simulate the fluence profile for a given collimator and used to optimize the design and investigate its performance. The simulations show that a six-bank collimator will afford field shaping of fields of about 40 cm diameter with a precision comparable to that of existing mini MLCs with a leaf width of 4 mm

  16. IMRT sequencing for a six-bank multi-leaf system

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der; Lagendijk, J J W

    2005-01-01

    In this study, we present a sequencer for delivering step-and-shoot IMRT using a six-bank multi-leaf system. Such a system was proposed earlier and combines a high-resolution field-shaping ability with a large field size. It consists of three layers of two opposing leaf banks with 1 cm leaves. The layers are rotated relative to each other at 60 0 . A low-resolution mode of sequencing is achieved by using one layer of leaves as primary MLC, while the other two are used to improve back-up collimation. For high-resolution sequencing, an algorithm is presented that creates segments shaped by all six banks. Compared to a hypothetical mini-MLC with 0.4 cm leaves, a similar performance can be achieved, but a trade-off has to be made between accuracy and the number of segments

  17. State-Transition-Aware Spilling Heuristic for MLC STT-RAM-Based Registers

    Directory of Open Access Journals (Sweden)

    Yuanhui Ni

    2017-01-01

    Full Text Available Multilevel Cell Spin-Transfer Torque Random Access Memory (MLC STT-RAM is a promising nonvolatile memory technology to build registers for its natural immunity to electromagnetic radiation in rad-hard space environment. Unlike traditional SRAM-based registers, MLC STT-RAM exhibits unbalanced write state transitions due to the fact that the magnetization directions of hard and soft domains cannot be flipped independently. This feature leads to nonuniform costs of write states in terms of latency and energy. However, current SRAM-targeting register allocations do not have a clear understanding of the impact of the different write state-transition costs. As a result, those approaches heuristically select variables to be spilled without considering the spilling priority imposed by MLC STT-RAM. Aiming to address this limitation, this paper proposes a state-transition-aware spilling cost minimization (SSCM policy, to save power when MLC STT-RAM is employed in register design. Specifically, the spilling cost model is first constructed according to the linear combination of different state-transition frequencies. Directed by the proposed cost model, the compiler picks up spilling candidates to achieve lower power and higher performance. Experimental results show that the proposed SSCM technique can save energy by 19.4% and improve the lifetime by 23.2% of MLC STT-RAM-based register design.

  18. Impact of leaf motion constraints on IMAT plan quality, deliver accuracy, and efficiency

    International Nuclear Information System (INIS)

    Chen Fan; Rao Min; Ye Jinsong; Shepard, David M.; Cao Daliang

    2011-01-01

    Purpose: Intensity modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines the efficiency of arc based delivery with the dose painting capabilities of intensity modulated radiation therapy (IMRT). A key challenge in developing robust inverse planning solutions for IMAT is the need to account for the connectivity of the beam shapes as the gantry rotates from one beam angle to the next. To overcome this challenge, inverse planning solutions typically impose a leaf motion constraint that defines the maximum distance a multileaf collimator (MLC) leaf can travel between adjacent control points. The leaf motion constraint ensures the deliverability of the optimized plan, but it also impacts the plan quality, the delivery accuracy, and the delivery efficiency. In this work, the authors have studied leaf motion constraints in detail and have developed recommendations for optimizing the balance between plan quality and delivery efficiency. Methods: Two steps were used to generate optimized IMAT treatment plans. The first was the direct machine parameter optimization (DMPO) inverse planning module in the Pinnacle 3 planning system. Then, a home-grown arc sequencer was applied to convert the optimized intensity maps into deliverable IMAT arcs. IMAT leaf motion constraints were imposed using limits of between 1 and 30 mm/deg. Dose distributions were calculated using the convolution/superposition algorithm in the Pinnacle 3 planning system. The IMAT plan dose calculation accuracy was examined using a finer sampling calculation and the quality assurance verification. All plans were delivered on an Elekta Synergy with an 80-leaf MLC and were verified using an IBA MatriXX 2D ion chamber array inserted in a MultiCube solid water phantom. Results: The use of a more restrictive leaf motion constraint (less than 1-2 mm/deg) results in inferior plan quality. A less restrictive leaf motion constraint (greater than 5 mm/deg) results in improved plan quality

  19. Fast motion-including dose error reconstruction for VMAT with and without MLC tracking

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Keall, Paul J.; Grau, Cai

    2014-01-01

    of the algorithm for reconstruction of dose and motion-induced dose errors throughout the tracking and non-tracking beam deliveries was quantified. Doses were reconstructed with a mean dose difference relative to the measurements of -0.5% (5.5% standard deviation) for cumulative dose. More importantly, the root...... validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets. MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder......-mean-square deviation between reconstructed and measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The mean computation time for each calculation of dose and dose error was 295 ms. The motion-including dose reconstruction allows accurate temporal and spatial pinpointing of errors in absorbed dose...

  20. Characterization of an extendable multi-leaf collimator for clinical electron beams

    International Nuclear Information System (INIS)

    O'Shea, Tuathan P; Foley, Mark J; Ge Yuanyuan; Faddegon, Bruce A

    2011-01-01

    An extendable x-ray multi-leaf collimator (eMLC) is investigated for collimation of electron beams on a linear accelerator. The conventional method of collimation using an electron applicator is impractical for conformal, modulated and mixed beam therapy techniques. An eMLC would allow faster, more complex treatments with potential for reduction in dose to organs-at-risk and critical structures. The add-on eMLC was modelled using the EGSnrc Monte Carlo code and validated against dose measurements at 6–21 MeV with the eMLC mounted on a Siemens Oncor linear accelerator at 71.6 and 81.6 cm source-to-collimator distances. Measurements and simulations at 8.4–18.4 cm airgaps showed agreement of 2%/2 mm. The eMLC dose profiles and percentage depth dose curves were compared with standard electron applicator parameters. The primary differences were a wider penumbra and up to 4.2% reduction in the build-up dose at 0.5 cm depth, with dose normalized on the central axis. At 90 cm source-to-surface distance (SSD)-–relevant to isocentric delivery-–the applicator and eMLC penumbrae agreed to 0.3 cm. The eMLC leaves, which were 7 cm thick, contributed up to 6.3% scattered electron dose at the depth of maximum dose for a 10 × 10 cm 2 field, with the thick leaves effectively eliminating bremsstrahlung leakage. A Monte Carlo calculated wedge shaped dose distribution generated with all six beam energies matched across the maximum available eMLC field width demonstrated a therapeutic (80% of maximum dose) depth range of 2.1–6.8 cm. Field matching was particularly challenging at lower beam energies (6–12 MeV) due to the wider penumbrae and angular distribution of electron scattering. An eMLC isocentric electron breast boost was planned and compared with the conventional applicator fixed SSD plan, showing similar target coverage and dose to critical structures. The mean dose to the target differed by less than 2%. The low bremsstrahlung dose from the 7 cm thick MLC leaves

  1. Generation of cytotoxic T lymphocytes in vitro. VII. Suppressive effect of irradiated MLC cells on CTL response

    International Nuclear Information System (INIS)

    Fitch, F.W.; Engers, H.D.; Cerottini, J.C.; Bruner, K.T.

    1976-01-01

    Irradiated cells obtained from MLC at the peak of the CTL response caused profound suppression of generation of CTL when added in small numbers at the initiation of primary MLC prepared with normal spleen cells. The inhibitory activity of the MLC cells was not affected by irradiation (1000 rads) but was abolished by treatment with anti-theta serum and complement. The suppression was immunologically specific. The response of A (H-2/sup a/) spleen cells toward C3H (H-2/sup k/) alloantigens was suppressed by irradiated MLC cells obtained from MLC prepared with A spleen cells and irradiated C3H-stimulating cells, whereas the response of A spleen cells toward DBA/2 (H-2/sup d/) alloantigens was affected relatively little. However, if irradiated C3H x DBA/2F1 hybrid spleen cells were used to stimulate A spleen cells in MLC, addition of irradiated MLC cells having cytotoxic activity toward C3H antigens abolished the response to both C3H and DBA/2 antigens. The response to DBA/2 antigens was much less affected when a mixture of irradiated C3H and DBA/2 spleen cells was used as stimulating cells. Thus, the presence of MLC cells having cytotoxic activity toward one alloantigen abolished the response to another non-cross-reacting antigen only when both antigens were present on the same F1 hybrid-stimulating cells. This suppression of generation of CTL by irradiated MLC cells apparently involves inactivation of alloantigen-bearing stimulating cells as a result of residual cytotoxic activity of the irradiated MLC cells. This mechanism may be active during the decline in CTL activity noted in the normal immune response in vivo and in vitro

  2. SU-F-T-650: The Comparison of Robotic Partial Breast Stereotactic Irradiation Using MLC Vs. Iris Cone

    Energy Technology Data Exchange (ETDEWEB)

    Ding, C; Timmerman, R; Jiang, S; Rahimi, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To evaluate the dosimetric impact on treatment planning for partial breast stereotactic irradiation using Cyberknife with MLC versus Iris Cone. Methods: Ten patients whom underwent lumpectomy for DCIS or stage I invasive non-lobular epithelial breast cancer were included in this study. All patients were previously treated on the Cyberknife using Iris cone with the prescription dose of 37.5Gy in 5 fractions covering at least 95% of PTV on our phase I SBRT 5 fraction partial breast irradiation trial. Retrospectively, treatment planning was performed and compared using the new Cyberknife M6 MLC system for each patient. Using the same contours and critical organ constraints for both MLC and Iris cone plans, the dose on target and critical organs were analyzed accordingly. Results: Dose to critical organs such as ipsilateral lung, contralateral lung, heart, skin, ipsilateral breast, and rib were analyzed, as well as conformity index and high dose spillage of the target area. In 9 of 10 patients, the MLC plans had less total ipsilateral breast volume encompassing the 50% prescription isodose (mean:22.3±8.2% MLC vs. 31.6±8.0 Iris, p=0.00014) .The MLC plans mean estimated treatment delivery time was significantly less than the Iris plans (51±3.9min vs. 56.2±9min, p=0.03) Both MLC and Iris cone plans were able to meet all dose constraints and there was no statistical difference between those dose constraints. Conclusion: Both MLC and Iris Cone can deliver conformal dose to a partial breast target and satisfy the dose constraints of critical organs. The new Cyberknife with MLC can deliver a more conformal dose in the lower dose region and spare more ipsilateral breast tissue to the 50% prescription isodose. The treatment time for partial breast SBRT plans was also reduced using MLC. Project receives research support from Accuray Inc.

  3. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S; Kakakhel, MB [Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad (Pakistan); Ahmed, SBS; Hussain, A [Aga Khan University Hospital (AKUH), Karachi (Pakistan)

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shielded to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international

  4. Real-Time Dynamic MLC Tracking for Intensity Modulated Arc Therapy

    DEFF Research Database (Denmark)

    Falk, Marianne

    Motion management of intra-fraction tumour motion during radiotherapy treatment can be a challenging task in order to achieve tumour control as well as minimizing the dose to the surrounding healthy tissue. Real-time dynamic multileaf collimator (MLC) tracking is a novel method for intra-fraction...

  5. Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling

    Czech Academy of Sciences Publication Activity Database

    Kosla, Jan; Paňková, D.; Plachý, Jiří; Tolde, O.; Bicanova, K.; Dvořák, Michal; Rosel, D.; Brabek, J.

    2013-01-01

    Roč. 11, č. 1 (2013), s. 51 ISSN 1478-811X R&D Projects: GA MŠk(CZ) LC06061 Institutional support: RVO:68378050 Keywords : metastasis * sarcoma * rhoA * ROCK * MLC * amoeboid invasiveness * 3D environment * chicken model Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.672, year: 2013

  6. Duffing–van der Pol oscillator type dynamics in Murali–Lakshmanan–Chua (MLC) circuit

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chandrasekar, V.K.; Venkatesan, A.; Raja Mohamed, I.

    2016-01-01

    Highlights: • Proposed an electronic circuit with diode based nonlinear element equivalent to a well known Murali–Lakshmanan–Chua (MLC) circuit. • For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractor. • The performance of the circuit is investigated by means of explicit laboratory experiments, numerical simulations and analytical studies. - Abstract: We have constructed a simple second-order dissipative nonautonomous circuit exhibiting ordered and chaotic behaviour. This circuit is the well known Murali–Lakshmanan–Chua(MLC) circuit but with diode based nonlinear element. For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractors. It is interesting to note that depending upon the circuit parameters the circuit shows both period doubling route to chaos and quasiperiodic route to chaos. In our study we have constructed two-parameter bifurcation diagrams in the forcing amplitude–frequency plane, one parameter bifurcation diagrams, Lyapunov exponents, 0–1 test and phase portrait. The performance of the circuit is investigated by means of laboratory experiments, numerical integration of appropriate mathematical model and explicit analytic studies.

  7. Electron beam collimation with a photon MLC for standard electron treatments

    Science.gov (United States)

    Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.

    2018-01-01

    Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.

  8. Impact of the MLC on the MRI field distortion of a prototype MRI-linac

    International Nuclear Information System (INIS)

    Kolling, Stefan; Keall, Paul; Oborn, Brad

    2013-01-01

    Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm 2 , to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B 0 of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B 0 .Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was

  9. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  10. Delivery of modulated electron beams with conventional photon multi-leaf collimators

    International Nuclear Information System (INIS)

    Klein, Eric E; Mamalui-Hunter, Maria; Low, Daniel A

    2009-01-01

    Electron beam radiotherapy is an accepted method to treat shallow tumors. However, modulation of electrons to customize dose distributions has not readily been achieved. Studies of bolus and tertiary collimation systems have been met with limitations. We pursue the use of photon multi-leaf collimators (MLC) for modulated electron radiotherapy (MERT) to achieve customized distributions for potential clinical use. As commercial planning systems do not support the use of MLC with electrons, planning was conducted using Monte Carlo calculations. Segmented and dynamic modulated delivery of multiple electron segments was configured, calculated and delivered for validation. Delivery of electrons with segmented or dynamic leaf motion was conducted. A phantom possessing an idealized stepped target was planned and optimized with subsequent validation by measurements. Finally, clinical treatment plans were conducted for post-mastectomy and cutaneous lymphoma of the scalp using forward optimization techniques. Comparison of calculations and measurements was successful with agreement of ±2%/2 mm for the energies, segment sizes, depths tested for delivered segments for the dynamic and segmented delivery. Clinical treatment plans performed provided optimal dose coverage of the target while sparing distal organs at risk. Execution of plans using an anthropomorphic phantom to ensure safe and efficient delivery was conducted. Our study validates that MERT is not only possible using the photon MLC, but the efficient and safe delivery inherent with the dynamic delivery provides an ideal technique for shallow tumor treatment.

  11. SU-E-T-471: Small Field Jaw/MLC Reference Data

    International Nuclear Information System (INIS)

    Kerns, J; Alvarez, P; Followill, D; Lowenstein, J; Molineu, A; Summers, P; Kry, S

    2014-01-01

    Purpose: In recent years the need for small field data of MLCs has increased due to the use of intensity-modulated radiation (IMRT), but moreover the use of stereotactic body radiation (SBRT) has increased, which uses not simply small field sizes, but small jaw and field sizes together. Having reference data for these small fields that is reliable would be invaluable to the physics community. Our study has gathered these values and the data distributions from the Radiological Physics Center's (RPC) site visits between 1990 and the present. Methods: For all measurements, the RPC used a 25 × 25 × 25cm water phantom placed at 100cm SSD. All measurements were made with an Exradin A16 cylindrical ion chamber at an effective depth of 10 cm. A total of 42 Varian machine measurements were used to compose the data for a 6 MV beam and 5 TrueBeam 6 MV flattening filter free (FFF) beams were used for FFF data. Results: Jaw/MLC fields were measured for both 6 MV and 6 MF FFF beams with the jaws and MLCs both at the following field sizes: 6×6, 4×4, 3×3, and 2×2cm. Measurements were normalized to the 10×10 field readings (defined by the jaws and MLC). Spread in the data was minimal and demonstrates a high level of accuracy of acquired data. Conclusion: Small field Jaw/MLC reference data for Varian 6MV and 6 MV FFF beams has been analyzed and presented here, composed of the aggregation of numerous RPC site visits. Obtaining reliable small field data remains difficult, however the RPC has collected high fidelity small field Jaw/MLC data. The data are presented as a reference along with their distributions, in such a way that the physicist can act based upon their own desired agreement with the reference data

  12. On the suitability of Elekta’s Agility 160 MLC for tracked radiation delivery: closed-loop machine performance

    International Nuclear Information System (INIS)

    Glitzner, M; Crijns, S P M; De Senneville, B Denis; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For motion adaptive radiotherapy, dynamic multileaf collimator tracking can be employed to reduce treatment margins by steering the beam according to the organ motion. The Elekta Agility 160 MLC has hitherto not been evaluated for its tracking suitability. Both dosimetric performance and latency are key figures and need to be assessed generically, independent of the used motion sensor. In this paper, we propose the use of harmonic functions directly fed to the MLC to determine its latency during continuous motion. Furthermore, a control variable is extracted from a camera system and fed to the MLC. Using this setup, film dosimetry and subsequent γ statistics are performed, evaluating the response when tracking (MRI)-based physiologic motion in a closed-loop. The delay attributed to the MLC itself was shown to be a minor contributor to the overall feedback chain as compared to the impact of imaging components such as MRI sequences. Delay showed a linear phase behaviour of the MLC employed in continuously dynamic applications, which enables a general MLC-characterization. Using the exemplary feedback chain, dosimetry showed a vast increase in pass rate employing γ statistics. In this early stage, the tracking performance of the Agility using the test bench yielded promising results, making the technique eligible for translation to tracking using clinical imaging modalities. (paper)

  13. SU-E-T-506: Dosimetric Verification of Photon MLC Delivered Electron Fields for Implementing MERT On An Artiste Linac

    International Nuclear Information System (INIS)

    Jin, L; Eldib, A; Li, J; Wang, L; Ma, C; Fan, J

    2014-01-01

    Purpose: To verify the dose accuracy of photon MLC delivered electron fields for implementing energy-intensity modulated electron radiotherapy (MERT) on an Artiste linac. Methods: It was proposed to deliver MERT on an Artiste linac at a short SSD (60 cm) to reduce beam penumbra caused by electron scatters. An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning code was used for treatment planning. Our previous study showed that the measured dose distribution of a breast plan showed good agreement with the calculations in low-medium dose regions while the differences in high dose regions were outstanding. A continuous work found that the discrepancy is mainly caused by improper modeling in MC for the single focused MLC in the Artiste which was simplified as double focused in the previous MC simulations. With this remodeled MLC in the calculations, an energy-intensity modulated electron plan using 6, 9, 12 and 15 MeV was generated for a breast treatment on a breast phantom at a 60 cm SSD and recalculated regarding a solid water phantom. For a test study, four of MLC segments (each with a different energy) generated in the plan were delivered to the phantom and a film measurement was performed at the depth of 2 cm. The measured 2D dose distribution was then compared with calculations. Results: For composite doses of the four segments, measured 2D dose distributions overall agree well with the calculations (3mm/3%) in most area. The separate measurement for a single MLC segment for each of energies also showed the consistence with the calculations. Conclusion: After remodeling MLC in the MC calculations, the measured dose distribution for a subset of MLC segments from a MERT plan showed good agreement. Further detailed verification for the full plan will be the work in the next step

  14. Effectiveness and Safety of MLC601 in the Treatment of Mild to Moderate Alzheimer's Disease: A Multicenter, Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Hossein Pakdaman

    2015-03-01

    Full Text Available Background: MLC601 is a possible modulator of amyloid precursor protein processing, and in a clinical trial study MLC601 showed some effectiveness in cognitive function in Alzheimer's disease (AD patients. We aimed to evaluate the effectiveness and safety of MLC601 in the treatment of mild to moderate AD as compared to 3 approved cholinesterase inhibitors (ChEIs including donepezil, rivastigmine and galantamine. Methods: In a multicenter, nonblinded, randomized controlled trial, 264 volunteers with AD were randomly divided into 4 groups of 66; groups 1, 2, 3 and 4 received donepezil, rivastigmine, MLC601 and galantamine, respectively. Subjects underwent a clinical diagnostic interview and a cognitive/functional battery including the Mini-Mental State Examination (MMSE and Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog. Patients were visited every 4 months, and the score of cognition was recorded by the neurologists. Results: There were no significant differences in age, sex, marital status and baseline score of cognition among the 4 groups. In total, 39 patients (14.7% left the study. Trend of cognition changes based on the modifications over the time for MMSE and ADAS-cog scores did not differ significantly among groups (p = 0.92 for MMSE and p = 0.87 for ADAS-Cog. Conclusion: MLC601 showed a promising safety profile and also efficacy compared to 3 FDA-approved ChEIs.

  15. Comparative Analysis of Different Measurement Techniques for MLC Characterization: Preliminary Results

    International Nuclear Information System (INIS)

    Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.; Martinez-Davalos, A.; Rodriguez-Villafuerte, M.; Moreno-Jimenez, S.; Celis, M. A.

    2008-01-01

    Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence

  16. Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code

    Directory of Open Access Journals (Sweden)

    Ayyangar Komanduri

    2010-01-01

    Full Text Available This investigation aims to design a practical multi-leaf collimator (MLC system for the cobalt teletherapy machine and check its radiation properties using the Monte Carlo (MC method. The cobalt machine was modeled using the BEAMnrc Omega-Beam MC system, which could be freely downloaded from the website of the National Research Council (NRC, Canada. Comparison with standard depth dose data tables and the theoretically modeled beam showed good agreement within 2%. An MLC design with low melting point alloy (LMPA was tested for leakage properties of leaves. The LMPA leaves with a width of 7 mm and height of 6 cm, with tongue and groove of size 2 mm wide by 4 cm height, produced only 4% extra leakage compared to 10 cm height tungsten leaves. With finite 60 Co source size, the interleaf leakage was insignificant. This analysis helped to design a prototype MLC as an accessory mount on a cobalt machine. The complete details of the simulation process and analysis of results are discussed.

  17. Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code

    International Nuclear Information System (INIS)

    Ayyangar, Komanduri M.; Narayan, Pradush; Jesuraj, Fenedit; Raju, M.R.; Dinesh Kumar, M.

    2010-01-01

    This investigation aims to design a practical multi-leaf collimator (MLC) system for the cobalt teletherapy machine and check its radiation properties using the Monte Carlo (MC) method. The cobalt machine was modeled using the BEAMnrc Omega-Beam MC system, which could be freely downloaded from the website of the National Research Council (NRC), Canada. Comparison with standard depth dose data tables and the theoretically modeled beam showed good agreement within 2%. An MLC design with low melting point alloy (LMPA) was tested for leakage properties of leaves. The LMPA leaves with a width of 7 mm and height of 6 cm, with tongue and groove of size 2 mm wide by 4 cm height, produced only 4% extra leakage compared to 10 cm height tungsten leaves. With finite 60 Co source size, the interleaf leakage was insignificant. This analysis helped to design a prototype MLC as an accessory mount on a cobalt machine. The complete details of the simulation process and analysis of results are discussed. (author)

  18. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  19. Burdock (Arctium lappa Leaf Extracts Increase the In Vitro Antimicrobial Efficacy of Common Antibiotics on Gram-positive and Gram-negative Bacteria

    Directory of Open Access Journals (Sweden)

    Pirvu Lucia

    2017-04-01

    Full Text Available This work aimed to study the potential effects of four Arctii folium extracts, 5 mg gallic [GAE] acid equivalents per 1 mL sample, on six antibiotics (Ampicillin/AM, Tetracycline/TE, Ciprofloxacin/CIP, Sulfamethoxazole-Trimethoprim/SXT, Chloramphenicol/C and Gentamicin/CN tested on four Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, and Staphylococcus epidermidis ATCC 12228 and five Gram-negative (Proteus mirabilis ATCC 29245, Escherichia coli ATCC 35218, E. coli ATCC 11229, E. coli ATCC 8739, and Bacillus cereus ATCC 11778 bacteria. Arctii folium extracts were the whole ethanol extract/W and subsequent ethyl acetate/EA, aqueous/AQ, and chloroform/CHL fractions. Chemical qualitative analysis (HPTLC method emphasized five main polyphenol compounds in Arctii folium polar extracts: chlorogenic acid (Rf≈0.52/0.55 and its isomer, 1,5-di-O-caffeoylquinic acid (Rf≈0.90/0.92, plus cynarin (Rf≈0.77, hyperoside (Rf≈0.68/0.64 and isoquercitrin (Rf≈0.69/0.71. Microbiological screening indicated Arctii folium polar extracts (AQ and W efficacy on S. epidermidis ATCC 12228; the MIC values were in the range of common antibiotics, being 32 and 128 μg GAE per mL sample respectively. The unpredictable effects (stimulatory or inhibitory of Arctii folium extracts in combination with typical antibiotics as well as a potential use of the whole ethanol extract/W for restoring the antimicrobial potency of susceptible antibiotics have also been evidenced.

  20. Clinically practical intensity modulation for complex head and neck lesions using multiple, static MLC fields

    International Nuclear Information System (INIS)

    Verhey, L.J.; Xia, P.; Akazawa, P.

    1997-01-01

    Purpose: A number of different beam delivery methods have been proposed for implementing intensity modulated radiotherapy (IMRT), including fixed gantry with multiple static MLC fields (MSMLC - often referred to as 'stop and shoot'), fixed gantry with dynamic MLC (DMLC), intensity modulated arc therapy (IMAT), Tomotherapy and Peacock MIMiC. Using two complex head and neck cases as examples, we have compared dose distributions achievable with 3-D conformal radiotherapy (3DCRT) to those which can be achieved using IMRT delivered with MSMLC, DMLC and Peacock MIMiC. The goal is to demonstrate the potential value of IMRT in the treatment of complex lesions in the head and neck and to determine whether MSMLC, the simplest of the proposed IMRT methods, can produce dose distributions which are competitive with dynamic IMRT methods and which can be implemented in clinically acceptable times. Materials and Methods: Two patients with nasopharyngeal carcinoma were selected from the archives of the Department of Radiation Oncology at the University of California, San Francisco (UCSF). These patients were previously planned and treated with CT-based 3-D treatment planning methods which are routinely used at UCSF, including non-axial beam directions and partial transmission blocks when indicated. The CT data tapes were then read into a test version of CORVUS, an inverse treatment planning program being developed by NOMOS Corporation, target volumes and critical normal structures were outlined on axial CT slices and dose goals and limits were defined for the targets and normal tissues of interest. Optimized dose plans were then obtained for each delivery method including MSMLC (4 or 5 hand-selected beams with 3 levels of intensity), DMLC (9 evenly spaced axial beams with 10 levels of intensity) and Peacock MIMiC (55 axial beams spanning 270 degrees with 10 levels of intensity). Dose-volume histograms (DVH's) for all IMRT plans were then compared with the 3DCRT plans. Treatment

  1. SU-F-T-574: MLC Based SRS Beam Commissioning - Minimum Target Size Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Zakikhani, R [Florida Cancer Specialists - Largo, Largo, FL (United States); Able, C [Florida Cancer Specialists - New Port Richey, New Port Richey, FL (United States)

    2016-06-15

    Purpose: To implement a MLC accelerator based SRS program using small fields down to 1 cm × 1 cm and to determine the smallest target size safe for clinical treatment. Methods: Computerized beam scanning was performed in water using a diode detector and a linac-head attached transmission ion chamber to characterize the small field dosimetric aspects of a 6 MV photon beam (Trilogy-Varian Medical Systems, Inc.). The output factors, PDD and profiles of field sizes 1, 2, 3, 4, and 10 cm{sup 2} were measured and utilized to create a new treatment planning system (TPS) model (AAA ver 11021). Static MLC SRS treatment plans were created and delivered to a homogeneous phantom (Cube 20, CIRS, Inc.) for a 1.0 cm and 1.5 cm “PTV” target. A 12 field DMLC plan was created for a 2.1 cm target. Radiochromic film (EBT3, Ashland Inc.) was used to measure the planar dose in the axial, coronal and sagittal planes. A micro ion chamber (0.007 cc) was used to measure the dose at isocenter for each treatment delivery. Results: The new TPS model was validated by using a tolerance criteria of 2% dose and 2 mm distance to agreement. For fields ≤ 3 cm{sup 2}, the max PDD, Profile and OF difference was 0.9%, 2%/2mm and 1.4% respectively. The measured radiochromic film planar dose distributions had gamma scores of 95.3% or higher using a 3%/2mm criteria. Ion chamber measurements for all 3 test plans effectively met our goal of delivering the dose accurately to within 5% when compared to the expected dose reported by the TPS (1 cm plan Δ= −5.2%, 1.5 cm plan Δ= −2.0%, 2 cm plan Δ= 1.5%). Conclusion: End to end testing confirmed that MLC defined SRS for target sizes ≥ 1.0 cm can be safely planned and delivered.

  2. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, NSW 2006 (Australia); Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  3. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  4. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding

    International Nuclear Information System (INIS)

    Fogliata, A.; Clivio, A.; Vanetti, E.; Nicolini, G.; Belosi, M. F.; Cozzi, L.

    2013-01-01

    Purpose: The accuracy of photon dose calculation algorithms in out-of-field regions is often neglected, despite its importance for organs at risk and peripheral dose evaluation. The present work has assessed this for the anisotropic analytical algorithm (AAA) and the Acuros-XB algorithms implemented in the Eclipse treatment planning system. Specifically, the regions shielded by the jaw, or the MLC, or both MLC and jaw for flattened and unflattened beams have been studied.Methods: The accuracy in out-of-field dose under different conditions was studied for two different algorithms. Measured depth doses out of the field, for different field sizes and various distances from the beam edge were compared with the corresponding AAA and Acuros-XB calculations in water. Four volumetric modulated arc therapy plans (in the RapidArc form) were optimized in a water equivalent phantom, PTW Octavius, to obtain a region always shielded by the MLC (or MLC and jaw) during the delivery. Doses to different points located in the shielded region and in a target-like structure were measured with an ion chamber, and results were compared with the AAA and Acuros-XB calculations. Photon beams of 6 and 10 MV, flattened and unflattened were used for the tests.Results: Good agreement between calculated and measured depth doses was found using both algorithms for all points measured at depth greater than 3 cm. The mean dose differences (±1SD) were −8%± 16%, −3%± 15%, −16%± 18%, and −9%± 16% for measurements vs AAA calculations and −10%± 14%, −5%± 12%, −19%± 17%, and −13%± 14% for Acuros-XB, for 6X, 6 flattening-filter free (FFF), 10X, and 10FFF beams, respectively. The same figures for dose differences relative to the open beam central axis dose were: −0.1%± 0.3%, 0.0%± 0.4%, −0.3%± 0.3%, and −0.1%± 0.3% for AAA and −0.2%± 0.4%, −0.1%± 0.4%, −0.5%± 0.5%, and −0.3%± 0.4% for Acuros-XB. Buildup dose was overestimated with AAA, while Acuros-XB gave

  5. High-Dose Spatially Fractionated GRID Radiation Therapy (SFGRT): A Comparison of Treatment Outcomes With Cerrobend vs. MLC SFGRT

    International Nuclear Information System (INIS)

    Neuner, Geoffrey; Mohiuddin, Majid M.; Vander Walde, Noam; Goloubeva, Olga; Ha, Jonathan; Yu, Cedric X.; Regine, William F.

    2012-01-01

    Purpose: Spatially fractionated GRID radiotherapy (SFGRT) using a customized Cerrobend block has been used to improve response rates in patients with bulky tumors. The clinical efficacy of our own multileaf collimator (MLC) technique is unknown. We undertook a retrospective analysis to compare clinical response rates attained using these two techniques. Methods and Materials: Seventy-nine patients with bulky tumors (median diameter, 7.6 cm; range, 4–30 cm) treated with SFGRT were reviewed. Between 2003 and late 2005, the Cerrobend block technique (n = 39) was used. Between late 2005 and 2008, SFGRT was delivered using MLC-shaped fields (n = 40). Dose was prescribed to dmax (depth of maximum dose) and was typically 15 Gy. Eighty percent of patients in both groups received external beam radiotherapy in addition to SFGRT. The two-sided Fisher-Freeman-Halton test was used to compare pain and mass effect response rates between the two groups. Results: Sixty-one patients (77%) were treated for palliative intent and 18 (23%) for curative intent. The majority of patients had either lung or head-and-neck primaries in both groups; the most frequent site of SFGRT application was the neck. The majority of patients complained of either pain (65%) or mass effect (58%) at intake. Overall response rates for pain and mass response were no different between the Cerrobend and MLC groups: pain, 75% and 74%, respectively (p = 0.50), and mass effect, 67% and 73%, respectively (p = 0.85). The majority of toxicities were Grade 1 or 2, and only 3 patients had late Grade 3-4 toxicities. Conclusions: MLC-based and Cerrobend-based SFGRT have comparable and encouraging response rates when used either in the palliative or curative setting. MLC-based SGFRT should allow clinics to more easily adopt this novel treatment approach for the treatment of bulky tumors.

  6. SU-E-T-428: Dosimetric Impact of Multileaf Collimator Leaf Width On Single and multiple Isocenter Stereotactic IMRT Treatment Plans for multiple Brain Tumors

    International Nuclear Information System (INIS)

    Giem, J; Algan, O; Ahmad, S; Ali, I; Young, J; Hossain, S

    2014-01-01

    Purpose: To assess the impacts that multileaf collimator (MLC) leaf width has on the dose conformity and normal brain tissue doses of single and multiple isocenter stereotactic IMRT (SRT) plans for multiple intracranial tumors. Methods: Fourteen patients with 2–3 targets were studied retrospectively. Patients treated with multiple isocenter treatment plans using 9 to 12 non-coplanar beams per lesion underwent repeat planning using single isocenter and 10 to 12 non-coplanar beams with 2.5mm, 3mm and 5mm MLC leaf widths. Brainlab iPlan treatment planning system for delivery with the 2.5mm MLC served as reference. Identical contour sets and dose-volume constraints were applied. The prescribed dose to each target was 25 Gy to be delivered over 5 fractions with a minimum of 99% dose to cover ≥ 95% of the target volume. Results: The lesions and normal brains ranged in size from 0.11 to 51.67cc (median, 2.75cc) and 1090 to 1641cc (median, 1401cc), respectively. The Paddick conformity index for single and multiple isocenter (2.5mm vs. 3mm and 5mm MLCs) was (0.79±0.08 vs. 0.79±0.07 and 0.77±0.08) and (0.79±0.09 vs. 0.77±0.09 and 0.76±0.08), respectively. The average normal brain volumes receiving 15 Gy for single and multiple isocenter (2.5mm vs. 3mm and 5mm MLCs) were (3.65% vs. 3.95% and 4.09%) and (2.89% vs. 2.91% and 2.92%), respectively. Conclusion: The average dose conformity observed for the different leaf width for single and multiple isocenter plans were similar, throughout. However, the average normal brain volumes receiving 2.5 to 15 Gy were consistently lower for the 2.5mm MLC leaf width, especially for single isocenter plans. The clinical consequences of these integral normal brain tissue doses are still unknown, but employing the use of the 2.5mm MLC option is desirable at sparing normal brain tissue for both single and multiple isocenter cases

  7. Treatment planning for MLC based robotic radiosurgery for brain metastases: plan comparison with circular fields and suggestions for planning strategies

    Directory of Open Access Journals (Sweden)

    Schmitt Daniela

    2017-09-01

    Full Text Available To evaluate the possible range of application of the new InCise2 MLC for the CyberKnife M6 system in brain radiosurgery, a plan comparison was made for 10 brain metastases sized between 1.5 and 9cm3 in 10 patients treated in a single fraction each. The target volumes consist of a PTV derived by expanding the GTV by 1mm and were chosen to have diversity in the cohort regarding regularity of shape, location and the structures needed to be blocked for beam transmission in the vicinity. For each case, two treatment plans were optimized: one using the MLC and one using the IRIS-collimator providing variable circular fields. Plan re-quirements were: dose prescription to the 70% isodose line (18 or 20Gy, 100% GTV coverage, ≥98% PTV coverage, undisturbed central high dose region (95% of maximum dose and a conformity index as low as possible. Plan com-parison parameters were: conformity index (CI, high-dose gradient index (GIH, low-dose gradient index (GIL, total number of monitor units (MU and expected treatment time (TT. For all cases, clinically acceptable plans could be gen-erated with the following results (mean±SD for CI, GIH, GIL, MU and TT, respectively for the MLC plans: 1.09±0.03, 2.77±0.26, 2.61±0.08, 4514±830MU and 27±5min and for the IRIS plans: 1.05±0.01, 3.00±0.35, 2.46±0.08, 8557±1335MU and 42±7min. In summary, the MLC plans were on average less conformal and had a shallower dose gradient in the low dose region, but a steeper dose gradient in the high dose region. This is accompanied by a smaller vol-ume receiving 10Gy. A plan by plan comparison shows that usage of the MLC can spare about one half of the MUs and one third of treatment time. From these experiences and results suggestions for MLC planning strategy can be de-duced.

  8. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  9. Dosimetric evaluation of multi-pattern spatially fractionated radiation therapy using a multi-leaf collimator and collapsed cone convolution superposition dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Stathakis, Sotirios [Department of Radiation Oncology, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229 (United States)], E-mail: stathakis@uthscsa.edu; Esquivel, Carlos; Gutierrez, Alonso N.; Shi, ChengYu; Papanikolaou, Niko [Department of Radiation Oncology, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229 (United States)

    2009-10-15

    Purpose: In this paper, we present an alternative to the originally proposed technique for the delivery of spatially fractionated radiation therapy (GRID) using multi-leaf collimator (MLC) shaped fields. We employ the MLC to deliver various pattern GRID treatments to large solid tumors and dosimetrically characterize the GRID fields. Methods and materials: The GRID fields were created with different open to blocked area ratios and with variable separation between the openings using a MLC. GRID designs were introduced into the Pinnacle{sup 3} treatment planning system, and the dose was calculated in a water phantom. Ionization chamber and film measurements using both Kodak EDR2 and Gafchromic EBT film were performed in a SolidWater phantom to determine the relative output of each GRID design as well as its spatial dosimetric characteristics. Results: Agreement within 5.0% was observed between the Pinnacle{sup 3} predicted dose distributions and the measurements for the majority of experiments performed. A higher magnitude of discrepancy (15%) was observed using a high photon beam energy (18 MV) and small GRID opening. Skin dose at the GRID openings was higher than the corresponding open field by a factor as high as three for both photon energies and was found to be independent of the open-to-blocked area ratio. Conclusion: In summary, we reaffirm that the MLC can be used to deliver spatially fractionated GRID therapy and show that various GRID patterns may be generated. The Pinnacle{sup 3} TPS can accurately calculate the dose of the different GRID patterns in our study to within 5% for the majority of the cases based on film and ion chamber measurements. Disadvantages of MLC-based GRID therapy are longer treatment times and higher surface doses.

  10. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Long, T; Chen, M; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set of apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.

  11. AFFORDABLE MULTI-LAYER CERAMIC (MLC) MANUFACTURING FOR POWER SYSTEMS (AMPS)

    Energy Technology Data Exchange (ETDEWEB)

    E.A. Barringer, Ph.D.

    2002-11-27

    McDermott Technology, Inc. (MTI) is attempting to develop high-performance, cost-competitive solid oxide fuel cell (SOFC) power systems. Recognizing the challenges and limitations facing the development of SOFC stacks comprised of electrode-supported cells and metallic interconnects, McDermott Technology, Inc. (MTI) has chosen to pursue an alternate path to commercialization. MTI is developing a multi-layer, co-fired, planar SOFC stack that will provide superior performance and reliability at reduced costs relative to competing designs. The MTI approach combines state-of-the-art SOFC materials with the manufacturing technology and infrastructure established for multi-layer ceramic (MLC) packages for the microelectronics industry. The rationale for using MLC packaging technology is that high quality, low-cost manufacturing has been demonstrated at high volumes. With the proper selection of SOFC materials, implementation of MLC fabrication methods offers unique designs for stacks (cells and interconnects) that are not possible through traditional fabrication methods. The MTI approach eliminates use of metal interconnects and ceramic-metal seals, which are primary sources of stack performance degradation. Co-fired cells are less susceptible to thermal cycling stresses by using material compositions that have closely matched coefficients of thermal expansion between the cell and the interconnect. The development of this SOFC stack technology was initiated in October 1999 under the DOE cosponsored program entitled ''Affordable Multi-layer Ceramic Manufacturing for Power Systems (AMPS)''. The AMPS Program was conducted as a two-phase program: Phase I--Feasibility Assessment (10/99--9/00); and Phase II--Process Development for Co-fired Stacks (10/00-3/02). This report provides a summary of the results from Phase I and a more detailed review of the results for Phase II. Phase I demonstrated the feasibility for fabricating multi-layer, co-fired cells and

  12. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    Science.gov (United States)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.

    2014-06-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  13. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    International Nuclear Information System (INIS)

    Deilmai, B Rokni; Ahmad, B Bin; Zabihi, H

    2014-01-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification

  14. Non-dosimetric quality assurance for the three-dimensional radiation treatment planning systems using a multi-leaf collimator phantom

    International Nuclear Information System (INIS)

    Tateoka, Kunihiko; Nagase, Daiki; Sato, Takahito; Shimizume, Kazunari; Ouchi, Atsushi; Nakata, Kensei; Hareyama, Masato

    2008-01-01

    Evaluation of errors and limitations in simulation software for three-dimensional radiation treatment systems (3D-RTPS) is an important issue. Non-dosimetric quality assurance (QA) of the simulation software of 3D-RTPS was evaluated by graphical displays of JAW and multi-leaf collimator (MLC) settings in a 3D-RTPS. The influence of observations made using the phantom depends on human errors and several parameters of the CT scan set, such as slice thickness and spacing, pixel size, partial volume effects and the reconstructed image orientation. We explored the methods that were minimally influenced by these errors and parameters. The QA phantom (MLC phantom) has been designed for checking a JAW and MLC settings in a 3D-RTPS is used for non-dosimetric QA. We analyzed the CT value of the boundary the structures of the MLC phantom. The relative CT value for thickness 1 mm slice in border of each structure body of MLC phantom respectively shows a decrease of about 2%, 4%, 10% by 2 mm, 3 mm and 5 mm. In case of thickness 5 mm slice, the mean deference of border of virtual radiation beams and phantom was 0.8 mm, and standard deviation of them was 0.6 mm. And the mean difference of border of a DRR image and phantom was 0.08 mm and the standard deviation of them 0.6 mm. In case of thickness 2 mm slice, the mean deference of border of virtual radiation beams and phantom was -0.18 mm, and standard deviation of them was 0.32 mm. And the mean difference of border of a DRR image and phantom was 0.87 mm and the standard deviation of them 0.54 mm. The result of the study is useful for improvement in a precision of non-dosimetric QA. Our method of non-dosimetric QA can minimize human error and influence of several parameters of the CT scan set. The MLC phantom is a useful tool in the QA of radiation therapy with application to 3D-RTPS, CT simulators, and virtual simulation packages with MLC display capabilities. (author)

  15. Immunosuppressant MPA Modulates Tight Junction through Epigenetic Activation of MLCK/MLC-2 Pathway via p38MAPK

    Directory of Open Access Journals (Sweden)

    Niamat Khan

    2015-12-01

    Full Text Available Background: Mycophenolic acid (MPA is an important immunosuppressive drug (ISD prescribed to prevent graft rejection in the organ transplanted patients, however, its use is also associated with adverse side effects like sporadic gastrointestinal (GI disturbances. Recently, we reported the MPA induced tight junctions (TJs deregulation which involves MLCK/MLC-2 pathway. Here, we investigated the global histone acetylation as well as gene-specific chromatin signature of several genes associated with TJs regulation in Caco-2 cells after MPA treatment.Results: The epigenetic analysis shows that MPA treatment increases the global histone acetylation levels as well as the enrichment for transcriptional active histone modification mark (H3K4me3 at promoter regions of p38MAPK, ATF-2, MLCK, and MLC-2. In contrast, the promoter region of occludin was enriched for transcriptional repressive histone modification mark (H3K27me3 after MPA treatment. In line with the chromatin status, MPA treatment increased the expression of p38MAPK, ATF-2, MLCK, and MLC-2 both at transcriptional and translational level, while occludin expression was negatively influenced. Interestingly, the MPA induced gene expression changes and functional properties of Caco-2 cells could be blocked by the inhibition of p38MAPK using a chemical inhibitor (SB203580.Conclusions: Collectively, our results highlight that MPA disrupts the structure of TJs via p38MAPK-dependent activation of MLCK/MLC-2 pathway that results in decreased integrity of Caco-2 monolayer. These results led us to suggest that p38MAPK-mediated lose integrity of epithelial monolayer could be the possible cause of GI disturbance (barrier dysfunction in the intestine, leading to leaky style diarrhea observed in the organ-transplanted patients treated with MPA.

  16. Safety and Efficacy of MLC601 in Iranian Patients after Stroke: A Double-Blind, Placebo-Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    A. A. Harandi

    2011-01-01

    Full Text Available Objective. To investigate the safety and efficacy of MLC601 (NeuroAid as a traditional Chinese medicine on motor recovery after ischemic stroke. Methods. This study was a double-blind, placebo-controlled clinical trial on 150 patients with a recent (less than 1 month ischemic stroke. All patients were given either MLC601 (100 patients or placebo (50 patients, 4 capsules 3 times a day, as an add-on to standard stroke treatment for 3 months. Results. Sex, age, elapsed time from stroke onset, and risk factors in the treatment group were not significantly different from placebo group at baseline (P>.05. Repeated measures analysis showed that Fugl-Meyer assessment was significantly higher in the treatment group during 12 weeks after stroke (P<.001. Good tolerability to treatment was shown, and adverse events were mild and transient. Conclusion. MLC601 showed better motor recovery than placebo and was safe on top of standard ischemic stroke medications especially in the severe and moderate cases.

  17. Heterologous expression of MlcE in Saccharomyces cerevisiae provides resistance to natural and semi-synthetic statins

    Directory of Open Access Journals (Sweden)

    Ana Ley

    2015-12-01

    Full Text Available Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme in cholesterol biosynthesis. Their extensive use in treatment and prevention of cardiovascular diseases placed statins among the best selling drugs. Construction of Saccharomyces cerevisiae cell factory for the production of high concentrations of natural statins will require establishment of a non-destructive self-resistance mechanism to overcome the undesirable growth inhibition effects of statins. To establish active export of statins from yeast, and thereby detoxification, we integrated a putative efflux pump-encoding gene mlcE from the mevastatin-producing Penicillium citrinum into the S. cerevisiae genome. The resulting strain showed increased resistance to both natural statins (mevastatin and lovastatin and semi-synthetic statin (simvastatin when compared to the wild type strain. Expression of RFP-tagged mlcE showed that MlcE is localized to the yeast plasma and vacuolar membranes. We provide a possible engineering strategy for improvement of future yeast based production of natural and semi-synthetic statins. Keywords: Polyketide, Statins, Saccharomyces cerevisiae, Transport, Cell factory, Resistance

  18. Method for continuous measurement of export from a leaf

    International Nuclear Information System (INIS)

    Geiger, D.R.; Fondy, B.R.

    1979-01-01

    Export of labeled material derived by continuous photosynthesis in 14 CO 2 was monitored with a Geiger-Mueller detector positioned next to an exporting leaf blade. Rate of export of labeled material was calculated from the difference between rates of retention and net photosynthesis of labeled carbon for the observed leaf. Given certain conditions, including nearly constant distribution of labeled material among minor veins and various types of cells, count rate data for the source leaf can be coverted to rate of export of carbon. Changes in counting efficiency resulting from changes in leaf water status can be corrected for with data from a transducer which measures leaf thickness. Export data agreed with data obtained by monitoring the arrival of 14 C in the sink region; isolated leaves gave values near zero for export of labeled carbon from a given leaf on an intact plant. The technique detects changes in export with a resolution of 10 to 20 minutes

  19. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts

    DEFF Research Database (Denmark)

    Ou, Zong-Quan; Schmierer, David M; Rades, Thomas

    2013-01-01

    To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity.......To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity....

  20. Impact of MLC properties and IMRT technique in meningioma and head-and-neck treatments

    DEFF Research Database (Denmark)

    Kantz, Steffi; Söhn, Matthias; Troeller, Almut

    2015-01-01

    for each patient. Only larynx, parotids and eyes differ up to 1.5 Gy (Dmean or Dmax) or 7% (volume-constraint) due to (1) increased scatter, (2) not avoiding structures when using the full range of gantry rotation and (3) improved leaf sequencing with advanced segment shape optimization for VMAT plans. EUD...

  1. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    Science.gov (United States)

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Comparison of conventional inserts and an add-on electron MLC for chest wall irradiation of left-sided breast cancer

    International Nuclear Information System (INIS)

    Vatanen, Tero; Lahtinen, Tapani; Traneus, Erik

    2009-01-01

    Background. Collimation of irregularly shaped clinical electron beams is currently based on electron inserts made of low melting point alloys. The present investigation compares a conventional electron applicator with insert and add-on eMLC-based dose distributions in the postoperative chest wall irradiation of left-sided breast cancer. Material and methods. Voxel Monte Carlo++ (VMC++) calculated dose distributions related to electron fields were compared with 10 left-sided breast cancer patients after radical mastectomy. The prescription dose was 50 Gy at a build-up maximum. The same dose was prescribed for the ipsilateral axillary, parasternal and supraclavicular lymph nodes that were treated with photons and calculated with a pencil beam algorithm. The insert beams were shaped with 1.5 cm thick Wood's metal electron inserts in an electron applicator of a Varian 2100 C/D linac. Doses for the eMLC-shaped beams were calculated for an eMLC prototype with 2 cm thick and 5 mm wide steel leaves. The same collimator-to-surface distance (CSD) of 5.8 cm was used for both collimators. Results. The mean PTV dose was slightly higher for the eMLC plans (50.7 vs 49.5 Gy, p<0.001, respectively). The maximum doses assessed by D5% for the eMLC and insert were 60.9 and 59.1 Gy (p<0.001). The difference was due to the slightly higher doses near the field edges for the eMLC. The left lung V20 volumes were 34.5% and 34.0% (p<0.001). There was only a marginal difference in heart doses. Discussion: Despite a slight increase of maximum dose in PTV the add-on electron MLC for chest wall irradiation results in practically no differences in dose distributions compared with the present insert-based collimation

  3. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    Science.gov (United States)

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  4. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

    Science.gov (United States)

    L.S. Santiago; G. Goldstein; F.C. Meinzer; J.B. Fisher; K. Maehado; D. Woodruff; T. Jones

    2004-01-01

    We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2, assimilation per unit leaf area (Aarea...

  5. Pre-clinical evaluation of an inverse planning module for segmental MLC based IMRT delivery

    International Nuclear Information System (INIS)

    Georg, Dietmar; Kroupa, Bernhard

    2002-01-01

    Phantom tests are performed for pre-clinical evaluation of a commercial inverse planning system (HELAX TMS, V 6.0) for segmented multileaf collimator (MLC) intensity modulated radiotherapy (IMRT) delivery. The optimization module has available two optimization algorithms: the target primary feasibility and the weighted feasibility algorithm, only the latter allows the user to specify weights for structures. In the first series, single beam tests are performed to evaluate the outcome of inverse planning in terms of plausibility for the following situations: oblique incidence, presence of inhomogeneities, multiple targets at different depths and multiple targets with different desired doses. Additionally, for these tests a manual plan is made for comparison. In the absence of organs at risk, both the optimization algorithms are found to assign the highest priority to low dose constraints for targets. In the second series, tests resembling clinical relevant configurations (simultaneous boost and concave target with critical organ) are performed with multiple beam arrangements in order to determine the impact of the system's configuration on inverse planning. It is found that the definition of certain segment number and segment size limitations does not largely compromise treatment plans when using multiple beams. On the other hand, these limitations are important for delivery efficiency and dosimetry. For the number of iterations and voxels per volume of interest, standard values in the system's configuration are considered to be sufficient. Additionally, it is demonstrated that precautions must be taken to precisely define treatment goals when using computerized treatment optimization. Similar phantom tests could be used for a direct dosimetric verification of all steps from inverse treatment planning to IMRT delivery. (note)

  6. Generality of leaf trait relationships: A test across six biomes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, P.B. [Univ. of Minnesota, Saint Paul, MN (United States). Dept. of Forest Resources; Ellsworth, D.S. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Walters, M.B. [Michigan State Univ., East Lansing, MI (United States). Dept. of Forestry; Vose, J.M. [Forest Service, Otto, NC (United States). Coweeta Hydrological Lab.; Gresham, C. [Clemson Univ., Georgetown, SC (United States). Baruch Forest Inst.; Volin, J.C. [Florida Atlantic Univ., Davie, FL (United States). Div. of Science; Bowman, W.D. [Inst. of Arctic and Alpine Research, Boulder, CO (United States). Mountain Research Station]|[Univ. of Colorado, Boulder, CO (United States). Dept. of Evolutionary, Population, and Organismic Biology

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  7. Treatment planning for MLC based robotic radiosurgery for brain metastases: plan comparison with circular fields and suggestions for planning strategies

    OpenAIRE

    Schmitt Daniela; El Shafie Rami; Klüter Sebastian; Arians Nathalie; Schubert Kai; Rieken Stefan; Debus Jürgen; Paul Angela

    2017-01-01

    To evaluate the possible range of application of the new InCise2 MLC for the CyberKnife M6 system in brain radiosurgery, a plan comparison was made for 10 brain metastases sized between 1.5 and 9cm3 in 10 patients treated in a single fraction each. The target volumes consist of a PTV derived by expanding the GTV by 1mm and were chosen to have diversity in the cohort regarding regularity of shape, location and the structures needed to be blocked for beam transmission in the vicinity. For each ...

  8. New chicken Rfp-Y haplotypes on the basis of MHC class II RFLP and MLC analyses

    DEFF Research Database (Denmark)

    Juul-Madsen, H R; Zoorob, R; Auffray, C

    1997-01-01

    New chicken Rfp-Y haplotypes were determined by the use of restriction fragment length polymorphism (RFLP) and mixed lymphocyte culture (MLC) in four different chicken haplotypes, B15, B19, B21, B201. The RFLP polymorphism was mapped to the Rfp-Y system by the use of a subclone (18.1) which maps...... near a polymorphic lectin gene located in the Rfp-Y system and DNA from families with known segregation of the implicated RFLP polymorphism. For the first time it is shown that major histocompatibility complex class II genes in the Rfp-Y system have functional implications. Sequence information...

  9. Serial tomotherapy vs. MLC-IMRT (Multileaf Collimator Intensity Modulated Radiotherapy) for simultaneous boost treatment large intracerebral lesions

    International Nuclear Information System (INIS)

    Wolff, Dirk; Lohr, Frank; Mai, Sabine; Polednik, Martin; Wenz, Frederik; Dobler, Barbara

    2009-01-01

    Introduction: Recent data suggest that a radiosurgery boost treatment for up to three brain metastases in addition to whole brain radiotherapy (WBRT) is beneficial. Sequential treatment of multiple metastatic lesions is time-consuming and optimal normal tissue sparing is not trivial for larger metastases when separate plans are created and are only superimposed afterwards. Sequential Tomotherapy with noncoplanar arcs and Multi-field IMRT may streamline the process and enable easy simultaneous treatment. We compared plans for 2-3 intracerebral targets calculated with Intensity Modulated Radiotherapy (IMRT) based on treatment with MLC or sequential Tomotherapy using the Peacock-System. Treatment time was not to exceed 90 min on a linac with standart dose rate. MIMiC plans without treatment-time restrictions were created as a benchmark. Materials and methods: Calculations are based on a Siemens KD2 linac with a dose rate of 200 MU/min. Step-and-Shoot IMRT is performed with a standard MLC (2 x 29 leaves, 1 cm), serial Tomotherapy with the Multivane-Collimator MIMiC (NOMOS Inc. USA). Treatment plans are created with Corvus 5.0. To create plans with good conformity we chose a noncoplanar beam- and arc geometry for each approach (IMRT 4-, MIMiC 5-couch angles). The benchmark MIMiC plans with maximally steep dose gradients had 9 couch angles. For plan comparison reasons, 10Gy were prescribed to 90% of the PTV. Steepness of dose gradients, homogeneity and conformity were assessed by the following parameters: Volume encompassed by certain isodoses outside the target as well as homogeneity and conformity as indicated by Homogeneity- and Conformity-Index. Results: Plans without treatment-time restrictions had slightest dose to organ at risk (OAR), normal tissue and least Conformity-index. MIMiC- and MLC-IMRT based plans can be treated within the intended period of 90 min, all plans met the required dose. MLC based plans resulted in higher dose to organs at risk (OAR) and dose

  10. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  11. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  12. Asymmetric Programming: A Highly Reliable Metadata Allocation Strategy for MLC NAND Flash Memory-Based Sensor Systems

    Science.gov (United States)

    Huang, Min; Liu, Zhaoqing; Qiao, Liyan

    2014-01-01

    While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473

  13. Evaluation of the dosimetric consequences of adding a single asymmetric or MLC shaped field to a tangential breast radiotherapy technique

    International Nuclear Information System (INIS)

    Richmond, Neil D.; Turner, Robert N.; Dawes, Peter J.D.K.; Lambert, Geoff D.; Lawrence, Gill P.

    2003-01-01

    Fifteen consecutive patients had standard treatment plans generated using our departmental protocol and two further plans produced using either an asymmetric, or MLC shaped additional field, from each tangential direction. The mean percentage of the PTV receiving over 107% of the isocentre dose was 19.8% for the standard planned patients (95% confidence interval 12.3-27.4%). This was reduced to 6.0% for the asymmetric field technique (95% confidence interval 4.1-8.0%) and 5.3% for the MLC technique (95% confidence interval 2.8-7.7%). These high dose volume reductions were therefore significant at the 95% confidence level. It was also concluded that both alternative planning techniques offer the greatest potential when the standard plan indicated that more than 20% of the PTV would receive greater than 107% of the prescribed dose. Under these circumstances the segmented field techniques led to a reduction of at least 15 percentage points in this figure. It is this group of patients who stand to benefit most from application of these simple additional field techniques

  14. Asymmetric Programming: A Highly Reliable Metadata Allocation Strategy for MLC NAND Flash Memory-Based Sensor Systems

    Directory of Open Access Journals (Sweden)

    Min Huang

    2014-10-01

    Full Text Available While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it’s critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB pages which are more reliable than least significant bit (LSB pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.

  15. Efficacy and Safety of MLC601 in the Treatment of Mild Cognitive Impairment: A Pilot, Randomized, Double-Blind, Placebo-Controlled Study

    Directory of Open Access Journals (Sweden)

    Hossein Pakdaman

    2017-05-01

    Full Text Available Background and Aim: Mild cognitive impairment (MCI is characterized by declined cognitive function greater than that expected for a person’s age. The clinical significance of this condition is its possible progression to dementia. MLC601 is a natural neuroprotective medication that has shown promising effects in Alzheimer disease. Accordingly, we conducted this randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of MLC601 in MCI patients. Methods: Seventy-two patients with a diagnosis of MCI were recruited. The included participants were randomly assigned to groups to receive either MLC601 or placebo. An evaluation of global cognitive function was performed at baseline as well as at 3-month and 6-month follow-up visits. Global cognitive function was assessed by Mini-Mental State Examination (MMSE and Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog scores. Efficacy was evaluated by comparing global function scores between the 2 groups during the study period. Safety assessment included adverse events (AEs and abnormal laboratory results. Results: Seventy patients completed the study, 34 in the MLC601 group and 36 in the placebo group. The mean changes (±SD in cognition scores over 6 months in the MLC601 group were –2.26 (±3.42 for the MMSE and 3.82 (±6.16 for the ADAS-cog; in the placebo group, they were –2.66 (±3.43 for the MMSE and 4.41 (±6.66 for the ADAS-cog. The cognition changes based on both MMSE and ADAS-cog scores were statistically significant between the placebo and the MLC601 group (p < 0.001. Only 5 patients (14.7% reported minor AEs in the MLC601 group, the most commonly reported of which were gastrointestinal, none of them leading to patient withdrawal. Conclusion: MLC601 has shown promising efficacy and acceptable AEs in MCI patients.

  16. SU-E-T-214: Intensity Modulated Proton Therapy (IMPT) Based On Passively Scattered Protons and Multi-Leaf Collimation: Prototype TPS and Dosimetry Study

    International Nuclear Information System (INIS)

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-01-01

    Purpose. Intensity-modulated proton therapy is usually implemented with multi-field optimization of pencil-beam scanning (PBS) proton fields. However, at the view of the experience with photon-IMRT, proton facilities equipped with double-scattering (DS) delivery and multi-leaf collimation (MLC) could produce highly conformal dose distributions (and possibly eliminate the need for patient-specific compensators) with a clever use of their MLC field shaping, provided that an optimal inverse TPS is developed. Methods. A prototype TPS was developed in MATLAB. The dose calculation process was based on a fluence-dose algorithm on an adaptive divergent grid. A database of dose kernels was precalculated in order to allow for fast variations of the field range and modulation during optimization. The inverse planning process was based on the adaptive simulated annealing approach, with direct aperture optimization of the MLC leaves. A dosimetry study was performed on a phantom formed by three concentrical semicylinders separated by 5 mm, of which the inner-most and outer-most were regarded as organs at risk (OARs), and the middle one as the PTV. We chose a concave target (which is not treatable with conventional DS fields) to show the potential of our technique. The optimizer was configured to minimize the mean dose to the OARs while keeping a good coverage of the target. Results. The plan produced by the prototype TPS achieved a conformity index of 1.34, with the mean doses to the OARs below 78% of the prescribed dose. This Result is hardly achievable with traditional conformal DS technique with compensators, and it compares to what can be obtained with PBS. Conclusion. It is certainly feasible to produce IMPT fields with MLC passive scattering fields. With a fully developed treatment planning system, the produced plans can be superior to traditional DS plans in terms of plan conformity and dose to organs at risk

  17. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  18. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  19. Monitoring leaf photosynthesis with canopy spectral reflectance in rice

    International Nuclear Information System (INIS)

    Tian, Y.; Zhu, Y.; Cao, W.

    2005-01-01

    We determined the quantitative relationships between leaf photosynthetic characteristics (LPC) and canopy spectral reflectance under different water supply and nitrogen application rates in rice plants. The responses of reflectance at red radiation (680 nm) to different water contents and N rates were parallel to those of leaf net photosynthetic rate (PN). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red) to PN of different leaf positions and layers indicated that the top two full leaves were the best positions for quantitative monitoring of PN with remote sensing technique, and the index R(810,680) was the best ratio index for evaluating LPC. Testing of the models with independent data sets indicated that R(810,680) could well estimate PN of the top two leaves and canopy leaf photosynthetic potential. Hence R(810,680) can be used to monitor LPC in rice under diverse growing conditions

  20. Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles.

    Science.gov (United States)

    Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.

  1. TH-C-12A-06: Feasibility of a MLC-Based Inversely Optimized Multi-Field Grid Therapy Technique

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J [Georgia Regents University, Augusta, GA (Georgia); Zhao, B; Huang, Y; Kim, J; Qin, Y; Wen, N; Ryu, S; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2014-06-15

    Purpose: Grid therapy (GT), which generates highly spatially modulated dose distributions, can deliver single- or hypo-fractionated radiotherapy for large tumors without causing significant toxicities. GT may be applied in combination with immunotherapy, in light of recent preclinical data of synergetic interaction between radiotherapy and immunotherapy. However, conventional GT uses only one field, which does not have the advantage of multi-fields in 3D conformal-RT or IMRT. We have proposed a novel MLC-based, inverse-planned multi-field 3D GT technique. This study aims to test its deliverability and dosimetric accuracy. Methods: A lattice of small spheres was created as the boost volume within a large target. A simultaneous boost IMRT plan with 8-Gy to the target and 20-Gy to the boost volume was generated in the Eclipse treatment planning system (AAA v10) with a HD120 MLC. Nine beams were used, and the gantry and couch angles were selected so that the spheres were perfectly aligned in every beams eye view. The plan was mapped to a phantom with dose scaled. EBT3 films were calibrated and used to measure the delivered dose. Results: The IMRT plan generated a highly spatially modulated dose distribution in the target. D95%, D50%, D5% for the spheres and the targets in Gy were 18.5, 20.0, 21.4 and 7.9, 9.8, 16.1, respectively. D50% for a 1cm ring 1cm outside the target was 2.9-Gy. Film dosimetry showed good agreement between calculated and delivered dose, with an overall gamma passing rate of 99.6% (3%/1mm). The point dose differences for different spheres varied from 1–6%. Conclusion: We have demonstrated the deliverability and dose calculation accuracy of the MLC-based inversely optimized multi-field GT technique, which achieved a brachytherapy-like dose distribution. Single-fraction high dose can be delivered to the spheres in a large target with minimal dose to the surrounding normal tissue.

  2. Consequences of leaf calibration errors on IMRT delivery

    International Nuclear Information System (INIS)

    Sastre-Padro, M; Welleweerd, J; Malinen, E; Eilertsen, K; Olsen, D R; Heide, U A van der

    2007-01-01

    IMRT treatments using multi-leaf collimators may involve a large number of segments in order to spare the organs at risk. When a large proportion of these segments are small, leaf positioning errors may become relevant and have therapeutic consequences. The performance of four head and neck IMRT treatments under eight different cases of leaf positioning errors has been studied. Systematic leaf pair offset errors in the range of ±2.0 mm were introduced, thus modifying the segment sizes of the original IMRT plans. Thirty-six films were irradiated with the original and modified segments. The dose difference and the gamma index (with 2%/2 mm criteria) were used for evaluating the discrepancies between the irradiated films. The median dose differences were linearly related to the simulated leaf pair errors. In the worst case, a 2.0 mm error generated a median dose difference of 1.5%. Following the gamma analysis, two out of the 32 modified plans were not acceptable. In conclusion, small systematic leaf bank positioning errors have a measurable impact on the delivered dose and may have consequences for the therapeutic outcome of IMRT

  3. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC.

    Science.gov (United States)

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-01-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. SU-E-J-109: Testing the KV Imaging Center Congruence with Radiation Isocenter of Small MLC and SRS Cone Field On Two Machines

    Energy Technology Data Exchange (ETDEWEB)

    Fu,; Chen, Y; Yu, Y; Liu, H [Thomas Jefferson University, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Orthogonal kV image pairs are used for target localization when fiducial markers are implanted. CBCT is used to verify cone SRS setup. Therefore it is necessary to evaluate the isocenter congruence between radiation fields and kV imaging center. This study used a simple method to evaluate the isocenter congruence, and compared the results for MLC and cone fields on two different Linacs. Methods: Varian OBI block was attached on the couch. It has a central 1mm BB with markers on three surfaces to align with laser. KV and MV images were taken at four cardinal angles. A 3x3cm2 MLC field and a 20mm cone field were irradiated respectively. On each kV image, the distance from BB center to the kV graticule center were measured. On the MV image of MLC field, the center of radiation field was determined manually, while for cone field, the Varian AM maintenance software was used to analyze the distance between BB and radiation field. The subtraction of the two distances gives the discrepancy between kV and radiation centers. Each procedure was repeated on five days at Trilogy and TrueBeam respectively. Results: The maximum discrepancy was found in the longitudinal direction at 180° gantry angel. It was 1.5±0.1mm for Trilogy and 0.6±0.1mm for TrueBeam. For Trilogy, although radiation center wobbled only 0.7mm and image center wobbled 0.8mm, they wobbled to the opposite direction. KV Pair using gantry 180° should be avoided in this case. Cone vs. kV isocenter has less discrepancy than MLC for Trilogy. Conclusion: Radiation isocenter of MLC and cone field is different, so is between Trilogy and TrueBeam. The method is simple and reproducible to check kV and radiation isocenter congruence.

  5. SU-E-J-109: Testing the KV Imaging Center Congruence with Radiation Isocenter of Small MLC and SRS Cone Field On Two Machines

    International Nuclear Information System (INIS)

    Fu,; Chen, Y; Yu, Y; Liu, H

    2014-01-01

    Purpose: Orthogonal kV image pairs are used for target localization when fiducial markers are implanted. CBCT is used to verify cone SRS setup. Therefore it is necessary to evaluate the isocenter congruence between radiation fields and kV imaging center. This study used a simple method to evaluate the isocenter congruence, and compared the results for MLC and cone fields on two different Linacs. Methods: Varian OBI block was attached on the couch. It has a central 1mm BB with markers on three surfaces to align with laser. KV and MV images were taken at four cardinal angles. A 3x3cm2 MLC field and a 20mm cone field were irradiated respectively. On each kV image, the distance from BB center to the kV graticule center were measured. On the MV image of MLC field, the center of radiation field was determined manually, while for cone field, the Varian AM maintenance software was used to analyze the distance between BB and radiation field. The subtraction of the two distances gives the discrepancy between kV and radiation centers. Each procedure was repeated on five days at Trilogy and TrueBeam respectively. Results: The maximum discrepancy was found in the longitudinal direction at 180° gantry angel. It was 1.5±0.1mm for Trilogy and 0.6±0.1mm for TrueBeam. For Trilogy, although radiation center wobbled only 0.7mm and image center wobbled 0.8mm, they wobbled to the opposite direction. KV Pair using gantry 180° should be avoided in this case. Cone vs. kV isocenter has less discrepancy than MLC for Trilogy. Conclusion: Radiation isocenter of MLC and cone field is different, so is between Trilogy and TrueBeam. The method is simple and reproducible to check kV and radiation isocenter congruence

  6. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Prieto, Jorge A; Louarn, Gaëtan; Perez Peña, Jorge; Ojeda, Hernán; Simonneau, Thierry; Lebon, Eric

    2012-07-01

    Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season. © 2012 Blackwell Publishing Ltd.

  7. Non-destructive measurement of soybean leaf thickness via X-ray computed tomography allows the study of diel leaf growth rhythms in the third dimension.

    Science.gov (United States)

    Pfeifer, Johannes; Mielewczik, Michael; Friedli, Michael; Kirchgessner, Norbert; Walter, Achim

    2018-01-01

    Present-day high-resolution leaf growth measurements provide exciting insights into diel (24-h) leaf growth rhythms and their control by the circadian clock, which match photosynthesis with oscillating environmental conditions. However, these methods are based on measurements of leaf area or elongation and neglect diel changes of leaf thickness. In contrast, the influence of various environmental stress factors to which leaves are exposed to during growth on the final leaf thickness has been studied extensively. Yet, these studies cannot elucidate how variation in leaf area and thickness are simultaneously regulated and influenced on smaller time scales. Only few methods are available to measure the thickness of young, growing leaves non-destructively. Therefore, we evaluated X-ray computed tomography to simultaneously and non-invasively record diel changes and growth of leaf thickness and area. Using conventional imaging and X-ray computed tomography leaf area, thickness and volume growth of young soybean leaves were simultaneously and non-destructively monitored at three cardinal time points during night and day for a period of 80 h under non-stressful growth conditions. Reference thickness measurements on paperboards were in good agreement to CT measurements. Comparison of CT with leaf mass data further proved the consistency of our method. Exploratory analysis showed that measurements were accurate enough for recording and analyzing relative diel changes of leaf thickness, which were considerably different to those of leaf area. Relative growth rates of leaf area were consistently positive and highest during 'nights', while diel changes in thickness fluctuated more and were temporarily negative, particularly during 'evenings'. The method is suitable for non-invasive, accurate monitoring of diel variation in leaf volume. Moreover, our results indicate that diel rhythms of leaf area and thickness show some similarity but are not tightly coupled. These

  8. TH-AB-BRB-05: Using a Research Real-Time Control Interface to Go Beyond Dynamic MLC Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Nill, S. [The Institute of Cancer Research (United Kingdom)

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapy involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43

  9. TH-AB-BRB-05: Using a Research Real-Time Control Interface to Go Beyond Dynamic MLC Tracking

    International Nuclear Information System (INIS)

    Nill, S.

    2016-01-01

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapy involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43

  10. Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data

    NARCIS (Netherlands)

    Cho, M.A.; Skidmore, A.K.; Atzberger, C.

    2008-01-01

    Several methods for extracting the chlorophyll sensitive red-edge position (REP) from hyperspectral data are reported in literature. This study is a continuation of a recent paper published as 'A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation

  11. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery.

    Science.gov (United States)

    Dhabaan, Anees; Elder, Eric; Schreibmann, Eduard; Crocker, Ian; Curran, Walter J; Oyesiku, Nelson M; Shu, Hui-Kuo; Fox, Tim

    2010-06-21

    The objective was to evaluate the performance of a high-definition multileaf collimator (MLC) of 2.5 mm leaf width (MLC2.5) and compare to standard 5 mm leaf width MLC (MLC5) for the treatment of intracranial lesions using dynamic conformal arcs (DCA) technique with a dedicated radiosurgery linear accelerator. Simulated cases of spherical targets were created to study solely the effect of target volume size on the performance of the two MLC systems independent of target shape complexity. In addition, 43 patients previously treated for intracranial lesions in our institution were retrospectively planned using DCA technique with MLC2.5 and MLC5 systems. The gross tumor volume ranged from 0.07 to 40.57 cm3 with an average volume of 5.9 cm3. All treatment parameters were kept the same for both MLC-based plans. The plan evaluation was performed using figures of merits (FOM) for a rapid and objective assessment on the quality of the two treatment plans for MLC2.5 and MLC5. The prescription isodose surface was selected as the greatest isodose surface covering >or= 95% of the target volume and delivering 95% of the prescription dose to 99% of target volume. A Conformity Index (CI) and conformity distance index (CDI) were used to quantifying the dose conformity to a target volume. To assess normal tissue sparing, a normal tissue difference (NTD) was defined as the difference between the volume of normal tissue receiving a certain dose utilizing MLC5 and the volume receiving the same dose using MLC2.5. The CI and normal tissue sparing for the simulated spherical targets were better with the MLC2.5 as compared to MLC5. For the clinical patients, the CI and CDI results indicated that the MLC2.5 provides better treatment conformity than MLC5 even at large target volumes. The CI's range was 1.15 to 2.44 with a median of 1.59 for MLC2.5 compared to 1.60-2.85 with a median of 1.71 for MLC5. Improved normal tissue sparing was also observed for MLC2.5 over MLC5, with the NTD always

  12. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Ye, Qing; He, Peng-Cheng; Liu, Hui; Li, Rong-Hua; Fu, Pei-Li; Jiang, Guo-Feng; Cao, Kun-Fang

    2018-05-01

    Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.

  13. Effects of leaf age within growth stages of pepper and sorghum plants on leaf thickness, water, chlorophyll, and light reflectance. [in spectral vegetation discrimination

    Science.gov (United States)

    Gausman, H. W.; Cardenas, R.; Berumen, A.

    1974-01-01

    Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.

  14. (TECTONA GRANDIS LEAF POWDER

    Directory of Open Access Journals (Sweden)

    Yash Mishra

    2015-01-01

    Full Text Available In this study, the adsorption potential of Teak (Tectona grandis leaf powder (TLP toremove Methylene blue (MB and Malachite Green (MG dye molecules from aqueoussolution was investigated. Batch experiments were conducted to evaluate the influenceof operational parameters such as, pH (2−9, adsorbent dosage (1−7 g/L, contact time(15−150 minutes and initial dye concentration (20−120 mg/L at stirring speed of 150rpm for the adsorption of MB and MG on TLP. Maximum removal efficiency of 98.4%and 95.1% was achieved for MB and MG dye, respectively. The experimentalequilibrium data were analysed using Langmuir, Freundlich and Temkin isothermmodels and it was found that, it fitted well to the Freundlich isotherm model. Thesurface structure and morphology of the adsorbent was characterized using scanningelectron microscopy (SEM and the presence of functional groups and its interactionwith the dye molecules were analysed using Fourier transform infrared spectroscopy(FTIR. Based on the investigation, it has been demonstrated that the teak leaf powderhas good potential for effective adsorption of methylene blue and malachite green dye.

  15. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control

    International Nuclear Information System (INIS)

    Létourneau, Daniel; McNiven, Andrea; Keller, Harald; Wang, An; Amin, Md Nurul; Pearce, Jim; Norrlinger, Bernhard; Jaffray, David A.

    2014-01-01

    Purpose: High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. Methods: The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3–4 times/week over a period of 10–11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ±0.5 and ±1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. Results: The precision of the MLC performance monitoring QC test and the MLC itself was within ±0.22 mm for most MLC leaves

  16. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control.

    Science.gov (United States)

    Létourneau, Daniel; Wang, An; Amin, Md Nurul; Pearce, Jim; McNiven, Andrea; Keller, Harald; Norrlinger, Bernhard; Jaffray, David A

    2014-12-01

    High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3-4 times/week over a period of 10-11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ± 0.5 and ± 1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. The precision of the MLC performance monitoring QC test and the MLC itself was within ± 0.22 mm for most MLC leaves and the majority of the

  17. Dosimetric and delivery efficiency investigation for treating hepatic lesions with a MLC-equipped robotic radiosurgery–radiotherapy combined system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Lihui, E-mail: lihui.jin@fccc.edu; Price, Robert A.; Wang, Lu; Meyer, Joshua; Fan, James; Charlie Ma, Chang Ming [Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111 (United States)

    2016-02-15

    Purpose: The CyberKnife M6 (CK-M6) Series introduced a multileaf collimator (MLC) for extending its capability from stereotactic radiosurgery/stereotactic radiotherapy (SBRT) to conventionally fractionated radiotherapy. This work is to investigate the dosimetric quality of plans that are generated using MLC-shaped beams on the CK-M6, as well as their delivery time, via comparisons with the intensity modulated radiotherapy plans that were clinically used on a Varian Linac for treating hepatic lesions. Methods: Nine patient cases were selected and divided into three groups with three patients in each group: (1) the group-one patients were treated conventionally (25 fractions); (2) the group-two patients were treated with SBRT-like hypofractionation (5 fractions); and (3) the group-three patients were treated similar to group-one patients, but with two planning target volumes (PTVs) and two different prescription dose levels correspondingly. The clinically used plans were generated on the ECLIPSE treatment planning system (TPS) and delivered on a Varian Linac (E-V plans). The multiplan (MP) TPS was used to replan these clinical cases with the MLC as the beam device for the CK-M6 (C-M plans). After plans were normalized to the same PTV dose coverage, comparisons between the C-M and E-V plans were performed based on D{sub 99%} (percentage of prescription dose received by 99% of the PTV), D{sub 0.1cm{sup 3}} (the percentage of prescription dose to 0.1 cm{sup 3} of the PTV), and doses received by critical structures. Then, the delivery times for the C-M plans will be obtained, which are the MP TPS generated estimations assuming having an imaging interval of 60 s. Results: The difference in D{sub 99%} between C-M and E-V plans is +0.6% on average (+ or − indicating a higher or lower dose from C-M plans than from E-V plans) with a range from −4.1% to +3.8%, and the difference in D{sub 0.1cm{sup 3}} was −1.0% on average with a range from −5.1% to +2.9%. The PTV

  18. Dosimetric and delivery efficiency investigation for treating hepatic lesions with a MLC-equipped robotic radiosurgery–radiotherapy combined system

    International Nuclear Information System (INIS)

    Jin, Lihui; Price, Robert A.; Wang, Lu; Meyer, Joshua; Fan, James; Charlie Ma, Chang Ming

    2016-01-01

    Purpose: The CyberKnife M6 (CK-M6) Series introduced a multileaf collimator (MLC) for extending its capability from stereotactic radiosurgery/stereotactic radiotherapy (SBRT) to conventionally fractionated radiotherapy. This work is to investigate the dosimetric quality of plans that are generated using MLC-shaped beams on the CK-M6, as well as their delivery time, via comparisons with the intensity modulated radiotherapy plans that were clinically used on a Varian Linac for treating hepatic lesions. Methods: Nine patient cases were selected and divided into three groups with three patients in each group: (1) the group-one patients were treated conventionally (25 fractions); (2) the group-two patients were treated with SBRT-like hypofractionation (5 fractions); and (3) the group-three patients were treated similar to group-one patients, but with two planning target volumes (PTVs) and two different prescription dose levels correspondingly. The clinically used plans were generated on the ECLIPSE treatment planning system (TPS) and delivered on a Varian Linac (E-V plans). The multiplan (MP) TPS was used to replan these clinical cases with the MLC as the beam device for the CK-M6 (C-M plans). After plans were normalized to the same PTV dose coverage, comparisons between the C-M and E-V plans were performed based on D_9_9_% (percentage of prescription dose received by 99% of the PTV), D_0_._1_c_m_"3 (the percentage of prescription dose to 0.1 cm"3 of the PTV), and doses received by critical structures. Then, the delivery times for the C-M plans will be obtained, which are the MP TPS generated estimations assuming having an imaging interval of 60 s. Results: The difference in D_9_9_% between C-M and E-V plans is +0.6% on average (+ or − indicating a higher or lower dose from C-M plans than from E-V plans) with a range from −4.1% to +3.8%, and the difference in D_0_._1_c_m_"3 was −1.0% on average with a range from −5.1% to +2.9%. The PTV conformity index (CI) for

  19. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits

    Directory of Open Access Journals (Sweden)

    Chen Xiaoping

    2015-01-01

    Full Text Available Plants not only improve air quality by adsorbing particulate matter (PM on leaf surfaces but can also be affected by their accumulation. In this study, a field investigation was performed in Wuhan, China, into the relationship between seven leaf traits and the accumulation of three different sizes of PM (PM11, PM2.5 and PM0.2 on leaves. The retention abilities of plant leaves with respect to the three sizes of PM differed significantly at different sites and species. The average PM retention capabilities of plant leaves and specific leaf area (SLA were significantly greater in a seriously polluted area, whereas the average values of chlorophyll a (Chl a, chlorophyll b (Chl b, total chlorophyll, carotenoid, pH and relative water content (RWC were greater at the control site. SLA significantly positively correlated with the size of PM, but Chl a, Chl b, total chlorophyll, RWC significantly negatively correlated with the size of PM, whereas the pH did not correlate significantly with the the PM fractions. Additionally, SLA was found to be affected by large particles (PM11, p<0.01; PM2.5 had a more obvious effect on plant leaf traits than the other PM (p<0.05. Overall, the findings from this study provide useful information regarding the selection of plants to reduce atmospheric pollution.

  20. Penumbra measurements of BeamModulatorTM multi leaf collimator

    International Nuclear Information System (INIS)

    Lu Xiaoguang; Wang Yunlai; Huo Xiaoqing; Sha Xiangyan; Miao Xiongfei

    2010-01-01

    Objective: To evaluate the penumbra of a new multileaf collimator equipped with Elekta Synergy accelerator. Methods: The penumbra were derived from beam profiles measured in air and water using PinPoint ion chamber with PTW MP3 water phantom. Variations of penumbra with X-ray beam energy, depth in water, and leaf position were investigated. Results: The penumbra in air for 6 MV X-ray was 2 mm less than that at depth of maximal dose in water. The penumbra of leaf side was 1 mm less than that of the leaf end. The penumbra had close relationship with beam energy, depth in water and leaf position. penumbra increased with beam quality and water depth. The leaf position had great influence on the penumbra. Conclusions: The penumbra of the multileaf collimator is related to its original design and radiation delivery technique. Special considerations should be taken into during treatment planning. Regular measurement should be performed to guarantee the delivery quality. (authors)

  1. TU-C-17A-06: Evaluating IMRT Plan Deliverability Via PTV Shape and MLC Motion

    International Nuclear Information System (INIS)

    McGurk, R; Smith, VA; Price, M

    2014-01-01

    Purpose: For step-and-shoot intensity-modulated radiation therapy (IMRT) plans, the dosimetry and deliverability can be affected by the number and shape of the segments used. Thus, plan deliverability is likely related to target volume and shape. We investigated whether the sphericity of target volumes and the previously proposed Modulation Complexity Score (MCS) could be used together to improve the detection of IMRT fields that failed quality assurance (QA). Methods: 526 and 353 IMRT fields from 32 prostate and 28 head-and-neck (H'N) patients, respectively, were analyzed. MCS was used to quantify the complexity of multi-leaf collimator shapes and motion patterns for each field. Sphericity was calculated using the surface area and volume of each patient’s planning target volume (PTV). Logistic regression models with MCS-alone or MCS and sphericity terms were fit to PlanUNC IMRT pass/fail results (5% dose difference, 4mm distance-to-agreement criteria) using SAS 9.3 (Cary, NC). Model concordance, discordance and area under the curve (AUC) were used to quantify model accuracy. Results: Mean (±1 standard deviation) MCS for prostate and H'N were 0.58(±0.15) and 0.40 (±0.14), respectively. Mean sphericity scores were 0.75(±0.05) for prostate and 0.63 (±0.12) for H'N. Both metrics were significantly different between treatment locations (p<0.01, Wilcoxon Rank Sum Test) indicating greater complexity in shape and variations for H'N PTVs. For prostate, concordance, discordance and AUC using MCS alone were 80.8%, 18.7% and 0.811. Including sphericity in the model improved these to 81.7%, 17.7% and 0.820. For H'N, the original concordance, discordance and AUC were of 72.9%, 26.9% and 0.729. Including sphericity into the model improved these metrics to 76.5%, 23.2% and 0.729. Conclusion: Sphericity provides a quantitative measure of PTV shape. While improvement in IMRT QA failure detection was modest for both prostate and H'N plans

  2. SU-G-BRC-05: Conundrum for VMAT Cranial Multiple Lesions Treated with HD120 MLC

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S; Kuo, L; Happersett, L; Lovelock, D; Ballangrud, A; LoSasso, T [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To commission a custom 6MV-SRS-AAA Eclipse beam model for VMAT multiple lesions cranial SRS treatment on a Varian TrueBeam STx. Methods: Six clinical plans were created using a customized beam model with dosimetric-leaf-gap(DLG) optimized for clinical treatments. Each plan had 4–6 non-isocentric targets with size from 0.2 to 7.1cc. All fields were measured with EBT3 film in the coronal plane in a solid water phantom and with an AS1000 EPID using gantry rotation. In addition, an end-to-end test was performed with coronal and sagittal films in an anthropomorphic phantom verifying dosimetry and localization accuracy. Portal dose distributions were generated with a custom portal dosimetry algorithm(PDIP). Measured dose distributions were compared with calculations using average dose difference (DD), and gamma function, γ. Using a 1.25mm grid, the γ criteria, local DD ≤ 3% and 2mm distance-to-agreement, were applied in regions with dose 50% of maximum. Results: The respective DD and γ for all films were <±2% and >94.2%. The portal dose γ scores for all the plans were >94.9%. However, local regions with underdose >10%, were observed when targets were treated with the 5mm leaves. The same plans re-optimized with two isocenters such that all lesions were under the 2.5mm leaves did not show this effect. The DD and localization error of the end-to-end test were within 3.4% and 1.0mm respectively. Conclusion: The custom AAA beam model is capable of calculating acceptable dosimetry for targets using only the 2.5 mm leaves. This restricts lesions to within ±4cm of isocenter. The observed underdose beneath the 5mm leaves is attributed to a limitation in Eclipse that uses a single DLG representing the DLG’s of both 2.5mm and 5mm leaves. If lesions are >4cm from isocenter, a multiple isocenter technique should be considered to allow the use of only the 2.5mm leaves.

  3. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  4. SU-E-T-774: Use of a Scintillator-Mirror-Camera System for the Measurement of MLC Leakage Radiation with the CyberKnife M6 System

    Energy Technology Data Exchange (ETDEWEB)

    Goggin, L; Kilby, W; Noll, M; Maurer, C [Accuray Inc, Sunnyvale, CA (United States)

    2015-06-15

    Purpose: A technique using a scintillator-mirror-camera system to measure MLC leakage was developed to provide an efficient alternative to film dosimetry while maintaining high spatial resolution. This work describes the technique together with measurement uncertainties. Methods: Leakage measurements were made for the InCise™ MLC using the Logos XRV-2020A device. For each measurement approximately 170 leakage and background images were acquired using optimized camera settings. Average background was subtracted from each leakage frame before filtering the integrated leakage image to replace anomalous pixels. Pixel value to dose conversion was performed using a calibration image. Mean leakage was calculated within an ROI corresponding to the primary beam, and maximum leakage was determined by binning the image into overlapping 1mm x 1mm ROIs. 48 measurements were performed using 3 cameras and multiple MLC-linac combinations in varying beam orientations, with each compared to film dosimetry. Optical and environmental influences were also investigated. Results: Measurement time with the XRV-2020A was 8 minutes vs. 50 minutes using radiochromic film, and results were available immediately. Camera radiation exposure degraded measurement accuracy. With a relatively undamaged camera, mean leakage agreed with film measurement to ≤0.02% in 92% cases, ≤0.03% in 100% (for maximum leakage the values were 88% and 96%) relative to reference open field dose. The estimated camera lifetime over which this agreement is maintained is at least 150 measurements, and can be monitored using reference field exposures. A dependency on camera temperature was identified and a reduction in sensitivity with distance from image center due to optical distortion was characterized. Conclusion: With periodic monitoring of the degree of camera radiation damage, the XRV-2020A system can be used to measure MLC leakage. This represents a significant time saving when compared to the traditional

  5. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    Science.gov (United States)

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    Science.gov (United States)

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A method for photon beam Monte Carlo multileaf collimator particle transport

    Science.gov (United States)

    Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe

    2002-09-01

    . The dose through a static leaf tip is also predicted generally within +/-1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.

  8. A method for photon beam Monte Carlo multileaf collimator particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Siebers, Jeffrey V. [Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, VA (United States)]. E-mail: jsiebers@vcu.edu; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe [Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, VA (United States)

    2002-09-07

    . The dose through a static leaf tip is also predicted generally within {+-}1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry. (author)

  9. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  10. Bean leaf growth response to moderate ozone levels

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L S

    1973-01-01

    The middle leaflet from the first trifoliate leaf of pinto bean plants (Phaseolus vulgaris) was subjected to various ozone levels for both 12 and 24 h to show moderate oxidant injury. Rates of leaf expansion were used as criteria to measure the effects of ozone at three leaflet positions. Growth analysis included Y-intercepts indicating growth after day 1, growth after day 3, and regression line slopes between days 1 and 7 after the beginning of the experiments. Slopes of growth rate regression lines differentiated untreated leaflets from leaflets exposed to a 0.60 ppm-h (0.05 ppm for 12 h) dose. Growth rates of plants exposed to 1.20 ppm-h (either 0.05 ppm for 24 h, or 0.10 ppm for 12 h) were distinguishable from untreated plants within three days. Basal leaf portions showed the most differential ozone response compared with lateral and tip positions.

  11. WE-A-304-01: Strategies and Technologies for Cranial Radiosurgery Planning: MLC-Based Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G. [University of California, San Diego (United States)

    2015-06-15

    The high fractional doses, stringent requirements for accuracy and precision, and surgical perspective characteristic of intracranial radiosurgery create considerations for treatment planning which are distinct from most other radiotherapy procedures. This session will introduce treatment planning techniques specific to two popular intracranial SRS modalities: Gamma Knife and MLC-based Linac. The basic treatment delivery characteristics of each device will be reviewed with a focus on how those characteristics determine the paradigm used for treatment planning. Basic techniques for treatment planning will be discussed, including considerations such as isodose selection, target and organ-at-risk definition, quality indices, and protection of critical structures. Future directions for SRS treatment planning will also be discussed. Learning Objectives: Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery. Demonstrate basic treatment planning techniques. Discuss metrics for evaluating SRS treatment plan quality. Discuss recent and future advances in SRS treatment planning. D. Schlesinger receives research support from Elekta, AB.

  12. WE-A-304-01: Strategies and Technologies for Cranial Radiosurgery Planning: MLC-Based Linac

    International Nuclear Information System (INIS)

    Kim, G.

    2015-01-01

    The high fractional doses, stringent requirements for accuracy and precision, and surgical perspective characteristic of intracranial radiosurgery create considerations for treatment planning which are distinct from most other radiotherapy procedures. This session will introduce treatment planning techniques specific to two popular intracranial SRS modalities: Gamma Knife and MLC-based Linac. The basic treatment delivery characteristics of each device will be reviewed with a focus on how those characteristics determine the paradigm used for treatment planning. Basic techniques for treatment planning will be discussed, including considerations such as isodose selection, target and organ-at-risk definition, quality indices, and protection of critical structures. Future directions for SRS treatment planning will also be discussed. Learning Objectives: Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery. Demonstrate basic treatment planning techniques. Discuss metrics for evaluating SRS treatment plan quality. Discuss recent and future advances in SRS treatment planning. D. Schlesinger receives research support from Elekta, AB

  13. Multileaf collimator intercomparison for intensity modulated radiation therapy implementation; Intercomparacao de colimadores de multiplas laminas para implementacao de terapia de feixes de intensidade modulada

    Energy Technology Data Exchange (ETDEWEB)

    Viteri, Juan Fernando Delgado

    2006-07-01

    In this work a dosimetric comparison between three multileaf collimator systems is presented: a Varian Millennium with 120 leaves, Brainlab mMLC m3 and Varian Mark II both with 52 leaves. The width projection at isocenter level in field's central region are: 0,5 cm; 0,35 cm and 1,0 cm respectively. Common dosimetric characteristics for the three systems in static mode and dynamic capabilities for the two first were compared. In dynamic mode, tests validating proper MLC function through film irradiation were done, such MLC stability, MU linearity, treatment interruptions sensitivity, stability of MLC in dynamic mode, leaf speed stability, were found within {+-}3% deviation in all cases. Dose rate linearity showed differences when this parameter decreases in dynamic mode. Average dose errors for fixed width gaps moving at constant speed were found to be proportional to gap errors and inversely proportional to the gap width. Output factors differences delivered through a sweeping gap were found less than {+-}1% when the gantry was in a lateral position. For the three MLC systems, when comparing beam profiles for the same field was observed that for mMLC presents the sharpest dose gradient region. In the output factors small differences where observed in every MLC system. Dosimetric leaf gap was determined for MLC 120, mMLC and MLC 52, obtained values for a 6 MV beam are: (0,202 {+-} 0,054) cm; (0,157 {+-} 0,070) cm and (0,189 {+-} 0,081) cm respectively. The transmission showed an increase with depth and field width for 6 MV in all the three systems. Average values obtained with ionization chamber for this energy were: (1,630 {+-} 0,018)% for MLC 120; (1,291 {+-} 0,029)% for mMLC and (1,638 {+-} 0,010)% for MLC 52. When obtained through film irradiation, inter and intra leaf transmission showed an off axis dependent behavior for MLC 120 and mMLC. Scatter produced by MLC as a 6 MV open reference field ratio was: (0,297 {+-} 0,024)% for MLC 120; (0,239 {+-} 0

  14. Multileaf collimator intercomparison for intensity modulated radiation therapy implementation; Intercomparacao de colimadores de multiplas laminas para implementacao de terapia de feixes de intensidade modulada

    Energy Technology Data Exchange (ETDEWEB)

    Viteri, Juan Fernando Delgado

    2006-07-01

    In this work a dosimetric comparison between three multileaf collimator systems is presented: a Varian Millennium with 120 leaves, Brainlab mMLC m3 and Varian Mark II both with 52 leaves. The width projection at isocenter level in field's central region are: 0,5 cm; 0,35 cm and 1,0 cm respectively. Common dosimetric characteristics for the three systems in static mode and dynamic capabilities for the two first were compared. In dynamic mode, tests validating proper MLC function through film irradiation were done, such MLC stability, MU linearity, treatment interruptions sensitivity, stability of MLC in dynamic mode, leaf speed stability, were found within {+-}3% deviation in all cases. Dose rate linearity showed differences when this parameter decreases in dynamic mode. Average dose errors for fixed width gaps moving at constant speed were found to be proportional to gap errors and inversely proportional to the gap width. Output factors differences delivered through a sweeping gap were found less than {+-}1% when the gantry was in a lateral position. For the three MLC systems, when comparing beam profiles for the same field was observed that for mMLC presents the sharpest dose gradient region. In the output factors small differences where observed in every MLC system. Dosimetric leaf gap was determined for MLC 120, mMLC and MLC 52, obtained values for a 6 MV beam are: (0,202 {+-} 0,054) cm; (0,157 {+-} 0,070) cm and (0,189 {+-} 0,081) cm respectively. The transmission showed an increase with depth and field width for 6 MV in all the three systems. Average values obtained with ionization chamber for this energy were: (1,630 {+-} 0,018)% for MLC 120; (1,291 {+-} 0,029)% for mMLC and (1,638 {+-} 0,010)% for MLC 52. When obtained through film irradiation, inter and intra leaf transmission showed an off axis dependent behavior for MLC 120 and mMLC. Scatter produced by MLC as a 6 MV open reference field ratio was: (0,297 {+-} 0,024)% for MLC 120; (0,239 {+-} 0,052)% for

  15. Multileaf collimator intercomparison for intensity modulated radiation therapy implementation

    International Nuclear Information System (INIS)

    Viteri, Juan Fernando Delgado

    2006-01-01

    In this work a dosimetric comparison between three multileaf collimator systems is presented: a Varian Millennium with 120 leaves, Brainlab mMLC m3 and Varian Mark II both with 52 leaves. The width projection at isocenter level in field's central region are: 0,5 cm; 0,35 cm and 1,0 cm respectively. Common dosimetric characteristics for the three systems in static mode and dynamic capabilities for the two first were compared. In dynamic mode, tests validating proper MLC function through film irradiation were done, such MLC stability, MU linearity, treatment interruptions sensitivity, stability of MLC in dynamic mode, leaf speed stability, were found within ±3% deviation in all cases. Dose rate linearity showed differences when this parameter decreases in dynamic mode. Average dose errors for fixed width gaps moving at constant speed were found to be proportional to gap errors and inversely proportional to the gap width. Output factors differences delivered through a sweeping gap were found less than ±1% when the gantry was in a lateral position. For the three MLC systems, when comparing beam profiles for the same field was observed that for mMLC presents the sharpest dose gradient region. In the output factors small differences where observed in every MLC system. Dosimetric leaf gap was determined for MLC 120, mMLC and MLC 52, obtained values for a 6 MV beam are: (0,202 ± 0,054) cm; (0,157 ± 0,070) cm and (0,189 ± 0,081) cm respectively. The transmission showed an increase with depth and field width for 6 MV in all the three systems. Average values obtained with ionization chamber for this energy were: (1,630 ± 0,018)% for MLC 120; (1,291 ± 0,029)% for mMLC and (1,638 ± 0,010)% for MLC 52. When obtained through film irradiation, inter and intra leaf transmission showed an off axis dependent behavior for MLC 120 and mMLC. Scatter produced by MLC as a 6 MV open reference field ratio was: (0,297 ± 0,024)% for MLC 120; (0,239 ± 0,052)% for mMLC and (0,202 ± 0

  16. LEAF MICROMORPHOMETRY OF Schinus molle L. (ANARCADIACEAE IN DIFFERENT CANOPY HEIGHTS.

    Directory of Open Access Journals (Sweden)

    Marinês Ferreira Pires

    2015-03-01

    Full Text Available Leaf characterization of trees is essential for its identification and use, as well as to understand its relationships with environment. The objective of this work is to study the leaflet anatomy and leaf biometrical characteristics at different canopy heights of Schinus molle plants as a function of its environmental and physiological modifications. Leaves were collected at three different canopy heights: base, middle and upper canopy in a plantation of S. molle. Leaves were used for anatomical and biometrical analysis. For the anatomical analysis, leaves were fixed in FAA and stored in ethanol 70% and further submitted to transversal and paradermical sections. Slides were photomicrographed and image analysis was performed in UTHSCSA-Imagetool. For biometrical analysis leaf area, length, width, dry mass and specific leaf area were evaluated. The leaflets exhibited single layer epidermis, anomocytic and ciclocytic stomata, isobilateral mesophyll, subepidermal parenchyma layer in both adaxial and abaxial faces of epidermis, secretory vessels and lamellar collenchyma in midrib and leaf border. Leaf anatomy modifications occurred in cuticle and mesophyll thickness, vascular system, phloem thickness, and stomatal density in accordance with leaf canopy position. Leaves were smaller and with reduced leaf area at higher canopy positions. S. molle leaf anatomy is different from other species within Schinus genre with modifications under different environmental and physiological modifications promoted by its canopy height.

  17. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  18. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  19. A phantom study of dose compensation behind hip prosthesis using portal dosimetry and dynamic MLC

    International Nuclear Information System (INIS)

    Nielsen, Martin Skovmos; Carl, Jesper; Nielsen, Jane

    2008-01-01

    Background and purpose: A dose compensation method is presented for patients with hip prosthesis based on Dynamic Multi Leaves Collimator (DMLC) planning. Calculations are done from an exit Portal Dose Image (PDI) from 6 MV Photon beam using an Electronic Portal Imaging Device (EPID) from Varian. Four different hip prostheses are used for this work. Methods: From an exit PDI the fluence needed to yield a uniform dose distribution behind the prosthesis is calculated. To back-project the dose distribution through the phantom, the lateral scatter is removed by deconvolution with a point spread function (PSF) determined for depths from 10 to 40 cm. The dose maximum, D max , is determined from the primary plan which delivers the PDI. A further deconvolution to remove the dose glare effect in the EPID is performed as well. Additionally, this calculated fluence distribution is imported into the Treatment Planning System (TPS) for the final calculation of a DMLC plan. The fluence file contains information such as the relative central axis (CAX) position, grid size and fluence size needed for correct delivery of the DMLC plan. GafChromic EBT films positioned at 10 cm depth are used as verification of uniform dose distributions behind the prostheses. As the prosthesis is positioned at the phantom surface the dose verifications are done 10 cm from the prosthesis. Conclusion: The film measurement with 6 MV photon beam shows uniform doses within 5% for most points, but with hot/cold spots of 10% near the femoral head prostheses

  20. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Science.gov (United States)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  1. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  2. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  3. Herbivory mitigation through increased water-use efficiency in a leaf-mining moth-apple tree relationship.

    Science.gov (United States)

    Pincebourde, Sylvain; Frak, Ela; Sinoquet, Hervé; Regnard, Jean Luc; Casas, Jérôme

    2006-12-01

    Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.

  4. Low light availability affects leaf gas exchange, growth and survival ...

    African Journals Online (AJOL)

    The values of dark respiration rate (Rd) and photosynthetic compensation irradiance (Ic) were sufficiently low for a positive carbon balance. Notwithstanding, the interpretation of results of microclimate variables together with leaf gas exchange and growth variables indicated that seedlings at all sites were in a suboptimal ...

  5. Testing of dynamic multileaf collimator by dynamic log file

    International Nuclear Information System (INIS)

    Ono, Kaoru; Nakamura, Tetsuji; Yamato, Shinichirou; Miyazawa, Masanori

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy. In the dynamic multileaf collimator (MLC) method of IMRT delivery, because of the relatively small gaps between opposed leaves and because most regions are shielded by leaves most of the time, the delivered dose is very sensitive to MLC leaf positional accuracy. A variation of ±0.2 mm in the gap width can result in a dose variation of ±3% for each clinical dynamic MLC field. Most often the effects of leaf motion are inferred from dose deviations on film or from variations in ionization measurements. These techniques provide dosimetric information but do not provide detailed information for diagnosing delivery problems. Therefore, a dynamic log file (Dynalog file) was used to verify dynamic MLC leaf positional accuracy. Measuring for narrow gaps using the thickness gauge could detect a log file accuracy of approximately 0.1 mm. The accuracy of dynamic MLC delivery depends on the accuracy with which the velocity of each leaf is controlled. We studied the relationship between leaf positional accuracy and leaf velocity. Leaf velocity of 0.7 cm/sec caused approximately 0.2 mm leaf positional variation. We then analyzed leaf positional accuracy for the clinical dynamic MLC field using Dynalog File Viewer (Varian Medical Systems, Inc., Palo Alto, California (CA)), and developed a new program that can analyze more detailed leaf motions. Using this program, we can obtain more detailed information, and therefore can determine the source of dose uncertainties for the dynamic MLC field. (author)

  6. Multileaf Collimator Characteristics and Reliability Requirements for IMRT Elekta System

    International Nuclear Information System (INIS)

    Liu, Chihray; Simon, Thomas A.; Fox, Christopher; Li, Jonathan; Palta, Jatinder R.

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm

  7. Multileaf collimator characteristics and reliability requirements for IMRT Elekta system.

    Science.gov (United States)

    Liu, Chihray; Simon, Thomas A; Fox, Christopher; Li, Jonathan; Palta, Jatinder R

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm.

  8. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    Science.gov (United States)

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  10. Dosimetric effect of multileaf collimator leaf width on volumetric modulated arc stereotactic radiotherapy for spine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Amoush, Ahmad, E-mail: aamoush@augusta.edu [Augusta University, 1120 15th St, Augusta, GA 30912 (United States); Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 (United States); Long, Huang [University of Utah, 1950 Circle of Hope, Salt Lake City, UT 84112 (United States); Subedi, Laxmi [Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115 (United States); Qi, Peng; Djemil, Toufik; Xia, Ping [Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 (United States)

    2017-07-01

    This work aimed to study the dosimetric effect of multileaf collimator (MLC) leaf widths in treatment plans for patients receiving volumetric modulated arc therapy (VMAT) for spine stereotactic body radiation therapy (SBRT). Thirteen patients treated with spine SBRT were retrospectively selected for this study. The patients were treated following the protocol of the Radiation Therapy Oncology Group 0631 (RTOG 0631) for spine metastasis. The prescription dose was 16 Gy in 1 fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the spinal cord receiving < 10 Gy (V10) were the acceptable tolerance doses. For the purpose of this study, 2 dual-arc VMAT plans were created for each patient using 3 different MLC leaf widths: 2.5 mm, 4 mm, and 5 mm. The compliance with the RTOG 0631 protocol, conformity index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. The average V16Gy of the targets was 91.8 ± 1.2%, 92.2 ± 2.1%, and 91.7 ± 2.3% for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively (p = 0.78). Accordingly, the average CI was 1.45 ± 0.4, 1.47 ± 0.29, and 1.47 ± 0.31 (p = 0.98), respectively. The average DGI was 0.22 ± 0.04, 0.20 ± 0.06, and 0.22 ± 0.05, respectively (p = 0.77). The average maximum dose to the spinal cord was 12.45 ± 1.0 Gy, 12.80 ± 1.0 Gy, and 12.48 ± 1.1 (p = 0.62) and V10% of the spinal cord was 3.6 ± 2.1%, 5.6 ± 2.8%, and 5.5 ± 3.0% (p = 0.11) for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively. Accordingly, the average number of MUs was 4341 ± 500 MU, 5019 ± 834 MU, and 4606 ± 691 MU, respectively (p = 0.053). The use of 2.5-mm, 4-mm, and 5-mm MLCs achieved similar VMAT plan quality as recommended by the RTOG 0631. The dosimetric parameters were also comparable for the 3 MLCs. In general, any of these leaf widths can be used for spine

  11. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.

    Science.gov (United States)

    Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim

    2017-12-01

    Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    International Nuclear Information System (INIS)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  13. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  14. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems.

    Science.gov (United States)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-01

    To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Failures modes with RPN > or = 125 were recommended to be tested monthly. Failure modes with RPN < 125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be approximately 193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was approximately 35 min, while that taken for comprehensive testing was approximately 3.5 h. FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  15. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  16. Waiting for the Leaf; Warten auf den Leaf

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Jan

    2012-01-15

    Nissan will be the first manufacturer to launch an electric vehicle of the VW Golf category in the German market. With a mileage of about 170 km and a roomy passenger compartment, the Leaf promises much comfort. In the US market, it was launched two years ago. Was it worth while waiting for?.

  17. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  18. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  19. MO-FG-BRA-06: Electromagnetic Beacon Insertion in Lung Cancer Patients and Resultant Surrogacy Errors for Dynamic MLC Tumour Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, N; Booth, J; Caillet, V; Haddad, C; Crasta, C [Royal North Shore Hospital, St. Leonards, NSW (Australia); O’Brien, R; Keall, P [University of Sydney, Sydney, NSW (Australia); Szymura, K [Royal North Shore Hospital, Sydney, NSW (Australia)

    2016-06-15

    Purpose: To assess endo-bronchial electromagnetic beacon insertion and to quantify the geometric accuracy of using beacons as a surrogate for tumour motion in real-time multileaf collimator (MLC) tracking of lung tumours. Methods: The LIGHT SABR trial is a world-first clinical trial in which the MLC leaves move with lung tumours in real time on a standard linear accelerator. Tracking is performed based on implanted electromagnetic beacons (CalypsoTM, Varian Medical Systems, USA) as a surrogate for tumour motion. Five patients have been treated and have each had three beacons implanted endo-bronchially under fluoroscopic guidance. The centre of mass (C.O.M) has been used to adapt the MLC in real-time. The geometric error in using the beacon C.O.M as a surrogate for tumour motion was measured by measuring the tumour and beacon C.O.M in all phases of the respiratory cycle of a 4DCT. The surrogacy error was defined as the difference in beacon and tumour C.O.M relative to the reference phase (maximum exhale). Results: All five patients have had three beacons successfully implanted with no migration between simulation and end of treatment. Beacon placement relative to tumour C.O.M varied from 14 to 74 mm and in one patient spanned two lobes. Surrogacy error was measured in each patient on the simulation 4DCT and ranged from 0 to 3 mm. Surrogacy error as measured on 4DCT was subject to artefacts in mid-ventilation phases. Surrogacy error was a function of breathing phase and was typically larger at maximum inhale. Conclusion: Beacon placement and thus surrogacy error is a major component of geometric uncertainty in MLC tracking of lung tumours. Surrogacy error must be measured on each patient and incorporated into margin calculation. Reduction of surrogacy error is limited by airway anatomy, however should be taken into consideration when performing beacon insertion and planning. This research is funded by Varian Medical Systems via a collaborative research agreement.

  20. MO-FG-BRA-06: Electromagnetic Beacon Insertion in Lung Cancer Patients and Resultant Surrogacy Errors for Dynamic MLC Tumour Tracking

    International Nuclear Information System (INIS)

    Hardcastle, N; Booth, J; Caillet, V; Haddad, C; Crasta, C; O’Brien, R; Keall, P; Szymura, K

    2016-01-01

    Purpose: To assess endo-bronchial electromagnetic beacon insertion and to quantify the geometric accuracy of using beacons as a surrogate for tumour motion in real-time multileaf collimator (MLC) tracking of lung tumours. Methods: The LIGHT SABR trial is a world-first clinical trial in which the MLC leaves move with lung tumours in real time on a standard linear accelerator. Tracking is performed based on implanted electromagnetic beacons (CalypsoTM, Varian Medical Systems, USA) as a surrogate for tumour motion. Five patients have been treated and have each had three beacons implanted endo-bronchially under fluoroscopic guidance. The centre of mass (C.O.M) has been used to adapt the MLC in real-time. The geometric error in using the beacon C.O.M as a surrogate for tumour motion was measured by measuring the tumour and beacon C.O.M in all phases of the respiratory cycle of a 4DCT. The surrogacy error was defined as the difference in beacon and tumour C.O.M relative to the reference phase (maximum exhale). Results: All five patients have had three beacons successfully implanted with no migration between simulation and end of treatment. Beacon placement relative to tumour C.O.M varied from 14 to 74 mm and in one patient spanned two lobes. Surrogacy error was measured in each patient on the simulation 4DCT and ranged from 0 to 3 mm. Surrogacy error as measured on 4DCT was subject to artefacts in mid-ventilation phases. Surrogacy error was a function of breathing phase and was typically larger at maximum inhale. Conclusion: Beacon placement and thus surrogacy error is a major component of geometric uncertainty in MLC tracking of lung tumours. Surrogacy error must be measured on each patient and incorporated into margin calculation. Reduction of surrogacy error is limited by airway anatomy, however should be taken into consideration when performing beacon insertion and planning. This research is funded by Varian Medical Systems via a collaborative research agreement.

  1. SU-E-T-569: Evaluation of VMAT Plans Generated with HD120 and Millennium 120 MLC Between Two Matched Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Ballas, L; Chang, E; Chung, E; Chiu, R; Cummings, D; Shiu, A [University Southern California, Los Angeles, CA (United States)

    2014-06-01

    Purpose: To evaluate VMAT treatment plans generated with HD120 MLC and Millennium 120 MLC between two matched linacs and to determine if one can back up the other. Methods: The 6x photon beams are matched for our Varian TrueBeam STx and Trilogy linacs, which are equipped with HD120 MLC and Millennium 120 MLC, respectively. Three prostate and three brain VMAT plans were used for the evaluation. Five plans (three prostate and two brain plans) were originally generated with the TrueBeam STx and re-computed with the Trilogy. One brain plan was evaluated the other way around. For each plan, the PTV coverage of V95 was made the same between two linacs. The dosimetric differences associated with the plans were compared using: 1) Percentage mean dose differences to the PTV, 2) Homogeneity index, HI = (Dmax − Dmin)/Dmean for the PTV. For prostate plans, the mean dose differences to the rectum were evaluated. While for brain plans, the percentage max dose differences to the lenses (left and right lens) were evaluated. Results: For three prostate plans, the average of the percentage mean dose differences to the PTV was 0.5 ± 0.1% and the HI was 0.1 ± 0.0%. The average of the percentage mean dose difference to the rectum was 3.5 ± 0.5%. For three brain plans, the average of the percentage mean dose differences to the PTV was 0.2 ± 1.1% and the HI was 0.2 ± 0.1%. The average of the percentage max dose differences to the lenses was 22.9 ± 4.0%. Conclusion: For prostate VMAT plans, changing the treatment from the TrueBeam STx to the Trilogy does not necessarily need re-optimization. But for brain plans, in order to minimize dose to the lenses, it is recommended to re-optimize the plan if changing the treatment between these two linacs.

  2. SU-E-T-569: Evaluation of VMAT Plans Generated with HD120 and Millennium 120 MLC Between Two Matched Linacs

    International Nuclear Information System (INIS)

    Cui, G; Ballas, L; Chang, E; Chung, E; Chiu, R; Cummings, D; Shiu, A

    2014-01-01

    Purpose: To evaluate VMAT treatment plans generated with HD120 MLC and Millennium 120 MLC between two matched linacs and to determine if one can back up the other. Methods: The 6x photon beams are matched for our Varian TrueBeam STx and Trilogy linacs, which are equipped with HD120 MLC and Millennium 120 MLC, respectively. Three prostate and three brain VMAT plans were used for the evaluation. Five plans (three prostate and two brain plans) were originally generated with the TrueBeam STx and re-computed with the Trilogy. One brain plan was evaluated the other way around. For each plan, the PTV coverage of V95 was made the same between two linacs. The dosimetric differences associated with the plans were compared using: 1) Percentage mean dose differences to the PTV, 2) Homogeneity index, HI = (Dmax − Dmin)/Dmean for the PTV. For prostate plans, the mean dose differences to the rectum were evaluated. While for brain plans, the percentage max dose differences to the lenses (left and right lens) were evaluated. Results: For three prostate plans, the average of the percentage mean dose differences to the PTV was 0.5 ± 0.1% and the HI was 0.1 ± 0.0%. The average of the percentage mean dose difference to the rectum was 3.5 ± 0.5%. For three brain plans, the average of the percentage mean dose differences to the PTV was 0.2 ± 1.1% and the HI was 0.2 ± 0.1%. The average of the percentage max dose differences to the lenses was 22.9 ± 4.0%. Conclusion: For prostate VMAT plans, changing the treatment from the TrueBeam STx to the Trilogy does not necessarily need re-optimization. But for brain plans, in order to minimize dose to the lenses, it is recommended to re-optimize the plan if changing the treatment between these two linacs

  3. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  4. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  5. The Nissan LEAF electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2011-07-01

    The need for CO{sub 2} reduction as a countermeasure to global warming, and to move away from our dependence on fossil fuels as a countermeasure to energy security are urgent issues. One of the ultimate goals to achieving these targets is to develop a 'Zero emission car' such as an electric vehicle or a fuel cell vehicle, along with the manufacturing of clean energy. Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. Sales of the Nissan LEAF started in North America, Europe and Japan in 2010, with plans to sell it globally by 2012. In order to achieve an improved driving range, power performance and drivability performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and reducer. Moreover, the Nissan LEAF has the capability of a 3.3kW AC charge and a 50kW DC quick charge. This presentation will introduce the features of the electric powertrain adopted for Nissan LEAF. (orig.)

  6. 7 CFR 30.2 - Leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf...

  7. 7 CFR 29.3035 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  8. 7 CFR 29.6023 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  9. 7 CFR 29.1030 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  10. 7 CFR 29.3527 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  11. 7 CFR 29.3526 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  12. 7 CFR 29.3034 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  13. 7 CFR 29.6022 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  14. Variation of leaf margin serration in Populus nigra of industrial dumps

    Directory of Open Access Journals (Sweden)

    Yu. A. Shtirs

    2017-07-01

    Full Text Available The variability of leaf margin serration of Populus nigra L. in conditions of industrial dumps (coal mines dumps and overburden dumps and city park is estimated. The value of this indicator is in the range from 1.25 to 1.76 and significantly increases along the gradient: coal mines dumps – overburden dumps – city park. From the number of selected gradations of P. nigra leaf blades, the gradation with values of 1.45-1.55 is most pronounced according to the analyzed index for industrial dumps, for the park – with the values of 1.55-1.65. The degree of serration of edge leaf blade is characterized by low values of variation – coefficient of variation is less than 10.0%. We registered the significant positive correlation between the average values of leaf margin serration and the length of P. nigra leaf blade.

  15. Betel leaf in stoma care.

    Science.gov (United States)

    Banu, Tahmina; Talukder, Rupom; Chowdhury, Tanvir Kabir; Hoque, Mozammel

    2007-07-01

    Construction of a stoma is a common procedure in pediatric surgical practice. For care of these stomas, commercially available devices such as ostomy bag, either disposable or of longer duration are usually used. These are expensive, particularly in countries like Bangladesh, and proper-sized ones are not always available. We have found an alternative for stoma care, betel leaf, which is suitable for Bangladeshis. We report the outcome of its use. After construction of stoma, at first zinc oxide paste was applied on the peristomal skin. A betel leaf with shiny, smooth surface outwards and rough surface inwards was put over the stoma with a hole made in the center according to the size of stoma. Another intact leaf covers the stomal opening. When bowel movement occurs, the overlying intact leaf was removed and the fecal matter was washed away from both. The leaves were reused after cleaning. Leaves were changed every 2 to 3 days. From June 1998 to December 2005, in the department of pediatric surgery, Chittagong Medical College and Hospital, Chittagong, Bangladesh, a total of 623 patients had exteriorization of bowel. Of this total, 495 stomas were cared for with betel leaves and 128 with ostomy bags. Of 623 children, 287 had sigmoid colostomy, 211 had transverse colostomy, 105 had ileostomy, and 20 had jejunostomy. Of the 495 children under betel leaf stoma care, 13 patients (2.6%) developed skin excoriation. There were no allergic reactions. Of the 128 patients using ostomy bag, 52 (40.65%) had skin excoriation. Twenty-four (18.75%) children developed some allergic reactions to adhesive. Monthly costs for betel leaves were 15 cents (10 BDT), whereas ostomy bags cost about US$24. In the care of stoma, betel leaves are cheap, easy to handle, nonirritant, and nonallergic.

  16. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.

  17. SU-E-T-628: Effect of Dose Rate and Leakage Correction for Dosimetric Leaf Gap Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States); Chu, A [Yale New Haven Hospital, New Haven, CT (United States); Chi, Y [Winter Park Cancer Center, Winter Park, FL (United States); Hu, J [Wayne State University, Detroit, MI (United States)

    2014-06-15

    Purpose: To study the dose rate response of Mapcheck and quantify/correct dose rate/leakage effect on IMRT QA. Evaluate the dose rate/leakage effect on dosimetric leaf gap (DLG) measurement. Methods: Varian Truebeam Linac with HD120 MLC was used for all measurement, it is capable to adjust dose rate from 600MU/min to 5MU/min. Fluke Advanced Therapy Doisemter and PTW 30013 Farmer chamber for chamber measurement; SunNuclear Mapcheck2 with 5cm total buildup for diode measurement. DLG was measured with both chamber and diode.Diode response was measured by varies dose rate, while fixed mapcheck setup and total MU. MLC Leakage was measured with both chamber and diode. Mapcheck measurement was saved as movie file (mcm file), which include measurement updated every 50mSec. The difference between intervals can be converted to dose and dose rate and leakage response correction can be applied to them. Results: DLG measurement results with chamber and diode were showed as follows, the DLG value is 0.36 vs. 0.24mm respectively. Diode dose rate response drops from 100% at 600MU/min to 95.5% at 5MU/min as follows. MLC Leakage measured with diode is 1.021%, which is 9% smaller than 1.112% from chamber measurement. By apply the dose rate and leakage correction, the residue error reduced 2/3. Conclusions: Diode has lower response at lower dose rate, as low as 4.5% for 5MU/min; diode has lower energy response for low energy too, 5% lower for Co-60 than 6MV. It partially explains the leakage difference of 9% between chamber and diode. Lower DLG with diode is because of the lower response at narrower gap, in Eclipse however DLG need to increase to makeup lower response, which is over correction for chamber though. Correction can reduce error by 2/3, the rest 1/3 can be corrected by scatter effect, which is under study.

  18. Quality assurance for multileaf collimator with radiographic film exposed by slit beam

    International Nuclear Information System (INIS)

    Ma Jinli; Jiang Guoliang; Fu Xiaolong; Liao Yuan; Wu Kailiang; Zhou Lijun

    2004-01-01

    Objective: To evaluate the role of Kodak X-OMAT-V film exposed by slit beam in the check of various leaf positions of multileaf collimator(MLC), and to check the status of Varian 26 leaf pairs MLC in the Department of Radiation Oncology in Shanghai Cancer Hospital affiliated to Fudan University. Methods: At first, some position errors of different sizes were produced for different leaves so as to determine the minimal leaf position error that could be seen on film. Then, exposure conditions including the exposure dose and source to film distance were changed to find the optimal one. Finally, a Kodak X-OMAT-V film was exposed with a leaf sequence file which was designated randomly by a physicist with leaf position errors of different sizes. After the film was developed, two doctors and two physicists were invited to observe, on blind basis, in order to determine the sensitivity and specificity of the film in the check of leaf positions. Ultimately, leaf positions of the Varian 26 leaf pairs MLC were checked, in which way, the leaf motor status and the carriage stability were checked indirectly. Results: Leaf position errors no less than 0.2 mm could be found using Kodak X-OMAT-V film under the following conditions: source to film distance 100 cm, exposure dose 25 MU, which had been considered as the optimal exposure conditions. The sensitivity and specificity of this method were 73.4% and 96.4%. Any MLC leaf position errors more than 0.2 mm could not be detected. Thus, it was deemed that all leaf motors of the Varian 26 leaf pairs MLC were well in gear and the carriages were stable. Conclusions: MLC leaf position errors can be detected by Kodak X-OMAT-V film exposed by slit beam with high accuracy, but the ability to find leaf position errors with the naked eye may vary from person to person. It is proposed that the Kodak X-OMAT-V film exposed by slit beam be used to check the MLC leaf positions, i. e. the leaf motor status and carriage stability, at regular

  19. Preliminary validation of a Monte Carlo model for IMRT fields

    International Nuclear Information System (INIS)

    Wright, Tracy; Lye, Jessica; Mohammadi, Mohammad

    2011-01-01

    Full text: A Monte Carlo model of an Elekta linac, validated for medium to large (10-30 cm) symmetric fields, has been investigated for small, irregular and asymmetric fields suitable for IMRT treatments. The model has been validated with field segments using radiochromic film in solid water. The modelled positions of the multileaf collimator (MLC) leaves have been validated using EBT film, In the model, electrons with a narrow energy spectrum are incident on the target and all components of the linac head are included. The MLC is modelled using the EGSnrc MLCE component module. For the validation, a number of single complex IMRT segments with dimensions approximately 1-8 cm were delivered to film in solid water (see Fig, I), The same segments were modelled using EGSnrc by adjusting the MLC leaf positions in the model validated for 10 cm symmetric fields. Dose distributions along the centre of each MLC leaf as determined by both methods were compared. A picket fence test was also performed to confirm the MLC leaf positions. 95% of the points in the modelled dose distribution along the leaf axis agree with the film measurement to within 1%/1 mm for dose difference and distance to agreement. Areas of most deviation occur in the penumbra region. A system has been developed to calculate the MLC leaf positions in the model for any planned field size.

  20. Two-argument total scatter factor for small fields simultaneously collimated by MLC and jaws: application to stereotactic radiosurgery and radiotherapy

    Science.gov (United States)

    Han, Zhaohui; Friesen, Scott; Hacker, Fred; Zygmanski, Piotr

    2018-01-01

    Direct use of the total scatter factor (S tot) for independent monitor unit (MU) calculations can be a good alternative approach to the traditional separate treatment of head/collimator scatter (S c) and phantom scatter (S p), especially for stereotactic small fields under the simultaneous collimation of secondary jaws and tertiary multileaf collimators (MLC). We have carried out the measurement of S tot in water for field sizes down to 0.5  ×  0.5 cm2 on a Varian TrueBeam STx medical linear accelerator (linac) equipped with high definition MLCs. Both the jaw field size (c) and MLC field size (s) significantly impact the linac output factors, especially when c \\gg s and s is small (e.g. s  effectively transforms the measured trapezoidal domain in (c,s) plane to a rectangular domain to facilitate easier two-dimensional interpolation to determine S tot for arbitrary (c,s) combinations. Both the empirical fit and interpolation showed good agreement with experimental validation data.

  1. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli.

    Science.gov (United States)

    Perrenoud, Annik; Sauer, Uwe

    2005-05-01

    Even though transcriptional regulation plays a key role in establishing the metabolic network, the extent to which it actually controls the in vivo distribution of metabolic fluxes through different pathways is essentially unknown. Based on metabolism-wide quantification of intracellular fluxes, we systematically elucidated the relevance of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc for aerobic glucose catabolism in batch cultures of Escherichia coli. Knockouts of ArcB, Cra, Fnr, and Mlc were phenotypically silent, while deletion of the catabolite repression regulators Crp and Cya resulted in a pronounced slow-growth phenotype but had only a nonspecific effect on the actual flux distribution. Knockout of ArcA-dependent redox regulation, however, increased the aerobic tricarboxylic acid (TCA) cycle activity by over 60%. Like aerobic conditions, anaerobic derepression of TCA cycle enzymes in an ArcA mutant significantly increased the in vivo TCA flux when nitrate was present as an electron acceptor. The in vivo and in vitro data demonstrate that ArcA-dependent transcriptional regulation directly or indirectly controls TCA cycle flux in both aerobic and anaerobic glucose batch cultures of E. coli. This control goes well beyond the previously known ArcA-dependent regulation of the TCA cycle during microaerobiosis.

  2. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Dong Zhou

    2016-01-01

    Full Text Available Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator.

  3. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    Science.gov (United States)

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  4. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy.

    Science.gov (United States)

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator.

  5. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy

    Science.gov (United States)

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator. PMID:27110274

  6. The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior.

    Science.gov (United States)

    Wedmann, Sonja; Bradler, Sven; Rust, Jes

    2007-01-09

    Stick and leaf insects (insect order Phasmatodea) are represented primarily by twig-imitating slender forms. Only a small percentage ( approximately 1%) of extant phasmids belong to the leaf insects (Phylliinae), which exhibit an extreme form of morphological and behavioral leaf mimicry. Fossils of phasmid insects are extremely rare worldwide. Here we report the first fossil leaf insect, Eophyllium messelensis gen. et sp. nov., from 47-million-year-old deposits at Messel in Germany. The new specimen, a male, is exquisitely preserved and displays the same foliaceous appearance as extant male leaf insects. Clearly, an advanced form of extant angiosperm leaf mimicry had already evolved early in the Eocene. We infer that this trait was combined with a special behavior, catalepsy or "adaptive stillness," enabling Eophyllium to deceive visually oriented predators. Potential predators reported from the Eocene are birds, early primates, and bats. The combination of primitive and derived characters revealed by Eophyllium allows the determination of its exact phylogenetic position and illuminates the evolution of leaf mimicry for this insect group. It provides direct evidence that Phylliinae originated at least 47 Mya. Eophyllium enlarges the known geographical range of Phylliinae, currently restricted to southeast Asia, which is apparently a relict distribution. This fossil leaf insect bears considerable resemblance to extant individuals in size and cryptic morphology, indicating minimal change in 47 million years. This absence of evolutionary change is an outstanding example of morphological and, probably, behavioral stasis.

  7. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    Science.gov (United States)

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests

  8. A comprehensive study of the mechanical performance of gantry, EPID and the MLC assembly in Elekta linacs during gantry rotation

    DEFF Research Database (Denmark)

    Rowshanfarzad, P; Lynggaard Riis, Hans; Zimmermann, S J

    2015-01-01

    OBJECTIVE: In radiotherapy treatments, it is crucial to monitor the performance of linear accelerator (linac) components, including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested...... collimator leaf bank assemblies was around 1 mm. A meaningful correlation was found between the age of the linacs and their mechanical performance. Conclusions and Advances in knowledge: The method and software developed in this study provide a simple tool for effective investigation of the behaviour...

  9. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    Science.gov (United States)

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL

  10. [Relationships among leaf traits and their expression in different vegetation zones in Yanhe River basin, Northwest China].

    Science.gov (United States)

    Guo, Ru; Wen, Zhong-ming; Wang, Hong-xia; Qi, De-hui

    2015-12-01

    This article selected zonal plant communities as the research objects in different vegetation zones in Yanhe River basin. We measured six leaf traits of the dominant species and main accompanying species in each community, and then analyzed the relationships and their changes along with environmental gradients between these traits in order to understand the plant adaptation strategies to the environment changes. The results showed that the specific leaf area was significantly negatively correlated to leaf tissue density, area-based leaf nitrogen and phosphorus concentrations, and significantly positively correlated to mass-based leaf phosphorus concentration. Both the scaling relationships among these traits and plant life strategies were different among the three vegetation zones, the scaling-dependent relationship between leaf tissue density and specific leaf area was stronger in steppe and forest-steppe zones than in forest zone, but the correlations among area-based leaf nitrogen/phosphorus concentrations and specific leaf area and leaf tissue density were more significant in forest zone than in steppe zone. In the arid grassland and forest-steppe zone, plants give priority to defensive and stress resistance strategies, and in relatively moist nutrient-rich forest zone, plants give priority to fast growth and resource optimization allocation strategies.

  11. Localising QTLs for leaf rust resistance and agronomic traits in barley (¤Hordeum vulgare¤ L.)

    DEFF Research Database (Denmark)

    Kicherer, S.; Backes, G.; Walther, U.

    2000-01-01

    to leaf rust by means of artificial infection, heading date, plant height and Kernel weight were assessed. For leaf rust resistance, 4 QTLs were localised, that explained 96.1% of the genetic variation. One QTL on chromosome 4H confirmed a position found in another genetic background and one mapped...

  12. Juvenile tree growth correlates with photosynthesis and leaf phosphorus content in central Amazonia

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Marenco

    2015-04-01

    Full Text Available Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04. Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K, the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003. At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P

  13. Investigation of the mechanical performance of Siemens linacs components during arc: gantry, MLC, and electronic portal imaging device.

    Science.gov (United States)

    Rowshanfarzad, Pejman; Häring, Peter; Riis, Hans L; Zimmermann, Sune J; Ebert, Martin A

    2015-01-01

    In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines.

  14. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    Peanut (Arachis hypogaea) is one of the most important sources of plant protein. Current selection of genotypes requires molecular characterization of available populations. Peanut genome database has several EST cDNAs which can be used to analyze gene expression. Analysis of proteins is a direct...... approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel...... electrophoresis in combination with sequence identification using MALDI/TOF to determine their identity and function related to growth, development and responses to stresses. Peanut leaf proteins were resolved into 300 polypeptides with pI values between 3.5 and 8.0 and relative molecular masses from 12 to 100 k...

  15. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  16. Correlations Between Degree of Petal Fusion, Leaf Size and Fruit Size: A Case in Syzygium (Myrtaceae

    Directory of Open Access Journals (Sweden)

    PUDJI WIDODO

    2009-07-01

    Full Text Available Syzygium is one of large genera of the flowering plants. In order to simplify the identification, a classification is required, e.g. based on degree of petal fusion, leaf size and fruit size. Due to variations of vegetative and generative characters, a correlation analysis was carried out. The aim of this research is to know the correlation between degree of petal fusion, leaf length and fruit diameter. The result of this research showed that there is positive correlation between those three variables. The increase of leaf size will increase fruit size and petal lobe depth.

  17. Effects of Psidium guajava Leaf Infusion on Streptococci viridans

    Directory of Open Access Journals (Sweden)

    Hing Yi Chen

    2016-09-01

    Full Text Available Background: Dental caries is recognized as the most important oral burden. It is caused by the formation of lactate acid formed through reaction of bacteria and carbohydrates. Streptococci viridans has been proven as the primary etiologic agents for dental caries. Low accessibility in oral care services leads the Indonesian community to use plants in order to prevent dental caries. One of those plants is Psidium guajava (pink guava. The leaves were suggested to have antimicrobial effects on some gram-positive bacteria. When the organism is resistant to specific substance tested on media, a circular/inhibition zone around a disc containing antimicrobial substance was formed. The purpose of this study was to identify the presence of inhibition zones by infusion of Psidium guajava leaf on Streptococci viridians in vitro. Methods: This laboratory experiment was carried out in September to October 2014 at the Microbiology Laboratory, Faculty of Medicine, Universitas Padjadjaran. Infusions of Psidium guajava leaf were made into four different concentrations (10%, 25%, 50% and 100%, respectively and the identification of inhibition zones on Streptococci viridans obtained from the laboratory was tested using modified disk diffusion test. Distilled water acted as negative control. The results were then interpreted after 24 hours of incubation. Every procedure was repeated three times. Results: All four concentrations of Psidium guajava leaf infusions have formed inhibition zones on the media, with the highest concentration (100% producing largest average diameter. Conclusions: The infusion of Psidium guajava leaf produces inhibition zones on Streptococci virdans in vitro.

  18. The potential of papaya leaf extract in controlling Ganoderma boninense

    Science.gov (United States)

    Tay, Z. H.; Chong, K. P.

    2016-06-01

    Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.

  19. From leaf to whole-plant water use efficiency (WUE in complex canopies: Limitations of leaf WUE as a selection target

    Directory of Open Access Journals (Sweden)

    Hipólito Medrano

    2015-06-01

    Full Text Available Plant water use efficiency (WUE is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions, improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However, when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2 assimilation (AN and transpiration (E; AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position (governing average light interception in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.